

US00RE44266E

(19) United States

(12) Reissued Patent

Mayfield

(10) Patent Number:

US RE44,266 E

(45) Date of Reissued Patent:

*Jun. 4, 2013

(54) EXPRESSION OF EUKARYOTIC POLYPEPTIDES IN CHLOROPLASTS

(75) Inventor: **Stephen P. Mayfield**, Cardiff, CA (US)

(73) Assignee: The Scripps Research Institute, La

Jolla, CA (US)

(*) Notice: This patent is subject to a terminal dis-

claimer.

(21) Appl. No.: 11/197,730

(22) Filed: Aug. 3, 2005

Related U.S. Patent Documents

Reissue of:

(64) Patent No.: 6,156,517
Issued: Dec. 5, 2000
Appl. No.: 09/341,550
PCT Filed: Jan. 16, 1998
PCT No.: PCT/US98/00840

§ 371 (c)(1),

(2), (4) Date: **Jul. 13, 1999**PCT Pub. No.: **WO98/31823**PCT Pub. Date: **Jul. 23, 1998**

U.S. Applications:

- (63) Continuation of application No. 10/310,587, filed on Dec. 4, 2002, now Pat. No. Re. 39,350.
- (60) Provisional application No. 60/035,955, filed on Jan. 17, 1997, provisional application No. 60/069,400, filed on Dec. 12, 1997.

(51) Int. Cl. (2006.01)

(52) **U.S. Cl.**

USPC **435/69.1**; 435/320.1; 435/419; 435/375; 435/468; 536/23.1

(58) Field of Classification Search

None

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,451,513	A	*	9/1995	Maliga et al	800/278
5,661,017	A		8/1997	Dunahay et al.	
5,693,507	A	*	12/1997	Daniell et al	435/470
6,156,517	A		12/2000	Mayfield	435/6
6,271,444	B1		8/2001	McBride et al	800/300

FOREIGN PATENT DOCUMENTS

WO WO 97/41228 A2 11/1997 WO WO 01/64929 A1 2/2001

OTHER PUBLICATIONS

Blowers et al., The Plant Cell, vol. 1,(1989) pp. 123-132.* Tavladoraki et al, Nature, vol. 366 (1993) pp. 469-472.*

Sidorov et al., "Stable chloroplast transformation in potato: use of green fluorescent protein as a plastid marker." *The Plant Journal*, vol. 19 (2) pp. 209-216 (1999).

Daniell et al., "Transient Foreign Gene Expression in Chloroplasts of Cultured Tobacco Cells After Biolistic Delivery of Chloroplast Vectors", *Proc. Natl. Acad. Sci.*, 87:88-92 (1990).

Danon and Mayfield, "Light Regulated Translational Activators: Identification of Chloroplast Gene Specific mRNA Binding Proteins" *The EMBO Journal*, 10(13):3993-4001 (1991).

Danon and Mayfield, "ADP-Dependent Phosphorylation Regulates RNA-Binding in vitro: Implications in Light-Modulated Translation", *The EMBO Journal*, 13(9):2227-2235 (1994).

Hauser et al., "Translational Regulation of Chloroplast Genes", *The Journal of Biological Chemistry*, 271(3):1486-1497 (1996).

Kim and Mayfield, "Protein Disulfide Isomerase as a Regulator of Chloroplast Translational Activation", *Science*, 278:1954-1957 (1997).

Kin-Ying et al., "Introduction and Expression of Foreign DNA in Isolated Spinach Chloroplasts by Electroporation" *The Plant Journal*, 10(4):737-743 (1996).

Le et al., "Triticum Aestivum Poly(A)-Binding Protein (wheatpab) mRNA, Complete Cds", *Database EBI* (online), p. 1-2 (1996).

Pihlajaniemi et al., "Molecular Cloning of the β-Subunit of Human Prolyl 4-Hygroxylase. This Subunit and Protein Disulphide Isomerase are Products of the Same Gene" *The EMBO Journal*, 6(3):643-649 (1987).

Yohn et al., "A Poly(A) Binding Protein Functions in the Chloroplast as a Message-Specific Translation Factor", *Proc. Natl. Acad. Sci.*, 95:2238-2243 (1998).

Yohn et al., "Translation of the Chloroplast *psbA* mRNA Requires the Nuclear-Encoded Poly(A)-Binding Protein, RB47", *The Journal of Cell Biology*, 142:435-442 (1998).

Ohtani et al., "Location and nucleotide sequence of a tobacco chloroplast DNA segment capable of replication in yeast", *Mol. Gen. Genet.* 195:1-4, 1984.

Rochaix et al., "Construction and Characterization of Autonomously Replicating Plasmids in the Green Unicellular *Alga Chlamydomonas reinhardii*", *Cell*, 36:925-931, 1984.

Uchimiya et al., "Molecular Cloning of Tobacco Chromosomal and Chloroplast DNA Segments Capable of Replication in Yeast", *Mol. Gen. Genet.* 192:1-4, 1983.

Danon et al., *EMBO J.*, vol. 10, 1991, pp. 3993-4001. Danon et al., *EMBO J.*, vol. 13, 1994, pp. 2227-2235.

* cited by examiner

Primary Examiner — Jim Ketter

(74) Attorney, Agent, or Firm — DLA Piper LLP (US)

(57) ABSTRACT

The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

23 Claims, 17 Drawing Sheets

74	154	223	283 29	343 49	403	463 89	523 109	583 129	643 149	703 169	763 189
TATA	CTTT	ဗ္ဗ	GAC	OTG V	GIC V	TAC	ပ္ပ	ပ္ပ	ည က	ည	TIC AAC CAG AAG ATT GAG GGC AAG ATT GTG TAC GTG GCC CCC TTC 763
CAAA	ICAA	ည	£5 %	E C	FAC	Z Z	ည ည	\$ ×	2 A C	EAT (ξ, (,
1400	SCA	ტ ∢	کڙ ک	β <u>"</u>	ξ Z	2	g	S S	<u>ئے</u>	S J	ე ე
III III	CIAC	E S S	Si Si	E G	ک <u>ا</u> کا	ည ည	E OI	ပ္ က	ည		ည် ည
ည ပြွ	ATT	S TC	£ ≯ ©	დ >	Ç Ş	Ø ₽	က ညေက	υ G	₽ Ø 4	გ დ	ව >
A GA	VCCI	GAG	ç, P	STC	ტ ტ	о Б ы	g D	ATH	5 >	0 0 0 0 0 0	Ę, >
GACC	AAG	ACT	ည်လ	ည်လ	S ¹	A M	ပ္ပ ၕ	A F	A X	S o	STS >
GAG	CAA	ئے ا	TCG S	F	TCG S	GCC A	CAC	AAG K	ည်	GAC	ATC
4 5	D D	CG 7	AAC	CIC	ည္က	ပ္ပည္	T S S	GAC D	TCC S	E E	X AG
H. H.	CGTA	13 G €	9 8 8	E BBG	ည္က	GAC D	1GG	D L J	9 13 13	FI F	გ _
CT T	CICI	SC A M	ָר ק ני	FIG	F CG	ا الا	ATG.	Z Z	ATTA	CAC H	E E C
TG T S	AAGC	TCAA	ეე ე	CTG	GIC	GCT A	ATC	AAG K	AAG K	GTG V	ATT.
TG G	GCAA	GAAG	ACC	CAG Q	S S S S	CAG	ည်ၾ	ATC	ည်	TIC	AAG K
TC A M	AATT	ICIT	SGC	S S S S	GAT	ည်မှု	ATG M	FI FI FI FI FI FI FI FI FI FI FI FI FI F	E F	ည္တမ္မ	A A G
GICC	AAAA	CGCG	ეეე ∀	SAG E	ည္တည္က	GAC D	E G	FIG.	ည်	rac (246
FTTG	3CCA	SCTG	ည် ည	ACC F	ည်	CIG	AAG (AAC	5 <u>5</u>	9 5	ξ Σ
CGTG	ACCG	JTTTA(CAG CAG	GIC	OTG V	AAC TAC AAC AGC GCT C	υ υ υ	9 9 5	E E	¥ ₹ ₹	316
3CTC	3GCA	SCCG	ပ္ပ	3AT (g g	S SG (ξ. Σ.) 2 1 1 1	ည ည	ξς Τ	ည ည
) (3CCC	SCG	SCI	ζ Σ	¥G C	Į,	7	7. J.	ξ,	34C 7) 16	7 9 C
ည	AAAC	CGAC	S S	AG A	ည် ည	AC A	된 일 기	8	الا الا	ပ္ပ	E G
ATT	AAA	ATC	ტ ≮	Ö Ы	Ω Fi ω	Ei >>	Ü>	G Fi N	C) H	ტ ტ	A D
1 1 5	ر ا	G	ე გ გ	CT.	20 A	A Z	Q H	A X	ر ا ا	A Z	20 A
र —ा ग	75	155	224	284 30	344 50	404	464	524 110	584 130	644 150	704

A GA EA CO FIG 9 9 9 9 9 9 9 9 9 9 9 9 9 8 A THE BEAUTY OF THE STAND OF TH AA CO AB CO DAY NA BA CO DAY NA DA CO A A CO DE CO AN DU AN AN AN DO FIT AN DO STANDA 884 230 .064 290 1124 310 1184 330 824 210 944 250 004 270

1483	1543 449	1603	1663 489	1723 509	1783 529	1843 549	1903 569	1963 589	2023	2088
CCC P	ATG	CAG	S S S	ည္က	S S S S	ე გ	GAG	GAG EAG	A CT	7TGCG
GCT	ATG	ည်သူ	ပ္ပ ဗ	AAGK	S S S S	S S S	Ø ₹	00 A	ATC	<u>Č</u> TTG
TIC	CCCC	CCG P	ပ္ပမ	ည်မှ	CCT P	CIG L	GTG V	AAC	S S S	S A C C C C C C C C C C C C C C C C C C
		ATG								
		ATG								4 7 8
		CCC P								
GCC A	ATG	ပ္ပ	ტ ტ	P CT	GCT A	ACC	CIG FIG	CIG L	AAGK	GCT A
		CGC R								
		r CC CC								
		ე ე								
		CGC R								
AGC	CCG P	ე ე	P CG	S S S	QC ₹	GCC A	ATG	ATC	GAG E	QCC A
ATG	ပ္ပမ	ည်က	ပ္ပ ဗ	ပ္ပ ဗ	CCCC	S S S S	ATG	AAG	CAC	ATT
ပ္ပ	GCT A	ပ္ပ ဗ	ATG	CAG Q	GCG A	CCC P	AAG	ပ္ပ	T S S	GTG V
		CCT								
		ATG								
		ပ္ပ								
		ပ္ပင္က								
CCG P	ည္	D CGG	ATG	5 00	A CT	B CG	900 4	S S S	S F F F F F F F F F F F F F F F F F F F	ည် ည
C C C C	ပ္ပ် ပ	CCG P	ATG	ပ္ပ် ပ	SCC A	GCG A	gcc A	CIG	r ri	GTG V
1424	1484	1544	1604	1664	1724	1784	1844	1904	1964	2024

FIG. 1

, , , ,	2219 28	2284 43	2364	2444	2516 8	2576	2636	2715	2790	2846
A A CONTRACTOR OF STATE OF STA	2160 GAG CAG TGC TTG CTT GCC GCC GTG AAG CCG CGC CGA ACT GGG GAC GGC AGG AGG CCG CAG CCG CAG GCG GAC GGC AGG AGG	2220 CTG GCG TTG CCG CCG CCC CAC AAC AAG TTG GTG GCG TGA AAGTCTCTGGGCGTGCTCCG	2285 GACGGITTGTAAGGAACTGGCTTTTTGGCCGGTTGCCGCCCAAAGGCGGAACGGCGGTCTTTTCAGGCCAATCA	2365 CATCCGGCTGGAAAATTCTTACCAAACCCCTGCACCCAAAAATTTCGGGTTCCGAAAAAACTCCCTTTTTT	CCGGCAACGCGTTCAAGCTTTCCGGGTTGGAAAA ATG TTA CCC GGA AAA GGC GGG AAG	CCC CCT GCA CCA GTT ATT CGG GGT TTC GCC GGG AAT GAG CAA GCG TTC GGG CTG P P A P G Q V I R G F A G N E Q A F G L	2577 TYG GCC GTA TCG CCTG TCG GCG TCT CAG GCG CCA GAA GGA AGG ATG ACG TTT TGG 29 L A V S R T L S G C Q A P E G R M T F W	TGA AGGGGTGCAAACTGACACACAGTTTTTGGCAATAGACGTGGAAAAGTCCAGTGCGGGGTGAGGCGGATAGCGGAAA	ATCAAGCGTGGCGGGTCCCTGGACGACGCTTCTGTTGTTTTGCTGAGCCCTTTTG ATG GCA CAA TCG CAC	2791 TGT TTT GAG GCG ACT GTA AAG TGC CCG ACG CTA AAA AAG CGG CCG CGA ATT CC 6 C F E Q A T V K C P T L K K R P R I

MNRWNLLALTLGLLLVAAPFTKHQFAHASDEYEDDEEDDAPAAP

KDDDVDVTVVTVKNWDETVKKSKFALVEFYAPWCGHCKTLKPEYAKAATALKAAAPDA
LIAKVDATQEESLAQKFGVQGYPTLKWFVDGELASDYNGPRDADGIVGWVKKTGPPA
VTVEDADKLKSLEADAEVVVVGYFKALEGEIYDTFKSYAAKTEDVVFVQTTSADVAKA
AGLDAVDTVSVVKNFAGEDRATAVLATDIDTDSLTAFVKSEKMPPTIEFNQKNSDKIF
NSGINKQLILWTTADDLKADAEIMTVFREASKKFKGQLVFVTVNNEGDGADPVTNFFG
LKGATSPVLLGFFMEKNKKFRMEGEFTADNVAKFAESVVDGTAQAVLKSEAIPEDPYE
DGVYKIVGKTVESVVLDETKDVLLEVYAPWCGHCKKLEPIYKKLAKRFKKVDSVIIAK
MDGTENEHPEIEVKGFPTILFYPAGSDRTPIVFEGGDRSLKSLTKFIKTNAKIPYELP
KKGSDGDEGTSDDKDKPASDKDEL

80 0 ggagtccctg tggcgagctg tgaggacga tgtggtgac gttctacgc caccgccct gaagaaa ggttcgttga ttggctgggt ttaccctggg ccgatgagta ccacccagga cgcttgtgga tcgacgttac ctaaggctgc gcgagatcta gacgacg tccaagttcg gctcatgctt cttcttgccc cctgagtacg aaggtcgacg accetcaagt gatggcattg gcaccagttt cgccctaag gcc gct gacceteaag ccgttggaac cgtcaagaag ccgcgacg gggctace ccttatc gccactgcaa ctcccgatgc acgccatgaa ccttcaccaa atgcccccgc gggatgagac tcggcgtgca acaacggccc gtcaagaact ccttggtgcg aaggctgctg gcccagaagt gctgaggtcg aagtcctacg gagtacgttt gtggcagcgc gaggaggacg gcttctgact

121 121 121 241 421 421 541 541 501

O 88 b **PO** U ρĎ U PD a 90 рĎ O ac agc ac ħ Ы U tg **b**D CB 90 ρÛ þÐ Ħ Ø 90 Ø ac 1 O O 90 U ac PD Q O gcat рÛ Ø るも PO C Ø Ø **数** C Ç Ы O Ø **50** J C C Ø ag ag Ü PD O 11 ctcc tcgc Ø IJ 1 рD pD **PO** IJ ρĎ C gt age tgt P0 ac Ü рÛ C b U **PO** U C IJ đ Ø **PD** U đ Ų PÔ рĎ Ø 8 Ç ρÛ bD þΩ PD O 60 Ø **80 0** O **PD** PD ы Ø O Q ಡ T) U đ U t IJ ω \circ U Ы U ၁၁ ac Ø U **60 60** O ы U C Ö Ø 90 J Ø Ø Ú **PD** Ø C Ø Ç U U Ø Ø O tcc ac ы ದ рD ささ ບ ပ Ø U **80 C** ÞĎ ħ t ပ U Ø J ρŷ Ø U **50** C O U d bD 80 80 17 ಶಾದ 60 60 U ρD **あ**の gccc tctg **80 80 80** 80 80 th t ga 88 1 C 8c at U Ç Ü $\boldsymbol{\omega}$ đ a pD pD 42 d ಥ O Ø Ç d Ü ิฒ 28 PD PD PD PD 60 U ပ ttc ac U 色 ひ を U PD **90 90** U þΟ ğ t g at ga g Ţ **נו** C PD 90 Ø ы $\boldsymbol{\varphi}$ 4 Ø **U U 60 60** るめち po po po po po po q **න** ට とり は PO T) ບ aggttt gaggag tccgtc gttgct cctg 888 88t aa atcg 88 ρĐ 88 gcccctttaag atc gcc ga ac ac ac U CCC **8** 0 ರ ρŊ Ø рD th B B gag ac 8C ct U ac **10** 11 gga a Ba Ct g 88 ď **80** 0 ac ည္သ U ಥ T) O Ç O त्त का का का का व ಥ IJ T) IJ Q J C ပပ Ü O ၁၉၂ ၁၉၂ gga acc ctc CBC. tgaact gtB ag tt ag ag ag BBB ati scag. 88 20 tct C 50 BCC **8** 8 8 atc 50 at t IJ ct atg ggc tgg 80 वव ga Ø ы よる。 で、 で、 で、 が、、 ρĐ ρĐ ρĎ **b**0 PD th ₩. PD ac b O S **め** ひ T) 8 a **10 11** Ø U 28 8 8 80 80 80 まり d t Ç O Q u Ü ಡ **とこ** U

ATC Ile

GCA

AAC

ACT

CCAC

ATC Ile

GCT

GGT

ACA Thr

ATT Ile

ATC

AAC

AAC

. GGT

TAC

CTT

CTT

Asn

Asn

Gly

Tyr

Leu

Ser

GTA Val Ile

250

TCT Ser

Thr

Asn Ala

Gly

Asn

Try

Leu

Trp

Glu

Asp

Leu

Ser

Ala

Ala

Glu

Trp

Ile

Pro

Tyr

Phe

His

CTT

Val

GGT

AAC

TAC

TTA

TGG

GAG

GAC

CTA

TCT

GCT

GAA

TGG

ATT

CCA

TAC

TIC

CAC

.300 GCT T

. 450 CCA P,

GCT

Ser

Tyr

Ala

Val

Ala

Ile

Trp

Pro

Arg

Met

G1y

Lea

Arg

Phe

Leu

Glu

TGG

TCT Ser

TCA

TAC

GCT

GTA

GCT

ATC

TGG

CCA

CGT.

ATG

GGT

TTA

CGT

TIC

TTA

GAA

.400

CGT

GGT

Met

Tyr

Cys

Val

Gly

Leu

Leu

Phe

His

Сув

Val

Ile

Leu

Gln

Tyr

CCT

Glu

Leu

Tyr Ala

ATG

TAC

TGC

TAC

GTA

GGT

CTA

CTT

TTC

CAC

TGT

GTT

ATC

CTT

S S

TAC

.350

Thr Glu Arg Leu 3B Ser <u>U</u> Ser Val Leu Ser G1yHis Met Ala

TTA TCT GAA Glu TCA GAA Glu TTC **4**29 GGT Ala G1yACT TCA T Ser P CAA GGT ACA Gln G1yGAA Gly GGT Phe TIC TTC Phe GTA CAA Gln GTA CGT Val .550 ე ცე Gly ATC Ile GGT ATC Ile G1yATC ATG Ile TTA GCT Ala Met TCT GTT Pro Phe Val CCT TTC TCA Gly GGT Tyr AAC Asn TAC .600 TTA GGI Leu C GTT Val Ile ACT Thr TTC Phe TTA Leu ATG ACT Thr GTT Met TTA G1YPhe GGT CAC His TTC 850 TTC Phe TCT TCT Ser GTA Val GGT ATC GGT GCT CCA Pro Ala CAC Ser His CAC TCA Thr ATG GCT TTA Leu ATG Ala Met CCT Pro CTT GCT S S S Ala Len TCA ATG GCT Ala ATC Ile Met Ser GGT GTA Val AAC Asn TTC

GTA

ATT

AAC

TAC

ACT

GAA

GAA

GAA

CAA

GGT

TTC

CGT

TAC

GGT

GAA

AAC

GCT

.700

Ile

Asn

Tyr

Thr

Glu

Glu

Glu

Gln

Gly

Phe

Arg

Tyr

Gly

Glu

Asn

Ala

TCA

GAA

.800

Sheet 9 of 17

<u>က</u> <u>U</u>

CATATATATACTTAGCTACCATAGGCAGTTGCCCC

.1150

.1050 TCA TCA TTA CGT TCT Leu TTA Ser Asp GAC ATG TCT Ser Ala Met Asn AAC GGT GCT GTA Gly Asn AAC Val Gla AAC Asn ACT GTA TTA Leu ACT Thr Ile TCA Phe TTC TIC Trp Phe AAC Asn Ala 1100 TCA Ser .850 Ser TCT TGG GCT CAA GCT Gln Ala Ala GCT Asn Ala ATT AAC CGT TTA Arg Asp Leu TyrGly TAC Asn AAC GAC GGI Phe TTC Leu Gln CAA CTA ATC Asn ATC AAC Ile Val . TTC Phe . GTA Val TTC Pro CCT. ATC Ile .900 GGT Ile Pro ATC CCG Asp GAC TIC Phe Leu Trp CTA GCA Asn TGGAsn Ala AAC AAC .950 Trp Arg Ala TTA Leu CAC $\mathbf{T}GG$ CGI GCT His Gly GGT GCT GCT ACT AAC Asn Thr Ala TTA Phe AAC TTT Asn Asn TIC Phe AAC \$ 00* .1000 CTA Tyr CGT TTT TAC Phe GCA Arg Leu TTC Ala Ile GGT Phe TTC ATG Met GTA Glu TAA GAG G1yVal *0C CAT His ACT CGT CAC Thr Arg AAC His CAC Asn GCT TTA TCA ATG GGT AAC Asn Thr

20	120	180	240 80	300	360	420 140	480 160	540	600	660
AGT R	ည်	CTG L	GIC V	GCT A	ATC	AAG	AAG	GTG V	ATT	AGG
GGT G	ACC	CAG O	gcc A	CAG O	S S S	ATC	ပ္ပ	TIC	AAG K	S &
GAA	AGC	9 QC A	GAT	C C C C	ATG	TIC	TIC	ပ္ပ ဗ	AAGK	AGG R
ATC	A A	GAG	Q ₩	GAC	CCT	ATC	QCC P	TAC	CAG Q	ည်ငှ
CAT	C C G	ACC	ည်သ	CTG L	AAG K	AAC	FG S	ပ္ပ ဗ	AAC	ည္က
ပ္ပမ	CAG	GIC V	GTG V	GCT A	ပ္ပ ဗ	ပ္ပ ဗ	TTC	AAGK	GTC V	GAC
AGC	ACC	GAT	ပ္ပင္က	AGC S	AAC	GIC	ACC	S	ACC	A GCT
						ပ္ပ ဗ				
						T S S				
CAT	GCG A	CIG	A CC C	AAC	CAT	AAG	CIG	AAC	₽	CAG
CAT	CCG P	GAC	GTG V	GTC V	TAC	ည္က	GCC A	A A A	20 2	F
						P GC				
CAT	TCG	GTC	ပ္ပမ	GCC A	Ç L L	TCG	GCC A	ACT	GCC A	GCC A
CAT	TCC	TAC	GTT V	TAC	ACC	CCT P	GAC	g G G	GCT A	GTG V
						GAC				
						ပ္ပ				
						S S H				
						TCG D				
						73 S				
ATG	CAT					ATG	AAC	ATT	CAC	GAG
←	61	121	181	241	301	361	421	481	541 181	601 201

1278 424										<u>G</u>	11_				ည	GGAT	TAA *	ATG	ည္	g G G	1261
1260	CAG	ATG	AAC	GCC A	GAG	CTG L				CGT R		GTG V	GAC		ည္	CAG O	g Q Q	त्यु च	P CC	GIG V	1201
1200400	TAC	CIG L	CCC P	AAGK	ပ္ပ်ပ္	AAG				ပ္ပ		ATG	GAG		GIG V	CCC P	P CGG	ე გ	ACC	SCC A	1141
1140 380	GAG	GAC	E E	AGC	ACC	TIC				გ გ		ပ္ပမ	AAGK		AAG	၁၉၅	AGC	ပ္ပမ	GAC	AAG K	1081
1080 360	ATG		AAG K	TGC C	TCG	ACC				TCT S		A GCC A	$\mathbf{T}^{\mathbf{T}C}$		GAG	CGT R	CTG	G G G G	GAC	GAC	1021
1020 340	GAC	GIC V	GAG	GAG	GAC	TCC S				GTC		CTG	AACN		AGC	CAG Q	TAC	AAG K	CTG L	TAC	961
960	CGT R	GAG	CAG	AAGK	AGC	GAG				CAG		CIG	ATG		GAG	2 2 3 3	GAG	ACC	AAGK	AAGK	901
300	CAG	B C C	ပ္ပင္က	ပ္ပ	S S S	TAC				90		ATG	GAG		GAG EAG	AAC	CIG FI	TAC	GAG	GIG >	841
840	ည္သည္	AAG	SCC A	g Q Q	T S S	GAG E	9 P	GAC	AAG	TTC	AAC	ATC	TTC	တ္ ဗ	TTC	ပ္ပ	AAG	AGC	ပ္ပ် ပ	ပ္ပ ပ	781
780	AAG	GAC	GAC	AAG	ATG	GTC				ACC		GAG	999		GAG	ACC	B C C	ATG	AAG	ပ္ပ ပ	721
720240	CIG L	GAG E	GAC	GAC	ပ္ပ် ပ	ATC				TTG		AAG	GTC		GTG V	AAC	ACC	TAC	TTG	ACG	661

1.3 soluble

1.3 soluble

1.2 pellet

1.2.1 pellet

1.3 pellet

1.4 fox Fab

1.5 soluble

1.5 pellet

1.6 fox Fab

FIG. 8

FIG. 10

EXPRESSION OF EUKARYOTIC POLYPEPTIDES IN CHLOROPLASTS

Matter enclosed in heavy brackets [] appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.

This is a stage application filed under 35 USC 371, of PCT/US98/00840, filed Jan. 16, 1998. This application claims benefit of provisional No. 60/035,955 filed Jan. 17, 1997 and provisional appln No. 60/069,400 filed Dec. 12, 1997.] Notice: More than one reissue application has been 15 filed for the reissue of U.S. Pat. No. 6,156,517. The reissue applications are U.S. application Ser. No. 11/197,730 (the present application) and Ser. No. 10/310,587, issued on Oct. 17, 2006 as U.S. Pat. No. Re. 39,350, all of which are continuation reissues of U.S. Pat. No. 6,156,517. This application 20 is a continuation reissue application of U.S. application Ser. No. 10/310,587, filed Dec. 4, 2002 now U.S. Pat. No. Re. 39,350, which is a reissue application of U.S. Pat. No. 6,156, 517, issued Dec. 5, 2000, which is a national stage application filed under 35 U.S.C. §371, of PCT/US98/00840, filed 25 Jan. 16, 1998. This application claims benefit of priority to U.S. Provisional Application Ser. No. 60/035,955, filed Jan. 17, 1997 and U.S. Provisional Patent Application Ser. No. 60/069,400, filed Dec. 12, 1997.

This invention was made with government support under Contract No. GM 54659 by the National Institutes of Health and Contract No. DO-FG03-93ER20116 by the U.S. Department of Energy. The government has certain rights in the invention.

TECHNICAL FIELD

The invention relates to expression systems and methods for expression of desired genes and gene products in cells. Particularly, the invention relates to a gene encoding a RNA 40 binding protein useful for regulating gene expression in cells, the protein binding site, a gene encoding a regulating protein disulfide isomerase and methods and systems for gene expression of recombinant molecules.

BACKGROUND

Expression systems for expression of exogenous foreign genes in eukaryotic and prokaryotic cells are basic components of recombinant DNA technology. Despite the abundance of expression systems and their wide-spread use, they all have characteristic disadvantages. For example, while expression in E. coli is probably the most popular as it is easy to grow and is well understood, eukaryotic proteins expressed therein are not properly modified. Moreover, those proteins tend to precipitate into insoluble aggregates and are difficult to obtain in large amounts. Mammalian expression systems, while practical on small-scale protein production, are more difficult, time-consuming and expensive than in E. coli.

A number of plant expression systems exist as well as 60 summarized in U.S. Pat. No. 5,234,834, the disclosures of which are hereby incorporated by reference. One advantage of plants or algae in an expression system is that they can be used to produce pharmacologically important proteins and enzymes on a large scale and in relatively pure form. In 65 addition, micro-algae have several unique characteristics that make them ideal organisms for the production of proteins on

2

a large scale. First, unlike most systems presently used to produce transgenic proteins, algae can be grown in minimal media (inorganic salts) using sunlight as the energy source. These algae can be grown in contained fermentation vessels or on large scale in monitored ponds. Ponds of up to several acres are routinely used for the production of micro-algae. Second, plants and algae have two distinct compartments, the cytoplasm and the chloroplast, in which proteins can be expressed. The cytoplasm of algae is similar to that of other eukaryotic organisms used for protein expression, like yeast and insect cell cultures. The chloroplast is unique to plants and algae and proteins expressed in this environment are likely to have properties different from those of cytoplasmically expressed proteins.

The present invention describes an expression system in which exogenous molecules are readily expressed in either prokaryotic or eukaryotic hosts and in either the cytoplasm or chloroplast. These beneficial attributes are based on the discovery and cloning of components of translation regulation in plants as described in the present invention.

Protein translation plays a key role in the regulation of gene expression across the spectrum of organisms (Kozak, Ann. Rev. Cell Biol., 8:197-225 (1992) and de Smit and Van Duin, Prog. Nucleic Acid Res. Mol. Biol., 38:1-35 (1990)). The majority of regulatory schemes characterized to date involve translational repression often involving proteins binding to mRNA to limit ribosome association (Winter et al., Proc. Natl. Acad. Sci., USA, 84:7822-7826 (1987) and Tang and Draper, Biochem., 29:4434-4439 (1990)). Translational activation has also been observed (Wulczyn and Kahmann, Cell, 65:259-269 (1991)), but few of the underlying molecular mechanisms for this type of regulation have been identified. In plants, light activates the expression of many genes. Light has been shown to activate expression of specific chloroplast 35 encoded mRNAs by increasing translation initiation (Mayfield et al., Ann. Rev. Plant Physiol. Plant Mol. Biol., 46:147-166 (1995) and Yohn et al., Mol. Cell Biol., 16:3560-3566 (1996)). Genetic evidence in higher plants and algae has shown that nuclear encoded factors are required for translational activation of specific chloroplast encoded mRNAs (Rochaix et al., Embo J., 8:1013-1021 (1989), Kuchka et al., Cell, 58:869-876 (1989), Girard-Bascou et al., Embo J., 13:3170-3181 (1994), Kim et al., Plant Mol. Biol., 127:1537-1545 (1994).

In the green algae Chlamydomonas reinhardtii, a number of nuclear mutants have been identified that affect translation of single specific mRNAs in the chloroplast, often acting at translation initiation (Yohn et al., supra, (1996)). Mutational analysis of chloroplast mRNAs has identified sequence elements within the 5' untranslated region (UTR) of mRNAs that are required for translational activation (Mayfield et al., supra, (1995), Mayfield et al., J. Cell Biol., 127:1537-1545 (1994) and Rochaix, Ann. Rev. Cell Biol., 8:1-28 (1992)), and the 5' UTR of a chloroplast mRNA can confer a specific translation phenotype on a reporter gene in vivo (Zerges and Rochaix, Mol. Cell Biol., 14:5268-5277 (1994) and Staub and Maliga, Embo J., 12:601-606 (1993).

Putative translational activator proteins were identified by purifying a complex of four proteins that binds with high affinity and specificity to the 5' UTR of the chloroplast encoded psbA mRNA [encoding the D1 protein, a major component of Photosystem II (PS II)] (Danon and Mayfield, Embo J., 10:3993-4001 (1991)). Binding of these proteins to the 5' UTR of psbA mRNA correlates with translation of this mRNA under a variety of physiological (Danon and Mayfield, id., (1991)) and biochemical conditions (Danon and Mayfield, Science, 266:1717-1719 (1994) and Danon and

Mayfield, Embo J., 13:2227-2235 (1994)), and in different genetic backgrounds (Yohn et al., supra, (1996)). The binding of this complex to the psbA mRNA can be regulated in vitro in response to both redox potential (Danon and Mayfield, Science, 266:1717-1719 (1994)) and phosphorylation 5 (Danon and Mayfield, Embo J., 13:2227-2235 (1994)), both of which are thought to transduce the light signal to activate translation of psbA mRNA. The 47 kDa member of the psbA RNA binding complex (RB47) is in close contact with the RNA, and antisera specific to this protein inhibits binding to 10 the psbA mRNA in vitro (Danon and Mayfield, supra, (1991)).

Although the translational control of psbA mRNA by RB47 has been reported, the protein has not been extensively characterized and the gene encoding RB47 has not been identified, cloned and sequenced. In addition, the regulatory control of the activation of RNA binding activity to the binding site by nuclear-encoded trans-acting factors, such as RB60, have not been fully understood. The present invention now describes the cloning and sequencing of both RB47 and 20 RB60. Based on the translation regulation mechanisms of RB47 and RB60 with the RB47 binding site, the present invention also describes a translation regulated expression system for use in both prokaryotes and eukaryotes.

BRIEF DESCRIPTION OF THE INVENTION

The RB47 gene encoding the RB47 activator protein has now been cloned and sequenced, and the target binding site for RB47 on messenger RNA (mRNA) has now been identi- 30 fied. In addition, a regulatory protein disulfide isomerase, a 60 kilodalton protein referred to as RB60, has also been cloned, sequenced and characterized. Thus, the present invention is directed to gene expression systems in eukaryotic and prokaryotic cells based on translational regulation by RB47 35 protein, its binding site and the RB60 regulation of RB47 binding site activation.

More particularly, the present invention describes the use of the RB47 binding site, i.e., a 5' untranslated region (UTR) of the chloroplast psbA gene, in the context of an expression 40 system for regulating the expression of genes encoding a desired recombinant molecule. Protein translation is effected by the combination of the RB47 binding site and the RB47 binding protein in the presence of protein translation components. Regulation can be further imposed with the use of the RB60 regulatory protein disulfide isomerase. Therefore, the present invention describes reagents and expression cassettes for controlling gene expression by affecting translation of a coding nucleic acid sequence in a cell expression system.

Thus, in one embodiment, the invention contemplates a 50 RB47 binding site sequence, i.e., a mRNA sequence, typically a mRNA leader sequence, which contains the RB47 binding site. A preferred RB47 binding site is psbA mRNA. For use in expressing recombinant molecules, the RB47 binding site is typically inserted 5' to the coding region of the 55 preselected molecule to be expressed. In a preferred embodiment, the RB47 binding site is inserted into the 5' untranslated region along with an upstream psbA promoter to drive the expression of a preselected nucleic acid encoding a desired molecule. In alternative embodiments, the RB47 binding site 60 is inserted into the regulatory region downstream of any suitable promoter present in a eukaryotic or prokaryotic expression vector. Preferably, the RB47 binding site is positioned within 100 nucleotides of the translation initiation site. In a further aspect, 3' to the coding region is a 3' untranslated 65 region (3' UTR) necessary for transcription termination and RNA processing.

4

Thus, in a preferred embodiment, the invention contemplates an expression cassette or vector that contains a transcription unit constructed for expression of a preselected nucleic acid or gene such that upon transcription, the resulting mRNA contains the RB47 binding site for regulation of the translation of the preselected gene transcript through the binding of the activating RB47 protein. The RB47 protein is provided endogenously in a recipient cell and/or is a recombinant protein expressed in that cell.

Thus, the invention also contemplates a nucleic acid molecule containing the sequence of the RB47 gene. The nucleic acid molecule is preferably in an expression vector capable of expressing the gene in a cell for use in interacting with a RB47 binding site. The invention therefore contemplates an expressed recombinant RB47 protein. In one embodiment, the RB47 binding site and RB47 encoding nucleotide sequences are provided on the same genetic element. In alternative embodiments, the RB47 binding site and RB47 encoding nucleotide sequences are provided separately.

The invention further contemplates a nucleic acid molecule containing the sequence encoding the 69 kilodalton precursor to RB47. In alternative embodiments, the RB47 nucleic acid sequence contains a sequence of nucleotides to encode a histidine tag. Thus, the invention relates to the use of recombinant RB47, precursor RB47, and histidine-modified RB47 for use in enhancing translation of a desired nucleic acid.

The invention further contemplates a nucleic acid molecule containing a nucleotide sequence of a polypeptide which regulates the binding of RB47 to RB47 binding site. A preferred regulatory molecule is the protein disulfide isomerase RB60. The RB60-encoding nucleic acid molecule is preferably in an expression vector capable of expressing the gene in a cell for use in regulating the interaction of RB47 with a RB47 binding site. Thus, the invention also contemplates an expressed recombinant RB60 protein. In one embodiment, the RB47 binding site, RB47 encoding and RB60 encoding nucleotide sequences are provided on the same genetic element. In alternative embodiments, the expression control nucleotide sequences are provided separately. In a further aspect, the RB60 gene and RB47 binding site sequence are provided on the same construct.

The invention can therefore be a cell culture system, an in vitro expression system or a whole tissue, preferably a plant, in which the transcription unit is present that contains the RB47 binding site and further includes a (1) transcription unit capable of expressing RB47 protein or (2) the endogenous RB47 protein itself for the purpose of enhancing translation of the preselected gene having an RB47 binding site in the mRNA. Preferred cell culture systems are eukaryotic and prokaryotic cells. Particularly preferred cell culture systems include plants and more preferably algae.

A further preferred embodiment includes (1) a separate transcription unit capable of expressing a regulatory molecule, preferably RB60 protein, or (2) the endogenous RB60 protein itself for the purpose of regulating translation of the preselected gene having an RB47 binding site in the mRNA. In an alternative preferred embodiment, one transcription unit is capable of expressing both the RB47 and RB60 proteins. In a further aspect, the RB47 binding site sequence and RB60 sequence are provided on the same construct.

In one aspect of the present invention, plant cells endogenously containing RB47 and RB60 proteins are used for the expression of recombinant molecules, such as proteins or polypeptides, through activation of the RB47 binding in an exogenously supplied expression cassette. Alternatively, stable plant cell lines containing endogenous RB47 and RB60 are first generated in which RB47 and/or RB60 proteins are

overexpressed. Overexpression is obtained preferably through the stable transformation of the plant cell with one or more expression cassettes for encoding recombinant RB47 and RB60. In a further embodiment, stable cell lines, such as mammalian or bacterial cell lines, lacking endogenous RB47 and/or RB60 proteins are created that express exogenous RB47 and/or RB60.

Plants for use with the present invention can be a transgenic plant, or a plant in which the genetic elements of the invention have been introduced. Based on the property of controlled translation provided by the combined use of the RB47 protein and the RB47 binding site, translation can be regulated for any gene product, and the system can be introduced into any plant species. Similarly, the invention is useful for any prokaryotic or eukaryotic cell system.

Methods for the preparation of expression vectors is well known in the recombinant DNA arts, and for expression in plants is well known in the transgenic plant arts. These particulars are not essential to the practice of the invention, and therefore will not be considered as limiting.

The invention allows for high level of protein synthesis in plant chloroplasts and in the cytoplasm of both prokaryotic and eukaryotic cells. Because the chloroplast is such a productive plant organ, synthesis in chloroplasts is a preferred site of translation by virtue of the large amounts of protein 25 that can be produced. This aspect provides for great advantages in agricultural production of mass quantities of a preselected protein product.

The invention further provides for the ability to screen for agonists or antagonists of the binding of RB47 to the RB47 30 binding site using the expression systems as described herein. Antagonists of the binding are useful in the prevention of plant propagation.

Also contemplated by the present invention is a screening assay for agonists or antagonists of RB60 in a manner analogous to that described above for RB47. Such agonists or antagonists would be useful in general to modify expression of RB60 as a way to regulate cellular processes in a redox manner.

Kits containing expression cassettes and expression sys-40 tems, along with packaging materials comprising a label with instructions for use, as described in the claimed embodiments are also contemplated for use in practicing the methods of this invention.

Other uses will be apparent to one skilled in the art in light 45 of the present disclosures.

BRIEF DESCRIPTION OF DRAWINGS

In the figures forming a portion of this disclosure:

FIGS. 1A-1D show the complete protein amino acid residue sequence of RB47 is shown from residues 1-623, together with the corresponding nucleic acid sequence encoding the RB47 sequence, from base 1 to base 2732. The nucleotide coding region is shown from base 197-2065, the precursor 55 form. The mature form is from nucleotide position 197-1402. Also shown is the mRNA leader, bases 1-196, and poly A tail of the mRNA, bases 2066-2732. Both the nucleotide and amino acid sequence are listed in SEQ ID NO 5.

FIGS. 2A-2B show the complete protein amino acid residue sequence of RB60 is shown from residues 1-488, together with the corresponding nucleic acid sequence from base 1 to base 2413, of which bases 16-1614 encode the RB60 sequence. Both the nucleotide and amino acid sequence are listed in SEQ ID NO 10.

FIGS. 3A-3C show the complete sequence of the psbA mRNA, showing both encoded psbA protein amino acid resi-

6

due sequence (residues 1-352) and the nucleic acid sequence as further described in Example 3 is illustrated. Both the nucleotide and amino acid sequence are listed in SEQ ID NO 13.

FIG. 4 is a schematic diagram of an expression cassette containing on one transcription unit from 5' to 3', a promoter region derived from the psbA gene for encoding the D1 protein from C. reinhardtii further containing a transcription initiation site (TS), the RB47 binding site, a region for insertion of a foreign or heterologous coding region, a RB47 coding region, a RB60 coding region, and the 3' flanking region containing transcription termination site (TS), flanked by an origin of replication and selection marker. Restriction endonuclease sites for facilitating insertion of the independent genetic elements are indicated and further described in Example 4A.

FIGS. **5**A-**5**B show the nucleotide and amino acid sequence of the RB47 molecule containing a histidine tag, the sequences of which are also listed in SEQ ID NO 14.

FIG. 6 is a schematic diagram of an expression cassette containing on one transcription unit from 5' to 3', a promoter region derived from the psbA gene for encoding the D1 protein from C. reinhardtii further containing a transcription initiation site (TS), the RB47 binding site, a region for RB47 is also shown in FIGS. 1A-1D (SEQ ID NO 5). As described in Section 2 above, the predicted protein sequence from the cloned cDNA contained both the derived peptide sequences of RB47 and is highly homologous to poly(A) binding proteins (PABP) from a variety of eukaryotic organisms.

FIG. 7 diagrams a construct is essentially pD1/Nde including a heterologous coding sequence having a 3' XbaI restriction site for ligation with the 3' psbA gene.

FIG. 8 shows two of the transformants that contained the single chain chimeric gene produced single chain antibodies at approximately 1% of total protein levels.

FIG. 9 shows a construct, the bacterial LuxAB coding region was ligated between the psbA 5' UTR and the psbA 3' end in an E. coli plasmid.

FIG. 10 shows luciferase activity accumulated with the chloroplast.

FIG. 11 shows a construct engineered so that the psbA promoter and 5' UTR are used to drive the synthesis of the light chain and heavy chains of an antibody, and the J chain normally associated with IgA molecules.

2. Cloning of RB60

To clone the cDNA encoding the 60 kDa psbA mRNA binding protein (RB60), the psbA-specific RNA binding pro-50 teins were purified from light-grown C. reinhardtii cells using heparin-agarose chromatography followed by psbA RNA affinity chromatography (RAC). RAC-purified proteins were separated by two-dimensional polyacrylamide gel electrophoresis. The region corresponding to RB60 was isolated from the PVDF membrane. RB60 protein was then digested with trypsin. Unambiguous amino acid sequences were obtained from two peptide tryptic fragments (WFVDGE-LASDYNGPR (SEQ ID NO 6) and (QLILWTTAD-DLKADAEIMTVFR (SEQ ID NO 7)) as described above for RB47. The calculated molecular weights of the two tryptic peptides used for further analysis precisely matched with the molecular weights determine by mass spectrometry. The DNA sequence corresponding to one peptide of 22 amino acid residues was amplified by PCR using degenerate oligo-65 nucleotides, the forward primer 5'CGCGGATCCGAYGCB-GAGATYATGAC3' (SEQ ID NO 8) and the reverse primer 5'CGCGAATTCGTCATRATCTCVGCRTC3' (SEQ ID NO

9), where R can be A or G (the other IUPAC nucleotides have been previously defined above). The amplified sequence was then used to screen a λ -gt10 cDNA library from C. reinhardtii. Three clones were identified with the largest being 2.2 kb. Selection and sequencing was performed as described for RB47 cDNA.

The resulting RB60 cDNA sequence is available via Gen-Bank (Accession Number AF027727). The nucleotide and encoded amino acid sequence of RB60 is also shown in FIGS. 2A-2B (SEQ ID NO 10). The protein coding sequence of 488 amino acid residues corresponds to nucleotide positions 16-1614 of the 2413 base pair sequence. The predicted amino acid sequence of the cloned cDNA contained the complete amino acid sequences of the two tryptic peptides. The amino acid sequence of the encoded protein revealed that it has high 15 sequence homology to both plant and mammalian protein disulfide isomerase (PDI), and contains the highly conserved thioredoxin-like domains with —CysGlyHisCys— (—CGHC—) (SEQ ID NO 11) catalytic sites in both the N-terminal and C-terminal regions and the —LysAspG- 20 luLeu— (—KDEL—) (SEQ ID NO 12) endoplasmic reticulum (ER) retention signal at the C-terminus found in all PDIs. PDI is a mutifunctional protein possessing enzymatic activities for the formation, reduction, and isomerization of disulfide bonds during protein folding, and is typically found in the 25 ER. The first 30 amino acid residues of RB60 were found to lack sequence homology with the N-terminal signal sequence of PDI from plants or mammalian cells. However, this region has characteristics of chloroplast transit peptides of C. reinhardtii, which have similarities with both mitochondrial and 30 higher plant chloroplast presequences. A transit peptide sequence should override the function of the —KDEL—ER retention signal and target the protein to the chloroplast since the —KDEL— signal acts only to retain the transported protein in the ER.

3. Preparation of psbA Promoter Sequence and RB47 Binding Site Nucleotide Sequence

The chloroplast psbA gene from the green unicellular alga 40 C. reinhardii was cloned and sequenced as described by Erickson et al., Embo J., 3:2753-2762 (1984), the disclosure of which is hereby incorporated by reference. The DNA sequence of the coding regions and the 5' and 3' untranslated (UTR) flanking sequences of the C. reinhardii psbA gene is 45 shown in FIGS. 3A-3C. The psbA gene sequence is also available through GenBank as further discussed in Example 4. The nucleotide sequence is also listed as SEQ ID NO 13. The deduced amino acid sequence (also listed in SEQ ID NO 13) of the coding region is shown below each codon begin- 50 ning with the first methionine in the open reading frame. Indicated in the 5' non-coding sequence are a putative Shine-Dalgarno sequence in the dotted box, two putative transcription initiation sites determined by S1 mapping (S1) and the Pribnow-10 sequence in the closed box. Inverted repeats of 55 eight or more base pairs are marked with arrows and labeled A-D. A direct repeat of 31 base pairs with only two mismatches is marked with arrows labeled 31. Indicated in the 3' non-coding sequence is a large inverted repeat marked by a forward arrow and the SI cleavage site marking the 3' end of 60 the mRNA. Both the 5' and 3' untranslated regions are used in preparing one of the expression cassettes of this invention as further described below.

The 5' UTR as previously discussed contains both the psbA promoter and the RB47 binding site. The nucleotide sequence 65 defining the psbA promoter contains the region of the psbA DNA involved in binding of RNA polymerase to initiate

8

transcription. The -10 sequence component of the psbA promoter is indicated by the boxed nucleotide sequence upstream of the first S1 while the -35 sequence is located approximately 35 bases before the putative initiation site. As shown in FIGS. 3A-3C, the -10 sequence is boxed, above which is the nucleotide position (-100) from the first translated codon. The -35 sequence is determined accordingly. A psbA promoter for use in an expression cassette of this invention ends at the first indicated S1 site (nucleotide position –92 as counting from the first ATG) in FIGS. 3A-3C and extends to the 5' end (nucleotide position –251 as shown in FIGS. **3A-3**C). Thus, the promoter region is 160 bases in length. A more preferred promoter region extends at least 100 nucleotides to the 5' end from the S1 site. A most preferred region contains nucleotide sequence ending at the s1 site and extending 5' to include the -35 sequence, i.e., from -92 to -130 as counted from the first encoded amino acid residue (39 bases).

The psbA RB47 binding site region begins at the first S1 site as shown in FIGS. 3A-3C and extends to the first adenine base of the first encoded methionine residue. Thus, a psbA RB47 binding site in the psbA gene corresponds to the nucleotide positions from -91 to -1 as shown in FIG. 3A-3C.

The above-identified regions are used to prepare expression constructs as described below. The promoter and RB47 binding site regions can be used separately; for example, the RB47 binding site sequence can be isolated and used in a eukaryotic or prokaryotic plasmid with a non-psbA promoter. Alternatively, the entire psbA 5' UTR having 251 nucleotides as shown in FIGS. 3A-3C is used for the regulatory region in an expression cassette containing both the psbA promoter and RB47 binding site sequence as described below.

4. Preparation of Expression Vectors and Expression of Coding Sequences

A. Constructs Containing an psbA Promoter, an RB47 Binding Site Nucleotide Sequence, a Desired Heterologous Coding Sequence, an RB47-Encoding Sequence and an RB60-Encoding Sequence

Plasmid expression vector constructs, alternatively called plasmids, vectors, constructs and the like, are constructed containing various combinations of elements of the present invention as described in the following examples. Variations of the positioning and operably linking of the genetic elements described in the present invention and in the examples below are contemplated for use in practicing the methods of this invention. Methods for manipulating DNA elements into operable expression cassettes are well known in the art of molecular biology. Accordingly, variations of control elements, such as constitutive or inducible promoters, with respect to prokaryotic or eukaryotic expression systems as described in Section C. are contemplated herein although not enumerated. Moreover, the expression the various elements is not limited to one transcript producing one mRNA; the invention contemplates protein expression from more than one transcript if desired.

As such, while the examples below recite one or two types of expression cassettes, the genetic elements of RB47 binding site, any desired coding sequence, in combination with RB47 and RB60 coding sequences along with a promoter are readily combined in a number of operably linked permeations depending on the requirements of the cell system selected for the expression. For example, for expression in a chloroplast, endogenous RB47 protein is present therefore an expression cassette having an RB47 binding site and a desired coding sequence is minimally required along with an operative promoter sequence. Overexpression of RB47 may be preferable to enhance the translation of the coding sequence; in that case, the chloroplast is further transformed with an expression

cassette containing an RB47-encoding sequence. Although the examples herein and below utilize primarily the sequence encoding the precursor form of RB47, any of the RB47-encoding sequences described in the present invention, i.e., RB47 precursor, mature RB47 and histidine-modified RB47 are contemplated for use in any expression cassette and system as described herein. To regulate the activation of translation, an RB60-encoding element is provided to the expression system to provide the ability to regulate redox potential in the cell as taught in Section B. These examples herein and below represent a few of the possible permutations of genetic elements for expression in the methods of this invention.

In one embodiment, a plasmid is constructed containing an RB47 binding site directly upstream of an inserted coding region for a heterologous protein of interest, and the RB47 and RB60 coding regions. Heterologous refers to the nature of the coding region being dissimilar and not from the same gene as the regulatory molecules in the plasmid, such as RB47 and RB60. Thus, all the genetic elements of the present 20 invention are produced in one transcript from the IPTG-inducible psbA promoter. Alternative promoters are similarly acceptable.

The final construct described herein for use in a prokaryotic expression system makes a single mRNA from which all 25
three proteins are translated. The starting plasmid is any E.
coli based plasmid containing an origin of replication and
selectable marker gene. For this example, the Bluescript plasmid, pBS, commercially available through Stratagene, Inc.,
La Jolla, Calif., which contains a polylinker-cloning site and 30
an ampicilin resistant marker is selected for the vector.

The wild-type or native psbA gene (Erickson et al., Embo J., 3:2753-2762 (1984), also shown in FIGS. **3**A-**3**C, is cloned into pBS at the EcoRI and BamHI sites of the polylinker. The nucleotide sequence of the psbA gene is available on Gen-35 Bank with the 5' UTR and 3' UTR respectively listed in Accession Numbers X01424 and X02350. The EcoRI site of psbA is 1.5 kb upstream of the psbA initiation codon and the BamHI site is 2 kb downstream of the stop codon. This plasmid is referred to as pDl.

Using site-directed PCR mutagenesis, well known to one of ordinary skill in the art, an NdeI site is placed at the initiation codon of psbA in the pDl plasmid so that the ATG of the NdeI restriction site is the ATG initiation codon. This plasmid is referred to as pDl/Nde. An Nde site is then placed 45 at the initiation codon of the gene encoding the heterologous protein of interest and an Xho I site is placed directly downstream (within 10 nucleotides) of the TAA stop codon of the heterologous protein coding sequence. Again using site-directed mutagenesis, an XhoI site is placed within 10 nucleotides of the initiation codon of RB47, the preparation of which is described in Example 2, and an NotI site is placed directly downstream of the stop codon of RB47. The heterologous coding region and the RB47 gene are then ligated into pDl/Nde so that the heterologous protein gene is directly 55 adjacent to the RB47 binding site and the RB47 coding region is downstream of the heterologous coding region, using the Xho I site at the heterologous stop codon and the Not I site of the pDl polylinker.

These genetic manipulations result in a plasmid containing 60 the 5' end of the psbA gene including the promoter region and with the RB47 binding site immediately upstream of a heterologous coding region, and the RB47 coding region immediately downstream of the heterologous coding region. The nucleotides between the stop codon of the heterologous coding region and the initiation codon of the RB47 coding region is preferably less than 20 nucleotides and preferably does not

10

contain any additional stop codons in any reading frame. This plasmid is referred to as pD1/RB47.

Using site-directed mutagenesis, a NotI site is placed immediately (within 10 nucleotides) upstream of the initiation codon of RB60, the preparation of which is described in Example 2, and an Xba I site is placed downstream of the RB60 stop codon. This DNA fragment is then ligated to the 3' end of the psbA gene using the Xba I site found in the 3' end of the psbA gene so that the psbA 3' end is downstream of the RB60 coding region. This fragment is then ligated into the pD1/RB47 plasmid using the NotI and BamHI sites so that the RB60 coding region directly follows the RB47 coding region. The resulting plasmid is designated pD1/RB47/RB60. Preferably there is less then 20 nucleotides between the RB47 and RB60 coding regions and preferably there are no stop codons in any reading frame in that region. The final plasmid thus contains the following genetic elements operably linked in the 5' to 3' direction: the 5' end of the psbA gene with a promoter capable of directing transcription in chloroplasts, an RB47 binding site, a desired heterologous coding region, the RB47 coding region, the RB60 coding region, and the 3' end of the psbA gene which contains a transcription termination and mRNA processing site, and an E. coli origin of replication and amplicillin resistance gene. A diagram of this plasmid with the restriction sites is shown in FIG. 4.

Expression of pD1/RB47/RB60 in E. coli to produce recombinant RB47, RB60 and the recombinant heterologous protein is performed as described in Example 4B. The heterologous protein is then purified as further described.

Expression cassettes in which the sequences encoding RB47 and RB60 are similarly operably linked to a heterologous coding sequence having the psbA RB47 binding site as described in Example 3 are prepared with a different promoter for use in eukaryotic, such as mammalian expression systems. In this aspect, the cassette is similarly prepared as described above with the exception that restriction cloning sites are dependent upon the available multiple cloning sites in the recipient vector. Thus, the RB47 binding site prepared in Example 3 is prepared for directed ligation into a selected 40 expression vector downstream of the promoter in that vector. The RB47 and RB60 coding sequences are obtained from the pD1/RB47/RB60 plasmid by digestion with XhoI and Xbal and inserted into a similarly digested vector if the sites are present. Alternatively, site-directed mutagenesis is utilized to create appropriate linkers. A desired heterologous coding sequence is similarly ligated into the vector for expression. B. Constructs Containing RB47 Nucleotide Sequence

1) Purified Recombinant RB47 Protein

In one approach to obtain purified recombinant RB47 protein, the full length RB47 cDNA prepared above was cloned into the E. coli expression vector pET3A (Studier et al., Methods Enzymol., 185:60-89 (1990)), also commercially available by Novagen, Inc., Madison, Wis. and transformed into BL21 E. coli cells. The cells were grown to a density of 0.4 (OD_{600}), then induced with 0.5 mM IPTG. Cells were then allowed to grow for an additional 4 hours, at which point they were pelleted and frozen.

Confirmation of the identity of the cloned cDNA as encoding the authentic RB47 protein was accomplished by examining protein expressed from the cDNA by immunoblot analysis and by RNA binding activity assay. The recombinant RB47 protein produced when the RB47 cDNA was expressed was recognized by antisera raised against the C. reinhardtii RB47 protein. The E. coli expressed protein migrated at 80 kDa on SDS-PAGE, but the protein was actually 69 kDa, as determined by mass spectrometry of the E. coli expressed protein. This mass agrees with the mass predicted from the

cDNA sequence. A 60 kDa product was also produced in E. coli, and recognized by the antisera against the C. reinhardtii protein, which is most likely a degradation or early termination product of the RB47 cDNA. The recombinant RB47 protein expressed from the RB47 cDNA is recognized by the 5 antisera raised against the C. reinhardtii protein at levels similar to the recognition of the authentic C. reinhardtii RB47 protein, demonstrating that the cloned cDNA produces a protein product that is immunologically related to the naturally produced RB47 protein. In order to generate a recombinant 10 equivalent of the endogenous native RB47, the location of the 47 kDa polypeptide was mapped on the full-length recombinant protein by comparing mass spectrometric data of tryptic digests of the C. reinhardtii 47 kDa protein and the full-length recombinant protein. Thus, peptide mapping by mass spec- 15 trometry has shown that the endogenous RB47 protein corresponds primarily to the RNA binding domains contained within the N-terminal region of the predicted precursor protein, suggesting that a cleavage event is necessary to produce the mature 47 kDa protein. Thus, full-length recombinant 20 RB47 is 69 kDa and contains a carboxy domain that is cleaved in vivo to generate the endogenous mature form of RB47 that is 47 kDa.

To determine if the heterologously expressed RB47 protein was capable of binding the psbA RNA, the E. coli expressed 25 protein was purified by heparin agarose chromatography. The recombinant RB47 protein expressed in E. coli was purified using a protocol similar to that used previously for purification of RB47 from C. reinhardtii. Approximately 5 g of E. coli cells grown as described above were resuspended in low salt 30 extraction buffer (10 mM Tris [pH 7.5], 10 mM NaCl, 10 mM MgCl₂, 5 mM β -mercaptoethanol) and disrupted by sonication. The soluble cell extract was applied to a 5 mL Econo-Pac heparin cartridge (Bio-Rad) which was washed prior to elution of the RB47 protein (Danon and Mayfield, Embo J., 35 10:3993-4001 (1991)).

The E. coli expressed protein that bound to the heparin agarose matrix was eluted from the column at the same salt concentration as used to elute the authentic C. reinhardtii RB47 protein. This protein fraction was used in in vitro binding assays with the psbA 5' UTR. Both the 69 and 60 kDa E. coli expressed proteins crosslinked to the radiolabeled psbA 5' UTR at levels similar to crosslinking of the endogenous RB47 protein, when the RNA/protein complex is subjected to UV irradiation.

Heparin agarose purified proteins, both from the E. coli expressed RB47 cDNA and from C. reinhardtii cells, were used in an RNA gel mobility shift assay to determine the relative affinity and specificity of these proteins for the 5' UTR of the psbA mRNA. The E. coli expressed proteins 50 bound to the psbA 5' UTR in vitro with properties that are similar to those of the endogenous RB47 protein purified from C. reinhardtii. RNA binding to both the E. coli expressed and the endogenous RB47 protein was competed using either 200 fold excess of unlabeled psbA RNA or 200 fold excess of 55 invention. poly(A) RNA. RNA binding to either of these proteins was poorly competed using 200 fold excess of total RNA or 200 fold excess of the 5' UTR of the psbD or psbC RNAs. Different forms of the RB47 protein (47 kDa endogenous protein vs. the 69 kDa E. coli expressed protein) may account for the 60 slight differences in mobility observed when comparing the binding profiles of purified C. reinhardtii protein to heterologously expressed RB47.

The mature form of RB47 is also produced in recombinant form by the insertion by PCR of an artificial stop codon in the 65 RB47 cDNA at nucleotide positions 1403-1405 with a stop codon resulting in a mature RB47 recombinant protein hav-

12

ing 402 amino acids as shown in FIGS. 1A-1D. An example of this is shown in FIGS. 5A-5B for the production of a recombinant histidine-modified RB47 mature protein as described below. The complete RB47 cDNA is inserted into an expression vector, such as pET3A as described above, for expression of the mature 47 kDa form of the RB47 protein. In the absence of the inserted stop codon, the transcript reads through to nucleotide position 2066-2068 at the TAA stop codon to produce the precursor RB47 having the above-described molecular weight characteristics and 623 amino acid residues.

Recombinant RB47 is also expressed and purified in plant cells. For this aspect, C. reinhardtii strains were grown in complete media (Tris-acetate-phosphate [TAP] (Harris, The Chlamydonas Sourcebook, San Diego, Calif., Academic Press (1989)) to a density of 5×10⁶ cells/mL under constant light. Cells were harvested by centrifugation at 4° C. for 5 minutes at 4,000 g. Cells were either used immediately or frozen in liquid N₂ for storage at -70° C.

Recombinant RB47 protein was also produced as a modified RB47 protein with a histidine tag at the amino-terminus according to well known expression methods using pET19-D vectors available from Novagen, Inc., Madison, Wis. The nucleotide and amino acid sequence of a recombinant histidine-modified RB47 of the mature 47 kDa form is shown in FIGS. 5A-5B with the nucleotide and amino acid sequence also listed in SEQ ID NO 14. Thus the nucleotide sequence of a histidine-modified RB47 is 1269 bases in length. The precursor form of the RB47 protein is similarly obtained in the expression system, both of which are modified by the presence of a histidine tag that allows for purification by metal affinity chromatography.

The recombinant histidine-modified RB47 purified through addition of a poly-histidine tag followed by Ni⁺² column chromatography showed similar binding characteristics as that described for recombinant precursor RB47 described above.

C. Constructs Containing RB60 Nucleotide Sequence

In one approach to obtain purified recombinant RB60 protein, the full-length RB60 cDNA prepared above was cloned into the E. coli expression vector pET3A (Studier et al., Methods Enzymol., 185:60-89 (1990)), also commercially available by Novagen, Inc., Madison, Wis. and transformed into BL21 E. coli cells. The cells were grown to a density of 0.4 (OD₆₀₀), then induced with 0.5 mM IPTG. Cells were then allowed to grow for an additional 4 hours, at which point they were pelleted and frozen.

Recombinant histidine-modified RB60 was also expressed with a pET19-D vector as described above for RB47 that was similarly modified. Purification of the recombinant RB60 proteins was performed as described for RB47 thereby producing recombinant RB60 proteins for use in the present invention.

The RB60 coding sequence is also mutagenized for directional ligation into an selected vector for expression in alternative systems, such as mammalian expression systems.

D. Constructs Containing an RB47-Encoding Sequence and an RB60-Encoding Sequence

To prepare an expression cassette for encoding both RB47 and RB60, one approach is to digest plasmid pD1/RB47/ RB60 prepared above with XhoI and XbaI to isolate the fragment for both encoding sequences. The fragment is then inserted into a similarly digested expression vector if available or is further mutagenized to prepare appropriate restriction sites.

Alternatively, the nucleotide sequences of RB47 and RB60, as described in Example 2, are separately prepared for directional ligation into a selected vector.

An additional embodiment of the present invention is to prepare an expression cassette containing the RB47 binding site along with the coding sequences for RB47 and RB60, the plasmid pD1/RB47/RB60 prepared above is digested with NdeI and XhoI to prepare an expression cassette in which any desired coding sequence having similarly restriction sites is directionally ligated. Expression vectors containing both the RB47 and RB60 encoding sequences in which the RB47 binding site sequence is utilized with a different promoter are also prepared as described in Example 4A.

E. Constructs Containing an RB47 Binding Site Nucleotide Sequence, Insertion Sites for a Desired Heterologous Coding Sequence, and an RB47-Encoding Sequence

In another permutation, a plasmid or expression cassette is constructed containing an RB47 binding site directly upstream of an inserted coding region for a heterologous protein of interest, and the RB47 coding region. The final construct described herein for use in a prokaryotic expression system makes a single mRNA from which both proteins are translated.

The plasmid referred to as pD1/RB47 is prepared as described above in Example 4A. A diagram of this plasmid with the restriction sites is shown in FIG. 6.

Expression of pD1/RB47 in E. coli to produce recombinant RB47 and the recombinant heterologous protein is performed ³⁰ as described in above. The heterologous protein is then purified as further described.

To produce an expression cassette that allows for insertion of an alternative desired coding sequence, the plasmid pD1/RB47 is digested with NdeI and XhoI resulting in a vector having restriction endonuclease sites for insertion of a desired coding sequence operably linked to a RB47 binding site and RB47 coding sequence on one transcriptional unit.

F. Constructs Containing an RB47 Binding Site Nucleotide 40 Sequence, Insertion Sites for a Desired Heterologous Coding Sequence, and an RB47-Encoding Sequence

In another permutation, a plasmid or expression cassette is constructed containing an RB47 binding site directly upstream of an inserted coding region for a heterologous 45 protein of interest, and the RB60 coding region. The final construct described herein for use in a prokaryotic expression system makes a single mRNA from which both proteins are translated. In this embodiment, a separate construct encoding recombinant RB47 as described in Example 4B is co-trans- 50 formed into the E. coli host cell for expression.

The plasmid referred to as pD1/RB60 is prepared as described above for pD1/RB47 in Example 4A with the exception that XhoI and XbaI sites are created on RB60 rather than RB47.

Expression of pD1/RB60 in E. coli to produce recombinant RB60 and the recombinant heterologous protein is performed as described in above with the combined expression of RB47 from a separate expression cassette. The heterologous protein is then purified as further described.

To produce an expression cassette that allows for insertion of an alternative desired coding sequence, the plasmid pD1/RB60 is digested with NdeI and XhoI resulting in a vector having restriction endonuclease sites for insertion of a desired 65 coding sequence operably linked to a RB47 binding site and RB60 coding sequence on one transcriptional unit.

14

G. Constructs Containing RB47 Binding Site Nucleotide Sequence and Heterologous Coding Sequences

1) Expression of Recombinant Tetanus Toxin Single Chain Antibody

The examples herein describe constructs that are variations of those described above. The constructs described below contain an RB47 binding site sequence and a heterologous coding sequence. The activating protein RB47 was endogenously provided in the chloroplast and or plant cell. In other aspects however as taught by the methods of the present invention, the chloroplast is further transformed with an RB47-expression construct as described above for overexpression of RB47 to enhance translation capacities.

A strain of the green algae Chlamydomonas reinhardtii was designed to allow expression of a single chain antibody gene in the chloroplast. The transgenically expressed antibody was produced from a chimeric gene containing the promoter and 5' untranslated region (UTR) of the chloroplast psbA gene prepared as described above, followed by the coding region of a single chain antibody (encoding a tetanus toxin binding antibody), and then the 3' UTR of the psbA gene also prepared as described above to provide for transcription termination and RNA processing signals. This construct is essentially pD1/Nde including a heterologous coding sequence having a 3' XbaI restriction site for ligation with the 3' psbA gene and is diagramed in FIG. 7.

The psbA-single chain construct was first transformed into C. reinhardtii chloroplast and transformants were then screened for single chain gene integration. Transformation of chloroplast was performed via bolistic delivery as described in U.S. Pat. Nos. 5,545,818 and 5,553,878, the disclosures of which are hereby incorporated by reference. Transformation is accomplished by homologous recombination via the 5' and 3' UTR of the psbA mRNA.

As shown in FIG. 8, two of the transformants that contained the single chain chimeric gene produced single chain antibodies at approximately 1% of total protein levels. The transgenic antibodies were of the correct size and were completely soluble, as would be expected of a correctly folded protein. Few degradation products were detectable by this Western analysis, suggesting that the proteins were fairly stable within the chloroplast. To identify if the produced antibody retained the binding capacity for tetanus toxin, ELISA assays were performed using a mouse-produced Fab, from the original tetanus toxin antibody, as the control. The chloroplast single chain antibody bound tetanus toxin at levels similar to Fab, indicating that the single chain antibody produced in C. reinhardtii is a fully functional antibody. These results clearly demonstrate the ability of the chloroplast to synthesis and accumulate function antibody molecules resulting from the translational activation of an RB47 binding site in an expression cassette by endogenous RB47 protein in the chloroplast.

2) Expression of Bacterial Luciferase Enzyme Having Two 55 Subunits

For the production of molecules that contain more than one subunit, such as dIgA and bacterial luciferase enzyme, several proteins must be produced in stoichiometric quantities within the chloroplast. Chloroplast have an advantage for this type of production over cytoplasmic protein synthesis in that translation of multiple proteins can originate from a single mRNA. For example, a dicistronic mRNA having 5' and 3' NdeI and XbaI restriction sites and containing both the A and B chains of the bacterial luciferase enzyme was inserted downstream of the psbA promoter and 5' UTR of the pD1/ Nde construct prepared in Example 4A above. In this construct, the bacterial LuxAB coding region was ligated

between the psbA 5' UTR and the psbA 3' end in an E. coli plasmid that was then transformed into Chlamydomonas reinhardtii cells as described above for expression in the chloroplast. A schematic of the construct is shown in FIG. 9. Single transformant colonies were then isolated. A plate containing a single isolate was grown for 10 days on complete media and a drop of the luciferase substrate n-Decyl Aldehyde was placed on the plate and the luciferase visualized by video-photography in a dark chamber. Both proteins were synthesized from this single mRNA and luciferase activity 10 accumulated within the chloroplast as shown in FIG. 10. Some mRNA within plastids contained as many as 5 separate proteins encoded on a single mRNA.

3) Expression of Dimeric IgA

engineered so that the psbA promoter and 5' UTR are used to drive the synthesis of the light chain and heavy chains of an antibody, and the J chain normally associated with IgA molecules. The nucleic acid sequences for the dimeric IgA are inserted into the RB47 binding site construct prepared in 20 Example 4A. The construct is then transformed into C. reinhardtii cells as previously described for expression of the recombinant dIgA.

Production of these three proteins within the plastid allows for the self assembly of a dimeric IgA (dIgA). Production of 25 this complex is monitored in several ways. First, Southern analysis of transgenic algae is used to identify strains con**16**

taining the polycistronic chimeric dIgA gene. Strains positive for integration of the dIgA gene are screened by Northern analysis to ensure that the chimeric mRNA is accumulating. Western blot analysis using denaturing gels is used to monitor the accumulation of the individual light, heavy and J chain proteins, and native gels Western blot analysis will be used to monitor the accumulation of the assembled dIgA molecule.

By using a single polycistronic mRNA in the context of RB47 regulated translation, two of the potential pitfalls in the assembly of multimeric dIgA molecule are overcome. First, this construct ensures approximately stoichiometric synthesis of the subunits, as ribosomes reading through the first protein are likely to continue to read through the second and third proteins as well. Second, all of the subunits are synthe-To generate dimeric IgA, the construct shown in FIG. 11 is 15 sized in close physical proximity to each other, which increases the probability of the proteins self assembling into a multimeric molecule. Following the production of a strain producing dIgA molecules, the production of dIgA on an intermediate scale by growing algae in 300 liter fermentors is then performed. Larger production scales are then performed thereafter.

> The foregoing specification, including the specific embodiments and examples, is intended to be illustrative of the present invention and is not to be taken as limiting. Numerous other variations and modifications can be effected without departing from the true spirit and scope of the invention.

> > 32

SEQUENCE LISTING

```
<160> NUMBER OF SEQ ID NOS: 18
<210> SEQ ID NO 1
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Chlamydomonas reinhardtii
<400> SEQUENCE: 1
Gln Tyr Gly Phe Val His Phe Glu Asp Gln Ala Ala Ala Asp Arg
                                    10
<210> SEQ ID NO 2
<211> LENGTH: 14
<212> TYPE: PRT
<213> ORGANISM: Chlamydomonas reinhardtii
<400> SEQUENCE: 2
Gly Phe Gly Phe Ile Asn Phe Lys Asp Ala Glu Ser Ala Ala
<210> SEQ ID NO 3
<211> LENGTH: 32
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 3
cagtacggyt tcgtbcaytt cgaggaycag gc
<210> SEQ ID NO 4
<211> LENGTH: 40
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
```

				1/										
									_	con	tin	ued		
<400> SEQ	QUENCE	: 4												
ggaattcgg	gy tto	ggytt	ca ty	yaact	ttcaa	a gga	aygcl	ogag						40
<210 > SE() <211 > LEN <212 > TYN <213 > OR() <220 > FEN <221 > NAN <222 > LO()	NGTH: PE: DN GANISM ATURE: ME/KEY	2846 IA I: Chl	_			∋inha	ardti	ίί						
<400> SE(-													
gaattcgcg		_											_	60
ttcacccaa													_	120
taggcacaa				_			_			_				180
cgtcttgaa	ag tca	_		_		_	_					la A	cc acc la Thr	232
acc cag o Thr Gln I		_								_		_		280
gac ctg o Asp Leu 0 30			_			_	_	_						328
tcg gtt g Ser Val (45			_			_		_	_	_	_	_	_	376
cgc cgc t Arg Arg S	_			_		_				_	_	_	_	424
ccc cag g Pro Gln A	_	a Āsp	_	_	_			_				_		472
aac ggc a Asn Gly I	_	_	_		_		_	_	_	_		_	_	520
cgc aag t Arg Lys S 110		_						_		_	_	_		568
atc gac g Ile Asp A 125	_		_		_			_	_			_		616
ctg tcc t Leu Ser (_		_		_	_				_	_			664
ggc ttc g Gly Phe V	Val Hi			_	_	_	Āla	_	_	_	_		_	712
acc gtc a Thr Val A			_				_					_		760
ttc cag a Phe Gln I 190			_	_						_		_		808
gtg ttc g Val Phe V 205		_	_	_	_	_			_	_		_		856
aag atg g Lys Met A							_		_					904

Lys Met Ala Thr Glu His Gly Glu Ile Thr Ser Ala Val Val Met Lys

						1/											20	
											_	con	tin	ued				
				225					230					235				
_	gac Asp	_			_	_								_	_	952		
	gag Glu							Glu								1000		
_	ggc Gly 270	Lys	_	_				_			_	_	_		_	1048		
	gcg Ala	_	_	_	_	_	_			_	_	_		_		1096		
_	aag Lys			_	_		_		_	_		_		_		1144		
	gtc Val															1192		
	acc Thr	_	_	_		_	_	_		_		_		_		1240		
	ggc Gly 350	Phe		_			_	_	_		_			_		1288		
	acc Thr					Lys										1336		
_	ctg Leu			_	Lys	_		_	_				_			1384		
	atg Met			_	_		_			_	_	_	_	_		1432		
_	atg Met	_		_	_			Pro		_	_	_			_	1480		
	ggc Gly 430															1528		
	ccg Pro															1576		
	cgc Arg			_	_	_		_	_	_				_	_	1624		
	ccg Pro		_	Gly			_		_			_				1672		
	cgc Arg															1720		
	gcc Ala 510	_		_	_	_			_	_	_	_		_	_	1768		
	gcg Ala		_	_				_		_		_	_	_	_	1816		
_	ctg Leu		_			_	_	_	_		_		_	_	_	1864		

21	22
-continued	
545 550 555	
atg atg atc ggc gag cgc ctg tac ccg cag gtg gcg gag ctg cag ccc Met Met Ile Gly Glu Arg Leu Tyr Pro Gln Val Ala Glu Leu Gln Pro 560 570	1912
gac ctg gct ggc aag atc acc ggc atg ctg ctg gag atg gac aac gcc Asp Leu Ala Gly Lys Ile Thr Gly Met Leu Leu Glu Met Asp Asn Ala 575 580 585	1960
gag ctt ctg atg ctt ctg gag tcg cac gag gcg ctg gtg tcc aag gtg Glu Leu Leu Met Leu Leu Glu Ser His Glu Ala Leu Val Ser Lys Val 590 595 600	2008
gac gag gcc atc gct gtg ctc aag cag cac aac gtg att gcc gag gag Asp Glu Ala Ile Ala Val Leu Lys Gln His Asn Val Ile Ala Glu Glu 605 610 620	2056
aac aag gct taaagcgcct gcacgcttgt gcgggctggt ggcgccggcg Asn Lys Ala	2105
cgcgccggcg ctgcttgggc cgccggcagc atgggcgcgg cggacgcggt gtgggagcag	2165
tgcttgctgc ttctggccgc cgtgaagccg cgccgaactg gggcggacgg caggctggcg	2225
ttgacgccgg cgcgccacaa cacaaagttg gtggcgtgaa agtctctggg cgtgctccgg	2285
acggttgtaa ggttttaaga actggctttt ggccgggttg ccgcccaaag gcggaacggc	2345
ggtcttttca ggccaatcac atccggctgg aaaaattctt accaaagcca acccctgcac	2405
ccaaaaattt cgggttccga aagaacactc cccttttttc cggcaacgcg ttctttcaag	2465
gccaatcact ttccgggttg gaagaaatg ttacccggaa aaggcgggaa gccccctgca	2525
cccggacaag ttattcgggg tttcgccggg aatgagcaag cgttcgggct gttggccgta	2585
togogaaogo tgtoggggtg toaggogooa gaaggaagga tgaogttttg gtgaaggggt	2645
gcaaactgag cacacgagtt ttggcaatag acgtggagaa agtccagtgc ggggtgaggc	2705 2765
ggatagegga ateaagegtg gegggteeet ggegagaega gaegettetg ttgttttget	2825
gagccctttg atggcacaat cgcactgttt tgagcaggcg actgtaaagt gcccgacgct aaaaaagcgg ccgcgaattc c	2846
<210> SEQ ID NO 6 <211> LENGTH: 623 <212> TYPE: PRT <213> ORGANISM: Chlamydomonas reinhardtii	
<400> SEQUENCE: 6	
Met Ala Thr Thr Glu Ser Ser Ala Pro Ala Ala Thr Thr Gln Pro Ala 1 5 15	
Ser Thr Pro Leu Ala Asn Ser Ser Leu Tyr Val Gly Asp Leu Glu Lys 20 25 30	
Asp Val Thr Glu Ala Gln Leu Phe Glu Leu Phe Ser Ser Val Gly Pro 35 40	
Val Ala Ser Ile Arg Val Cys Arg Asp Ala Val Thr Arg Arg Ser Leu 50 55	
Gly Tyr Ala Tyr Val Asn Tyr Asn Ser Ala Leu Asp Pro Gln Ala Ala 65 70 75 80	
Asp Arg Ala Met Glu Thr Leu Asn Tyr His Val Val Asn Gly Lys Pro 85 90 95	
Met Arg Ile Met Trp Ser His Arg Asp Pro Ser Ala Arg Lys Ser Gly 100 105	

Ala Leu His Asp Thr Phe Ser Ala Phe Gly Lys Ile Leu Ser Cys Lys

Val Gly Asn Ile Phe Ile Lys Asn Leu Asp Lys Thr Ile Asp Ala Lys

-continued

												0011	C 111	aca	
	130					135					140				
Val 145	Ala	Thr	Asp	Ala	Asn 150	Gly	Val	Ser	Lys	Gly 155	Tyr	Gly	Phe	Val	His 160
Phe	Glu	Asp	Gln	Ala 165	Ala	Ala	Asp	Arg	Ala 170	Ile	Gln	Thr	Val	Asn 175	Gln
Lys	Lys	Ile	Glu 180	Gly	Lys	Ile	Val	Tyr 185	Val	Ala	Pro	Phe	Gln 190	Lys	Arg
Ala	Asp	Arg 195	Pro	Arg	Ala	Arg	Thr 200	Leu	Tyr	Thr	Asn	Val 205	Phe	Val	Lys
Asn	Leu 210	Pro	Ala	Asp	Ile	Gly 215	Asp	Asp	Glu	Leu	Gly 220	ГÀа	Met	Ala	Thr
Glu 225	His	Gly	Glu	Ile	Thr 230	Ser	Ala	Val	Val	Met 235	Lys	Asp	Asp	Lys	Gly 240
Gly	Ser	Lys	Gly	Phe 245	Gly	Phe	Ile	Asn	Phe 250	Lys	Asp	Ala	Glu	Ser 255	Ala
Ala	Lys	Cys	Val 260	Glu	Tyr	Leu	Asn	Glu 265	Arg	Glu	Met	Ser	Gly 270	Lys	Thr
Leu	Tyr	Ala 275	Gly	Arg	Ala	Gln	Lys 280	Lys	Thr	Glu	Arg	Glu 285	Ala	Met	Leu
Arg	Gln 290	Lys	Ala	Glu	Glu	Ser 295	Lys	Gln	Glu	Arg	Tyr 300	Leu	Lys	Tyr	Gln
Ser 305	Met	Asn	Leu	Tyr	Val 310	Lys	Asn	Leu	Ser	Asp 315	Glu	Glu	Val	Asp	Asp 320
Asp	Ala	Leu	Arg	Glu 325	Leu	Phe	Ala	Asn	Ser 330	Gly	Thr	Ile	Thr	Ser 335	Сув
Lys	Val	Met	Lys 340	Asp	Gly	Ser	Gly	Lys 345	Ser	Lys	Gly	Phe	Gly 350	Phe	Val
Cys	Phe	Thr 355	Ser	His	Asp	Glu	Ala 360	Thr	Arg	Pro	Pro	Val 365	Thr	Glu	Met
Asn	Gly 370	Lys	Met	Val	Lys	Gly 375	Lys	Pro	Leu	Tyr	Val 380	Ala	Leu	Ala	Gln
Arg 385	Lys	Asp	Val	Arg	Arg 390	Ala	Thr	Gln	Leu	Glu 395	Ala	Asn	Met	Gln	Ala 400
Arg	Met	Gly	Met	Gly 405	Ala	Met	Ser	Arg	Pro 410	Pro	Asn	Pro	Met	Ala 415	Gly
Met	Ser	Pro	Tyr 420	Pro	Gly	Ala	Met	Pro 425	Phe	Phe	Ala	Pro	Gly 430	Pro	Gly
Gly	Met	Ala 435	Ala	Gly	Pro	Arg	Ala 440	Pro	Gly	Met	Met	Tyr 445	Pro	Pro	Met
Met	Pro 450	Pro	Arg	Gly	Met	Pro 455	Gly	Pro	Gly	Arg	Gly 460	Pro	Arg	Gly	Pro
Met 465	Met	Pro	Pro	Gln	Met 470	Met	Gly	Gly	Pro	Met 475	Met	Gly	Pro	Pro	Met 480
Gly	Pro	Gly	Arg	Gly 485	Arg	Gly	Gly	Arg	Gly 490	Pro	Ser	Gly	Arg	Gly 495	Gln
Gly	Arg	Gly	Asn 500	Asn	Ala	Pro	Ala	Gln 505	Gln	Pro	ГÀа	Pro	Ala 510	Ala	Glu
		515	Ala				520					525			
	530		Glu			535					540				
Ser 545	Ala	Leu	Ala	Ala	Ala 550	Ala	Pro	Glu	Gln	Gln 555	ГÀЗ	Met	Met	Ile	Gly 560

-continued

Glu Arg Leu Tyr Pro Gln Val Ala Glu Leu Gln Pro Asp Leu Ala Gly 565 570 575 Lys Ile Thr Gly Met Leu Leu Glu Met Asp Asn Ala Glu Leu Leu Met 580 585 590 Leu Leu Glu Ser His Glu Ala Leu Val Ser Lys Val Asp Glu Ala Ile 595 600 605 Ala Val Leu Lys Gln His Asn Val Ile Ala Glu Glu Asn Lys Ala 610 615 620 <210> SEQ ID NO 7 <211> LENGTH: 15 <212> TYPE: PRT <213 > ORGANISM: Chlamydomonas reinhardtii <400> SEQUENCE: 7 Trp Phe Val Asp Gly Glu Leu Ala Ser Asp Tyr Asn Gly Pro Arg 10 <210> SEQ ID NO 8 <211> LENGTH: 22 <212> TYPE: PRT <213 > ORGANISM: Chlamydomonas reinhardtii <400> SEQUENCE: 8 Gln Leu Ile Leu Trp Thr Thr Ala Asp Asp Leu Lys Ala Asp Ala Glu 10 Ile Met Thr Val Phe Arg 20 <210> SEQ ID NO 9 <211> LENGTH: 26 <212> TYPE: DNA <213 > ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 9 26 cgcggatccg aygcbgagat yatgac <210> SEQ ID NO 10 <211> LENGTH: 26 <212> TYPE: DNA <213 > ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Primer <400> SEQUENCE: 10 26 cgcgaattcg tcatratctc vgcrtc <210> SEQ ID NO 11 <211> LENGTH: 2413 <212> TYPE: DNA <213 > ORGANISM: Chlamydomonas reinhardtii <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (16)..(1614) <400> SEQUENCE: 11 51 gagtacgttt acgcc atg aac cgt tgg aac ctt ctt gcc ctt acc ctg ggg Met Asn Arg Trp Asn Leu Leu Ala Leu Thr Leu Gly 10 99 ctg ctg ctg gtg gca gcg ccc ttc acc aag cac cag ttt gct cat gct Leu Leu Leu Val Ala Ala Pro Phe Thr Lys His Gln Phe Ala His Ala 15 25 20

						2/										28
											_	con	tin [.]	ued		
											gcc Ala 40					147
_	_	_	_	_	_	_					gtc Val	_			_	195
		_	_	_		_					gag Glu					243
	_			_	_	_		_			tac Tyr		_			291
_		_	_					Asp			atc Ile		_	_	_	339
											ggc Gly 120					387
	_		_		_	Val	_			_	gct Ala		_		aac Asn 140	435
		_	_		_		_				gtg Val	_	_	_	_	483
											aag Lys					531
		_	_		_	_	_	Val			ttc Phe	_	_	_		579
		Ile		_			ГЛа			_	gcc Ala 200	_			_	627
	Val			_		Thr	_	_	_	_	gcc Ala	_	_	_		675
_	_	_		_	Thr	Val	Ser	Val	Val	Lys	aac Asn	Phe	Ala			723
_	_	_		_	_	_	_	_	_		gac Asp		_		ctg Leu	771
			_	_	_		_	Met			acc Thr					819
_	_			_	_				_		atc Ile 280		_	_	_	867
_	_		_	_	_	Āsp	_	_	_		gac Asp			_	_	915
			_		Āla	_	_	_		_	ggc Gly		_			963
		_					_		_	_	ccc Pro	_				1011
			ГЛа		_		_	Pro		_	ctg Leu				_	1059

-continued
COILCIIIaCa

gag aag aac aag aag ttc cgc atg gag ggc gag ttc acg gct gac aac Glu Lys Asn Lys Lys Phe Arg Met Glu Gly Glu Phe Thr Ala Asp Asn 350 355 360	1107
gtg gct aag ttc gcc gag agc gtg gtg gac ggc acc gcg cag gcc gtg Val Ala Lys Phe Ala Glu Ser Val Val Asp Gly Thr Ala Gln Ala Val 365 370 380	1155
ctc aag tcg gag gcc atc ccc gag gac ccc tat gag gat ggc gtc tac Leu Lys Ser Glu Ala Ile Pro Glu Asp Pro Tyr Glu Asp Gly Val Tyr 385 390 395	1203
aag att gtg ggc aag acc gtg gag tct gtg gtt ctg gac gag acc aag Lys Ile Val Gly Lys Thr Val Glu Ser Val Val Leu Asp Glu Thr Lys 400 405 410	1251
gac gtg ctg ctg gag gtg tac gcc ccc tgg tgc ggc cac tgc aag aag Asp Val Leu Leu Glu Val Tyr Ala Pro Trp Cys Gly His Cys Lys 415 420 425	1299
ctg gag ccc atc tac aag aag ctg gcc aag cgc ttt aag aag gtg gat Leu Glu Pro Ile Tyr Lys Lys Leu Ala Lys Arg Phe Lys Lys Val Asp 430 435 440	1347
tcc gtc atc gcc aag atg gat ggc act gag aac gag cac ccc gag Ser Val Ile Ile Ala Lys Met Asp Gly Thr Glu Asn Glu His Pro Glu 445 450 450 455	1395
atc gag gtc aag ggc ttc cct acc atc ctg ttc tat ccc gcc ggc agc Ile Glu Val Lys Gly Phe Pro Thr Ile Leu Phe Tyr Pro Ala Gly Ser 465 470 475	1443
gac cgc acc ccc atc gtg ttc gag ggc ggc gac cgc tcg ctc aag tcc Asp Arg Thr Pro Ile Val Phe Glu Gly Gly Asp Arg Ser Leu Lys Ser 480 485 490	1491
ctg acc aag ttc atc aag acc aac gcc aag atc ccg tac gag ctg ccc Leu Thr Lys Phe Ile Lys Thr Asn Ala Lys Ile Pro Tyr Glu Leu Pro 495 500 505	1539
aag aag ggc tcc gac ggc gac gac acc tcg gac gac aag gac aag Lys Lys Gly Ser Asp Gly Asp Glu Gly Thr Ser Asp Asp Lys Asp Lys 510 515 520	1587
ccc gcg tcc gac aag gac gag ctg taa gcggctatct gaactacccc Pro Ala Ser Asp Lys Asp Glu Leu 525 530	1634
aggtttggag cgtctgcttg cgcgcttgcg cttgcacact gtgcatggat gggagttaag	1694
gaggagacgg agcacggagg ctgcgctcgg ttggtggctt ggagcaccgg cagcgcgtga	1754
tccgtcctgg cagcagcaac ggcggagcgg gcgcatattg gcgcgagctg gcgagcggct gttgctggag aggatatgct gccgggcggg aggaagggct aggggcagag atgagagcgt	1814
tacgggctgg catgcgggcg cccgtgcctc tccctgcggt gcagtccttg ctaggagacg	1934
cacggttttg ccaaagaggg acgctgtcca cagccctgcg actggaagtt ttttaggccc	1994
tgcggtggta gtggtgttgg tacggttgtg tgcataagat gaacaacgtt tctctcaaga	2054
cgagactact agtatgctga cggtgtgtgt atgtggtgga tggattgtgc cccgaccatg	2114
aagagtgctg tgttgcctcg gcgcttctgt cgccctggat gtgcgtggtt ccgaacgctg	2174
gagtcatctg ttgaggagcg agggtgttgt cgggtccgcc cggcacggcc gcgtgatgtc	
cggatgggga ttgcgagcga gggcaaccgc agcgcagata gcgccgcagc ggatcgagct agcgcaggat gatgagagcc gggccttcgc ggcgtgggat cagggaggag ccaaggcgga	2354
gtgcatgcga ggaaaacagt gtgcggcaaa gaacgggctg caagaacgcc ttgcgcaaa	2413

<210> SEQ ID NO 12

<211> LENGTH: 532

<212> TYPE: PRT

<213> ORGANISM: Chlamydomonas reinhardtii

-continued

< 400)> SI	EQUEI	ICE :	12											
Met 1	Asn	Arg	Trp	Asn 5	Leu	Leu	Ala	Leu	Thr 10	Leu	Gly	Leu	Leu	Leu 15	Val
Ala	Ala	Pro	Phe 20	Thr	Lys	His	Gln	Phe 25	Ala	His	Ala	Ser	Asp 30	Glu	Tyr
Glu	Asp	Asp 35	Glu	Glu	Asp	Asp	Ala 40	Pro	Ala	Ala	Pro	Lys 45	Asp	Asp	Asp
Val	Asp 50	Val	Thr	Val	Val	Thr 55	Val	Lys	Asn	Trp	Asp 60	Glu	Thr	Val	Lys
Lys 65	Ser	Lys	Phe	Ala	Leu 70	Val	Glu	Phe	Tyr	Ala 75	Pro	Trp	Сув	Gly	His 80
Cys	Lys	Thr	Leu	Lys 85	Pro	Glu	Tyr	Ala	Lys 90	Ala	Ala	Thr	Ala	Leu 95	Lys
Ala	Ala	Ala	Pro 100	Asp	Ala	Leu	Ile	Ala 105	Lys	Val	Asp	Ala	Thr 110	Gln	Glu
Glu	Ser	Leu 115	Ala	Gln	Lys	Phe	Gly 120	Val	Gln	Gly	Tyr	Pro 125	Thr	Leu	Lys
Trp	Phe 130	Val	Asp	Gly	Glu	Leu 135	Ala	Ser	Asp	Tyr	Asn 140	Gly	Pro	Arg	Asp
Ala 145	Asp	Gly	Ile	Val	Gly 150	Trp	Val	Lys	Lys	Lys 155	Thr	Gly	Pro	Pro	Ala 160
Val	Thr	Val	Glu	Asp 165	Ala	Asp	Lys	Leu	Lys 170	Ser	Leu	Glu	Ala	Asp 175	Ala
Glu	Val	Val	Val 180	Val	Gly	Tyr	Phe	Lys 185	Ala	Leu	Glu	Gly	Glu 190	Ile	Tyr
Asp	Thr	Phe 195	Lys	Ser	Tyr	Ala	Ala 200	Lys	Thr	Glu	Asp	Val 205	Val	Phe	Val
Gln	Thr 210	Thr	Ser	Ala	Asp	Val 215	Ala	Lys	Ala	Ala	Gly 220	Leu	Asp	Ala	Val
Asp 225	Thr	Val	Ser	Val	Val 230	Lys	Asn	Phe	Ala	Gly 235	Glu	Asp	Arg	Ala	Thr 240
Ala	Val	Leu	Ala	Thr 245	Asp	Ile	Asp	Thr	Asp 250	Ser	Leu	Thr	Ala	Phe 255	Val
Lys	Ser	Glu	Lys 260	Met	Pro	Pro	Thr	Ile 265	Glu	Phe	Asn	Gln	Lys 270	Asn	Ser
Asp	Lys	Ile 275	Phe	Asn	Ser	Gly	Ile 280	Asn	Lys	Gln	Leu	Ile 285	Leu	Trp	Thr
Thr	Ala 290	Asp	Asp	Leu	Lys	Ala 295	Asp	Ala	Glu	Ile	Met 300	Thr	Val	Phe	Arg
Glu 305	Ala	Ser	Lys	Lys	Phe 310	Lys	Gly	Gln	Leu	Val 315	Phe	Val	Thr	Val	Asn 320
Asn	Glu	Gly	Asp	Gly 325	Ala	Asp	Pro	Val	Thr 330	Asn	Phe	Phe	Gly	Leu 335	Lys
Gly	Ala	Thr	Ser 340	Pro	Val	Leu	Leu	Gly 345	Phe	Phe	Met	Glu	Lуs 350	Asn	Lys
Lys	Phe	Arg 355	Met	Glu	Gly	Glu	Phe 360	Thr	Ala	Asp	Asn	Val 365	Ala	Lys	Phe
Ala	Glu 370	Ser	Val	Val	Asp	Gly 375	Thr	Ala	Gln	Ala	Val 380	Leu	Lys	Ser	Glu
Ala 385	Ile	Pro	Glu	Asp	Pro 390	Tyr	Glu	Asp	Gly	Val 395	Tyr	Lys	Ile	Val	Gly 400
Lys	Thr	Val	Glu	Ser 405	Val	Val	Leu	Asp	Glu 410	Thr	Lys	Asp	Val	Leu 415	Leu

-continued

```
Glu Val Tyr Ala Pro Trp Cys Gly His Cys Lys Lys Leu Glu Pro Ile
            420
                                425
                                                     430
Tyr Lys Lys Leu Ala Lys Arg Phe Lys Lys Val Asp Ser Val Ile Ile
        435
                            440
                                                445
Ala Lys Met Asp Gly Thr Glu Asn Glu His Pro Glu Ile Glu Val Lys
                        455
    450
                                            460
Gly Phe Pro Thr Ile Leu Phe Tyr Pro Ala Gly Ser Asp Arg Thr Pro
465
                    470
                                        475
                                                             480
Ile Val Phe Glu Gly Gly Asp Arg Ser Leu Lys Ser Leu Thr Lys Phe
                485
                                                         495
                                    490
Ile Lys Thr Asn Ala Lys Ile Pro Tyr Glu Leu Pro Lys Lys Gly Ser
            500
                                505
Asp Gly Asp Glu Gly Thr Ser Asp Asp Lys Asp Lys Pro Ala Ser Asp
        515
                            520
                                                525
Lys Asp Glu Leu
    530
<210> SEQ ID NO 13
<211> LENGTH: 4
<212> TYPE: PRT
<213 > ORGANISM: Chlamydomonas reinhardtii
<400> SEQUENCE: 13
Cys Gly His Cys
<210> SEQ ID NO 14
<211> LENGTH: 4
<212> TYPE: PRT
<213 > ORGANISM: Chlamydomonas reinhardtii
<400> SEQUENCE: 14
Lys Asp Glu Leu
<210> SEQ ID NO 15
<211> LENGTH: 1424
<212> TYPE: DNA
<213 > ORGANISM: Chlamydomonas reinhardtii
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (252)..(1310)
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (279)..(279)
<223> OTHER INFORMATION: Codon also can encode Ser
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (282)..(282)
<223> OTHER INFORMATION: Codon also can encode Glu
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (294)..(294)
<223> OTHER INFORMATION: Codon also can encode Gly
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (306)..(306)
<223> OTHER INFORMATION: Codon also can encode Asn
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (357)..(357)
<223> OTHER INFORMATION: Codon also can encode Leu
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (369)..(369)
<223> OTHER INFORMATION: Codon also can encode Thr
<220> FEATURE:
<221> NAME/KEY: misc_feature
```

35

-continued

```
<222> LOCATION: (486)..(486)
<223> OTHER INFORMATION: Codon also can encode Ser
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (495)..(495)
<223> OTHER INFORMATION: Codon also can encode Ile
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (510)..(510)
<223> OTHER INFORMATION: Codon also can encode Ala
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (555)..(555)
<223> OTHER INFORMATION: Codon also can encode Val
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (588)..(588)
<223> OTHER INFORMATION: Codon also can encode Glu
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (600)..(600)
<223> OTHER INFORMATION: Codon also can encode Leu
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (621)..(621)
<223> OTHER INFORMATION: Codon also can encode Ala
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (714)..(714)
<223> OTHER INFORMATION: Codon also can encode Thr
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (729)..(729)
<223> OTHER INFORMATION: Codon also can encode Ile
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1092)..(1092)
<223> OTHER INFORMATION: Codon also can encode Val
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1191)..(1191)
<223> OTHER INFORMATION: Codon also can encode Ile
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1284)..(1284)
<223> OTHER INFORMATION: Codon also can encode Ala
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1287)..(1287)
<223> OTHER INFORMATION: Codon also can encode Ile
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1290)..(1290)
<223> OTHER INFORMATION: Codon also can encode Glu
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1293)..(1293)
<223> OTHER INFORMATION: Codon also can encode Ala
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1296)..(1296)
<223> OTHER INFORMATION: Codon also can encode Pro
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1302)..(1302)
<223> OTHER INFORMATION: Codon also can encode Thr
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (1308)..(1308)
<223> OTHER INFORMATION: Codon also can encode Gly
<400> SEQUENCE: 15
cgtcctattt taatactccg aaggaggcag ttggcaggca actgccactg acgtcccgta
                                                                      120
agggtaaggg gacgtccact ggcgtcccgt aaggggaagg ggacgtaggt acataaatgt
                                                                      180
gctaggtaac taacgtttga ttttttgtgg tataatatat gtaccatgct tttaatagaa
```

gcttgaattt ataaattaaa atattttac aatattttac ggagaaatta aaactttaaa

											_	con	tin	ьеп		
												COII	CIII	ueu		
aaaa	attaa	aca t	`	_	_			_	_	_	_			_	c cta r Leu	290
	_	_		_	gag Glu						_		_			338
					gta Val 35		_			_				_		386
	_				gct Ala			_	_	_		_	_		_	434
_		_	_		gtt Val											482
			_	_	atc Ile					_						530
				_	gct Ala	_			_							57
_					atc Ile 115	_	_						_		_	62
	_		_		tgg Trp	_				_			_	_		67
		_	_	_	tac Tyr		_		_	_	_	_		_	_	72
		_			atc Ile							_		_		77
					act Thr				_		_			_	_	81
				_	cac His 195				_			_	_		_	86
					ttc Phe		_	_					_			91
			_	_	aca Thr		_		_		_		_			96
_				_	gaa Glu	_					_	_	_			101
			_		atc Ile				_						_	105
					tta Leu 275	_	_		_	_						110
	_				tca Ser		_	_								115
				_	gta Val	_				_	_					120

											_	con	tin	ued		
gca g	12C	at c	atc	220	cat	act	220	tta	aat	ata	ass	ata	ata	cac	aaa	1250
Ala A	_				_	_				_	_	_	_			1250
cgt a Arg A		_						_		_					_	1298
tca a Ser A 350			taa	tttt	tttt	tta a	aacta	aaaat	ca aa	atct	ggtta	a ac	cata	ccta		1350
gttta	attt	ta ç	gttta	ataca	ac a	cttti	tcata	a tat	catat	act	taat	taget	tac (cataç	ggcagt	1410
tggca	agga	ıcg t	ccc													1424
<210><211><211>	> LE	NGTE	I: 35													
<213>				Chla	amydo	omona	as re	∍inha	ardt	Li						
<400>	> SE	QUEN	ICE :	16												
Met I 1	ľhr	Ala	Ile	Leu 5	Glu	Arg	Arg	Glu	Asn 10	Ser	Ser	Leu	Trp	Ala 15	Arg	
Phe C	Cys	Glu	Trp 20	Ile	Thr	Ser	Thr	Glu 25	Asn	Arg	Leu	Tyr	Ile 30	Gly	Trp	
Phe G	3ly	Val 35	Ile	Met	Ile	Pro	Сув 40	Leu	Leu	Thr	Ala	Thr 45	Ser	Val	Phe	
Ile I	lle 50	Ala	Phe	Ile	Ala	Ala 55	Pro	Pro	Val	Asp	Ile 60	Asp	Gly	Ile	Arg	
Glu F 65	Pro	Val	Ser	Gly	Ser 70	Leu	Leu	Tyr	Gly	Asn 75	Asn	Ile	Ile	Thr	Gly 80	
Ala V	/al	Ile	Pro	Thr 85	Ser	Asn	Ala	Ile	Gly 90	Leu	His	Phe	Tyr	Pro 95	Ile	
Trp G	3lu	Ala	Ala 100	Ser	Leu	Asp	Glu	Trp 105	Leu	Tyr	Asn	Gly	Gly 110	Pro	Tyr	
Gln I	Leu	Ile 115	Val	Cys	His	Phe	Leu 120	Leu	Gly	Val	Tyr	Суs 125	Tyr	Met	Gly	
Arg 0	31u L30	Trp	Glu	Leu	Ser	Phe 135	Arg	Leu	Gly	Met	Arg 140	Pro	Trp	Ile	Ala	
Val <i>P</i> 145	Ala	Tyr	Ser	Ala	Pro 150	Val	Ala	Ala	Ala	Ser 155	Ala	Val	Phe	Leu	Val 160	
Tyr F	Pro	Ile	Gly	Gln 165	Gly	Ser	Phe	Ser	Asp 170	Gly	Met	Pro	Leu	Gly 175	Ile	
Ser G	3ly	Thr	Phe 180	Asn	Phe	Met	Ile	Val 185	Phe	Gln	Ala	Glu	His 190	Asn	Ile	
Leu M	/let	His 195	Pro	Phe	His	Met	Leu 200	Gly	Val	Ala	Gly	Val 205	Phe	Gly	Gly	
Ser I	Leu 210	Phe	Ser	Ala	Met	His 215	Gly	Ser	Leu	Val	Thr 220	Ser	Ser	Leu	Ile	
Arg 0	3lu	Thr	Thr	Glu	Asn 230	Glu	Ser	Ala	Asn	Glu 235	Gly	Tyr	Arg	Phe	Gly 240	
Gln G	3lu	Glu	Glu	Thr 245	Tyr	Asn	Ile	Val	Ala 250	Ala	His	Gly	Tyr	Phe 255	Gly	
Arg I	Leu	Ile	Phe 260	Gln	Tyr	Ala	Ser	Phe 265	Asn	Asn	Ser	Arg	Ser 270	Leu	His	
Phe F	Phe	Leu 275	Ala	Ala	Trp	Pro	Val 280	Ile	Gly	Ile	Trp	Phe 285	Thr	Ala	Leu	

Gly Leu Ser Thr Met Ala Phe Asn Leu Asn Gly Phe Asn Phe Asn Gln

						41											42
											_	con	tin	ued			
	290					295					300						
Ser 305	Val	Val	Asp	Ser	Gln 310	_	Arg	Val	Leu	Asn 315	Thr	Trp	Ala	Asp	Ile 320		
Ile	Asn	Arg	Ala	Asn 325	Leu	Gly	Met	Glu	Val 330		His	Glu	Arg	Asn 335	Ala		
His	Asn	Phe	Pro 340		_		Ala			Asn	Ser		Ser 350		Asn		
<211<212<213<221<221	1 > L: 2 > T: 3 > O: 0 > F: 1 > N:	EQ II ENGTI YPE: RGANI EATUI AME/I	H: 1. DNA ISM: RE: KEY:	278 Chl CDS	-		as r	einh	ardt	ii							
< 400	0 > S	EQUE	NCE:	17													
_							cat His					_	_			48	
	_		_		_		act Thr				_	_	_		gcc Ala	96	
		_	_	_	_		ccg Pro 40	_			_	_	_		gtc Val	144	
	_	_		_	_	Val	acc Thr	Glu	Āla	Gln	_				ttc Phe	192	
							tcc Ser								gtc Val 80	240	
_	_	_	_	_			gcc Ala		_				_	_	ctg Leu	288	
				gct Ala			gcc Ala		gag Glu						gtc Val	336	
			aag	cct	_	_		atg Met	tgg	_	_	_	gac		tcg Ser	384	
_		aag Lys					aac	atc				aac			aag Lys	432	
_	atc	gac		_		ctg Leu	cac His	_	_	_	tcg		_		_	480	
att	_		_	_	Val	_	act Thr	_	_	Asn			_	_	Gly	528	
				His			gac Asp	_	Āla	_	_	_	_	Āla	att Ile	576	
	_	_	aac	cag	_	_	att Ile 200	gag Glu	ggc	_	_					624	
	_	cag Gln	_	_		_	cgc	ccc				acg	_		acc Thr	672	
	gtg	ttc	_	_			ccg Pro	_	_		ggc	_	_		_	720	

Asn Val Phe Val Lys Asn Leu Pro Ala Asp Ile Gly Asp Asp Glu Leu

						43										44
											_	con	tin [.]	ued		
225					230					235					240	
ggc (_								_			_	_	768
aag (Lys 1																816
gac (_		_			_	_				_			_		864
atg Met	_		_	_	_				_			_	_	_		912
cgc (Arg (_	_	_	Gln	_	_			_	_	_		_	960
tac (Tyr :	_	_		_	_	_		_		_	_		_		_	1008
gag (Glu (_	_	_	_		_	_		_				Ser		1056
acc . Thr			_	_	_	_	_	_	_		_		_		_	1104
ggc Gly					_			_		_		_			_	1152
ccc (Pro ' 385				_			_	_	_	_		_		_		1200
gtg (Val 2	_	_		_	Arg	_	_		_	_	_		_	_		1248
gcc Ala		_	_		_	_	taa	ggat	tcc							1278
<210 <211 <212 <213	> LE > T	ENGTI YPE :	H: 42 PRT	23	amyd	omona	as re	einha	ardt:	ii						
<400	> SI	EQUEI	NCE:	18												
Met (1	Gly	His	His	His 5	His	His	His	His	His 10	His	His	Ser	Ser	Gly 15	His	
Ile (Glu	Gly	Arg 20	His	Met	Ala	Thr	Thr 25	Glu	Ser	Ser	Ala	Pro 30	Ala	Ala	
Thr '	Thr	Gln 35	Pro	Ala	Ser	Thr	Pro 40	Leu	Ala	Asn	Ser	Ser 45	Leu	Tyr	Val	
Gly I	Asp 50	Leu	Glu	Lys	Asp	Val 55	Thr	Glu	Ala	Gln	Leu 60	Phe	Glu	Leu	Phe	
Ser : 65	Ser	Val	Gly	Pro	Val 70	Ala	Ser	Ile	Arg	Val 75	Cys	Arg	Asp	Ala	Val 80	
Thr I	Arg	Arg	Ser	Leu 85	Gly	Tyr	Ala	Tyr	Val 90	Asn	Tyr	Asn	Ser	Ala 95	Leu	
Asp :	Pro	Gln			Asp								_		Val	

100

Val Asn Gly Lys Pro Met Arg Ile Met Trp Ser His Arg Asp Pro Ser

											_	con	tin [.]	ued	
		115					120					125			
Ala	Arg 130	Lys	Ser	Gly	Val	Gly 135	Asn	Ile	Phe	Ile	Lys 140	Asn	Leu	Asp	Lys
Thr 145	Ile	Asp	Ala	Lys	Ala 150	Leu	His	Asp	Thr	Phe 155	Ser	Ala	Phe	Gly	Lys 160
Ile	Leu	Ser	Cys	Lys 165		Ala	Thr	Asp	Ala 170		Gly	Val	Ser	Lys 175	Gly
Tyr	Gly	Phe	Val 180		Phe	Glu	Asp	Gln 185	Ala	Ala	Ala	Asp	Arg 190		Ile
Gln	Thr	Val 195	Asn	Gln	Lys	Lys	Ile 200	Glu	Gly	Lys	Ile	Val 205	Tyr	Val	Ala
Pro	Phe 210	Gln	Lys	Arg	Ala	Asp 215	Arg	Pro	Arg	Ala	Arg 220	Thr	Leu	Tyr	Thr
Asn 225	Val	Phe	Val	Lys	Asn 230		Pro	Ala	Asp	Ile 235	Gly	Asp	Asp	Glu	Leu 240
Gly	Lys	Met	Ala	Thr 245		His	Gly	Glu	Ile 250		Ser	Ala	Val	Val 255	Met
Lys	Asp	Asp	Lys 260	_	Gly	Ser	Lys	Gly 265	Phe	Gly	Phe	Ile	Asn 270		Lys
Asp	Ala	Glu 275	Ser	Ala	Ala	Lys	Cys 280	Val	Glu	Tyr	Leu	Asn 285	Glu	Arg	Glu
Met	Ser 290	Gly	Lys	Thr	Leu	Tyr 295	Ala	Gly	Arg	Ala	Gln 300	Lys	Lys	Thr	Glu
Arg 305	Glu	Ala	Met	Leu	Arg 310		Lys	Ala	Glu	Glu 315	Ser	ГÀЗ	Gln	Glu	Arg 320
Tyr	Leu	Lys	Tyr	Gln 325		Met	Asn	Leu	Tyr 330		Lys	Asn	Leu	Ser 335	Asp
Glu	Glu	Val	Asp 340	_	Asp	Ala	Leu	Arg 345	Glu	Leu	Phe	Ala	Asn 350		Gly
Thr	Ile	Thr 355	Ser	Cys	Lys	Val	Met 360	_	Asp	Gly	Ser	Gly 365	Lys	Ser	Lys
Gly	Phe 370	Gly	Phe	Val	Cys	Phe 375	Thr	Ser	His	Asp	Glu 380	Ala	Thr	Arg	Pro
Pro 385	Val	Thr	Glu	Met		Gly	_			_	Gly	_		Leu	Tyr 400
Val	Ala	Leu	Ala	Gln 405	Arg	Lys	Asp	Val	Arg 410	Arg	Ala	Thr	Gln	Leu 415	Glu
Ala	Asn	Met	Gln		Arg	Met									

What is claimed is:

420

- [1. An expression cassette for expression of a desired molecule, which cassette comprises:
 - a) an RB47 binding site nucleotide sequence upstream of a restriction endonuclease site for insertion of a desired coding sequence to be expressed; and
 - b) a nucleotide sequence encoding a polypeptide which binds RB47 binding site.
- [2. The expression cassette of claim 1 further comprising a promoter sequence operably linked to and positioned 60 upstream of the RB47 binding site nucleotide sequence.]
- [3. The expression cassette of claim 2 wherein the promoter sequence is derived from a psbA gene.]
- [4. The expression cassette of claim 3 wherein the coding sequence is heterologous to the psbA gene.]
- [5. The expression cassette of claim 1 wherein the cassette comprises a plasmid or virus.]

- [6. The expression cassette of claim 1 further comprising and operably linked thereto a nucleotide sequence encoding RB60.
- [7. The expression cassette of claim 1 wherein the RB47 binding polypeptide is selected from the group consisting of RB47, RB47 precursor and a histidine-modified RB47.
- [8. An expression cassette for expression of a desired molecule, which cassette comprises:
 - a) an RB47 binding site nucleotide sequence upstream of a restriction endonuclease site for insertion of a desired coding sequence to be expressed;

and

- b) a nucleotide sequence encoding a polypeptide which regulates the binding of RB47 to the RB47 binding site.]
- [9. The expression cassette of claim 8 wherein the regulatory polypeptide is RB60.]

45

- **[10**. A method of screening for agonists or antagonists of RB47 binding to RB47 binding site, the method comprising the steps:
 - a) providing a cell expression system containing:
 - 1) a promoter sequence;
 - 2) a RB47 binding site sequence;
 - 3) a coding sequence for an indicator polypeptide; and
 - 4) a polypeptide which binds to the RB47 binding site sequence;
 - b) introducing an antagonist or agonist into the cell; and
 - c) detecting the amount of indicator polypeptide expressed in the cell.
- [11. A method of screening for agonists or antagonists of RB60 in regulating RB47 binding to RB47 binding site, the method comprising the steps:
 - a) providing an expression system in a cell containing:
 - 1) a promoter sequence;
 - 2) a RB47 binding site sequence;
 - 3) a coding sequence for an indicator polypeptide;
 - 4) a polypeptide which binds to the RB47 binding site sequence; and
 - 5) a RB60 polypeptide;
 - b) introducing an agonist or antagonist into the cell; and
 - c) detecting the amount of indicator polypeptide expressed in the cell.
 - [12. An isolated nucleotide sequence encoding RB47.]
- [13. An isolated nucleotide sequence encoding a histidine-modified RB47.]
- [14. An isolated nucleotide sequence encoding RB47 precursor.]
- [15. The nucleotide sequence of claim 12 from nucleotide 30 position 197 to 1402 in FIGS. 1A-1B and SEQ ID NO 5.]
- [16. The nucleotide sequence of claim 13 from nucleotide position 1 to 1269 in FIGS. 5A-5B and SEQ ID NO 14.]
- [17. The nucleotide sequence of claim 14 shown in from nucleotide position 197 to 2065 in FIGS. 1A-1C and SEQ ID NO 5.]
- [18. An expression cassette comprising the nucleotide sequence of claim 12, 13 or 14.]
 - [19. An isolated nucleotide sequence encoding RB60.]
- [20. The nucleotide sequence of claim 18 from nucleotide position 16 to 1614 in FIGS. 2A-2B and SEQ ID NO 10.]
- [21. An expression cassette comprising the nucleotide sequence of claim 19.]
- [22. An expression system comprising a cell transformed with the expression cassette of claim 1.]
- [23. The expression system of claim 22 wherein the cell is 45 a plant cell.]
- [24. The expression system of claim 23 wherein the plant cell endogenously expresses RB47.]
- [25. The expression system of claim 23 wherein the plant cell endogenously expresses RB60.]
- [26. The expression system of claim 23 wherein the plant cell endogenously expresses RB47 and RB60.]
- [27. The expression system of claim 22 wherein the cell is a eukaryotic cell.]
- [28. The expression system of claim 22 wherein the cell is a prokaryotic cell.]
- [29. The expression system of claim 22 further comprising the expression cassette of claim 21.]
- [30. An expression system comprising a cell transformed with the expression cassette of claim 8.]
- [31. The expression system of claim 29 further comprising 60 the expression cassette of claim 18.]
- [32. A cell stably transformed with the expression cassette of claim 18.]
- [33. A cell stably transformed with the expression cassette of claim 21.]
- [34. A cell stably transformed with the expression cassette of claims 18 and 21.]

- [35. The expression cassette of claim 1 further comprising an inserted desired coding sequence.]
- [36. An expression system comprising a cell transformed with the expression cassette of claim 35, wherein the coding sequence is expressed forming the desired molecule upon activation of the RB47 binding site with RB47.]
- [37. The expression system of claim 36 wherein the cell is a plant cell endogenously expressing RB47.]
- [38. The expression system of claim 36 wherein the cell is stably transformed with the expression cassette of claim 21.]
- [39. An expression system comprising a cell transformed with an expression cassette comprising a promoter sequence, a RB47 binding site sequence, a desired coding sequence for a molecule, and a nucleotide sequence for encoding a polypeptide which binds RB47 binding site, wherein all sequences are operably linked.]
 - [40. A method of preparing a desired recombinant molecule wherein the method comprises cultivating the expression system of claim 36.]
 - [41. A method of preparing a desired recombinant molecule wherein the method comprises cultivating the expression system of claim 39.]
 - [42. A method for expressing a desired coding sequence comprising:
 - a) forming an expression cassette by operably linking:
 - 1) a promoter sequence;
 - 2) a RB47 binding site sequence;
 - 3) a desired coding sequence; and
 - 4) a nucleotide sequence encoding a polypeptide which binds RB47 binding site; and
 - b) introducing the expression cassette into a cell.
 - [43. The method of claim 42 wherein the cell is a plant cell endogenously expressing RB47.]
 - [44. The method of claim 42 wherein the cell is a plant cell endogenously expressing RB60.]
 - [45. The method of claim 42 further comprising inducing expression with a promoter inducer molecule.]
 - [46. The method of claim 45 wherein the promoter inducer molecule is IPTG.]
 - [47. The method of claim 42 wherein the cell is transformed with the expression cassette of claim 21.]
 - [48. A method for expressing a desired coding sequence comprising:
 - a) forming an expression cassette by operably linking:
 - 1) a promoter sequence;
 - 2) a RB47 binding site sequence; and
 - 3) a desired coding sequence;

and

- b) introducing the expression cassette into a plant cell endogenously expressing RB47.
- [49. The method of claim 48 wherein the expression cassette further comprises a nucleotide sequence encoding RB60.]
- [50. A method for the regulated production of a recombinant molecule from a desired coding sequence in a cell, wherein the cell contains the expression cassette of claim 34, wherein expression of the coding sequence is activated by RB47 binding to the RB47 binding site thereby producing the recombinant molecule.]
- [51. A method of forming an expression cassette by operably linking:
 - a) a RB47 binding site sequence;
 - b) a cloning site for insertion of a desired coding sequence downstream of the RB47 binding site sequence; and
 - c) a nucleotide sequence encoding a polypeptide which binds the RB47 binding site.
- [52. The method of claim 51 further comprising a promoter sequence operably linked upstream to the RB47 binding site sequence.]

- [53. The method of claim 51 further comprising a desired coding sequence inserted into the insertion site.]
- [54. An article of manufacture comprising a packaging material and contained therein in a separate container the expression cassette of claim 1, wherein the expression cassette is useful for expression of a desired coding sequence, and wherein the packaging material comprises a label which indicates that the expression cassette can be used for expressing a desired coding sequence when the RB47 binding site is activated by RB47.]
- [55. The article of manufacture of claim 54 further comprising in a separate container the expression cassette of claim 18.]
- [56. The article of manufacture of claim 54 further comprising in a separate container the expression cassette of claim 21.]
- [57. An article of manufacture comprising a packaging material and contained therein in a separate container the expression system of claim 22, wherein the expression system is useful for expression of a desired coding sequence, and wherein the packaging material comprises a label which indicates that the expression system can be used for expressing a desired coding sequence when the RB47 binding site is activated by RB47.]
- [58. An article of manufacture comprising a packaging material and contained therein in a separate container the stably transformed cell of claim 32, wherein the cell is useful as an expression system, and wherein the packaging material comprises a label which indicates that the expression system can be used for expressing a desired coding sequence when the RB47 binding site is activated by RB47.]
- [59. An article of manufacture comprising a packaging material and contained therein in a separate container the stably transformed cell of claim 33, wherein the cell is useful as an expression system, and wherein the packaging material comprises a label which indicates that the expression system can be used for expressing a desired coding sequence when the RB47 binding site is activated by RB47 and regulated by RB60.]
- [60. An article of manufacture comprising a packaging material and contained therein in a separate container the stably transformed cell of claim 34, wherein the cell is useful 40 as an expression system, and wherein the packaging material comprises a label which indicates that the expression system can be used for expressing a desired coding sequence when the RB47 binding site is activated by RB47 and regulated by RB60.]
- [61. An article of manufacture comprising a packaging material and contained therein in a separate container the expression cassette of claim 2, wherein the expression cassette is useful for expression of a RNA transcript, and wherein the packaging material comprises a label which indicates that the expression cassette can be used for producing in vitro a RNA transcript when the RB47 binding site is activated by RB47.]
- **[62**. The article of manufacture of claim **61** wherein the promoter sequence is selected from the group consisting of T3 and T7 promoters.
- [63. The article of manufacture of claim 61 further comprising in separate containers a polymerase, a buffer and each of four ribonucleotides, reagents for in vitro RNA transcription.]
- 64. A chloroplast expression cassette comprising the following components in the 5' to 3' direction of transcription:

- a) a promoter functional in a chloroplast;
- b) a 5' leader sequence comprising a 5' untranslated region (UTR), wherein the 5' UTR comprises an RB47 binding site; and
- c) a DNA sequence encoding a heterologous protein of interest.
- 65. The chloroplast expression cassette of claim 64, wherein the DNA sequence encodes a vertebrate polypeptide. 66. The chloroplast cassette of claim 64, wherein the DNA sequence encodes a mammalian polypeptide.
- 67. The chloroplast expression cassette of claim 64, wherein the polypeptide is an antibody.
- 68. The chloroplast cassette of claim 67, wherein the polypeptide is a single chain antibody.
- 69. The chloroplast cassette of claim 64, wherein the chloroplast is a plant chloroplast.
 - 70. The chloroplast cassette of claim 64, wherein the chloroplast is an algal chloroplast.
 - 71. The chloroplast expression cassette of claim 64, wherein the 5' leader sequence is a 5' untranslated region (UTR).
 - 72. A cell containing the chloroplast expression cassette of claim 64.
 - 73. An alga or plant comprising a cell of claim 72.
 - 74. An algal chloroplast comprising the expression cassette of claim 64.
 - 75. A micro-algae containing a chloroplast of claim 74.
 - 76. The micro-algae of claim 75, wherein the algae is Chlamydomonas reinhardtii.
 - 77. The chloroplast expression cassette of claim 64, further comprising a 3' UTR.
 - 78. The expression cassette of claim 64, wherein the DNA sequence encodes a eukaryotic protein.
- 79. The chloroplast expression cassette of claim 77, wherein the promoter and the 5' leader sequence and the 3' UTR are of a length which allows for replacement of a homologous gene by genetic recombination upon introduction into the chloroplast genome.
 - 80. The chloroplast expression cassette of claim 79, wherein the homologous gene to be replaced is a psbA gene.
 - 81. A method for producing a non-plant, non-plastid protein in a chloroplast, comprising:
 - a) transforming a chloroplast of a cell with a cassette of claim 64, and
 - b) growing the cell comprising the transformed chloroplast under conditions wherein the DNA sequence is expressed to produce the protein in the chloroplast.
 - 82. A eukaryotic cell comprising a transformed chloroplast producing a protein according to the method of claim 81.
 - 83. The chloroplast expression cassette of claim 79, wherein the protein is an antibody.
 - 84. A microalgal chloroplast transformed with an expression cassette of claim 65.
 - 85. The microalgal chloroplast of claim 84, wherein said microalga is Chlamydomonas reinhardtii.
 - 86. A method for producing a heterologous eukaryotic protein in a microalgal chloroplast, comprising:
 - a) transforming a microalgal chloroplast of a cell with a cassette of claim 65, and
 - b) growing the cell comprising the transformed microalgal chloroplast under conditions wherein the DNA sequence is expressed to produce the protein in the microalgal chloroplast.

* * * * *