(19) United States

12y Reissued Patent

Huang et al.

(10) Patent Number:

USOORE44210E

US RE44,210 E.

45) Date of Reissued Patent: May 7, 2013
5,325,530 A 6/1994 Mohrmann
5,437,032 A 7/1995 Wolf et al.

5,528,753 A 6/1996 Fortin
5,572,680 A 11/1996 Ikeda et al.
5,584,023 A 12/1996 Hsu
5,603,020 A 2/1997 Hashimoto et al.
5,615,400 A 3/1997 Cowsar et al.
5,623,492 A 4/1997 Teraslinna
5,636,371 A 6/1997 Yu
5,640,595 A 6/1997 Baugher et al.
5,692,047 A 11/1997 McManis
5,706,097 A 1/1998 Schelling et al.
5,706,453 A 1/1998 Cheng et al.
(Continued)
FOREIGN PATENT DOCUMENTS
JP 64-002145 1/1989
WO WO 99/39261 8/1999
WO W0-99/39261 8/1999
OTHER PUBLICATIONS

(54) VIRTUALIZING SUPER-USER PRIVILEGES
FOR MULTIPLE VIRTUAL PROCESSES
(75) Inventors: Xun Wilson Huang, Palo Alto, CA
(US); Cristian Estan, Jr., Madison, W]
(US); Srinivasan Keshav, Waterloo
(CA)
(73) Assignee: Digital Asset Enterprises, L.L.C.,
Wilmington, DE (US)
(21) Appl. No.: 12/467,137
(22) Filed: May 15, 2009
Related U.S. Patent Documents
Reissue of:
(64) Patent No.: 7,219,354
Issued: May 15, 2007
Appl. No.: 09/747,687
Filed: Dec. 22,2000
(51) Int.CL
GO6rl 13/00 (2006.01)
(52) U.S. CL
USPC 719/328;°719/312; 718/1; 718/100;
718/104
(58) Field of Classification Search 719/312,
719/328; 718/1, 100, 104
See application file for complete search history.
(56) References Cited

3,377,624
4,177,510
5,189,667
5,212,793
5,226,160
5,249,290
5,203,147

U.S. PATENT DOCUMENTS

Boehm, B., “Managing Software Productivity and Reuse,” IEEE
Computer, vol. 32, No. 9, Sep. 1999, 3 pages.

(Continued)

Primary Examiner — Andy Ho

(57) ABSTRACT

Super-user privileges are virtualized by designating a virtual
super-user for each of a plurality of virtual processes and
intercepting system calls for which actual super-user privi-
leges are required, which are nevertheless desirable for a
virtual super-user to perform in the context of his or her own
virtual process. In one embodiment, a computer operating
system 1ncludes multiple virtual processes, such as virtual

A 4/1968 Nelson et al. private servers. Each virtual process can be associated with
A 12? 1975 Apalfl’f;ll eglal* one or more virtual super-users. When an actual process
A 2/1993 - Lsaki et al. makes a system call that requires actual super-user privileges,
A 5/1993 Donica et al. he call is ; ih 1
A 7/1993 Waldron et al. the call 1s intercepted by a system call wrapper.
A 9/1993 Heizer
A 11/1993 Francisco et al. 14 Claims, 15 Drawing Sheets
e I]
USER ADDRESS SPACE 103 10 v —
- 107 |
——————————————— = ——~ ! | Initialization }~ 1101
| o] i
. — | — o7 11| Process2 A
131 itialization |
N R =1 i et
M;ic:;:r | l 1 ! : Descendent| !
| 108 ’ 1
Program | e —""Oi: : Process 3 :
— | | Descendent) | | Descendent | | 108 |
: Process 1 Process 2 : || -——L—JB {
‘ r T 1| Descendent |
L _,____,._,L ! ., | Process 4 *:
COMPUTER| | | = Bmm=m—pmmmompmmeees | S
MEMOR — —ToTssspmens " ~ —~
102 OPERATING SYSTEM 117~
... -1-.-1--.--"-------"----.H..........nuun.“.“{-.---.-----------.-
1% 11 115
= — oAl L3
System Call
System Call — System
Kernel Wrapper Vectnr.Table " oot
- e Pointers to :
Virtual Process Table L System Call f 1161
_ 12 '
I : ﬁssuciatinn 43 11gT~__YVrapper Saved 5
127 ysv— » Copies of
et o oriers - Pointers
System Calis e T]
OPERATING SYSTEM ADDRESS SPACE 108 e

US RE44,210 E

Page 2
U.S. PATENT DOCUMENTS 6,282,581 Bl 8/2001 Moore et al.
6,282,703 Bl 8/2001 Meth et al.
5,708,774 A /1998 Boden 6,286,047 Bl 9/2001 Ramanathan et al.
5,719,854 A 2/1998 Choudhury et al. - - :
6,298,479 B1 10/2001 Chessin et al.
5,727,147 A 3/1998 Van Hoff . .
6,314,558 B1 11/2001 Angel et al.
5,727,203 A 3/1998 Hapner et al. - LT
. 6,327,622 B1 12/2001 Jindal et al.
5,748,614 A 5/1998 Wallmeler -
6,336,138 Bl 1/2002 Caswell et al.
5,752,003 A 5/1998 Hart -
6,351,775 Bl 2/2002 Yu
5,761,477 A 6/1998 Wahbe et al. - -
6,353,616 Bl 3/2002 Elwalid et al.
5,764,889 A 6/1998 Ault et al. -
. 6,363,053 Bl 3/2002 Schuster et al.
5,781,550 A 7/1998 Templin et al. - :
6,366,958 Bl 4/2002 Ainsworth et al.
5,799,173 A 8/1998 Gossler et al. . -
6,370,583 Bl 4/2002 Fishler et al.
5,809,527 A 9/1998 Cooper et al. - :
. 6,374,292 Bl 4/2002 Srivastava et al.
5,828,893 A 10/1998 Weid et al. - :
6,381,228 Bl 4/2002 Prieto, Jr. et al.
5,838,686 A 11/1998 Ozkan .
. 6,385,638 Bl 5/2002 Baker-Harvey
5,838,916 A 11/1998 Domenikos et al. -
6,385,722 Bl 5/2002 Connelly et al.
5,842,002 A 11/1998 Schnurer et al. - :
6,389,448 Bl 5/2002 Primak et al.
5,845,129 A 12/1998 Wendorf et al. - -
. 6,393,484 Bl 5/2002 Massarani
5,850,399 A 12/1998 Ganmukhi et al. -
6,425,003 Bl 7/2002 Herzog et al.
5,860,004 A 1/1999 Fowler et al. - -
6,430,622 Bl 8/2002 Aiken, Jr. et al.
5,864,683 A 1/1999 Boebert et al. -
6,434,631 Bl 8/2002 Bruno et al.
5,889,956 A 3/1999 Hauser et al. .
6,434,742 Bl 8/2002 Koepele, Ir.
5,889,996 A 3/1999 Adams -
. 6,438,134 Bl 8/2002 Chow et al.
5,892,968 A 4/1999 Iwasaki et al. -
6,442,164 Bl 82002 Wu
5,905,730 A 5/1999 Yang et al. -
6,449,652 Bl 9/2002 Blumenau et al.
5,905,859 A 5/1999 Holloway et al. -
! 6,457,008 Bl 9/2002 Rhee et al.
5,913,024 A 6/1999 Green et al. -
5015085 A 6/1990 Koved 6,463,459 B1 10/2002 Orr et al.
7 s oved 6,470,398 B1 10/2002 Zargham et al.
5,915,095 A 6/1999 Miskowiec - a
_ 6,484,173 B1 11/2002 O’Hare et al.
5,918,018 A 6/1999 Gooderum et al.
6,487,578 B2 11/2002 Ranganathan
5,920,699 A 7/1999 Bare - .
. 6,487,663 Bl 11/2002 Jaisimha et al.
5,933,603 A 8/1999 Vahalia et al. - :
6,490,670 B1 12/2002 Collins et al.
5,937,159 A 8/1999 Meyers et al. - :
6,496,847 B1 12/2002 Bugnion et al.
5,956,481 A 9/1999 Walsh et al. -
. 6,499,137 B1 12/2002 Hunt
5,961,582 A 10/1999 Gaines -
_ 6,529,950 Bl 3/2003 Lumelsky et al.
5,978,373 A 11/1999 Hoff et al. - :
. 6,529,985 Bl 3/2003 Delanov et al.
5,982,748 A 11/1999 Yin et al. -
6,542,167 Bl 4/2003 Darlet et al.
5,987,242 A 11/1999 Bentley et al. - -
. 6,553,413 Bl 4/2003 Leighton et al.
5,987,524 A 11/1999 Yoshida et al. -
. 6,560,613 Bl 5/2003 Gylfason et al.
5,987,608 A 11/1999 Roskind - :
$901'817 A 11/1999 Sring 6,578,055 Bl 6/2003 Hutchison et al.
77 Hilvasan 6,578,068 Bl 6/2003 Bowman-Amuah
5,999,963 A 12/1999 Bruno et al. - -
. 6,580,721 Bl 6/2003 Beshai
6,016,318 A 1/2000 Tomoike :
. 6,590,588 B2 7/2003 Lincke et al.
6,018,527 A 1/2000 Yin et al.
6023791 A /95000 C . 6,622,159 Bl 9/2003 Chao et al.
St LLITLTLRZS 6,647,422 B2 11/2003 Wesinger, Jr. et al.
6,038,608 A 3/2000 Katsumanta - T
6,658,571 B1 12/2003 O’Brien et al.
6,038,609 A 3/2000 Geulen -
. 6,691,312 Bl 2/2004 Sen et al.
6,047,325 A 4/2000 Jain et al. -
. 6,711,607 Bl 3/2004 Goyal
6,055,617 A 4/2000 Kingsbury -
6,725,456 Bl 4/2004 Bruno et al.
6,055,637 A 4/2000 Hudson et al. -
y 6,732,211 Bl 5/2004 Goyal et al.
6,001,349 A 5/2000 Coille et al. -
. 6,754,716 Bl 6/2004 Sharma et al.
6,065,118 A 5/2000 Bull et al. - -
e 6,760,775 Bl 7/2004 Anerousis et al.
6,075,791 A 6/2000 Chiussi et al. ! -
6,779,016 Bl 82004 Azizetal.c............. 709/201
6,078,929 A 6/2000 Rao - :
6,785,728 Bl 8/2004 Schneider et al.
6,078,957 A 6/2000 Adelman et al. -
6,820,117 B1 11/2004 Johnson
6,086,623 A 7/2000 Broome et al. - -
. 6,859,835 Bl 2/2005 Hipp
6,092,178 A 7/2000 Jindal et al. -
. 6,907,421 Bl 6/2005 Keshav et al.
6,094,674 A 7/2000 Hattorn et al. -

_ 6,909,691 Bl 6/2005 Goyal et al.
6,101,543 A 8/2000 Alden et al. -

_ . 6,912,590 Bl 6/2005 Lundback et al.
6,108,701 A 8/2000 Davis et al. -

_ 6,948,003 Bl 9/2005 Newman et al.
6,108,759 A 8/2000 Orcutt et al. .

_ 6,976,258 B1 12/2005 Goyal et al.
6,122,673 A 9/2000 Basak et al. -

6154776 A 11/9000 Mart; 6,985,937 Bl 1/2006 Keshav et al.
St artin 7,117,354 B1* 10/2006 Browningetal. 713/100
6,154,778 A 11/2000 Koistinen et al. -

_ . 7,143,024 B1 11/2006 Goyal et al.
6,161,139 A 12/2000 Win et al. -

_ 7,343,421 Bl 3/2008 Goyal
6,167,520 A 12/2000 Touboul 2003/0061338 Al 3/2003 Stelliga
6,172,981 Bl 1/2001 Cox et al.)

6,189,046 Bl 2/2001 Moore et al. OTHER PUBLICATIONS
6,192,389 Bl 2/2001 Ault et al.
6,192,512 Bl 2/2001 Chess Corbato , F. J. et al. “An Experimental Timesharing System,” Pro-
6,230,203 Bl 52001 Koperda et al. ceedings of the American Federation of Information Processing Soci-
6,240,465 Bl 5/ 2001 Benmohamed et al. eties Spring Joint Computer Conference, San Francisco, CA, May
6,243,825 B1* 6/2001 Gamacheetal. 714/4

_ _ 1-3, 1962, pp: 335-344.
6,247,057 Bl 6/2001 Barrera, 111 .
6247 068 R1 6/2001 Kyle Deutsch, P. and Grant, C.A., “A Flexible Measurement Tool for
6:259:699 B1 7/2001 Opalka et al. Software Systems,” Information Processing 71 (Proc. of the IFIP
6,266,678 Bl 7/2001 McDevitt et al. Congress), 1971, pp. 320-326.
6,269,404 Bl 7/2001 Hart et al. Edjlali, G., et al., “History-based Access Control for Mobile Code,”
6,279,039 Bl 8/2001 Bhat et al. Fifth ACM Conference on Computer and Communication Security,
6,279,040 Bl 8/2001 Ma et al. Nov. 3-5, 1998, 19 pages.

US RE44,210 E
Page 3

Erlingsson, U. and Schneider, F.B., “SASI Enforcement of Security
Policies: A Retrospective,” Proc. New Security Paradigms Work-
shop, Apr. 2, 1999, pp. 1-17.

Erlingsson, U. and Schnieder, F.B., IRM Enforcement of Java Stack
Inspection, [online], Feb. 19, 2000, [retrieved on Apr. 2, 2002].
Retrieved from the Internet: <cs-tr.cs.cornell.edu/Dienst/U12.0/
Show Page/ncstrl.cornell/ TR2000-1786>.

Evans. D. And Twyman, A., “Flexible Policy-Directed Code Safety,”
Proc. of 1999 IEEE Symposium on Security and Privacy, Oakland,
CA, May 9-12, 1999, pp. 1-14.

Fraser, T. et al., “Hardening COTS Software with Generic Software
Wrappers,” Proc. of 1999 IEEE Symposium on Security and Privacy,
1999, 15 pages.

Goldberg, 1. et al., “A Secure Environment for Untrusted Helper
Applications (Confining the Wily Hacker),” Proc.of the Sixth Usenix
Unix Security Symposium, San Jose, CA, Jul. 1996, 14 pages.

Goldberg, R. P. “Survey of Virtual Machine Research,” IEEE Com-
puter, Jun. 1974, pp. 34-45.

Pandey, R. and Hashu, B., “Providing Fine-Grained Access Control

for Mobile Programs Through Binary Editing,” Technical Report
TRO8 08, University of California, Davis, CA, 1998, pp. 1-22.
Ritchie, D.M., The Evolution of the Unix Time-Sharing System,
AT&T Bell Laboratories Technical Journal 63, No. 6, Part 2, Oct.
1984, (originally presented 1979), 11 pages.

Saltzer, J., H. and Schroeder, M. D., “The Protection of Information
in Computer Systems,” [online], 1973, [retrieved on Apr. 2, 2002].
Retrieved from the Internet: cs.virginia.edu-evans/cs551/saltzer/.
Wahbe, R., et al., “Efficient Software-Based Fault [solation,” Proc. of
the Symposium on Operating System Principles, 1993, 14 pages.
Goyal Pawan et al., “Generalized Guaranteed Rate Scheduling Algo-
rithms: A Framework” IEEE/ACM Transactions, vol. 5, Issue: 4,
Aug. 1997, pp. 561-571.

Keshav , S., “An Engineering Approach to Computer Networking:
ATM Networks, the Internet, and the Telephone Network,” Reading,
MA, Addison-Wesley, 1997, pp. vii-x1, 85-115, 209-355, 395-444.
Stevens, R. W., Unix Network Programming vol. 1 Networking APIs:
Sockets and XTI, Upper Saddle River , River, NJ, Prentice Hall,
1998, pp. v-x1v, 29-53, 85-110, 727-760.

Tanenbaum, A. S. and Woodhull, A. S., “Operating Systems: Design
and Implementation,” Upper Saddle River, NJ, Prentice Hall, 1997,
pp. vii-x1v, 1-46, 410-454.

Rubini , A., Linux Device Drivers, Sebastopol, CA, O’Reilly &
Associates, Inc., 1998, pp. v-x, 13-40.

Goyal, P, et al., “A Hierarchical CPU Scheduler for Multimedia
Operating Systems,” Proceedings of the Second Symposium on Oper-
ating Systems and Design Implementations (OSDI’96), Seattle, WA,
Oct. 1996, 15 pages.

Laurie, B. And Laurie, P., Apache The Definite Guide, Sebastopol,
CA, O’Rellly & Associates, Inc., Feb. 1999, pp. v-vii, 43-74.

Aho, A.V.and Ullman I. D., Principles of Compiler Design, Reading,
MA, 1977, pp. vi1-x, 359-362, 519-522.

Jonsson, J. “Exploring the Importance of Preprocessing Operations
in Real-Time Multiprocessor Scheduling,” Proc. of the IEEFE Real-
Time Systems Symposium-Work-In-Progress session, San Francisco,
CA, Dec. 4, 1997, pp. 31-34.

Rusling, D. A., Processes, [online], [retrieved on Dec. 7, 1999].
Retrieved from the Internet: cebaf.gov/-saw/linux/tlk-html/node44.
html>.

Rusling, D. A., Linux Processes, [online], [retrieved on Dec. 7, 1999].
Retrieved from the Internet cebaf.gov/-saw/linux/tlk-html/node45.
html>.

Rusling, D. A., Identifiers, [online], [retrieved on Dec. 7, 1999].
Retrieved from the Internet cebaf.gov/-saw/linux/tlk-html/node46.
html>.

Rusling, D. A., Scheduling, [online], [retrieved on Dec. 7, 1999].
Retrieved from the Internet cebaf.gov/-saw/linux/tlk-html/node47.
html>.

Rusling, D. A., Scheduling in Multiprocessor Systems, [online],
[retrieved on Dec. 7, 1999]. Retrieved from the Internet : cebaf.gov/-
saw/linux/tlk-html/node48 . html>.

Rusling, D. A., Files, [online], [retrieved on Dec. 7, 14999]. Retrieved
from the Internet: cebaf.gov/-saw/linux/tlk-html/node49 html>.

Plummer, D. C., “An Ethernet Address Resolution Protocol—or
Converting Network Protocol Addresses to 48.bit Ethernet Address
for Transmission on Ethernet Hardware,” Nov. 1982, [onlineg],
[retrieved on Jan. 17, 2000]. Retrieved from the Internet: <msg.net/
kadow/answers/extras/ric/rtc826 .txt>.

Huang, X. W. et al., ““The Entrapid Protocol Development Environ-

ment,” Proceedings of IEEE Infocom *99, Mar. 1999, 9 pages.
Duffield, N. G., et al., “A Flexible Model for Resource Management

in Virtual Private Networks,” Computer Communication Review
Conference, Computer Communication, ACM SIGCOMM 99 Con-

ference, Cambridge, MA, Aug. 30, 1999-Sep. 3, 1999. pp. 95-108.
Campbell, A. T. and Keshav, S., “Quality of Service in Distributed

Systems,” Compiiter Communications 21, 1998, pp. 291-293.
Bach, M. I., The Design of the Unix® Operating System, New Delhi,

Prentice-Hall of India, 1989, pp. v-x, 19-37.
McDougall, R., et al., Resource Management, Upper Saddle River,

NI, Prentice Hall, 1999, pp. mi-xix, 135-191.
Ryjsinghani, A., RFC 1624, May 1994, [online], retrieved Feb. 2,
2000]. Retrieved from the Internet: <org/rics/ric 1624 html>.

Mallory, T. and Kullberg, A., RFC 1141, Jan. 1990 [online],
[retrieved Feb. 2, 2000]. Retrieved from the Internet: org/rics/
rfc1141.htnl>.

Egevang, K. and Francis P, RFC 1631, May 1994 [online], [retrieved
Feb. 2, 2000]. Retrieved from the Internet : org/rfcs/rfc1631.html>.
Goyal, P. et al., “Start-time Fair Queuing: A Scheduling Algorithm
for Integrated Services Packet Switching Networks,” Proceedings of
ACM SIGCOMM ’96, San Francisco, CA, Aug. 1996, 14 pages.
Janosi, T., “Notes on ‘A Hierarchical CPU Scheduler for Multimedia
Operating Systems’ by Pawan Goyal, Xingang Guo and Herrick Vin,”
[online], [retrieved on May 8, 2000]. Retrieved from the Internet:
cs.cornell.edu/Info/Courses/Spring-97/CS614/goy. hyml>.

Goyal, P., “Packet Scheduling Algorithms for Integrated Services
Networks,” PhD Dissertation, University of Texas, Austin, TX, Aug.
1997.

United States patent application entitled “Restricting Communica-
tion Between Network Devices on a Common Network,” U.S. Appl.
No. 09/502,155, filed Feb. 11, 2000.

United States patent application entitled “Modifying Internal Com-
ponents of a Running Operating Systems,” U.S. Appl. No.
09/576,393, filed May 22, 2000.

United States patent application entitled “Virtualizing Port Addresses
for Non-Conflicting Use by Multiple Virtual Processes,” U.S. Appl.
No. 09/679,396, filed Oct. 3, 2000.

United States patent application entitled “Intercepting Calls to Non-
Local Procedures,” U.S. Appl. No. 09/687,031, filed Oct. 12, 2000.
United States patent application entitled “Virtaulizing Resource
Ownership for Multiple Virtual Processes,” U.S. Appl. No.
09/747,664, filed Dec. 22, 2000.

Symbol Table, [online] copyright 1997, 1998, [Retrieved on Apr. 4,
2003] Retrieved from the Internet 16.239.33.100/
search?q=cache:e ASXk8qC_ -caldera.com/developers/gabi/1998-
04-29/chd.s . . ., pp. 1-5.

Mitra, Debasis et al., “Hierarchical Virtual Partitioning: Algorithms
for Virtual Private Networking,” Bell Labs Technical Journal, Spring,
1997, cm bell-labs.com/cm/ms/who/mitra/papers/globe.ps.
Berkeley Software Distribution, “man page: setsid,” Feb. 1, 1994,
[Retrieved on Oct. 13, 2005], Retrieved from the Internet neosoft.
com/neosoit/man/setsid.2 . html>.

Corbato, F. I. etal. “An Experimental Timesharing System,” Proceed-
ings of the American Federation Of Information Processing Societies
Spring Joint Computer Conference, San Francisco, CA, May 1-3,
1962, pp. 335-344.

Erlingsson, U. and Schneider, F. B., “SASI Enforcement of Security
Policies: A Retrospective,” Proc. New Security Paradigms Work-
shop, Apr. 2, 1999, pp. 1-17.

Erlingsson, U. and Schnieder, F. B., IRM Enforcement of Java Stack
Inspection, [online], Feb. 19, 2000, [Retrieved on Apr. 2, 2002].
Retrieved from the Internet: <URL: http://cs-tr.cs.cornell.edu/
Dienst/UI2.0/Show Page/ncstrl.cornell/ TR2000-1786>.

Evans, D. and Twyman, A., “Flexible Policy-Directed Code Safety,”
Proc. of 1999 IEEE Symposium on Security and Privacy, Oakland,
CA, May 9-12, 1999, pp. 1-14.

US RE44,210 E
Page 4

Goldberg, 1. et al., “A Secure Environment For Untrusted Helper
Applications (Confining the Wily Hacker),” Proc. of the Sixth

USENIX UNIX Security Symposium, San Jose, CA, Jul. 1996, 14

pages.
Janosi, T., “Notes on ‘A Hierarchical CPU Scheduler for Multimedia
Operating Systems’ by Pawan Goyal, Xingang Guo and Harrick Vin,”
[online], [retrieved on May 8, 2000]. Retrieved from the Internet:
<URL:cs.cornell.edw/Info/Courses/Spring-97/CS614/goy.html>.

Pending United States patent application entitled “Providing Quality
of Service Guarantees to Virtual Hosts,” U.S. Appl. No. 09/452,286,

filed Nov. 30, 1999.
Pending United States patent application entitled “Selective Inter-

ception of System Calls,” U.S. Appl. No. 09/499,098, filed Feb. 4,
2000.

Pending United States patent application entitled “Dynamic Sched-
uling of Task Streams 1n a Multiple-Resource System to Ensure Task
Stream Quality of Service,” U.S. Appl. No. 09/498,450, filed Feb. 4,
2000.

Pending United States patent application entitled “Disambiguating
File Descriptors,” U.S. Appl. No. 09/500,212, filed Feb. 8, 2000.
Pending United States patent application entitled “Restricting Com-
munication Between Network Devices on a Common Network,” U.S.
Appl. No. 09/502,155, filed Feb. 11, 2000.

Pending United States patent application entitled “Restricting Com-
munication of Selected Processes to a Set of Specific Network
Addresses,” U.S. Appl. No. 09/503,975, filed Feb. 14, 2000.
Pending United States patent application entitled “Enabling a Service
Provider to Provide Intranet Services,” U.S. Appl. No. 09/526,980,
filed Mar. 15, 2000.

Pending United States patent application entitled “Dynamically
Modifying the Resources of a Virtual Server,” U.S. Appl. No.
09/569,371, filed May 11, 2000.

Pending United States patent application entitled “Regulating File
Access Rates According to File Type,” U.S. Appl. No. 09/572,672,
filed May 16, 2000.

Pending United States patent application entitled “Modifying Inter-
nal Components of a Running Operating Systems,” U.S. Appl. No.

09/576,393, filed May 22, 2000.

Pending United States patent application entitled “Associating Iden-
tifiers With Virtual Processes,” U.S. Appl. No. 09/611,877, filed Jul.
7, 2000.

Pending United States patent application entitled “Fairly Partitioning
Resources While Limiting the Maximum Fair Share,” U.S. Appl. No.

09/633,575, filed Aug. 7, 2000.

Pending United States patent application entitled “Intercepting I/O
Multiplexing Operations Involving Cross-Domain File Descriptor
Sets,” U.S. Appl. No. 09/664,914, filed Sep. 18, 2000.

Pending United States patent application entitled “Virtualizing Port
Addresses for Non-Conflicting Use by Multiple Virtual Processes,”
U.S. Appl. No. 09/679,396, filed Oct. 3, 2000.

Pending United States patent application entitled “Intercepting Calls
to Non-Local Procedures,” U.S. Appl. No. 09/687,031, filed Oct. 12,
2000.

Pending United States patent application entitled “Virtualizing

Resource Ownership for Multiple Virtual Processes,” U.S. Appl. No.
09/747,664, filed Dec. 22, 2000.

Symbol Table, [online] copyright 1997, 1998, [Retrieved on Apr. 4,
2003] Retrieved from the Internet <URL: 16.239.33.100/
search?q=cache:e ASXk8qC_ -caldera.com/developers/gabi/1998-
04-29/chd.s . . ., pp. 1-5.

Mitra, Debasis et al., “Hierarchical Virtual Partitioning: Algorithms
for Virtual Private Networking,” Bell Labs Technical Journal, Spring
1997, http://cm.bell-labs.com/cm/ms/who/mitra/papers/globe.ps.
Berkeley Software Distribution, “man page: setpgid”, Feb. 1, 1994,
[Retrieved on Oct. 13, 2005], Retrieved from the Internet
<URL:http://www.neosoft.com/neosoft/man/setpgid.2 html>.
Berkeley Software Distribution, “man page: setsid”, Feb. 1, 1994,
[Retrieved on Oct. 13, 2005], Retrieved from the Internet
<URL:http://www.neosoit.com/neosoft/man/setsid.2. html>.

Frost, J., “UNIX Signals and Process Groups”Aug. 17, 1994,
[Retrieved on Oct. 13, 2005], Retrieved from the Internet
<URL:http://www.cs.ucsb.edu/~almeroth/classes/W99.276/ass1gn-
mentl/signals.html>.

Stevens, Richard W., “Advanced Programming in the UNIX® Envi-
ronment”, 1993, pp. 237-246, 282-285, Addison Wesley Longman,
Inc., USA.

* cited by examiner

US RE44,210 E

Sheet 1 of 15

May 7, 2013

00t

U.S. Patent

ll -

- 7 F 3 5 F TN K _§ _§ N

SI9JUI04
Jo sodon
paeg

XA

UONEBIDOSSYY

1addespn
led waisAg
0} SJajuiod

621
o|qe] $5990i4 |BNUIA

9ll

Jaddeipn

9|gB | J0}09A 1D weisAs

12D wa)sAg

L L Y oo
“—/11 W3LSAS ONILYHIdO ZoL
HOW3N

T R &

ENE)Y

A e i aae- I T W B B e o o owr wr - - o e g e B g S e B O - e A S i el i
L E N T E F 37 T F K T R WY v a1 B B ¥ I N X ¥ 3 B - 3 3 5 N ¥ |

[

b 8882014

juspusdse(

Z $§800.14

| $5800.d
Juapuadsag

juapuassa(d

_
|
|
“
¢ $8200.4 “ "y weib0oid
| Juepuasseq | hMmMMﬁE
| | | §S92014 d
! S0 “ uonezieniul el |ENHIA
| 7 8s80%0)d | |
uojezZifeniu] | | - = gm - —
| L0
- €01 I0VdS SS3HAAQY HASN

US RE44,210 E

Sheet 2 of 15

May 7, 2013

U.S. Patent

(AidA)

J2ijijuapl
$S9204d [eNUIA

€0¢

ol

(Qid)

181y3uapt
SS990.4

LOC

46¢ 1

e6c |

US RE44,210 E

Sheet 3 of 15

May 7, 2013

U.S. Patent

1....!....!..........!.....!.!......!.........!....1..!
_ _ _

| | _
_ I _
¥ E |
| | €Ot " |

“ _
| | | |

_ “ L0t L0t _
_ <1

| . -

X 3
LOL | _ “ _
“ S$800.4 S$S320.14 _ _

|

_ _
| + |
|
|

L0€

$$900.d

$8800.4d

{
__
B
|
- ||
|
L aIN Froe “_
|
}
C
|

US RE44,210 E

Sheet 4 of 15

May 7, 2013

U.S. Patent

v Old

B R T e —

6¢l

dhilepy: G Suiah gees waE SEmls aEmnh T

A_HooOHoooxo) pTNI3 oS
o =

S A . gkl M MRS R M . e e Sl e——

G om. ﬁ mom

ain | 91 >> qIidA = 4in

laddeipp
1eD walsAg
LLL

el RN dehi e AR AR B R

Gil

PoN(E

L0€ SS900.d

US RE44,210 E

Sheet 5 of 15

May 7, 2013

U.S. Patent

00V

G Ol

s Snhan ke ke eaas e e Eanl GEEEE S dinibes dsbiele aEslEL GBSl Selhles SR

6¢l

(IT000€000%0,) PTN3ISS
T T T T T =\

EII MM R II]II

mom % mom

arn | 91 >> AIdA = dIn

leddeipn
en wWaisAg
L1l

GLl

¢~ 8606 |

10E $5990.4

US RE44,210 E

Sheet 6 of 15

May 7, 2013

U.S. Patent

9 Ol

pu3

ain psylpow ayy

€l9 UJIM ©91N0Sal 8Y) 9)1BI00SSY
AlN Yy} uiyim ssasoud [enuiAa

HO™ sy Jo uoneaipul ue eposus

$5920.d

609 bui|leds sy} yim pejeidosse

§59800.d |BNUIA 8y} auiwd}a
801N0sal B Jo qIN
L0971 ey Bumas 104 ||eo 1dasiayu|

/!

009

Jeddeim ||eo
WalsAs 0} siajuiod yum sjeo

LLIB)SAS 0} siejulod aor|dey

S||eD We)SAs polos|es
03 si9yuiod J0 sa1dod aye

wa)sAs Bunelado
ojul Jaddeim [jed WajisAs peo-

G09

€09

109

U.S. Patent May 7, 2013 Sheet 7 of 15 US RE44,210 E

700

'z 2]
\m 0
S - \:Qf H =
> = =1 > W
|t } 3
S! fz, 3 et
| —
- - ‘=)
e > 23— 5 @ — o —>ig —> | 8§ O
= 5 | 2 - 2 51 - Ll
| i
o ff = > A
Al - I
it |
@ 0
o) H
f D

115

US RE44,210 E

Sheet 8 of 15

May 7, 2013

U.S. Patent

8 Ol

pu3

8s900.d
8™ Buyes sy 0) QIN au) wmey

din 8y} wolj ssaooid |[BNUIA
L 18 ou} JO CO_“.—GO__UC_ Ol]] SAOWISY

ssa00.d _mzt_>
au} O uoljesipul ue Buipnpui
22Jn0sal 9Y) JO AIN 2U1 UL lqo

608

801n0saJ B JO (IN
L08 e} Buipeal 10y |[e2 }dessiu;

Joddeim jjeo
WB)SAS 0] si8julod ym s|jea

- we)sAs 0] siolulod aoejdoy

S||EQ WB}SAS pPojosles
0} sJajutod Jo saidoo aye

_ wa)sAs bunesado
oJul Jaddeim |jed wajsAs pro

G08

€08

108

US RE44,210 E

Sheet 9 of 15

May 7, 2013

U.S. Patent

006

Ll

{H...._.wmmm“LHHH?I ;
_ | |
2001 ¢ “
_
_ _ L
100} F . (!€00T!) PEN3es

_ =g =

ain “ o8 GL1
L06 GOE “

o laddeip
ST | 1D weyss
" HH S|GeleAY
|
(1T)PFNaes €06
. 7 o
. _
[=== |
7 - 621
— LOE $89901d
€02 102

US RE44,210 E

Sheet 10 of 15

May 7, 2013

U.S. Patent

LC)

{ 4din 11V

106

T R R S——.

sk S o ek e el Skl S RS el alhbl S SRk Wkl ey A

0l 9I4

08l £v81 |

$S9901d

ain CO¢

g0e _ ;_.

agpnayinguiion|

E00T | = ()PTN3sb
=23
GOE ;_,

laddeipn
led waysAg
LbL

() pFnaes
o

Ly81 621

L0t

qald

L0C

Ot

!

US RE44,210 E

Sheet 11 of 15

May 7, 2013

U.S. Patent

el e A RS T A e el SR

F - - - - - ---=-=-=-=-"=-"="-"=-"=-"="="="7"7=7 1
|
_
| o
| 0000 €000x0 18sn-1adng
| 8\.& 21015 €02 EAHIA
0L 1oL
Lo 1 € $5900.d [BNUIA !
oS T T Ty s m - - - s e]
_ |
| |
_ _
| d o
_ 0000 2000X0 jssn-1adng)
_ _ enyl |
_ coLlL GOE £0¢e ETHIA _
~J _ LOLL |
LOL | Z $$9904d [BNMIA “
:::::::::::::::::::::::::::::: .
S|NPON _ Vv
uoneubisaq JasN 0000 L000X0 lesn-ladng
-1adng [enyu]
501 S [BNUIA ol ot 5 [enuiA

malnlen il ol ombeems Gk deieith aNeishiel sl AMielhh SN A TS APERS SIS Skl e S Sk o Shes SEniphs Sk S . S S e s s dishbil s

US RE44,210 E

Sheet 12 of 15

May 7, 2013

U.S. Patent

apan ——— Gy e el el ieeekh sbelee el dbbeeh AN BB dhieah ek begeie Sk ok shees e by

CY6E

did

102

O
N
-

—
-

-

L

Jaddeipp _
180 waisAg
wh

(|lnD*®TTIAWA0U,|) qmmof
Gl

e0¢ H

Lo L000X0
colLl SGOE €0l
o7 CV6E
$S990.4d

, §S900.4 |ENUIA

US RE44,210 E

Sheet 13 of 15

May 7, 2013

U.S. Patent

pavek maieih seelin anlan, SEsis Gesebis ol Giieeh dbbek Slkieis ek SRRl AR AN ek SRR NI AL G

00¢Z1

6C1

101

~ $S9204d

]

(10000T000X0|) PTN]OS

(00%F v._”._nﬁ__lw
A

(CP6E V.n.n._”uﬁ(w
A

!

il TN196
A_%L) PT N

50e LOC}

JaddeIan
18D WweysAs
LIl

(T-)TTFA
oY

~ o000 | voooxo

coLL SOL £0¢

o aree |

| L SS2301- |BENJIA

ﬂL. fnoﬁ

US RE44,210 E

Sheet 14 of 15

May 7, 2013

U.S. Patent

(AldA)
J21ljuapl
$S8204d |[ENUIA

£0c

4247

796¢

ANA

1001

G89¢C

£ecl

(ain)

18l}ljuap]
18SMN

GOt

US RE44,210 E

Sheet 15 of 15

May 7, 2013

U.S. Patent

LG L

li1eo
Wa)sAs JO UOIINDBXa MO||eSI(

6IGl

L1S}

GiGk

ON

ON

1061

pu=

sebejaud

Jasn-Jadns [enjoe MEIPYUAA

|80 WelsAs ajn2ax

sobo)aLd
Jasn~jadns jenjoe jueic)

SO A

¢,88990.1d [enuIA
0] sulelad jjen

LGl

SO

s Josn-ledns jenj

AqQ epeul ||en
BOS L

paJinbes ale sebsjaud
lasn-jadns |enjoe yaiym
10} uolesado ue bulwiopad
104 {|e2 Wd1SAs 1daoua)u|

Gl Old

Joddeim jjes
WwaysAs 0} suajuiod yym spjeo [~-S05
Wwa)sAs 0) sijuiod aoejdoy

S||e0 Wo)SAS pPojos|es

£0Gl
0} s401ui0d JO $81d0D ayeN

Lwa)sAs Bunesado L0S1
| ojut Jaddesm (g0 WaysAs peo

Hels

US RE44,210 E

1

VIRTUALIZING SUPER-USER PRIVILEGES
FOR MULTIPLE VIRTUAL PROCESSES

Matter enclosed in heavy brackets []| appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

CROSS-REFERENCE 10O RELATED
APPLICATION

This patent application is a reissue application for com-

monly assigned U.S. Pat. No. 7,219,354, issued from U.S.
patent application Ser. No. 09/747,687, filed on May 15,
2007.

BACKGROUND

1. Field of the Invention

The present invention relates generally to computer oper-
ating systems, and more particularly, to techniques for virtu-
alizing super-user privileges 1in a computer operating system
including multiple virtual processes, such as virtual private
Servers.

2. Description of the Background Art

With the popularity and success of the Internet, server
technologies are of great commercial importance today. An
individual server application typically executes on a single
physical host computer, servicing client requests. However,
providing a unique physical host for each server application 1s
expensive and ineificient.

For example, commercial hosting services are often pro-
vided by an Internet Service Provider (ISP), which generally
provides a separate physical host computer for each customer
on which to execute a server application. However, a cus-
tomer purchasing hosting services will often neither require
nor be amenable to paying for use of an entire host computer.
In general, an individual customer will only require a fraction
ol the processing power, storage, and other resources of a host
computer.

Accordingly, hosting multiple server applications on a
single physical computer would be desirable. In order to be
commercially wviable, however, every server application
would need to be 1solated from every other server application
running on the same physical host. Clearly, 1t would be unac-
ceptable to customers of an ISP to purchase hosting services,
only to have another server application program (perhaps
belonging to a competitor) access the customer’s data and
client requests. Thus, each server application program needs
to be 1solated, receiving requests only from 1ts own clients,
transmitting data only to 1ts own clients, and being prevented
from accessing data associated with other server applications.

Furthermore, it 1s desirable to allocate varying specific
levels of system resources to different server applications,
depending upon the needs of, and amounts paid by, the vari-
ous customers of the ISP. In effect, each server application
needs to be a “virtual private server,” simulating a server
application executing on a dedicated physical host computer.

Such functionality 1s unavailable on traditional server tech-
nology because, rather than comprising a single, discrete
process, a virtual private server must include a plurality of
seemingly unrelated processes, each performing various ele-
ments of the sum total of the functionality required by the
customer. Because each virtual private server includes a plu-
rality of processes, 1t has been impossible using traditional
server technology for an ISP to 1solate the processes associ-

10

15

20

25

30

35

40

45

50

55

60

65

2

ated with one virtual private server from those processes
associated with other virtual private servers.

Accordingly, what 1s needed 1s a technique for associating
a plurality of processes with a virtual process. What 1s also
needed 1s a technique for associating an i1dentifier with a
virtual process.

One of the difficulties in providing isolation between vir-
tual private servers within a single host computer involves
resource ownership. In UNIX® and related operating sys-
tems, certain system resources, such as processes and files,
are owned by users or groups of users. Each user 1s assigned
a user 1dentifier (UID) by which the user 1s 1dentified in the
operating system. In some cases, a group of users may be
assigned a group 1dentifier (GID).

Resource ownership 1s typically used to implement access
control. For example, a user can generally only kill a process
or access a file that he or she owns (or for which permission
has been granted by the owner). Thus, 1f a user attempts, for
instance, to kill a process that he or she does not own, the
attempt fails and an error 1s generated.

An exception to the above 1s a special user, known as a
“super-" or “root-" user. The super-user has access to all
system resources and 1s typically a system administrator or
the like. For example, the super-user can open, modily, or
delete any system file and can terminate any system process.

Implementing resource ownership in the context of mul-
tiple virtual private servers presents a number of difficulties.
Each virtual private server should be free to assign to an
individual or group any UID or GID, respectively. Indeed,
some applications require certain files or processes to be

associated with a particular UID or GID 1n order to properly
function.

Unfortunately, if two users of different virtual private serv-
ers share the same UID, one user could potentially kill the
other user’s processes and read, modily, or delete the other
user’s files. The same possibility 1s true for two groups shar-
ing the same GID.

For example, one user could execute a “kill —1” command,
which terminates all of =the processes associated with the
user’s UID. Unifortunately, 11 another user on the same com-
puter shares the same UID, all of that user’s processes will be
terminated as well. Clearly, this 1s unacceptable 1n the context
of a virtual private server, where each server should appear to
be running on a dedicated host machine.

Accordingly, what 1s needed 1s a technique for virtualizing
resource ownership in a computer operating system including
multiple virtual private servers. Indeed, what 1s needed 1s a
technique for allowing a virtual private server to assign any
UID or GID to a user or group, without creating an unaccept-
able security risk or removing the appearance that the virtual
private server 1s running on a dedicated host.

As noted above, in UNIX® and related operating systems,
the super-user 1s granted special privileges not available to
other users. For example, the super-user can open, modily, or
delete the files of other users, as well as terminate other users’
processes. Indeed, the super-user can add and delete users,
assign and change passwords, and insert modules 1nto the
operating system kernel.

Implementing super-user privileges in a computer operat-
ing system including multiple virtual processes presents
numerous difficulties. For example, each virtual process
should be allowed to have a system administrator who has
many of the privileges of a super-user, e.g., the ability to add
and delete users of the virtual process, access files of any user
of the virtual process, terminate processes associated with the
virtual process, and the like.

US RE44,210 E

3

However, 11 a user of each virtual process were given full
super-user privileges, a super-user ol one virtual process
could access the files of a user of another virtual process.
Similarly, a super-user of one virtual process could terminate
the processes associated with a user of another virtual pro-
cess. Indeed, a super-user of one virtual process could obtain
exclusive access to all system resources, effectively disabling
the other virtual processes. Clearly, allowing a user of each
virtual process full super-user privileges would seriously
compromise system security, entirely removing the illusion
that the virtual processes are running on dedicated host com-
puters.

Accordingly, what 1s needed 1s a technique for virtualizing
super-user privileges i a computer operating system includ-
ing multiple virtual processes. Moreover, what 1s needed 1s a
technique for virtualizing super-user privileges, such that a
virtual super-user has the power to perform traditional system
administrator functions with respect to his or her own virtual
process, but 1s unable to interfere with other virtual processes
or the underlying operating system.

SUMMARY OF THE INVENTION

The present invention relates to virtualizing super-user
privileges 1n a computer operating system including multiple
virtual processes. In one aspect of the invention, a plurality of
virtual super-users are designated, each virtual super-user
being associated with a separate virtual process. A virtual
super-user may be designated, 1n one embodiment, by assign-
ing a virtual super-user identifier, which may comprise a
super-user 1dentifier and an indication of a virtual process. In
an alternative embodiment, a virtual super-user may be des-
1gnated by assigning a regular user identifier and storing that
identifier 1n a virtual super-user list.

In another aspect of the mvention, a system call wrapper
intercepts a system call for which actual super-user privileges
are required, which 1s nevertheless desirable for a virtual
super-user to perform 1n the context of his or her own virtual
process. In response to a determination that the itercepted
system call was made by a virtual super-user and pertains to
the virtual process of the virtual super-user, the virtual super-
user 1s temporarily granted actual super-user privileges. The
system call 1s then executed as though 1t were made by real
super-user, after which the actual super-user privileges are
withdrawn.

Thus, a virtual super-user has the power to perform tradi-
tional system administrator functions with respect to his or
her own virtual process, but 1s unable to interfere with other
virtual processes or the underlying operating system. More-
over, each virtual process may have a virtual super-user, while
preserving the illusion that the virtual processes are running,
on dedicated host machines.

The features and advantages described in this summary and
the following detailed description are not all-inclusive, and
particularly, many additional features and advantages will be
apparent to one of ordinary skill 1n the art in view of the
drawings, specification, and claims hereof. Moreover, it
should be noted that the language used 1n the specification has
been principally selected for readability and instructional
purposes, and may not have been selected to delineate or
circumscribe the inventive subject matter, resort to the claims
being necessary to determine such mmventive subject matter.

10

15

20

25

30

35

40

45

50

55

60

65

4
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of a system for associating
identifiers with virtual processes;

FIG. 2 1s a virtual process table;

FIG. 3 1s a block diagram of a plurality of virtual processes;

FIG. 4 1s a block diagram of a system for virtualizing
resource ownership;

FIG. 5 1s a block diagram of a system for virtualizing
resource ownership;

FIG. 6 1s a flowchart of a method for virtualizing resource
ownership;

FIG. 7 1s a block diagram of a system for virtualizing
resource ownership;

FIG. 8 1s a flowchart of a method for virtualizing resource
ownership;

FIG. 9 1s a block diagram of a system for virtualizing
resource ownership;

FIG. 10 1s a block diagram of a system for virtualizing
resource ownership.

FIG. 11 1s a block diagram of virtual processes and corre-
sponding virtual super-users;

FIG. 12 1s a block diagram of a system for virtualizing
super-user privileges;

FIG. 13 1s a block diagram of a system for virtualizing
super-user privileges;

FIG. 14 1s a virtual super-user list; and

FIG. 15 1s a flowchart of a method for virtualizing super-
user privileges.

The Figures depict embodiments of the present invention
for purposes of 1llustration only. Those skilled 1n the art will
readily recognize from the following discussion that alterna-
tive embodiments of the illustrated structures and methods
may be employed without departing from the principles of the
invention described herein.

(L]
=T

ERRED

DETAILED DESCRIPTION OF THE
EMBODIMENTS

PR.

The present invention relates to virtualizing super-user
privileges in a computer operating system including multiple
virtual processes. One example of a virtual process 1s a virtual
private server, which simulates a server running on a dedi-
cated host machine.

As previously noted, implementing a virtual private server
using traditional server technologies has been impossible
because, rather than comprising a single, discrete process, a
virtual private server must include a plurality of seemingly
unrelated processes, each performing various elements of the
sum total of the functionality required by a customer. More-
over, 1solating virtual private servers from each other presents
a number of difficulties related to resource ownership.

Accordingly, one aspect of the present invention relates to
a system and method for associating 1dentifiers with virtual
processes, as described immediately below. Therealter, a sys-
tem and method are described for virtualizing resource own-
ership 1 a computer operating system including multiple
virtual processes. Finally, there 1s provided a detailed descrip-
tion of a system and method for virtualizing super-user privi-
leges 1n a computer operating system including multiple vir-
tual processes.

I. Associating Identifiers with Virtual Processes

FIG. 1 1s a high-level schematic block diagram of a system
100 for associating identifiers with virtual processes 101
according to one embodiment of the present invention. A
computer memory 102 includes a user address space 103 and
an operating system address space 1035. Multiple mnitializa-

US RE44,210 E

S

tion processes 107 execute in the user address space 103.
Although FIG. 1 illustrates only two 1nitialization processes
107 executing 1n the user address space 103, those skilled 1n
the art will understand that more than two 1mitialization pro-
cesses 107 can execute simultaneously within a given com-
puter memory 102.

Also executing 1n the user address space 103 are one or
more descendent processes 108 originating from the nitial-
1zation processes 107. A descendent process 108 1s a child
process of an iitialization process 107, or a child process
thereol, extended to any number of generations of subsequent
chuld processes. Although FIG. 1 1llustrates only two descen-
dent processes 108 for each mitialization process 107, fewer
or more than two descendent processes 108 per imitialization
process 107 can execute simultaneously within a given com-
puter memory 102.

In one embodiment, a virtual process table 127 or other
suitable data structure for storing associations 129 between
executing processes 107, 108 and virtual processes 101 1s
inserted 1nto the operating system 117. Of course, other data
structures may be used to store associations 129, one example
of which 1s a linked list.

In various embodiments, the virtual process table 127 (or
other data structure) 1s dynamically loaded into the operating
system kernel 109 while the kernel 109 1s active. In another
embodiment, the virtual process table 127 1s stored in the user
address space 103. The maintenance and use of the virtual
process table 127 1s discussed 1n detail below.

Those skilled 1n the art will recognize that a virtual process
101 1s not an actual process that executes 1n the computer
memory 102. Instead, the term “virtual process™ describes a
collection of associated functionality. For example, a virtual
process 101 1s not actually a discrete process, but instead,
comprises a plurality of actual processes that together provide
the desired functionality, thereby simulating the existence of
a single application executing on a dedicated physical host.
Each actual process that performs some of the functionality of
the application 1s a part of the virtual process 101. As shown
in FI1G. 1, for example, in1tialization process 1 and descendent
processes 1 and 2 together comprise one virtual process 101,
whereas 1mitialization process 2 and descendent processes 3
and 4 together comprise another.

Asillustrated 1n FIG. 2, the virtual process table 127 stores,
in one embodiment, an association 129 between a process
identifier (PID) 201 and a virtual process identifier (VPID)
203. For example, the virtual process table 127 may store an
association between a PID 201 of initialization process 1
(e.2.,3942)and aVPID 203 (e.g.,1). Likewise, an association
129b may be stored between a PID 201 of descendent process
1 (e.g., 6545), and the same VPID 203 (e.g., 1). Thus, initial-
ization process 1 and descendent process 1 are said to be
members of the same virtual process 101.

In order to associate a specific identifier with each actual
process that 1s a member of a virtual process 101, a separate
system 1nitialization process 107 1s started for each virtual
process 101. Normally, each process executing on a multi-
tasking operating system such as UNIX® 1s descended from
a single system 1nitialization process 107 that 1s started when
the operating system 117 1s booted. However, the system 100
uses techniques described 1n detail below to start a separate
system 1nitialization process 107 for each virtual process 101.
When each system initialization process 107 1s started, an
association 129 between the system imitialization process 107
and the virtual process 101 1s stored in the virtual process
table 127. All additional processes that are descended from a
given mnitialization process are thus identified with the virtual
process 101 associated with that initialization process.

10

15

20

25

30

35

40

45

50

55

60

65

6

In one embodiment, rather than starting a separate system
initialization process 107 for each virtual process 101, a cus-
tom 1nitialization process 1s started. In this embodiment, all
processes that are members of a specific virtual process 101
are descended from the associated custom 1nitialization pro-
cess, and are associated with the virtual process 101 with
which the custom 1nitialization process 1s associated. The
exact functionality included in the custom 1nitialization pro-
cess 1s a design choice that can be made by, for example, a
system administrator.

System calls 1135 that generate child processes (e.g., the
UNIX® fork() and clone() functions) are intercepted so that
the child processes can be associated with the virtual process
101 with which the parent process 1s associated. In one
embodiment, a system call wrapper 111 1s used to intercept
system calls 115. In one embodiment, the wrapper 111 1s
dynamically loaded into the operating system kernel 109
while the kernel 109 1s active. In another embodiment, the
system call wrapper 111 1s loaded 1into the user address space
103.

Pointers 114 to the system calls 115 are located 1n an
operating system call vector table 113. Those skilled in the art
will recognize that the term “system call vector table,” as used
herein, denotes an area in the operating system address space
105 1n which addresses of system calls are stored. In the
UNIX® operating system, this part of the operating system 1s
called the “system call vector table,” and that term 1s used
throughout this description. Other operating systems employ
different terminology to denote the same or similar system
components. The pointers 114, themselves, are sometimes
referred to as “system call vectors.”

A copy 116 1s made of apointer 114 to each system call 115
to be intercepted. These copies 116 of pointers 114 may be
stored 1n the operating system address space 105, but 1n an
alternative embodiment, are stored in the user address space
103. Once the copies 116 have been made and saved, the
pointers 114 1n the system call vector table 113 to the system
calls 115 to be intercepted are replaced with pointers 118 to
the system call wrapper 111, such that when a system call 115
to be intercepted 1s made, the system call wrapper 111
executes nstead.

In one embodiment, the system call wrapper 111 performs
the process of copying, storing, and replacing of pointers. In
other embodiments, the process of copying, storing, and
replacing of pointers 1s performed by a pointer management
module (not shown) executing 1n either the operating system
address space 105 or the user address space 103, as desired.
The pointer management module may either be a stand alone
program or a component of a larger application program.

By intercepting a system call 115, alternative code 1s
executed. The steps of 1nserting a system call wrapper 111
into the operating system 117, making a copy 116 of an
operating system pointer 114 to a system call 115, and replac-
ing the operating system pointer 114 with a pointer 118 to the
system call wrapper 111 facilitate interception of a system
call 115. When a system call 113 to be intercepted 1s made, the
operating system 117 uses the pointer 118 1n the system call
vector table 113 to the system call wrapper 111 to execute the
system call wrapper 111.

In one embodiment, only the system calls 1135 that create
chiuld processes need be intercepted, and thus only the point-
ers 114 to the system calls 115 to be intercepted are replaced
with the pointers 118 to the system call wrapper 111. The
pointers 114 to the system calls 115 which are not to be
intercepted are not replaced. Thus, when a non-intercepted
system call 1135 1s made, the actual system call 113 executes,
not the system call wrapper 111.

US RE44,210 E

7

The various 1nitialization processes 107 and descendent
processes 108 execute 1n the user address space 103 under
control of the operating system 117 and make system calls
115. When a process makes a system call 115 that creates a
chuld process, the system call wrapper 111 reads the virtual
process table 127, and determines whether the process that
made the system call (the parent of the child process being,
created) 1s associated with a virtual process 101. If so, the
system call wrapper 111 uses the saved copy of the pointer
116 to execute the system call 115, allowing the creation of
the child process.

The system call wrapper 111 then updates the virtual pro-
cess table 127, storing an association 129 between the newly
created child process and the virtual process 101 with which
the process that made the system call 1s associated. Thus, all
descendent processes 108 are associated with the virtual pro-
cess 101 with which their parent process 1s associated.

In one embodiment, the 1nitialization processes 107 are
started by a virtual process manager program 131 executing
in the user address space 103. The virtual process manager
program 131 modifies the operating system 117 of the com-
puter to include the virtual process table 127. In one embodi-
ment, the manager program 131 loads the virtual process
table 127 into the kernel 109 of the operating system 117
while the kernel 1s active.

For each virtual process 101, the manager program 131
starts an 1nitialization process 107 from which all other pro-
cesses that are part of the virtual process 101 will originate as
descendent processes 108. Each time the manager program
131 starts an mitialization process 107 for a virtual process
101, the manager program 131 stores, 1n the virtual process
table 127, an association 129 between the mnitialization pro-
cess 107 and the appropriate virtual process 101. Subse-
quently, all additional processes that are part of the virtual
process 101 will be originated from the mitialization process,
and thus associated with the appropriate virtual process 101.

For example, in this embodiment, the manager program
131 can start a first virtual process 101. To do so, the manager
program 131 starts an mnitialization process 107 for the virtual
process 101, storing an association 129 between the initial-
1zation process 107, and a virtual process 1dentifier for the
virtual process 101. Additional processes that are part of the
virtual process 101 originate from the initialization process
107, and are associated with the virtual process 1dentifier of
the virtual process 101. The manager program 131 can pro-
ceed to start a second virtual process 101 by starting a sepa-
rate 1mtialization process 107, and associating the second
initialization process 107 with a separate virtual process 1den-
tifier for the second virtual process 101. Consequently, all of
the processes associated with the second virtual process 101
will be associated with the appropriate virtual process i1den-
tifier. In this manner, multiple virtual processes 101 on the
same physical computer are each associated with unique
identifiers.

In an alternative embodiment, the virtual process manager
program 131 can be implemented as a modified loader pro-
gram. A loader program 1s an operating system utility that 1s
used to execute computer programs that are stored on static
media. Typically, a loader program loads an executable image
from static media into the user address space 103 of the
computer memory 102, and then mitiates execution of the
loaded 1mage by transferring execution to the first instruction
thereof.

Like a standard loader program, a modified loader program
loads executable images (1n this case, imitialization processes
107) from static media 1nto the user address space 103. Addi-
tionally, the modified loader program stores, in the virtual

10

15

20

25

30

35

40

45

50

55

60

65

8

process table 127, an association 129 between the 1nitializa-
tion process 107 being loaded and the appropnate virtual
process 101. Thus, for each virtual process 101, an initializa-
tion process 107 1s loaded by the modified loader program,
and an association between the initialization process 107 and
the virtual process 101 1s stored 1n the virtual process table
127. Subsequently, additional processes that are part of the
virtual process 101 originate from the associated initializa-
tion process 107, and are thus associated with the virtual
process 101, as described above.

In another embodiment, the modified loader program loads
all processes that are part of each virtual process 101. In that
embodiment, whenever the modified loader program loads a
process, the modified loader program also stores, in the vir-
tual process table 127, an association 129 between the loaded
process and the appropnate virtual process 101.

II. Virtualizing Resource Ownership

As 1llustrated 1n FI1G. 3, one of the difficulties 1n providing
1solation between virtual processes 101 (e.g., virtual private
servers) within a single host system 300 involves resource
ownership. In UNIX® and related operating systems 117,
certain system resources, such as processes 301 and files 303,
are owned by users or groups of users. Each user 1s assigned
a user 1dentifier (UID) 305 by which the user 1s 1dentified 1n
the operating system 117. In some cases, a group of users may
be assigned a group identifier (GID) 307. The UID 305 and
GID 307 are sometimes referred to herein as “owner 1dent-
fiers.”

Resource ownership 1s typically used to implement access
control. For example, a user can generally only kill a process
301 or access a file 303 that he or she owns (or for which
permission has been granted by the owner). Thus, if a user
attempts, for instance, to kill a process 301 that he or she does
not own, the attempt fails and an error 1s generated.

A difficulty arises, however, 1n implementing resource
ownership for multiple virtual processes 101 running on the
same host system 300. Each virtual process 101 should be
free to assign to an individual or group any UID 303 or GID
307, respectively. Indeed, some applications require certain
processes 301 or files 303 to be associated with a particular
UID 305 or GID 307 1n order to properly function.

However, 11 two users of different virtual processes 101
share the same UID 303, those users could potentially kill
cach other’s processes 301 and read, modity, or delete each
other’s files 303. The same 1s true for two groups sharing the
same GID 307.

For instance, one user could execute a “kill -1 command,
which terminates all of the processes 301 associated with the
user’s UID 305. Unfortunately, 11 another user on the same
computer has the same UID 305, all of that user’s processes
301 will be terminated as well. Clearly, this poses an unac-
ceptable security risk and removes the appearance that the
virtual process 101 1s running on a dedicated physical host.

In accordance with the present invention, resource owner-
ship 1s virtualized to allow a user of one virtual process 101 to
appear to have the same UID 305 as a user of another virtual
process 101, although neither user 1s capable of interfering
with the processes 301 or accessing the files 303 of the other.
Likewise, 1n accordance with the present invention, a group of
users of one virtual process 101 may appear to share the same
GID 307 with a group of users of another virtual process 101.

FIG. 4 1llustrates a system 400 for virtualizing resource
ownership. In one embodiment, a system call wrapper 111
intercepts a system call 115 for setting the UID 305 or GID
307 associated with a resource (such as a process 301 or file
303). In the case of UNIX®, for instance, the setuid() and
setg1d() functions are used to associate a UID 3035 and GID

US RE44,210 E

9

307, respectively, with a calling process 301. Similarly, the
UNIX® chown() function 1s used to associate a UID 305 or
GID 307 with a file 303. Of course, the invention 1s not
restricted to any particular terminology or operating system.

A technmique for intercepting system calls 115 was
described above with reference to FIG. 1. As noted, pointers
114 to the system calls 115 to be intercepted can be copied
and then replaced with pointers 118 to a system call wrapper
111. Thus, when the calls 115 are made, the system call
wrapper 111 1s executed 1nstead.

For clarity, the following description often refers simply to
the UID 305. However, the techniques and structures dis-
closed herein may also be used for system calls 115 involving
GIDs 307, e.g., the UNIX® setgid() and chown() functions.

After the system call 115 1s intercepted, the wrapper 111
determines a virtual process 101 corresponding to the calling
process 301. The virtual process 101 1s determined, in one
implementation, by accessing the virtual process table 127, as
described above, which stores associations 129 between pro-
cesses 301 (e.g., PID 201) and virtual processes 101 (e.g.,
VPID 203).

Next, the wrapper 111 modifies the UID 305 specified 1n
the intercepted call 115. In one implementation, the UID 305
1s modified by encoding therein an indication of the virtual
process (e.g., VPID 203). For instance, in the case of
Solaris®, a version of UNIX®, the UID 305 1s a 32 bit word.
In one embodiment, the UID 305 is divided into two 16 bit
portions. As described i detail below, the VPID 203 1s
encoded within the upper 16 bits of the UID 305, while the
lower 16 bits are used to store the original data from the UID
305.

In the illustrated embodiment, the VPID 203 1s encoded
within UID 305 according to the equation:

UID=VP

where UID 1s the UID 305, VPID 1s the VPID 203 (from the
table 127), and “<<” and “|” are the left shiit and logical “OR”
operators, respectively. In other words, the VPID 203 1s left
shifted 16 bits and then logically ORed with the UID 305.

Those skilled in the art will recognize that the above-
described technique limits the number of unique UIDs 305
and virtual processes 101 to 653536, respectively. In alterna-
tive embodiments, however, the relative location and/or num-
ber of bits allocated to the VPID 203 within the UID 305 may
vary, resulting in different limitations.

After the UID 305 1s modified, the system call wrapper 111
associates the resource with the modified UID 305. This may
be accomplished, 1n one embodiment, by executing the sys-
tem call 115 by the wrapper 111, speciiying the modified UID
305. In an alternative embodiment, the system call wrapper
111 can include 1ts own code for setting the UID 305.

Consequently, from a standpoint of the calling process 301,
the resource 1s associated with the UID 305 specified 1n the
system call 115. From a standpoint of the operating system
117, however, the resource 1s actually associated with the
modified UID 305.

FIG. 4 provides an example of the above-described tech-
nique. Suppose that a process 301 having a PID 201 of 3942
attempts to execute the UNIX® setuid() system call 115 with
a specified UID 305 of 1. As shown, the system call wrapper
111 uses the virtual process table 127 to determine the VPID
203 (e.g., 1) associated with the calling process 301. The
VPID 203 is then encoded within UID 3035 as described
above, resulting 1n a modified UID 3035 having a hexadecimal
value of 0x00010001 (655377 1n decimal). Accordingly, the
calling process 301 1s associated with a UID 305 of 65337
rather than the specified UID 305 of 1.

)<<16/UID Fq. 1

10

15

20

25

30

35

40

45

50

55

60

65

10

As shown 1n FIG. 5, a different UID 305 will result from a
different VPID 203. For instance, suppose that the VPID 203

ol the virtual process 101 of FIG. 5 has a value of 3. Applying
the above-described equation, the resulting modified UID
3035 has a hexadecimal value of 0x00030001 (196609 1n deci-
mal). Accordingly, the calling process 301 1s associated with
a UID 3035 of 196609 rather than the original UID 305 o1 1 or
the modified UID 305 of 65537 from the previous example.

The above-described technique for virtualizing resource
ownership 1s summarized 1 FIG. 6. A method 600 begins 1n
one embodiment by loading 601 a system call wrapper 111
into the operating system 117. Thereafter, copies are made
603 of pointers 114 to selected system calls 113 to be inter-
cepted (e.g., setuid(), setgid(), and chown()). The pointers
114 are thenreplaced 603, in one implementation, by pointers
118 to the system call wrapper 111. Thus, when one of the
selected system calls 115 1s made, the system call wrapper
111 1s executed 1nstead.

A system call 115 for setting the UID 305 of a resource 1s
then intercepted 607. Next, the system call wrapper 111 deter-
mines 609 the virtual process 101 corresponding to the call-
ing process 301. In one embodiment, this determination 1s
made by referencing the wvirtual process table 127, as
described above.

After the virtual process 101 1s determined, the system call
wrapper 111 encodes 611 an indication of the virtual process
101 (e.g., the VPID 203) within the UID 305. The wrapper
111 then associates 613 the resource with the modified UID
305. In one implementation, this 1s accomplished by execut-
ing the system call 115 within the wrapper 111, speciiying the
modified UID 305.

Another aspect of virtualizing resource ownership involves
intercepting system calls 1135 for obtaining the UID 305 or
GID 307 associated with a system resource. In the case of
UNIX®, the getuid() function returns the UID 303 associated
with the calling process 301. Similarly, the UNIX® getgid()
function returns the GID 307. Additionally, the UNIX® stat(
) function returns the UID 305 and/or GID 307 associated
with a file 303. Of course, the invention 1s not limited to any
particular terminology or operating system 117.

Consequently, 1f a system call 115 for obtaining a UID 305
(e.g., getuid()) were allowed to execute without modification,
the calling process 301 would receive a “modified” UID 305,
such as a UID 3035 including an indication of a virtual process
101. From the standpoint of the calling process 301, the UID
305 would be unexpected, with unpredictable results.

Thus, FIG. 7 illustrates a system 700 for virtualizing
resource ownership. After intercepting one of the above-iden-
tified system calls 115, the system call wrapper 111 obtains
the UID 305 from the standpoint of the operating system 117.
The wrapper 111 obtains the UID 305, in one embodiment, by
executing the system call 115. In alternative embodiments,
the wrapper 111 may include 1ts own code for obtaining the
UID 305.

In one embodiment, the UID 305 obtained by the wrapper
111 includes an indication of the virtual process 101 (e.g.,
VPID 203). Thus, the wrapper 111 removes the VPID 203 to
restore the original, unmodified UID 305, as described in
greater detail below.

As previously explained, a UID 305 1n Solaris® 1s a 32 bat
word. In one implementation, the upper 16 bits are used to
encode the VPID 203, while the lower 16 bits are used to store
the UID data. Thus, the VPID 203 may be removed from the

UID 305 by applying the equation:

UID=0x0000FFFEF & UID

Eq. 2

US RE44,210 E

11

where UID 1s the UID 305 and “&” 1s the logical “AND”
operator. In other words, the set of bits corresponding to the
VPID 203 within the UID 305 are cleared. Of course, the

encoding of the VPID 203 may vary 1n alternative embodi-
ments, necessitating a different equation.
An example of the above-described process 1s shown 1n

FIG. 7. Suppose that a process 301 executes the UNIX®
getuid() system call 115, which 1s intercepted by the system
call wrapper 111. The wrapper 111 obtains the UID 305 (e.g.,
0x00010001) associated with the resource by executing, for
example, the system call 115. As 1llustrated, the upper 16 bits
of the UID 305 include an indication of a virtual process 101
(e.g.,aVPID 203 of 1).

The wrapper 111 then removes the indication of the virtual
process 101 by logically ANDing the UID 305 with a value
configured to clear the bits associated with the VPID 203,
(e.g., 65533). As a result, a UID 305 of 1 1s returned to the
calling process 301, rather than the UID 3035 of 653537,

The above-described technique for virtualizing resource
ownership 1s summarized in FIG. 8. A method 800 begins 1n
one embodiment by loading 801 a system call wrapper 111
into the operating system 117. Thereafter, copies are made
803 of pointers 114 to selected system calls 115 to be inter-
cepted (e.g., getuad(), getgid(), and stat ()). The pointers 114
are then replaced 805, 1n one implementation, by pointers 118
to the system call wrapper 111. Thus, when one of the
selected system calls 115 1s made, the system call wrapper
111 1s executed instead.

A system call 115 for obtaining the UID 3035 associated
with a resource 1s then intercepted 807. Next, the system call
wrapper 111 obtains 809 the UID 303 associated with the
resource. In one embodiment, the wrapper 111 obtains the
UID 305 by executing the system call 115. As noted, the UID
305 1ncludes, as a consequence of the method 600 of FIG. 6,
an indication of a virtual process 101 (e.g., VPID 203).

After the UID 305 1s obtained, the system call wrapper 111
removes 811 the VPID 203 by logically ANDing the UID 305
with an appropriate value, e.g., 65535. The UID 305 1s then
returned 813 to the calling process 301.

FIG. 9 1llustrates an alternative system 900 for virtualizing,
resource ownership. In an alternative embodiment, an indi-
cation of the virtual process 101 1s not encoded within the
UID 305. Rather, after a system call 115 for setting a UID 305
1s intercepted, the system call wrapper 111 selects an alter-
native UID 901 from a set 903 of available (unused) UlIDs
305. The set 903 may be implemented using any suitable data
structure, such as a table or linked list. The alternative UID
901 may be selected using any convenient method, such as
selecting the next available UID 3035 1n the set 903.

Once the alternative UID 901 1s selected, the wrapper 111
creates an association 905 1n a translation data structure 907
between the UID 303 specified in the call 115, the alternative
UID 901 selected by the wrapper 111, and an indication of the
virtual process 101 (e.g., VPID 203), which may be obtained
by the wrapper 111 from the virtual process table 127.

After the translation data structure 907 1s updated, the
wrapper 111 associates the resource with the alternative UID
901. This 1s accomplished, 1n one embodiment, by executing
the system call 115, specifying the alternative UID 901.

FIG. 9 provides an example of the above-described tech-
nique. Suppose that a process 301 having a PID 201 of 1847
attempts to execute the UNIX® setuid() system call 115 with
a specified UID 305 of 1. As illustrated, the system call
wrapper 111 itercepts the call 115 and uses the virtual pro-
cess table 127 to determine the virtual process 101 (e.g.,

VPID 203) associated with the calling process 301.

10

15

20

25

30

35

40

45

50

55

60

65

12

The system call wrapper 111 then selects an alternative
UID 901 (e.g., 1003) from a set 903 of available UIDs 305.

Thereatter, the wrapper 111 creates an association 905 1n the
translation data structure 907 between the UID 305 specified
in the call 115 (e.g., 1), the alternative UID 901 (e.g., 1003),
and the VPID 203 (e.g., 2). Once the translation data structure
907 1s updated, the wrapper 111 associates the calling process
301 with the alternative UID 901 by executing, for example,
the system call 115.

FIG. 10 illustrates a corresponding system 1000 for inter-
cepting system calls 115 for obtaining the UID 305 or GID
307 associated with aresource. Initially, the system call wrap-

per 111 intercepts the call 115 (e.g., getmad(), getgid(), and
stat()). Thereatter, the wrapper 111 determines the virtual
process 101 (e.g., VPID 203) associated with the calling
process 301 using a virtual process table 127 or the like.

The system call wrapper 111 then obtains the alternative
UID 901 associated with the resource by executing, for
example, the system call 115. As described above, the alter-
native UID 901 1s associated with the resource as a conse-
quence of the system 900 illustrated in FI1G. 9.

After the alternative UID 901 1s obtained, the wrapper 111
accesses the translation data structure 907, looking up the
alternative UID 901 and the VPID 203. When an association
903 1s found, the corresponding UID 303 1s retrieved from the
translation data structure 907 and returned to the calling pro-
cess 301.

An example of the above-described process 1s shown 1n
FIG. 10. Suppose that a process 301 executes the getuid()
function, which is intercepted by the system call wrapper 111.
In one embodiment, the wrapper 111 executes the getuid()
function, which returns an alternative UID 901 of 1003. The
wrapper 111 also determines the VPID 203 (e.g., 2) associ-
ated with the calling process 301 by accessing the virtual
process table 127.

The wrapper 111 then accesses the translation data struc-
ture 907, looking up an alternative UID 901 of 1003 and a
VPID 203 of 2. As illustrated, an association 905 exists,
revealing a UID 305 of 1, which 1s subsequently returned to
the calling process 301.

I11. Virtualizing Super-User Privileges

As noted above, in UNIX® and related operating systems,
the “super-user’” 1s granted special privileges not available to
other users. For example, the super-user can open, modily, or
delete the files of other users, as well as terminate other users’
processes. Indeed, the super-user can add and delete users,
assign and change passwords, and 1nsert modules into the
operating system kernel 109.

Implementing super-user privileges in an operating system
117 including multiple virtual processes 101 presents numer-
ous challenges. For example, each virtual process 101 should
be allowed to have a user who 1s granted super-user-like
powers, e.g., the ability to add and delete users of the virtual
process 101, access files 303 of any user of the virtual process
101, terminate processes 301 associated with the virtual pro-
cess 101, and the like.

However, 11 a user of each virtual process 101 were given
tull super-user privileges, a super-user of one virtual process
101 could access the files 303 of a user of another virtual
process 101. Similarly, a super-user of one virtual process 101
could terminate the processes 301 associated with a user of
another virtual process 101. Indeed, a super-user of one vir-
tual process 101 could obtain exclusive access to all system
resources, elfectively disabling the other virtual processes
101. Clearly, granting a user of each virtual process 101 full
super-user privileges would seriously compromise system

US RE44,210 E

13

security, entirely removing the 1llusion that each virtual pro-
cess 101 1s running on a dedicated host computer.

As 1llustrated 1n FIG. 11, the present invention solves the
foregoing problems, in one embodiment, by designating a
plurality of virtual super-users 1101, typically one per virtual
process 101. A virtual super-user 1101 has many of the privi-
leges of an actual super-user with respect to his or her own
virtual process 101. For example, a virtual super-user 1101
can add and delete users of the virtual process 101, access files
303 of any user of the virtual process 101, terminate processes
301 associated with the virtual process 101, and the like.
However, a virtual super-user 1101 cannot, for instance, add
or delete users of other virtual processes 101, access the files
303 of users of other virtual processes 101, or terminate the
processes 301 associated with other virtual processes 101.

In one embodiment, a virtual super-user 1101 1s designated
by assigning to a user a virtual super-user 1dentifier (VSUID)
1103. The VSUID 1103 may be assigned by a virtual super-
user designation module 1105, which generates a VSUID
1103 for each virtual super-user 1101, as described below.

A UID 3035 of zero 1s mterpreted by UNIX® and related
operating systems as the super-user UID 3035. However,
assigning a UID 305 of zero to each virtual super-user 1101
would result in the problems discussed above, since an actual
super-user has unfettered access to all system resources.

Accordingly, a VSUID 1103 comprises, 1n one embodi-
ment, a super-user UID 305 (e.g., 0), which has been encoded
with an indication of a virtual process 101 (e.g., VPID 203)
using the techniques described with reference to FIGS. 5-6.
As explained above, a UID 305 may be divided, in one imple-
mentation, into two 16 bit portions, with the upper 16 bits
used to encode a VPID 203, and the lower 16 bits used to store
the original UID 305.

For instance, as shown in FIG. 11, a VPID 203 of 1 1s
encoded within the upper 16 bits of the VSUID 1103, result-
ing in a VSUID 1103 of 0x00010000. Likewise, a VPID 203
of 2 results in a VSUID 1103 o1 0x00020000. Finally, a VPID
203 of 3 results in a VSUID 1103 of 0x00030000. Of course,
those skilled 1in the art will recognize that the VSUID 1103
may be encoded 1n various ways without departing from the
spirit and scope of the invention.

From the standpoint of the operating system 117, however,
the VSUID 1103 1s not a super-user UID 305, and does not
convey any super-user privileges. For example, a VSUID
1103 01 0x00010000 has a decimal value of 653536, clearly not
a UID 305 of zero. Thus, without more, a virtual super-user
1101 would have all of the limitations of a regular user.

Consequently, as shown 1n FIG. 12, selected system calls
115 are intercepted for performing operations requiring
actual super-user privileges, which are nevertheless desirable
for a virtual super-user 1101 to perform 1n the context of his
or her own virtual process 101. For example, system calls 1135
are intercepted that operate on files 303, e.g., open(), creat(),
link(), unlink(), chdir(), fchdir(), symlink(), readlink(),
readdir(), access(), rename(), mkdir(), rmdir(), truncate(),
and ftruncate(). Of course, those skilled 1n the art will rec-
ognize that the mnvention 1s not limited to any particular oper-
ating system 117 or terminology.

As noted above, a normal user 1s typically restricted from
opening, deleting, renaming, etc., a file 303 owned by another
user. However, a virtual super-user 1101 should appear, in
most respects, to be an actual super-user for operations per-
taining to his or her own virtual process 101.

Thus, in one embodiment, 1T a system call 115 1s “made” by
a virtual super-user 1101 (1.e., by a process 301 owned by a
virtual super-user 1101) and pertains to the virtual process
101 of the virtual super-user 1101, then actual super-user

10

15

20

25

30

35

40

45

50

55

60

65

14

privileges are temporarily granted to the virtual super-user
1101 for purposes of the system call 115. This may be accom-
plished, in one embodiment, by executing an approprate
function, e.g., setuid(), to assign a UID 303 of zero or other
designation of super-user privileges to the calling process
301. After the system call 115 1s executed, the super-user
privileges may be withdrawn by executing the same function
to restore the VSUID 1103.

Whether the system call 115 was made by a virtual super-
user 1101 may be determined by checking whether the owner
of the calling process 301 has a VSUID 1103. Of course, 11 the
system call 115 was not made by a virtual super-user 1101,
the wrapper 111 preferably disallows execution of the system
call 115. For instance, the wrapper 111 may generate an error
message, mdicating a privilege violation. Alternatively, the
wrapper 111 may simply allow the system call 115 to proceed
without granting actual super-user privileges, resulting 1n the
operating system 117 disallowing execution of the system
call 115, since the VSUID 1103 does not convey actual super-
user privileges.

Whether the system call 115 pertains to the virtual process
101 of the virtual super-user 1101 may be determined by
checking whether the system resource(s) atfected by the sys-
tem call 115 relate to the virtual process 101 of the virtual
super-user 1101. For example, with respect to system calls
115 that affect processes 301 (such as kill()), the virtual
process table 127 may be checked to determine whether the
process 301 has an association 129 with the virtual process
101 of the virtual super-user 1101. Similarly, in one embodi-
ment, each virtual process 101 has a distinct file system,
allowing the wrapper 111 to easily determine whether a file
303 referenced by the call 115 1s associated with the virtual
process 101 of the virtual super-user 1101.

As shown 1n FI1G. 12, suppose that a process 301 owned by
a virtual super-user 1101 attempts to execute the open()
system call 115 1n order to open anotheruser’s file 303, which
1s nevertheless associated with the virtual process 101 of the
virtual super-user 1101. The virtual process 101 (e.g., VPID
203) may be determined, in one embodiment, by referencing
the virtual process table 127 using the PID 201 of 3942

Since the file 303 pertains to the virtual process 101 of the
virtual super-user 1101, the system call wrapper 111 tempo-
rarily grants actual super-user privileges to the virtual super-
user 1101. In the illustrated embodiment, this 1S accom-
plished by executing an appropriate system call 1201 (e.g., in
UNIX®, the setuid() function with a UID 305 of zero). The
system call 1135 1s then executed, after which the wrapper 111
withdraws the actual super-user privileges 1101 by executing,
for example, an appropriate system call 1203 (e.g., 1n
UNIX®, the setuid() function with the original VSUID 1103
of the virtual super-user 1101). This approach grants super-
user privileges on a call-by-call basis.

Thus, a virtual super-user 1101 may perform an operation
for which actual super-user privileges are required, without
granting the virtual super-user 1101 untettered access to all of
the system’s resources. This allows each virtual process 101
to have at least one system administrator with limited super-
user-like powers, while maintaining the illusion that each
virtual process 101 1s running on a dedicated host computer.

Other system calls 115 that may be intercepted include
system calls 115 for terminating a process 301. In UNIX®,
the kill() system call 115 allows a user to terminate one or
more processes 301. For example, executing the kill() system
call 115 with a specified process 301 (e.g., PID 201) termi-
nates that process 301. Executing the kill() system call 1135
with an argument of —1 results in the termination of all of the
user’s processes 301. An argument of less than —1 results in

US RE44,210 E

15

the termination of all of the processes 301 associated with a
group (e.g., GID 307, where the GID value 1s equal to the
absolute value of the argument).

As noted above, a super-user may terminate any system
process 301. Thus, i1 the super-user specifies a PID 201, the
corresponding process 301 will be terminated. Likewise, 1f
the super-user specifies a negative GID 307, the processes
301 belonging to the specified group are terminated. If, how-
ever, the super-user specifies an argument of —1, all processes
301 other than those with PID 201 of O or 1 are terminated.

In one embodiment, 1t 1s desirable for a virtual super-user
1101 to be able to terminate processes 301 associated with his
or her virtual process 101. Accordingly, the system call wrap-
per 111 intercepts system calls 115 for terminating processes
301 (e.g., kall()).

Where a virtual super-user 1101 attempts to terminate a
specific process 301 associated with his or her virtual process
101, the wrapper 111 proceeds as discussed above with ref-
erence to FIG. 12. In other words, the wrapper 111 grants
temporary actual super-user privileges to the calling process
301 and allows execution of the system call 115.

However, as shown 1n FIG. 13, where the system call 115
specifies a negative parameter, the wrapper 111 proceeds
differently. Since the powers of virtual super-user 1101
should be limited to his or her virtual process 101, a kill()
system call 115 with an argument of -1 results only 1n the
termination of processes 301 associated with the virtual pro-
cess 101. Thus, 1n one embodiment, a kill(-1) system call 115
“pertains’ to the virtual process 101 by definition.

In one embodiment, the system call wrapper 111 1terates
through the virtual process table 127, terminating all pro-
cesses 301 associated with the virtual process 101. Thus, a
kill(-1) system call 115 operates 1n the manner expected,
maintaining the illusion that the virtual process 101 of the
virtual super-user 1101 1s executing on a dedicated host
machine.

Likewise, 1n the case of an argument of less than -1, denot-
ing a GID 307, the wrapper 111 cycles through all of the
processes 301 associated with the virtual process 101 of the
virtual super-user 1101 and determines whether each such
process 301 corresponds to the specified group (e.g., GID
307). If so, those processes 301 are terminated 1n the manner
discussed above.

As an example, as shown 1n FIG. 13, suppose that a process
301 1s associated with a virtual process 1 (e.g., having a VPID
203 of 1). The process 301 1s owned by a virtual super-user
1101 by virtue of the VSUID 1103 (e.g., 0x00010000), and
pertains to the virtual process 101 by definition. Accordingly,
the wrapper 111 grants temporary actual super-user privi-
leges to the calling process 301 by executing the system call
1201.

Thereafter, the wrapper 111 1iterates through the virtual
process table 127, identifying each process 301 (e.g., PIDs
3942 and 4400) associated witha VPID 203 of 1. System calls
115 (e.g., k1ll(3942), kall (4400)) are then made to terminate
cach of the i1dentified processes 301, after which the actual
super-user privileges are withdrawn by executing the system
call 1203.

A variety of other system calls 115 may be intercepted
within the scope of the invention in order to grant limited
super-user privileges to a virtual super-user 1101. Those
skilled 1n the art will know how to apply the above-described
techniques 1n the context of these other system calls 115.

In some 1nstances, it 1s desirable to prevent a virtual super-
user 1101 from executing certain system calls 115 altogether.
For example, in UNIX®, the insmod() and rmmod() func-
tions allow a super-user to insert modules 1nto, and remove

5

10

15

20

25

30

35

40

45

50

55

60

65

16

modules from, the operating system kernel 109. Giving such
powers to a virtual super-user 1101 could seriously compro-
mise system security, allowing the virtual super-user 1101 to
alter the basic functionality of the operating system 117.

In one embodiment, a virtual super-user 1101 1s prevented
from executing a system call 115 for which actual super-user
privileges are required by simply not intercepting the call 115.
Since the VSUID 1103 1s not a super-user UID 305, the
operating system 117 will automatically reject an attempt by
a virtual super-user 1101 to execute, for example, the insmod(
) call 115.

In an alternative embodiment of the invention, a virtual
super-user 1101 1s not designated by assigning a VSUID
1103, as discussed above. Rather, a virtual super-user 1101 1s
simply assigned a UID 305 as in the case of other users.
Thereatter, the assigned UID 305 1s stored 1n a virtual super-
user list 1401 or other suitable data structure, as illustrated in
FIG. 14, together with an indication of the virtual process 101
(e.g., VPID 203). Accordingly, when selected system calls
115 are intercepted for which actual super-user privileges are
required, a user may be identified as a virtual super-user 1101
by consulting the virtual super-user list 1401.

Since virtual super-users 1101 1n this embodiment are
given regular UIDs 305, the possibility of contlicts between
virtual processes 101 arises. However, such contlicts may be
resolved using the techniques described 1n FIGS. 9-10, 1.¢.
intercepting system calls 115 for setting a UID 305 of a
resource and assigning an alternative UID 901. Thus, virtual
super-users 1101 of different virtual processes 101 may
appear to share the same UID 3035 without conftlict.

FIG. 15 summarizes the above-described techniques. A
method 1500 for virtualizing super-user privileges has two
phases, preparation and operation. The preparation phase
begins by loading 1501 a system call wrapper 111 into the
operating system 117. Thereatter, copies are made 1503 of
pointers 114 to selected system calls 115 for performing
operations for which actual super-user privileges are
required, which are nevertheless desirable to be performed by
a virtual super-user 1101 with respect to his or her own virtual
process 101 (e.g., open(), kall(), etc.). The pointers 114 are
thenreplaced 1505, 1n one implementation, by pointers 118 to
the system call wrapper 111. Thus, when one of the selected
system calls 115 1s made, the system call wrapper 111 1s
executed instead

During the operation phase, a system call 1135 1s intercepted
15077 by the system call wrapper 111. Thereatfter, the wrapper
111 determines 1509 whether the call 115 was “made” by a
virtual super-user 1101 (1.e. by a process 301 owned by a
virtual super-user 1101). If not, the system call 115 1s disal-
lowed 1511, and the method 1500 ends.

I1, however, the call 115 was made by a virtual super-user
1101, a determination 1513 1s made whether the call 115
pertains to the virtual process 101 of the virtual super-user
1101. If not, the call 115 1s disallowed, and the method 1500
ends.

I1, however, the call 115 pertains to the virtual process 101
of the virtual super-user 1101, actual super-user privileges are
granted to the virtual super-user, after which the system call
115 1s executed 1517. Finally, the actual super-user privileges
are withdrawn 1519, and the method 1500 ends.

In view of the foregoing, the present mvention offers
numerous advantages not available 1n conventional
approaches. For example, super-user privileges are virtual-
ized 1n an operating system 117 including multiple virtual
processes 101, such that a virtual super-user has the power to
perform traditional system administrator functions with
respect to his or her own virtual process 101, but 1s unable to

US RE44,210 E

17

interfere with other virtual processes 101 or the underlying
operating system 117. Thus, each virtual process 101 can
have a virtual super-user 1101, while preserving the 1llusion
that the virtual processes 101 are running on dedicated host
machines.

As will be understood by those familiar with the art, the
invention may be embodied in other specific forms without
departing from the spirit or essential characteristics thereof.
Likewise, the particular naming of the modules, features,
attributes or any other aspect 1s not mandatory or significant,
and the mechanisms that implement the invention or its fea-
tures may have different names or formats. Accordingly, the
disclosure of the present mnvention 1s intended to be 1llustra-
tive, but not limiting, of the scope of the mnvention, which 1s
set forth 1n the following claims.

We claim:

1. A computer-implemented method for virtualizing super-
user privileges 1n a computer operating system including
multiple virtual private servers, the method comprising:

associating a user with a first virtual private server, the first

virtual private server comprising a first plurality of
actual processes executing within the same operating
system as a second plurality of actual processes com-
prising a second virtual private server;

designating the user as a virtual super-user;

intercepting a call to the operating system for which actual

super-user privileges are required, the call made by a

process located in the operating system, the process

owned by the user, wherein intercepting the call to the

operating system comprises:

loading a system call wrapper;

saving a pointer to the call to the operating system,
wherein the pointer to the call to the operating system
comprises a system call vector; and

replacing the pointer to the call to the operating system
with a pointer to the system call wrapper, such that the
system call wrapper 1s executed when the call to the
operating system 1s mvoked; and

in response to the intercepted call to the operating system

pertaining to the first virtual private server:
granting actual super-user privileges to the user; and
allowing execution of the call to the operating system.
2. A computer program product for virtualizing super-user
privileges in a computer operating system including multiple
virtual private servers, the computer program product com-
prising a computer-readable [medium] storage device and
computer program code encoded on the [medium] storage
device for:
associating a user with a first virtual private server, the first
virtual private server comprising a first plurality of
actual processes executing within the same operating
system as a second plurality of actual processes com-
prising a second virtual private server;
designating the user as a virtual super-user;
intercepting a call to the operating system for which actual
super-user privileges are required, the call made by a
process located in the operating system, the process
owned by the user, wherein intercepting the call to the
operating system comprises:
loading a system call wrapper;
saving a pointer to the call to the operating system, wherein
the pointer to the call to the operating system comprises
a system call vector; and

replacing the pointer to the call to the operating system
with a pointer to the system call wrapper, such that the
system call wrapper 1s executed when the call to the
operating system 1s invoked; and

5

10

15

20

25

30

35

40

45

50

55

60

65

18

granting actual super-user privileges to the user, and allow-
ing execution of the call to the operating system, 1n
response to the intercepted call to the operating system
pertaining to the first virtual private server.

3. A system for virtualizing super-user privileges in a com-
puter operating system including multiple virtual private
servers, the system comprising.

means for associating a user with a first virtual private

server, the first virtual private server comprising a first
plurality of actual processes executing within a same
operating system as a second plurality of actual pro-
cesses comprising a second virtual private server;
means for designating the user as a virtual super-user;
means for intervcepting a call to the operating system for
which actual super-user privileges are requirved, the call
made by a process executed by the operating system, the
process owned by the user, wherein the means for inter-
cepting the call to the operating system is configured to.
load a system call wrapper;
save a pointer to the call to the operating system,
wherein the pointer to the call to the operating system
comprises a system call vector; and
replace the pointer to the call to the operating system
with a pointer to the system call wrapper, such that the
system call wrapper is executed if the call to the
operating system is invoked; and

means for granting virtual super-user privileges to the user

and allowing execution of the call to the operating sys-
tem in response to the intervcepted call to the operating
system pertaining to the first virtual private server,
wherein a virtual super-user has a subset of the privi-
leges of an actual super-user but a superset of the privi-
leges of a user other than the actual super-user.

4. A method performed by a computing system having a
processor and memory for virtualizing user privileges in a
compuiter operating system including multiple virtual private
servers, the method comprising:

associating afirst user with a first virtual private server, the

fivst virtual private server comprising a first plurality of

actual processes executing within a same operating sys-
tem as a second plurality of actual processes comprising
a second virtual private server;

associating an identifier with the first user whevein the first

user owns a first set of vesources;

associating a second user with the second virtual private

server,
associating the identifier with the second user wherein the
second user owns a second set of resources that is dif-
Jerent from the first set of resources,

intercepting a call to the operating system that rvetrvieves
privileges for users, the call made by a process associ-
ated with the first virtual private server, and

in response to the intevcepted call to the operating system,

determining that the process is permitted to access the
first set of resources but is not permitted to access the
second set of resources.
5. The method of claim 4, wherein intercepting the call to
the operating system comprises:
loading a system call wrapper,
saving a pointer to the call to the operating system, wherein
the pointer to the call to the operating system comprises
a system call vector; and

replacing the pointer to the call to the operating system
with a pointer to the system call wrapper, such that the
system call wrapper is executed if the call to the oper-
ating system is invoked.

US RE44,210 E

19

6. The method of claim 4 wherein the call to the operating
system indicates to take an action on a vesource owned by the
first user but not the second user.

7. The method of claim 4 wherein the identifier is a user
identifier.

8. The method of claim 4 further comprising encoding the
user identifier with a virtual process identifier.

9. The method of claim 8§ wherein the encoding includes

shifting the virtual process identifier by a specified number of

bits and then applying a logical OR operation to a vesult of the
shifting with the user identifier.

10. The method of claim 4 wherein the identifier is a group
identifier.

11. The method of claim 10 further comprising encoding
the group identifier with a virtual process identifier.

12. The method of claim 11 wherein the encoding includes

shifting the virtual process identifier by a specified number of

bits and then applying a logical OR operation to avesult of the
shifting with the group identifier.

13. A computer-readable storage device storving compuiter-
executable instructions that, when executed, perform a
method for virtualizing user privileges in a computer operat-
ing system including multiple virtual private servers, the
method comprising:

associating a first usev with a first virtual private server, the

fivst virtual private sevver comprising a first plurality of

actual processes executing within a same operating sys-
tem as a second plurality of actual processes comprising
a second virtual private server;

associating an identifier with the first user whevein the first
usev owns a first set of resources;

associating a second usev with the second virtual private
server,

10

15

20

25

30

20

associating the identifier with the second user wherein the
second user owns a second set of resources that is dif-
Jerent from the first set of resources,

intercepting a call to the operating system that retrieves
privileges for users, the call made by a process associ-
ated with the first virtual private server, and

in response to the intevcepted call to the operating system,
determining that the process can access the first set of

resources but not the second set of resources.

14. A system for virtualizing user privileges in a computer
operating system including multiple virtual private servers,
the system comprising:

means for associating a first user with a first virtual private

server, the first virtual private server comprising a first
plurality of actual processes executing within a same
operating system as a second plurality of actual pro-
cesses comprising a second virtual private server;

means for associating an identifier with the first user
whevrein the first user owns a first set of resources;

means for associating a second usev with the second vir-
tual private server;

means for associating the identifier with the second user
whevrein the second user owns a second set of vesources
that is different from the first set of resources;

means for intercepting a call to the operating system that
vetrieves privileges for users, the call made by a process
associated with the first virtual private server, and

means for determining, in vesponse to the intevcepted call
to the operating system, that the process can access the
first set of resources but not the second set of vesources.

% o *H % x

	Front Page
	Drawings
	Specification
	Claims

