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(57) ABSTRACT

A linear detection method for determining correlation values
associated with an estimated Pulse Repetition Interval (PRI)
executed by a linear detection module of a correlation mask
disposed on a digital signal processor 1s provided comprising:
determining a correlation spread associated with a vector of
Times-of-Arrival (TOA) data; determining a delta spread
associated with the correlation spread; determining a first/
next estimated PRI associated with the vector of TOA data;
determining a first/next estimated PRI vector based on the
first/next estimated PRI; determining a delta vector based on
the first/next estimated PRI vector; determining a correlation
weights vector based on the delta vector; determining a first/
next correlation value based on the correlation weights vec-
tor; and 1n response to there being no additional PRIs to
estimate, searching the correlation values for a highest corre-
lation.
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DETECTION AND IDENTIFICATION OF
STABLE PRI PATTERNS USING MULTIPLE
PARALLEL HYPOTHESIS CORRELATION

ALGORITHMS

Matter enclosed in heavy brackets | ] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

RELATED APPLICATIONS

This application 1s a divisional of U.S. application Ser. No.
10/63°7,386, filed Aug. 8, 2003, 1ssued as U.S. Pat. No. 7,133,
887 on Nov. 7, 2006, herein incorporated 1n its entirety by
reference.

FIELD OF THE INVENTION

This mvention relates to communications, and more par-
ticularly, to the detection and identification of stable PRI
patterns using multiple parallel hypothesis correlation algo-

rithms.

BACKGROUND OF THE INVENTION

Systems such as intelligence collecting systems, electronic
countermeasure systems, and electronic support measures
systems generally employ a wireless recerver. With the pro-
liferation of wireless technology, such receivers typically
receive many continuous wave and pulse signals (e.g., tens,
hundreds or thousands, simultaneously) from different
sources (commonly referred to as emitters) which are trans-
mitting in the receiver’s pass-band. Thus, the recerver must
distinguish signals-of-interest from other signals, which
requires separation of the individual signals. One effective
means of separation of signals from different emitters i1s via
identification of the pulse repetition interval (PRI) of pulses
from each emitter transmission. There are many possible
types of PRI patterns, ranging from a simple continuous wave
signal, to stable (linear pattern), patterned (a repeating non-
linear pattern), or random (no apparent pattern presented).

While 1dentifying continuous waves 1s relatively simple,
identifying complex PRI patterns 1s not trivial. Detection of
PRI patterns has applications, for example, in the military
arena, such as intelligence gathering missions, electronic
countermeasures, and targeting. Likewise detection of PRI
patterns has applications 1n the civilian arena, such as home-
land security and police based intelligence gathering, and
detecting the presence of interfering transmissions that may
adversely affect air traffic control systems (e.g., jammers or
spoofers).

Existing systems capable of PRI pattern recognition per-
form one or more aspects of known PRI deinterleaving and
identification functions, of which there are many. Most of
these functions are expert-system based, and look for pattern
matches with respect to difference 1n times-of-arrival (TOA)
of the measured input pulse data stream. Such conventional
techniques are relatively slow 1n their execution times, as they
have to perform exhaustive analysis of the input data to detect
many, 1f not all, of the known PRI pattern forms that can be
presented to and measured by the system. Thus, overall
latency to detecting and reporting the presence of all emitters
1s relatively high. This latency 1s of particular concern when
hostile or otherwise threatening emitters are present.
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What 1s needed, therefore, are low latency techmques that
identify PRI patterns within a collected pulse data, and asso-
ciate pulses with the 1dentified PRI patterns.

BRIEF SUMMARY OF THE INVENTION

One embodiment of the present invention provides a mul-
tiple correlation processor device configured to estimate PRI
associated with a received pulse train. The device includes a
first-type PRI detection module (e.g., linear detection mod-
ule) that 1s adapted to analyze a set of TOA data associated
with the received pulse train, and to estimate a PRI associated
with that set. A second-type PRI detection module (e.g., lin-
car regression module) 1s adapted to analyze the set of TOA
data, and to estimate the PRI associated with that set. A
multi-vote module (e.g. dual vote module) 1s adapted to deter-
mine 1f the estimated PRIs provided by the first-type and
second-type detection modules are both passing with respect

to predefined pass/fail thresholds.

In one such embodiment, each ot the modules 1s included
in a correlator mask, where the device includes a number of
such masks. Each mask 1s configured for analyzing a subset of
pulses included 1n the pulse train, thereby allowing for paral-
lel processing. The PRI estimates output by the masks can be
collected at an output stage, and filtered, thereby separating
PRIs identified as stable from uncorrelated PRI data. Benefi-
cially, only the uncorrelated PRI data 1s provided for the more
complex (and imherently slower) signal processing algo-
rithms to 1dentify other PRIs present in the measured pulse
train.

The PRIs identified as stable can be provided to a final
analysis module adapted to perform one or more heuristic
tests that assess the results provided by the linear detection,
linear regression, or dual vote modules. The one or more
heuristic tests performed by the final analysis module include,
for example, at least one of a one signal present test, a one
signal modulo test, a one signal remaining test, a two signals
present test, and a two-phase stagger test. The final analysis
module may further be configured to provide 1ts output to a
possible problem module that 1s adapted to perform a tie-
breaker analysis when analysis performed by the final analy-
s1s module 1indicates a discrepancy.

Any one or all of the PRI analysis modules can be config-
ured to output a corresponding report including at least one of
an estimated PRI, a pass/fail status, a correlation value, and
pulses associated with the estimated PRI. In addition, the
device can be configured to recerve control signaling which
includes a mode select that causes the device to operate 1n one
of a linear detection mode, a linear regression mode, or a dual
vote mode. In one particular embodiment, each of the first-
type and second-type modules 1s configured to output a cor-
responding report including a pass/fail status associated with
the estimated PRI. This reporting enables the multi-vote mod-
ule to determine i1f the estimated PRIs both passed. The
amount of data that must be submitted for complex process-
ing can thus be reduced with high confidence.

Another embodiment of the present invention provides a
linear detection method for determining the correlation value
associated with an estimated PRI. The method includes deter-
mining a correlation spread associated with the vector of TOA
data, determining a delta spread associated with the correla-
tion spread, and determining a first/next estimated PRI asso-
ciated with the vector of TOA data. The method further
includes determining a first/next estimated PRI vector based
on the first/next estimated PRI, determining a delta vector
based on the estimated PRI vector, determining a correlation
weilghts vector based on the delta vector, and determining a
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first/next correlation value based on the correlation weights
vector. In response to there being no additional PRIs to esti-
mate, the method further includes searching a vector of the
correlation values for the correlation value closest to zero or
the otherwise best correlation value.

In one such embodiment, the method further includes the
preliminary steps of receiving the vector of TOA data, nor-
malizing the vector ol TOA data, thereby providing a normal-
1zed vector of TOA data, and determining a seed PRI associ-
ated with the vector of TOA data. Determining the seed PRI
includes, for example, dividing each element of the normal-
1zed vector of TOA data by n—-1, where n=the number of
pulses 1n the vector of TOA data.

Determining the correlation spread includes, for example,
dividing the seed PRI by a correlation bandwidth percentage
that defines a percentage bandwidth for searching for the
estimated PRI. Determining the delta spread includes, for
example, dividing the correlation spread by the (npts—1),
where npts defines the number of points to search for the
estimated PRI. Determining the first/next estimated PRI
includes, for example, subtracting (correlation spread/2)
from the seed PRI. Determining the delta vector includes, for
example, subtracting the estimated PRI vector from a normal-
1zed vector of the TOA data. Determining a correlation
weights vector includes, for example, squaring the delta vec-
tor. Determining the first/next correlation value includes, for
example, dividing the sum of the correlation weights by the
square of the seed PRI. A number of variations will be appar-
ent 1n light of this disclosure.

In response to there being additional PRIs to estimate, the
method may further include repeating the determining steps
for each additional PRI, thereby forming the vector of the
correlation values. Searching the vector of the correlation
values includes, for example, comparing the correlation value
closest to zero to a P/F threshold to determine a pass/fail
status. The method may further include providing a linear
detection report that includes at least one of a pass/fail status,
the correlation value closest to zero, and a PRI estimate that
corresponds to the that correlation value, and pulses associ-
ated with the PRI estimate.

Another embodiment of the present invention provides a
dual vote method for determining the correlation value asso-
ciated with an estimated PRI of a recerved pulse train. The
method includes recerving a pass/fail status associated with
an estimated PRI from each of a linear detection algorithm (or
other “first-type” algorithm) and a linear regression algorithm
(or other “second-type” algorithm). Each algorithm 1s con-
figured to estimate PRI data of a pulse train. In response to
cach pass/fail status indicating a passing status, the method
turther 1includes setting the dual vote pass/fail status to pass
tor the corresponding PRI estimate. In response to at least one
pass/fail status indicating a failing status, however, the
method proceeds with setting a dual vote pass/tail status to
tail for the corresponding PRI estimate.

The method may further include reporting a PRI estimate
that 1s one of the following: the PRI estimate produced by
either the linear analysis or the linear regression, an average
of the PRI estimates provided by each of the linear analysis
and the linear regression, or a default PRI. The method may
turther include collecting and filtering a number of reported
PRI estimates, thereby separating PRIs identified as stable
from uncorrelated PRI data. Such filtering allows only the
uncorrelated PRI data to be provided for complex signal
processing to identily other PRIs present in the pulse train.
Downstream computational processing 1s therefore signifi-
cantly reduced.
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The method may further include performing one or more
heuristic tests on the PRIs identified as stable. For example,
performing one or more heuristic tests on the PRIs identified
as stable may include performing at least one of a one signal
present test, a one signal modulo test, a one signal remaining
test, a two signals present test, and a two-phase stagger test. In
response to results of the one or more heuristic tests indicating
a discrepancy, the method may further include performing a
tie-breaker analysis on the results of the one or more heuristic
tests analysis.

The features and advantages described herein are not all-
inclusive and, 1n particular, many additional features and
advantages will be apparent to one of ordinary skill 1n the art
in view of the drawings, specification, and claims. Moreover,
it should be noted that the language used 1n the specification
has been principally selected for readability and instructional
purposes, and not to limit the scope of the inventive subject
matter.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram 1illustrating a receiver configured
with a multiple correlation processor 1n accordance with one
embodiment of the present invention.

FIG. 2 1s a block diagram illustrating a multiple correlation
processor configured 1n accordance with one embodiment of
the present invention.

FIG. 3 1s a block diagram 1illustrating one of the correlation

masks and the output stage of the multiple correlation pro-
cessor shown m FIG. 2.

FIG. 4a 1s a block diagram 1llustrating a linear detection
module configured 1n accordance with one embodiment of
the present invention.

FIG. 4b 1s a block diagram illustrating a linear regression
module configured 1n accordance with one embodiment of
the present invention.

FIG. 4c illustrates a table showing a specific case where
both linear detection and linear regression were performed to

provide a dual vote.

FIG. 4d 1s a block diagram 1illustrating a final analysis
module configured 1n accordance with one embodiment of
the present invention.

FIG. Saillustrates a method for determiming the correlation
value associated with an estimated PRI using a linear detec-
tion algorithm 1n accordance with one embodiment of the
present 1nvention.

FIG. 3b 1s a pictorial view of a normalized vector of TOA
data, having a PRI of p, that can be operated on by the linear
detection algorithm of FIG. 3a, and an example seed PRI.

FIG. 3¢ 1s a pictonial view of estimated PRIs generated by
the linear detection algorithm of FIG. 5a, along with the
correlation spread, the delta spread, and the “number of
points.”

FIG. 5d 1s a pictorial view of a correlation value produced
by the linear detection algorithm of FIG. Sa, along with the
correlation vector and the actual PRI.

FIG. 6 illustrates a method for determining the correlation
value associated with an estimated PRI using a linear regres-
s10n algorithm in accordance with another embodiment of the
present 1nvention.

FIG. 7 illustrates a method for determining the correlation
value associated with an estimated PRI using a dual vote
algorithm 1n accordance with another embodiment of the
present invention.

DETAILED DESCRIPTION OF THE INVENTION

Embodiments of the present invention operate to signifi-
cantly speed up the process of PRI detection and reporting,
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relative to conventional techniques. Linear or otherwise
stable based PRI signals included 1n the received data stream
are detected, reported, and filtered out. The remaining signals
(e.g., complex PRI signal types and unusual PRI phenom-
enon) of the recerved data stream are bulfered, thereby form-
ing a reduced set of input signals. This reduced set of signals
can then be processed by conventional expert-system based
pulse demterleave and PRI i1dentification algorithms, which
are generally slower and more computationally intensive than
the stable based algorithms described herein. However, the
expert-system based algorithms are enabled to arrive at their
conclusions sooner, since they have less overall data and
signals to process.

Detection and 1dentification of stable PRI patterns accord-
ing to the principles of the present invention can be carried out
in a number of ways using multiple parallel hypothesis cor-
relation algorithms. For example, the multiple parallel
hypothesis correlation algorithm may employ linear detec-
tion or linear regression. Alternatively, the multiple parallel
hypothesis correlation algorithm may employ a combination
ol both linear detection and linear regression, thereby provid-
ing a “dual voting” scheme that decreases the occurrence of
talse positives. These algorithms operate to quickly 1dentity
stable PRI patterns within an input pulse set, allowing for the
pulses associated with these stable PRI patterns to be deinter-
leaved or otherwise separated from the remaining pulses
within the recerved data stream.

As a result, overall latency to detecting and reporting the
presence of all emitters 1s reduced. In addition, application
specific triggers can be set where 1n response to the detection
of possible threatening stable PRI signals (e.g., high pulse
repetition frequency signals), related events or responses
(e.g., countermeasures) are cross-cued 1n a real-time fashion.
Thus, the time delay and latency associated with conventional
expert-system based algorithms 1s avoided. The disclosed
algorithms can be employed 1n a number of receiver applica-
tions. For example, radar warning recervers (RWR), elec-
tronic support measures (ESM) systems, electronic intelli-
gence (ELINT) systems, and/or electronic countermeasures
(ECM) systems can all be configured to exploit the benefits of
the present invention.

System Architecture

FIG. 1 1s a block diagram 1llustrating a receiver configured
with a multiple correlation processor 1n accordance with one
embodiment of the present mvention. As can be seen, the
system 1ncludes a wireless recerver 105, a multiple correla-
tion processor 110, a builer 115, a complex signal processor
125, and a countermeasures system 120. A local host or
control processor provides control, such a process param-
cters, enable/disable signaling, and mode selection.

In operation, wirelessly transmitted signals are received or
otherwise intercepted (measured) by the antenna/recerver
105 pair for a radio frequency (RF) system. The received
signals may typically include a mixture of continuous wave
signals and pulsed signals, which have been simultaneously
transmitted from a number of different source emitters. As
such, the set of recerved and measured signals will likely
overlap and be interleaved with one another in the resulting
measured pulse data input stream. The recerver 105 may be
implemented 1n conventional technology, and includes, for
example, an analog front end, a demodulation section, and a
pulse measurement unit. Any number of RF signal presence
detection and measurement techniques can be employed here.

Among other conventional processing, the recerver 105
measures parameters of pulses included 1n the recerved sig-
nal, such as pulse amplitudes, pulse widths, TOA, and carrier
frequency. Depending on the application, other parameters
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may be measured as well. For example, a direction-finding
(DF) recerver may also measure the phase differences
between several recerve antennas at the same instant in time in
order to support DF algorithms that produce line of bearing
(LOB) estimates, while advanced receivers may also measure
the modulation on pulse characteristics to improve both emit-
ter identification and pulse signal separation and deinterleav-
ing. The measured parameter values for each pulse can then
be assembled 1nto a pulse descriptor word (PDW) or like data
structure. The resulting PDW stream 1s then provided to the
multiple correlation processor 110, which 1s adapted to 1den-
tify linear or otherwise repeatable patterns in the pulses
included in the stream.

Stable portions of the PDW stream are correlated using at
least one of linear detection, linear regression, or dual vote
techniques as described herein. Portions of the PDW stream
that remain uncorrelated (e.g., due to non-linearities or non-
repeatability) are builered so that they can be analyzed by
conventional complex signal processor 125. The resulting
overall correlation report provided includes, for example, the
estimated PRI, the correlation value, the associated pulses,
and the pass/fail status of each correlation attempt. This
report 1s provided to the processor 125, which operates only
on the uncorrelated PDW stream. The multiple correlation
processor 110 may be configured to operate in a number of
modes.

In one embodiment, the operation modes include: batch,
stream, tracker, and loop back. The batch mode 1s where the
pulse data to be processed 1s provided one 1nput set at a time
(1.e., 1n batches). No knowledge of prior executions or data 1s
necessary. Typical applications for this mode can be real-
time, not time constrained, or non-real time post processing
of the data. The stream mode 1s where the pulse data 1s
provided 1n a streaming first-in-first-out (FIFO) fashion, and
the processor 110 processes n pulses at a time, dropping the
oldest pulse, and including the newest pulse in the next itera-
tion of processing.

The benefits of the streaming mode are at least two-fold:
first, depending on the depth of the stream, the number of
masks that need to be calculated at any one iteration can be
less; and second, as new pulses are measured, they can be
correlated with already associated pulses, further facilitating
pulse ID and deinterleaving aspects of the algorithm. The
depth of the stream can be as large as n—1 pulses, or a small as
1. For example, i the algorithm was running a 4-o01-8 (70
masks) configuration, pulses 1 through 8 can be assessed 1n
the first batch run, followed by pulses 2 through 9 for the
second run, and so on. If the same PRI (within tolerance) was
found 1n both runs, and the new pulses were associated with
all of the remaining old pulses, the new pulses are associated,
resulting in the signal train being built up 1n real-time.

By implementing a streaming approach, the number of
masks that needs to be calculated at one time does not need to
approach 70. For example, 1n a 4-01-8 streaming approach,
after 4 pulses only mask #1 can be calculated. After the fifth
pulse arrives, mask #2 need not be calculated because 1t uses
the same 4 pulses that mask #1 just used. Mask #1 needs to be
performed again for the new {fifth pulse. In addition, three
other masks can now be performed. For instance, given pulses
with TOA 10, 20, 30, 40 and 30 respectively (with 50 being
the fifth and latest pulse measured), the three other masks
would be: mask a: 10, 20, 30, 50; mask b: 10, 20, 40, 50; and
mask c: 10,30, 40, 50. Note that adding the eighth pulse to the
set would only require 35 and not 70 masks to be calculated.
This aspect 1s significant 1f computation space 1s a concern,
which might be the case 1f larger sets, such as 4-01-12 (requir-
ing 4935 masks) or larger, are to be executed.
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The tracker mode 1s where a streaming approach 1s imple-
mented with the additional tasking that processor 110 trigger
an action whenever a certain PRI range (or ranges) condition
has been detected. A flag can be returned or an interrupt can be
1ssued for this detection. The example application shown 1n
FIG. 1 1s with a countermeasures system 120 that requires a
fast detect and response (real-time) approach to a percerved
threat signal. Note, however, that other trigger based sub-
systems or processes can be icluded here as well. Further
note that any number k of triggers can be set up between the
processor 110 and the system 120.

For applications that use multiple parallel hypothesis cor-
relation (as will be explained herein), the loop back mode of
operation can be employed 1 conjunction with a batch mode.
In this mode, the uncorrelated pulses or otherwise residual
pulses (those not correlated to an estimated PR1I) are collected
in buifer 115 over a period of many prior detection attempts.
Once the bufter 115 1s full or a time-out occurs, the uncorre-
lated pulses are either (based on control choices for the imple-
menting program) reissued to processor 110 for a subsequent
loop-back correlation attempt, or sent directly to the complex
signal processor 123 for advanced pulse deinterleaving and
PRI identification processing. A typical application here
would be to address very low frequency stable PRI signals
that do not present enough individual pulses 1n a nominal
collection time window for the system. In any one collection
ol pulses only a small number, perhaps only 1 pulse from such
a low frequency emitter may be present. By holding a residual
pulse buffer, and then periodically re-analyzing the data for
linearity, these linear pulse trains would eventually be
detected via the algorithms described herein.

Note that the multiple correlation processor 110 recerves
control 110a, which includes various process parameters,
mode selects, and other pertinent control signaling as will be
apparent 1n light of this disclosure. Further note that the
embodiment of FIG. 1 was selected for the purposes of robust
disclosure, and various features and componentry are
optional. The present invention 1s not intended to be limited to
any one such configuration.

As previously indicated, the recerver 103, the buifer 115,
the countermeasures system 120 (or other triggered system),
the complex signal processor 125, and the controlling host/
processor that provides the control can all be implemented in
conventional technology. Functional and structural accom-
modations that enable their respective interfacing with the
inputs and outputs of the processor 110 will be apparent 1n
light of this disclosure.

The multiple correlation processor 110 may be imple-
mented 1n hardware, software, firmware, or any combination
thereol. For example, the processor 110 can be implemented
in special purpose semiconductor technology, such as an
FPGA or an ASIC. Alternatively, the processor 110 can be
implemented as a set of instructions executing on a digital
signal processor or other suitable processing environment.
The structure and functionality of the processor 110 will be
discussed 1n greater detail with reference to FIGS. 2-7.

Multiple Correlation Processor

FI1G. 2 1s a block diagram illustrating a multiple correlation
processor configured in accordance with one embodiment of
the present mvention. This processor 110 includes a FIFO
butfer 205, a multiple simulation parallel hypothesis set of
correlator masks 210, and an output stage 215. Control 110a
1s provided to each of the masks 210, with the PDW stream
being provided to FIFO 205. The overall output report, uncor-
related PDW stream, and optional tracker trigger output are
provided at the output of the output stage 215.
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TOA data (included 1n the PDW stream) for pulses 1 to n
are provided to each mask 210. The multiple correlator mask
210 approach provides a dimension of simultaneous parallel
hypothesis by running x masks 210, where x=n!/[m!*
(n—m)!], n=the total number of pulses 1n the set, and m=the
number of pulses to be considered 1 each mask. In this
particular example, m equals four and n equals eight. Thus,
4-01-8 pulses are analyzed by each mask, resulting in up to
seventy simultaneous masks 210 being processed.

Note, however, that other mask configurations can be used
here as well. For instance, 4-01-12 masks could be employed
to provide a total mask set of 495 masks. Such a mask set
cnables detection of the presence of up to three independent
stable signals within twelve pulses. Generally stated, each
mask could operate on three or more of the n pulses provided
to each mask. The values of m and n may be varied as neces-
sary and will depend on the particular application and desired
performance, as will be apparent 1n light of this disclosure.

Each mask 210 individually executes at least one of a linear
detection (LLD) algorithm, linear regression (LR) algorithm,
or a dual vote (DV) algorithm. Depending on the analysis
mode selected, a corresponding report (e.g., LD report, LR
report, or DV report) 1s generated by each mask 210 to the
output stage 215. The output stage 215 then processes the x
individual reports into an overall report. Note that even when
all pulses considered are from the same signal, are linear 1n
pattern, and are consecutive, only a subset of the masks 210
will actually be presented with linear patterned pulse data.
This 1s because only m pulses out of n are presented to each
mask 210.

Assume, for example, that perfectly linear, consecutive
data 1s presented to the processor 110. Further assume each
mask 210 receives four out of eight pulses, with a total of
seventy masks 210. Of the seventy masks 210, five will be
presented with consecutive indexed pulse data: mask 1
(pulses 1, 2, 3 and 4) through mask 5 (pulses 5, 6, 7 and 8).
Each of these five masks are presented with 1N PRI data, with
1N representing the difference in TOA between consecutive
pulses (N being the actual PRI value). In addition, by skipping
every other pulse, mask 48 (pulses 1, 3, 5 and 7) and mask 49

(pulses 2, 4, 6, 8) will be presented with “2N” consecutive
PRI data. Thus, two PRIs are found: the 1N PRI and the 2N

PRI. Further, note that the 2N PRI 1s a modulo of the 1N PRI.
This information can be used to associate the two PRIs as
being from the same signal.

The individual results of the each mask 210 analysis 1s
provided 1n the corresponding report to the output stage 215.
Depending on implementation preferences, the output stage
215 can implement zero, one, or multiple analysis techniques
as a part of the correlation algorithm. Note that some embodi-
ments of the multiple correlation processor 110 do not
employ the analytical sections of the output stage 215,
thereby allowing the resulting matrix of individual mask
results to provide the basis for the overall report. Further note
that the processor 110 can be operated in the batch or stream
modes, as well as 1n the optional tracker and loop back modes,
depending on the application. Additional details of the output
stage 210 function and architecture will be discussed 1n ref-
erence to FIGS. 3 and 4d.

Masks and Output Stage

FIG. 3 1s a block diagram 1illustrating one of the masks and
the output stage of the multiple correlation processor shown
in FIG. 2. Each mask 210 includes a linear detection module
310, a linear regression module 320, and a dual vote module
325. TOA data for pulses 1 to n 1s provided to each of the
linear detection 310 and linear regression 320 modules, while
control 110a 1s provided to each module. The control 110a
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includes the analysis mode (LD, LR, or DV) 1in which the
mask 210 will operate. Each of the linear detection 310 and
linear regression 320 modules provides a corresponding
report (LD report or LR report) to the dual vote module 325.
Depending on what analysis mode 1s enabled, the correspond-
ing report 1s output (e.g., onto a bus along with corresponding
reports from other masks 210). The individual output reports
are provided to the output stage 215.

In this embodiment, the output stage 2135 includes a PRI
histogrammer module 330, a PRI results filter 335, an
optional final analysis module 340, and an optional possible
problem test 345. Note that the final overall report can be
based on the output of the PRI results filter 335. Alternatively,
the output report can be based on the output of the final
analysis 340. Alternatively, the output report can be based on
the output of the optional possible problem test 3435, In gen-
eral, the amount of analytical testing performed by the output
stage 2135 can vary depending on the degree of desired con-
fidence 1n the PRI estimates. Further note that any optional
testing performed after the PRI result filtering by 335 can be
integrated 1nto the conventional higher-stage processing per-
formed by the complex signal processor 125.

The first analysis process performed by the output stage
alter the x mask results are determined, 1s to histogram the
entire set ol passing masks with respect to their PRI and
correlation values. This histogramming 1s carried out by mod-
ule 330, and can be based on a % PRI tolerance included in the
control 110a (e.g., default PRI tolerance=10%). After the
histogramming function 1s accomplished, a filtering function
1s performed by module 335 to remove lower quality PRI
results from the histogrammed set. The overall report pro-
vided by the output stage 215 includes the pass/fail status, the
estimated PRI, and the correlation value associated with the
correlation attempt. In addition pulses associated with the

reported estimated PRI are identified.

The PRI filtering can be based on a correlation
bandwidth % tolerance included in the control 110a. The
correlation results that are within the % correlation tolerance
ol the best passing correlation result are passed. For example,
for a linear detection R® form analysis having a pass/fail
threshold of —0.00225, the acceptable delta correlation toler-
ance would be 0.000435, given a default correlation tolerance
of 20%. Likewise, for a linear regression analysis having a
pass/fail threshold of 10, the acceptable delta correlation tol-
erance would be 2. The filtered output of module 335 can then
optionally be provided for additional analysis as discussed
herein. Note, however, that such optional analysis 1s not nec-
essary to practice the present mnvention. Additional outputs
from module 335 include the uncorrelated PDW stream
(based on P/F status) and the optional tracker trigger (when
the tracking mode 1s enabled).

This histogram approach with filtering based on the indi-
vidual passing masks actual correlation values can be used to
arrive at a composite/average ol PRI values recerved from the
masks 210. Additional optional analysis after the PRI filtering
of module 335 includes, for example, analytical checks to see
il no signal, one signal, two signals, or one 2-phase signal has
been found. This analysis can be carried out by module 340,
which may be configured to search for PRI values that are
whole multiples of the lower histogrammed PRI.

A number of optional individual test cases can be assessed
by final analysis module 340, leading to a conclusion as to
what type of results (e.g., linear or non-linear) have been
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determined, which will be discussed in reference to FI1G. 4d.
Other optional supplemental analysis may be provided as
well, such as that performed by possible problem test module
345. This module 1s used as a “tie-breaker” analysis when the
previous analysis performed by module 340 indicates a dis-
crepancy or other possible problem. This type of test can
generally be employed when n 1s larger than m(m=4, n=8).

Three analysis algorithms carried out by each mask 210,
including linear detection, linear regression, and dual vote,
will now be discussed with reference to FIGS. 4a and 4b.

Linear Detection (LD)

FIG. 4a 1s a block diagram 1llustrating a linear detection

module 310 configured 1n accordance with one embodiment
of the present invention. The TOA input data, which i1s derived
from the PDW stream provided by the receiver 103, includes
TOA 1 to n, and the number of pulses, n. The control data
110a includes mode selection, correlation bandwidth %,
number of points (npts), pass/fail threshold, and the number
of pulses to be considered 1n each mask, m. The 1individual
report output by the linear detection module 310 1ncludes

pass/Tail status, estimated PRI, correlation value, and associ-
ated pulses 1dentified by that particular mask.

The linear detection algorithm 1s modeled using concepts
based on correlation interferometry direction finding
approaches. Thus, squared terms can be used for the weights
and the normalization factors (as with the R* form). However,
the squared terms can be replaced as well (as with the R form).
Both linear detection forms perform equally well. However,
given that the R form 1s less computationally intense, it may
be a more practical implementation than the R* form in some
cases. Pseudo-code for each linear detection form (R* and R)
1s provided to further define the architecture and functionality
of the module 310. First, an explanation of the parameters
employed by each algorithm 1s provided.

il

Parameter n 1s the number of input pulse TOA values (from

n PDWs) to be processed simultaneously in parallel for a

given set of masks. Parameter m (for all of the correlation
masks of a given set) 1s the number of consecutive pulses that
must be present in the input pulse data set, for which the
algorithm 1s looking to declare 11 a linear pattern 1s present or
not. The performance of the algorithm 1n terms of PRI esti-
mation accuracy generally increases with the number of
pulses. However, as m increases, the vulnerability to a miss-
ing pulse in the mput pulse data set increases, which
decreases the likelihood that the linear detection algorithm
would declare a linear pattern 1s present 1n the data set. Recall
that control parameter m 1s the number of pulses to be con-
sidered 1n each mask, and can be set as previously discussed.
Seventy masks 210, with each mask analyzing 4-01-8 pulses

(1.e., m=4, and n=8) 1s one particular embodiment.

The mode selection input includes, for example, an analy-
s1s mode selection (e.g., linear detection, linear regression, or
dual vote mode), as well as an operation mode (e.g., batch,
stream, tracker, loop back mode, or a combination mode, such
as a streaming mode with loop back and/or tracker modes
enabled). The correlation bandwidth % input parameter
defines the percentage bandwidth for searching for the esti-
mated PRI. Note that as the correlation bandwidth % input
parameter increases, the number of points (npts) should also
increase to avoid under-sampling the PRI estimation domain.
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A typical range for correlation bandwidth % 1s about 10% to
20%, although others are possible. The benefit of larger cor-
relation bandwidth % s (>20%) may not justily the calcula-
tion space, while smaller bandwidths (<10%) may be sensi-
tive to noise/transmission or measurement jitter, and may not
cover the PRI value.

The number of points (npts) parameter defines the number
of points to search for the estimated PRI. Typically, 15 or 31
points are sullicient, although other npts values can be used as
well 1f so desired. In one particular embodiment, the correla-
tion bandwidth % 1s about 20% with an npts of 31. The
pass/fail threshold input parameter 1s the threshold an esti-
mated PRI must satisiy in order to be declared linear. The P/F
threshold can be set to allow the algorithms to declare the
presence of a single linear pattern even with relatively noisy
individual TOA values. Note that the ideal linear pattern
contains no noise amongst 1ts respective TOA values, with an
example being TOAs that increase in units of 100 (0, 100,
200, 300, and so on). Further note that less than 1deal TOA
values from an emitter transmitting a stable linear signal can
exist due to a variety of conditions, such as: 1) the emitter 1s
not precise with respect to current recerver standards in the
clocking out/transmitting of its’ individual pulses; 2) the
receiver measuring the imcoming individual pulses 1s not
highly accurate 1n 1ts” measurements on the time of arrival of
cach imcoming pulse; and 3) the receiver measuring the
incoming individual pulses creates small sampling errors
regarding the exact TOA values due to employing a clock rate
that 1s not infinitely large with respect to the range of possible
delta TOA values. Even a system that has a 50 MHz clock can

only sample and measure TOA values to a resolution of 20
nanoseconds.
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Note, however, that by tightening the P/F threshold, the
number of false positives can be reduced. In one particular
embodiment, the P/F threshold for linear detection using the
R technique is —0.00225, and linear detection using the R
technique 1s —0.04743 (i.e., square root of 0.00225). One
option to consider 1s an estimation of the SNR of the input
pulse data set. The higher the SNR, the tighter the P/F thresh-
old should be. However, as the P/F threshold 1s tightened, the
linear detection algorithm’s ability to recogmize a PRI stable/
linear signal that has slight non-linearity due to an intentional
or unintentional transmission or recerver affects can be
diminished.

Linear Detection—R* Form Pseudo-Code (for a Single
Mask)

Given the following;:

m = the number of TOAs to be evaluated for linearity

v =the vector of TOA within the input set

v=[T, T, ... Tp]
=vih)=T; v(2)=T,, ...

vim) =T,,

bw = the correlation bandwidth % for searching

for the estimated PRI (e.g., range: 1 to 200%) and

npts = the number of points to search for the estimated PRI

Then the following pseudo-code can be employed to deter-
mine the estimated PRI and the correlation value:

nv = the vector of normalized TOA

nv(l)=0;nv(2)=v(2)-v(l); nv(3)=v(3) - v(l);...;nv(m) =v(m) — v(1)

s pr1 = the seed PRI estimate = nv(m) / (m-1) (coarse PRI estimate)

spread = s_pr1 * bw

min_pri =s_pri — (spread / 2)
ds = spread / (npts — 1)
temp_pri = min_pri

corr = correlation value = -9999

PRI = PRI estimate = min_pri1

(range covered for PRI estimates)
(generate first estimated PRI trial)
(generate delta between PRI trials)
(initialize for loop)

(initialize for loop)

(initialize for loop)

Loop: For I =1 to npts
cv = [0, temp_pr1, 2%temp_pri, . . . (m-1)*emp_pr] (generate candidate
correlation vector)
dv=v-cv (vector subtraction-->

dv =[0, v(2) — cv(2), ... v(m) - cv(m)]

wtv = dv?

wtv = [0, dv(2)%, . . . dv(m)?]

producing delta vector)

(generate weights vector)

sumwis = 0 + wtv(2) + .. . wtv(im)
temp_coIr = — sumwts / s_pri’
If (temp_corr > corr) Then
corr = temp_corr
PRI = temp_pr1
End If

let temp_pri = temp_pr1 + ds

End Loop

(generate sum of the weights)
(gen. correlation value, normalize)
(If better correlation result found)
(save this correlation result)

(save this PRI estimate)

(move to next trial PRI estimate)
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Linear Detection—R Form Pseudo-Code (for a Single Linear Regression Form Pseudo-Code (for a Single Mask)
Mask) Given the following;:
(Given the following:
5 ' '
m = the number of TOAs to be evaluated for linearity m=the number of TOAs to be evaluated for linearity
v = the vector of TOA within the input set v=the vector of TOA within the input set
v=[T1,Ts, ... T,,]
—v()=T;;:9(2)=T», ... vim) =T, 10
v=[Ty, Tz, ... Tyl
bw = the correlation bandwidth % for searching
for the estimated PRI (e.g., range: 1 to 200%) and =v() =1, v2) =1, ... vim) =1,
npts = the number of points to search for the estimated PRI 15
Then the following pseudo-code can be employed to deter- Then the following pseudo-code can be employed to deter-
mine the estimated PRI and the correlation value: mine the estimated PRI and the correlation value:
nv = the vector of normalized TOA
nv(l)=0;nv(2)=v(2)-v(l); nv(3)=v(3) - v(1);...;nv(m) = v(m) — v(1)
s pri = the seed PRI estimate = nv(m) / (m-1) (coarse PRI estimate)
spread = s_pr1 * bw (range covered for PRI estimates)
min_pri =s_pri — (spread/ 2) (generate first estimated PRI trial)
ds = spread / (npts — 1) (generate delta between PRI trials)
temp_pri = min_pri (initialize for loop)
corr = correlation value = -9999 (initialize for loop)
PRI = PRI estimate = min_pr1 (inutialize for loop)
Loop: For I =1 to npts
cv = [0, temp_pr1, 2%temp_pri, . . . (im—1)*temp_pr] (generate candidate
correlation vector)
dv=v-cv (vector subtraction-->
dv = [0, v(2) = cv(2), ... v({m) — cv(m)] producing delta vector)
sumwts =0 + dv(2) + ... dv(m) (generate sum of the weights [dv])
temp_corr = — sumwts / s_pri (gen. correlation value, normalize)
If (temp_corr > corr) Then (If better correlation result found)
corr = temp_corr (save this correlation result)
PRI =temp_pri1 (save this PRI estimate)
End If
let temp_pri = temp_pri + ds (move to next trial PRI estimate)
End Loop
Linear Regression (LR)
FI1G. 4b 1s a block diagram 1llustrating a linear regression
module 320 configured in accordance with one embodiment 43 y = the transpose of v V= . L
of the present invention. Just as with the linear detection >
module 310, the TOA mput data 1s dertved from the PDW
stream provided by the receiver 103, and includes TOA 1 to n, T,
and the number of pulses, n. The control data 110a for linear weight = the vector 0.5 * [(1-m), (1-m+2), (1-m+4), . . . (m=1)] =
regression analysis mode includes the pass/fail threshold, and >0 [W,, Wo, ... W,,]
the number of pulses to be considered in each mask, m. The (Note that the weight vector will have n entries, and each entry will
individual report output by the linear regression module 320 be 1.0 units larger than the previous. Further note that weight can be
is the same as the report of the linear detection module 310, pre-calculated since it 1s not dependent on the input TOA data.)
. . . . — ' sk ok _ 2 2 2
and includes pass/fail status, estimated PRI, correlation s scale = 1.0/ (sum (Welght/ 2)) ‘Tl'o /T (W1 ;WE/ oo+ W]
. . . . timate = = .
value, and associated pulses identified by that particular e = A ) m=r s Ll
mask PRI _estimate = scale * weight * y = scale * [w, w5, ... w, | *
| . . [ Tl:
The following pseudo-code further defines the architecture T,,
and functionality of the linear regression module 320. The
discussion related to the relevant parameters and trade-offs in 60 .
reference to FIG. 4a equally applies here. For example, the T, ]
ability of the linear regression algorithm to declare a linear wt = transpose of w
pattern present 1s also dependent on m, which is the number of error = y — mean_estimate — PRI_estimate*wt
consecutive pulses being searched for within the data set. An = [T, - mean_estimate — PRI estimate *w, =
example P/F threshold for linear regression 1s 10. Other 65 [E1,
parameter settings are comparable to those of the linear detec- T, — mean_estimate — PRI_estimate*w,

tion algorithm.
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Eo,
T, — mean_estimate — PRI_estimate®™w, ] E,.]
sigma_estimate = (the “quality factor” = [sum(error,) /
1/2
ml|~ =

[(E,+E2...+E2) /m]Y?
Note that the sigma_estimate represents the correlation value for
pass/fail determination.

Dual Vote (DV)

This analysis mode employs both linear detection and lin-
car regression, and adds the additional constraint that only
passing masks from both the linear detection algorithm and
the linear regression algorithm are to be considered for final
analysis. In this sense, only masks that unanimously pass a
multiple vote are declared passing. In this embodiment, the
dual vote 1s performed for each mask 210 individually. A dual
voting scheme greatly reduces errors prone from the linear
detection and the linear regression algorithms when multiple
signals are present and their respective TOA are walking
through one another. In the case of using a 4-0f-8 mask
approach, seventy individual dual voting cases (or some sub-
set thereol) would be combined together to form the dual
voting, multiple simulation parallel hypothesis mask set.

In operation, the dual vote module 325 receives the respec-
tive reports from the linear detection module 310 and the
linear regression module 320. As previously explained, each
report includes a pass/fail status. The dual vote module 325
can be configured, for example, as a logical AND gate (hard-
ware or software). The output of the gate 1s true (1.e., indica-
tive of linearity) only when both iputs are true (1.e., indica-
tive of a passing status for both the linear detection and linear
regression algorithms). Other dual vote schemes will be
apparent 1n light of this disclosure, whether they are based 1n
logic (e.g., gates or masks) or other P/F status evaluation
techniques (e.g., summer circuit where the circuit’s output
must exceed a threshold that indicates a positive dual vote was
achieved).

In the dual vote mode, the estimated PRI and correlation
value of the overall report can take a number of forms. For
example, given a passing data set (e.g., based on the P/F
threshold), the estimated PRI and correlation value of the
overall report can automatically default to the estimated PRI
and correlation value provided by either the linear detection
or linear regression analysis. As the linear detection and linear
regression algorithms perform equally well, the default for
purposes of final reporting would be fairly arbitrary. A sig-
nificant point here 1s that when an individual mask passes the
dual vote check, the same set of evaluated pulses have a
resultant very high probability that they are: 1) from the same
transmitting emitter; and 2) part of a linear stable RF signal
transmission.

Other approaches for the final reporting of the estimated
PRI and correlation value when running 1n the dual vote mode
will be apparent 1n light of this disclosure. For example, the
estimated PRI and correlation value of the overall report can
automatically be set to the estimated PRI value whose corre-
lation value 1s closest to the ideal correlation value. Note that
since the correlation values for linear detection and linear
regression are not on the same scale, a conversion of one scale
to the other 1s required 1n order to evaluate which of the two
passing linear detection or linear regression correlation val-
ues 1s closer to the 1deal. This can be accomplished via nor-
malizing both scales to a common individual scale. Alterna-
tively, the estimated PRI and correlation value of the overall
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report can automatically be set to the average of the estimated
PRIs and correlation values provided by the two algorithms.
In any event, the final estimated PRI and correlation value 1s
provided in the overall report, along with the corresponding
P/F status and associated pulses.

Further variations and embodiments could include, for
instance, a triple vote, where pulse chains are subjected to a
third PRI analysis technique (e.g., an efiective averaging of
the first two analysis techniques). Additional votes and analy-
s1s techniques may be added as desired. To better illustrate the
benellt of multiple vote analysis mode, consider FIG. 4c,
which illustrates both the benefits of the dual-vote method,
and the drawbacks of not implementing this method.

FIG. 4c¢ 1llustrates a table showing a specific case where
both linear detection and linear regression were performed to
provide a dual vote. In this specific case, the linear regression
module 320 result incorporated “false pulses” from one sig-
nal train into another. For this case, two signals are present in
the n pulses (n=8) presented to both linear detection module
310 and the linear regression module 320. The actual PRIs are
3.325 and 3.55 microseconds. The normalized pulse set 1s the
set of TOA, normalized for processing. The LSB for the TOA
1s 20 nanoseconds. Multiplying 166.25 and 277.5 TOA unaits
by 20 nanoseconds results 1n 3.325 microseconds and 5.55
microseconds PRI, respectively.

In more detail, the actual pulse train presented 1n 1teration
number 11 contains five pulses from the 3.325 microseconds
PRI, which are: 0, 166, 333, 499, and 665 TOA 1n the set on
n pulses. For which, all of these TOA values are approxi-
mately 166 TOA units apart from the next TOA 1n the
sequence. Mask #20 and #377 selected 4 consecutive TOA
from this set of 5, and resulted 1n very high quality correlation
results for both linear detection (column 3) and linear regres-
s1on (column 7).

There are three pulses from the 5.55 microseconds PRI,
which are: 128, 406 and 683 TOA. For which, all of these
TOA values are approximately 277 TOA units apart from the
next TOA 1n the sequence. Masks #41 and #49 selected three
pulses from the 3.325 microseconds PRI set, and one pulse
from the 5.55 microseconds set. For the linear regression
analysis, these two masks (41 and 49) both passed the P/F
threshold (e.g., 10 units), and thus were considered 1n down-
stream PRI estimation processing. Note that a “wild mask”
occurs when a mask passes threshold, but uses TOA data from
multiple pulse trains. In many cases, the wild mask result may
not be too far off from the correct result for one of the signals
present, due to how close the TOA data from the other signal
which have been used erroneously, are to the TOA data from
another signal.

Note that the first PRI estimate provided by linear regres-
sioni1s not 166.35 (the average for the linear regression results
for masks 20 and 37), but 1s 168.1333. This degraded the
accuracy for the first PRI estimate due to the linear regression
histogramming aspect including the false (wild) passing
mask #41 1n 1ts” calculation of the average PRI value for 1ts’
first reported PRI value (166.4+166.3+171.7)/3=168.1333.
In addition, the histogram section did not associate the PRI
estimate from mask 49 (also a wild passing mask), therefore
linear regression reported an erroneous second PRI of 183.1.
Further note here that the downstream pulse association
would flag that linear regression had produced an error con-
dition, since several pulses would be associated to two differ-
ent estimated PRI values, thus calling into question the entire
linear regression answer for this case. This 1s due to pulses
containing normalized TOA values of 333, 499 and 683
shown associated with both linear regression PRI values of
168.1333 and 183.1, respectively.
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By enabling the dual vote mode, only the common passing
masks from both linear detection and linear regression were
used, and the correct answer of 1 PRI found at 166.3333 TOA
units (3.33 microseconds estimated PRI when the LSB 1s
applied), with pulses 1, 3, 4, 6 and 7 being associated with this
signal train, would be 1ssued. Note that this same answer was
produced by linear detection alone for this trial. However,
there are other cases where the reverse error condition 1s true
with linear detection having some passing wild masks. The
dual vote mode reduces or otherwise eliminates the potential
for false positives due to wild masks.

Post Histogramming and PRI Filtering: Final Analysis

FIG. 4d 1s a block diagram illustrating a final analysis
module 340 configured 1n accordance with one embodiment
of the present invention. This particular module performs a
one signal present test 405, a one signal modulo test 410, a
one signal remaining test 4135, a two signals present test 420,
and a two-phase stagger test 425. Such a final analysis con-
figuration 1s specific to cases where n 1s at least two times as
large an m. Otherwise, the modulo test 410, the two signals
test 420, and the two-phase stagger test 425 would not be
practical.

This optional portion of the overall algorithm can be con-
figured to include several to many rules/heuristic tests that
assess the results of the prior analysis results provided by one
of the linear detection, linear regression, or dual vote modes.
The number and type rules/heuristic tests are dependent on
the number of 1nput pulses, n, and the number of required
consecutive linear pulses, m.

For the most simplistic case where n=m, the only rule/
heuristic test available 1s a determination as to whether the
analysis provided by linear detection, linear regression, or
dual vote, resulted in a passing correlation value or not. As m
becomes increasingly less then n, more possible rules/heuris-
tic tests become possible. For example, when m 1s exactly
one-half of n, this allows for cases where the multiple corre-
lation processor will be able to process cases where two radar
signals can be present in the data set, allowing for analysis
rules/heuristic tests to look for possible outcomes where the
algorithm detects the presence of two linear signals within the
same set of n pulses. The number of rules/heuristic tests can
be constrained to be small, or large, and 1s a program specific
implementation decision.

Thus, FIG. 4¢ provides for a reasonable set of rules/heu-
ristic tests for the case where 8 pulses are processed by the
multiple correlation processor looking 1n parallel for 4 con-
secutive linear pulses from the same radar transmission. The

level of confidence of the various rules/heuristic test depends
on the amount of conditions that are met with the results of the
70 mask decisions.

The one signal present test 405 looks for the number of
passing masks results for the primary set of masks. In the
4-01-8 case, these are masks 1 through 5, which represent
input pulses 1, 2, 3, and 4 for mask 1; 2, 3, 4, and 5 for mask
2; and so on. If the number of these masks 1s high (e.g., >3),
then one linear signal has been found. This 1s because the
input pulses (save for pulse 1 and 8) are used in multiple
masks, and thus the likelihood of these pulses forming pass-
ing mask results and not being from the same radar transmis-
s10m 1s extremely low.

The one signal modulo test 410 looks for the case where a
“1x” PRI value pattern (e.g., 200 units) has been detected 1n
a passing mask, along with a “2x” or “3x” PRI value being
detected 1n another passing mask within the same setof 8 (i.e.,
n) pulses. This case easily occurs when all 8 pulses are from
a stable linear signal. The primary masks 1n this case waill all
be presented with 4 consecutive linear pulses. In addition, the
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every other masks that use pulses (1, 3, 5, and 7) and (2, 4, 6,
and 8) will also be presented with 4 consecutive 2x the PRI
value for the same stable linear signal. When both this test and
the one signal present test 405 pass, the level of confidence of
the detection of single linear signal being present 1s extremely
high.

The one signal remaining test 415 1s a lower confidence test
that 1s set to true, when no other test result 1s true, and at least
1 passing mask 1n the set of 70 masks has been found. This
generally indicates one of the following conditions regarding
the input data may be likely: 1) a linear signal has been found;
2) for the mput pulse set of 8 pulses, more than 1 signal 1s
present; 3) the input pulse data may contain some missing
pulses, due to recerver measurement performance or multi-
path effects; 4) the input pulse data 1s notreally a linear signal;
or 5) the input pulse data used 1n the passing mask(s) may be
mixed mode such that some pulses from one radar signal have
been correlated in a linear fashion with some pulses from
another radar signal. Note that the dual vote feature of the
multiple correlation processor dramatically reduces the atfect
referred to 1n 1item 5, since both linear detection and linear
regression would have to generate simultaneous false positive
declarations of a linear signal presence for the same mask.
Empirical evaluations to date using collected TOA data from
an actual ESM recewver as well as synthetically generated
TOA data have demonstrated that this condition appears to be
rare. As previously stated, the one signal remaining test 1s a
lower confidence test, and a conservative program approach
may choose not to implement i1t. However, 11 dual-voting 1s
employed, the level of confidence 1n this (and all tests) 1s
increased dramatically.

The two signals present test 420 looks for the case when
two different PRI results (from different passing masks) have
resulted from the PRI histogramming section of the algo-
rithm. This 1s a high confidence test. The two-phase stagger
test 425 looks for the unique case where the every other pulse
masks both result 1n the same or very close passing PRI value.
For instance, given a 4-o1-8-mask configuration, the most the
set of masks with analysis will be able to decipher 1s two
linear signals (each of their own PRI). In addition, if one
signal 1s a two-phase stagger (with a first phase-second phase
repeating pattern), then in eight pulses, the pattern would
repeat itsell four times, presenting again two sets of four
linear patterns (every other pulse conditions) that would be a
linear group-PRI for the 2-phase stagger. This 1s good confi-
dence test, but may not be a viable choice for conservation
program 1mplementations, and instead could be leit to be
detected by the conventional signal processing techniques
found within complex signal processing 125.

Other embodiments will be apparent 1n light of this disclo-
sure. For example, an alternative final analysis 340 might
include only the one signal present test 405. Further note that
the analysis testing performed 1n module 340 could alterna-
tively be integrated into the complex processing module 125.
Depending on implementation preferences, module 340 can
implement zero, one, or multiple analysis techniques as a part
of the overall correlation algorithm.

Non-Linear Pattern Correlation

As will be apparent, the principles of the present invention
can be extended to target non-linear pulse train patterns using
the multiple parallel hypothesis masks described herein. This
1s viable because the aspect of selecting a set of m of n pulses
and then determining 11 the m pulses fits a specific pattern, 1s
generally independent of the type of pattern, assuming the
pattern 1s not pseudo-random, random or highly jittered or
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chirped. One such non-linear pattern which can be detected
by a system employing the present invention 1s a stagger
interval pattern.

Consider, for example, the detection of two-phase stagger
pattern. Assume a {irst pattern 1s represented as a “1-2-1-27

pattern, where the transmitter alternates the PRI using two
different PRI values. This results in TOA deltas that alternate
between TOA delta number 1 and TOA delta number 2. The
alternate two-phase stagger pattern 1s represented as “1-2-2-
17 which 1s continually repeated.

Rather than looking for one PRI to be found 1n the context
ol linear/stable patterns, the linear detection and/or linear
regression algorithms are configured to look for two phases
forming a 1-2-1-2 or 1-2-2-1 pattern. To do so, requires that
the algorithms be expanded to predict two separate individual
PRIs and arrange them 1n the 1-2-1-2 or 1-2-2-1 patterns. This
requires a two-dimensional correlation multiple search pat-
tern, whereas the approach for linear/stables implements a
one-dimensional correlation multiple search pattern.

For stagger pattern detection mode 1n accordance with one
embodiment of the present invention, a simplified set of linear
masks (e.g., the first five primary masks—masks 1 through 5;
as well as masks 48 and 49) were used. The same 8 pulse
constraint was maintained (i.e., n=8). In the particular case of
looking for a 1-2-1-2 or a 1-2-2-1 pattern, the algorithm
assumes that 6 of 8 pulses were to be assessed for each
individual stagger mask, providing a total of 28 mask sets.
Given 8 pulses, there are three sets of 6 consecutive pulses (1
through 6, 2 through 7, and 3 through 8) that can be assessed.
Note, however, that there are several additional mask sets that
could have been used here, and the present invention 1s not
intended to be limited to any one particular set.

Note that a linear stable 1s really a “1-1-1-1" repeating
pattern, and “1-1-1-1" meets the definition of “1-2-1-2"" and
“1-2-2-1" patterns, where 1t just happens that both “1” and
“2” for these two stagger patterns have the same TOA value.
In any event, a multiple correlation processor based approach
for staggers can readily be implemented. Although as the
number of phases expands, the amount of processing will
increase much more dramatically due to the need to search
over the “n” numbers of individual TOA values, and the “m”
number of possible ways that the “n” TOA data can be
arranged 1n a repeatable manner.

Methodology

Embodiments for each of the linear detection, linear
regression, and dual vote algorithms will now be discussed in
reference to FIGS. 5a through 7. The linear detection method
can be carried out, for example, by the linear detection mod-
ule 310 discussed i1n reference to FIGS. 3 and 4a, while the
linear regression method can be carried out, for example, by
the linear regression module 320 discussed 1n reference to
FIGS. 3 and 4b. The dual vote method can be carried out, for
example, by the dual vote module 3235 discussed 1n reference
to FIGS. 3 and 4c¢. Each of these modules can be implemented
in hardware (e.g., FPGA or ASIC) or software/firmware (e.g.,
programmed DSP processor).

FIG. Saillustrates a method for determiming the correlation
value associated with an estimated PRI using a linear detec-
tion algorithm 1n accordance with one embodiment of the
present invention.

The method begins with recerving 5035 a vector of TOA
data(e.g., v=TOA,, TOA,, ..., TOA ), and normalizing that
data(e.g.,nv=TOA -TOA,, TOA,-TOA ,..., TOA -TOA,),
thereby providing a normalized vector (nv) of TOA data. The
method continues with determining 510 a seed PRI. In one
embodiment, the seed PRI 1s determined by dividing each
clement of the normalized vector by m-1 (e.g.,
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seed_pri=nv, /(m-1)). FIG. 5b 1s a pictorial view of a normal-
1zed vector of m pulses, with a PRI of p, and an example seed
PRI.

The method continues with determining 515 the correla-
tion spread and the delta spread. The correlation spread can be
determined by dividing the seed PRI by the correlation band-
width % (e.g., spread=seed_pr1*bw), and the delta spread can
be determined by dividing the correlation spread by the
“number of points” minus one (e.g., ds=spread/(npts—1)).
The method proceeds with determining 520 the first/next
estimated PRI (e.g., PRI _=min_pri=seed_pri—(spread/2)).
FIG. 5c¢ 1s a pictorial view of estimated PRIs generated by the
linear detection algorithm, along with the correlation spread,
the delta spread, and the “number of points.”” Note that the
correlation fit 1s assessed for each PRI estimate. Further note,
as npts increases, there 1s 1n increase 1n likelihood that one of
the estimated PRI trial values would closely approach the
actual PRI value (for a linear signal). However, so too does the
amount ol computational load increase.

The method continues with determining 523 the first/next
estimated PRI vector (e.g., ev=[0, min_pri, 2*min_pri, . . .
(m-2)*min_pri, (m-1)*min_pri]). The method {further
includes determiming 530 the delta vector, also referred to as
the fitness level. The delta vector can be determined by sub-
tracting the estimated PRI vector, ev, from the normalized
vector of TOA data, nv (e.g., dv=[0, nv,—ev,, nv,—ev,, . ..
nv,_,—ev__,,nv, —ev_J). The method further includes deter-
mining 3535 the correlation weights vector, which can be
achieved by squaring the delta vector (e.g., wtv=[0, dv,*dv,,
dv,*dv,,...dv__,*dv__ ,dv_*dv_]J).

The method proceeds with determining 540 the first/next
correlation value. In one embodiment, the correlation value 1s
determined by dividing the sum of the correlation weights by
the square of the seed PRI (e.g., correlation, —=—[wtv,+
witv,+ ... +wtv__ +wtv_]/(seed_pri*seed_pri1)). FIG. Sd 1s a
pictorial view of a correlation value produced by the linear
detection algorithm of FIG. 5a, along with the correlation
vector and the actual PRI.

As can be seen, a determination 545 1s made as to whether
there are additional PRIs to estimate. If so, then steps 520
through 543 are repeated accordingly. Once all possible PR1Is
estimates have been assessed (e.g., by linear detection, linear
regression, or dual vote), along with the respective correlation
values, the method proceeds with searching 550 the correla-
tion vector, which includes a number (npts) of estimated
PRIs, for the highest or “best” correlation value (e.g., the
correlation value closest to zero). The method proceeds with
determining 355 the pass/fail status based on the known P/F
threshold.

In one particular embodiment, the best correlation value 1s
compared to the P/F threshold. It the best correlation value 1s
greater than or equal to the pass/fail threshold, then a passing
status 1s set (indicative of linearity). Otherwise, a failed status
1s set. The resulting linear detection report includes the P/F
status, the best correlation value and the PRI estimate that
corresponds to the correlation value, and the associated
pulses.

FIG. 6 1llustrates a method for determining the correlation
value associated with an estimated PRI using a linear regres-
s10n algorithm in accordance with another embodiment of the
present 1nvention.

The method begins with recerving 605 a vector of TOA
data, and normalizing that data. This can be performed as
discussed inreference to step 305 of FI1G. 3a, and FIG. 3b. The
method continues with transposing 610 the vector of normal-
1zed TOA data, and determining the weight vector. The trans-

pose 1s performed using matrix algebra, while the weight
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vector can be determined as follows: wv=0.5*[(1-m), (1-m+
2), (1-m+4), . . . (m-1)]=[w,, w,, . . . w_]. Note that the
welght vector has m entries, each entry being 1.0 umit larger
than the previous. Further note that the weight vector can be
pre-calculated as the weights are not dependent on the TOA
data.

The method further includes determining 620 a scalar rep-
resenting the sum of each element of the weight vector
squared  (e.g., scalar=1.0/(sum(weight**2))=1.0/[w,”+
w,”+ ... +w_~]). The method proceeds with determining 625
the mean estimate of the transposed TOA data (e.g.,
mean_estimate=sum(y)/m=[T,+1,...T _]/m), and determin-

ing the PRI estimates. The PRI estimates can be determined as
follows:

PRI_estimate=scale®weight*y=scale™[w, w-, . ..
w_ |*[T, 15 ...T, ]

The method further includes transposing 635 the weight
vector (using matrix algebra), and determining 640 the error
relative to each element of the transposed TOA data vector
based on the mean estimate and the corresponding weighted
PRI estimate. For example, the error can be calculated as
tollows: error=y-mean_estimate—PRI_estimate®*wt, where y
1s the transposed vector of normalized TOA data ({from 610)
and wt 1s the transposed weight vector (from 635). In
expanded form:

error = |1} —mean estimate— PRI estimatex w,

1, —

= |e; T, —mean_estimate— PRI_estimatexw, e, ...

mean_estimate— PRI_estimatexw,,, |

— Em]-

The method continues with determining 645 the correla-
tion value based on a sigma estimate (quality factor) and the
error (e.g., correlation value=sigma_estimate=| sum(error, )/
m]'?=[(e,*+e,” . .. +e,°)/m]"?). The method proceeds with
determining 650 the pass/tail status based on P/F Threshold.
For example, the sigma estimate>=P/F threshold, then a pass
status 1s set. Otherwise, a failed status 1s set. The correlation
value, along with the corresponding PRI estimate, the P/F
status, and the associated pulses are provided in the linear
regression report.

FI1G. 7 1llustrates a method for determining the correlation
value associated with an estimated PRI using a dual vote
algorithm in accordance with another embodiment of the
present invention. The method assumes that at least two dis-
tinct PRI analysis types were conducted, and the P/F status of
cach analysis 1s available. In one particular embodiment, the
analysis types include linear detection and linear regression
as previously discussed.

The method begins with recerving 705 P/F status output
from each of the linear detection and linear regression algo-
rithms. A determination 710 1s made as to whether the esti-
mated PRI provided by linear detection passed, as well as a
determination 715 as to whether the estimated PRI provided
by linear regression passed. As previously explained, these
determinations can be made simultaneously by a logic gate
adapted to receive the P/F status from each analysis type.
Alternatively, the determinations 710 and 715 can be made
sequentially or otherwise independent of one another. The
respective P/F statuses can then be provided to a dual vote
software routine that 1s programmed to wait for each vote to
arrive. Other configurations will be apparent 1n light of this
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disclosure, and the present invention 1s not intended to be
limited to any one such embodiment.

IT1t1s determined that each type of analysis passed, then the
method proceeds with setting 720 the P/F status to pass for the
corresponding PRI estimate. On the other hand, 11 1t 1s deter-
mined that one or both types of analysis failed, then the
method proceeds with setting 725 the P/F status to fail for the
corresponding PRI estimate. In one embodiment, when dual-
vote passes, the PRI estimate that 1s reported 1s one of the
following: the PRI estimate produced by either analysis (e.g.,
default could be set to a particular type), or the average of the
PRI estimates provided by each analysis type.

Note that each of the methods described 1n FIGS. 5a-7 can
be run 1n a multiple correlation process as described herein,
with each algorithm operating on a particular set of pulses or
mask set (e.g., m-of-n configuration). Alternatively, each
algorithm can be run 1n a singular fashion, where all of the
pulses of the received pulse train are analyzed by one instance
of each algorithm (e.g., n-of-n configuration).

The foregoing description of the embodiments of the
invention has been presented for the purposes of illustration
and description. It 1s not intended to be exhaustive or to limait
the invention to the precise form disclosed. Many modifica-
tions and variations are possible 1n light of this disclosure. It
1s intended that the scope of the mvention be limited not by
this detailed description, but rather by the claims appended
hereto.

What 1s claimed 1s:

1. A linear detection method for determining correlation
values associated with an estimated Pulse Repetition Interval
(PRI) executed by a linear detection module of a correlation
mask disposed on a digital signal processor, comprising:

determining a correlation spread associated with a vector

of Times-of-Arrival (TOA) data;

determining a delta spread associated with the correlation

spread;

determining a first/next estimated PRI associated with the

vector of TOA data;

determiming a first/next estimated PRI vector based on the

first/next estimated PRI;

determiming a delta vector based on the first/next estimated

PRI vector;

determiming a correlation weights vector based on the delta

vector,

determining a first/next correlation value based on the cor-

relation weights vector; and

in response to there being no additional PRIs to estimate,

searching the correlation values for a highest correla-
tion.

2. The method of claim 1 further comprising;:

recerving the vector of TOA data;

normalizing the vector of TOA data, thereby providing a

normalized vector of TOA data; and

determiming a seed PRI associated with the vector of TOA

data.

3. The method of claim 2 wherein determining the seed PRI
includes dividing each element of the normalized vector by
m—1, where m=the number of pulses 1n the vector of TOA
data.

4. The method of claim 2 wherein determining the corre-
lation spread includes dividing the seed PRI by a correlation
bandwidth percentage that defines a percentage bandwidth
for searching for the estimated PRI.

5. The method of claim 2 wherein determining the first/
next estimated PRI includes subtracting (correlation spread/

2) from the seed PRI.
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6. The method of claim 2 wherein determining the delta
vector includes subtracting the estimated PRI vector from the
normalized vector of TOA data.

7. The method of claim 2 wherein determining the first/
next correlation value includes dividing the sum of the cor-
relation weights by the square of the seed PRI.

8. The method of claim 1 wherein determining the delta
spread includes dividing the correlation spread by a number
of point (npts)—1, where npts defines the number of points to

search for the estimated PRI.

9. The method of claim 1 wherein determining a correla-
tion weights vector includes squaring the delta vector.

10. The method of claim 1 further comprising repeating the
determining steps for additional PRIs.

11. The method of claim 1 further comprising comparing
the highest correlation value to a pass/fail threshold to deter-
mine a pass/fail status.

12. The method of claim 11 further comprising determin-
ing a second pass/fail status for a correlation value associated
with an estimated PRI using a linear regression algorithm and
setting a final pass/fail status 11 said pass/tfail status 1s passing
and said second pass/fail status 1s passing.

13. The method of claim 1 further comprising providing a
linear detection report that includes at least one of a pass/tail
status, the highest correlation value, a PRI estimate that cor-
responds to the highest correlation value, or pulses associated
with the PRI estimate.

14. The method of claim 1 wherein said method 1s runin a
multiple correlation processor, and wherein said method 1s
run on one of the group consisting of a set of pulses, a mask
set, and a singular fashion for all pulses of a pulse train.

15. The method of claim 1 wherein the correlation values
are assessed by at least one of the group consisting of the
linear detection method, linear regression method, and dual
vote method.
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16. The method of claim 1 further comprising processing in
an operation mode selected from at least one of the group
consisting of batch mode, stream mode, loop back mode, and
tracker mode.

17. A method for determining correlation values associ-
ated with an estimated Pulse Repetition Interval (PRI)
executed by a linear regression module disposed on a digital
signal processor, comprising:

receiving a vector of Times-of-Arrival (10A4) data;

novmalizing the vector of the TOA data;

transposing the vector of the normalized TOA data;

determining a weight vector;

determining a scalar associated with the weight vector,

determining a first/next estimated PRI; and

determining a pass/fail status based on a P/F threshold.

18. The method of claim 17 further comprising:

determining a mean estimate of the transposed 104 data.

19. The method of claim 18 further comprising:

transposing the weight vector using matrvix algebra.

20. The method of claim 19 further comprising:

determining an ervor relative to each element of the trans-

posed TOA data based on the mean estimate and asso-
ciated weighted PRI estimate.

21. The method of claim 20 further comprising:

determining a correlation value based on a sigma estimate

and the error.

22. The method of claim 21, wherein the pass/fail status is
set to failed if the sigma estimate is less than the P/F thresh-
old.

23. The method of claim 17, wherein the scalar vepresents
the sum of each element of the weight vector squared.

24. The method of claim 17, wherein the first/next estimated
PRI is associated with the vector of the TOA data.

25. The method of claim 17, wherein the weight vector is
pre-calculated.
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