(19) United States

12 Reissued Patent
Katz

(10) Patent Number:
45) Date of Reissued Patent:

USOORE44327E

US RE44,327 F.
Jun. 25, 2013

(54) DRAG-AND-DROP DYNAMIC DISTRIBUTED

OBJECT MODEL
(75) Inventor: Alan A Katz, Johnson City, NY (US)

(73) Assignee: Amstr. Investments 9 K.G., LLC,
Wilmington, DE (US)

(21) Appl. No.: 12/370,458

(22) Filed: Feb. 12, 2009
Related U.S. Patent Documents
Reissue of:
(64) Patent No.: 7,178,129
Issued: Feb. 13, 2007
Appl. No.: 10/313,904
Filed: Dec. 6, 2002

U.S. Applications:
(60) Provisional application No. 60/338,239, filed on Dec.
7, 2001.

(51) Int.Cl.
GO6F 9/45

(52) U.S.CL
USPC oo 717/136

(58) Field of Classification Search
USPC e 717/136

See application file for complete search history.

(2006.01)

(56) References Cited

U.S. PATENT DOCUMENTS

6,305,012 B1 10/2001 Beadle et al.
6,314,566 B1 11/2001 Arrouye et al.
6,324,686 Bl 11/2001 Komatsu et al.
6,344,855 Bl 2/2002 Fisher et al.
6,370,687 Bl 4/2002 Shimura
6,446,078 Bl 9/2002 Theodora et al.
6,484,214 B1 11/2002 Sundermier
6,496,865 Bl 12/2002 Sumsion et al.
6,587,888 Bl 7/2003 Chieu et al.
6,654,793 B1 11/2003 Wollrath et al.
(Continued)
FOREIGN PATENT DOCUMENTS
WO W0 98/21671 *5/1998
WO W0 98/21671 Al 5/1998
OTHER PUBLICATIONS

ISR dated Apr. 1, 2003 for PCT Application No. PCT/US02/39172, 2
pages.

Primary Examiner — John Chavis
(74) Attorney, Agent, or Firm — Turocy & Watson, LLP

(57) ABSTRACT

An external object model 1s built into a comprehensive, drag-
and-drop, dynamic, distributed object model, to offer its users
lower total cost of ownership than do conventional user inter-
face applications and application builders. A Windows®
workstation user computer 1s provided with a quick, simple,
casily-managed path to combinations of available applica-
tions on a network of systems, 1n such a way that the user can
establish and exploit complex data relationships and software
capabilities on the workstation without application installa-
tion, significant access effort, or specialized knowledge.
Runtime binding prepares and links user forms and reports to
application programs as desired, without preparatory steps.
The definition and use of query objects to view concurrently
multiple database tables offers the unique ability to combine
fields from dissimilar database engines into a single view.

29 Claims, 34 Drawing Sheets

5,857,197 A 1/1999 Mullins
5,875,335 A 2/1999 Beard
5,978,585 A 11/1999 Crelier
5,991,776 A 11/1999 Bennett et al.
6,002,867 A 12/1999 Jazdzewski
6,182,155 Bl 1/2001 Cheng et al.
6,295,638 Bl 9/2001 Brown et al.
6,298,477 Bl 10/2001 Kessler
AMENDED
[EasyStart

Database Alias

database

An Alias is used to link dQuery/Wed (and your application)ta a

Although an Alias is not absotely requiered with dBASE or Paradox
tables, it Is highly recommended! An Alias makes your data portable
and much easier to access over a network - where the path to your
data files may be different on each waorkstation

SQL database tables require an Alias.

‘ |CDntinue\ l

Cancel

US RE44,327 E

Page 2
U.S. PATENT DOCUMENTS 7,634,772 B2* 12/2009 Parthasarathy et al. 717/178
2002/0046304 Al 4/2002 Fabri et al.
6,859,931 Bl 2/2005 Cheyer et al. " -
6.938.263 B2* 82005 Wollrath et al. —............ 719/330 2004/0015920 Al 1/2004 Schnudtooevvvinnn, 717/153
7,082,553 B1* 7/2006 Wangcccooeeiiinininnn. 714/38

7,178,129 B2 2/2007 Katz * cited by examiner

US RE44,327 £

Sheet 1 of 34

Jun. 25, 2013

U.S. Patent

AMENDED

00¢

001

4 b
F
GGGET 14 yoeay wijed ONUBAY OliBulRd LELE preyory sauep |
| 08281 AN [I=evpu 4 Al SsUUNg 247 INed ojAe] | |
L6681 AN AN SNUDAY JEed 0861 SULUY/ Ylws| 2
GGG/LL AN [E}S9/\ anuaay Aeg g2 li'd SOUOr| & ‘
v diz| ele8 AN SSIPPY oweN]SI auwieNiseT]| oNIsnO
L SHANOLSND
odog oo || won wosno | eeq
4 1
suoneslddy/suoday 4 @
pruoausied |] G
- diz
sje1a 0L1 eegeld [] e
ULASOIES ejed 1p4 10 ppy 4 m
ONALU| oW euUISE
oleqd SWeNIsII s122lqo Adand 4 N
— ONISNT) ONIsn)
en(] eoueeg — AN s103lgn aseqele 4 _‘
JUNOLWY v SSOIPPY X] 1a3ano
pejsAses
L SIDIOAN [X] LSHINCLSND
sa|uadold

X

lolebiaeN LeisAse]

3(] eInpoyeIep gapnAlentp

digH Mopuipp suoieo|ddy suodey smoy puld Jelld se|gel melp up3 8|4
Ac9P

U.S. Patent Jun. 25, 2013 Sheet 2 of 34 US RE44,327 E

- WS 2 ‘
= <

|

(ws 3 —

ADM@

= |UR2] URN

TA1=DEO 1, 24, 32
F O TAZ2 = DEO 1-5, 22-25, 32-34

|
TA1 TA2 **TAn |

| Fig. 1A

¢ Ol

US RE44,327 £

8 wyw reyapAisnd o] WM poefesIaubIse pe|Yeld] dod-ooidpaiciso [wmXLbsd] WM |JEILOSD o]

wpmsmo.diiso i wymxapunesy o] dod-uoissasp F wpmpingiespso b wim umpIpauomairdany)

dod-umsolpeuomairdad [l UL Ul auUoMaIAdanD [wmsdaiumwspipauoud] dodumspipsuonp Bl

- nuWrUMRIRBUOLD [J W0 umsiolpaucud ol WM uspRIRsuoInogerd o wm Buiuempodesd [wymsoedes [
o' wm|bswioyfienby E dod-Aienbp m WM PJBZIMP|IY21utedDd) m wm ssidadoldp|iyojustedd m
= LM BUCPUIMYOIRUOD] LM LIMYO10BUOY faa] dod'umsiauct nuw-upopioeucd JJ WM Gemoloeucd |
e wim yoreaspaxspuuoud] wmBoeipAienbmeup] wyoAupouomeun] wimyoresspaxepuld fml wmls)upaxapulo ol
o wmpodwi B wym-pjenebo B wm-selerobo B uym-ispuyt B wmpodxaty B wmrodanpan B
_._h.._.n__.v UM UBISASEST) E huw-peisisead [H uum spodaiAsesd m L BojeipAlanbAsest E LA pliyojustedAses m LM I8)|uAsesd m
7p. wym Bojelpyipahseaty b wio BojepAsead o) wimsddeAsesp] wimBojeipseledsesd wyoBofeIpD |l dod-uBisepd [}
Wm-alslepd) E Wi pleseqpd m dod'asegeiepd ﬁ_ Wmeuuoljagersiealod m WM 201dpalo)salealo) m

wym uoissasajead] wmpodeisiesnd B wmAenbajeanp | wymiispiojsiesod B wmselesieand] wmowe|geiidoon B

wym ngsAdooy B wmarenoead fa] wmodsieiepossen] WM le1eppiel o wyminogeAsenbq [uym Asenbg B

~ dod-Aienbg [nuw-Alenbg [H (PenUN) ol (Pepun) JH (pepiuN) o) Il

(dod', 'nuwr, ‘wyo, ‘wpm) a4 WioH

1BYI10 D sabew _H_ NpoA Bleq _H_ 108 _H_ so|qe] _u mEm._mEn__u sjl0dey _H_ _ﬂmBhucm_:_Huu_." sj08(oid D 1\ _H_
I I
L J

Jun. 25, 2013
AMENDED

7 7 ABNDP\LO Mzapyasvydpisalld welboldyD| oo

[E3] =] J01eDIABN

U.S. Patent

U.S. Patent

Jun. 25, 2013 Sheet 4 of 34

AMENDED

US RE44,327 £

EasyStart x|

Database Alias

An Alias is used to link dQuery/\Wed (and your application) to a
database

Although an Alias is not absotely requiered with dBASE or Paradox

tables, it is highly recommended! An Alias makes your data portable
and much easier to access over a network - where the path to your
data files may be different on each workstation

SQL database tables require an Alias.

Continue Cancel

FIG. 3

Select/Add Alias

Alias (Select or Create Alias for Database Object)

Jaima

MS Access Database
MUGS

OracleWeb

Signup

SQLServer"
TestSpaces
VdB/75Sample
VDBSAMPLE
Victoria

Visual FoxPro Database
Visual FoxPro Tables

Create New Alias

FIG. 4

X

U.S. Patent Jun. 25, 2013 Sheet 5 of 34 US RE44,327 E
AMENDED
 EasyAi@as ¥
Create Alias (Connects your database to dB2K)
Assign Name To Alias
dBASE |[Paradox| Fox | ODBC |[InterBaselSQL Serverinform 4 |p

Database Folder:

. Id

Click the yellow file folder button to select the source folder where
the tables are located.

| Create Folder

FIG. 5

Create Folder

X]

Create Folder (Creates new folder)

Create Folder under

I

New Folder Name:

(]

U.S. Patent Jun. 25, 2013 Sheet 6 of 34 US RE44,327 E

AMENDED

Create Table

savein] BN T 11101

File name: CUSTOMERS Save

Save as type: Cancel

Help

Database: GUIDEDTOUR v

FIG. 7

‘Guided Tour:customers.dbf - Table Designer Ellglgl

Field |Name Type Width Decimal Index

T JcusiNo [Autolorement 4
2 | |Character 10 0 None

FIG. 8a

U.S. Patent Jun. 25, 2013 Sheet 7 of 34 US RE44,327 E

AMENDED

‘ <new fleld> ‘v\

Properties

default .

maximum
minimum

required false

FIG. 8b

:GuidedTour:customers.dbf - Table Designer =] [3)[X]
Field [Name Type Width Decimal Index
JowNo [mwwemen [4 o TAsmna_
2 LastName Character
3 FirstName Character 1 5
4 Address Character 35
O City Character 20
§ State Character 2
7 Character
: \ __

FIG. 8¢

U.S. Patent

Jun. 25, 2013

AMENDED

Sheet 8 of 34

US RE44,327 £

1

‘GuidedTour:invoices.dbf - Table Designer

g |1X
Field Width | Decimal

Numeric 10 0 Ascend
Autolncrement None

2 iwNo]
3 m
4 Amount Numeric None
5 BalanceDue Numeric 10 2 None
Data Current Report
CUSTOMERST
First Row A
Next Row [
Previous Row
Last Row
Add Row
DeleteRow

Save Row Changes

Abandon Row Changes

Remove View Column

Save Current Report As

EasyStart

FIG. 11

U.S. Patent Jun. 25, 2013 Sheet 9 of 34 US RE44,327 E

AMENDED

customers

Select Index
Current:

Indexes

ZIP
LASTNAME

CUSTNO

FIG. 10a

| invoices

Select Index
Current:

Indexes

DATE

CUSTNO _

FIG. 10b

US RE44,327 £

Sheet 10 of 34

Jun. 25, 2013

U.S. Patent

AMENDED

¢l Ol

< >
-~
<] 00700001 091 AN PMPUT SAQ BSHUUNS ZZZ 1o/fe] | | <
0000051 iesLf AN anuaAy yled 0861 IS [2
|__oooooce | s AN| e onueny feg Ge12 seerle
] dLAs®fes diz| oS Ao sSalppy SleNjsi sweNjseT | OISO
SN0 LSNO

Hoday jusiing

MBI\ WOIsnD | ejed

US RE44,327 £

Sheet 11 of 34

Jun. 25, 2013

U.S. Patent

AMENDED

¢l Ol

= 00001 00°005 00/0Z/Z |
00°00€ 00°00€ 00/STIZ
ang] aoueeg Jjunowly a1.(] aNISn9)

| SAOIOANI

vl Old

US RE44,327 £

goued || MO

.4
o
=
~ Allenuepy 8pod 1p3 O
y—
@ apoD pling SUOBIPUOD BUJ JO || | Uojew Isniy
=
)
o g o=
—
S +][
g 3 2] 2 =]
= SNIBA lojeladQ oJEIE
= suonipuod JO I8 ping O
Mcgp :edA] SMOY IV SpPNoU| @
(Alenbjus.ing ayj 40} J8}|l} ISVYEP B S}93) 19])|14 ISV P
X 1 SHYINOLSND

U.S. Patent

Gl 9Ol

US RE44,327 £

¢
w| = aneA’ | oONISN), ISPISIJ 19SMOI WIO) 10 | = BnjeA [,ONISN), JSpIoll 18SMO. WI0)
.4
m Allenuep epod 1p3 @
o
= apo) p|ing A SUOI)IPUOD 8] JO AUy | yolew I1sny
g A
’]
. = _H_ “ 7 - ONISh)
S~ Hi= F = ONISND
S5 a] A A ONISN))
= < an(ea J0jesadQ JEIE
= suonpuod JO s piing O
Medp :adA] SMOY |1V @pnoul O
(AJanb jusund ay) Joy Jo)jl ISP B S19S) 18)|14 ISP
(%] L SYINOLSNO |

U.S. Patent

US RE44,327 £

Sheet 14 of 34

Jun. 25, 2013

U.S. Patent

AMENDED

91 OId

4 4
3
00 00¢ 00 00¢ 000cé/scic) (X ' s2Uor
N pws [
00°00€ 0000¢ | ooozrsziz) jojke] |
> an(jesueleg Junowy a1eq ONISND BLUBN]SIIH SWeN]SE]
_l; Fww_m_EO.erO_ Aeny uonebireN
Atcamw_ EmE:Ui MBIA Wosnd | ee(
< »
A
suoneslddy/spoday _H_ O
piyopuated []G
A '\ di7
. e 49
81B1S e =914 _H_ .V aseqereq
ALAS®|ES e P O
ONAU slweujse SEd HP3 10 PPV _H_ m-w
7eq aweNIs) sjoslqo Adenp _H_ N
— ONISN) ONISND
| an{] 2oue|ey Al s1oelgp aseqgereq _H_ _\
v Unow v S50 1d3dinN
hd| H v Pb 1iB}SASEeg
[X] LSIDIOANI [X] LSHANOLSND
— — — soluadold
X @_M_ X 102bineN1eISASET |5 oinpopelep gapvAIeNDp
disH MOpuIpf suoled|ddy suodsy smay puld Jelji4 ss|qel MalA UpT 8l
X =] Mzap

US RE44,327 £

Sheet 15 of 34

Jun. 25, 2013

U.S. Patent

AMENDED

Ll Ol

| b

| ebed

00/0c/¢l

00/5¢/¢1

00/9Z/Cl

ajeq

ONISND)

00 00l
INEd

00 00%
INEd

auuy

00 00¢
14s
shaoue|eg

allenN)s.i

00 005
1ojAe |

00 00¢%
10jAe |

WS

00 00¢€
SOUO[

JUNOUIY
aLUENISET

¢l Gb 10/80/10 Uny

WA JN0Ld3dINo-MIIA WOIsNH

110dsy ¥2I1D-ON

Hoday 1uslng

t_DQm*W_ Uz INg — Mol LUO)SND 7 ElE(]

US RE44,327 £

poued || MO |
o]

poday Jayio O

Sheet 16 of 34

ddd ST IVSHANOLSNO\ HNOLAIAINDN-O
poday pojernossy @

(1oubise@ poday ayy ul podal Bunsixe ue suadQ) tOQ@vn._ P33

Jun. 25§, 2013
AMENDED
g 020000000

(%] A1anp uaiin9

U.S. Patent

US RE44,327 £

Sheet 17 of 34

Jun. 25, 2013

U.S. Patent

AMENDED

/'€ ‘UIPIAA LZ°0 :JUBieH L0 ‘487 1L0°0 :doy

| 8bed|| 139V 1311I1L1Ld0d3d

. | I e)
P [

I
% -
— o
v =k
ol _weer 00001 00°00¢
- Hohisod - ned Jolhe
- WA dNO1d3dains }IX3j - . .
I oo noE
I UOIEDOIRUSP| + ined 10|Ae |
I JUOH + kX8 H R ¥ XX H R H R |
I L suuy s
spouiel | s1ueAl | sejuedougy 00°00¢ 00°00€ |
eoeienuodar | sedwaebedwaey | . o4 oo~ S9UOF
] _U] 7 angeoue|eg UNOWY
10]P2dsUl -ddd 54 1V5ddNOLSNO | olUeN]5dlH SlWEeNIseE]

ZLGL 10/80/10 UNY
AN ENO1d3dINDMSIA WoISnH

— eaaE S . . S SISy SIEE LS S I BNy EaaE DI JEaE DL Gy DI SIS IS Eaae S I S G S By S Eaas s s

laubisa@ Hoday - d3H'STTVSHIANOLSND

14

sWweNIseT
0/80/1L0 UNy
wojsny)

Joday jualing

M3l Wolsnn | ereq

212|[ed Uauoduwion

dioH Mopuipy seiladold poulel 1ewdo

jnoke T malA P33 9|4

AcdP

US RE44,327 £

Sheet 18 of 34

Jun. 25, 2013

U.S. Patent

AMENDED

0¢ Ol

9S0|D)
YO [] 7 JNO | PEPINOL:D
$109(q0 J0] 19|00
]| | N0 | PAPIND\:D)
Lwelboid Jo) Jsp|o-
IX3 oWl 9P 123lq0 pINg O S108(qQO |eusdlx3 oSN @
SUONdo uonelausn)
INoLpopng |
Lwieiboid Jo sweN
uonesiddy
= ONISNY)" | S82I0AUI
(1 AS9|BS | SJowoisnd m
diz7’ L sJawo)sno
9)eIS | SJ8WOISn? >
N RRIE @k e
SSAIPPY | SISWOISNI| |~
SWEN]SIIH | S18Wo)sno
— SWENISET | slawosn)| | L
v ONISNY)" | SIaWOIsSNd
SpRld 19985

SIINQMNY PlRld | |elsuag

SMOPUIA Y211D-8UQ

uolneoIjddy SMOPUIAA

US RE44,327 £

Sheet 19 of 34

Jun. 25, 2013

U.S. Patent

AMENDED

paysiui4 uoiedlddy uny

sdnyoegAw :U=zuiediao
sabeLun, sjoslgoAwy J=Luiedlqo
soafgoAuy J=ouiedlao
[UredioelqQ]

aldwexy "suoieoo| usalslip gL 0) dn ul sjoslqo 1noA
pull 0] yred ay) 108|181) IUrinoipeping, Jo AJod Uoes szZIL0isSno 0] pedsioN SMOPUIAA 89

'UONEISHIOM UYdes UO Jsplo) B 0) ,IUI'Inolpeping, pue exs1nojpsping, sa|i ay) Adon

1OSIT 1283 10 SUBDI PIBA B BABY NOA SSajun JJosl YMZgpr |ejsui Jou o

‘g8l AlrAad ale sjusuodwon) swnuny syl ‘g0 MZgp sul wod) sjusuodwod AjuD swiuny,

3U] ||e1sul ‘SUOEIS) oM INOA UO Pa||ejsul \m_omm.__m JOU S| MedP 1| SUONE)ISHIOAA n_D 19Q ¢

"uonedldde

SIY] JoJ @sn 0) UYSIM hoA slaalas ay] 0] (s8] sbewl se yons) s82lnosal pue s108(go

INOA Adoo Aldulls ‘os || "uonoajoid 1SA0|le] JoL J8AI8S aUO Uel) alow Uo s)osigo JnoA aoe|d
0] Ysim noA ssgjun ‘padinbal Ajewlou si uone|eisul 10 dnjes Januss oN Jaaleg dnjas |

O3Q buisn lomieN v ol Aojdeq ol

'MOJ3q uopng
Juoneo|iddy uny, aU) uo 3o1p ‘uonedldde UnoA 1521 0] |, 8XSINoIpSping, psweu djI au)
Lo Mol[o-e|gnop pue paijinads noA Japjo] uoneunssp ay) 0} ob ‘Jalojdx3 smopulpn sy Buisn

Al[eoo uoneolddy uny o

iA|INJSS200Ng }jIng uoedl|ddy

uonealiddy »ol0-eu bulAgide pue buluuny - dieH

L¢ Ol

US RE44,327 £

Sheet 20 of 34

Jun. 25, 2013

U.S. Patent

AMENDED

¢¢ Ol

[00°000€€]
QLAS9leS

| GGG/]
diZ

AN]
3elS

4 _Emmi
0o
SNUaAY Aeg GC .2

SS2IPPY

JiS

SWENISIIH
mm:0ﬁ7
BLEN)SE]

LSOVIOAU] | | suswioiIsng

QALIJ =sUUNg 222

ined JOJAR | |

SNUIAY lEeq 0861

yoleas peedg

Uy UIWS 4

=

FAVYNLSYT|opIO Xopu|

yoday 1UaLnT) Eﬁ

disH suodey Joy4 Jesmoy P38l

(] (& (=

InojpapIing) gapAlenpp

US RE44,327 £

Sheet 21 of 34

Jun. 25, 2013

U.S. Patent

AMENDED

¢¢ Ol

U \uig-169\aysedy\dnoisy syoedyisaji4 weiboidi:D
v_O mm____EEmEQEtm_u_OH_

E 1splo) 9D 10} 74N

\soopiy\ayoedy\dnoic) syoedy\sa|i4 welboid\.D

S8 "IN1H 10} 18pjo4

dNo1a3adino

sweN uoljesi|ddy pue sinpoweleq

SUO|}E007 9)i-

ONISN)" | S82I10AUI A
1 AS9[E] | SIaWo)}sno
diZ’ | siswolsno

9)e]1Q’ | SJawo)snd

A1’ | siswolsno
SSBIPPY’ | SIBWOISND <
SWeNISIIH’ | sJawolsnd
swieNj]seT | sJowolsnd
ONISND)’ | SI8WO0)SND v

Al V

SpIeld 108[=G

inofe | saingmy pield | jessuse.
QoM HO1ID-8UO

uoljeoljddy gopa

US RE44,327 £

Sheet 22 of 34

Jun. 25, 2013

U.S. Patent

AMENDED

18UJ3IU| [2207]

v¢ Old

2G-8v-00 L0/90/10 Pajesausg)
ddd S IVSHINOLSND

suodoy

LSAOIOANI
LSHANOLSNO

Adju3 eyeq

AANd dNOLAd3dinNo

uny-nojpepinbasoyjeaoy;/:dpy

ssalppy

dieH S|00l S®jloABRH MBIA JIp3T

auo(]

SHU

ang |
1810/dX] 12U18)U] Josool wiytinoypapinbasoyeaoy;/.dny

G¢ Old

US RE44,327 £

”_m:tmuﬁc_ _muon_ wCOD
a
2G8F-00 LO/90/LQ PAIEIDUIE)
M 000006/ ALASTIVS
-~
S GGGEY diZ
e
3
= BRE J1VIS
P
m\nu yoeeg wjed ALID
alUaAy allell|led LSl WWM_W_DD.{
B pJeyoIy JNYNLISHI
-
= n
- —:) B TR
() Z
3 [1]
s 2
= LSHANOLSNO
A
| 00 |a] Wy LSYINOLSND ANOLAIaINDAsoyeooy:dpy | ssaippy | syu |
diesH S|00] S8JUOAB{ MBIA JIpTF 94 |
Ed=] JaJo|dX3 jaulaju] YOSOIIA - WIYTLSHINOLSND HNOLAIAINDASOY[eI0|//-dny

U.S. Patent

US RE44,327 £

Sheet 24 of 34

9¢ Ol

Jun. 25, 2013
AMENDED

U.S. Patent

18UlB1U| |BOOT auo(]
1% PIETOTY 0UL A
00001 00008
00/07/21 M mned 10148]
00 00t 00 00¢ ,.
00/SZ/C1 [med 1014]
m @ﬂﬁa ﬂu—ﬁﬂm
00 00¢ 00 00¢
00/90/C1 C 11d sauof
N [doueey JUNOWY,
e ONISN) QLU NISTL] QWENISE |
[93ed Z1:ST 10/%0/10 Uy
PUPHNOLAAAIND-MIIA TIHOISN)
h 4
| 09 oXe'dTy SITVSHINOLSNO/IG-Ba/soyeooy dny |sseuppy | syur |
deH s|00l sajuoney melA wp3 o4 |
_x—ﬂ—n J2l0|0X] J=sllaiu] HOSOJJIN - HOday

US RE44,327 £

Sheet 25 of 34

Jun. 25, 2013

U.S. Patent

AMENDED

LC

Ol

opn-smoldstn oL ood umyaissuc1d o
ojo Bojelpd o dwqouepen P4
pLpincipspingy L duig obojgamiianbg ﬂ
(patvun) L= (PoRrIvuN) gl
(papiun) & (pepun) H

7 o (] 7 sobiew| A T_ZE_;_ ﬂmo_ﬁf 103 gy

o ubse B
ouwruImyde LeuD o oo UMy dIpaUeL [ol LAy dlpaucInogels [l
jp-ssoioau| lLS WM INopRpIngD o] Biounoypaping (5 X2 INOPSPND U
drssjesisuio|sny jap-siswopny ([(pemun) FA (pajmun) G
(Pl (piaun) ¢ (popiun) Ed (PN S
(pomun) 0 (pamun) b (pepun ™ (penun] ‘@

584 JSVaP IV

7 Soge | E 7 sweibold ¢ 7 spodoy _m_ _ S0 E _ s109(01d @ : I ﬂ _

Ana] papintiy 45VHRP 2P 22BN SIUSIEd) [EUOISS2J0. A\ {i[Telen]

PUBLWLWIOD Y

Jo1ebineN £

B3|]

diaH MOpPUIAA

saldadold

MaIA ¥WP3 9lld

MzarkD)

8¢ Old

US RE44,327 £

solly peje|ai-3svap [Ile Jo] Jo Aobejed e Josjeg

Sheet 26 of 34
[<][<

N
= —
~ -
N pd
\f; (]
g o
. > opyubsty i)
- A o smaldyst o ood uimyolpsuoud ol OULLI UMY 1DBUCUT) E O} UIAR2I[08U OUE) E O UIMAYDI DSUOINOGRU E
— o0 fojelpD o wymInepeping (o (papun) F (pamun) O (papmun) paun)] o
—

ﬁﬂcﬂ-_- _"—...——..._E-__ _EE-__ _"EE-__u mm__u El_auu

7 BUYIO G safel| E s|INpoy BIe(] E7 ._UmE 7 s8|qE | E sweibold ¢ 7 sjoday @ _ Lo MI_ s198(014 # 7 Iy &

Eu N0 | pepINS\ 3SR, 8poser siusied) [BUOISSaI0I4\:D] U yooT

X][O)(~ lojebiaeN O

puewwoD)

)=l

U.S. Patent

dasH Mmopups seladold maip up3 B4

MzarkD

US RE44,327 £

Sheet 27 of 34

Jun. 25, 2013

U.S. Patent

AMENDED

‘Allenuew WJioj
e ebuelle pue a)eealo 0] Jaubisa(] syl esooy’)

'SPISI 2|qB) UO paseq Wlo] B Jno A
A||EONIEWIOINE pUB 8)Esld O] PIBZIAA 8U] 8S00y")

‘wiioy e sjeal0 0} noA dijey (M jey) (00} sy} esooy) 4

N

Jleubiseq x

W10 M8N

US RE44,327 £

Sheet 28 of 34

Jun. 25, 2013

U.S. Patent

AMENDED

00 0% YIPIM 00 91 :1YP1BH 00°€S 321000 :do L

|
ny&:

SI=IcH
_.r

.l. _ s -

4_“_ #mE,_ou__ el

MBIAUDBISSP -

0¢ Ol

L :ebeqd plepIO NHO S

nelaq - Zpeodsdde -
SNosuBR||eosIpy -

NUSN +

UOLEDRUSP] +

di5H +

U0 +
S|OJJUOT) +

v SS8D0V +

7 SpPOYIR |\ 7 SJUDAT _ souadold

m 0od UIAD|[DRUOLID m
= L Inopeping &7

9INPOW BleC _W_ oS gy

X |l [~

3| =] 1eubiseq Wuo - pepnun =3

ydwoud papzZim wio) 210840

puewwod G
OJA
O UIAVDD1 23U
(PSpRUN) (__._.m_
» X[@Mm @ =
od", ‘NULL’, ‘WD, fLm,
B8 wOOD
OISR s1oaloid @ 7 E & -l E_ mH_ ﬂ /.
© o >®@:

DEEMElIUI]B Y BUCISS2]l01d\ D)

v [a [=oov eea | prepias
&

ansled wauocdLwon

FEEEEEIL A
deH mopulpp seiuedold poylely 1ewio4 nodeq] melf, WP ol

MearkD)

US RE44,327 £

Sheet 29 of 34

Jun. 25, 2013
AMENDED

U.S. Patent

L€ Ol

a1} MU B 212940 0] 3|1} POJIIIUN UB JO8|9S JO ‘UlIm MI0oMm 0] a|l} bullsixe uejoeles

iydwouad puapzim WI0) 21D8UD
_u:mEE_uUO

77 PR INOlopIney _w (p=pnun) _W_ (penun) _W_

(Wpo, ‘pLup’,) sajl4 2NPoN BlE(

7 euio (] sabew| E a|npoyy ele(] E7 ._GmF_gm sa|qe| E sweibold ¢ 7 spoday m_ SLUJO E s109l0ld @ 1 _um
[]|~ INo | PEPINDISYSPIeOseMSIUsIEd\BUOISSBIOIAVD| uj 300
3 1) iojebireN €
doH mopuipn seluadold melA P @lld
X)) = MzarkD)

US RE44,327 £

Sheet 30 of 34

Jun. 25, 2013
AMENDED

U.S. Patent

¢t Ol

00 01 -UIPIM 0091 “JYLIBH 620G :148765°3:doL | | :ebed | 0 :48pIQ] WHO-

-
... wnoigzane
_D .N. m
——— _L_
._.__.__I __.__r_
.1 1 r+vr %4 000 e e e e e e e e e e e e e e e e m e e e e e e e am A e A
] L
ow - X2\
K el
Emu_ﬁ:_u_mm“u-
”__Jm.._.m_ﬂlN—ummﬂmﬂﬂml
shosue|=@osiytt " TS T T

v

dLAssieg[7]

diz = s1e1S [X]

A1 m mmm,ﬁﬂdH
sSweNisII4 [X] sweNise[X]
aNIsnd [X] Jalulad mu

T.mmo__u____,c_ T._mEEm_._U
oqis|ed ploid

1dwo.ud

nusw+H| |

UONEIJUSP] +
C|IoH +

WO +
3|0JJUOT) + X Q] laufiisaq wio4 - psmun =

v S$8920Y +

7 spoUyle N TEm}m_ 7 saadold

T._ LLLIOJ 7 pLpInNClepIng _W_ (papiu) _._|_h|_ (p ﬂ
| [z
im

_H u XEMECom H
LUp2, "pLUp,) s9jl4
EEIIRE %L & w0 6
X 1o10adsul -papnunll [BInPoi 2 E7 Jﬁmﬁ 7 sa|qe E 7 suielbold oY, 7 sUodoy @ _ SLUIO E 7 selold @ 7 E % ol _“_H__
. _ _ , . ® ol @
7_U T..i N0 REIRINOATSYHMEPHU9EMGIUB)ES ,_m:m_mmmE._n:.Ui
4
E@m an9|ed Juauodwon

EFEEETES T
deH mopupn sapedold poyely JeUlLC4 NOART ABIA Up3 8|14

X))~ MzarkD)

¢t Old

00 ¥L -UIPIM 00'L :IYDIBH 00°ZZ 187 00°¢E L :doL | | :8bed JLL 8PIOOIDNVIVAXOENIdS

US RE44,327 £

-
A _
ol -
n._nl.u _ 1 L 4 engeoue|eg [7]
o _H_ _”____._r _ unowy [
Milu m_ _m_._{_ °Ea [X]
— ! —,— e oNAUL X
% H_ _ uvomsod +| | | E]
e — o enea- |f— MBS . ONisna [X]
s X ewiodfig dais - BRSNS R R R 1ojulod Yy
os|iel fijupwds - || oo __ma._u:m; Tmmu_o}:_ __:_mEEm_._U
SEEEESRE] T
LoleolyIuap| + T [X] oHolEd PI=id
PH+| 1 |
e, JUod + o 2ALI(] SsUUng NNN_
— madl SSOIPPY
gl - sbeyurTeseq + e
PN [1] v SS0OY +H |y | ey |
% m 7mvn_£m_279:m}m;mmEmaEn_ o mEmZﬁmml_ﬂﬂﬂ
.."__.. (1) | 9NPIOUE|EQXOqUIdS WiIO) ”HM””H””H”HM””H”MHH----------MHH_E_._E_W_ (p __._m_
= = oo o XHEOm # 4
LUPJ- LURP] S22l
p < T_.u;p_u_ :._.E Tlni XQEC] seubisag wio4 - papgun P PRI " O w0 O
o4 10}a8dsu| -pajHun JOmFﬂm_ ._ so|gqe | EI— swelBoig nmvl_ suoday m_|— SO soslold @ B rEOE B \
IN0J PEPINSISYAPADEEMSIUIEJ\BUOISSBIOI VD @ dBal@d*V ﬁu_
4| pla | sseooyereq | prepuerg
E@m ans|ed usuodwon
v

mr e e
B T o
disH Mmopulff serladold poylely 1BwiCH holeT malA Upg 9|9

Xl |~ Mz arkD)

U.S. Patent

U.S. Patent Jun. 25, 2013 Sheet 32 of 34 US RE44,327 E

AMENDED

[] Untitled - Form Designer

Save Form

Save in: ‘ﬂ GuidedTour

E GuidedTour . wfm

File name:

Save as type: [Form (".wfm) =

FIG. 35

US RE44,327 £

Sheet 33 of 34

Jun. 25, 2013

U.S. Patent

AMENDED

MO DUIMBIA

9¢ Ol

4
—
]
< _ | C
|... 00°008 7
anooueleq 09D\ S1Ua)}D 4\ |DUOISS3J01-\ (D OPp
ydwodd piabzim WOl 81D8ud
X |~ ki puewwo)
2lelS
__mﬁv:m;
AIlD
oAl 9suung zzzZ |
SSBIPPY
SUIENISE]
o) L (papn) [B
NOE wiod [] (Wpo’, ‘puip’,) 9114 9INPOW ejeQ
7 IE=Thg ﬂ_ safeLu| E SINPo E1e(] FL ._Umﬁ So|qe| E 7 sLweibold ¢ 7 spodsy @l_ swioS iy s)oelold @ I &
L]~ Ino| pepineasyapeoeersiusiedieuoissaioldy| u oo
XEE) JoyebineN €p

[¢ M4 ||| B R FE x| IQR|BAC

dleH mopuipy seluedold selgel melA Up3 9l

MzarkD)

US RE44,327 £

Sheet 34 of 34

Jun. 25, 2013

U.S. Patent

AMENDED

su|

1 1J00 ‘g1 eul

“..MEDE”.ME_:“_mﬁ_m_u_‘”—mmgﬂ.h —.mLMED“—m—._U._..m,___JﬁDEﬂuﬂ_u._jﬂu—_um—u_ﬂm‘ELD“_. = AUINDlRp

LY Ol

(SIUI)QTFISAULNT MBU = LINYNLSYIQTIIAHELNT SIU3

JHMPUS
Ssalppy, = X3
woyog // 7 = |p213asAUbID
2g|D) = dpum
1LG8° L = YipPIM
¥ = doj
r = U3
| = jybiay

(1SS3HAAVIXILsIUY) UM
(SIy})1X3L meu = |SSIYAQVYLIXTL "SIyl

ypmpus
Z = Yipim
g’z = doy

¥ = U9
| = yblsy

4

(LAWYNLSY1AI3I4AMLINTSIYL) Ym

sy} = jusund’LIINQONVLIVAINOLTIAIND SIU}
()31NAQOKWYLvadNoLa3aaing msu = |31NAOWYLYAdN0LA3AIND sy}

Yympus

LOWDN}SD] = }X8)

wopog // 7 = |poljsapubip

2s|D) = doum

98ZY'6 = YipIm

G'L = doy

y = U3

| = wbisy
(1INVYNLSYILXIL SIUY) Ypm
(S1U3)LX3L Mau = |JNYNLISYILXIL ‘siu}
Uympua

S'GlL o}

9 1°|
Cf._ _:DDEd‘._._qaw_zo._.am_o_jw.m_:u_w 5_..__...

YipIMpus

i i = ”_.xm”_.

PLLS VY = UIpIM

CyS6'c = doy

r1LS°GY = HB
606G°LL = jublay wopoq [4
(S1U}) ypm 10lq0 o v
SAINPPR QNG YNOLQ3IAIND ©3 8dnpedold jes wiozsores [P
NHO4 40 WO 4S9|PS SSDIO dor [
WM 'sS3|BS LM S3|BS

10)IDg 92N0S - WM SIS

| 10 8] = 5 o

T e d| ¢ |

2% o |00 |23|X e |DUR|EELD

X\l =

deH mopuipy seledold poylely lewiog nofe] melA P39l
MzarkD

US RE44,327 E

1

DRAG-AND-DROP DYNAMIC DISTRIBUTED
OBJECT MODEL

Matter enclosed in heavy brackets []| appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

CROSS-REFERENCE TO RELATED
APPLICATIONS

This claims the benefit of the priority date of U.S. Provi-

sional patent application Ser. No. 60/338,239, filed Dec. 7,
2001.

FIELD OF INVENTION

This invention relates to computer programs providing an
object model for software application development and use,
and more specifically to programs providing such models for
use with distributed software components.

DISCUSSION OF PRIOR ART

Distributed object models pervade the world of networked
computing software. Distributed objects exist and operate
across networks, available locally or remotely to users with-
out concern for their physical location. This freedom from
locality facilitates the rapid and accurate assembly of power-
tul distributed software applications using the full range of
resources of entire computer networks.

Soltware object technology frees application and database
developers from concerns with internal details of any appli-
cations to be mtegrated with their own. The developer who
uses a soltware object has no direct knowledge of, or access
to, the code or internal variables of that object. The only way
to use an object 1s through 1ts defined and specific interfaces.
This characteristic of object technology is termed encapsula-
tion.

Object technology enriches applications with the ability to
create and use objects which are variations and combinations
of classes of objects. The developer can create an instance of
an object as a variation on a general class of objects. If the
class of this instance of an object possesses a set of attributes,
any object or subclass of this class will possess these
attributes as well. This characteristic of object technology 1s
termed inheritance. An object of a given class may be given
individual attributes which override or augment the attributes
of the class. This use of attributes provides for variation of
treatment among objects of a class.

Finally, object technology provides applications and data-
bases with the ability to use similar objects 1n different ways.
In mvoking the same method with object instances of two
different classes, the developer can rely on behavior of the
method 1n a manner consistent with the behavior of each
object’s class. The same request yields two different results,
cach appropnate to the object and 1ts class. This characteristic
of object technology 1s termed polymorphism.

Distributed objects that can be used by applications freely
across networks, operating systems, and hardware are called
components. Some types of components can also be used
freely across languages and compilers. The use of compo-
nents breaks down operational barriers to maximize the scope
of the usefulness of software, without incurring soiftware
conversion or mterface costs, and without compromising the
software’s integrity or reliability.

10

15

20

25

30

35

40

45

50

55

60

65

2

All ofthese aspects of distributed object technology rely on
comprehensive and detailed definitions of all objects, their

characteristics, and their interfaces. Two major models for the
development, deployment and application of distributed
objects are 1n current use: DCOM (Dastributed Component
Object Model), which 1s vendor-specific to Microsoit Corpo-
ration but widely used; and CORBA (Common Object
Request Broker Architecture), which 1s the prime industry
standard developed by the Object Management Group.

For the software developer, learning and applying either of
these models 1s a challenging task. Object definitions number
in the thousands, and appear in many languages. The chal-
lenge 1s doubled 11 both models must be used 1n one applica-
tion. To use the models for actual applications, many files and
table entries must be made 1n each system involved.

The complexity of the models and their actual application
incurs a considerable cost that ultimately increases the total
cost of ownership of the software. Application developers and
users seek simpler models and methods with which to build
and run their applications.

For the software maintainer, the tasks to be performed
change rapidly with changing conditions of the maintainer’s
enterprise. The maintainer 1s often confronted with the need
to organize and operate the software 1n patterns for which 1t
was not originally designed. Since the original developers of
the software are not present 1n every maintainer’s environ-
ment, this need places the maintainer in the role of a devel-
oper. Maintainers must be able to change the ways the sofit-
ware operates, without mcurring significant development
costs and delays. Local software change, recompilation, and
redeployment must be achievable without requiring signifi-
cant effort on the part of the maintainer. In a network of
systems and software, this 1s a difficult task.

Conventional software tools address these 1ssues piece-
meal, but provide no integrated solutions to the full range of
the problems described above. Portable languages such as
Java exist, and have been augmented with a component archi-
tecture called JavaBeans. DCOM and CORBA address com-
ponents as well. All three require significant setup and main-
tenance effort, and significant learning etffort, on the part of
using organizations. Examples of solutions to pieces of the
overall problem may be found 1n U.S. Pat. No. 5,978,385
(Crelier), Development System with Improved Methods for
Recompiling Dependent Core Modules; U.S. Pat. No. 5,991,
7’76 (Bennett), Database System with Improved Methods for
Storing Free-Form Data Objects of Data Records; and U.S.
Pat. No. 6,002,867 (Jazdzewski1), Development System with
Methods Providing Visual Form Inheritance.

The availability of a low-cost, easy-to-use distributed
object model which 1s also powertul, reliable, flexible, and
eificient would benefit all developers and users.

The following references supply detailed information on

object and component technologies: The Essential Distrib-
uted Objects Survival Guide, Orfali, Harkey, Edwards, John

Wiley & Sons, 1995; Object-Oriented Analysis and Design
with Applications, 27 Ed., Grady Booch, Addison-Wesley,
1994; COM and CORBA(R) Side by Side: Architectures,

Strategies, and Implementations, Jason Pritchard, Addison-
Wesley, 1999.

SUMMARY

The mvention provides a Windows workstation user with a
quick, simple, easily-managed path to combinations of avail-
able applications on a network of systems, 1n such a way that
the soitware developer can establish and exploit complex data
relationships and software capabilities on the workstation

US RE44,327 E

3

without application installation, significant access effort, or
specialized knowledge. The invention utilizes runtime bind-
ing to make software components usable by application pro-
grams as desired, without preparatory steps. The invention
incorporates an external object model 1nto a comprehensive,
drag-and-drop, dynamic, distributed object model, to offer 1ts
users lower total cost of ownership than do conventional
soltware development systems and application builders.

DESCRIPTION OF DRAWINGS

FIG. 1A shows the basic distributed system for dynamic
external objects,

FIG. 1 shows the main opening screen for the invention.

FI1G. 2 shows the Navigator window.

FIG. 3 shows the database alias prompt window.

FI1G. 4 shows the database alias selection/creation window.

FIG. 5 shows the database alias creation window.

FIG. 6 shows the database folder creation window.

FI1G. 7 shows the table creation window.

FIG. 8a shows the Table Designer window for the Cus-
tomer table.

FIG. 8b shows the object Inspector window.

FIG. 8¢ shows the Table Designer window after Customer
table data element additions.

FIG. 9 shows the Table Designer window for the Invoices
table.

FIG. 10a shows the active index selection window for the
customers query.

FIG. 10b shows the active index selection windows for the
1nvoices query.

FIG. 11 shows the table row processing menu.

FI1G. 12 shows the data display for the customers table.

FI1G. 13 shows the data display for the mvoices table.

FI1G. 14 shows the database query filter window for inclu-
sion of all table rows.

FI1G. 15 shows the database query filter window with a list
of filter conditions set, and a display of the code for the filter
conditions.

FIG. 16 shows the main screen for the mvention with a
query displayed 1n the Live Data Area.

FIG. 17 shows the invention’s No-Click Report for a com-
bined customer and nvoice query.

FIG. 18 shows a report editing window for the mnvention’s
reports.

FIG. 19 shows the Report Designer window, the Compo-
nent Palette window, and the Inspector window.

FIG. 20 shows the One-Click Windows application cre-
ation window.

FIG. 21 shows the One-Click Windows confirmation win-
dow.

FI1G. 22 shows the Windows application’s operating inter-
face window.

FIG. 23 shows the One-Click Web application creation
window.

FIG. 24 shows the Web application’s opening browser
window.

FIG. 25 shows the Web application’s operating interface
browser window.

FIG. 26 shows the Web application’s report browser win-
dow.

FI1G. 27 shows the invention’s main window with Naviga-
tor and command windows open.

FI1G. 28 shows the invention’s main window with Naviga-
tor window displaying available forms.

FIGS. 29-37 are sample screenshots.

10

15

20

25

30

35

40

45

50

55

60

65

4
DETAILED DESCRIPTION OF INVENTION

The mvention 1s made up of the following interacting com-
ponents. In a first embodiment, the mvention uses a set of
peer-to-peer computers, each one further made up of one or
more interconnected processors, one or more main memory
subsystems, one or more mass storage subsystems, and one or
more connections to wide area networks or local area net-
works, provide users with interface resources giving access to
applications stored 1n the mass storage subsystems of any of
the peer-to-peer computers.

In an alternative embodiment to the single set of peer-to-
peer computers, the invention uses a pair of sets of computers.
The first set of computers comprises one or more server
computers, each one further made up of one or more inter-
connected processors, one or more main memory sub-sys-
tems, one or more mass storage subsystems, and one or more
connections to wide area networks or local area networks,
providing access to applications stored in the mass storage
subsystems of any of the server computers. The second of the
pair of sets of computers comprises one or more client com-
puters, each one further made up of one or more 1ntercon-
nected processors, one or more main memory subsystems,
one or more mass storage subsystems, and one or more con-
nections to the server computers via wide area networks or
local area networks, providing users with interface resources
to access the applications on the server computers.

Second, a shell (application) software program operating
on each client computer for presenting a {irst form or menu to
a user of the client computer, provides rapid and simple user
connection to the user interface resources.

Third, a set of dynamic external object classes, stored on
one or more server computers,, client computers, or peer-to-
peer computers and operating on one or more client comput-
ers or peer-to-peer computers, for providing distributed
object classes to a developer of software applications for a
client computer or peer-to-peer computer.

Fourth, a compiler software program for compiling the
distributed object classes mto working executable objects,
classes, methods, and attributes, based on the dynamic exter-
nal object classes defined by thedeveloper.

Fiith, an interpreting software program (interpreter) con-
verts compiled object code mto machine code and resolves
class inheritances, polymorphic behaviors, and encapsulation
behaviors of the compiled executable objects, classes, meth-
ods, and attributes, across the client computers or the peer-
to-peer computers, at the time of the application’s request for
invocation of the executable objects, classes, methods, and
attributes.

Si1xth, ameans ol providing an alias name for each database
in the client and server computers to be accessed by an appli-
cation program using the distributed objects.

DEO (Dynamic External Objects)

Dynamic distributed objects improve the way 1n which a
soltware application 1s installed and updated on a user’s
machine. Instead of having a monolithic copy of a large
program residing on each PC, the application accesses a
number of compiled dynamic objects that reside on one or
more computers 1n the network. Each user has a simple appli-
cation program that lets him invoke the objects he needs to
perform atask. In effect, the objects needed for the tasks of the
application are combined on the fly as the user needs them. As
such, the code for executing a given task 1s interpreted at the
time the task 1s requested.

Each object contains a blueprint of the class for the object.
Instances of the objects are created 1n the main memory of a
user’s computer. Each object can be independently updated

US RE44,327 E

S

on the computer where it resides. A user gets the latest version
of the object when the user runs an application that invokes
the object to carry out a task at his local machine.

The mnvention 1s akin to “just 1n time” assembly of a pro-
gram. Theuser’s machine 1s not burdened with a large, mono-
lithic program residing on an ever-increasing hard drive.
Instead a relatively thin application on the user’s computer

invokes the objects the application needs at a grven time to

achieve the task asked for by the user. The invention provides
flexibility for users and, more importantly, for programmers.
Now programmers can write new, thinner programs by using,
one or more existing objects and adding further objects to
them to provide new tasks executable on a user’s machine.
Improvements or extensions of existing programs are more
rapidly made and distributed by relieving the programmer
from starting each new extension from scratch. For example,
if a programmer writes a new email program his application
can 1nvoke the objects of an existing distributed object word
processing program for providing the editing software for the
new email program.

For example, assume a user wants to write a letter. He
opens a thin word processor program installed on his
machine. That program provides the user with a menu or
graphical user interface that contains one or more pointers to
objects that the application may use to create and edit a
document.

That describes the operation at a high level. The objects of
the invention have the capacity for inherntance. To resolve
inheritance of characteristics from classes and superclasses,
the mvention’s interpreter ascends the object class hierarchy,
picking up missing characteristics from classes above the
object in the hierarchy, and decends the hierarchy to override
characteristics 1n higher classes with those of classes below,
all to provide a current instance of an object. In other words
one object can retrieve other, parental or superior objects,
using the blueprints it needs to create an imnstance of the object
during operation of an application. As such, a new algorithm
for a spreadsheet can be rapidly added to the spreadsheet
object that includes specific spreadsheet algorithms and the
next time a user runs his spreadsheet program 1t will invoke
the spreadsheet object with the new algorithm. Likewise,
graphics or other resources can be given treatment as object
characteristics. If an enterprise changes its name and logo
(e.g. from Alpha to Omega) the graphics can be updated in the
object for all documents and application will get new graphics
with the updated name and logo.

The objects are dynamic and this means that they can be
changed. They are not static or fixed. The objects are distrib-
uted. They do not have to reside on only one computer, but
may be on many computers. There can be redundant objects
but each redundant object 1s updated when 1ts class 1s updated.

Turning to FIG. 1A, there 1s shown a network 100 that has
a plurality of workstations WS1, WS2, WS3, WSn. Each
workstation holds one or more dynamic, external, distributed
objects (DEOs). For example, WS1 holds DEO 1-19, WS2
holds DEO 20-29, WS3 holds DEO 30-39 and WSN hold
DEO n-n+x. A number of user computers (UR1, UR2 . ..
URn) are connected to the network. The distinction between
workstations and user computers 1s made for explaining the
invention. Those skilled in the art understand that the network
may be configured in a client-server manner or 1n a peer-to-
peer manner. The mnvention does not depend on the architec-
ture of the network. Those skilled in the art will also under-
stand that the dynamic objects may reside on the user
machines as well as on the network workstations. Thus, cli-
ent-server, peer-to-peer and other networks can use the mven-

10

15

20

25

30

35

40

45

50

55

60

65

6

tion. The objects may reside on a private network, a public
network (such as the Internet) of a combination of public and
private networks.

Each user has one or more application programs that pro-
vide a menu or a graphical user interface (GUI) 120, such as
the GUI shown in conventional Windows programs. An appli-
cation program, such as a combined suite of word processor,
spreadsheet and database programs, resides on the each user’s
computer. The objects for the application include a number of
dynamic objects, DEO 1-DEO n+x. The DEOs are distributed
on the network and reside in the mass storage space (hard
drives) of either the workstations or the user machines. The
user’s application GUI 120 displays a number of tasks, TA1,
TA2 ... TAn. These tasks are shown 1n a menu form and may
include sub-tasks shown on sub-menus 1n a conventional
manner. The tasks may includes a variety of conventional
operations such as creating a letter or a spreadsheet, editing
the documents, spell checking, formatting, copying and past-
ing all or portions of one document to another, etc. The task
TA1 requires certain objects to execute the task. These objects
are DEOs 1, 24 and 32. When the user on machine URI1
selects a task such as the task TA1, the user’s application
points his machine to those objects that will execute the task.
The objects are found on their resident machines WS1, WS2
and WS3, copied to the memory of the user’s machine URI1,
and an 1nstance of the objects 1s created on the main, random
access memory of the UR1 machine. The task TA1 1is
executed on the machine UR1. After execution of task TA1,
the DEOs 1, 24 and 32 may be erased, cached or stored in
mass memory on URI1. It i1s practical to cache the DEOs
because the user 1s likely to perform the same task (creating a
second word processing document) later. However, caching 1s
not required for the invention.

Assume task T2 1s a spreadsheet application that invokes
DEOs 1-5, 22-25, and 32-34. When the user points his cursor
to the task T2 his application program points to the machines
on the network that hold the objects for the application. The
objects are located and an instance of the spreadsheet object
1s created in the main memory of the UR1 machine and
displayed to the user.

The user’s machine has a compiler (if the user 1s a devel-
oper of soltware objects) and an interpreter (for any user). The
compiler converts the developer’s source code for the objects
into object code. The interpreter converts the object code into
machine language. Unlike other machines, those that operate
the invention do not require a linking program to interconnect
objects and the application program. The invention operates
without linking because its interpreter can quickly resolve
any object references 1n the compiled code, and it only runs
the code 1t needs at any one time for any one task. Instances of
the objects are interpreted on the tly. The compiled objects
being interpreted are all relatively small, for example a few
hundred kilobytes at the largest, and instances of these objects
are rapidly created over most networks.

One or more administrative machines, Al, are coupled to
the network 100. A programmer or a program administrator
has high level privileges to access and change the DEOs on
the workstations. For example, assume DEOI1 1s a graphic
display for a document and 1includes the name, logo and a set
of characteristic colors for the enterprise that creates the
document. If the enterprise adopts a new name, changes 1ts
logo or 1ts characteristic colors, the administrator accesses the
dynamic object DEO1 and makes the desired changes. The
next time a user accesses the object DEO1 for another docu-
ment, the object 1s updated with the changes. In a like manner,
assume DEO 34 1s an object that contains algorithms that the
spreadsheet can execute. If a new algorithm 1s added to the

US RE44,327 E

7

spreadsheet program the programmer updates DEO 34. The
next time a user runs the spreadsheet program the new algo-
rithm 1s part of the instance of the object that runs on his
computer.

A key advantage of the invention 1s the development ol new
programs and program updates and the distribution of objects
throughout the network. It 1s possible to dedicate different
workstations to different objects or sets of objects so that, for
example, the graphics for documents are on one workstations,
the word processing operation are one another, the spread-
sheet on a third and so on. Each of the objects can be updated
at any time and as needed. As a result, the users always have
the latest version of the program available to them via the
distributed objects. The user’s machines are relieved of the
burden of storing large, monolithic programs such as inte-
grated word processing, spreadsheets and databases. Instead,
the user has a relatively thin application program that resides
on his computer. The application program contains the loca-
tion ol objects needed to run the application. Those objects
are located and run as needed at the time they are needed. The
user’s computer does not need to hold the objects before the
application 1s run and does not need to retain the objects after
the application 1s completed. The administrator no longer has
to individually update each user machine with the latest ver-
sion of a program because the dynamic objects have all the
updates.

The 1nvention creates and uses dynamic external objects
(DEOs) to allow different parts of an application to exist and
execute on different systems in one network, with no deci-
sion-making or intervention on the part of either the devel-
oper or the user, and no prior administration overhead. No
entry 1n any system registry or filesystem 1s required.

The mnvention’s Dynamic External Objects capability con-
stitutes a unique technology that allows applications to share
classes on server, client, and peer-to-peer computers across a
local network, across a wide area network, or across the
World Wide Web. Instead of linking forms, programs, classes
and reports into a single executable that has to be manually
installed on each workstation, the developer deploys a shell:
a simple executable program of the invention that calls a first
form or provides a starting menu from which an application
can access forms and other objects created in the mvention.
The shell executable (application) program can be as simple
a program as: do startup.prg where startup.prg can be a dii-
ferent “.pro” object 1n each directory from which the devel-
oper launches the application. The shell executable program
may also be a program that builds a dynamic, context-sensi-
tive menu for an appliucation user during the user’s working,
SESS101.

Dynamic External Objects can be visual, or they can be
classes containing just “business rules™ that process and post
transactions or save and retrieve data. Each of these dynamic
external objects may be shared across a network by all appli-
cations that call them.

For example, an application may have a customer form
object that’s used 1n a Customer Tracking application. This
form object may also be used by a Contact Management
program and an Accounts Receivable module. It 1s stored, for
example, on a server computer. If the developer wants to
change a few fields on the form or add a venfication or
calculation routine, the developer compiles the new form
object and uses the Windows Explorer to drag 1t to the appro-
priate folder on the server computer. Every application 1s
updated immediately. Any application mmvoking the form
object on the server computer then retrieves the updated form
object, interprets 1t to resolve all object characteristics, and
uses it.

10

15

20

25

30

35

40

45

50

55

60

65

8

The mvention’s Dynamic External Objects capability

offers the following advantages:

Updating objects requires only a simple drag-and-drop
action on the part of the developer. No registration, no
intertace files, and no application server and required.

Although the objects sit on a network server, they run only
on auser’s workstation, reducing the load on the object’s
server dramatically and making eflicient use of the local
processing power sitting out on the network. This
method of operation contrasts sharply with that of
CORBA-style objects, which are registered and run on a
Server.

The same (non-visual) objects may be shared by both the
user’s LAN and the user’s Web site.

Dynamic External Objects are very small and load quickly.

They rarely exceed 140K 1n size and usually run in less
than 100K.

The invention’s Dynamic External Objects capability sup-
ports tull inheritance. ActiveX/OCX objects do not sup-
port inheritance. Java objects inherit in CORBA, but the
process 1s difficult and rarely used. In the invention,
changing the layout of a superclass form lets every form
in every application inherit those changes the next time
they’re called. A developer can rename a company or
change a logo and propagate the change to all users by
dragging and dropping a single file to the server.

Implementing Dynamic External Objects requires three

steps:

Compiling source code.

Building a main launching form, or selecting a pre-built
generic launching form.

Copying the compiled objects to a server.

Like Source Aliasing, which 1s dQuery/Web’s means of
providing a user with an alias name for each database 1n client
and server computers, the invention has a mechanism to allow
an application to find libraries of objects, making 1t much
casier to share them across the network and across applica-
tions. This mechanism 1s based on an optional search list that
1s created using easy text changes 1n the application’s .1ni file.
The 1nvention searches objects as follows:

1. It looks in the .1n1file to see if there’s a series of search paths
specified. It checks all the paths 1n the list looking for the
object file requested by the application.

2. If 1t doesn’t find the object using the search list, it looks 1n
the “home” folder from which the application was
launched.

3. IT 1t st1ll doesn’t find 1t, 1t looks 1nside the application’s .exe
file.

As an 1illustration, assume the application has a library 1n
which shared objects are to be stored. Assume also that the
application 1s called “Myprog.exe” and runs from the
c:\projectl folder. In the file Myprog.ini1, the developer add
the following statements:
|ObjectPath]
objPathO={:\mainlib
objPathl=h:\projectl \images
objPath2=1:\myWeb.

These statements list the diflerent paths to be searched to find

object files to be used. Any of these paths may lead to any

system 1n the network to which the user’s system 1s con-

nected. Any path might point to the user’s own system, to a

system 1n the same local area network as the user’s system, or

to a system 1n a wide area network connected to the network
to which the user’s system 1s connected.

The developer’s code looks like:
set procedure to postinglib.cc additive

22

US RE44,327 E

9

When the application executes, the invention will look first
in :\mainlib for postinglib.co, the executable form of post-
inglib.cc. If 1t finds postinglib.co, 1t will load that version
into the user’s system. If not, it looks 1n each of the remaining
paths on the list until 1t finds a copy of the object file. If that
fails, the mvention will look 1n c:\projectl (the home direc-
tory). If that fails, the invention will look 1mnside MyProg.exe.

In alternative embodiments, the invention can search addi-
tional places where objects are available for use. For example,
the application’s installer might store path names in the Win-
dows Registry to be searched at some stage of the path search.
The stage used for Registry searches might precede or follow
the stage for use of the .1ni file. Due to the size and complexity
of the Windows Registry, and the time needed to access data
within 1t, the use of the Registry 1s not considered as advan-
tageous as the use of a simple file such as an .1ni file.
Advantages of Dynamic External Objects (DEQO)

Carrying out unanticipated updates: assume an invention
application has already been shipped as a full-blown execut-
able. A change 1s required to one object module. To do this,
the developer copies the object file to the home directory of
the application—the application will then use the new copy
instead of the one built into the shipped executable. There 1s
no need to redeploy the full application as 1s done 1n conven-
tional application development products.

Reports: The developer can deploy reports or even let users
create reports (using the invention) and add them to their
applications by designing a report menu that checks the disk
for files with an object-code report (.reo) extension. The
developer lets the menu build 1itself from the file list. This
exemplifies true dynamic objects—the application doesn’t
even know these objects exist until runtime. In effect, DEO
supports real-time dynamic applications.

Technical Support: To try out some code or deploy a {ix to
a customer site or a remote branch office, the developer can
send the object file via FTP to the remote server and the
update 1s complete.

Remote Applications: With VPN support (or any method of
mapping an Internet connection to a drive letter), the devel-
oper can run the mvention’s DEO applications remotely over
the Internet. The mnvention includes resolution of URLs and
IP addresses so that the user can access remote objects
directly through TCP/IP without middleware support.

Distributed Objects: Objects can be 1n a single folder on a
server, 1 various folders around a network, or duplicated 1n
up to ten folders for fail-over. IT one of the servers 1s down and
an object 1s unavailable, the invention searches the next loca-
tions on the list until 1t finds one 1t can load. Objects can be
located anywhere they can be found by the workstation.
dQuery/Web

The dQuery/Web tool 1s an example of an application con-
structed using the mvention’s capabilities, and 1llustrates the
advantages of those capabilities. The dQuery/ Web tool per-
forms the following functions:

Creates and manages database tables and queries (for an

application developer)

Performs data entry, editing and deletion 1n database (for

an application user)

Performs data query from database (for an application

user)

Connects with databases of di

cation developer or user)

Creates, changes and deletes parent-child relationships

between tables (for an application developer)

Filters database data ({or an application user)

Searches database data (for an application user)

Summarizes database data (for an application user)

.

‘erent formats (for an appli-

10

15

20

25

30

35

40

45

50

55

60

65

10

Performs global search and replacement of database data
(for an application user)

Defines and displays custom views of database data (for an

application developer or user)

Produces no-click reports (for an application user)

Customizes and produces reports (for an application devel-

Oper or user)
Generates and executes one-click Windows applications
(for an application developer or user)

Generates and executes one-click Web applications (for an

application developer or user)

Deploys data module objects to the Web (for an application

developer)

Deploys reports to the Web (for an application developer)

The dQuery/Web tool 1s a user interface. The dQuery/Web
interface allows 1ts user to act either as a developer of inter-
face applications or a user of those interface applications, or
in e1ther role as needed at any stage of working with a set of
databases. This ability to support both development and usage
roles on the same interface screens, without requiring sepa-
rate stages or phases ol operation, constitutes a tlexibility
advantage of the invention. From this point forward, the term
“user” 1s used to mean a person who 1s working either as a
developer of database interfaces using the mvention or as a
user of those database interfaces.

The term “data module™ as used here refers to an integrated

collection of database connection, query, table, table link,
filter, report, and application objects as defined and applied by
the developer. Such an mtegrated collection of objects con-
stitutes a database 1nterface application.
The term “run-time binding”, as used here, refers to the
ability of an application to interconnect 1ts objects, programs,
and data dynamically, at the time the user wishes to intercon-
nect them. This contrasts with “compile-time binding”, in
which objects, programs, and data are selected and linked at
the time a program 1s compiled, and cannot be changed with-
out recompilation; and with earlier forms of binding in which
objects, programs, and data are interconnected at the time the
application 1s written and tested, and cannot be changed even
by recompilation. Run-time binding has great advantages of
generality and tlexibility, 1n that the user can change the
objects, programs, and data being used simply by naming
them when they are needed.

dQuery/Web’s definition and use of query objects 1n its
database interface lets the user combine fields from dissimilar
database engines 1nto a single view of data. For example, the
user can take the first column 1n a custom view from an Oracle
field i one database, join it with a second column from an
SQL Server field 1n another database, and with a third column
from a dBASE field in yet another database. Thanks to
dQuery/Web’s alias feature which provides user-customized
path specification across multiple systems, the three data-
bases may reside on any combination of servers 1n a network.
Any user can use dQuery/Web to produce a single coherent
view of the combined data of multiple distributed databases.

See FIG. 1. DQuery/Web’s interface with the developer
and user 1s a main screen display divided into a design surface
100 and a live data area 200. The design surface 100 1n the top
area ol the main screen 1s used for modeling data—{or creat-
ing query, database, session and stored procedure objects that
describe the user’s databases, tables, and queries, and the
relationships between them. The design surface 100 1s used
by the application developer.

The live data area 200 1s displayed with three tabs for
access to different views and functions. The first tab of the live
data area 200 1s the Data tab. The Data tab 1s used for entering,
editing and deleting application data. The data in this section

US RE44,327 E

11

of the screen changes 1n real-time to reflect the currently
selected query object and any {filters or parent-child relation-
ships the user has set up for them. The second tab of the live
data area 1s the Custom View tab. DQuery/Web allows the
user to drag-and-drop fields from any combination of query
objects to create a new, combined view of the user’s data data.
The third tab of the live data area 1s the Current Report tab,
which displays either an automatic No-Click report, or any
other report the user chooses to associate with this data mod-
ule. The live data area 1s used by both the application devel-
oper and the user.

DQuery/Web provides a navigational aid 1n the form of the
Navigator window. See FIG. 2. The Navigator 1s a tool for
opening files of all types used by dQuery/Web, and serves as
the primary source for dragging existing tables and other files
into dQuery/Web’s view. The Navigator 1s called up from the
“View” menu on most of dQuery/ Web’s screens or by right-
clicking on many components and tools throughout the pro-
gram. I the user clicks on a particular file displayed by the
Navigator, dQuery/Web will bring up the appropriate tool and
present to the user a new form, report, program or data mod-
ule.

See FIG. 1. The EasyStart menu 110 appears on the design
surface. The EasyStart menu 1s designed to assist the user 1n
becoming familiar with dQuery/Web. It contains selections
for creating data objects, creating query objects, adding or
editing database data, filtering database data, creating parent-
child relationships among data elements, and building reports
and applications. These selections are also available on drop-
down menus from the main menu bar.

The EasyStart window may be set to be “Always on top”,
displaying over other windows. To change the behavior of
EasyStart, the user clicks on the “Properties” menu at the top
of the EasyStart window. It may be changed to appear only
when wanted, and to turn its help screens off and on. EasyS-
tart can be turned back on at any time by right-clicking any-
where on dQuery/Web’s main screen and selecting “EasyS-
tart” from the popup menu.

DQuery/Web uses two kinds of menus. Main menus appear
at the top of each screen. Pop-up or Context menus are
brought up by right-clicking on a component. Pop-up menus
supply only the options appropriate to the item the user clicks
on. For example, right-clicking on the Design Surface allows
the user to add new components. Right clicking on the Live
Data Area gives the user options to navigate, add, save and
delete rows of data. Almost every option that appears on a
right-click menu also appears on the Main Menu or the Tool-
bar. Right-click menus save the user a lot of navigation across
the expanse of dQuery/Web’s main screen, and avoid
searches in the Main menu to find the desired menu 1tem.

DQuery/Web offers multiple ways of accomplishing a
task. For example, to add a new Query data object to a data
module, a user may perform one of the following actions:

Right-click on the Design Surface

Drag a table from the Navigator

Drag a .SQL file from the Navigator

Double click on “Untitled” on the Navigator Tables Tab
Main Menu/Create Table
Main Menu/New/Query From Table
Main Menu/New/Query From SQL File

EasyStart/Query (option 2)

Click on a Query Toolbar Button

DQuery/Web provides a Windows workstation user with a
quick, simple, easily-managed path to any available database
on a network of systems, 1n such a way that the user can
establish and manipulate complex database relationships on
the workstation without any database installation, access

10

15

20

25

30

35

40

45

50

55

60

65

12

elfort, or specialized knowledge. DQuery/ Web utilizes runt-
ime binding to prepare and link user forms and reports to
database contents as required, without preparatory steps.
DQuery/Web employs a database management language
(DML) 1n an interpretive mode to carry out all operations
directed by the user.

The mvention features an external object model that, 1f
used consistently, provides lower total cost of ownership than
conventional user interface applications and application

builders.
The Data Model

DQuery/Webevent-driven data model of the dQuery/Web
application 1s implemented entirely 1n a handful of classes:

Session

Database

Query (Database)

StoredProc (Database)

Rowset (Database)

Field (Database)

This section describes the ways these classes {it together. It
introduces each object and explains how 1ts primary proper-
ties relate to the other objects.

Query Objects

Query objects are the center of the data model. In most
cases, to access a table, a user must use a QQuery object.
Alternatively, a user could use a StoredProc object that
returns a rowset from an SQL database, or a DataModRetf
object that points to a data module containing the appropriate
data access code, including at least a Query or Stored-Proc
object. The Query object’s main job 1s to house two important
properties: SQL and rowset.

SQL Property

The SQL property’s value 1s an SQL statement that
describes the data to be obtained from the table. For example,
in the statement ““select * from BIOLIFE”, the “*” means all
the fields, and BIOLIFE 1s the name of the table, so that
statement would retrieve all the fields from the BIOLIFE
table.

The SQL statement specifies which tables to access, any
tables to jo1n, which fields to return, the sort order, and so on.
This information 1s a commonly-accepted definition of the
word query, but 1n dQuery/ Web, SQL statements are only one
of many properties of the Query Object.

SQL 1s a standard, portable language designed to be used in
other language products to access databases. When a user
uses the Form and Report wizards or drags a table from
dQuery/Web’s Navigator, dQuery/Web builds the required
SQL statement to accomplish the directed objective. Once a
table has been accessed by the SQL statement, the user can do
almost anything desired with dQuery/Web’s data objects,
including navigating, searching, editing, adding, and delet-
ing.

Although knowing SQL 1s useful for immitially configuring
data objects for the user’s databases, once these data objects
are complete and saved as custom components or 1 data
modules, they can be reused without modification. This
allows other users to create complete Windows database
applications without knowing a word of SQL.

The Rowset Property

A Query object 1s activated when 1ts active property 1s set
to true. When this happens, the SQL statement in the sqgl
property 1s executed. The SQL statement generates a result: a
set of rows, or rowset. A rowset represents some or all the
rows ol a table or group of related tables.

Each Query object generates only one rowset, but the user
can add multiple Query objects to a form to use multiple
rowsets from the same table, or for different tables. Using

US RE44,327 E

13

multiple Query objects also allows the user to take advantage
of dQuery/Web’s built-in master-detail (parent-child) link-
ng.

The Query object’s rowset property refers to the Rowset
object that represents the query’s results.

Rowset Objects

While the user must use a Query object to get access to
data, the Query object’s resulting rowset must be used to do
anything with the data. All navigation methods for getting
around 1n tables depend on the query’s rowset.

The Row Cursor and Navigation

The rowset maintains a row cursor that points to the current
row 1n the rowset. When the Query object s first activated, the
row cursor points to the first row 1n the rowset. The developer
can get and store the current position by calling the rowset’s
bookmark() method.

To move the row cursor, the developer calls the rowset’s
navigation methods:

next() moves the cursor a specified number of rows relative

to 1ts current position.

first() goes to the first row 1n the rowset.

last() moves to the last row.

goto() uses the value returned by bookmark() to move

back to that specific row.

Because each rowset maintains 1ts own row cursor, the
developer can open multiple queries—each of which has 1ts
own rowset—to access the same table and point to different
rows simultaneously.

Rowset Modes

Once a Query object has been activated, its rowset 1s
always 1n one of the following five modes (indicated by the
rowset’s state property):

Browse mode, which allows navigation only.

Edit mode, the default, which allows changes to the row.

Append mode, in which the user can type new values for a

row, and 1f the row 1s saved, a new row 1s created on disk.

Filter mode, used to implement Filter-By-Form, 1n which

the user types values mto the form and dQuery/Web
filters out all the rows that do not match.

Locate mode, similar to Filter mode, except that it searches

only for the first match, instead of setting a filter.
Rowset Events

A rowset has many events used to control and augment 1its
methods. These events fall into two categories:

can-events, so named because they all start with the word

can—which are fired before the desired action to see
whether an action 1s allowed to occur; and

on-events, which fire after the action has successtully
occurred.

Row Buliler

The rowset maintains a butler for the current row. It con-
tains all the values for all the fields 1n that row. The developer
accesses the buffer by using the rowset’s fields property,
which refers to an array of Field objects.
Field Objects

The rowset’s fields array contains a Field object for each
field in the row. In addition to static information, such as the
field’s name and size, the most important property of a Field
object 1s 1ts value. Value Property

A Field object’s value property retlects the value of that
field for the current row. It 1s automatically updated as the
rowset’s row cursor 1s moved from row to row. To change the
value 1n the row bulfer, the user assigns a value to the value
property. If the row 1s saved, those changes are written to disk.

When referring to the contents of a field, the developer
must use the value property. An example of correct usage 1s:
this.form.rowset.fields[“Species”].value. If the developer

10

15

20

25

30

35

40

45

50

55

60

65

14

leaves out .value, viz.: this.form.rowset.fields[“Species™], the
reference 1s then to the Field object itself, which 1s intended
principally for datalLinks, explained below.

Using DatalLinks

Just as a Field object’s value property 1s linked to the actual
value 1n a table, a visual component on the form (such as a
Select List or RadioButton) can be linked to a field object
through the form component’s datalLink property. This prop-
erty 1s assigned a reference to the linked Field object. When
connected 1n this way, the two objects are referred to as
datalLinked.

As the rowset navigates from row to row, the Field object’s
value 1s updated, which in turn updates the component on the
form. If a value 1s changed 1n the form component, 1t 1s
reflected 1n the datalLinked Field object. From there, the
change 1s saved to the table.

Database Objects

Database objects are one level up from Query objects inthe
object hierarchy. Database objects have three main functions:

Database access

Database-level security

Database-level methods
Accessing a Database

A Database object 1s needed to access SQL databases,
ODBC databases, and any other tables the user 1s accessing
through a BDE (Borland Database Engine) alias. Belfore the
user can use a Database object, the developer must set up
BDE to access the database by using the BDE Administrator.
To connect a Database object to a database, the user sets the
Database object’s databaseName property to the BDE alias
for the database.

Database-level Security

Many SQL and ODBC databases require the user to log in
to the database. The developer can preset the Database
object’s loginString property with a valid user name and
password to log in to the database automatically. Because
cach Database object represents access to a database, a user
can have multiple Database objects that are logged in as
different users to the same database.

Database-level Methods

The Database object contains methods to perform data-
base-level operations such as transaction logging and roll-
back, table copying, and re-indexing. Difierent database for-
mats support each method to varying degrees. Before the user
accesses the methods of a Database object, the Database
object itself must be active. The methods of a Database object
will not function properly when 1ts active property 1s set to

“false”.
Default Database Object

To provide direct, built-in access to the BDE-standard table
types (ABASE and Paradox), each session includes a default
Database object that does not have a BDE alias. When the user
creates a Query object, 1t 1s mitially assigned to the default
Database object. Thus, i the user 1s accessing dBASE or
Paradox tables without an alias, a Database object 1s not used.
If the user 1s accessing other table types, the Database object
must be used.
Session Objects

At the top of the object hierarchy 1s the Session object.
Each session represents a separate user. Each session contains
one or more Database objects. A session always contains at
least the default Database object, which supports direct
access of dBASE and Paradox tables.

Session objects are important for dBASE and Paradox
table security. Multiple users may be active concurrently.
Each of these users may have an individual session, so that

different users can be logged in with different levels of access,

US RE44,327 E

15

or they may share a single session, so that all users have the
same level of access. For the Session object’s security fea-
tures to work, the session property of an active database
object must be set to the session object.

A default Session object always exists whenever dQuery/
Web 1s executed. In most cases, the default Session 1s the only
one required. There 1s usually no need to add a Session com-
ponent to forms or reports. DQuery/Web’s App object has a
property that points to the default session object and the
default database object. Thus, when the user creates a Query
object, the Query object 1s automatically assigned to both the
default Session object and the default Database object.

The Session object has an event called onProgress that the
developer can use to display progress mnformation on data-
base operations.

StoredProc Objects

The StoredProc object 1s used for calling a stored proce-
dure 1n SQL databases. When the developer 1s calling a stored
procedure, the StoredProc object takes the place of the Query
object 1n the class hierarchy. The Stored Proc object is
attached to a Database object that gives access to the SQL
database, and it can result in a Rowset object that contains
Field objects.

The stored procedure can:

Return values, which are read from the params array

Return a rowset, which 1s accessed through the rowset

property, 1f the server supports this capability
DataModRet Objects

The DataModRet object points to preprogrammed data
access components stored in a data module. It the developer
maintains data access code 1n a data module, then the devel-
oper can use a DataModRet object to return rowsets 1n place
of a Query or StoredProc component.

Data modules ofifer convenient reusability and easy main-
tenance of data access code. By storing custom or preset data
access components 1n a data module, the developer can main-
tain them (change links to changing databases, for example).
Following such maintenance, the developer can use only the
DataModRetf component (or custom class) to instantly imple-
ment the tull set of current data access-components.

To set a DataModRet object to point to a data module, the
developer sets its filename property to the path name of the
data module. Web Applications
Complexity Designing and bulding Web applications
appears to be a complex process. DQuery/ Web’s Web Classes
hide most of that complexity beneath dQuery/ Web’s easy-to-
use and easy-to-learn methods. DQuery/ Web’s Web Wizards
hide the complexities beneath a simple step-by-step interface.

Establishing and maintaining proper relationships among,
the Browser, the Web Server and the application (sometimes
called an applet or servlet) the developer builds with dQuery/
Web 15 a critical piece of the development process. Once the
proper relationships are 1n place, dQuery/Web’s Web appli-
cations are stable. The stability 1s due to dQuery/ Web’s use of
standard Internet protocols and tools: Browsers, Web Servers,
HTTP, TCP/IP, CGl and HTML.

Context of dQuery/Web’s Web Application

The browser and the Web server dQuery/ Web uses com-
municate with each other using http (HyperText Transier
Protocol), the protocol that powers the Browser and the Web.
The developer doesn’t need to know much about http or
TCP/IP (the networking protocol of the Internet). Most of the
developer’s work 1s on the back side of the server, acting as
the interface between the Web Server and the data being
queried or updated.

The only significant exceptions to this placement of devel-
oper effort are the HIML page that starts the user’s applica-

10

15

20

25

30

35

40

45

50

55

60

65

16

tion and the response pages that chain the user’s invention-
generated applets together. Most often, the user’s application
starts with a static HITML page. That page has a form on it,
and that form has “form components”, such as Text controls
(stmilar to dQuery/Web’s Entryfields), Selects (Combob-
oxes), Lists (Listboxes), Checkboxes, Radiobuttons, Text
Areas (Editors) and Buttons (Pushbuttons). There are no
Grid, Notebook or container controls.

These HITML controls have name and value properties, just
as dQuery/Web’s components do, e.g.: <INPUT
TYPE="TEXT” NAME="FirstName” Value="Alan”>.
Fields have names and values. Field objects have names and
values. Associative Arrays (see below) have names (keys) and
values. This almost-universal implementation of name/value
pairs allows dQuery/Web’s Web Classes to make the process
ol retrieving, processing and storing data invisible to the user,
thereby simplitying the development of Web applications.

When a developer designs an HTML startup or data-entry
form, the developer must apply the same standards needed for
dQuery/Web’s Windows application: name the controls
approprately, size them correctly for the data to be entered,
default them to obvious values and position them for ease of
use and clarity of data entry.

On the “Back Side” of the Web Server

The mvention 1s a sophisticated application and database
development tool, and most Web applications are database
applications. In the case of dQuery/ Web, once dQuery/ Web’s
applet 1s launched and the user’s data 1s passed along by the
Web Server, there are si1x things the developer must do:

1) Retrieve The Incoming Data—When the Web Server
launches the developer’s server-side application, 1t runs it as
a child process, passing along a copy of 1ts environment plus
the data 1t picked up from the user’s HI'ML form. It sends its
data either through the environment, a command-line param-
eter or as a data stream. DQuery/Web’s applications can read
or write a stream of bytes to and from another application. A
byte stream 1s just like a text file except that the text tlows in
real time and doesn’t get saved to disk. The developer can
send data through a pipe from parent to child and child to
parent without the overhead of creating, finding, reading and
writing disk files. DQuery/Web’s Web Classes (see below)
determine how the data was sent, how 1t’s supposed to be
received and then go out and get 1t.

2)Format The Incoming Data—The data that gets read 1nto
the user’s application 1s received 1n a garbled form of Name-
Nalue pairs. Like an .1n1 file, dQuery/Web’s “Set” commands,
or DOS environment commands (PATH=), these pairs must
be parsed by the user’s application and converted to mmven-
tion-readable data.

For example, the incoming data stream may look some-
thing like this:
FIRSTNAME=Alan&LASTNAME=Katz& ADDRESS=

102+Main+St%21

In the line above, the ampersand 1s the delimiter between
pairs, the plus signs are keyboard “spaces”, the % indicates
punctuation or special characters in Hex format. The left side
of the equal s1gn 1s the name of the control on the HTML page,
the right side 1s the data the user typed into the control.
DQuery/Web’s simple Web Class method called oemFormat(
) converts the above incoming data stream nto dQuery/Web’s
form of data and stores it to an Associative Array:
oCGI[“FIRSTNAME”|="Alan”
oCGI[“LASTNAME”|="Katz”
oCGI[“*ADDRESS”]=*102 Main St.”

Note: DQuery/Web’s Web Classes are made up primarily
of the array 1n which the imncoming data 1s stored. Derived
from dQuery/Web’s built-in AssocArray class (see below),

US RE44,327 E

17

the Web Classes allow the developer to store the data and the
methods that act on that data 1n the same object.

3) Validate and Manipulate the Data—The data retrieved
from the Browser, stored as shown above 1n the developer’s
AssocArray as text, must be validated. In the simplest cases,
this might mean looking for missing data and returning an
error page to the user. In more 1nvolved cases, 1t might mean
performing more elaborate validation, such as checking a
user’s ID and password, or a customer’s CustNo, or perform-
ing calculations or other data manipulation.

DQuery/Web’s Web Classes let the developer pass an array
instead of a string to the sorryPage() method (dQuery/ Web’s
HTML equivalent of MsgBox() or Alert() in other languages,
returning an error page to the user). The developer can batch
all the errors instead of requiring the applet user to submit a
page for one error at a time. This 1s form-level validation
instead of field-level validation. Although a developer can do
rudimentary validation using client-side JavaScript, all the
context-related validation happens on the server after the
form has been submitted.

4) Store Or Retrieve The Data—The methods of dQuery/
Web’s Web Classes let the developer store the incoming data
to a table or send table data back to the applet user with little
more code than that which instantiates a Query object, reads
data, and writes data. This simplicity 1s made possible by
naming the form controls on the HIML page with names
identical to the table fields they’re going to or coming from,
including matching case. The AssocArray class 1s case-sen-
sitive. The Windows GUI 1s not used.

5) Build (And Send) a Response Page—For each applet the
developer writes using dQuery/Web, an HI'ML response
page must be developed and streamed back to the applet user.
This response page gets sent back to the user to either allow
torward motion through the application or acknowledge input
data.

Typical Response pages include:

Thank You page

Confirmation of Order

Acknowledgement of Data Received

Another data-entry page (multi-page applications)

A second copy of the page that launched the applet.

A menu page to continue surfing the site

The “Checkout™ page for an Online Store
To get data back to the Web Server, the developer uses the
Puts() method of dQuery/Web’s built-in File Class.

6) Clean Up and Quit—Even though dQuery/Web’s Quait
command should close down everything and restore the
user’s resources, the developer should clean up the created
classes and queries. A Web applet may be run thousands of
times a day. A loss 1n each execution of a small amount of
system resource can accumulate 1nto a drastic impact on the
user’s Web server.

The Web Classes

DQuery/Web’s Web classes are a collection of classes writ-
ten 1in the mvention’s supporting language (dBL) and based
on the AssocArray class. The Web classes perform the fol-
lowing functions:

Connect to the Web Server

Retrieve data from the Web Server

Format the data received and store 1t 1n the AssocArray

Read data from tables into the AssocArray

Save data from the AssocArray back to tables or Data-

Modules

Stream the response page back to the Web Server

Pass through data for “chained applications™

Report back user and data errors (Sorry!) to the Web Server

10

15

20

25

30

35

40

45

50

55

60

65

18

Report back system errors (An Error Ocurred . . .) to the
Web Server

Clear UserlD and Password access.

Send Mail Through Windows N'T

By employing and subclassing dQuery/Web’s Web
Classes, the developer can build hand-coded Web sites,
including e-Commerce sites, in very little time by comparison
with conventional methods. The errorpage() and sorryPage(
) methods provide browser-based debugging aids for this
development process.

DQuery/Web’s Web Wizards include three main source
files: WebClass.cc, for the main class; WebPWClass.cc, for a
password-enabled subclass; and WeblISMailClass.cc, for a
class to send mail through Windows NT. The Web Wizards
also include a utility, HIMLtoPRG, that converts HTML
code generated by the popular HTML authoring tools to
dQuery/Web’s source code. DQuery/Web’s Web Wizards
employ the Web classes to generate data-entry, query and
publishing applications without writing code. They generate
HTML, invention source code, and invention executables.
How Do The Web Classes Work?

Associative Arrays

Very few languages have array classes. Normally, an array
1s a primitive—a basic data type, not a class. The disadvan-
tage of a primitive 1s that the developer can’t define the
properties and behaviors of a primitive imternally. The devel-
oper must act on 1t from outside. Conversely, any array class
created 1n dQuery/Web may contain all the data and methods

needed to implement the applet’s purpose.

Instead of accessing AssocArray class elements with a
numeric index (as 1s done 1n a normal Array class), the devel-
oper accesses 1ts elements using a text string. This approach 1s
well-known to developers familiar with script languages such
as awk. The similarity of usage 1n CGI, dQuery/Web’s tables,
and dQuery/Web’s AssocArray class simplifies dQuery/
Web’s workings. Here are comparable accesses 1n all three
forms:

CGI: FirstName = “Alan”
Table: fields[*“FirstName™] = “Alan”
AssocArray: this[“FirstName™] = “Alan”

The congruence of name/value pairs, coupled with the
ability ol an AssocArray to embed 1ts data and manage 1tsellf,
urged creation of dQuery/Web’s Web Classes. The fact that
all three elements (CGI, tables and AssocArrays) are essen-
tially different implementations of the same basic data struc-
ture enabled dQuery/Web’s design of Web Classes wrapped
up 1n a subclass of AssocArray. That custom AssocArray
subclass 1s named CGISession. It 1s central to dQuery/Web’s
Web Classes.

If the developer names the HIML controls exactly the
same as the fieldnames of the corresponding table (including
case sensitivity) dQuery/Web’s CGISession AssocArray
imports the user’s data from the Web Server, imports the
user’s data from a database table, exports the user’s data to a
database table, and export’s the user’s data to a CGI response
page. In effect, the CGISession acts as a direct intermediary
between the Web and the user’s tables with little developer
effort, and without user involvement.

CGISession also manages the connection to the Web
Server, handles both mput and output data streams, clears
passwords, sends mail, streams HTML and passes data
through from page to page.

US RE44,327 E

19

The tasks remaining for the developer: Validate the incom-
ing data, and specily the HI'ML to be sent back in response.
DQuery/Web’s Web Classes handle all other tasks.

The Methods of the Web Classes

Here 1s a categorized list of dQuery/Web’s methods for the
Web classes.

Input Methods:

Connect() WebClass.cc Connects to Web Server
and gets data

Load ArrayFrom CGI() WebClass.cc Internal - Loads CGI
data, converts to Name/Value pairs

OEMFormat() WebClass.cc Internal - Converts ANSI
to OEM

Data Methods:

LoadArrayFrom Fields() WebClass.cc Loads table data into array

LoadFieldsFromArray) WebClass.cc Loads array data into table

TOW

LoadDataModuleFrom Array() WebClass.cc Loads array data into

dataModule

Output methods:

StreamHeader() WebClass.cc Streams out CGI Header
code

StreamBody() WebClass.cc Streams out HI'ML body
code

StreamFooter() WebClass.cc Streams out HITML
closing

PassDataThrough() WebClass.cc Embeds all data in new
page as Hiddens

Error Recovery:

SorryPage() WebClass.cc Streams out user error
response page

ErrorPage() WebClass.cc Streams out system error

response page
Password Clearing:

CheckPassword() WebPW Class.cc Checks UserID and
Password

eMail for Microsoft IIS:

PostForPickup() WeblISMailClass.cc Sends mail via
Windows NT

Subclassing

The single most powertul feature of dQuery/Web 1s 1ts use
of fully object-oriented language advantages. Classes deliver
critical productivity and quality improvements. The most pro-
ductive feature of classes 1s inheritance. Inheritance gives the
developer all the tested and debugged functionality of the
base class, plus the improvements and customizations the

user icorporates 1n the user’s own subclasses. DQuery/ Web
provides extensive, usetul, and clean functionality 1n the core
Web classes. The developer extends their usefulness through
subclassing.

The developer does not modify the classes provided in
dQuery/Web. One of the other advantages of inheritance 1s the
ability to inherit fixes and improvements from the base class.
If the developer fixes, modifies or deletes code from a base
class, the changes will have to be made again 1n each new
version of dQuery/Web developed.

Developers may customize the response page. For that
reason, dQuery/Web’s default streamBody() method has
been designed without special features. To customize
response pages, the developer declares a subclass of CGISes-
sion 1n a source file. This action overrnides the default stream-
Body() method with the developer’s version.

Customization may be performed more than one level
down from the base class, with inherited characteristics pass-
ing through from the base class when no overrides are speci-

fied.

5

10

15

20

25

30

35

40

45

50

55

60

65

20

Class CGISession: DQuery/Web’s base Web Class. It1sthe
superclass from which all the other Web classes are inherited.

Class signupCGISession: A custom class built specifically
to be used to derive every applet in an example conference
signup application. It includes general customizations that
apply to all applets, such as errorpage() and sorryPage(). This
first-level subclass of CGI Session gives a unmiform “look and
teel” to all the applets using 1t. It 1s a template or schema, and
an inherited and inheritable class.

Base Class sorryPage()/ Subclass signUpCGISession sor-
rypage() / Class Signup: This 1s the lowest-level class 1n a
Conterence Signup sample. Inherited from sign-UpCGISes-
s10m, 1t’s used strictly to customize the response page for each
individual applet. This one never gets sub-classed, so the
developer may declare a new subclass with the same name at
the bottom of each and every applet source file.

The “Signup” class returns the CGI response page for the
particular applet, by overriding the streamBody() method
inherited from signUpCGISession. The developer declares a
method (function) with the same name as the original, and the
new method replaces the inherited version without further
action. Using this three-level hierarchy allows the developer
to deliver consistent applications with limited use of hand-
coding.

DQuery/Web provides a utility, HTMLtoPRG, to poke
generated HTML code into the dQuery/ Web application. If
the user subclasses some generation of CGISession some-
where 1n the applet source, HITMLtoPRG will produce the
exact syntax required
The WebPWClass

The WebPW(Class 1s a subclass of CGIPWSession in Web-
Class.cc that adds password validation to the core class func-
tionality. This 1s particularly useful for private Internet/Intra-
net sites, membership sites or business-to-business
e-Commerce sites.

Web Classes and Reports

DQuery/Web provides a set of classes not used in conven-
tional development packages: the Report Classes. DQuery/
Web’s reports can be run directly from a browser, and dis-
played immediately on the Web, without the generation of
any hand code. This capability dertves from a novel option 1n
the Output property of the Report Class that signals a CGI
response. The developer sets the response property to run the
report directly on the Web. The report may be tested 1n Win-
dows by setting the FileName property to a desired file name.
Thereport will be streamed out to a file of that name 1n HTML
format. In dQuery/Web’s design environment, there 1s no
StdIn pipe set up during execution, so that dQuery/ Web sends
the report output to a file instead. The developer compiles and
builds the report to an executable file, and the report 1s then
ready to be called from the browser.

When the report renders, 1t connects via StdOut to the Web
server, streams out 1ts own CGI header, outputs its text objects
as HITML and quits when done.

Sending Mail

The best mail solutions are designed to run outside of
dQuery/Web’s applets. That way, the applets maintain
dQuery/Web’s performance and resulting scalability advan-
tages. The eMail operation then works at 1ts own pace,
uncoupled from the browser, the Web server and dQuery/
Web’s applet. Two designs work well: a text file interface and
a database 1nterface.

Mail Text File Interface

The user drops a properly formatted text file 1n the appro-
priate folder and the Microsoit Internet Information Server
sends the text file as mail.

US RE44,327 E

21

There are two drawbacks to this method of posting mail.
First, the user must be using Windows N'T Server and running
Microsoft Internet Information Server as the Web server.
Second, there 1s no feedback (except, of course for the NT
logs) to confirm or report an error in the mail send. The user
doesn’t know 1f the mail has or has not been sent without
checking the logs.

Mail Database Interface

The Message Server included 1n dQuery/Web 1s a full-time
application that runs either on a Web server, or preferably, on
another dedicated computer. It runs as a background task even
on a Windows 98 computer as long as 1t has access to dQuery/
Web’s tables over the network.

This 1s a polling application that continually re-queries a
specified table to see 1f any new information rows have been
added. It then uses the mformation 1n each new row to com-
pose and send an electronic mail message to one or more
addresses specified either 1n the same table or 1n another table
in the same or another database.

This solution generates 1ts own HTML logs that can be
accessed remotely, it 1s highly scalable, and it updates the
mail table to confirm when mail i1s sent. It doesn’t require
Windows N'T or IIS.

The Message Server

The MessageServer 1s a polling application that runs on
any computer on a network that has access both to an eMail
server and to the tables the user wishes to poll. This applica-
tion scales up by adding another machine running the Mes-
sageServer, which doubles the access to data coming 1n over
the Web or from dQuery/Web’s Windows applications.

The Message Server 1s usable for any of the following
purposes (among others):

1) eMail confirmation for online orders.

2) Sharing remote data (send 1t as text in eMail, parse the
incoming eMail back to data).

3) Sending new leads out to a field sales force.

4) Sending orders (or purchase orders) to remote branches.

5) Distributing eMail out to a database-based eMail list.

Message Server Advantages

The advantage to dQuery/Web’s Message Server 1s that it
uses a database to accomplish its tasks. That means it can
update rows directly as mail 1s sent, optionally marking rows
that have been sent with the date and time. Furthermore, 1t 1s,
in many ways, lailsafe. If something goes wrong with the
Internet connection, the network or the database engine, the

next time the MessageServer starts up, 1t begins where 1t left
off.
What Are the Web Wizards?

DQuery/Web’s three Web Wizards, packaged as a single
multi-option Wizard-style program (WebWizard.prg), help
the developer write Web applications. The Wizards walk the
user, step-by-step, through the process of selecting the data,
folders and design elements needed to create highly interac-
tive Web applications. When the user clicks “finish”, the
Wizards generate the source code, HIML pages and com-
piled .EXE files required to complete the project. The only
items required from the user are the tables, reports, images or
data modules that are to be included 1n the final application.
What the Wizards Do

There are three Web Wizards: Data Entry, Query and
Response, and Publish.

The Data-Entry Web Wizard

The Data-Entry Web Wizard helps the user create an appli-
cation 1n which a remote user can enter data into database
tables using a Browser. Some possible uses of the Data Entry
Wizard:

Salespersons reporting from the field.

Order Gathering,

Name and Address Gathering

Help Desk

10

15

20

25

30

35

40

45

50

55

60

65

22

Online Store

Bug Reporting,
The Query and Response Web Wizard

The Query and Response Web Wizard helps the user create
an application wherein the user enters or selects criteria from
a Web Page and recerves a report in response. The Web Wiz-
ards support a drill-down query—the user may refine his or
her query by selecting an 1tem on the first report, which “drills
down” into detail 1n a second report. A user may, for example,

start with a report of categories, each displayed as a link
embedded by the Web Wizards. The user clicks on the cat-

egory, and the link 1n turn calls a new report that lists the
inventory items in that category. Some possible uses of the
Query and Response Wizard:

Customer Account Queries

Inventory Lookups

Product Line Lookups

Remote Sales Queries

Shipping Status Queries
The Publish Web Wizard

The Publish Web Wizard helps the user post static and live
reports on a Web site or Intranet. Static reports are run and
saved each time the user runs the Wizard. An HITML page 1s
generated on the user’s Web site that doesn’t change until the
Wizard 1s run again. Live reports, on the other hand, are run on
the Web Server each time the user accesses the report. Each
time a live report 1s run, 1t returns live, up-to-the-minute data
to the Browser for display. Typical Publish Web Wizard
reports might be:

Price Lists

Product Lists

Customer Lists

Schedules of Events

To-Do Lists
DataModules and Queries
Paths
The Data-Entry Web Wizards are based, 1n large part, on
DataModule and Query objects. If a table 1s used as a data-
source, the Data-Entry Wizard creates 1ts own Query object
for opening and updating the table. DQuery/Web’s Query-
and-Response and Publish Wizards use reports (.rep files),
which also contain either Query or DataModule objects.

The Web Wizards compile and build Query and Data-
Module objects 1nto a generated application. Since the fin-
ished application may not be running from the same drive,
folder, or even computer on which they were developed, the
user must set the paths used 1n the SQL statements of the
Query objects. The Web application generated by the Web
Wizards must be able to find all data sources from the Web
Server’s CGl folder.

For example, assume a Web applet 1s developed on a work-
station, and the data 1s on the same server from which the
application will run. At the developer’s workstation, the
appropriate SQL statement may be something like:

Select * from “F:\Mydata\Mytable.dbi”™
However, drive “F” on the workstation may actually be drive

“C” on the Server, in which case the SQL statement needs
to be:
Select * from “C:\Mydata\Mytable.dbf™
There are three ways 1n which the correct paths can be speci-
f1ed:

The developer sets up a temporary folder on the develop-
ment machine with the same tables to be using on the
Server and the same path. In the above example, the
developer sets up a C:\Mydata\Mytable folder on the
workstation.

US RE44,327 E

23

The developer hand recodes the .Rep or .DMD files after
the wizard 1s done and then recompiles and regenerates
the application.

The developer uses only DataModules for all reports and
Wizards and includes a Database object 1n each that
points to an Alias 1n the Borland Database Engine. This

approach eliminates path concerns both in development
and at runtime.
Deploying Web Applications
DQuery/Web’s runtime code does not require any system

[1

setup on the part of ISPs or administrators, except for the BDE
(Borland database engine), which 1s well known to and
accepted by ISP administrators. DQuery/ Web’s runtime can
be 1nstalled without any Windows registry entries. DQuery/
Web goes through a search path in looking for its parts as
follows:

1) Look in the current folder

2) Look 1n the executable’s home folder
3) Look 1n the Windows System (WinNT System32) folder
and only 11 all three of those fail,

4) Look in the Windows registry.

Only the following files are required to run dQuery/Web’s

Web applications on any given server or client computer:
dB2K7run.exe

dB2K7000n.d11 (where “n” 1s the local language code

used by dQuery/Web)
The user can copy these files right into a runtime (CGI) folder
and never 1nstall dQuery/Web itsell (apart from the runtime)
on the server.
Performance Enhancement

DQuery/Web 1ncorporates a program called
dB2KFast.exe, which pre-loads dQuery/Web’s programs to
save loading latency when an applet runs.

Operation of dQuery/Web

DQuery/Web’s processing 1s driven by the user’s interac-
tions with the screen interface. The following sections
describe the principal categories of action for a user creating
a data module and its contents for a customers-and-invoices
database, 1including the creation of the database itself. The
examples shown illustrate the key functions and components
of dQuery/Web, and their composition into a coherent and
unique whole.

Opening, Saving and Creating a New Data Module

A data module 1s a bundle of interrelated objects that define
and 1implement a user interface to some data distributed
among one or more databases. The types of interrelated
objects 1n a data module include database objects and their
aliases, query objects, report objects, and custom views of
data.

A user may create a new data module, or edit an existing
data module, using dQuery/Web’s main screen. See FIG. 1.
Every time the user opens dQuery/Web, dQuery/Web dis-
plays a new data module for editing and use. Alternatively, the
user can obtain a new data module by double-clicking on
“Untitled” in the data module tab of the Navigator, or by
selecting File/New/Datamodule from the dQuery/Web Main
Menu.

To open an existing data module, the user selects the
dQuery/Web Main Menu, and then clicks File/New/Data-
Module or else double-clicks on the desired data module
displayed under the dataModule tab of the Navigator.

Saving a data module 1s accomplished by clicking “File/
Save” or “File/Save as” from the dQuery/Web Main Menu.
Alternatively, the user can select the “Save” toolbar button.

For each of 1ts toolbar buttons, dQuery/Web provides a
“Speedtip” that defines the operation performed by that but-

10

15

20

25

30

35

40

45

50

55

60

65

24

ton. Leaving the mouse over a toolbar button for approxi-
mately one half second causes the tip text to appear.

Creating a Database Object

DQuery/Web uses database objects to represent the user’s
database: the collection of tables that will define the informa-
tion the user wishes to get from the databases 1n the user’s
network. In SQL databases, a database 1s contained 1n a file.
In other database engines, such as dBASE, Paradox, FoxPro
and Advantage, the database 1s a folder containing related
tables of data, each of which 1s stored 1n a file. DQuery/Web
uses the database object to link the user’s data to applications,
reports and dQuery/ Web itself. Although a database object 1s
not strictly required for non-SQL tables, it 1s recommended
that the user always starts by defining a database object for the
database to be used.

For this description, EasyStart 1s used to add components
to a new data module. If EasyStart 1s not currently displayed
on the screen, the user may right-click on the Design Surface
and then click on EasyStart to make 1t appear.

Alases

The database object 1s based on an alias. An alias 1s a
specialized path statement that tells dQuery/ Web where to
find the user’s data. Foremost among 1ts advantages, dQuery/
Web’s alias approach offers portability. Each machine on the
user’s network may use a different drive letter to find shared
data. Using an alias allows the user to point to the same
location regardless of the path required to get there. A second
advantage of aliases 1s that they allow the user to move data-
base data from one place to another 1n the network without
having to rebuild the application. For mstance, moving data
from drive H to drive L, which would normally require recod-
ing or re-editing of application code, requires only a change
of the alias to point to the new drive.

Selection of an existing alias, or creation of a new one, will
cause dQuery/Web to generate a database object without user
intervention. DQuery/Web provides for choosing aliases for
many databases including dBASE, Paradox, FoxPro, ODBC,
Interbase, SQL Server, Informix, Oracle, Sybase, DB2, and
Access. This description assumes that the dBASE alias 1s to
be used.

The user begins creating a database object by clicking on
the “Database Objects” listed as shown on the EasyStart
Navigator. DQuery/Web displays a help dialog like that
shown 1n FIG. 3. These mformative help dialogs will often
appear when using various tools 1 dQuery/Web. FIG. 4
shows the list of aliases available.

I1 the database the user wishes to connect to 1s not already
on the Alias list, the user clicks on the “Create New Alias”
button. DQuery/ Web displays the “Create Alias” dialogue.
See FI1G. 5. The user then enters the name of the Alias in the
first field shown, and then clicks “Create Folder”.

Some database engines use a folder to identify the location
of the user’s data. Others, such as SQL server, Informix,
Oracle, Sybase, and Interbase access the user’s tables through
a single file or connection. DQuery/Web asks the user for the
appropriate information depending upon which database
engine the user selects. For this example of operation, the user
has selected dBASE, and consequently dBASE tables are to
be shown. Therefore the user must add a new folder 1n which
to organize table data. Here the table data are examples of
customers and 1nvoices 1n a business database.

In the Create Alias window, the user clicks on the button
with the yellow folder icon to locate the “parent” folder of the
new folder to be created. See FIG. 6. The use enters the new

folder name and clicks OK. DQuery/Web displays the “Cre-

US RE44,327 E

25

ate Ahas” dialogue again, showing the folder just created 1n
the Database Folder slot. The user then clicks OK.

DQuery/Web displays the “Select/ Add Alias™ dialog (See
FIG. 4), with the new alias now highlighted. To continue, the
user double-clicks on the alias or clicks OK. DQuery/Web
then displays the new database object on the Design Surface
of dQuery/Web.

The user has now created a first database object. The screen
should now look similar to FIG. 1, with a new database object
window showing the object name in the title bar at the top of
the window.

The user now saves this data module by clicking on the
“Save 1n” button to locate the proper database folder. Saving
a data module 1s done by clicking the File/Save menu option
or the Save toolbar button. For the first time that the user 1s
saving a data module, the user must tell dQuery/Web where to
save the new data module and what to call it. This requires use
of File/Save from the Main menu. Once the proper folder 1s
displayed, the user double clicks on the folder to open it,
enters the data module name into the file name field, and
clicks “Save”. DQuery/Web then saves the new data module.
Creating Query Objects

A query object 1s arepresentation of the user’s data. It may
represent all the rows and columns 1n a single table; a com-
bination of rows and fields from multiple tables (a join) or a
subset of rows from a table or a combination of tables. In the
present example, for the sake of simplicity, query objects are
used to represent all the columns and rows of the Customer
and Invoice tables.

A query object 1s not a table, since 1t doesn’t necessarily
reflect everything that’s stored 1n the table 1n the user’s server
or hard drive. A query object represents selected row and
column information from the user’s tables. In the present
example, no tables or data exist yet. In this case, dQuery/Web
generates query objects as a by-product of creating the user’s
Customer and Invoices tables.

For 1ts query objects, dQuery/Web uses SQL statements to
define subsets and joins. For example, when the user selects
“all” rows and columns from a table called TABLENAME,
dQuery/ Web generates the following statement: “SELECT *
FROM TABLENAME”. DQuery/Web’s SQL Query
Designer and SQL Statement dialog let the user easily and
quickly design and implement much more complex SQL
statements.

The user brings up EasyStart and clicks on “Query objects™
(option 2). The Add Query dialogue box will now appear with
the option “Create Query from new table” selected (figure not
shown). The user clicks Continue to bring up the Create Table
dialogue. See FIG. 7.

To create the table of customers, the user enters “CUS-
TOMERS” 1nto the File name field. The dialog 1s displayed
with the user’s current database selected. Whenever a data-
base 1s selected, the “Save 1n” at the top of the display 1s
1gnored and tables are stored wherever the database object 1s
set up to look for them.

The user may have any number of database objects open
simultaneously. It the user intends to use dissimilar tables
(such as Access and Oracle tables), a separate database object
1s required to represent each database of dissimilar type.

The user clicks Save to continue. Two new windows will
appear: the “Table Designer” (FIG. 8a) and the “Inspector”
(FIG. 8b).

The Inspector 1s a powertul tool called an object browser
that allows the mspection and modification of all of the prop-
erties, events, and methods of dQuery/Web’s objects.

The user selects the Table Designer to design the Custom-
ers and Invoices tables. The first field 1n the “Customers” table

10

15

20

25

30

35

40

45

50

55

60

65

26

1s a unique 1dentifier for each customer. The user selects the
“Autolncrement” field type, which automatically generates
the next number 1n sequence whenever a new record 1s added.

The user enters “CustNo” under the Name column for field 1.

The user selects the field type by tabbing to the Type column
and arrowing down to select “Autolncrement”. DQuery/ Web
sets the field width to “4”, indicating an internal representa-
tion of 10 digits within the space of four eight-bit characters.

The user then creates an index for this field in the Custom-
ers table. Indexes provide fast lookups and allow the user to
change the search and display order of a query. In this case the
user sets the index 1 ascending order. dBASE, Paradox,
FoxPro, and Advantage tables allow the user to define and
select an 1ndex. Doing so can improve performance by a
factor of ten or more, depending on the frequency and struc-
ture of database queries for the tables being indexed. SQL
database engines such as Oracle, SQL server, and Informix
also use indexes, although the user may not select them
explicitly—the SQL engine 1tself determines whether a help-
tul index exists, and then selects 1t automatically. In either
case, performance benefits result from adding an index on any
field on which the user expects to search or filter, regardless of
the type of database engine(s) used.

The user clicks on the Index column and selects “Ascend”,
to 1indicate the order (ascending) in which the data are to be
shown. The user hits Enter to create the next field, and con-
tinues on until the Table Designer includes all the fields
defined 1n FIG. 8c.

Since the SalesY'TD field represents currency, the user sets
the decimal to 2 places. The user ends up with three indexes,
one each on the CustNo, LastName, and Zip fields, and all of
them set to “Ascend”. The user then closes the Table Designer
to continue. A dialogue box appears asking the user to save

the changed mformation. After clicking Yes, the user sees a
“CUSTOMERS1” query object on dQuery/Web’s Design

Surface. See FIG. 1.

To clear a portion of the Design Surface, the user drags the
new query object toward the center of the screen. Any of the
components can be moved to any section of the screen. The
user can use the “splitter”—the line that crosses the middle of
the screen—and drag it up or down to change the size of the
Design Surface relative to the Live Data Area. This 1s conve-
nient when there are many query objects in a data module.

The user then adds another query object for the invoice
data, repeating the same process used to create the Customers
table. The user names the table “Invoices™ and uses the field
definitions 1n FIG. 9.

The Amount and BalanceDue fields are both for currency,
so the user sets the decimal places to “2” for each of them.
Both the “CustNo” and “Date” indexes must be set to ascend.
The user then clicks “X” to close the Table Designer, and Yes
when asked to save current changes to the Invoices table. The
final query object 1s now complete. The database object and
the two query objects (CUSTOMERSI1 and INVOICES]) are
now displayed 1n the Design Surface area. The user slides the
new INVOICESI1 query object over to the right of the screen.
See FI1G. 1.

Setting Active Indexes

From the indexes created, the user now designates one
which 1s to be active for each of the two query objects. The
active index determines the display order and search order for
the query. In the Design Surface, the user right-clicks on the
CUSTOMERSI1 query object and selects the “Set Index”
option from the menu. The Select Index window will appear

listing the three indexes the user made available using the
Table Designer. See FIG. 10a. The user selects “LAST-

NAME” and clicks OK.

US RE44,327 E

27

For the INVOICES1 query object, the user right-clicks on
the INVOICESI query object, selects the “Set Index” option
from the menu, sets the Index to “CUSTNO” in the same
manner as in the preceding paragraph, and clicks OK. See
FIG. 10b.

When the user’s data 1s entered or reported, it appears in the
order specified for the query object associated with the spe-
cific data.

Creating a Parent-Child Link

The user connects the two query objects by creating a
parent-child link. A parent-child link 1s a way of associating,
two query objects so that, as the user moves from row to row
in the parent query, dQuery/Web filters the child query to
show only the rows that match the current row in the parent
query. Parent-child relationships are an extremely useful way
to organize information, and dQuery/ Web’s process for cre-

ating them 1s simple. See FIG. 1. The user left-clicks on the
CustNo field of the CUSTOMERSI1 query object, holds t

he
mouse down, and drags the field to the INVOICES1 query
object. When the user releases the leit mouse button, dQuery/
Web links the two tables.

As aresult of the parent-child link the user has created, the
act of moving from one customer to another 1n the CUSTOM-
ERS1 query object triggers dQuery/Web to filter the
INVOICESI1 query to display only invoices belonging to the
currently selected customer.

Entering Data

The user enters data into databases via the newly-created
queries as follows. The bottom half of dQuery/Web’s main
screen (F1G. 1) 1s the Live Data Area. Three tabs appear here:
“Data”, “Custom View”, and “Current Report”. The user
selects the Data tab, and then selects the CUSTOMERSI1
query object by clicking anywhere on the body of the query
object. The user now sees the data in the CUSTOMERS1
database, as

Note: When the user selects a query by clicking on a query
object on the Design Surface, dQuery/Web immediately
changes the data 1n the Live Data Area below to retlect the
currently selected query object.

The user right-clicks in the data area (the open area at the
bottom of the Data tab). A menu appears (FIG. 11). The user
selects the “Add row” option from the menu. DQuery/Web
adds a blank row to the CUSTOMERSI table. The user enters
a first customer:

“Taylor”, “Paul”, “222 Sunrise Drive”, “Endwell”, “NY”,
and “13760” 1n the approprate fields, and a SalesYTD of
“10000.00” for that customer. Note that dQuery/Web has set
the CustNo field to Autolncrement 1n order to assign the next
number automatically.

The user then hits the <Enter> key and dQuery/Web dis-
plays a new blank row. The first customer’s data 1s complete.
Additional customers may now be added to the table. See
FIG. 12.

After the data are all entered, the user right-clicks i the
data area and selects Save Row Changes from the displayed
menu. Because the active index 1s set to “LastName”, the
three customers are displayed in order of their last names. The
user could also have set the index to “CustNo™ or “Zip”, 1n
which case the customer records would display 1n order of
customer number or ZIP code respectively.

To add 1nvoices for a customer, the user selects a specific
customer, say, “Taylor”, for which CustNo=1, by selecting
any of the fields 1 the “Taylor” row of CUSTOMERSI. To
add invoices for Taylor, the user selects the INVOICES1
query object by right-clicking on the INVOICES 1 query
object on the Design Surface. DQuery/Web indicates the

current query by: 1) changing the selected query’s display to

10

15

20

25

30

35

40

45

50

55

60

65

28

a “highlight” color, and 2) changing the name at the top of the
Data tab on the Live Data Area.

The user right-clicks 1n the Live Data Area. DQuery/ Web

displays the context-sensitive Data menu. The user selects the
Add Row option from the menu. Because CustNo 1 (Taylor)
1s the currently selected row 1 the CUSTOMERSI] table,
dQuery/Web already shows the first invoice CustNo as “1”.
Because of the parent-child link, dQuery/Web assigns to the
current customer any mvoices the user adds.

The user creates the first 1nvoice, entering “12/25/00” as
the Date, “300.00” as the Amount, and “300.00” as the Bal-

anceDue. The user adds one more invoice for Taylor. See FIG.

13.

Now the user hits the <Enter> key to start a third row, this

time entering “2” as the CustNo value to enter an invoice for
a different customer (in this case, Jones). The user enters
“12/26/00 as the date, “300.00" as the amount, and “300.00”
as the balance due, right-clicks 1n the Live Data Area, and
selects the Save Row Changes from the menu to save the
newly-entered 1invoice.

In this case, the invoice with CustNo “2” disappears from
the Live Data Area display. Because of the user’s parent-child
link, only 1mnvoices for the customer currently selected in the
CUSTOMERSI table are displayed. The currently-selected
customer 1s CustNo 1 (Taylor). The invoices for CustNo 2
(Jones) will be displayed when CustNo 2 (Jones) 1s the cur-
rently selected customer 1n the CUSTOMERSI table.

To view Jones’ 1invoices, the user selects the CUSTOM-

ERS1 Query object and changes the currently selected cus-

tomer to Jones (CustNo 2) by clicking on that row. When the
INVOICES1 Query object 1s selected again, dQuery/Web

displays Jones’ invoice in the live-data area.
Filtering Data

A filter changes the appearance and content of displayed
data. For example, a user can set conditions for a date range
(last week, this week, etc.), or for amount ranges on numeric
fields like SalesYTD. DQuery/Web will display only the data
that meets the conditions. This provides immediate flexibility

in selecting and viewing database data.
To add a filter 1n dQuery/Web for the data entered 1n the

example, the user selects the CUSTOMERSI1 query object so
that the customer data 1s showing 1n the live-data area. The
user then clicks on the Main Menu’s Filter option and selects
“dBASE Filter—Non-Indexed” to bring up the dBASE Filter
dialogue (FIG. 14).

Note that the Option “Include All Rows” 1s set in FI1G. 14.
This reflects no filtering. The user who 1s building a list of
filter conditions selects the option “Build List of Conditions”.
See FIG. 15. DQuery/Web makes the “Field”, “Operator”,
and “Value™ options available, displaying them in highlighted
form. The user intends to select all records with CustNo equal
to 1 or 2. The user first sets a condition to select records where
CustNo equals 1. The Field CustNo 1s already displayed (it’s
the first field on the list). The user sets the Operator to “="
enter “1” for the Value, and clicks on the “+”” (Plus) button to
add the condition to the list.

The user’s second condition 1s to select records where
CustNo equals 2. Again, the Field (CustNo) 1s correct as 1s.
The user sets the Operator to “=", enters “2” for the Value,

then clicks the “+”° button. The user wants to see all records
where the value of CustNo 1s either “1” OR “2”. The user

changes the “Must Match” field to “Any of the Conditions™.

The user then clicks the “Build Code™ button to see in the
bottom pane the code for the prepared list of conditions. The
user may wish to create or modity condition code for a filter.

US RE44,327 E

29

In this case, the user selects the “Edit Code Manually”™ option.
DQuery/Web then makes accessible the code area of the
screen.

The user clicks OK, and dQuery/Web displays only cus-
tomers Jones (CustNo=2) and Taylor (CustNo=1) in the data
area, 1n accordance with the filter conditions. To make all

customers appear in the data area, the user may go to the Filter
menu and select the Clear All Filters option. All the customers

now appear in the data area.

DQuery/Web provides a Filter By Gnid feature. When the
user selects Begin Filter By Grid, a row clears on the data tab
of the Live Data Area. The user types data into any fields to be
matched, and clicks on Apply Filter By Gnd to execute the
search. DQuery/Web shows the Live Data Area as a grid that
now displays only rows that exactly match the data the user
entered. Filter By Grid only works for exact matches, not
partial matches or ranges.

Custom Views

Custom Views allow a user to select and display specific
fields from Query objects for custom views of database data.
The user may select the fields required, and then use the
custom view to generate No-Click ReportsK, illustrated
below. A user may have any number of these custom views
(represented by reports), all associated with a single data
module.

See FIG. 1. To create a custom view 1n the example, the
user selects the CUSTOMERS1 Query object, and selects the
“Custom View’ tab on the Live Data Area. It should be empty.
Theuser drags and drops the LastName field down to the Live
Data Area. DQuery/Web now displays all the user’s custom-
ers’ last names 1n a single column 1n the Live Data Area. The
user continues by dragging and dropping the FirstName and
CustNo fields from CUSTOMERSI onto the Live Data Area.
The display 1in the Live Data Area now resembles the database
table display for the CUSTOMERSI table. The user now
selects the INVOICES1 Query object, and drags and drops
the Date, Amount, and BalanceDue fields onto the data area.
The user’s resulting screen now looks like FIG. 16. DQuery/
Web saves the custom view the user has created with the

associated data module. The custom view contains data from
two related tables: CUSTOMERS and INVOICES.

No-Click Reports

To see an immediate report based solely on a Custom View,
the user clicks on the Current Report tab. See FIG. 17.
DQuery/Web generates a No-Click Report from the data the
user dragged and dropped into the Custom View. This data
reflects all the invoices entered for all the customers. The user
entered one mnvoice for Jones, two mvoices for Taylor, and no
invoices for Smith. If the data had been filtered, the report
would have retlected the conditions imposed by the filters.

The user may change how dQuery/ Web navigates the data
in the report. The report, as specified, currently navigates by
customers. To navigate by invoices, the user selects the Cus-

tom View tab, and changes the Navigation Query field (lo-
cated at the top of the live-data area) from CUSTOMERSI to

INVOICESI1. The user then selects the Current Report tab
once more and dQuery/Web displays only the invoices for
Taylor, the currently selected customer.

The user saves the Custom View customers report by
selecting the Custom View tab, setting the Navigation Query
back to CUSTOMERSI, clicking on the Current Report tab,
going to the File menu, and selecting the “Save Current
Report As” option. DQuery/Web then prompts the user to
save the data module. The user selects Yes, enters a title such
as “CustomerSales™ as the report name, and saves 1t 1n the

desired file folder.

10

15

20

25

30

35

40

45

50

55

60

65

30

DQuery/Web can associate multiple reports with a single
data module. At the top of the Live Data Area, the drop down
field-l1st of Current Reports (located at the top of the live-data
area) shows the reports available. In the example, the user
sees two reports: one called No-Click Report and one called
CUSTOMERSALES.REP. Since the user hasn’t modified the

original No-Click Report, they are identical. The user may
change the CUSTOMERSALES report to associate multiple
reports with a single data module.

The user first selects “No-Click Report” to make the CUS-
TOMERSALES .REP report available for change. The user

then opens the Reports menu at the top of the screen and

selects the Edit Reports option. DQuery/ Web displays a dia-
log such as that in FIG. 18.

The Edit Report dialog allows the user to edit any reports
associated with the current data module. If the user wants to
edit other reports the Other Report option near the bottom of
the window allows the user to select any of dQuery/Web’s
reports on the network. The user highlights the report to be
edited, and clicks OK. DQuery/Web displays windows for 1ts
Report Designer, its Component Palette, 1ts Inspector, along
with the formatting toolbar at the top. For the screen’s appear-
ance, see FI1G. 19,

The Component Palette provides a full range of objects that
may be required to create a report.

I1 the Inspector 1s not on the screen, the user right-clicks on
the Report Designer and selects “Inspector’” from the menu.

DQuery/Web’s Report Designer allows the user to modify
all aspects of the reports. For this example, the user makes a
simple change to the report title by selecting and high-light-
ing the report title, clicking on the Inspector and selecting the
Properties tab. To see all available properties, the user right-
clicks on any blank grey area of the Inspector and clicks on
“Expand All Categories” on the context-sensitive popup
menu. The user then scrolls down to the “text” property
underneath Miscellaneous and changes the value entered to
“Customer Sales Report”. DQuery/Web changes the title 1n
the report design surface as the user types the change. The
user then closes the report and clicks Yes when prompted to
save 1t.

When the user drops down the list of reports on the Current
Report tab and selects CUSTOMERSALES, the title 1in the
displayed report changes. The report modification 1s com-
plete. DQuery/Web quickly and easily creates, modifies, and
displays a variety of reports associated with a single data
module.

One-Click Windows Applications

In the example discussed, the user has created a database
object, database tables, query objects, custom views, and
custom reports. These are the building blocks of any database
program. DQuery/Web provides the tools to automatically
generate both Windows and Web applications based on the
user’s data module design. The user can quickly create a
Windows application with a single click of the mouse. In the
first step, the user opens the Applications menu, selects the
One-Click Windows option, and selects Yes when asked to
save the data module. DQuery/Web displays a window as
shown 1n FIG. 20.

Two tabs are accessible: “General” and “Field Attributes™.
The first time this window 1s opened the user must establish
folders for both program files and object files on the “Gen-
eral” tab. The user uses the two folder pushbuttons to change
cach field to desired full-path folder names. DQuery/Web
retains the settings the user has made so that 1n later uses the
user only needs to click the OK button to generate the Win-
dows application.

US RE44,327 E

31

All the fields for the example’s two tables are pre-selected.
By selecting the Field Attributes tab the user can modify how
the field labels appear on data entry screens, and whether or
not a given field 1s required during data entry. For this
example, the user makes no changes.

The user msures that the folder settings point to the Guid-

edTour folder, and clicks OK. DQuery/Web displays a win-
dow as shown 1n FIG. 21, sigmifying the creation of a fully
tfunctional Windows application. The user has done no cod-
ing.

The user clicks on the Run Application button to execute
the newly-created application. See FIG. 22. The application
provides users with a working form for retrieving and report-
ing combined data from two separate database tables. The
application runs as a stand-alone program.

The data-entry screen for the Customers table 1s displayed
in FI1G. 22. Clicking on the INVOICESI1 tab signals dQuery/

Web to display the data entry screen for the Invoices table.
Selecting Taylor in the Customers table and selecting the
INVOICESI1 tab shows the user the live data—the invoices—
for Taylor.

The user can edit existing data and enter new data using the
Edit menu. The user can locate data by opening the Rowset
menu and selecting the Begin Locate by Form option. This
option allows the user to locate data by entering data 1n any
field. Sitmilarly, by opening the Filter menu and selecting the
Begin Filter by Form option, the user can set a variety of filters
simply by entering data into the form.

The user can perform a fast index speed search by selecting
the customer table 1n the view tab, switching to the Data tab,
setting the Index Order to LASTNAME, and typing “t”” 1n the
Speed Search field. The first customer that begins with “t”
(Taylor) 1s now highlighted.

All the reports associated with the user’s data module are
available in the Current Report tab. To close the example, the
user closes the application, and selects Fimished from the
menu. DQuery/ Web displays 1ts main screen, with the created
data module. One-Click Web Applications

This example assumes that the user has installed Apache
Web Server, and 1s running it. The user selects the One-Click
Web option. If dQuery/ Web prompts to save the data module,
the user selects Yes. DQuery/Web presents the dialog box
shown 1n FIG. 23.

The One-Click Web dialogue box 1s very similar to the one
defined for One-Click Windows. The folder options are set for
a Web application and have preset defaults for the Apache
Web Server used for the example. In addition to the “Gen-
eral”, and “Field Attributes™ tabs, dQuery/Web also displays
a tab called “Layout”, which allows for manipulation of the
color scheme for the user’s Web application. For the purposes
of this example it 1s 1gnored.

The user accepts all default settings and clicks OK.
DQuery/Web displays a dialog box stating that the applica-
tion 1s complete. The user clicks OK, minimizes dQuery/
Web’s window, opens a Web browser, enters the address for
the created Web page, and presses <Enter>. The browser
displays the page shown 1n FIG. 24.

The user now adds a new customer to the database records
from anywhere on the Web. First, the user clicks on the
CUSTOMERSI1 link under Data Entry, displaying a Web
page as 1n FIG. 25, and enters the following customer infor-
mation into the appropnate fields to create a new record:

LASTNAME: “Vance” FIRSTNAME: “Richard”
ADDRESS: “2131 Palmetto Avenue” CITY: “Palm Beach”
STATE: “FL.”” ZIP: “43555”

SALESYTD: “75000.00

10

15

20

25

30

35

40

45

50

55

60

65

32

The user then clicks the “Submit” button. The browser
returns a confirmation screen telling the user that the data was
entered successtully (not shown). By clicking the browser’s

Back button twice, the user returns to the application’s Main
Menu Web page. The user may then click on the CUSTOM -

ERSALES.REP link under Reports, and dQuery/Web shows
Mr. Vance’s record 1n the report as shown 1n FIG. 26. A user

targeting this application at a Web Server allows the entry of
data, in seconds, from anywhere in the world. This means that
there are three ways to enter data in databases using dQuery/
Web: live through dQuery/Web’s Live Data Area, live
through dQuery/Web’s Windows Application, and live
through dQuery/Web’s Web application.

T

CONCLUSION, RAMIFICATIONS, AND SCOP.
OF INVENTION

The dQuery/Web example illustrates the use and operation
of the invention 1n a specific application. Because most inno-
vations 1n related soitware areas are limited 1n their scope to
a subset of these technologies, no product or invention per-
forms all of the mnvention’s functions. Because the invention
performs its functions with no need for extensive sets of files
or registrations among multiple systems, 1t 1s far stmpler both
in structure and in usage than similar soltware using
approaches such as CORBA (common object request broker
architecture) or COM/DCOM (component object model/dis-
tributed component object model). This simplicity constitutes
a significant advantage for the invention.

As a result of i1ts power, ease of use, absence of system
registration and setup operations, and freedom from client-
server restrictions on application placement and operation,
the invention offers 1ts users a sharply-reduced total cost of
ownership (TCO) 1n comparison to conventional products.
From the above descriptions, figures and narratives, the
invention’s advantages in providing computer users with
interfaces to networked computers, applications, and data-
bases should be clear.

Although the description, operation and illustrative mate-
rial above contain many specificities, these specificities
should not be construed as limiting the scope of the invention
but as merely providing illustrations and examples of some of
the preferred embodiments of this invention.

Thus the scope of the invention should be determined by
the appended claims and their legal equivalents, rather than
by the examples given above.

What 1s claimed:

1. A system [for accessing and operating distributed
dynamic external objects across a computer network, 1n
response to an application program on at least one client
computer] comprising:

[one or more server computers, each one further compris-
ing one or more interconnected processors, one or more
main memory subsystems, one or more mass storage
subsystems, and one or more connections to wide area
networks or local area networks;]

at least one client computer comprising one or more inter-
connected processors, one or more main memory sub-
systems, one or more mass storage subsystems, and one
or more connections to [the] server computers via wide
area networks or local area networks;

an application software program [operating on] of the at
least one client computer [for presenting] configured to
present a first form or menu [to a user of the] via the at
least one client computer and [including locations of
dynamic external objects used by the application pro-
gram and for creating] create an instance of one or more

US RE44,327 E

33

[of the] dynamic [distributed] external objects on the at
least one client computer, wherein the application soft-
ware program includes locations of the dynamic exter-
nal objects;

[the] a set of dynamic external object classes associated
with the dynamic external objects including methods
and attributes, stored on one or more of the server com-
puters or on one or more of the at least one client [com-
puters] computer, said dynamic external object classes
comprising object code; and

an interpreting software program [for converting] config-
ured to convert the [located] dynamic external objects
into machine code on the [user’s machine] at least one
client computer and [for resolving the] 7o resolve class
inheritances, polymorphic behaviors, and encapsulation
behaviors of [the] objects, classes, methods, and
attributes of the dynamic external objects, across the at
least one client computer and the server computers in a
network, at [the] a time of [the user’s] request for execu-
tion of [the] programs based on the dvnamic external
objects.

2. The system of claim 1, further comprising one or more
[user] interface programs [operating on] of the at least one
client computer [for interpreting] configured to interpret
mouse and keyboard actions of the [user] at least one client
computer to select [the] computers [on] of the network [hold-
ing] storing the dyrnamic external objects [required by] asso-
ciated with the application software program.

3. The system of claim 2, wherein the application [pro-
grams further] software program comprises a functionality
including at least one of data entry, data retrieval, [and] or
data reporting [programs].

4. The system of claim 1, wherein the dynamic external
objects are 1 code executable by the at least one client
computer.

5. The system of claim 1, wherein the interpreting software
program [operating on the client computer interprets the com-
piled] is configured to interpret the object code into machine
executable code to create [an] #%e instance of'the one or more
dynamic external [object] objects [in] on the at least one
client computer.

6. The system of claim 1, wherein the application [pro-
grams further] software program [comprise] comprises a
functionality including at least one of data entry, data
retrieval, [and] or data reporting [programs].

7. The system of claim 1, further comprising means for
providing [a user with] an alias name for each computer
accessed by the application sofiware program [using] com-
prising the [distributed] dyramic external objects.

8. A [drag and drop, dynamic, distributed, object model
based software user interface] system [for accessing and
operating distributed applications across computer net-
works], comprising:

[two or more peer-to-peer computers, each one further

comprising one or more interconnected processors, one
Or more main memory subsystems, one or more mass
storage subsystems, and one or more connections to
wide area networks or local area networks:}

a {irst peer computer comprising one or more ntercon-
nected processors, one or more main memory sub-sys-
tems, one or more mass storage subsystems, and one or
more connections to [the] server computers via wide
area networks or local area networks:

an application software program operating on the first peer
computer for presenting a first form or menu [to a user
of] via the first peer computer and including locations of
dyvnamic external objects used by the application soft-

10

15

20

25

30

35

40

45

50

55

60

65

34

ware program [and] for creating an instance of one or
more of the dynamic [distributed] exterral objects on the
first peer computer;

[the] a set of dynamic external object classes associated
with the dynamic external objects including methods
and attributes, stored on a different peer computer and
stored as compiled object code; and

an 1nterpreting soltware program for converting the
[located] dynamic external objects into machine code on
[the] @ user’s machine and for resolving class inherit-
ances, polymorphic behaviors, and encapsulation
behaviors of [the] objects, classes, methods, and
attributes, across computers in the network, at [the] a
time of [the User’s] request for execution of the appli-
cation software program.

9. The system of claim 8, further comprising a one or more
user mterface programs operating on the first peer computer
for interpreting mouse and keyboard actions of the [user] first
peer computer to select the computers on the network holding,
the dvnamic external objects required by the application soft-
ware program.

10. The system of claim 8, wherein the application soft-
ware program [further] comprises a functionality including at
least one of data entry, data retrieval, [and] or data reporting
[programs].

11. The system of claim 8, wherein the dynamic external
objects are 1n code executable by the first peer computer.

12. The system of claim 8, wherein the interpreting soft-
ware program operates on the first peer computer for inter-
preting the compiled object code 1nto machine executable
code to create [an] tke instance of the one of more dynamic
external objects [in Jor the [client] first peer computer.

[13. The system of claim 8, wherein the user application
program further comprises data entry, data retrieval, and
reporting programs.]

14. A method [for implementing dynamic external
objects], comprising [the steps of]:

on one or more first computers, compiling source code for
the objects to create dynamic external objects (DEOs) of
object code for performing one or more tasks of a
launching application program;

on a second computer, installing a launching application
with one or more tasks and locations of DEOs on the first
computers to enable a user to locate the DEOs corre-
sponding to the one or more tasks of the launching
application program and create an instance of the
dynamic external objects on the second computer for
accomplishing [the] selected task(s); and

interpreting the dynamic external objects on the second
computer to perform one or more of the selected tasks of
the launching program.

[15. A method for using dynamic external objects, com-

prising the steps of:

providing one or more dynamic external objects compris-
ing object code:

on a user’s computer, running an application program that
includes one or more tasks to be performed on the user’s
computer and information about the location of dynamic
external objects which correspond to the tasks;

accepting the user’s selection of one or more task of the
application for execution;

automatically locating the dynamic external objects
required to execute each task by creating an instance of
the dynamic external objects on the user’s computer for
execution; and

executing the selected tasks of the application on the user’s
computer.]

US RE44,327 E

35

16. The method of claim [15] 32, wherein the [step of]
locating the dynamic external objects further comprises [the
steps of]:

reading the application’s initialization [(.in1)] file to obtain

one or more search paths for locating the [required]
compiled dynamic external objects corresponding to the
at least one of the one or more tasks;,

searching 1n the search paths 1n their given order to locate

[each required compiled] the dyvramic external [object]
objects corresponding to the at least one of the one or
more tasks:;

searching 1n the folder from which the application was

launched for [each required compiled] the dynamic
external [object] objects corresponding to the at least
one of the one or more tasks not found in the [preceding
steps] search paths; and

searching in the application’s executable [(.exe)] file for

[each required compiled] the dyramic external Jobject]
objects corresponding to the at least one of the one or
movre tasks not found in either the [preceding steps]
search paths or the folder from which the application
was launched.

[17. The method of claim 15, wherein the step of locating
the compiled objects further comprises the steps of:

searching in the search paths 1n their given order to locate

cach required compiled object;

searching 1n the folder from which the application was

launched for each required compiled object not found 1n
the preceding steps; and

searching in the applications executable (.exe) file for each

required compiled object not found in the preceding
steps.]

18. The method of claim [15] 32, wherein the [step of]
creating [an] #%e instance of the [compiled DEO] dvnamic
external objects on the user’s computer includes;

linking the [DEO] dyramic external objects into the RAM

of the user’s computer for execution on the user’s com-
puter, and

[further comprises the step of] instancing all parent objects

of the [required compiled objects] dynamic external
objects corresponding to the at least one of the one or
morve tasks into the RAM of the Juser’s] computer.

[19. The method of claim 15, wherein the step of executing
the application further comprises the steps of: resolving all
object hierarchy inheritances for each compiled object;
executing the application with all inheritances resolved.]

20. A method [for deploying objects of an application
program] comprising:

on a network of computers, storing [a plurality of] objects

in object code, [each of which has] the objects having
inheritance, polymorphism, and encapsulation;

on one of the computers, installing an application program

that has the location of tke objects needed to run [an] a
task of the application program; and

creating an instance of [an] at least one of the [object]

objects associated with the task on the computer [with]
having the application programl;] installed thereon, and
[on the computer with the instance of the object,] execut-
ing the [program] zask.

21. The method of claim 20, further comprising [the further
step of]: changing the objects on the network of the comput-
ers.

22. The method of claim 20, wherein the creating the
instance of the at least one of the objects [are executed with-
out] associated with the task is not dependent on registration.

5

10

15

20

25

30

35

40

45

50

55

60

65

36

23. The method of claim 20, wherein the objects inherit
properties and methods from [their] classes associated with
the objects.

24. A system comprising,

a memory having computer executable components stoved

thereon,; and

a processor communicatively coupled to the memory, the
processor configured to facilitate execution of the com-
puter executable components, the computer executable
components, COmprising:

an application software program of a client computer con-
figured to present a first form or menu on the client
computer including locations of dyvramic external
objects and to locate one or more of the dynamic exter-
nal objects implicated to execute a task of the applica-
tion software program, wherein the dvnamic external
objects are stored externally to the client computer;

a set of classes associated with the dynamic external
objects, the set of classes including methods and
attributes and comprising object code; and

an interpreting software program configured to convert the
one or movre of the dynamic external objects implicated
to execute the task of the application software program
into machine code on the client computer to create an
instance of the one of more of the dynamic external
objects implicated to execute the task of the application
software program on the client computer.

25. The system of claim 24, wherein the dynamic external

objects are code executable by the client computer.

26. The system of claim 24, wherein the interpreting soft-
ware program is further configured to intevpret compiled
object code into machine executable code to create the
instance of the one ov movre of the dynamic external objects
implicated to execute the task of the application software

program on the client computer.

27. A system, comprising.

a processor; and

a memory communicatively coupled to the processor, the

memory having stoved thervein computer-executable

instructions and the processor configured to carry out

the computer-executable instructions including instruc-

tions for:

executing an application configured to present a first
form or menu on a first computer, wherein the first
form or menu includes information about locations of
a set of dyvnamic external objects used by the applica-
tion program, and to facilitate creating an instance of
one or movre dynamic external objects of the set on the
fivst computer;

retrieving one or more classes related to the set of
dvnamic external objects including methods and
attributes stoved as compiled object code on at least
one of an other computer or the first computer based
on the information about the locations of the set of
dynamic external objects; and

converting at least one of the one or more classes into
machine code on the first computer.

28. The system of claim 27, wherein the dynamic external
objects are code executable by the first peer computer.

29. The system of claim 27, wherein the computer-execut-
able instructions further include instructions for creating the
instance of the one or more dynamic external objects of the set
related to the at least one rvetrieved class converted.

30. A device, comprising:

a processor; and

a memory communicatively coupled to the processor, the

memory having stoved thervein computer-executable

US RE44,327 E

37

instructions and the processor configured to carry out

the computer-executable instructions including instruc-

tions for:

an application software program configured to display
one or morve externally stored dynamic external
objects and comprises respective locations thereof;

and

an interpreting software program configured to convert
at least one of the dynamic external objects into local
machine executable code on the device including
methods and attributes velated to the at least one
dynamic external object.

31. The device of claim 30, wherein the externally stoved
dynamic external objects reside as object code on a remotely
located device communicatively coupled to the device over a
network.

32. A method comprising:
providing one or more dynamic external objects compris-

ing object code:

10

38

on a user’s computer, running an application program that
includes one or more tasks to be performed on the user’s
computer and information about the location of dynamic
external objects covresponding to the one or more tasks;
accepting the user’s selection of at least one of the one or
morve tasks of the application program for execution,
automatically locating the dynamic external objects
required to execute the at least one of the one or more
tasks by creating an instance of the dynamic external
objects corresponding to the at least one of the one or
morve tasks on the user’s computer for execution; and
executing the selected tasks of the application on the user’s

compuilter.
33. The method of claim 32, wherein the executing the

15 application further comprises:

resolving all object hierarchy inheritances for the dynamic
external objects corresponding to the at least one of the
one or movre tasks.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

