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METHOD OF SELF-SYNCHRONIZATION OF
CONFIGURABLE ELEMENTS OF A
PROGRAMMABLE MODULE

Matter enclosed in heavy brackets | ] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

CROSS-REFERENCE TO RELATED
APPLICATION

This application 1s a divisional reissue of U.S. Reissue
patent application Ser. No. 12/109,280, filed on Apr. 24, 2008,

which is a rveissue application of U.S. patent application Ser.
No. 10/379,403, filed on Mar. 4, 2003, now U.S. Pat. No.
7,036,036, which is a continuation of U.S. patent application
Ser. No. 09/369,653, filed Aug. 6, 1999, now U.S. Pat. No.
6,542,998, which 1s a continuation-in-part of PCT/DE98/
00334, filed on Feb. 7, 1998 and is a continuation-in-part of
U.S. patent application Ser. No. 08/946,812, filed on Oct. 8,
1997, now U.S. Pat. No. 6,081,903, and claims the benefit of
the priority [date] dates of these cases under 35 U.S.C. §120,
cach of which 1s expressly incorporated herein by reference 1in

its entirety. This application also claims the benefit, under 35
US.C. §119, of the prionity date of German Application No.

DE 19704728.9, filed on Feb. 8, 1997, Junder 35 U.S.C.
§119,] which is expressly 1nc0rp0rated herem by reference 1n
its entirety. Further, more than one reissue application of U.S.

Pat. No. 7,036,036 has been filed. Specifically, the reissue
applications are application Serv. No. 12/109,250, application
Ser. No. 12/909,061, application Ser. No. 12/909 150, and
application Ser. No. 12/909,203, the latter three of which

were all filed on Oct. 21, 2010 as divisional reissue applica-
tions of application Ser. No. 12/109,280.

BACKGROUND INFORMATION

Synchronization of configurable elements of today’s mod-
ules, e.g., field programmable gate arrays (“FPGAs”),
dynamically progammable gate arrays (“DPGAs”™), etc., 1s
usually accomplished using the clock of the module. This
type of time-controlled synchronization poses many prob-
lems because it 1s often not known 1n advance how much time
1s needed for a task until a final result 1s available. Another
problem with time-controlled synchronization 1s that the
event on which the synchronization 1s based 1s not triggered
by the element to be synchronized itself but rather by an
independent element. In this case, two different elements are
involved 1n the synchromization. This leads to a considerably
higher administrative complexity.

European Patent No. 0 726 332 describes a method of
controlling data flow in SIMD machines composed of several
processors arranged as an array. An instruction 1s sent to all
processors which dynamically, selects the target processor of
a data transfer. The instruction 1s sent by a higher-level
instance to all processors (broadcast instruction) and includes
a destination field and a target field. The destination field
controls a unit in the processor element to dynamically deter-
mine the neighboring processor element to which the result 1s
to be sent. The operand register of another processor element
in which another result 1s to be stored 1s dynamaically selected
with the target field.

SUMMARY

The present mvention relates to a method which permits
self-synchronization of elements to be synchronized. Syn-
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2

chronization 1s neither implemented nor managed by a central
entity. By shifting synchronization into each element, more
synchronization tasks can also be performed simultaneously,
because independent elements no longer intertere with one
another when accessing the central synchronization entity.

In accordance with an example embodiment of the present
invention, in a module, e.g., a data flow processor (“DFP”) or
a DPGA, with a two- or multi-dimensionally arranged pro-
grammable cell structure, each configurable element can
access the configuration and status register of other config-
urable elements over an 1nterconnecting structure and thus
can have an active influence on their function and operation.
A matrix of such cells 1s referred to below as a processing
array (PA). The configuration can thus be accomplished by a
load logic from the PA 1n addition to the usual method.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows how a loop construct can be implemented by
using triggers, 1n accordance with an example embodiment of
the present invention.

FIG. 2 shows how a comparison construct can be imple-
mented by using multiple triggers, according to an example
embodiment of the present invention.

FIG. 3 shows how a comparison construct with multiple
outputs can be implemented by using multiple triggers and
interleaving them, according to an example embodiment of
the present invention.

FIG. 4 shows the required expansions, according to an
example embodiment of the present invention, 1n comparison
with conventional FPGAs and DFPs.

FIGS. 5a-5d show an example of the selection of different
functions of the configurable elements by, triggers, according
to the present mvention.

FIGS. 6 and 6a show an implementation of multiple con-
figuration registers controlled by triggers for executing dii-
ferent functions, according to an example embodiment of the
present invention.

FIGS. 7a and 7b shows an implementation of the method
from FIG. 6 in microprocessors, according to an example
embodiment of the present invention.

DETAILED DESCRIPTION

The present invention provides a module which 1s freely
programmable during the running time and can also be recon-
figured during the running time. Configurable elements on the
chip have one or more configuration registers for different
functions. Both read and write access to these configuration
registers 1s permitted. In the method described here, 1t 1s
assumed that a configuration can be set 1n an element to be
configured for the following information.

Interconnection register. In this register, the type of con-

nection to other cells 1s set.

Command register. The function of the configurable ele-
ment to be executed 1s entered 1n this register.

Status register. The cell stores 1ts istantaneous status in
this register. This status provides other elements of the
module with information regarding which processing
cycle the cell 1s 1n.

A cell 1s configured by a command which determines the
function of the cell to be executed. In addition, configuration
data 1s entered to set the interconnection with other cells and
the contents of the status register. After this operation, the cell
1s ready for operation.

To permait flexible and dynamic cooperation of many cells,
cach cell can have read or write access to all the configuration
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registers of another cell. Which of the many configuration
registers 1s accessed by reading or writing 1s specified by the
type of command with which the cell has been configured.
Each command that can be executed by the cell exists 1n as
many different types of addressing as there are diflerent inde-
pendent configuration registers in an element to be config-
ured.

Example: A cell has the configuration register described
above (interconnection, command and status) and 1s to
execute the command ADD which performs an addition. It 1s
then possible to select through the various types of ADD
command where the result of this function 1s to be transterred.
ADD-A. The result 1s transferred to operand register A of the

target cell.

ADD-B. The result 1s transterred to operand register B of the
target cell.

ADD-V. The result 1s transferred to the interconnecting reg-
ister of the target cell.

ADD-S. The result 1s transierred to the status register of the
target cell.

ADD-C. The result 1s transierred to the command register of
the target cell.

Control and Synchronization Trigger: In addition to the
result, each cell can generate a quantity of trigger signals. The
trigger signals need not necessarily be transierred to the same
target cell as the result of processing the configured com-
mand. One trigger signal or a combination of multiple trigger
signals triggers a certain action 1n the target cell or puts the
cell 1n a certain state. A description of the states 1s also to be
found 1n the text below. The following are examples of trigger
signals:

GO trnigger. The GO trigger puts the target cell in the
READY state.

RECONFIG tnigger. The RECONFIG trigger puts the tar-
get cell in the RECONFIG state, so the cell can be
reprogrammed. This trigger 1s very useful, especially in
conjunction with switching tables. I1 1t 1s assumed that
the data to be processed 1s loaded 1nto the operand reg-
ister at the rising edge of the clock pulse, processed 1n the
period of the H level and written to the output register at
the trailing edge, then the cell can be reconfigured at the
trailing edge. The new configuration data 1s written to
the command register at the trailing edge. The period of
the L level 1s suflicient to conclude the reconfiguration
successiully.

STEP trigger. The STEP trigger initiates unique execution
of the configured command in the target cell in the WAIT
state.

STOP trigger. The STOP trigger stops the target cell by
putting the cell in the STOP state.

Due to the possibility of indicating 1n the processing cell
into which register of the target cell the result 1s to be entered
and which type of trigger signal 1s to be generated, a quantity
of management data can be generated from a data stream.
This management data 1s not a result of the actual task to be
processed by the chip, but instead it serves only the functions
of management, synchronization, optimization, etc. of the
internal state.

Each cell can assume the following states which are rep-
resented by suitable coding 1n the status register, for example:
READY. The cell 1s configured with a valid command and

can process data. Processing takes place with each clock

cycle. The data 1s entered into the register of the target
cell on the basis of the type of addressing of the cell
sending the data.

WAIT. The cell has been configured with a valid command

and can process data. Processing takes place on the basis
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of a trigger signal which can be generated by other
clements of the module. The data i1s entered into the
register of the target cell on the basis of the type of

addressing of the cell sending the data.
CONFIG. This cell 1s not configured with a valid com-

mand. The data package sent to the cell with the next
clock cycle 1s entered into the command register. The
data package 1s entered 1into the command register in any
case, regardless of which type of addressing was used by

the cell sending the data.
CONFIG-WAIT. This cell 1s not configured with a valid

command. A data package 1s entered with the next trig-
ger signal which can be generated by other elements of
the module and 1s written to the command register. The
data package 1s entered 1into the command register in any
case, regardless of which type of addressing was used by
the cell sending the data.

RECONFIG. The cell 1s configured with a valid command,

but 1t does not process any additional data, nor does 1t
accept data. The cell can be reconfigured by another
clement of the module.

STOP. The cell 1s configured with a valid command, but 1t
1s not processing any data at the moment. The data 1s
accepted by the cell (transferred to the input register) but
1s not processed further.

Due to these various states and the possibility of read and
write access to the various registers of a cell, each cell can
assume an active administrative role. In contrast with that, all
existing modules of this type have a central management
entity which must always know and handle the entire state of
the module.

To achieve greater tlexibility, there 1s another class of com-
mands which change types aifter the first execution. Based on
the example of the ADD command, a command is then as
follows:

ADD-C-A. Theresult of the ADD function 1s written to the
command register of the target cell with the first execu-
tion of the command. With each additional execution,
the result 1s written to operand register A.

This possibility can be expanded as desired, so that even
commands of the type ADD-C-V-A-C- . . . -B are conceiv-
able. Each command can assume all permutated combina-
tions of the various types of addressing and triggers.

Reconfiguration Control by RECONFIG Trigger: In the
previous method, each element to be configured received a
RECONFIG trigger from an external entity to enter the
“reconfigurable” state. This had the disadvantage that distri-
bution of the RECONFIG trigger necessitated a considerable
interconnection and configuration expense: Due to the struc-
ture of the iterconnection, this disadvantage can be elimi-
nated. All configurable elements which are related by the
interconnecting information represent a directional graph.
Such a graph may have multiple roots (sources) and multiple
leaves (targets). The configurable elements are expanded so
that they propagate an incoming RECONFIG trigger 1n the
direction of either their outgoing registers, their ingoing reg-
1sters or a combination thereof. Due to this propagation, all
the configurable elements that are directly connected to the
configurable element also receive the RECONFIG trigger.

A configuration (graph) can be brought completely into the
“reconfigurable” state by sending a RECONFIG trigger to all
the roots and propagating the RECONFIG trigger in the
direction of the output registers. The quantity of roots 1n a
graph to which a RECONFIG trigger must be sent 1s consid-
erably smaller than the total quantity of nodes 1n the graph.
This greatly minimizes the complexity. Of course, a RECON-
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FIG trigger may also be sent to all leaves. In this case, the
RECONFIG trigger 1s propagated in the direction of the input
registers.

Due to the use of both options or a combination of both
methods, a mimmimum quantity of configurable elements to
which a RECONFIG trigger must be sent can be calculated.

The configurable elements can recetve an addition record
to their status register, indicating whether or not an incoming,
RECONFIG trigger 1s to be propagated. This information 1s
needed when two or more different graphs are connected at
one or more points (1.e., they have a transition) and 1t 1s not
desirable for one of the other graphs to enter the “recontig-
urable” state. One or more configurable elements thus behave
like a lock.

In addition, the status register can be expanded so that an
additional entry indicates the direction 1n which an incoming
RECONFIG trigger 1s to be relayed.

The method described here can be applied to all types of
triggers and/or data. In this way, 1t 1s possible to establish an
automatic distribution hierarchy needing very few access
opportunities from the outside to set 1t 1n operation.

Implementation of Multiple Functions Simultaneously in
the Same Configurable Elements

Basic Function and Required Triggers: An especially com-
plex variant of calling up various macros by a condition 1s
presented below: In execution of a condition (IF COMP
THEN A ELSE B; where COMP 1s a comparison, and A and
B are operations to be executed), no GO and STOP triggers
are generated. Instead, a trigger vector (TRIGV) 1s generated,
indicating to which result the comparison COMP has led. The
trigger vector can therefore assume the states “equal,”
“oreater” or “less.”

The vector 1s sent to a following cell which selects exactly
a certain configuration register (corresponding to A or B)
from a plurality of configuration registers on the basis of the
state ol the vector. What this achueves 1s that, depending on the
result of the preceding comparison, another function 1s per-
formed over the data. States such as “greater-equal,” “less-
equal” and “‘equal-not equal” are triggered by writing the
same configuration data to two configuration registers. For
example, with “greater-equal” the configuration register
“oreater” and the configuration register “equal” are written
with the same configuration word, while the configuration
register “less” contains another configuration word.

In implementating trigger vectors TRIGV, no restriction to
the states “greater,” “less” and “equal” 1s necessary. To ana-
lyze large “CASE . . . OF” constructs, any number n repre-
senting the state of the CASE may be relayed as trigger
vectors TRIGV-m to the downstream cell(s). In other words,
n indicates the comparison within the CASE which was cor-
rect in analysis of the applied data. For implementation of the
function assigned to the comparison within the CASE, n 1s
relayed to the executing cells to select the corresponding
tfunction. Although the cells need at least three configuration
registers 1n the “greater/less/equal” case, the number of con-
figuration registers must correspond exactly to at least the
maximum value of n (max (n)) when using TRIGV-m.

Propagation of the Requred Function by Triggers:
TRIGV/TRIGV-m are sent to the first cell processing the data.

In this cell, TRIGV/TRIGV-M are analyzed and the data 1s
processed accordingly. TRIGV/TRIGV-m are relayed
(propagated) together with the data to the downstream cells.
They are propagated to all cells executing a certain function
on the basis of the analysis (IF or CASE). Propagation is
linked directly to propagation of data packages, 1.e., propa-
gation 15 synchronous with the data. TRIGV/TRIGV-m gen-
crated at time t are linked to data present at time t at first

10

15

20

25

30

35

40

45

50

55

60

65

6

processing cells CELLS1 (see FIG. 5: 0502, 0505, 0507).
TRIG/TRIG-V are propagated so that the vectors are applied
to the second processing cells with the data at time t+1, and at
time t+2 they are applied to the third processing cells, etc.,
until TRIG/TRIG-V and the data are present at time t+m to
the (m-1)" cells and at the same time to the last cells which
depend on the comparison IF/CASE triggered by TRIG/
TRIG-V.

A link 1s by no means such that the TRIG/TRIG-V gener-

ated at time t are linked to data applied to CELLS1 at time

t, <t

Reacting to the Presence or Absence of Triggers: In special
cases, 1t 1s necessary to react to the absence of a trigger, 1.e., a
trigger state occurs, but no change 1n trigger vector 1s 1niti-
ated. Appropniate and important information can also be
transierred to the downstream cells 1n this case. For example,
in a comparison of “greater,” “less,” “equal,” the trigger signal
“equal” 1s not present and does not change when switching
from the state “less™ to the state “greater.” Nevertheless, the
absence of “equal” does contain information, namely “not
equal.”

To be able to react to both states “present” and “not
present,” an entry in the configuration register of the cell 1s
added, indicating which of the states 1s to be reacted to.

Furthermore, a signal TRIGRDY indicating the presence
of a trigger 1s added to trigger vector TRIGV representing
states “equal,” “greater”” and “less.” This 1s necessary because
the state “not present” on one of the vectors does not provide
any more information regarding the presence of a trigger per
S€.

TRIGRDY can be used as a handshake protocol between
the transmitting cell and the receiving cell by having the
receiving cell generate a TRIGACK as soon as 1thas analyzed
the trigger vectors. Only after arrival of TRIGACK does the
transmitting cell cancel the trigger state.

On the basis of an entry into the configuration register, a
determination 1s made as to whether to wait for receipt of a
TRIGACK or whether the trigger channel 1s to proceed
unsynchronized when a trigger vector 1s sent out.

Use 1n Microprocessors

In microprocessors of the most recent architecture, condi-
tional jumps are no longer executed by the known method of
branch prediction, 1.e., prediction of a jump. Speculative pre-
diction of jumps ntroduced to increase processor perfor-
mance calculated jumps 1n advance on the basis of speculative
algorithms and had to reload the entire processor pipeline 1f
the calculations were faulty, which led to a considerable loss
of power.

To eliminate these losses, the new predicate/NOP method
was mtroduced. A status tlag one bit wide 1s assigned to each
command, indicating whether the command 1s to be
executed—or not. There may be any desired quantity of status
flags. Commands are assigned to status flags by a compiler
during the translation of the code. The status flags are man-
aged by comparison operations assigned to them at the time of
execution and indicate the result of the respective compari-
SOn.

Depending on the state of a status flag assigned to a com-
mand, the command is then executed by the processor (if the
status flag indicates “execute”) or the command 1s not
executed and 1s replaced by an NOP (i1 the status flag 1ndi-
cates “not execute”). NOP stands for “No OPERATION,”
which means that the processor does not execute any opera-
tion 1n this cycle. Therefore, the cycle 1s lost for meaningiul
operations.
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Two options are proposed for optimizing the cycle loss:

Multiple Command Registers per Computer Unit: A mod-
ern microprocessor has several relatively mndependent pro-
CESSOrSs.

According to the trigger principle presented here, the indi-
vidual processors are each equipped with several command
registers, with a command register of a processor of a micro-
processor being synonymous with a configuration register
according to conventional FPGA, DFP, etc. modules. The
respective active command register 1s selected

a) on the basis of trigger vectors generated by other pro-
cessors on the basis of comparisons,

b) on the basis of multibit status flags (hereinafter referred
to as status vectors) allocated to compare commands accord-
ing to today’s related art method.

Revised VLIW Command Set: One special embodiment 1s
possible through VLIW command sets. Thus, several possible
commands depending on one comparison can be combined to
give one command within one command word. A VLIW word
of any width 1s subdivided into any desired quantity of com-
mands (codes). Each individual one of these codes 1s refer-
enced by a trigger vector or a status vector. This means that
one of the existing codes 1s selected from the VLIW word and
processed during the running time.

The table 1llustrates a possible VLIW word with four codes
referenced by a 2-bit trigger vector or a 2-bit status flag:

VLIW Command Word:

Code 0 Code 1 Code 2 Code 3

Assignment:
Trigger Vector/Status Flag:

00 01 10 11

Expansion of Hardware 1n Comparison with Conventional
FPGAs and DFPs.

Additional Registers: A status register and a configuration
register are added to the configuration registers convention-
ally used 1n DFPs. Both registers are controlled by the PLU
bus and have a connection to the state machine of the

sequence control system of the respective cell.

Change 1n PLU Bus: The configurable registers M-/F-
PLUREG in FPGAs and DFPs are managed exclusively over
the PLU bus, which represents the connection to the load
logic. To guarantee the function according to the present
invention, an additional access option must be possible
through the normal system bus between the cells. The same
thing 1s true for the new status register and configuration
register.

The only part of the system bus relevant for the registers 1s
the part that 1s interconnected to the PAE over the BM UNIT,
1.¢., the iterface between the system buses and the PAE.
Therefore, the bus 1s relayed from the BM UNIT to the reg-
1sters where upstream multiplexers or upstream gates are
responsible for switching between the PLU bus and the sys-
tem bus relevant for the PAE. The multiplexers or gates are
switched so that they always switch the system bus relevant

1

tor the PAE through, except after resetting the module (RE-
SE'T) or when the RECONFIG trigger 1s active.

Expansions of Configurable Flements (PAEs) with
Respect to Conventional FPGAs and DFPs: Trigger Sources:
A configurable element can receive triggers from several
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sources at the same time. Due to this possibility, flexible
semantics of the triggers can be achieved with the help of
masking registers.

Multiple Configuration Registers: Instead of one configu-
ration register, a PAE has multiple (max(n)) configuration
registers.

Configuration State Machine and Multiplexer: Down-
stream from the configuration registers 1s a multiplexer which
selects one of the possible configurations.

Themultiplexer 1s controlled by a separate state machine or
a state machine itegrated into the PAE state machine, con-
trolling the multiplexer on the basis of incoming trigger vec-
tors.

Trigger Analysis and Configuration: A configurable ele-
ment may contain a masking register in which 1t 1s possible to
set the trigger inputs to which a trigger signal must be applied,
so that the conditions for an action of the configurable ele-
ment are met. A configurable element reacts not only to a
trigger, but also to a set combination of triggers. In addition,
a configurable element can perform prioritization of simulta-
neously mcoming triggers.

Incoming triggers are recognized on the basis of the TRI-
GRDY signal. The trigger vectors are analyzed here accord-
ing to configuration data also present in the configuration
registers.

Trigger Handshake: As soon as the trigger vectors have
been analyzed, a TRIGACK 1is generated for confirmation of

the trigger vector.

BM UNIT: The BM UNIT 1s expanded so that it relays
triggers coming from the bus to the sync unit and SM umnit
according to the configuration in M-PLUREG. Triggers gen-
cerated by the EALU (e.g., comparator values “greater,”
“less,” “equal,” 0 detectors, plus and minus signs, carry-overs,
error states (division by O, etc.), etc.) are relayed from the BM
UNIT to the bus according to the wiring information in
M-PLUREG.

Expansions of System Bus: The system bus, 1.¢., the bus
system between the cells (PAEs), 1s expanded so that infor-
mation 1s transierred together with the data over the target
register. This means that an address which selects the desired
register on receipt of the data 1s also sent. Likewise, the
system bus 1s expanded by the independent transier of trigger

vectors and trigger handshakes.

DETAILED DESCRIPTION OF DIAGRAMS AND
EMBODIMENTS

FIG. 1 shows how a loop construct can be implemented by
using triggers. In this example, amacro 0103 1s to be executed
70 times. One execution of the macro takes 26 clock cycles.
This means that counter 0101 may be decremented by one
increment only once in every 26 clock cycles. One problem
with freely programmable modules 1s that it 1s not always
possible to guarantee that processing of macro 0103 will
actually be concluded atfter 26 clock cycles. For example, a
delay may occur due to the fact that a macro which is to supply
the mnput data for macro 0103 may suddenly require 10 more
clock cycles. For this reason, the cell in macro 0103 sends a
trigger signal to counter 0101, causing the result of the cal-
culation to be sent to another macro. At the same time, pro-
cessing of macro 0103 by the same cell 1s stopped. This cell
“knows” exactly that the condition for termination of a cal-
culation has been reached.

In this case the trigger signal sent 1s a STEP trigger, causing,
counter 0101 to execute 1ts configured function once. The
counter decrements its count by one and compares whether 1t
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has reached a value o1 O. I this 1s not the case, a GO trigger 1s
sent to macro 0103. This GO trigger signal causes macro 0103
to resume its function.

This process 1s repeated until counter 0101 has reached a
value of 0. In this case, a trigger signal 1s sent to macro 0102,
where 1t triggers a function.

A very fine synchronization can be achieved due to this
interaction of triggers.

FIG. 2 shows how a comparison construct can be imple-
mented by using multiple triggers. FI1G. 2 corresponds to the
basic 1dea of FIG. 1. However, 1n this case the function in
clement 0202 1s not a counter but a comparator. Macro 0201
also sends a comparison value to comparator 0202 after each
processing run. Depending on the output of the comparison,
different triggers are again driven to prompt an action in
macros 0203, for example. The construct implemented in
FIG. 2 corresponds to that of an IF query 1n a programming
language.

FIG. 3 shows how a comparison construct with multiple
outputs can be implemented by using multiple triggers and
interleaving them. Here, as in FIG. 2, several comparators
0301, 0302 are used here to implement construction of an
IF-ELSE-ELSE construct (or multiple choice). Dueto the use
of a wide variety of types of triggers and connections of these
triggers to macros 0303, 0304, very complex sequences can
be implemented easily.

FIG. 4 shows an example of some of the differences
between the present invention and, for example, conventional
FPGAs and DFPs. Additional configuration register 0401 and
additional status register 0402 are connected to the SM UNIT
over bus 0407. Registers 0401, 0402, F-PLUREG and
M-PLUREG are connected to a gate 0403 by an internal bus
0206. Depending on position, this gate connects internal bus
0406 to PLU bus 0405 to permit configuration by the PLU or
to the BM UNIT by a bus 0408. Depending on the address on
data bus 0404, the BM UNIT relays the data to the O-REG or
to addressed register 0401, 0402, F-PLUREG or
M-PLUREG.

BM UNIT 0411 sends trigger signals over 04135 to SYNC
UNIT 0412. 0411 receives results from the EALU over 0414
(“equal,” “‘greater,” “less,” “result=0,” “result positive,”
“result negative,” carry-over (positive and negative), etc.) to
convert the results 1nto trigger vectors. As an alternative,
states generated by the SYNC UNIT or the STATE
MACHINE can be relayed to the BM UNIT over 0415.

The trigger signals transmitted by the BM UNIT to bus
0404 can be used there as STEP/STOP/GO triggers, RECON-
FIG triggers or for selecting a configuration register, depend-
ing on the configuration of the configurable elements to be
analyzed. Which function a generated trigger will execute 1n
the configurable elements to be analyzed 1s determined by
interconnection 0404 and the configuration of the respective
configurable element. One and the same trigger may have
different functions with different configurable elements.
0416 1s the result output of R-REGsit to bus system 0404 and
the following configurable elements.

FIG. 5 shows the time response between generated triggers
and the configuration registers selected by the triggers as an
example. 0501 generates by comparison a trigger vector
TRIGYV, which can assume values “equal,” “greater,” or
“less.” Configurable elements 0502-0504 process data inde-
pendently of comparison 0501. Processing depends on com-
parison values “equal,” “greater” and “less.” Processing 1s
pipelined, 1.e., a data word 1s modified first by 0502, then by
0503 and finally by 0504. 0505 also processes data as a
tfunction of 0501. However, this 1s limited to the dependence

on the comparison values “less™; “greater”” and “equal” cause
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the same function to be carried out. Thus, a distinction 1s
made between the values “less” and “greater than or equal to.”
0506 1s connected downstream 1n pipeline 0505. 0506 reacts
differently to “equal,” “greater” and “less”™ (see 0503). 0507
also depends on 0501, but a distinction 1s made between the
values “equal” and “not equal (less or greater).” This embodi-
ment begins attime t (FI1G. 5a) and ends at time t+3. I the data
passes through one of pipelines 0502, 0503, 0504 or 0505,
0506, 1t 1s delayed by one clock cycle 1n each execution 1n one

of macros 0502-0506. Longer and especially different delays
may also occur. Since there 1s a handshake mechanism
between the data and trigger signals for automatic synchro-
nization (according to the related art or this application
(TRIGACK/TRIGRDY)), this case need not be discussed
separately.

Due to the delays, data and trigger signals of the earlier
time t-2 are available at time t between the second and third

pipeline steps, for example.

FIGS. 5a through 3d show the sequence of three clock
cycles t through t+2.

The trigger vectors (1.e., the results of the comparison)
generated by 0501 look as follows over t:

Time t Result of comparison
t-2 less

t—1 greater

t equal

t+ 1 greater

t+ 2 equal

FIG. 6 shows the integration of several configuration reg-
1sters into one configurable element. In this embodiment there

are three configuration registers 0409 according to FIG. 4.
These are configured over bus 0406. A control unit 0601
(which may also be designed as a state machine) recerves
signals TRIGV and TRIGRDY over bus system 0411.
Depending on TRIGYV, the control unit switches one of the
configuration registers over multiplexer 0602 to bus system
0401 leading to the control mechanisms of the configurable
clement. For synchronization of the trigger signals with the
internal sequences of the configurable element, 0601 has a
synchronization output leading to synchronization unit 0412
or to state machine 0413. For synchronization of the trigger
sources, 0601 generates handshake signal TRIGACK after
processing the mcoming trigger. In this embodiment, each
configuration register 0409 1s assigned to one TRIGV of the
type “equal,” “greater,” “less.” If other operations are
executed with each type of trigger, then each configuration
register 1s occupied differently. For example, 1f a distinction 1s
made only between “equal” and “not equal” then the configu-
ration registers are occupied equally for the types “less” and
“oreater,” namely with the configuration for “not equal.” The
configuration register for “equal” 1s occupied differently.
This means that the comparison can be made more specific on
the basis of the occupancy of the configuration registers, each
configurable element being able to design this specification
differently.

TRIGV 1s relayed together with the result over register
0603 to the downstream configurable e¢lements to permit
pipelining according to FIGS. 3Sa-d. The register and the
handshake signals are controlled by 0412 or 0413. Trigger
information together with the result from R-REGsit or with a
time offset, 1.e., before the result, can be sent over intertface
0416 to downstream configurable elements.
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A time-offset transfer offers the advantage that no addi-
tional time 1s necessary for setting the configuration registers
in the downstream configurable elements, because the setting
1s made before receiving the data (simultaneously with the
release of the result). FIG. 6a shows a corresponding timing,
(based on sequences conventional for DFP). Trigger vectors
0615 are generated at rising edge 0613 of module clock 0614.
Triggers are analyzed 1n the configurable elements at trailing
edge 0612. Data 1s phase shifted, 1.e., released at 0612 and
entered at 0613. The trigger vectors are transierred over the
bus and data is calculated during 0610. Data 1s transierred
over the bus and triggers are calculated during 0611, or con-
figuration registers of the configurable elements are selected
according to data stored at 0613 and the configuration 1s set
accordingly.

FIG. 7a shows the management of jumps according to the
predicate/NOP method of the related art. In execution of a
comparison, an entry 1s made 1n predicate register 0704. This
entry 1s queried during the execution of commands, determin-
ing whether a command 1s being executed (the command 1s
inside the code sequence addressed by the conditional jump)
or 1s replaced by an NOP (the command 1s 1n a different code
sequence from that addressed by the conditional jump). The
command 1s 1n command register 0701. The predicate register
contains a plurality of entries allocated to a plurality of opera-
tions and/or a plurality of processors. This allocation 1s 1ssued
at the compile time of the program of the compiler. Allocation
information 0707 1s allocated to the command entered into
the command register, so that a unique entry 1s referenced by
the respective command.

0703 selects whether the command from 0701 or an NOP

1s to be executed. In execution of an NOP, one clock cycle 1s
lost. 0703 has a symbolic character, because executing unit
0702 could also 1n principle be controlled directly by 0704.

In FIG. 7b there are n command registers (0701: Func 1. ..
Func n). In executing a comparison/conditional jump, the
command register to be addressed, 1.¢., the result of the com-
parison, 1s deposited as an entry 0708 1n predicate register
0706, where 0706 has a plurality of such entries. Respective
entry 0708 1n 0706 1s so wide that all possible command
registers of an executing unit 0702 can be addressed by 1it,
which means that the width of an entry 1s log,(n) with n
command registers. The predicate register contains a plurality
of entries allocated to a plurality of operations and/or a plu-
rality of processors. This allocation 1s 1ssued by the compiler
at the compile time of the program. Allocation information
0707 1s allocated to the quantity of commands entered into the
command registers, so that an unambiguous entry 1s refer-
enced by the respective commands.

The multiplexer selects which command register supplies
the code for the 1nstantaneous execution.

Due to this technology, a valid command 1s executed
instead of an NOP even 1n the worst case with conditional
Tumps, so no clock cycle 1s wasted.

The following provides an explanation of various names,
functions and terms described above.

Name Convention

Assembly group UNIT
Type of operation MODE
Multiplexer MUX
Negated signal not
Register for PLU visible PLUREG
Register internal REG
Shift register sit
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Function Convention
NOT Function!
I Q
§ 1
1 0
AND Function &
A B Q
0 0 0
0 1 0
1 0 §
1 1 1
OR Function #
A B Q
g § §
0 1 1
1 §
1 1
GATE Function G
EN B Q
0 0 .
0 1 —
1 0
1 1 1
DEFINITION OF TERMS

BM UNIT: Unit for switching data to the bus systems
outside the PAE. Switching 1s done over multiplexers for the
data mputs and gates for the data outputs. OACK lines are
implemented as open collector drivers. The BM UNIT 1s

controlled by the M-PLUREG.

Data receiver: The unit(s) that process(es) the results of the
PAE further.

Data transmitter: The unmt(s) that make(s) available the
data for the PAE as operands.

Data word: A data word consists of a bit series of any
desired length. This bit series represents a processing unit for
a system. Commands for processors or similar modules as
well as pure data can be coded 1n a data word.

DFP: Data flow processor according to German Patent/
Unexamined Patent No. 44 16 88

DPGA: Dynamically configurable FPGAs. Related art.

EALU: Expanded arithmetic logic unit. ALU which has

been expanded by special functions which are needed or
appropriate for operation of a data processing system accord-
ing to German Patent No. 441 16 881 Al. These are counters
in particular.

Elements: Collective term for all types of self-contained
units which can be used as part of an electronic module.
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Elements thus include:

configurable cells of all types

clusters

blocks of RAM

logic

Processors

registers

multiplexers

I/O pins of a chip

Event: An event can be analyzed by a hardware element of
any type suitable for use and can prompt a conditional action
as a reaction to this analysis. Events thus include, for
example:

clock cycle of a computer

internal or external interrupt signal

trigger signal from other elements within the module

comparison of a data stream and/or a command stream

with a value

input/output events

sequencing, carry-over, reset, etc. of a counter

analysis of a comparison

FPGA: Programmable logic module. Related art.

F-PLUREG: Register in which the function of the PAE 1s
set. Likewise, the one shot and sleep mode are also set. The
register 1s written by the PLU.

H level: Logic 1 level, depending on the technology used.

Configurable element: A configurable element 1s aunitof a
logic module which can be set for a special function by a
configuration word. Configurable elements are thus all types
of RAM cells, multiplexers, arithmetic logic units, registers
and all types of internal and external network writing, etc.

Configurable cell: See logic cells.

Configure: Setting the function and interconnecting a logic
unit, an (FPGA) cell or a PAE (see: Reconfigure).

Configuration data: Any quantity of configuration words.

Configuration memory: The configuration memory con-
tains one or more configuration words.

Configuration word: A configuration word consists of a bit
series of any desired length. This bit series represents a valid
setting for the element to be configured, so that a functional
unit 1s obtained.

Load logic: Unit for configuring and reconfiguring the
PAE. Embodied by a microcontroller specifically adapted to
its function.

Logic cells: Configurable cells used in DFPs, FPGAs,
DPGAs, fulfilling simple logic or arithmetic functions
according to their configuration.

L level: Logic 0 level, depending on the technology used.

M-PLUREG: Register in which the interconnection of the
PAE 1s set. The register 1s written by the PLU.

O-REG: Operand register for storing the operands of the
EALU. Permits independence of the PAE of the data trans-
mitters 1n time and function. This simplifies the transfer of
data because it can take place 1n an asynchronous or package-
oriented manner. At the same time, the possibility of recon-
figuring the data transmitters independently of the PAE or
reconfiguring the PAE independently of the data transmitters
1s created.

PLU: Umt for configuring and reconfiguring the PAE.
Embodied by a microcontroller specifically adapted to 1its
function.

Propagate: Controlled relaying of a recerved signal.
RECONFIG: Reconfigurable state of a PAE.

RECONFIG trigger. Setting a PAE 1n the reconfigurable

state.
SM UNIT: State machine UNIT. State machine controlling
the EALU.
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Switching table: A switching table 1s a ring memory which
1s addressed by a control. The entries 1n a switching table may
accommodate any desired configuration words. The control
can execute commands. The switching table reacts to trigger
signals and reconfigures configurable elements on the basis of
an entry 1n a ring memory.

Synchronization signals: Status signals generated by a con-
figurable element or a processor and relayed to other config-
urable elements or processors to control and synchronize the
data processing. It 1s also possible to return a synchronization
signal with a time lag (stored) to one and the same config-
urable element or processor.

TRIGACK/TRIGRDY: Handshake of the triggers.
Trigger: Synonymous with synchronization signals.
Reconﬁgure Configuring any desired quantity of PAEs

again while any desired remaining quantity of PAEs continue

their own function (see: Configure).

Processing cycle: A processing cycle describes the period
of time needed by a unit to go from one defined and/or valid
state 1nto the next defined and/or valid state.

VLIW: Very large mstruction word. Coding of micropro-

cessors, prior art method.
Cells: Synonymous with configurable elements.
What 1s claimed 1s:
[1. A method for controlling data processing by an inte-
grated circuit that includes a plurality of data processing
clements that are arranged for at least one of arithmetically
and logically processing data using a sequence of commands,
the sequence including jumps, the method comprising:
for each of a plurality of the processing elements that each
include at least one corresponding register:
predefining at least one corresponding configuration
command; and

storing each of the at least one corresponding configu-
ration command 1n one of the at least one register
corresponding to the processing element;

processing data 1n at least one {irst processing element;

obtaining at least one of a comparison, a sign, a carry-over,
and an error state during the processing of the data in the
at least one first processing element;

in response to the at least one of the comparison, the sign,
the carry-over, and the error state, generating for the at
least one second processing element at least one first
synchronization signal within a data stream during runt-
1me:

processing data in at least one second processing element
1n a stream-like manner; and

in response to the at least one first synchronization signal,
selecting at least one particular command from the
stored configuration commands 1n order to control a
jump in the sequence.]

2. A runtime configurable processor comprising:

a plurality of configurable elements arvanged in an array
of more than one dimension, at least some of the plural-
ity of comfigurable elements including an arithmetic
logic unit, a configuration with respect to at least one of
a function and an intevconnection of at least one of the at
least some configurable elements being reconfigurable
at runtime in response to configuration data;

at least one multiplexer adapted to determine the at least
one of the function and the interconnection in response
to a state machine, which is adapted to control the at
least one multiplexer; and

at least one storage component adapted for storing said
configuration data;

wherein the at least one storage component:
is provided in the array,; and
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is selectively connectable to at least one of the at least
some configurable elements via the at least one mul-
tiplexer so as to allow for the runtime reconfiguration.
3. The runtime configurable processor of claim 2, wherein
the state machine is adapted to control the at least one mul-
tiplexer in vesponse to received trigger signals.
4. The runtime configurable processor of claim 3, wherein
the received trigger signals ave generated in the array.
5. The runtime configurable processor of claim 3, wherein
the veceived trigger signals are genevated in the array by at
least one of a counter and a comparator implemented in at
least one of the configurable elements.
6. The runtime configurable processor of claim 4, wherein
the received trigger signals ave generated in the array by a
counter implemented in at least one of the configurable ele-
menis.
7. The runtime configurable processor of claim 6, wherein
the veceived trigger signals arve multibit trigger signals gen-
erated by at least one of the configurable elements.
8. A runtime configurable processor comprising.
a plurality of configurable elements arranged in an array
of more than one dimension, at least some of the plural-
ity of comfigurable elements including an arithmetic
logic unit, a configuration of at least one of a function
and an interconnection of at least one of the at least some
configurable elements being redeterminable at runtime
in response to configuration select information,
a multiplexer arrangement adapted for determining said at
least one of the function and the interconnection in
response to said configuration select information;
at least one storage component adapted to store configu-
ration data and provided in the array, wherein:
the at least one storage component is selectively con-
nectable to at least one of the at least some config-
urable elements via at least one multiplexer of said
multiplexer arrangement so as to allow for the runt-
ime configuration redetermination, configuration
select information being pipelined through said
array, and

the at least one multiplexer receives configuration select
information from said pipeline; and

a state machine being provided to control the at least one
multiplexer.

9. The runtime configurable processor of claim 8, wherein
the configuration select information is pipelined along with
the data to be processed via a configurable interconnection
system.

10. The runtime configurable processor of claim 9, wherein
the pipeline is adapted to transfer trigger signals as configu-
ration select information via the configurable intevconnec-
tion system.

11. The runtime configurable processor of claim 9, wherein
the pipeline is adapted to transfer one bit trigger signals as
configuration select information via the configurable inter-
connection system.

[2. The runtime configurable processor of any of claims §
to 11, wherein the state machine is adapted to control the at
least one multiplexer in response to received trigger signals.

13. The rumntime configurable processor of claim 12,
wherein the received trigger signals ave generated in the
array.

14. The rumntime configurable processor of claim 12,
wherein the received trigger signals ave generated in the
array by at least one of a counter and a comparator.

15. The rumtime configurable processor of claim 12,
wherein the received trigger signals ave generated in the
array by a counter.
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16. The runtime comnfigurable processor of claim 15,
wherein the received trigger signals are multibit trigger sig-
nals.

17. A method for synchronizing data processing in a runt-

> ime configurable processor, the runtime veconfigurable pro-
cessor comprising: a plurality of configurable elements
arranged in an array of movre than one dimension, at least
some of the plurality of configurable elements including an
arithmetic logic unit, a configuration of at least one of a
function and an interconnection of at least one of the at least
some configurable elements being redeterminable at runtime
in response to configuration data; and at least one storage
component for the configuration data, the at least one storage
component being provided in the array, the method compris-
ing the steps of:

processing data by the configurable elements;

propagating processed data through the array,

generating, by at least one of the configurble elements, at
least one configuration select information signal in the
array according to data being processed;

propagating the at least one configuration select informa-

tion signal in a pipelined manner, the propagation of the

configuration select information signal being synchvo-

nous to the propagation of the processed data; and
using the propagated configuration select information sig-

nal to one of trigger a certain action in data processing

and put the at least one of the configurable elements in a

certain state.

18. The method of claim 17, wherein the propagated con-
figuration select information signal is used to determine that
at least one of: data is to be processed in continuous manner;
data is to be processed in a single step manner; data is not to
be processed; and a configuration is to be changed.

19. The method of claim 17 or claim I8, wherein at least
one configuration select information signal is pipelined
downstream together with at least some of the data being
processed.

20. The method of claim 17 or claim 18, wherein the propa-
40 gated comfiguration select information signal is used to
change a configuration during runtime of the processor and
while at least another element of the configurable elements
processes data.

21. The method of claim 17 or claim 18, wherein:

at least one configuration select information signal is pipe-

lined downstream together with at least some of the data

being processed; and

the propagated configuration select information signal is

used to change a configuration during runtime of the

processor and while at least another element of the
configurable elements processes data.

22. The method of claim 17 or claim 18, wherein a con-
figuration select information signal is genervated in the arrvay
by a counter.

23. The method of claim 17 or claim 18, wherein:

at least one configuration select information signal is pipe-

lined downstream together with at least some of the data

being processed; and

a configuration select information signal is generated in

the array by a counter.

24. The method of claim 17 or claim 18, wherein:

the propagated configuration select information signal is

used to change a configuration during runtime of the

processor and while at least another element of the
configurable elements processes data; and

a configuration select information signal is generated in

the array by a counter.
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25. The method of claim 17 or claim 18, wherein:

at least one configuration select information signal is pipe-
lined downstream together with at least some of the data
being processed;
the propagated configuration select information signal is
used to change a configuration during runtime of the
processor and while at least another element of the
configurable elements processes data; and
a configuration select information signal is genervated in
the array by a counter.
26. The method of claim 17 ov claim 18, wherein a con-
figuration select information signal is generated in the array
by a comparator.

27. The method of claim 17 or claim 18, wherein:

at least one configuration select information signal is pipe-
lined downstream together with at least some of the data
being processed; and

a configuration select information signal is genervated in
the array by a comparator.

28. The method of claim 17 or claim 18, wherein:

the propagated configuration select information signal is
used to change a configuration during runtime of the
processor and while at least another element of the
configurable elements processes data; and

a configuration select information signal is genervated in

the array by a comparator.

29. The method of claim 17 or claim 18, wherein:

at least one configuration select information signal is pipe-

lined downstream together with at least some of the data
being processed,;

the propagated configuration select information signal is

used to change a configuration during runtime of the
processor and while at least another element of the
configurable elements processes data; and

a configuration select information signal is genervated in

the array by a comparator.

30. The method of claim 17 ov claim 18, whervein a con-
figuration select information signal is generated in the array
by a counter and a configuration select information signal is
generated in the array by a comparator.

31. The method of claim 17 or claim 18, wherein:

at least one configuration select information signal is pipe-

lined downstream together with at least some of the data
being processed; and

a configuration select information signal is genervated in

the array by a counter and a configuration select infor-
mation signal is genervated in the array by a comparator.

32. The method of claim 17 or claim 18, wherein:

the propagated configuration select information signal is

used to change a configuration during runtime of the
processor and while at least another element of the
configurable elements processes data; and

a configuration select information signal is genervated in

the array by a counter and a configuration select infor-
mation signal is generated in the array by a comparator.

33. The method of claim 17 or claim 18, wherein:

at least one configuration select information signal is pipe-

lined downstream together with at least some of the data
being processed,;

the propagated configuration select information signal is

used to change a configuration during runtime of the
processor and while at least another element of the
configurable elements processes data; and

a configuration select information signal is genervated in

the array by a counter and a configuration select infor-
mation signal is genervated in the array by a comparator.
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34. The method of claim 17 or claim 18, wherein:

the at least one storage component stoves configuration
data and is selectively connected to at least one of the at
least some configurable elements via at least one multi-
plexer in a manner to allow for the runtime configura-
tion redetermination; and

a state machine is provided to control the at least one
multiplexer used to allow for the runtime configuration
redetermination, the control being in response to
received trigger signals.

35. The method of claim 17 or claim 18, wherein:

at least one configuration select information signal is pipe-
lined downstream together with at least some of the data
being processed,;

the at least one storage component storves configuration
data and is selectively connected to at least one of the at
least some configurable elements via at least one multi-
plexer in a manner to allow for the runtime configura-
tion redetermination; and

a state machine is provided to control the at least one
multiplexer used to allow for the runtime configuration
redetermination, the control being in response to
received trigger signals.

36. The method of claim 17 or claim 18, wherein:

the propagated configuration select information signal is
used to change a configuration during runtime of the
processor and while at least another element of the
configurable elements processes data;

the at least one storage component stoves configuration
data and is selectively connected to at least one of the at
least some configurable elements via at least one multi-
plexer in a manner to allow for the runtime configura-
tion redetermination; and

a state machine is provided to control the at least one
multiplexer used to allow for the runtime configuration
redetermination, the control being in response to
received trigger signals.

37. The method of claim 17 or claim 18, wherein:

at least one configuration select information signal is pipe-
lined downstream together with at least some of the data
being processed;

the propagated configuration select information signal is
used to change a configuration during runtime of the
processor and while at least another element of the
configurable elements processes data;

the at least one storage component stoves configuration
data and is selectively connected to at least one of the at
least some configurable elements via at least one multi-
plexer in a manner to allow for the runtime configura-
tion redetermination; and

a state machine is provided to control the at least one
multiplexer used to allow for the runtime configuration
redetermination, the control being in response to
received trigger signals.

38. The method of claim 17 or claim 18, wherein:

a configuration select information signal is genervated in
the array by a counter,

the at least one storage component stoves configuration
data and is selectively connected to at least one of the at
least some configurable elements via at least one multi-
plexer in a manner to allow for the runtime configura-
tion redetermination; and

a state machine is provided to control the at least one
multiplexer used to allow for the runtime configuration
redetermination, the control being in response to
received trigger signals.



US RE44,365 E

19
39. The method of claim 17 or claim 18, wherein:

at least one configuration select information signal is pipe-
lined downstream together with at least some of the data
being processed;

a configuration select information signal is genervated in
the array by a counter;

the at least one storage component stores configuration
data and is selectively connected to at least one of the at
least some configurable elements via at least one multi-
plexer in a manner to allow for the runtime configura-
tion redetermination; and

a state machine is provided to control the at least one
multiplexer used to allow for the runtime configuration
redetermination, the control being in response to
received trigger signals.

40. The method of claim 17 or claim 18, wherein:

the propagated configuration select information signal is
used to change a configuration during runtime of the
processor and while at least another element of the
configurable elements processes data;

a configuration select information signal is genervated in
the array by a counter;

the at least one storage component stores configuration
data and is selectively connected to at least one of the at
least some configurable elements via at least one multi-
plexer in a manner to allow for the runtime configura-
tion redetermination; and

a state machine is provided to control the at least one
multiplexer used to allow for the runtime configuration
redetermination, the control being in response to
received trigger signals.

41. The method of claim 17 or claim 18, wherein:

at least one configuration select information signal is pipe-
lined downstream together with at least some of the data
being processed,;

the propagated configuration select information signal is
used to change a configuration during runtime of the
processor and while at least another element of the
configurable elements processes data;

a configuration select information signal is genervated in
the array by a counter,

the at least one storage component stoves configuration
data is are selectively connected to at least one of the at
least some configurable elements via at least one multi-
plexer in a manner to allow for the runtime configura-
tion redetermination; and

a state machine is provided to control the at least one
multiplexer used to allow for the runtime configuration
redetermination, the control being in response to
received trigger signals.

42. The method of claim 17 or claim 18, wherein:

a configuration select information signal is genervated in
the array by a comparator;

the at least one storage component stoves configuration
data and is selectively connected to at least one of the at
least some configurable elements via at least one multi-
plexer in a manner to allow for the runtime configura-
tion redetermination; and

a state machine is provided to control the at least one
multiplexer used to allow for the runtime configuration
redetermination, the control being in response to
received trigger signals.

43. The method of claim 17 or claim 18, wherein:

at least one configuration select information signal is pipe-
lined downstream together with at least some of the data
being processed,;
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a configuration select information signal is genervated in
the array by a comparator;

the at least one storage component stoves configuration
data and is selectively connected to at least one of the at
least some configurable elements via at least one multi-
plexer in a manner to allow for the runtime configura-
tion redetermination; and

a state machine is provided to control the at least one
multiplexer used to allow for the runtime configuration
redetermination, the control being in response to
received trigger signals.

44. The method of claim 17 or claim 18, wherein:

the propagated configuration select information signal is
used to change a configuration during runtime of the
processor and while at least another element of the
configurable elements processes data;

a configuration select information signal is generated in
the array by a comparator;

the at least one storage component stoves configuration
data and is selectively connected to at least one of the at
least some configurable elements via at least one multi-
plexer in a manner to allow for the runtime configura-
tion rvedetermination; and

a state machine is provided to control the at least one
multiplexer used to allow for the runtime configuration
redetermination, the control being in response to
received trigger signals.

45. The method of claim 17 or claim 18, wherein:

at least one configuration select information signal is pipe-
lined downstream together with at least some of the data
being processed,;

the propagated configuration select information signal is
used to change a configuration during runtime of the
processor and while at least another element of the
configurable elements processes data;

a configuration select information signal is generated in
the array by a comparator;

the at least one storage component stoves configuration
data and is selectively connected to at least one of the at
least some configurable elements via at least one multi-
plexer in a manner to allow for the runtime configura-
tion redetermination; and

a state machine is provided to control the at least one
multiplexer used to allow for the runtime configuration
redetermination, the control being in response to
received trigger signals.

46. The method of claim 17 or claim 18, wherein:

a configuration select information signal is generated in
the array by a counter and a configuration select infor-
mation signal is genervated in the array by a comparator;

the at least one storage component stoves configuration
data and is selectively connected to at least one of the at
least some configurable elements via at least one multi-
plexer in a manner to allow for the runtime configura-
tion redetermination; and

a state machine is provided to control the at least one
multiplexer used to allow for the runtime configuration
redetermination, the control being in response to
received trigger signals.

47. The method of claim 17 or claim 18, wherein:

at least one configuration select information signal is pipe-
lined downstream together with at least some of the data
being processed;

a configuration select information signal is generated in
the array by a counter and a configuration select infor-
mation signal is genervated in the array by a comparator;
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the at least one storage component stoves configuration
data and is selectively connected to at least one of the at
least some configurable elements via at least one multi-
plexer in a manner to allow for the runtime configura-
tion redetermination; and

a state machine is provided to control the at least one
multiplexer used to allow for the runtime configuration
redetermination, the control being in rvesponse to
received trigger signals.

48. The method of claim 17 or claim 18, wherein:

the propagated configuration select information signal is
used to change a configuration during runtime of the
processor and while at least another element of the
configurable elements processes data;

a configuration select information signal is generated in
the array by a counter and a configuration select infor-
mation signal is genevated in the array by a comparator;

the at least one storage component stores configuration
data and is selectively connected to at least one of the at
least some configurable elements via at least one multi-
plexer in a manner to allow for the runtime configura-
tion redetermination; and

a state machine is provided to control the at least one
multiplexer used to allow for the runtime configuration
redetermination, the control being in rvesponse to
received trigger signals.

49. The method of claim 17 or claim 18, wherein:

at least one configuration select information signal is pipe-
lined downstream together with at least some of the data
being processed,;

the propagated configuration select information signal is
used to change a configuration during runtime of the
processor and while at least another element of the
configurable elements processes data;

a configuration select information signal is genervated in
the array by a counter and a configuration select infor-
mation signal is genevated in the array by a comparator;

the at least one storage component stores configuration
data and is selectively connected to at least one of the at
least some configurable elements via at least one multi-
plexer in a manner to allow for the runtime configura-
tion redetermination; and

a state machine is provided to control the at least one
multiplexer used to allow for the runtime configuration
redetermination, the control being in response to
received trigger signals.

50. The method of claim 17 or claim 18, wherein:

the at least one storage component stores configuration
data and is selectively connected to at least one of the at
least some configurable elements via at least one multi-
plexer in a manner to allow for the runtime configura-
tion redetermination; and

a state machine is provided to control the at least one
multiplexer used to allow for the runtime configuration
redetermination, the control being in rvesponse to
received trigger signals which were generated in the
array.

51. The method of claim 17 or claim 18, wherein:

at least one configuration select information signal is pipe-
lined downstream together with at least some of the data
being processed,;

the at least one storage component stores configuration
data and is selectively connected to at least one of the at
least some configurable elements via at least one multi-
plexer in a manner to allow for the runtime configura-
tion redetermination; and
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a state machine is provided to control the at least one
multiplexer used to allow for the runtime configuration
redetermination, the control being in response to
received trigger signals which were generated in the
array.

52. The method of claim 17 or claim 18, wherein:

the propagated configuration select information signal is
used to change a configuration during runtime of the
processor and while at least another element of the
configurable elements processes data;

the at least one storage component stoves configuration
data and is selectively connected to at least one of the at
least some configurable elements via at least one multi-
plexer in a manner to allow for the runtime configura-
tion redetermination; and

a state machine is provided to control the at least one
multiplexer used to allow for the runtime configuration
redetermination, the control being in response to
received trigger signals which were generated in the
array.

53. The method of claim 17 or claim 18, wherein:

at least one configuration select information signal is pipe-
lined downstream together with at least some of the data
being processed,;

the propagated configuration select information signal is
used to change a configuration during runtime of the
processor and while at least another element of the
configurable elements processes data;

the at least one storage component stoves configuration
data and is selectively connected to at least one of the at
least some configurable elements via at least one multi-
plexer in a manner to allow for the runtime configura-
tion redetermination; and

a state machine is provided to control the at least one
multiplexer used to allow for the runtime configuration
redetermination, the control being in response to
received trigger signals which were generated in the
array.

54. The method of claim 17 or claim 18, wherein:

a configuration select information signal is genervated in
the array by a counter,

the at least one storage component stoves configuration
data and is selectively connected to at least one of the at
least some configurable elements via at least one multi-
plexer in a manner to allow for the runtime configura-
tion redetermination; and

a state machine is provided to control the at least one
multiplexer used to allow for the runtime configuration
redetermination, the control being in response to
received trigger signals which were generated in the
array.

55. The method of claim 17 or claim 18, wherein:

at least one configuration select information signal is pipe-
lined downstream together with at least some of the data
being processed;

a configuration select information signal is genervated in
the array by a counter,

the at least one storage component stoves configuration
data and is selectively connected to at least one of the at
least some configurable elements via at least one multi-
plexer in a manner to allow for the runtime configura-
tion redetermination; and

a state machine is provided to control the at least one
multiplexer used to allow for the runtime configuration
redetermination, the control being in response to
received trigger signals which were generated in the
array.
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56. The method of claim 17 or claim 18, wherein:

the propagated configuration select information signal is
used to change a configuration during runtime of the
processor and while at least another element of the
configurable elements processes data;

a configuration select information signal is genervated in
the array by a counter;

the at least one storage component stoves configuration
data and is selectively connected to at least one of the at
least some configurable elements via at least one multi-
plexer in a manner to allow for the runtime configura-
tion redetermination; and

a state machine is provided to control the at least one
multiplexer used to allow for the runtime configuration
redetermination, the control being in rvesponse to
received trigger signals which were generated in the
array.

57. The method of claim 17 or claim 18, wherein:

at least one configuration select information signal is pipe-
lined downstream together with at least some of the data
being processed,;

the propagated configuration select information signal is
used to change a configuration during runtime of the
processor and while at least another element of the
configurable elements processes data;

a configuration select information signal is genervated in
the array by a counter,

the at least one storage component stoves configuration
data and is selectively connected to at least one of the at
least some configurable elements via at least one multi-
plexer in a manner to allow for the runtime configura-
tion redetermination; and

a state machine is provided to control the at least one
multiplexer used to allow for the runtime configuration
redetermination, the control being in response to
received trigger signals which were generated in the
array.

58. The method of claim 17 or claim 18, wherein:

a configuration select information signal is genervated in
the array by a comparator;

the at least one storage component stoves configuration
data and is selectively connected to at least one of the at
least some configurable elements via at least one multi-
plexer in a manner to allow for the runtime configura-
tion redetermination; and

a state machine is provided to control the at least one
multiplexer used to allow for the runtime configuration
redetermination, the control being in response to
received trigger signals which were generated in the
array.

59. The method of claim 17 or claim 18, wherein:

at least one configuration select information signal is pipe-
lined downstream together with at least some of the data
being processed;

a configuration select information signal is generated in
the array by a comparator,

the at least one storage component stoves configuration
data and is selectively connected to at least one of the at
least some configurable elements via at least one multi-
plexer in a manner to allow for the runtime configura-
tion redetermination; and

a state machine is provided to control the at least one
multiplexer used to allow for the runtime configuration
redetermination, the control being in response to
received trigger signals which were generated in the
array.
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60. The method of claim 17 or claim 18, wherein.:

the propagated configuration select information signal is
used to change a configuration during runtime of the
processor and while at least another element of the
configurable elements processes data;

a configuration select information signal is generated in
the array by a comparator;

the at least one storage component storves configuration
data and is selectively connected to at least one of the at
least some configurable elements via at least one multi-
plexer in a manner to allow for the runtime configura-
tion redetermination; and

a state machine is provided to control the at least one
multiplexer used to allow for the runtime configuration
redetermination, the control being in response to
received trigger signals which were generated in the
array.

61. The method of claim 17 or claim 18, wherein:

at least one configuration select information signal is pipe-
lined downstream together with at least some of the data
being processed,;

the propagated configuration select information signal is
used to change a configuration during runtime of the
processor and while at least another element of the
configurable elements processes data;

a configuration select information signal is generated in
the array by a comparator;

the at least one storage component stoves configuration
data and is selectively connected to at least one of the at
least some configurable elements via at least one multi-
plexer in a manner to allow for the runtime configura-
tion redetermination; and

a state machine is provided to control the at least one
multiplexer used to allow for the runtime configuration
redetermination, the control being in response to
received trigger signals which were generated in the
array.

62. The method of claim 17 or claim 18, wherein.:

a configuration select information signal is generated in
the array by a counter and a configuration select infor-

mation signal is genervated in the array by a comparator;

the at least one storage component stoves configuration
data and is selectively connected to at least one of the at
least some configurable elements via at least one multi-
plexer in a manner to allow for the runtime configura-
tion redetermination; and

a state machine is provided to control the at least one
multiplexer used to allow for the runtime configuration
redetermination, the control being in response to
received trigger signals which were generated in the
array.

63. The method of claim 17 or claim 18, wherein.

at least one configuration select information signal is pipe-
lined downstream together with at least some of the data
being processed;

a configuration select information signal is genervated in
the array by a counter and a configuration select infor-
mation signal is genevated in the array by a comparator;

the at least one storage component stoves configuration
data and is selectively connected to at least one of the at
least some configurable elements via at least one multi-
plexer in a manner to allow for the runtime configura-
tion redetermination; and

a state machine is provided to control the at least one
multiplexer used to allow for the runtime configuration
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redetermination, the control being in rvesponse to
received trigger signals which were generated in the
array.

64. The method of claim 17 or claim 18, wherein:

the propagated configuration select information signal is
used to change a configuration during runtime of the
processor and while at least another element of the
configurable elements processes data;

a configuration select information signal is genervated in
the array by a counter and a configuration select infor-
mation signal is genervated in the array by a comparator;

the at least one storage component stores configuration
data and is selectively connected to at least one of the at
least some configurable elements via at least one multi-
plexer in a manner to allow for the runtime configura-
tion redetermination; and

a state machine is provided to control the at least one
multiplexer used to allow for the runtime configuration
redetermination, the control being in response to
received trigger signals which were generated in the
array.

63. The method of claim 17 or claim 18, wherein:

at least one configuration select information signal is pipe-
lined downstream together with at least some of the data
being processed,;

the propagated configuration select information signal is
used to change a configuration during runtime of the
processor and while at least another element of the
configurable elements processes data;

a configuration select information signal is genervated in
the array by a counter and a configuration select infor-
mation signal is genervated in the array by a comparator;

the at least one storage component stores configuration
data and is selectively connected to at least one of the at
least some configurable elements via at least one multi-
plexer in a manner to allow for the runtime configura-
tion redetermination; and

a state machine is provided to control the at least one
multiplexer used to allow for the runtime configuration
redetermination, the control being in rvesponse to
received trigger signals which were generated in the
array.

66. The method of claim 17 or claim 18, wherein:

the at least one storage component stoves configuration
data and is selectively connected to at least one of the at
least some configurable elements via at least one multi-
plexer in a manner to allow for the runtime configura-
tion redetermination; and

a state machine is provided to control the at least one
multiplexer used to allow for the runtime configuration
redetermination, the control being in response to
received multibit trigger signals which were generated
in the array.

67. The method of claim 17 or claim 18, wherein:

at least one configuration select information signal is pipe-
lined downstream together with at least some of the data
being processed;

the at least one storage component stoves configuration
data and is selectively connected to at least one of the at
least some configurable elements via at least one multi-
plexer in a manner to allow for the runtime configura-
tion redetermination; and

a state machine is provided to control the at least one
multiplexer used to allow for the runtime configuration
redetermination, the control being in response to
received multibit trigger signals which were generated
in the array.
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68. The method of claim 17 or claim 18, wherein.:

the propagated configuration select information signal is
used to change a configuration during runtime of the
processor and while at least another element of the
configurable elements processes data;

the at least one storage component stoves configuration
data and is selectively connected to at least one of the at
least some configurable elements via at least one multi-
plexer in a manner to allow for the runtime configura-
tion rvedetermination; and

a state machine is provided to control the at least one
multiplexer used to allow for the runtime configuration
redetermination, the control being in response to
received multibit trigger signals which werve generated
in the array.

69. The method of claim 17 or claim 18, wherein.:

at least one configuration select information signal is pipe-
lined downstream together with at least some of the data
being processed,;

the propagated configuration select information signal is
used to change a configuration during runtime of the
processor and while at least another element of the
configurable elements processes data;

the at least one storage component stoves configuration
data and is selectively connected to at least one of the at
least some configurable elements via at least one multi-
plexer in a manner to allow for the runtime configura-
tion redetermination; and

a state machine is provided to control the at least one
multiplexer used to allow for the runtime configuration
redetermination, the control being in response to
received multibit trigger signals which were generated
in the array.

70. The method of claim 17 or claim 18, wherein.

a configuration select information signal is generated in
the array by a counter;

the at least one storage component stoves configuration
data and is selectively connected to at least one of the at
least some configurable elements via at least one multi-
plexer in a manner to allow for the runtime configura-
tion redetermination; and

a state machine is provided to control the at least one
multiplexer used to allow for the runtime configuration
redetermination, the control being in response to
received multibit trigger signals which were generated
in the array.

71. The method of claim 17 or claim 18, wherein.:

at least one configuration select information signal is pipe-
lined downstream together with at least some of the data
being processed;

a configuration select information signal is generated in
the array by a counter;

the at least one storage component stoves configuration
data and is selectively connected to at least one of the at
least some configurable elements via at least one multi-
plexer in a manner to allow for the runtime configura-
tion redetermination; and

a state machine is provided to control the at least one
multiplexer used to allow for the runtime configuration
redetermination, the control being in response to
received multibit trigger signals which were generated
in the array.

72. The method of claim 17 or claim 18, wherein:

the propagated configuration select information signal is
used to change a configuration during runtime of the
processor and while at least another element of the
configurable elements processes data;



US RE44,365 E

27

a configuration select information signal is genervated in
the array by a counter;

the at least one storage component stores configuration
data and is selectively connected to at least one of the at
least some configurable elements via at least one multi-
plexer in a manner to allow for the runtime configura-
tion redetermination; and

a state machine is provided to control the at least one
multiplexer used to allow for the runtime configuration
redetermination, the control being in response to
received multibit trigger signals which were generated
in the array.

73. The method of claim 17 or claim 18, wherein:

at least one configuration select information signal is pipe-
lined downstream together with at least some of the data

being processed,;

the propagated configuration select information signal is
used to change a configuration during runtime of the
processor and while at least another element of the
configurable elements processes data;

a configuration select information signal is genervated in
the array by a counter;

the at least one storage component stores configuration
data and is selectively connected to at least one of the at
least some configurable elements via at least one multi-
plexer in a manner to allow for the runtime configura-
tion redetermination; and

a state machine is provided to control the at least one
multiplexer used to allow for the runtime configuration
redetermination, the control being in response to
received multibit trigger signals which were generated
in the array.

74. The method of claim 17 or claim 18, wherein:

a configuration select information signal is genervated in
the array by a comparator;

the at least one storage component stores configuration
data and is selectively connected to at least one of the at
least some configurable elements via at least one multi-
plexer in a manner to allow for the runtime configura-
tion redetermination; and

a state machine is provided to control the at least one
multiplexer used to allow for the runtime configuration
redetermination, the control being in rvesponse to
received multibit trigger signals which were generated
in the array.

75. The method of claim 17 or claim 18, wherein:

at least one configuration select information signal is pipe-
lined downstream together with at least some of the data
being processed,;

a configuration select information signal is genervated in
the array by a comparator;

the at least one storage component stores configuration
data and is selectively connected to at least one of the at
least some configurable elements via at least one multi-
plexer in a manner to allow for the runtime configura-
tion redetermination; and

a state machine is provided to control the at least one
multiplexer used to allow for the runtime configuration
redetermination, the control being in response to
received multibit trigger signals which were generated
in the array.

76. The method of claim 17 or claim 18, wherein:

the propagated configuration select information signal is
used to change a configuration during runtime of the
processor and while at least another element of the
configurable elements processes data;
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a configuration select information signal is genervated in
the array by a comparator;

the at least one storage component stoves configuration
data and is selectively connected to at least one of the at
least some configurable elements via at least one multi-
plexer in a manner to allow for the runtime configura-
tion redetermination; and

a state machine is provided to control the at least one
multiplexer used to allow for the runtime configuration
redetermination, the control being in response to
received multibit trigger signals which were generated
in the array.

77. The method of claim 17 or claim 18, wherein:

at least one configuration select information signal is pipe-
lined downstream together with at least some of the data
being processed,;

the propagated configuration select information signal is
used to change a configuration during runtime of the
processor and while at least another element of the
configurable elements processes data;

a configuration select information signal is generated in
the array by a comparator;

the at least one storage component stoves configuration
data and is selectively connected to at least one of the at
least some configurable elements via at least one multi-
plexer in a manner to allow for the runtime configura-
tion redetermination; and

a state machine is provided to control the at least one
multiplexer used to allow for the runtime configuration
redetermination, the control being in response to
received multibit trigger signals which were generated
in the array.

78. The method of claim 17 or claim 18, wherein.:

a configuration select information signal is generated in
the array by a counter and a configuration select infor-
mation signal is genervated in the array by a comparator;

the at least one storage component stoves configuration
data and is selectively connected to at least one of the at
least some configurable elements via at least one multi-
plexer in a manner to allow for the runtime configura-
tion redetermination; and

a state machine is provided to control the at least one
multiplexer used to allow for the runtime configuration
redetermination, the control being in response to
received multibit trigger signals which were generated
in the array.

79. The method of claim 17 or claim 18, wherein.

at least one configuration select information signal is pipe-
lined downstream together with at least some of the data
being processed;

a configuration select information signal is generated in
the array by a counter and a configuration select infor-
mation signal is genervated in the array by a comparator;

the at least one storage component stoves configuration
data and is selectively connected to at least one of the at
least some configurable elements via at least one multi-
plexer in a manner to allow for the runtime configura-
tion redetermination; and

a state machine is provided to control the at least one
multiplexer used to allow for the runtime configuration
redetermination, the control being in response to
received multibit trigger signals which were generated
in the array.

80. The method of claim 17 or claim 18, wherein:

the propagated configuration select information signal is
used to change a configuration during runtime of the
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processor and while at least another element of the
configurable elements processes data;
a configuration select information signal is genervated in

the array by a counter and a configuration select infor-
mation signal is genervated in the array by a comparator;
the at least one storage component stoves configuration
data and is selectively connected to at least one of the at
least some configurable elements via at least one multi-
plexer in a manner to allow for the runtime configura-

tion redetermination; and
a state machine is provided to control the at least one

multiplexer used to allow for the runtime configuration
redetermination, the control being in response to
received multibit trigger signals which were generated

in the array.

81. The method of claim 17 or claim 18, wherein:

at least one configuration select information signal is pipe-
lined downstream together with at least some of the data

being processed;

30

the propagated configuration select information signal is
used to change a configuration during runtime of the
processor and while at least another element of the
configurable elements processes data;

a configuration select information signal is genervated in
the array by a counter and a configuration select infor-
mation signal is genervated in the array by a comparator;

the at least one storage component storves configuration
data and is selectively connected to at least one of the at
least some configurable elements via at least one multi-
plexer in a manner to allow for the runtime configura-

tion redetermination; and
a state machine is provided to control the at least one

multiplexer used to allow for the runtime configuration
redetermination, the control being in response to
received multibit trigger signals which were generated

in the array.
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