

(19) United States (12) Reissued Patent Driscoll, Jr. et al.

(10) Patent Number: US RE44,087 E (45) Date of Reissued Patent: Mar. 19, 2013

- (54) PRESENTING PANORAMIC IMAGES WITH GEOMETRIC TRANSFORMATION
- (75) Inventors: Edward Driscoll, Jr., Portola Valley, CA
 (US); Howard Morrow, Missoula, MT
 (US); Alan J. Steinhauer, Fresno, CA
 (US); Willard Curtis Lomax,
 Sunnyvale, CA (US)
- (73) Assignee: **B.H. Image Co. LLC**, Wilmington, DE

2,628,529 A	2/1953	Braymer
2,654,286 A	10/1953	Cesar
3,203,328 A	8/1965	Brueggeman
3,205,777 A	9/1965	Benner
3,229,576 A	1/1966	Rees
3,692,934 A	9/1972	Herndon
3,723,805 A	3/1973	Scarpino et al.
3,785,715 A	1/1974	Mecklenborg
3,832,046 A	8/1974	Mecklenborg
3,846,809 A	11/1974	Pinzone et al.
3,872,238 A	3/1975	Herndon
3,934,259 A	1/1976	Krider

 $(US) \quad \text{Assignce. D.H. image Co. LLC, withington, DE}$

(21) Appl. No.: 13/015,142

(22) Filed: Jan. 27, 2011 (Under 37 CFR 1.47)

Related U.S. Patent Documents

Reissue of:

(64)	Patent No.:	7,486,324
	Issued:	Feb. 3, 2009
	Appl. No.:	10/419,283
	Filed:	Apr. 17, 2003

U.S. Applications:

- (62) Division of application No. 09/521,652, filed on Mar.
 8, 2000, now Pat. No. 6,593,969, which is a division of application No. 08/872,525, filed on Jun. 11, 1997, now Pat. No. 6,459,451.
- (60) Provisional application No. 60/020,292, filed on Jun.24, 1996.

 $(\mathbf{C}, \mathbf{C}, \mathbf{C$

(Continued)

FOREIGN PATENT DOCUMENTS

CA 2140681 12/1995 CA 2140681 A1 12/1995 (Continued)

OTHER PUBLICATIONS

Anderson, R.L., et al., "Omnidirectional Real time Imaging Using Digital Restoration". High Speed Photography SPIE. vol. 348. San Diego, CA. 1982. pp. 807-814.

(Continued)

Primary Examiner — Tuan Ho

(57) **ABSTRACT**

Most camera systems only record an image from a limited viewing angle. A new panoramic camera apparatus is disclosed that instantaneously captures a 360 degree panoramic image. In the camera device, virtually all of the light that converges on a point in space is captured. Specifically, in the camera of the present invention, light striking this point in space is captured if it comes from any direction, 360 degrees around the point and from angles 50 degrees or more above and below the horizon. The panoramic image is recorded as a two dimensional annular image. Furthermore, various different systems for displaying the panoramic images and distributing the panoramic images. Specifically, methods and apparatus for digitally performing a geometric transformation of the two dimensional annular image into rectangular projections such that the panoramic image can be displayed using conventional methods such as printed images and televised images.

(56) **References Cited**

U.S. PATENT DOCUMENTS

2,146,662 A	2/1939	Van Albada
2,244,235 A	6/1941	Ayres
2,304,434 A	12/1942	Ayres

49 Claims, 20 Drawing Sheets

US RE44,087 E Page 2

	0.0.111112		o comercio					
3,970,841	A 7/19	76 Gi	reen		5,231,673		7/1993	•
3,998,532		76 Dy			5,235,656			Hilgeman
4,012,126		-	osendahl et al.		5,259,584			Wainwright
4,017,145		77 Jei	_		5,262,852			Eouzan et al.
4,038,670		77 Se			5,262,867	Α	11/1993	Kojima
/ /		77 Se			5,280,540	Α	1/1994	Addeo et al.
4,058,831					5,289,312	Α	2/1994	Hashimoto et
4,078,860			lobus et al.		5,305,035	Α	4/1994	Schonherr et a
4,157,218			ordon et al.		5,311,572	Α	5/1994	Friedes et al.
4,190,866		80 Lu			5,313,306		5/1994	Kuban et al.
4,241,985			lobus et al.		5,315,331			Ohshita
D263,716	S 4/19	982 Gl	lobus et al.		5,341,218			Kaneko et al.
4,326,775	A 4/19	82 Ki	ing		5,359,363			Kuban et al.
4,395,093	A 7/19	83 Ro	osendahl et al.		5,384,588			Martin et al.
4,429,957	A 2/19	84 Ki	ing		/ /			
4,463,380			ooks, Jr.		5,396,583			Chen et al.
4,484,801		84 Co	, ,		5,422,987			Yamada
4,518,898			rnowski et al.		5,432,871		7/1995	
4,549,208			amejima et al.		5,444,476			Conway
4,561,733			reischer		5,446,833			Miller et al.
4,566,763		86 Gi			5,452,450	Α	9/1995	Delory
/ /			\mathbf{v}		5,473,474	Α	12/1995	Powell
4,578,682			ooper et al.		5,479,203	Α	12/1995	Kawai et al.
4,593,982		86 Ro			5,490,239	Α	2/1996	Myers
4,602,857			oltz et al.		5,495,576	Α	2/1996	Ritchey
4,656,506		87 Ri			5,508,734			Baker et al.
4,661,855		987 Gi			5,530,650			Biferno et al.
4,670,648	A 6/19	987 Ha	all et al.		5,539,483		7/1996	
4,728,839	A 3/19	88 Co	oughlan et al.		5,550,646			Hassan et al.
4,736,436	A 4/19	88 Ya	asukawa et al.		5,563,650		10/1996	
4,742,390	A 5/19	88 Fr	ancke et al.		, ,			
4,751,660		88 He			5,601,353			Naimark et al
4,754,269			ishi et al.		5,606,365			Maurinus et a
4,761,641			hreiber		5,610,391			Ringlien
4,772,942		88 Tu			5,612,533			Judd et al.
4,797,942		89 Bu			5,627,675	Α		Davis et al.
/ /			anton et al.		5,631,778	Α	5/1997	Powell
4,807,158					5,633,924	Α	5/1997	Kaish et al.
4,835,532		89 Fa			5,649,032	Α	7/1997	Burt et al.
4,858,002		89 Zo			5,682,511	Α	10/1997	Sposato et al.
4,858,149		· · · ·	uarendon		5,684,937		11/1997	L
4,864,335		89 Co			5,686,957		11/1997	
4,868,682	A 9/19	989 Sh	nimizu et al.		/ /			
4,899,293	A 2/19	90 Da	awson et al.		5,714,997			Anderson
4,901,140	A 2/19	90 La	ang et al.		5,729,471			Jain et al.
4,907,084	A 3/19	90 Na	agafusa		5,748,194	Α	5/1998	Chen
4,908,874	A 3/19	90 Ga	abriel		5,760,826	Α	6/1998	Nayar
4,918,473	A 4/19	90 Bl	ackshear		5,761,416	Α	6/1998	Mandal et al.
4,924,094		90 M			5,764,276		6/1998	Martin et al.
4,943,821			elphman et al.		5,796,426			Gullichsen et
4,943,851			ang et al.		/ /			
4,945,367			lackshear		5,841,589			Davis et al.
/ /					5,844,520			Guppy et al.
4,965,844			ka et al.		5,850,352			Moezzi et al.
D312,263		90 Cł			5,854,713	Α	12/1998	Kuroda et al.
4,974,072			asegawa		5,877,801	Α	3/1999	Martin et al.
4,985,762		91 Sn			RE36,207	Е	5/1999	Zimmermann
4,991,020		91 Zv			5,903,319			Busko et al.
5,005,083			rage et al.		5,920,337			Glassman et a
5,020,114	A 5/19	91 Fu	ijioka et al.		· · ·			
5,021,813	A 6/19	91 Co	orrales		5,990,941			Jackson et al.
5,023,725	A 6/19	91 M	cCutchen		6,002,430			McCall et al.
5,038,225	A 8/19	91 M	aeshima		6,034,716	А		Whiting et al.
5,040,055		91 Sn			6,043,837	Α	3/2000	Driscoll et al.
5,048,102			rarine et al.					
5,051,830			on Hoessle		FO	REIC	in patel	NT DOCUM
5,067,019			day et al.	EP		0.816	5 891 A1	1/1998
5,068,735			ichiya et al.					
· · ·			•	EP			6891 A1	1/1998
5,077,609			anelphe	FR			4341	5/1960
5,083,389		92 Al	L	FR			4341	10/1960
5,097,325		92 Di		GB			118 A	1/1990
5,115,266		92 Tr	0	GB		2 289		11/1995
5,130,794		92 Ri	•	GB		228	9820	11/1995
5,142,354	A 8/19	92 Su	izuki et al.	JP		02-12	7877	11/1988
5,153,716	A 10/19	92 Sn	nith	$_{\rm JP}$		07-15	1965	6/1995
5,157,491		92 Ka	assatly	JP		09-13		5/1997
5,166,878		92 Po	-	JP		2-12		11/1998
5,173,948		_	ackham et al.	WO	WC)-94/0		6/1994
5,175,808		92 Di		WO) 94/1		6/1994
5,185,667		_	mmermann	WO)-94/1)-94/1		8/1994
5,185,007			raun et al.	WO			7493 7493 A1	8/1994
, ,								
5,189,528	A Z/19	93 Ia	kashima et al.	WO	WC)-97/3	1482	8/1997

4,078,860A3/1978Globus et al.5,305,035A4/1994Sch4,157,218A $6/1979$ Gordon et al.5,311,572A $5/1994$ Fri4,241,985A12/1980Luknar5,313,306A $5/1994$ Ku4,241,985A12/1980Globus et al.5,315,331A $5/1994$ Ku4,326,775A4/1982Globus et al.5,359,363A10/1994Ku4,395,093A7/1983Rosendahl et al.5,384,588A1/1995Ma4,429,957A2/1984King5,396,583A3/1995Ch4,463,380A7/1984Hooks, Jr.5,422,987A6/1995Ya4,484,801A11/1984Cox5,422,987A6/1995Ya4,518,898A5/1985Tarnowski et al.5,444,476A8/1995Mi4,561,733A12/1985Kreischer5,452,450A9/1995Dei4,566,763A1/1986Gorguss5,473,474A12/1995Dei4,578,682A3/1986Hooper et al.5,400,239A2/1996My4,602,857A7/1986Woltz et al.5,490,239A2/1996My4,656,506A4/1987Ritchey5,508,734A4/1996Bal4,661,855A4/1987Hall et al.5,530,650A6/1996Bil4,6	enga ilgeman Vainwright ouzan et al. ojima ddeo et al. ashimoto et al. chonherr et al. chonherr et al. chonherr et al. uban et al. aneko et al. uban et al. tartin et al. fartin et al. amada ovik onway filler et al. elory owell awai et al. cyers itchey aker et al. ferno et al. assan et al. assan et al. colstra aimark et al. colstra aimark et al.
$\begin{array}{llllllllllllllllllllllllllllllllllll$	ilgeman Vainwright Duzan et al. ojima ddeo et al. ashimoto et al. ashimoto et al. chonherr et al. chonherr et al. iedes et al. uban et al. aneko et al. aneko et al. aneko et al. anada ovik onway filler et al. amada ovik onway filler et al. elory owell awai et al. ferno et al. aker et al. aker et al. alwa assan et al. oelstra aimark et al. faurinus et al.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Yainwright Duzan et al. Djima ddeo et al. ashimoto et al. ashimoto et al. chonherr et al. chonherr et al. chonherr et al. aneko et al. aneko et al. aneko et al. anada ovik ban et al. fartin et al. amada ovik onway filler et al. elory owell awai et al. fyers itchey aker et al. aferno et al. assan et al. alwa assan et al. belstra aimark et al. faurinus et al.
4,012,126A3/1077Rosendahl et al.5/2/3/307A11/1935For4,017,145A4/1977Jeric5/262,852A11/1993Eo4,038,670A7/1977Seitz5/262,867A11/1994Ad4,058,831A11/1977Smith5/280,310A11/1994Ad4,078,860A3/1978Globus et al.5/305,035A4/1994Sci4,157,218A6/1979Gordon et al.5/311,572A5/1994Ku4,190,866A2/1980Luknar5/313,306A5/1994Ku4,241,985A1/2/1980Globus et al.5/315,331A5/1994Ku4,220,973A4/1982King5/359,363A1/1995Ma4,326,775A4/1982King5/384,588A1/1995Ma4,320,977A2/1984King5/386,583A3/1995Ch4,463,380A7/1983Rosendahl et al.5/446,833A3/1995No4,548,9208A10/1985Kamejima et al.5/446,833A3/1995No4,549,208A10/1985Kareijima et al.5/446,833A3/1995No4,549,208A10/1985Kareijima et al.5/446,833A3/1995No4,549,208A10/1985Kreischer5/452,450A9/1995No4,549,208<	buzan et al. ojima ddeo et al. ashimoto et al. chonherr et al. chonherr et al. viedes et al. uban et al. hshita aneko et al. dartin et al. fartin et al. fartin et al. conway filler et al. elory owell awai et al. fyers itchey aker et al. ferno et al. ferno et al. ferno et al. alwa assan et al. oelstra aimark et al. faurinus et al.
4,017,145A $4/1977$ Jerie $5,262,857$ A $11/1993$ Koj $4,038,670$ A $7/1977$ Seitz $5,280,540$ A $11/1993$ Koj $4,058,801$ A $11/1977$ Smith $5,289,312$ A $21/1994$ Hat $4,078,860$ A $3/1978$ Globus et al. $5,305,035$ A $4/1994$ Sci $4,190,866$ A $2/1980$ Cuknar $5,311,572$ A $5/1994$ Frit $4,190,866$ A $2/1980$ Clobus et al. $5,313,306$ A $5/1994$ Kui $4,241,985$ A $12/1980$ Clobus et al. $5,315,331$ A $5/1994$ Kui $4,326,775$ A $4/1982$ King $5,359,363$ A $10/1994$ Kui $4,395,093$ A $7/1984$ Kosendahl et al. $5,384,588$ A $1/1995$ Ma $4,429,957$ A $2/1984$ King $5,396,583$ A $1/1995$ Ma $4,43,300$ A $7/1984$ Hooks, Jr. $5,422,987$ A $6/1995$ Ya $4,548,204$ A $10/1985$ Kamejima et al. $5,442,476$ A $8/1995$ Mi $4,566,763$ A $1/1986$ Greguss $5,473,474$ A $12/1995$ Ka $4,503,506$ A $4/1987$ Ritchey $5,506,614$ $4/1996$ Ba $4,566,763$ A $1/1986$ Hooper et al. $5,530,650$ $4/1996$ Bi $4,566,756$ A $4/1987$ Ritch	ojima ddeo et al. ashimoto et al. chonherr et al. chonherr et al. ciedes et al. uban et al. hshita aneko et al. anada ovik anada ovik onway filler et al. elory owell awai et al. fyers itchey aker et al. ferno et al. ferno et al. ferno et al. alwa assan et al. ferno et al.
4,038.670A7/1977Seitz5.202,807A11/1994Ad4,038.831A11/1977Smith5,280,540A1/1994Ad4,078.860A3/1978Globus et al.5,289,312A2/1994Hat4,157,218A6/1979Gordon et al.5,311,572A5/1994Frit4,190,866A2/1980Luknar5,313,306A5/1994Ku4,241,985A12/1980Globus et al.5,313,316A5/1994Ku4,326,775A4/1982Globus et al.5,341,218A8/1994Ku4,326,775A4/1982King5,359,363A10/1994Ku4,429,957A2/1984King5,366,583A1/1995Ma4,463,380A7/1984Hocks, Jr.5,346,588A1/1995Ya4,468,801A11/1985Tarnowski et al.5,442,987A6/1995Ya4,549,208A10/1985Kareijma et al.5,444,476A8/1995Ou4,578,682A3/1986Hooper et al.5,473,474A12/1995Na4,502,857A7/1986Rosset5,490,239A2/1995Ka4,578,682A3/1986Hooper et al.5,550,650A4/1996Bal4,666,556A4/1987Ritchey5,605,650A6/1996Bil4,670,648A </td <td>ddeo et al. ashimoto et al. chonherr et al. ciedes et al. uban et al. hshita aneko et al. uban et al. fartin et al. fartin et al. hen et al. amada ovik onway filler et al. elory owell awai et al. fyers itchey aker et al. ferno et al. ferno et al. ferno et al. alwa assan et al. oelstra aimark et al.</td>	ddeo et al. ashimoto et al. chonherr et al. ciedes et al. uban et al. hshita aneko et al. uban et al. fartin et al. fartin et al. hen et al. amada ovik onway filler et al. elory owell awai et al. fyers itchey aker et al. ferno et al. ferno et al. ferno et al. alwa assan et al. oelstra aimark et al.
4.058,831A11/1977Smith $5.203,312$ A2/1994Ha4.078,860A3/1978Globus et al. $5,305,035$ A4/1994Sci4.167,218A6/1979Gordon et al. $5,311,572$ A5/1994Frit4.190,866A2/1980Luknar $5,311,572$ A5/1994Ku4.241,985A12/1980Globus et al. $5,315,331$ A5/1994Ku4.232,6775A4/1982King $5,359,363$ A10/1994Ku4.335,093A7/1983Rosendahl et al. $5,384,588$ A1/1995Ma4.429,957A2/1984King $5,396,583$ A3/1995Ch4.463,380A7/1984Hooks, Jr. $5,422,987$ A6/1995Ya4.484,801A11/1984Cox $5,432,871$ A7/1995No4.518,898A5/1985Tarnowski et al. $5,444,476$ 88/1995Cor4.566,763A1/1986Greguss $5,473,474$ 12/1995De4.566,763A1/1986Greguss $5,473,274$ A12/1995Pa4.602,857A7/1986Woltz et al. $5,508,734$ A4/1996Bal4.661,855A4/1987Ritchey $5,506,664$ 8/1996Bi4.661,855A4/1987Hall et al. $5,506,664$ 8/1996Bi4.662,857A	ashimoto et al. chonherr et al. iedes et al. uban et al. hshita aneko et al. uban et al. anada ovik amada ovik onway filler et al. elory owell awai et al. fyers itchey aker et al. ferno et al. alwa assan et al. oelstra aimark et al. faurinus et al.
4.078,860A $3/1978$ Globus et al. $5,269,312$ A $2/1994$ Set4,157,218A $6/1979$ Gordon et al. $5,311,572$ A $5/1994$ Set4,190,866A $2/1980$ Luknar $5,311,572$ A $5/1994$ Ku4,241,985A12/1980Globus et al. $5,315,331$ A $5/1994$ Ku4,326,775A $4/1982$ Globus et al. $5,341,218$ A $8/1994$ Ku4,395,093A $7/1983$ Rosendahl et al. $5,359,363$ A $10/1994$ Ku4,463,380A $7/1984$ Hocks, Jr. $5,344,288$ A $1/1995$ Ma4,463,380A $7/1984$ Hocks, Jr. $5,442,977$ A $6/1995$ Ya4,484,801A $11/1984$ Cox $5,432,871$ A $7/1995$ No4,518,898A $5/1985$ Tarnowski et al. $5,444,476$ $8/1995$ Nu4,566,763A $1/1986$ Kreischer $5,452,450$ $9/1995$ Ded4,566,763A $1/1986$ Rosset $5,473,474$ A $12/1995$ Kreischer4,503,982A $6/1986$ Rosset $5,530,650$ A $4/1996$ Bad4,661,855A $4/1987$ Ritchey $5,490,239$ $2/1996$ Rit4,656,506A $4/1987$ Ritchey $5,530,650$ A $4/1996$ Bad4,661,855A $4/1987$ Ritchey $5,530,650$	chonherr et al. riedes et al. uban et al. hshita aneko et al. uban et al. tartin et al. fartin et al. hen et al. hen et al. amada ovik onway filler et al. elory owell awai et al. fyers itchey aker et al. ferno et al. alwa assan et al. oelstra aimark et al. faurinus et al.
4,157,218A $6/1979$ Gordon et al. $5,30,30,30,30,30,30,30,30,30,30,30,30,30,$	riedes et al. uban et al. hshita aneko et al. uban et al. uban et al. fartin et al. hen et al. amada ovik onway filler et al. elory owell awai et al. fyers itchey aker et al. ferno et al. alwa assan et al. oelstra aimark et al. faurinus et al.
4,190,866A $2/1980$ Luknar $5,311,312$ A $5,11994$ Hu4,241,985A12/1980Globus et al. $5,313,306$ A $5/1994$ KuD263,716S $4/1982$ Globus et al. $5,341,218$ A $8/1994$ Ch4,326,775A $4/1982$ King $5,359,363$ A $10/1994$ Ku4,395,093A $7/1983$ Rosendahl et al. $5,384,588$ A $1/1995$ Ma4,429,957A $2/1984$ King $5,396,583$ A $3/1995$ Ch4,463,380A $7/1984$ Hooks, Jr. $5,422,987$ A $6/1995$ Ya4,484,801A $11/1984$ Cox $5,432,871$ A $7/1995$ No4,518,898A $5/1985$ Tarnowski et al. $5,444,476$ A $8/1995$ Mi4,561,733A $10/1985$ Kareiguns $5,473,474$ A $8/1995$ Mi4,566,763A $1/1986$ Greguss $5,473,474$ A $12/1995$ Po4,578,682A $3/1986$ Hooper et al. $5,490,239$ A $2/1996$ My4,602,857A $7/1987$ Ritchey $5,508,734$ $4/1296$ Mi4,661,855A $4/1987$ Ritchey $5,508,734$ $4/1296$ Mi4,670,648 $6/1987$ Hall et al. $5,506,636$ $4/1996$ Na4,722,890A $5/1988$ Francke et al. $5,601,353$ $2/1997$ Na	uban et al. hshita aneko et al. uban et al. anatin et al. fartin et al. hen et al. amada ovik onway filler et al. elory owell awai et al. fyers itchey aker et al. ferno et al. alwa assan et al. oelstra aimark et al. faurinus et al.
4.241.985A $12/1980$ Globus et al. $5.315.301$ A $5/1994$ KulD263.716S $4/1982$ Globus et al. $5.315.331$ A $5/1994$ Kul $4.326.775$ A $4/1982$ King $5.341.218$ A $8/1994$ Kul $4.395.093$ A $7/1983$ Rosendahl et al. $5.345.363$ A $10/1994$ Kul $4.429.957$ A $2/1984$ King $5.396.583$ A $3/1995$ Ma $4.463.380$ A $7/1984$ Hooks, Jr. $5.422.987$ A $6/1995$ Yat $4.484.801$ A $11/1984$ Cox $5.432.871$ A $7/1995$ No $4.518.898$ A $5/1985$ Tarnowski et al. $5.442.476$ A $8/1995$ Coi $4.566.763$ A $10/1985$ Kareigima et al. $5.444.476$ A $8/1995$ Coi $4.566.763$ A $10/1985$ Kreischer $5.452.450$ A $9/1995$ Del $4.566.763$ A $11/1986$ Greguss $5.473.474$ A $12/1995$ Ka $4.593.982$ A $6/1986$ Rosset $5.490.239$ A $2/1996$ My $4.602.857$ A $7/1986$ Woltz et al. $5.495.576$ A $2/1996$ My $4.656.506$ A $4/1987$ Ritchey $5.508.734$ A $4/1996$ Bal $4.661.855$ A $4/1987$ Ritchey $5.506.650$ A $6/1996$ Bif $4.670.648$ A<	hshita aneko et al. uban et al. fartin et al. fartin et al. hen et al. amada ovik onway filler et al. elory owell awai et al. fyers itchey aker et al. ferno et al. alwa assan et al. oelstra aimark et al. faurinus et al.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	aneko et al. uban et al. fartin et al. fartin et al. hen et al. amada ovik onway filler et al. elory owell awai et al. fyers itchey aker et al. iferno et al. alwa assan et al. oelstra aimark et al. faurinus et al.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	uban et al. fartin et al. hen et al. amada ovik onway filler et al. elory owell awai et al. fyers itchey aker et al. ferno et al. alwa assan et al. oelstra aimark et al. faurinus et al.
4,326,7/5A $4/1982$ King $5,359,363$ A $10/1994$ Kul $4,395,093$ A $7/1983$ Rosendahl et al. $5,384,588$ A $1/1995$ Ma $4,429,957$ A $2/1984$ King $5,396,583$ A $3/1995$ Ma $4,463,380$ A $7/1984$ Hooks, Jr. $5,422,987$ A $6/1995$ Yau $4,484,801$ A $11/1984$ Cox $5,432,871$ A $7/1995$ No $4,518,898$ A $5/1985$ Tarnowski et al. $5,444,476$ A $8/1995$ Cor $4,549,208$ A $10/1985$ Kareigima et al. $5,446,833$ A $8/1995$ Mi $4,561,733$ A $12/1985$ Kreischer $5,452,450$ A $9/1995$ De $4,578,682$ A $3/1986$ Hooper et al. $5,473,474$ $12/1995$ No $4,593,982$ A $6/1987$ Ritchey $5,508,734$ A $2/1996$ My $4,602,857$ A $7/1986$ Woltz et al. $5,490,239$ A $2/1996$ My $4,661,855$ A $4/1987$ Ritchey $5,508,734$ A $4/1996$ Bai $4,670,648$ A $6/1987$ Hall et al. $5,530,650$ A $6/1996$ Bif $4,670,648$ A $6/1987$ Hall et al. $5,530,650$ A $10/1996$ Po $4,736,436$ A $4/1987$ Kukwa et al. $5,563,650$ A $10/1996$ Po $4,772,839$ A	uban et al. fartin et al. hen et al. amada ovik onway filler et al. elory owell awai et al. fyers itchey aker et al. ferno et al. alwa assan et al. oelstra aimark et al. faurinus et al.
4,395,093 A//1983Rosendahl et al.5,384,588 A1/1995Ma4,429,957 A2/1984King5,396,583 A3/1995Ch4,484,801 A11/1984Cox5,422,987 A $6/1995$ Yar4,484,801 A11/1984Cox5,432,871 A $7/1995$ No4,518,898 A5/1985Tarnowski et al.5,444,476 A $8/1995$ Co4,549,208 A10/1985Kamejima et al.5,444,476 A $8/1995$ Co4,561,733 A12/1985Kreischer5,452,450 A $9/1995$ Del4,566,763 A1/1986Greguss5,473,474 A12/1995Del4,566,763 A1/1986Rosset5,490,239 A2/1996My4,602,857 A7/1986Woltz et al.5,490,239 A2/1996My4,6661,855 A4/1987Ritchey5,508,734 A4/1996Bal4,670,648 A6/1987Hall et al.5,530,650 A6/1996Bif4,736,436 A4/1987Kuck5,508,673 A1/1996Na4,728,839 A3/1988Coughlan et al.5,550,646 A8/1996Ha4,736,643 A4/1988Kishi et al.5,601,353 A2/1997Na4,761,641 A8/1988Schreiber5,612,533 A3/1997Na4,761,641 A8/1988Schreiber5,612,533 A3/1997Na4,772,942 A9/1988Tuck5,631,778 A5/1997Da4,772,942 A9/1988Tuck5,631,778 A	fartin et al. hen et al. amada ovik onway filler et al. elory owell awai et al. fyers itchey aker et al. ferno et al. alwa assan et al. oelstra aimark et al. faurinus et al.
4,429,957A $2/1984$ King $5,396,583$ A $3/1995$ Chu $4,463,380$ A $7/1984$ Hooks, Jr. $5,422,987$ A $6/1995$ Yau $4,484,801$ A $11/1984$ Cox $5,422,987$ A $6/1995$ Yau $4,518,898$ A $5/1985$ Tarnowski et al. $5,432,871$ A $7/1995$ No $4,549,208$ A $10/1985$ Kamejima et al. $5,444,476$ A $8/1995$ Coi $4,561,733$ A $12/1985$ Kreischer $5,452,450$ A $9/1995$ Del $4,566,763$ A $1/1986$ Greguss $5,473,474$ A $12/1995$ No $4,593,982$ A $6/1986$ Rosset $5,479,203$ A $12/1995$ Na $4,656,506$ A $4/1987$ Ritchey $5,508,734$ A $4/1996$ Bal $4,661,855$ A $4/1987$ Gulck $5,530,650$ A $6/1996$ Bif $4,670,648$ A $6/1987$ Hall et al. $5,530,650$ A $6/1996$ Bif $4,728,839$ A $3/1988$ Coughlan et al. $5,550,646$ A $8/1996$ Hai $4,736,436$ A $4/1988$ Francke et al. $5,601,353$ $2/1997$ Na $4,754,269$ A $6/1988$ Hedley $5,606,365$ $2/1997$ Na $4,754,269$ A $6/1988$ Kishi et al. $5,611,353$ $3/1997$ Jin $4,772,942$ A $9/1988$ Tuck <td< td=""><td>hen et al. amada ovik onway filler et al. elory owell awai et al. fyers itchey aker et al. iferno et al. alwa assan et al. oelstra aimark et al. faurinus et al.</td></td<>	hen et al. amada ovik onway filler et al. elory owell awai et al. fyers itchey aker et al. iferno et al. alwa assan et al. oelstra aimark et al. faurinus et al.
4,463,380 A $7/1984$ Hooks, Jr. $5,422,987$ A $6/1995$ Yar $4,484,801$ A $11/1984$ Cox $5,432,871$ A $7/1995$ No $4,518,898$ A $5/1985$ Tarnowski et al. $5,432,871$ A $7/1995$ No $4,549,208$ A $10/1985$ Kamejima et al. $5,444,476$ A $8/1995$ Coi $4,561,733$ A $12/1985$ Kreischer $5,452,450$ A $9/1995$ Del $4,566,763$ A $1/1986$ Greguss $5,473,474$ A $12/1995$ Kar $4,593,982$ A $6/1986$ Rosset $5,490,239$ A $2/1996$ My $4,656,506$ A $4/1987$ Ritchey $5,508,734$ A $4/1996$ Bal $4,661,855$ A $4/1987$ Gulck $5,530,650$ A $6/1996$ Bal $4,670,648$ A $6/1987$ Hall et al. $5,530,650$ A $6/1996$ Bal $4,7736,436$ A $4/1988$ Yasukawa et al. $5,560,646$ A $8/1996$ Bal $4,754,269$ A $6/1988$ Kishi et al. $5,601,353$ A $2/1997$ Na $4,772,942$ A $9/1988$ Tuck $5,612,533$ A $3/1997$ Rin $4,772,942$ A $9/1988$ Tuck $5,633,924$ A $5/1997$ Por $4,875,302$ A $2/1989$ Blanton et al. $5,633,924$ A $5/1997$ Por $4,874,2300$ A $8/1989$ Fant $5,649,032$ A $7/1997$ Bur $4,754,269$ A $6/1988$ Kishi et al. $5,612,533$ A $3/1997$ Jid $4,772,942$ A $9/1988$ <t< td=""><td>amada ovik onway filler et al. elory owell awai et al. fyers itchey aker et al. ferno et al. alwa assan et al. oelstra aimark et al. faurinus et al.</td></t<>	amada ovik onway filler et al. elory owell awai et al. fyers itchey aker et al. ferno et al. alwa assan et al. oelstra aimark et al. faurinus et al.
4,484,801 A $11/1984$ Cox $5,432,871$ A $7/1995$ No $4,518,898$ A $5/1985$ Tarnowski et al. $5,432,871$ A $7/1995$ No $4,518,898$ A $5/1985$ Kamejima et al. $5,444,476$ A $8/1995$ Cou $4,549,208$ A $10/1985$ Kareischer $5,446,833$ A $8/1995$ Mil $4,566,763$ A $1/1986$ Greguss $5,473,474$ A $12/1995$ Pot $4,566,763$ A $1/1986$ Rosset $5,479,203$ A $12/1995$ Kar $4,593,982$ A $6/1986$ Rosset $5,479,203$ A $12/1995$ Kar $4,656,506$ A $4/1987$ Ritchey $5,495,576$ A $2/1996$ Mit $4,656,506$ A $4/1987$ Ritchey $5,508,734$ A $4/1996$ Bal $4,670,648$ A $6/1987$ Hall et al. $5,530,650$ A $6/1996$ Bil $4,728,839$ A $3/1988$ Coughlan et al. $5,550,646$ A $8/1996$ Hai $4,736,436$ A $4/1988$ Yasukawa et al. $5,661,353$ A $2/1997$ Ma $4,754,269$ A $6/1988$ Hedley $5,606,365$ A $2/1997$ Ma $4,772,942$ A $9/1988$ Tuck $5,627,675$ A $5/1997$ Dar $4,777,942$ A $1/1989$ Burt $5,631,778$ A $5/1997$ Dar $4,835,302$ A $8/1989$ Blanton et al. $5,633,924$ A $5/1997$ Bur $4,858,002$ A $8/1989$ Zobel $5,649,032$ A $7/1997$ Bur $4,858,002$ A $8/1989$ Zobel $5,649,032$ A $7/1997$ Bur $4,858,002$ A $8/1989$ Zobel $5,642,511$ A $10/1997$ Spc	ovik onway filler et al. elory owell awai et al. fyers itchey aker et al. iferno et al. alwa assan et al. oelstra aimark et al. faurinus et al.
4,518,898A5/1985farnowski et al.5,444,476A $8/1995$ Con4,549,208A10/1985Kamejima et al.5,444,476A $8/1995$ Mil4,561,733A12/1985Kreischer5,452,450A $9/1995$ Del4,566,763A1/1986Greguss5,473,474A $12/1995$ Del4,578,682A $3/1986$ Hooper et al.5,473,474A $12/1995$ Ka4,593,982A $6/1986$ Rosset5,490,239A $2/1996$ My4,602,857A $7/1986$ Woltz et al.5,495,576A $2/1996$ Rit4,661,855A $4/1987$ Ritchey5,508,734A $4/1996$ Bal4,661,855A $4/1987$ Gulck5,530,650A $6/1996$ Bif4,670,648A $6/1987$ Hall et al.5,530,650A $6/1996$ Bif4,736,436A $4/1988$ Scoughlan et al.5,563,650A $10/1996$ Poe4,751,660A $6/1988$ Hedley5,601,353A $2/1997$ Ma4,751,660A $6/1988$ Kishi et al.5,610,391 $3/1997$ Rin4,751,660A $6/1988$ Kishi et al.5,610,391 $3/1997$ Mi4,751,660A $6/1988$ Kishi et al.5,610,391 $3/1997$ Mi4,751,660A $6/1988$ Kishi et al. $5,627,675$ $5/1997$ Da <td>onway filler et al. elory owell awai et al. fyers itchey aker et al. iferno et al. alwa assan et al. oelstra aimark et al. faurinus et al.</td>	onway filler et al. elory owell awai et al. fyers itchey aker et al. iferno et al. alwa assan et al. oelstra aimark et al. faurinus et al.
4,549,208A10/1985Kamejina et al.5,446,833A $8/1995$ Mil $4,561,733$ A12/1985Kreischer5,452,450A $9/1995$ Del $4,566,763$ A1/1986Greguss5,473,474A12/1995Pox $4,578,682$ A3/1986Hooper et al.5,473,474A12/1995Kav $4,593,982$ A6/1986Rosset5,490,239A2/1996Mit $4,656,506$ A4/1987Ritchey5,508,734A4/1996Bal $4,661,855$ A4/1987Gulck5,530,650A6/1996Bif $4,670,648$ A6/1987Hall et al.5,530,650A6/1996Bif $4,728,839$ A3/1988Coughlan et al.5,550,646A8/1996Hai $4,736,436$ A4/1988Yasukawa et al.5,563,650A10/1996Poe $4,754,269$ A6/1988Hedley5,601,353A2/1997Nai $4,754,269$ A6/1988Kishi et al.5,610,391A3/1997Nai $4,761,641$ A8/1988Schreiber5,612,533A3/1997Jiu $4,772,942$ A9/1988Tuck5,631,778A5/1997Dav $4,877,158$ A2/1989Blanton et al.5,634,902A5/1997Dav $4,858,002$ A5/1989Fant5,649,032A7/1997B	filler et al. elory owell awai et al. fyers itchey aker et al. iferno et al. alwa assan et al. oelstra aimark et al. faurinus et al.
4,561,733A $12/1985$ Kreischer5,452,450A $9/1995$ Del4,566,763A $1/1986$ Greguss $5,473,474$ A $12/1995$ Pow4,578,682A $3/1986$ Hooper et al. $5,473,474$ A $12/1995$ Kar4,593,982A $6/1986$ Rosset $5,490,239$ A $2/1996$ My4,602,857A $7/1986$ Woltz et al. $5,490,239$ A $2/1996$ Mit4,656,506A $4/1987$ Ritchey $5,508,734$ A $4/1996$ Bal4,661,855A $4/1987$ Gulck $5,530,650$ A $6/1996$ Bif4,670,648A $6/1987$ Hall et al. $5,530,650$ A $6/1996$ Bif4,736,436A $4/1988$ Yasukawa et al. $5,560,646$ $8/1996$ Hai4,751,660A $6/1988$ Francke et al. $5,601,353$ $2/1997$ Nai4,754,269A $6/1988$ Kishi et al. $5,612,533$ $3/1997$ Rin4,761,641A $8/1988$ Schreiber $5,612,533$ $3/1997$ Jud4,772,942A $9/1988$ Tuck $5,631,778$ $5/1997$ Dar4,807,158A $2/1989$ Blanton et al. $5,649,032$ $7/1997$ But4,858,002A $8/1989$ Coupendon $5,682,511$ A $10/1997$ Spec	elory owell awai et al. fyers itchey aker et al. iferno et al. alwa assan et al. oelstra aimark et al. faurinus et al.
4,566,763A1/1986Greguss $5,473,474$ A $12/1995$ Pow4,578,682A $3/1986$ Hooper et al. $5,479,203$ A $12/1995$ Kav4,593,982A $6/1986$ Rosset $5,490,239$ A $2/1996$ My4,602,857A $7/1986$ Woltz et al. $5,490,239$ A $2/1996$ Rit4,656,506A $4/1987$ Ritchey $5,508,734$ A $4/1996$ Bal4,661,855A $4/1987$ Gulck $5,530,650$ A $6/1996$ Bif4,670,648A $6/1987$ Hall et al. $5,539,483$ A $7/1996$ Nal4,728,839A $3/1988$ Coughlan et al. $5,550,646$ A $8/1996$ Hai4,736,436A $4/1988$ Yasukawa et al. $5,661,353$ A $2/1997$ Nai4,751,660A $6/1988$ Hedley $5,606,365$ A $2/1997$ Nai4,751,660A $6/1988$ Kishi et al. $5,610,391$ A $3/1997$ Rin4,761,641A $8/1988$ Schreiber $5,627,675$ $5,11977$ Dav4,797,942A $1/1989$ Burt $5,633,924$ $5/1997$ Pow4,807,158A $2/1989$ Fant $5,649,032$ $7/1997$ Bur4,858,102A $8/1989$ Zobel $5,649,032$ $7/1997$ Bur4,858,102A $8/1989$ Queendon $5,649,032$ $7/1997$ Bur<	owell awai et al. fyers itchey aker et al. iferno et al. alwa assan et al. celstra aimark et al. faurinus et al.
4,5/8,682 A $3/1986$ Hooper et al. $5,479,203$ A $12/1995$ Kar $4,593,982$ A $6/1986$ Rosset $5,490,239$ A $2/1996$ My $4,602,857$ A $7/1986$ Woltz et al. $5,495,576$ A $2/1996$ Rit $4,656,506$ A $4/1987$ Ritchey $5,508,734$ A $4/1996$ Bal $4,661,855$ A $4/1987$ Gulck $5,530,650$ A $6/1996$ Bif $4,670,648$ A $6/1987$ Hall et al. $5,539,483$ A $7/1996$ Nal $4,728,839$ A $3/1988$ Coughlan et al. $5,550,646$ A $8/1996$ Has $4,736,436$ A $4/1988$ Yasukawa et al. $5,563,650$ A $10/1996$ Poe $4,742,390$ A $5/1988$ Francke et al. $5,601,353$ A $2/1997$ Nai $4,751,660$ A $6/1988$ Hedley $5,606,365$ A $2/1997$ Nai $4,754,269$ A $6/1988$ Kishi et al. $5,610,391$ A $3/1997$ Rin $4,772,942$ A $9/1988$ Tuck $5,627,675$ A $5/1997$ Dav $4,797,942$ A $1/1989$ Burt $5,633,924$ A $5/1997$ Dav $4,858,002$ A $8/1989$ Gobel $5,682,511$ A $10/1997$ Spc $4,858,149$ A $8/1989$ Owarendon $5,682,511$ A $10/1997$ Spc	awai et al. Iyers itchey aker et al. iferno et al. alwa assan et al. belstra aimark et al. aurinus et al.
4,593,982A6/1986Rosset5,490,239A2/1996My4,602,857A7/1986Woltz et al.5,495,576A2/1996Rit4,656,506A4/1987Ritchey5,508,734A4/1996Bal4,661,855A4/1987Gulck5,508,734A4/1996Bal4,670,648A6/1987Hall et al.5,530,650A6/1996Bif4,728,839A3/1988Coughlan et al.5,550,646A8/1996Has4,736,436A4/1988Yasukawa et al.5,563,650A10/1996Poe4,742,390A5/1988Francke et al.5,601,353A2/1997Nai4,754,269A6/1988Kishi et al.5,610,391A3/1997Rin4,761,641A8/1988Schreiber5,612,533A3/1997Jud4,772,942A9/1988Tuck5,627,675A5/1997Dav4,807,158A2/1989Blanton et al.5,633,924A5/1997Fant4,858,002A8/1989Zobel5,649,032A7/1997Bur4,858,102A8/1989Quarendon5,682,511A10/1997Spc	yers itchey aker et al. iferno et al. alwa assan et al. elstra aimark et al. aurinus et al.
4,602,857A $7/1986$ Woltz et al. $5,495,576$ A $2/1996$ Rit $4,656,506$ A $4/1987$ Ritchey $5,508,734$ A $4/1996$ Bal $4,661,855$ A $4/1987$ Gulck $5,530,650$ A $6/1996$ Bif $4,670,648$ A $6/1987$ Hall et al. $5,530,650$ A $6/1996$ Bif $4,728,839$ A $3/1988$ Coughlan et al. $5,550,646$ A $8/1996$ Hat $4,736,436$ A $4/1988$ Yasukawa et al. $5,563,650$ A $10/1996$ Poc $4,742,390$ A $5/1988$ Francke et al. $5,601,353$ A $2/1997$ Nai $4,751,660$ A $6/1988$ Hedley $5,606,365$ A $2/1997$ Nai $4,761,641$ A $8/1988$ Schreiber $5,612,533$ A $3/1997$ Jin $4,772,942$ A $9/1988$ Tuck $5,627,675$ A $5/1997$ Dav $4,807,158$ A $2/1989$ Blanton et al. $5,633,924$ A $5/1997$ Dav $4,858,002$ A $8/1989$ Zobel $5,649,032$ A $7/1997$ Bu $4,858,149$ A $8/1989$ Quarendon $5,682,511$ A $10/1997$ Spc	itchey aker et al. iferno et al. alwa assan et al. belstra aimark et al. aurinus et al.
4,656,506A4/1987Ritchey5,508,734A4/1996Bal4,661,855A4/1987Gulck5,530,650A6/1996Bif4,670,648A6/1987Hall et al.5,530,650A6/1996Bif4,728,839A3/1988Coughlan et al.5,550,646A8/1996Hai4,736,436A4/1988Yasukawa et al.5,563,650A10/1996Poe4,742,390A5/1988Francke et al.5,563,650A10/1996Poe4,751,660A6/1988Hedley5,601,353A2/1997Nai4,754,269A6/1988Kishi et al.5,610,391A3/1997Rin4,761,641A8/1988Schreiber5,612,533A3/1997Jud4,797,942A1/1989Burt5,631,778A5/1997Dar4,807,158A2/1989Blanton et al.5,633,924A5/1997Bur4,858,002A8/1989Zobel5,649,032A7/1997Bur4,858,149A8/1989Zobel5,682,511A10/1997Spot	aker et al. iferno et al. alwa assan et al. belstra aimark et al. aurinus et al.
4,661,855 A $4/1987$ Gulck5,530,650 A $6/1996$ Bif4,670,648 A $6/1987$ Hall et al. $5,539,483$ A $7/1996$ Nal4,728,839 A $3/1988$ Coughlan et al. $5,530,646$ A $8/1996$ Has4,736,436 A $4/1988$ Yasukawa et al. $5,563,650$ A $10/1996$ Poe4,742,390 A $5/1988$ Francke et al. $5,601,353$ A $2/1997$ Nai4,751,660 A $6/1988$ Hedley $5,606,365$ A $2/1997$ Nai4,754,269 A $6/1988$ Kishi et al. $5,610,391$ A $3/1997$ Rin4,761,641 A $8/1988$ Schreiber $5,612,533$ A $3/1997$ Jud4,772,942 A $9/1988$ Tuck $5,631,778$ A $5/1997$ Dav4,807,158 A $2/1989$ Blanton et al. $5,633,924$ A $5/1997$ Kai4,858,002 A $8/1989$ Zobel $5,649,032$ A $7/1997$ Bur4,858,149 A $8/1989$ Quarendon $5,682,511$ A $10/1997$ Spot	iferno et al. alwa assan et al. belstra aimark et al. faurinus et al.
4,6/0,648 A $6/1987$ Hall et al. $5,539,483$ A $7/1996$ Nal $4,728,839$ A $3/1988$ Coughlan et al. $5,550,646$ A $8/1996$ Has $4,736,436$ A $4/1988$ Yasukawa et al. $5,550,646$ A $8/1996$ Has $4,742,390$ A $5/1988$ Francke et al. $5,563,650$ A $10/1996$ Poe $4,751,660$ A $6/1988$ Hedley $5,601,353$ A $2/1997$ Nai $4,754,269$ A $6/1988$ Kishi et al. $5,610,391$ A $3/1997$ Rin $4,761,641$ A $8/1988$ Schreiber $5,612,533$ A $3/1997$ Jud $4,772,942$ A $9/1988$ Tuck $5,627,675$ A $5/1997$ Dav $4,797,942$ A $1/1989$ Burt $5,631,778$ A $5/1997$ Dav $4,807,158$ A $2/1989$ Blanton et al. $5,633,924$ A $5/1997$ Kai $4,858,002$ A $8/1989$ Zobel $5,649,032$ A $7/1997$ Bur $4,858,149$ A $8/1989$ Quarendon $5,682,511$ A $10/1997$ Spot	alwa assan et al. oelstra aimark et al. aurinus et al.
4,728,839 A $3/1988$ Coughlan et al. $5,550,646$ A $8/1996$ Has $4,736,436$ A $4/1988$ Yasukawa et al. $5,563,650$ A $10/1996$ Poe $4,742,390$ A $5/1988$ Francke et al. $5,601,353$ A $2/1997$ Nai $4,751,660$ A $6/1988$ Hedley $5,606,365$ A $2/1997$ Mai $4,754,269$ A $6/1988$ Kishi et al. $5,610,391$ A $3/1997$ Rin $4,761,641$ A $8/1988$ Schreiber $5,612,533$ A $3/1997$ Jud $4,772,942$ A $9/1988$ Tuck $5,627,675$ A $5/1997$ Dav $4,797,942$ A $1/1989$ Burt $5,633,924$ A $5/1997$ Pov $4,807,158$ A $2/1989$ Blanton et al. $5,633,924$ A $5/1997$ Kai $4,858,002$ A $8/1989$ Zobel $5,649,032$ A $7/1997$ Bur $4,858,149$ A $8/1989$ Quarendon $5,682,511$ A $10/1997$ Spo	assan et al. Selstra aimark et al. faurinus et al.
4,736,436 A $4/1988$ Yasukawa et al. $5,530,046$ A $8/1996$ Has $4,742,390$ A $5/1988$ Francke et al. $5,563,650$ A $10/1996$ Poe $4,742,390$ A $5/1988$ Francke et al. $5,601,353$ A $2/1997$ Nai $4,751,660$ A $6/1988$ Hedley $5,606,365$ A $2/1997$ Ma $4,754,269$ A $6/1988$ Kishi et al. $5,610,391$ A $3/1997$ Rin $4,761,641$ A $8/1988$ Schreiber $5,612,533$ A $3/1997$ Jud $4,772,942$ A $9/1988$ Tuck $5,627,675$ A $5/1997$ Dav $4,797,942$ A $1/1989$ Burt $5,631,778$ A $5/1997$ Pov $4,807,158$ A $2/1989$ Blanton et al. $5,633,924$ A $5/1997$ Kai $4,858,002$ A $8/1989$ Zobel $5,649,032$ A $7/1997$ Bur $4,858,149$ A $8/1989$ Quarendon $5,682,511$ A $10/1997$ Spot	oelstra aimark et al. faurinus et al.
4,742,390 A $5/1988$ Francke et al. $5,503,030$ A $10/1990$ Foe $4,751,660$ A $6/1988$ Hedley $5,601,353$ A $2/1997$ Nai $4,754,269$ A $6/1988$ Kishi et al. $5,606,365$ A $2/1997$ Ma $4,761,641$ A $8/1988$ Schreiber $5,610,391$ A $3/1997$ Rin $4,772,942$ A $9/1988$ Tuck $5,627,675$ A $5/1997$ Dav $4,797,942$ A $1/1989$ Burt $5,631,778$ A $5/1997$ Dav $4,807,158$ A $2/1989$ Blanton et al. $5,633,924$ A $5/1997$ Kai $4,835,532$ A $5/1989$ Fant $5,649,032$ A $7/1997$ Bur $4,858,002$ A $8/1989$ Zobel $5,682,511$ A $10/1997$ Spot	aimark et al. Iaurinus et al.
4,751,660 A $6/1988$ Hedley $5,601,535$ A $2/1997$ Nal $4,751,660$ A $6/1988$ Kishi et al. $5,606,365$ A $2/1997$ Ma $4,754,269$ A $6/1988$ Kishi et al. $5,610,391$ A $3/1997$ Rin $4,761,641$ A $8/1988$ Schreiber $5,612,533$ A $3/1997$ Jud $4,772,942$ A $9/1988$ Tuck $5,627,675$ A $5/1997$ Dav $4,797,942$ A $1/1989$ Burt $5,631,778$ A $5/1997$ Pov $4,807,158$ A $2/1989$ Blanton et al. $5,633,924$ A $5/1997$ Kai $4,835,532$ A $5/1989$ Fant $5,649,032$ A $7/1997$ Bur $4,858,002$ A $8/1989$ Zobel $5,682,511$ A $10/1997$ Spc	aurinus et al.
4,754,269 A $6/1988$ Kishi et al. $5,600,303$ A $2/1997$ Rin $4,761,641$ A $8/1988$ Schreiber $5,610,391$ A $3/1997$ Rin $4,772,942$ A $9/1988$ Tuck $5,612,533$ A $3/1997$ Jud $4,797,942$ A $1/1989$ Burt $5,627,675$ A $5/1997$ Dav $4,807,158$ A $2/1989$ Blanton et al. $5,631,778$ A $5/1997$ Fox $4,835,532$ A $5/1989$ Fant $5,649,032$ A $7/1997$ Bur $4,858,002$ A $8/1989$ Zobel $5,682,511$ A $10/1997$ Spc	
4,761,641 A $8/1988$ Schreiber $5,610,591$ A $5/1997$ Kin $4,772,942$ A $9/1988$ Tuck $5,612,533$ A $3/1997$ Jud $4,797,942$ A $1/1989$ Burt $5,627,675$ A $5/1997$ Dav $4,807,158$ A $2/1989$ Blanton et al. $5,631,778$ A $5/1997$ Kai $4,835,532$ A $5/1989$ Fant $5,633,924$ A $5/1997$ Kai $4,858,002$ A $8/1989$ Zobel $5,649,032$ A $7/1997$ Bur $4,858,149$ A $8/1989$ Quarendon $5,682,511$ A $10/1997$ Spc	nolien
4,772,942 A $9/1988$ Tuck $5,612,535$ A $5/1997$ Jude $4,797,942$ A $1/1989$ Burt $5,627,675$ A $5/1997$ Dav $4,807,158$ A $2/1989$ Blanton et al. $5,631,778$ A $5/1997$ Pov $4,835,532$ A $5/1989$ Fant $5,633,924$ A $5/1997$ Kai $4,858,002$ A $8/1989$ Zobel $5,649,032$ A $7/1997$ Bur $4,858,149$ A $8/1989$ Quarendon $5,682,511$ A $10/1997$ Spc	
4,797,942 A $1/1989$ Burt $5,627,675$ A $5/1997$ Dave $4,807,158$ A $2/1989$ Blanton et al. $5,631,778$ A $5/1997$ Pove $4,835,532$ A $5/1989$ Fant $5,633,924$ A $5/1997$ Kait $4,858,002$ A $8/1989$ Zobel $5,649,032$ A $7/1997$ Bure $4,858,149$ A $8/1989$ Quarendon $5,682,511$ A $10/1997$ Spece	
4,807,158 A $2/1989$ Blanton et al. $5,051,778$ A $5/1997$ For $4,835,532$ A $5/1989$ Fant $5,633,924$ A $5/1997$ Kai $4,858,002$ A $8/1989$ Zobel $5,649,032$ A $7/1997$ Bur $4,858,149$ A $8/1989$ Quarendon $5,682,511$ A $10/1997$ Spon	
4,835,532 A 5/1989 Fant 5,635,924 A 5/1997 Kal 4,835,532 A 5/1989 Fant 5,649,032 A 7/1997 But 4,858,002 A 8/1989 Zobel 5,682,511 A 10/1997 Spc 4,858,149 A 8/1989 Quarendon 5,682,511 A 10/1997 Spc	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
4 858 149 A 8/1989 Quarendon 5,082,511 A 10/1997 Spo	
4.020.147 A $0/1707$ $0/1707$ $0/1709$	osato et al.
56X4Y47A 11/1447 (19)	xaal
5.686.057 A 11/1007 Rol	aker
4,000,002 A $9/1909$ Similar et al. $5714,007$ A $2/1008$ Am	
4,099,293 A $2/1990$ Dawson et al. $5,720,471$ A $2/1009$ Tai	
-7,01,140 M $2/1000$ Lang et al.	
5,75,001 II $5,1550$ Huguiusu $5,750$ $5,1500$ $1,1000$	
	•
4,918,473 A 4/1990 Blackshear 5,761,416 A 6/1998 Ma	
4,924,094 A = 5/1990 Moore 5,764,276 A = 6/1998 Ma	
	ullichsen et al.
4,943,851 A 7/1990 Lang et al. 5,841,589 A 11/1998 Day	
4,945,367 A 7/1990 Blackshear 5,844,520 A 12/1998 Gu	uppy et al.
4,965,844 A = 10/1990 Oka et al. 5,850,352 A = 12/1998 Mo	oezzi et al.
D312,263 S 11/1990 Charles 5,854,713 A 12/1998 Ku	uroda et al.
4,974,072 A 11/1990 Hasegawa 5,877,801 A 3/1999 Ma	artin et al.
4,985,762 A 1/1991 Smith RE36,207 E 5/1999 Zin	mmermann et a
4,991,020 A 2/1991 Zwirn 5,903 319 A 5/1999 Bus	
5,005,083 A 4/1991 Grage et al. $5,005,083$ A $4/1991$ Grage et al. $5,005,083$ A $7/1990$ Gla	lassman et al.
5,020,114 A $5/1991$ Fujioka et al. $5,000,041$ A $11/1000$ Jac	
5,021,015 A $0/1991$ Contailes	
5,025,725 A $0/1991$ MCCulchen $6.024,716$ A $2/2000$ Wh	CE ALL AT AL
3,030,223 II $0,1771$ Indesimina	cCall et al.
5,040,055 A 8/1991 Smith 6,043,837 A 3/2000 Dri	hiting et al.
5,048,102 A $9/1991$ Tararine et al.	
	hiting et al. riscoll et al.
5,051,830 A = 9/1991 Von Hoessle	hiting et al.
5,051,830 A $9/1991$ von Hoessie	hiting et al. riscoll et al.
5,051,830 A $9/1991$ von Hoessie 5,067,019 A $11/1991$ Juday et al. EP $0.816.891$ A1 1	Thiting et al. riscoll et al.
5,051,830A $9/1991$ Von Hoessie5,067,019A $11/1991$ Juday et al.EP0.816.891A115,068,735A $11/1991$ Tuchiya et al.EP0.816.891A11	Thiting et al. riscoll et al. DOCUMEN 1/1998
5,051,830 A $9/1991$ Von Hoessle $5,067,019$ A $11/1991$ Juday et al.EP $0.816.891$ A11 $5,068,735$ A $11/1991$ Tuchiya et al.EP 0.816891 A11 $5,077,609$ A $12/1991$ ManelpheFR 1234341 5	Thiting et al. riscoll et al. DOCUMEN 1/1998 1/1998
5,051,830 A $9/1991$ Von Hoessle $5,067,019$ A $11/1991$ Juday et al.EP $0.816.891$ A11 $5,068,735$ A $11/1991$ Tuchiya et al.EP $0.816.891$ A11 $5,077,609$ A $12/1991$ ManelpheFR 1234341 5 $5,083,389$ A $1/1992$ AlperinFR 1234341 10	Thiting et al. riscoll et al. DOCUMEN 1/1998 1/1998 5/1960
5,051,830A $9/1991$ Von Hoessie5,067,019A $11/1991$ Juday et al.EP0 816 891A115,068,735A $11/1991$ Tuchiya et al.EP0816891A115,077,609A $12/1991$ ManelpheFR 1234341 55,083,389A $1/1992$ AlperinFR 1234341 105,097,325A $3/1992$ DillGB $2 221 118$ A1	Thiting et al. riscoll et al. DOCUMEN 1/1998 5/1960 0/1960
5,051,850 A $9/1991$ Von Hoessie $5,067,019$ A $11/1991$ Juday et al.EP $0.816.891$ A11 $5,068,735$ A $11/1991$ Tuchiya et al.EP $0.816.891$ A11 $5,077,609$ A $12/1991$ ManelpheFR 1234341 5 $5,083,389$ A $1/1992$ AlperinFR 1234341 10 $5,097,325$ A $3/1992$ DillGB 2.221118 A1 $5,115,266$ A $5/1992$ TrojeGB 2.289820 11	Thiting et al. riscoll et al. DOCUMEN 1/1998 5/1960 0/1960 1/1990
5,051,830A9/1991Von Hoessie5,067,019A $11/1991$ Juday et al.EP0.816.891A115,068,735A $11/1991$ Tuchiya et al.EP0.816.891A115,077,609A $12/1991$ ManelpheFR 1234341 55,083,389A $1/1992$ AlperinFR 1234341 105,097,325A $3/1992$ DillGB 2.221 118A5,115,266A $5/1992$ TrojeGB 2.289 820115,130,794A $7/1992$ RitcheyGB 2289820 11	Thiting et al. riscoll et al. DOCUMEN 1/1998 1/1998 5/1960 1/1990 1/1995 1/1995
5,051,830 A $9/1991$ Von Hoessie $5,067,019$ A $11/1991$ Juday et al.EP $0.816.891$ A11 $5,068,735$ A $11/1991$ Tuchiya et al.EP $0.816.891$ A11 $5,077,609$ A $12/1991$ ManelpheFR 1234341 5 $5,083,389$ A $1/1992$ AlperinFR 1234341 10 $5,097,325$ A $3/1992$ DillGB 2.221118 A1 $5,115,266$ A $5/1992$ TrojeGB $2.289.820$ 11 $5,130,794$ A $7/1992$ RitcheyGB 2289820 11 $5,142,354$ A $8/1992$ Suzuki et al.JP $02-127877$ 11	Thiting et al. riscoll et al. DOCUMEN 1/1998 1/1998 5/1960 0/1960 1/1995 1/1995 1/1995 1/1988
5,051,830A $9/1991$ Von Hoessie5,067,019A $11/1991$ Juday et al.EP0 816 891 A115,068,735A $11/1991$ Tuchiya et al.EP0 816891 A115,077,609A $12/1991$ ManelpheFR 1234341 55,083,389A $1/1992$ AlperinFR 1234341 105,097,325A $3/1992$ DillGB 2 221 118 A5,115,266A $5/1992$ TrojeGB 2 289 820 115,130,794A $7/1992$ RitcheyGB 2289820 115,142,354A $8/1992$ Suzuki et al.JP $02-127877$ 115,153,716A $10/1992$ SmithJP $07-151965$ 6	Thiting et al. riscoll et al. DOCUMEN 1/1998 1/1998 5/1960 0/1960 1/1995 1/1995 1/1995 1/1988 6/1995
$5,051,830$ A $9/1991$ Von Hoessie $5,067,019$ A $11/1991$ Juday et al.EP $0\ 816\ 891\ A1$ 1 $5,068,735$ A $11/1991$ Tuchiya et al.EP $0\ 816\ 891\ A1$ 1 $5,077,609$ A $12/1991$ ManelpheFR 1234341 5 $5,083,389$ A $1/1992$ AlperinFR 1234341 10 $5,097,325$ A $3/1992$ DillGB $2\ 221\ 118\ A$ 1 $5,115,266$ A $5/1992$ TrojeGB $2\ 289\ 820$ 11 $5,130,794\ A$ $7/1992$ RitcheyGB $2\ 289\ 820$ 11 $5,142,354\ A$ $8/1992$ Suzuki et al.JP $02\ -127\ 877$ 11 $5,153,716\ A$ $10/1992$ SmithJP $07\ -151\ 965$ 6 $5,157,491\ A$ $10/1992$ KassatlyJP $09\ -133\ 877$ 5	Thiting et al. riscoll et al. DOCUMEN 1/1998 1/1998 5/1960 0/1960 1/1995 1/1995 1/1995 1/1988 6/1995 5/1997
$5,051,830$ A $9/1991$ Von Hoessie $5,067,019$ A $11/1991$ Juday et al.EP $0\ 816\ 891$ A11 $5,068,735$ A $11/1991$ Tuchiya et al.EP $0\ 816\ 891$ A11 $5,077,609$ A $12/1991$ ManelpheFR 1234341 5 $5,083,389$ A $1/1992$ AlperinFR 1234341 10 $5,097,325$ A $3/1992$ DillGB $2\ 221\ 118$ A1 $5,152,66$ A $5/1992$ TrojeGB $2\ 289\ 820$ 11 $5,130,794$ A $7/1992$ RitcheyGB $2\ 289\ 820$ 11 $5,142,354$ A $8/1992$ Suzuki et al.JP $02-127\ 877$ 11 $5,153,716$ A $10/1992$ SmithJP $09-133\ 877$ 5 $5,166,878$ A $11/1992$ PoelstraJP $2-127\ 877$ 11	Thiting et al. riscoll et al. DOCUMEN 1/1998 1/1998 5/1960 1/1990 1/1995 1/1995 1/1995 5/1997 5/1997 1/1998
5,051,830A9/1991Von Hoessie5,067,019A $11/1991$ Juday et al.EP0.816.891A115,068,735A $11/1991$ Tuchiya et al.EP0.816.891A115,077,609A $12/1991$ ManelpheFR 1234341 105,083,389A $1/1992$ AlperinFR 1234341 105,097,325A $3/1992$ DillGB 2.221118 A15,115,266 $5/1992$ TrojeGB $2.289.820$ 115,130,794A $7/1992$ RitcheyGB 2289820 115,142,354A $8/1992$ Suzuki et al.JP $02-127877$ 115,153,716A $10/1992$ SmithJP $09-133877$ 55,166,878A $11/1992$ PoelstraJP $2-127877$ 115,173,948A $12/1992$ Blackham et al.WOWO-94/013006	Thiting et al. riscoll et al. DOCUMEN 1/1998 1/1998 5/1960 0/1960 1/1995 1/1995 1/1995 1/1995 5/1997 1/1998 6/1994
5,051,830A9/1991Von Hoessie5,067,019A11/1991Juday et al.EP0.816.891A115,068,735A11/1991Tuchiya et al.EP0.816.891A115,077,609A12/1991ManelpheFR123434155,083,389A1/1992AlperinFR1234341105,097,325A3/1992DillGB2.221118A15,152,66A5/1992TrojeGB2.289820115,130,794A7/1992RitcheyGB2.289820115,142,354A8/1992Suzuki et al.JP02-127877115,153,716A10/1992SmithJP09-13387755,166,878A11/1992PoelstraJP2-127877115,173,948A12/1992Blackham et al.WOWO-94/0130065,175,808A12/1992SayreWOWO 94/131006	Thiting et al. riscoll et al. DOCUMEN 1/1998 1/1998 5/1960 0/1960 1/1995 1/1995 1/1995 5/1995 5/1997 1/1998 6/1994 6/1994
5,051,830A9/1991Von Hoessie5,067,019A $11/1991$ Juday et al.EP0.816.891A115,068,735A $11/1991$ Tuchiya et al.EP0.816.891A115,077,609A $12/1991$ ManelpheFR 1234341 55,083,389A $1/1992$ AlperinFR 1234341 105,097,325A $3/1992$ DillGB 2.221118 A15,115,266A $5/1992$ TrojeGB $2.289.820$ 115,130,794A $7/1992$ RitcheyGB 2289820 115,142,354A $8/1992$ Suzuki et al.JP $02-127877$ 115,153,716A $10/1992$ SmithJP $09-133877$ 55,166,878A $11/1992$ PoelstraJP $2-127877$ 115,173,948A $12/1992$ Blackham et al.WOWO-94/0130065,185,667A $2/1993$ ZimmermannWOWO-94/174938	Thiting et al. riscoll et al. DOCUMEN 1/1998 1/1998 5/1960 1/1990 1/1995 1/1995 1/1995 5/1997 1/1998 6/1994 6/1994 8/1994
5,051,350A $9/1991$ Von Hoessie $5,067,019$ A $11/1991$ Juday et al.EP0 816 891A11 $5,068,735$ A $11/1991$ Tuchiya et al.EP0 816 891A11 $5,077,609$ A $12/1991$ ManelpheFR 1234341 5 $5,083,389$ A $1/1992$ AlperinFR 1234341 10 $5,097,325$ A $3/1992$ DillGB $2 221118$ A1 $5,115,266$ A $5/1992$ TrojeGB $2 289 820$ 11 $5,130,794$ A $7/1992$ RitcheyGB 2289820 11 $5,142,354$ A $8/1992$ Suzuki et al.JP $02-127877$ 11 $5,153,716$ A $10/1992$ SmithJP $09-133877$ 5 $5,166,878$ A $11/1992$ PoelstraJP $2-127877$ 11 $5,175,808$ A $12/1992$ Blackham et al.WOWOWO-94/013006 $5,185,667$ A $2/1993$ ZimmermannWOWOWO-94/174938 $5,187,571$ A $2/1993$ Braun et al.WOWOWO 94/17493A	Thiting et al. riscoll et al. DOCUMEN 1/1998 1/1998 5/1960 0/1960 1/1995 1/1995 1/1995 5/1995 5/1997 1/1998 6/1994 6/1994

2,000,227	± ±		
5,714,997	Α	2/1998	Anderson
5,729,471	Α	3/1998	Jain et al.
5,748,194	Α	5/1998	Chen
5,760,826	Α	6/1998	Nayar
5,761,416	Α	6/1998	Mandal et al.
5,764,276	Α	6/1998	Martin et al.
5,796,426	Α	8/1998	Gullichsen et al.
5,841,589	Α	11/1998	Davis et al.
5,844,520	Α	12/1998	Guppy et al.
5,850,352	Α	12/1998	Moezzi et al.
5,854,713	Α	12/1998	Kuroda et al.
5,877,801	Α	3/1999	Martin et al.
RE36,207	Е	5/1999	Zimmermann et al.
5,903,319	Α	5/1999	Busko et al.
5,920,337	Α	7/1999	Glassman et al.
5,990,941	Α	11/1999	Jackson et al.
6,002,430	Α	12/1999	McCall et al.
6,034,716	Α	3/2000	Whiting et al.
6,043,837	Α	3/2000	Driscoll et al.

ENTS

Page 3

WO	WO 97/31482	8/1997
WO	WO-01/06449	1/2001
WO	WO 01/06449 A1	1/2001

OTHER PUBLICATIONS

Carlbom, Ingrid et al. "Planner Geometric Projections and Viewing Transformations". Computing Surveys. vol. 10. No. 04. Dec. 1978. pp. 465-502.

Castleman, K., "Digital Image Processing". Prentice Hall. 1979. pp. 110-135, 383-400,408.

Castleman, K., "Digital Image Processing". Prentice Hall. 1996. pp. 125-127, 140-141.

Chang, Yuh-Lin et al., "Calibrating a Mobile Camera's Parameters". Pattern Recognition. vol. 26. No. 01. Dated: 1983. pp. 75-88. Charles et al., "How to Build and Use an All-Sky Camera." Astronomy. Apr. 1987. pp. 64-70. Charles Jeffery, R., "All-Sky Reflector with "Invisible" Camera Support". Images from 1988 RTMC Proceedings. pp. 79-80. Chen, Shenchang Eric. Quick Time VR—An Image-Based Approach to Virtual Environment Navigation. pp. 39. Dated: 1995. Cnoe M. And Kuno Y., "Digital Processing CF Images Taken by Fish-Eye Lens". 1982. IEEE. pp. 105-108. Defendant IPI's Composite Exhibit List, Civil Action of *interactive Pictures Corporation, F/K/A Omniview, Inc. v. Infinite Pictures, Inc.* and Bill Tillman, Case No. 3-96-849. Filed: Jan. 5, 1998, in U.S.D.C., Eastern District of Tennessee. pp. 20. Defendants IPI's Notice of Reliance of Prior Art and Witnesses, Civil Action of Interactive Pictures Corporation, A/K/A Omniview, Inc. v. Infinite Pictures, Inc. and Bill Tillman, Case No. 3-96-849; 05 pages. Filed: Dec. 8, 1997, in U.S.D.C., Eastern District of Tennessee. Deutsch, Claudia H., "One Camera That Offers Many Views," The New York Times, Feb. 3, 1997, 2 pages, Retrieved from: http://www. nytimes.com/1997/02/03/business/one-camera-that-offers-manyviews.html. Dixon, D., Golin, S., and Hasfield, I., "DVI Video/Graphics". Computer Graphics World reprinted from the Jul. 1987 edition of Computer Graphics World. pp. 4. Fant, K., "A Nonaliasing, Real-Time Spatial Formation Technique". IEEE. 1986. pp. 71-80. Fisher, Timothy E., A Programmable Video Image Remapper. SPIE> vol. 938. pp. 122-128. Dated: 1988. Fu, K.S. et al., "Low-Level Vision". Robotics: Control, Sensing, Vision, and Intelligence. 1987.McGraw Hill Inc., pp. 313-315. Greene, N., "Environment Mapping and Other Applications of the World Projections." Computer Graphics and Applications. Nov. 1986. IEEE Computer Society. vol. 06. No. 11. pp. 21-29. Greene, N., and Heckbert, P., "Creating Raster Omnimax Images From Multiple Perspective Views Using The Elliptical Weighted Average Filter". IEEE. 1986. pp. 21-27. Greene, William B., "Qualitative Image Processing Techniques". Digital Image Processing, A Systems Approach. 2.sup.nd Edition. 1989. Van Nostrand Reinhold. pp. 92-112. Hamit, F., "Near- Fisheye CCD Camera Broadens View for Imaging". Advanced Imaging. Mar. 1993. pp. 50-52. Hechbert P., "The PMAT and Poly User's Manual". Computer Graphics Lab. N.Y.I.T., Feb. 18, 1983. pp. 1-29. Heckbert, P., "Survey of Texture Mapping" IEEE CG&A, Nov. 1986, pp. 56-67. Heckbert, P., Fundamentals of Textured Mapping and Image Warping. Master Thesis. pp. 86. Dated: Jun. 17, 1989. International Broadcasting Convention Venue RAI Congress and Exhibition Centre, Amsterdam, The Netherlands. Jul. 3-7, 1992. pp. 6, Including the title page.

Lu Carnevale, Mary. Video Camera Puts The Viewer in Control. Wall Street Journal. Dated: Nov. 25, 1992. Marbach, William D. (edited by): Developments To Watch. Business Week. p. 83. Dated: Sep. 26, 1988. Miyamoto, K., "Fish Eye Lens". JOSA. vol. 54. pp. 1060-1061. Dated: Aug. 1964. Nomura, Yoshihiko, et al., "A Simple Calibration Algorithm for High-Distortion Lens Camera". IEEE. Transaction on Pattern Analysis and Intelligence Machine. vol. 14. No. 11. Nov. 1992. pp. 1095-1099. Non-Final Office Action received for U.S. Appl. No. 10/419,283 dated Sep. 19, 2006.

Notice of Allowance received for U.S. Appl. No. 10/419,283 dated Sep. 26, 2008.

Office Action received for Japanese Appln. No. 2000-341825 dated Aug. 3, 2010. (English Translation attached).

Plaintiff's Rule 26(a)(3) Disclosures, Civil Action of Interactive Pictures Corporation, F/K/A Omniview, Inc. v. Infinite Pictures, Inc. and Bill Tillman, Case No. 3-96-849. Filed: Dec. 8, 1997 in U.S.D.C. Eastern District of Tennessee. pp. 31.

Plaintiff's Supplemental Trial Exhibit List, Civil Action of *Interac*tive Pictures Corporation, F/K/A Omniview, Inc. v. Infinite Pictures, Inc. and Bill Tillman, Case No. 3-96-849; 41 pages. Filed: Jan. 2, 1998, in U.S.D.C., Eastern District of Tennessee.

Popular Science. Electronic Panning Camera System. pp. 36-37. Dated: Sep. 1992.

Rebiai, M., Mansouri, S., Pinson, F., and Tichit, B., "Image Distortion From Zoom Lenses: Modeling and Digital Correction". International Broadcasting Convention. IEEE. Dated: Jul. 1992.

Ripley G. David, "DVI—A Digital Multimedia Technology". Communication of the ACM. Jul. 1989. vol. 32. No. 07. pp. 811-820. Roger W. Sinnott, "Scientific Library Gleaning for ATMs". Sky & Telescope. Aug. 1986. pp. 186.

Shah, S., A Simple Calibration Procedure for Fish-Eye (High Distortion) Lens. IEEE. 1994. pp. 3422-3427.

Shah, Shisir et al., "Depth Estimation using Fish-Eye Lenses". IEEE. Department of Electrical and Computer Engineering. University of Texas. 1994. pp. 740-744.

Snyder, J. P. "Map Projections—A Working Manual," U. S. Geological Survey Professional Paper 1395. Washington, DC: U. S. Government Printing Office, pp. 164-168, 1987.

Johnson, Colin R., "Imaging System Sees All". Electronic Engineering Times. Dec. 25, 1996. pp. 1&98. Laikin, Milton. "Wide Angle Lens System". 1980. International Design Conference (OSA). SPIE. vol. 237. 1980. pp. 530-532, 815-816. Lenz, Reimer K. et al., "Techniques for Calibration of the Scale Factor and Image Center for High Accuracy 3-D Machine Vision Metrology". IEEE. Transaction on Pattern Analysis and Machine Intelligence. vol. 05. No. 05. Sep. 1988. pp. 713-720. Lippman, Andrew. Movie-Map: An Application Of The Optical Videodisc To Computer Graphics. pp. 43. Dated: 1980.

Spice, B., "Panospheric Camera Expands Horizon," Pittsburgh Post—Gazette, Jun. 2, 1997, 3 pages.

Tsai, Roger Y., "A Versatile Camera Calibration Technique for High Accuracy 3-D Machine Vision Using Off-the-Shelf TV Cameras and Lenses". IEEE. Journal of Robotics and Automation. vol. RA-3. No. 04. Aug. 1987. pp. 323-344.

Tulloch, Martha. "New Video Camera . . . " Photonics Spectra. pp. 18-20. Dated: Oct. 1992.

Upstill, Steve. "Building Stronger Images". UNIX Review. Oct. 1988. vol. 06. No. 10. pp. 63-73.

Verity, John W. (edited by): Information Processing. Business Week. p. 134E. Dated: Jul. 13, 1992.

Weng, Juyang. "Camera Calibration With Distortion Models and Accuracy". IEEE. Transactions on Pattern Analysis and Machine Intelligence. vol. 14. No. 10. Oct. 1992. pp. 965-980.

Wolberg, George. Digital Image Warping (Introduction). 1990. IEEE Computer Society Press. pp. 2.

Yelick, Steven. Anamorphic Image Processing. pp. 1-37, Including Acknowledgement Page. Dated: 1980.

Supplemental Information Disclosure Statement in re: the Application of Steven D. Zimmerman, et al. U.S. Appl. No. 08/662,410; 08 Pages including PTO 1449 Form citing 19 references U.S. Appl. No. 08/662,410, filed Jul. 12, 1996.

Plaintiff's Rule 26(a)(3) Disclosures, Civil Action of *Interactive Pic*tures Corporation, F/K/A Omniview, Inc. v. Infinite Pictures, Inc. and Bill Tillman, Case No. 3-96-849; 31 Pages. Filed: Dec. 8, 1997, in U.S.D.C., Eastern District of Tennessee. Greene, William B., "Qualitative Image Processing Techniques". Digital Image Processing, A Systems Approach. 2nd Edition. 1989. Van Nostrand Reinhold. pp. 91-112. Defendant's IPI's Composite Exhibit List, Civil Action of Interactive *Pictures Corporation, F/K/A Omniview, Inc. v. Infinite Pictures, Inc.* and Bill Tillman. Case No. 3-96-849. Filed: Jan. 5, 1998 in U.S.D.C., Eastern District of Tennessee. pp. 20.

U.S. Patent Mar. 19, 2013 Sheet 1 of 20 US RE44,087 E

FIG. 1

U.S. Patent Mar. 19, 2013 Sheet 2 of 20 US RE44,087 E

FIG. 2A

U.S. Patent Mar. 19, 2013 Sheet 3 of 20 **US RE44,087 E**

FIG.2B

U.S. Patent Mar. 19, 2013 Sheet 4 of 20 US RE44,087 E

FIG. 2C

U.S. Patent Mar. 19, 2013 Sheet 5 of 20 US RE44,087 E

U.S. Patent Mar. 19, 2013 Sheet 6 of 20 US RE44,087 E

FIG. 4A

FIG. 4B

U.S. Patent Mar. 19, 2013 Sheet 7 of 20 US RE44,087 E

U.S. Patent Mar. 19, 2013 Sheet 8 of 20 US RE44,087 E

FIG. 6A

Image Plane A Image Plane B

FIG. 6B

U.S. Patent Mar. 19, 2013 Sheet 9 of 20 **US RE44,087 E**

FIG. 7

U.S. Patent US RE44,087 E Mar. 19, 2013 **Sheet 10 of 20**

٠

U.S. Patent Mar. 19, 2013 Sheet 11 of 20 US RE44,087 E

U.S. Patent Mar. 19, 2013 Sheet 12 of 20 US RE44,087 E

U.S. Patent Mar. 19, 2013 Sheet 13 of 20 US RE44,087 E

FIG. 9B

U.S. Patent Mar. 19, 2013 Sheet 14 of 20 US RE44,087 E

FIG. 10

U.S. Patent Mar. 19, 2013 Sheet 15 of 20 US RE44,087 E

U.S. Patent Mar. 19, 2013 Sheet 16 of 20 US RE44,087 E

U.S. Patent Mar. 19, 2013 Sheet 17 of 20 US RE44,087 E

ſ <u> </u>		

U.S. Patent **US RE44,087 E** Mar. 19, 2013 **Sheet 18 of 20**

U.S. Patent Mar. 19, 2013 Sheet 19 of 20 US RE44,087 E

Fig. 13B

U.S. Patent Mar. 19, 2013 Sheet 20 of 20 US RE44,087 E

1

PRESENTING PANORAMIC IMAGES WITH **GEOMETRIC TRANSFORMATION**

Matter enclosed in heavy brackets [] appears in the 5 original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.

CLAIM OF PRIORITY

This is a divisional of co-pending application Ser. No. 09/521,652 filed Mar. 8, 2000 which is a divisional of co-

2

Currently, Apple Computer recommends and provides software tools to implement a labor-intensive process for capturing these panoramic datasets. In the Apple Quick-Time® VR (QTVR) process a standard 35 mm camera is mounted vertically on a leveled tripod and equipped with an extreme wide angle lens (e.g. 15-18 mm focal length). A sequence of twelve or more overlapping still photographs is taken at roughly 30 degree intervals as the camera is turned on the tripod around a vertical axis. These photographs are developed, digitized and then fed into a semi-automated software program called a "stitcher" that merges the overlapping still photographs into one long panoramic strip. The labor intensive process suffers from a number of short-

pending application Ser. No. 08/872,525, filed Jun. 11, 1997 which claims the benefit of U.S. Provisional Application No. 15 60/020,292, filed Jun. 24, 1996.] This application is a broadening Reissue application of U.S. patent application Ser. No. 10/419,283 filed Apr. 17, 2003 (now U.S. Pat. No. 7,486,324, granted Feb. 3, 2009), which is a Divisional of U.S. patent application Ser. No. 09/521,652, filed Mar. 8, 2000 (now U.S. 20 Pat. No. 6,593,969), which is a Divisional of U.S. patent application Ser. No. 08/872,525, filed Jun. 11, 1997 (now U.S. Pat. No. 6,459,451), which claims the benefit of U.S. Provisional Application No. 60/020,292, filed Jun. 24, 1996.

FIELD OF THE INVENTION

The present invention relates to the field of film and video photography. In particular the present invention discloses a camera device that captures a 360 degree panoramic image 30 and display systems for displaying the panoramic image captured by the camera device.

BACKGROUND OF THE INVENTION

comings. First, the process is time-consuming since many steps require human intervention and guidance. Furthermore, the recommended process is prone to temporal artifacts since it captures each individual photo at a different time. This means that the "stitched" pan image is not instantaneous but rather is made up of individual photos taken at different times. The time change during the series of photographs makes it nearly impossible to create panoramic images in changing scenes containing shorelines, urban crowds and traffic, windblown trees, etc. Finally, it is difficult to see how the image capture method recommended by Apple QuickTime® VR ²⁵ (QTVR) can be extended from a single still panoramic image into a continuous frame, or motion picture panoramic image capture.

SUMMARY OF THE INVENTION

The present invention discloses a camera device that instantaneously captures a 360 degree panoramic image. Furthermore, the present invention discloses various different systems for displaying the panoramic images.

In the camera device, virtually all of the light that con-

Most cameras only provide a small viewing angle. Thus, a typical conventional camera only captures an image in the direction that the camera is aimed. Limited view cameras force viewers to look only at what the camera operator chooses to focus on. Some cameras use a specialized wide 40 angle lens to capture a wider panoramic image, but such panoramic cameras still have a limited field of view.

It would be desirable to have a camera system that would capture the light from all directions such that a full 360 degree panoramic image can be created. A full 360 degree panoramic 45 image would allow the viewer to choose what she would like to look at. Furthermore, a full 360 degree panoramic image allows multiple viewers to simultaneously view the world from the same point, with each being able to independently choose their viewing direction and field of view.

At the present time, there are some known methods of creating 360 degree panoramic images. However, most current methods are subject to limitations due to their physical movements and mechanical complexity. For example, some of the current methods operate by combining a series of 55 individual photographs taken in different directions into a single panoramic image. Some panoramic cameras spin a lens and film to capture a panoramic view in a single sweeping motion. There is a market for panoramic photos to be used in 60 multimedia applications, typically provided on CD-ROMs. In the last few years, some software manufacturers have introduced standards for digital storage and computer playback of panoramic datasets. One example is QuickTime® VR, introduced by Apple® Computer, Inc. Apple® Computer's Quick- 65 Time® VR standard governs the file storage format and the playback software needed to view their datasets.

verges on a point in space is captured. Specifically, in the camera of the present invention, light striking this point in space is captured if it comes from any direction, 360 degrees around the point and from angles 50 degrees or more above and below the horizon as illustrated in FIG. 1.

Other objects, features and advantages of present invention will be apparent from the company drawings and from the detailed description that follows below.

BRIEF DESCRIPTION OF THE DRAWINGS

The objects, features and advantages of the present invention will be apparent to one skilled in the art, in view of the following detailed description in which:

FIG. 1 illustrates the panoramic surroundings that are cap-50 tured by the panoramic camera system of the present invention.

FIG. 2a illustrates a schematic diagram of the panoramic camera system of the present invention.

FIG. 2b illustrates a schematic diagram of the panoramic camera system of the present invention with a parabolic mirror.

FIG. 2c illustrates an annular image captured by the panoramic camera system of the FIG. 2b wherein the incident angle is linearly proportional to the radial distance of the annular image.

FIG. 3a illustrates an example of an annular image captured by the panoramic camera system of the present invention.

FIG. 3b illustrates a rectangular panoramic image after the captured annular image is transformed from polar coordinates to rectangular coordinates.

3

FIG. 4a illustrates photographic film used to capture the annular panoramic image.

FIG. 4b illustrates a Charged Coupled Device array used to capture the annular panoramic image.

FIG. **5** illustrates an alternate embodiment of the camera ⁵ system of the present invention wherein a beam splitter is used to allow the annular image to be captured on two image planes.

FIG. **6**a illustrates a first embodiment of two image planes used to capture different portions of a single annular panoramic image.

FIG. **6**b illustrates a second embodiment of two image planes used to capture different portions of a single annular panoramic image.

4

camera system can easily be implemented with other types of electronic image capture systems.

The Basic Panoramic Camera Design

The panoramic camera design of the present invention captures light from all directions within 50 to 60 degrees above and below the horizon simultaneously. FIG. 1 graphically illustrates the cylindrical panoramic view of which the panoramic camera system captures an image. To capture all the light of the panorama and generate a two dimensional representation that may easily be recorded, the present invention uses a carefully designed and engineered collection of mirrors and lenses. The basic design of the panoramic camera of the present invention is illustrated in FIG. 2a. Each element of the panoramic camera will be described individually. The Mirror Referring to FIG. 2a, the panoramic camera of the present invention collects light using a convex mirror 210 that is in the approximate shape of parabolic cone. In one embodiment of the present invention, the tip of the convex mirror 210 is pointed downward as illustrated in FIG. 2a. When the convex mirror 210 is viewed from below, the parabolic mirror 210 presents an annular image of the surrounding panorama as illustrated in FIG. 3a. However, the annular image is distorted and suffers from optical defects due to the shape of the convex mirror **210**. The distortion in the image is partly due to the fact that the 30 convex mirror **210** of the imaging system effectively converts the surrounding panorama to a polar coordinate system. By adjusting the shape of the convex mirror 210, the mapping of the elevation angle of incoming light to radial distance in the annular image, can be controlled.

FIG. 7 illustrates an embodiment of the panoramic camera wherein some of the optical elements are housed within the parabolic mirror.

FIG. **8**a illustrates a first embodiment of the panoramic camera that uses a solid transparent block to surround the ₂₀ parabolic mirror.

FIG. **8**b illustrates a second embodiment that uses a solid transparent block to surround the parabolic mirror which houses other optical elements.

FIG. 9a illustrates an embodiment that panoramic camera ² that supports the convex mirror with a central post that is out of the annular field of view.

FIG. 9b illustrates an embodiment that panoramic camera that divides the convex mirror in quarters and supports the mirror using posts between the four quarters.

FIG. **10** graphically illustrates how the annular image is sampled to product a rectangular panoramic image.

FIG. **11**a graphically illustrates how an image is stored in Apple® Computer's QuickTime® VR format.

³⁵ FIG. **11**b graphically illustrates how viewports are created from Apple® Computer's QuickTime® VR format.

In a preferred embodiment, the convex mirror 210 is a

FIG. 11c illustrates a flow chart that lists how the panoramic camera system can be used to create images in Apple® Computer's QuickTime® VR format.

FIG. **12** illustrates a graphical user interface for a client program used to view panoramic still images created by the panoramic camera system.

FIG. **13**a illustrates a graphical user interface for a client program used to view panoramic video created by the pan- ⁴⁵ oramic camera system.

FIG. **13**b illustrates a networked computer arrangement used to view panoramic video created by the panoramic camera system.

FIG. **14**a illustrates a side view of one embodiment of the panoramic camera system that includes microphones.

FIG. **14**b illustrates a side view of one embodiment of the panoramic camera system that includes microphones.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

parabolic mirror that creates an annular image wherein the radial distance from the center of the annular image is linearly proportional to the angle of incident light. A panoramic camera system with a parabolic mirror is illustrated in FIG. 2b.
40 Note that in the image plane of FIG. 2b, the distance from the center is linearly proportional to the angle of incident light. This concept is more clearly illustrated in FIG. 2c, wherein the concentric circles represent different angles of incident light.

⁴⁵ The Astigmatism Correction Lens

The convex mirror of the present invention introduces other image defects that require careful correction. One particular problem is astigmatism. Specifically, the light reflected downward from the convex mirror **210** of the present invention will not meet at a single focal point. To correct for this problem, an astigmatism correction lens **220** is added to correctly focus the light from the convex mirror **210**.

The astigmatism correction lens **220** comprises a group of 2 or more lenses whose group focal length is long but with individual elements of strong and opposite power. Thus, the astigmatism lens group may be made of the same optical material without introducing significant lateral color. Since the beam size associated with any object point in space to be imaged is quite small compared to the field of the beam, the strong elements tend to introduce deleterious amounts of spherical aberration or coma into the final image. The Objective Lens The next component is a standard camera objective lens **230**. The standard camera objective lens **230** forms an image using the astigmatism-corrected, reflected light from the convex mirror **210**. In the present embodiment, a standard off-the-shelf camera lens is used that is optimized for cost and

A method and apparatus for a camera device that instantaneously captures 360 degree panoramic images is disclosed. ⁶⁰ In the following description, for purposes of explanation, specific nomenclature is set forth to provide a thorough understanding of the present invention. However, it will be apparent to one skilled in the art that these specific details are not required in order to practice the present invention. For example, the present invention has been described with reference to Charge Coupled Devices. However, the panoramic

5

performance in the conventional photography market. The current embodiment relies upon a pre-defined focal length.

The focal length of the standard objective lens is selected based on two factors. The first factor is the maximum angular field of view present by the convex mirror and astigmatism correction lens group. This factor is determined by the largest angle away from the horizon of an object to be captured. The second factor is the maximum diameter of the circular image to be recorded. In an embodiment that uses 35 mm film, this value would not exceed 24 mm. In an embodiment that uses Charged Coupled Device arrays, the objective lens must keep the circular image within the bounds of the CCD array. For one preferred embodiment, the appropriate focal length is 22 mm. Since there are many objective lenses available with focal lengths in the 18 mm to 24 mm range, this focal length provides many off-the-shelf lens choices. To allow a standard off-the-shelf camera lens to be used, the present invention "false focuses" the image beyond the normal focal plane. This allows the next optical element (field 20flattening lens) to fit between the objective lens 230 and the image plane **250**. The Field Flattening Lens Another optical problem created by the parabolic mirror is a curved image field that is created by the curve of the para-25 bolic mirror. The curved image field problem is solved by adding yet another lens 240. This final lens is a "field flattening" lens, that flattens the field of optimal focus to a flat two dimensional image plane. The field flattening lens 240 must be kept as close to the image plane as practical to eliminate the 30 need for a focal plane shutter.

6

The CCD array **450** may be color (RGB) or black & white, depending on the intended application.

To generate an annular image of sufficient quality to be used in the Apple QuickTime® VR market, it has been determined that the image plane must be sampled with an array having at least 2K by 2K elements. To meet this requirement, one embodiment of the present invention uses a CCD array produced by Loral-Fairchild, Inc. However, the high resolution CCD array sold by Loral-Fairchild, Inc., adds a signifi-10 cant cost to the panoramic camera of the present invention. Furthermore, large CCD arrays such as the Loral-Fairchild array have difficulty handling the extreme differences in light intensity that are produced by the optical system of the present invention. Specifically, one area of the image may 15 have direct sunlight and other areas may receive comparatively little light. To reduce the production cost of the panoramic camera, alternate embodiments of the present invention use a set of lower resolution CCD arrays. Specifically, consumer grade CCD devices that are targeted at the consumer electronics market are used. Consumer electronics grade CCD arrays have the distinct advantages of lower cost, more highly-integrated support circuitry availability, high speed read-out, robustness to extreme lighting and other environmental conditions. No individual consumer grade CCD array meets the high resolution requirements needed by the present invention (at least 2K by 2K elements). Therefore, a method of obtaining a greater image resolution is required if consumer grade CCDs are used. One method of creating an acceptable image capture mechanism using consumer grade CCD arrays is to use multiple low resolution CCD chips to cover the image plane using a mosaic pattern. Referring to FIG. 5, the basic panoramic camera configuration described in the previous sections is illustrated except the last stage has an added beam-splitter 545 that directs a second image to a second field flattening lens 541 and a second image plane 551. The beam-splitter 545 may comprise a half-silvered mirror or a prism arrangement as is known in the art. The two image planes (image plane 551) and image plane 553) each capture a portion of the whole annular image. To construct a complete image, the camera optically composites the images from the two different image planes into a single image. FIGS. 6a and 6b each illustrate one possible embodiment of the dual image plane image capture system. FIG. 6a illustrates a mosaic pattern created with four consumer grade CCD devices. As illustrated in FIG. 6a, the two image planes capture the whole annular image while each image plane leaves room for the chip lead frames and support circuitry. FIG. **6**b illustrates an alternate embodiment that six consumer grade CCD devices. An additional advantage of this scheme is that the CCD array chips can potentially share some supporting circuitry since the signals each independent chip requires are often identical.

In one embodiment, the material SFL6 is used to create the field flattening lens 240. Due to its high index of refraction, SFL6 allows the field flattening lens **240** to be approximately 2 millimeters thick. If the field flattening lens 240 was created using more traditional materials, the field flattening lens 240 would be approximately 4.5 millimeters thick. The Image Capture System The final major component of the panoramic camera design is the image capture mechanism 250. The image cap- 40 ture mechanism 250 is placed at the image plane just beneath the field flattening lens 240. This mechanism captures the optimized two dimensional annular image of the surrounding panorama. An example of a captured panorama stored as a two dimensional annular representation is shown in FIG. 3a. 45 In one embodiment of the present invention, the image capture mechanism can be a frame of photographic film as illustrated in FIG. 4a. Using conventional photography techniques, several successive frames can be used to record series of images. The series of images may be several distinct still 50 images taken from different locations. Alternatively, the series of images may be a set of successive images recorded used to create a panoramic motion picture. The image that is recorded onto photographic film is then later converted into a digital image for digital image processing as will be described 55 in later sections of this document.

In the preferred embodiment of the present invention, a

A disadvantage of the mosaic technique is the image capture variation that will exist between the different CCD chips. The image variation can be compensated for by having overlapping CCD array coverage. The overlapping area is used to cross calibrate the image variation between adjacent CCD arrays. Folded Optics Configuration FIG. 7 illustrates an alternative embodiment of the panoramic camera system. In the embodiment of FIG. 7, the camera subassembly is housed within the parabolic mirror. Referring to FIG. 7, the convex mirror 710 is inverted and a hole is cut into the tip. A second mirror 715 is placed above the

high resolution digital image capture system is used to capture the annular image created by the optical elements. In one embodiment of the present invention, a Charged Coupled 60 Device (CCD) array **450** is placed in the image plane to capture the image as illustrated in FIG. **4**b. Control circuitry **460** coupled to the CCD array **450** captures the image directly into a digital format. The use of a digital image capture system allows an immediate read-out of the digitized raw annular 65 image. The digitized raw annular image can be stored into a storage device **470** such as flash memory or a hard disk drive.

10

7

convex mirror 710, directing the light from the surrounding panorama into the hole in the top of the convex mirror 710. The remainder of the optical path, including the astigmatism correction lens 720, the objective lens 730, the field flattening lens 740, and the image capture mechanism 750, are all 5 housed inside the inverted convex mirror 710. It is apparent from the diagram of FIG. 7 that the "folded optics" configuration protects the optical path and mechanical parts of the panoramic camera system.

Transparent Block Configuration

Another alternative embodiment is shown in FIG. 8a. In this alternative, the convex mirror is formed as the internal space of a curved block of transparent material such as glass or plastic. The mirror surface 810 is formed by the inner surface of a hole that is milled or cast in the top of the 15 transparent material 805. The shape of the outer surface approximates a sphere centered on the virtual focal point of the convex mirror 810. The outer surface of the transparent material is a polished surface that forms the outside skin of the camera. The bottom tip of the transparent block is optically 20 mated to the other optical parts of the camera system. The bottom tip may be polished flat or molded into a shape that contributes to the astigmatism lens group. The solid transparent block approach has a number of significant advantages. First, the mirrored inner surface of the 25 transparent block material can be well protected. This technique overcomes the disadvantages of front surface mirrors. Specifically, when front surface mirrors are exposed to the outside world they are susceptible to damage and degradation. In the above described embodiment, the mirrored sur- 30 face is fully protected since it is encased between a protective backing material and the transparent block material. Another advantage of the solid block approach is that the skin of the camera is incorporated into the optical system. Thus only one surface would need to be multicoated to prevent internal 35 reflections. The transparent block technique can also be implemented using the folded optics scheme described in the previous section. Specifically, FIG. 8b illustrates an inverted solid transparent block used to implement a panoramic camera 40 system. In this case, the camera components are contained within the mirror cavity. Note that the outside surface at the top of the block is no longer an exit path but is instead a mirrored surface that directs the image light down into an optical path inside the parabolic block. Different methods can be used to construct a transparent block panoramic camera system. One method would be to create the transparent block, then polish the transparent block, and finally add a mirrored surface where appropriate. An alternate method of constructing a transparent block pan- 50 oramic camera system would start with the convex mirror. Then, the convex mirror would be encapsulated within the transparent block. This method would be simpler to construct since a concave surface would not require polishing. Furthermore, the convex mirror would be protected by the transpar- 55 ent block.

8

parabolic mirror 910 and the central post 903. The center support scheme takes advantage of the fact that the center of the annular image is discarded since it contains only an image of the camera itself. Therefore, the center portion of the annular image can be used for support of the parabolic mirror **910**.

External Support Configuration

Another scheme for supporting the parabolic mirror above the optical elements below is to use several side supports. This can be accomplished by splitting the parabolic mirror into "pie-pieces" by cutting the parabolic mirror after fabrication. For example, the parabolic mirror can be quartered as illustrated in FIG. 9b. The four sections of parabolic mirror 1021 1022, 1023, and 1024 can be spread apart slightly, allowing for the introduction of supporting elements 1031, 1032, 1033, and **1034** that will not obstruct the fields of view. If the parabolic mirror is split into four sections, then the annular image will appear as four quadrants at the image plane. To correct for this, the gaps can be removed during the polar-to-rectangular coordinate conversion, thereby restoring the continuity of the panoramic image. The gaps between the mirror sections should be kept as small as possible, however, since the optical system is degraded by the loss of rotational symmetry.

Panoramic Image Presentation

As illustrated in FIG. 3a, the panoramic camera system of the present invention records a two dimensional annular representation of the surrounding panorama. However, the annular representation is not of much interest to most viewers. Therefore, to display the panoramic images captured by the panoramic camera of the present invention, several different display systems are disclosed.

Center Support Configuration Another alternative embodiment addresses the problem of how to align and support the optical elements of the panoramic camera illustrated in FIG. 2a. It is possible to use the 60 protective, transparent block technique as described in the previous section to provide structure, stability and alignment. However, the transparent block technique requires multicoating of the surfaces or else undesired internal reflections will be visible. FIG. 9a discloses an alternate embodiment 65 wherein a central post 903 is used to support the parabolic mirror 910. The remainder of the optical system is below the

Still Image Presentation as a Rectangular Panoramic Image The most common method of displaying a panoramic image is to display the image as a rectangle where the horizontal direction represents the view angle. An example of this type of panoramic image presentation is illustrated in FIG. 3b. Such rectangular panoramic images are commonly displayed in nature magazines. As stated in the background, the prior art method of creating such rectangular panoramic images was to 45 take several conventional photographs at different angles and then stitch those photographs together somehow.

With the panoramic camera system of the present invention, such rectangular panoramic images can easily be created. First, the panoramic camera system of the present invention is used to capture an annular image of the surrounding panorama. Then the annular image is digitized and loaded into a computer system. (The image will already be in digital form if a CCD version of the panoramic camera system was used to capture the image.)

A custom conversion program is then executed on the computer system. The custom conversion program scans around the annular image starting at an arbitrarily chosen sampling line 310. Points along the sampling line 310 are sampled and then their position changed using polar coordinate to rectangular coordinate conversion. FIG. 10 illustrates how two different points on the annular image are sampled and then placed into rectangular coordinates. As illustrated in FIG. 10, the orientation of the sampling pattern changes as the coordinate transform program rotates around the annular image. The resulting rectangular image is illustrated in FIG. **3**b.

9

While sampling the annular image, it is important to sample the image differently depending on where the annular image is being sampled. The following three rules must be observed:

- 1. The sampling shape is dynamically changing depending 5 on the viewing angle (both in the horizontal and vertical).
- 2. The sampling shape size is proportional to the radius (vertical viewing angle); and
- 3. The sampling shape orientation is different depending 10 on the horizontal viewing angle.

Since there is a greater resolution around the outer perimeter of the annular image, the corresponding rectangular image portion will have better image clarity. The outer perimeter of the annular image may be the top or the bottom of the 15 rectangular image depending on the optical path. (Compare FIG. 2a with FIG. 7). In FIG. 10, the lower portion of the rectangular image will have a better image clarity since it is from the outer perimeter of the annular image. One embodiment of the present invention takes advantage of this fact by 20 using the outer perimeter of the annular image for the ground since the ground in a panoramic scene is generally more detailed than the sky. Once the panoramic image has been converted from an annular image to a rectangular image on a computer system, 25 then the rectangular image can be presented to viewers in a number of different formats. For example, the rectangular image may be distributed electronically as a JPEG image and viewed with JPEG image viewers. Alternatively, the rectangular image can be printed out with a color printer. It should 30 be noted that since the rectangular image is in digital form, it can quickly be added to a publication being created with a Desktop Publishing Layout Program such QuarkXpress or Adobe's PageMaker.

10

dataset. The annular image produced by the camera system of the present invention stores the panoramic image information in a polar coordinate system. Conversely, Apple®'s Quick-Time® VR uses a cylindrical coordinate system as illustrated in FIG. 11a. Thus, the transformation program converts the annular image from its polar coordinate system into the QuickTime® VR cylindrical coordinate system. After transforming the image into the QuickTime® VR cylindrical coordinate system, then a file is created using the QuickTime®VR file format at step 1135.

Once the coordinate transform is complete, the transformed image can be viewed using Apple's QTVR player program as stated in step 1140.

IMAGE Presentation as a Virtual Reality Image

Still Image Presentation on a Computer Network

Since the present invention can store the annular image in digital form, a very useful method of distributing panoramic images is through a computer network. In particular, the hypertext transport protocol (http) of the World Wide Web (WWW) on the Internet can be used to distribute still annular images. The still annular images would be stored on a World Wide Web server. To access the still annular images, any user coupled to the Internet would use a World Wide Web browser program.

One method of transporting the images would be to define a new panoramic image annular data format. The images could then be downloaded as stored in the panoramic image annular data format. A helper application would then display the images once downloaded.

A better method of displaying images using the hypertext transport protocol (http) of the World Wide Web (WWW) would be to implement a "plug-in" application that would work with the browser program. FIG. 12 illustrates a graphical user interface for one possible client panoramic image presentations system. On the right side of FIG. 12, a set of 35 different panoramic images to display is available. To display one of those images, the user selects the image with a cursor control device. On the upper left of the graphical user interface of FIG. 12 is viewport for displaying a portion of a panoramic image. Pan arrows on either side of the viewport allow the user to pan left and right.

Apple Computer introduced a standard known as Quick-Time® VR for storing and displaying virtual reality images. Apple Computer's QuickTime® VR standard governs the data storage format and the playback software needed to view the QuickTime® VR datasets. The camera system of the 40 present invention can be used to quickly create QuickTime® VR datasets.

The QuickTime® VR format stores the image as cylindrical image as illustrated in FIG. 11a. Specifically, the viewpoint is at the center of the cylinder and the inner surface of 45 the cylinder represents the stored QuickTime® VR image. Note that trapezoid shaped patches must be sampled to generate an image if the user is looking up or down as illustrated in FIG. **11**b.

FIG. 11c illustrates a flow diagram that lists the steps 50 required to produce a QuickTime® VR dataset using the panoramic camera system of the present invention. First, at step 1110, a panoramic image is recorded with the panoramic camera. Then, at step 1120, the recorded image is digitized and loaded into a computer system. If the panoramic camera recorded the image on a piece of film, then a print of the film can be scanned into the computer system using a flatbed scanner. Alternatively, a film image can be commercially transformed into the well known PhotoCD® format produced by Kodak®. If the panoramic camera recorded the image with 60 a CCD array and stored the image digitally, then the digital image is just copied from the camera's storage system into the computer system's storage system. After the digital version of the annular image is available on the computer system, a transformation program is then 65 executed on the computer system at step 1130 in order to transform the digitized annular image into a QuickTime®VR

Image Presentation as Video

One of the most interesting presentation systems for the present invention is a video presentation system. FIGS. 13a and 13b illustrate one possible video presentation system. Referring to FIG. 13a, a CCD version of the panoramic camera system 1205 of the present invention is illustrated coupled to a computer system 1200. The CCD version of the panoramic camera system 1205 is coupled through a panoramic camera interface 1210. The panoramic camera interface 1210 receives a digital stream of annular images. To interface with computer systems, one embodiment of the panoramic camera interface 1210 is the FireWire system that is described in the IEEE 1394 standard.

After being received through the panoramic camera interface 1210, the digitized annular images are stored in an Annular "Video" Storage system 1230. The Annular "Video" comprises a series of a consecutive annular images taken with a CCD version of the panoramic camera system 1205. To display the Annular Video as normal video, the annular frames must be converted from the annular image format into normal video images. In one embodiment of the present invention, only a portion of the annular image is converted into normal video. One reason for this is that the aspect ratio of video does not allow for good viewing of wide but short rectangular panoramic images. Furthermore, by only transforming a portion of the annular image into normal video, the transformation can be done in real-time without requiring

50

11

exceedingly fast computer equipment. The transformation of annular video to normal video is done by annular to video conversion units **1240** and **1243**.

To display the normal video, existing video streaming software **1260** and **1263** can be used. For example, using a standard transmission protocol like MPEG or proprietary protocols such as StreamWorks produced by Xing Technology Corporation of Arroyo Grande, Calif., or VDOLive produced by VDOnet Corporation of Santa Clara, Calif., the video can be provided to computer users coupled to a network. One 10 skilled in the art will understand that one way to transmit information (for example, still or video digital data; or plugins or other computer software) is by embodying the data in a carrier wave that is transmitted over the network. FIG. 13b illustrates one possible embodiment of a graphi-15 cal user interface (GUI) for accessing the annular video. In the GUI of FIG. 13b, a video viewport 1340 is used to display the video. A smaller still panoramic image 1310 is used to illustrate a static version of the full panoramic video. A locator window 1315 is used to identify the view angle that the 20 video window 1340 is displaying within the full panoramic view that is available. To change the view angle, the user can select a pan right arrow 1347 or a pan left arrow 1343 with a cursor 1320. Alternatively, the user can simply move the position of the 25 locator window 1315 within the still panoramic image 1310. In the embodiment of FIG. 13b, the entire vertical image aspect of the image is compressed into the video viewport **1340**. Referring back to FIG. 13a, user input processing routines 30 1250 and 1253 processing the user's commands. When the user requests a viewpoint change, the new viewpoint is communicated to the respective annular to video conversion units 1240 or 1243 such that it will begin converting images from the new user viewpoint. In an alternate embodiment, the user 35 input processing routines are placed within the client program on the client computer system. For example, in an embodiment of a WWW browser program, a plug-in program can process the user commands and simply pass the location of the video viewport to the server. 40 Referring back to FIG. 13b, a parameter window 1350 is also available to the viewer. The parameter window 1350 allows the user to adjust some of the viewing parameters such as Image Brightness 1352, Image Tint 1353 and Image Contrast **1355**. When a user adjusts these parameters, the changes 45 will be processed by the user input processing routines 1250 and 1253 provided to the annular to video conversion units 1240 or 1243 or the video streaming software 1260 or 1263 such that video quality is changed.

12

sound can be provided to users on a computer network using audio streaming software such as RealAudio by Progressive Networks, Inc. As the viewer adjusts the viewing angle, the sound from the directional microphones will be adjusted accordingly.

By adding sound to the system, the user is provided with cues as to which direction they should be viewing. For example, if the user hears a sound from "behind", then the user can change the view angle to look backward.

The foregoing has described a camera device that captures 360 degree panoramic images and presentation systems for displaying such images. It is contemplated that changes and modifications may be made by one of ordinary skill in the art, to the materials and arrangements of elements of the present invention without departing from the scope of the invention. We claim:

1. A method of presenting panoramic images, [said] *the* method comprising [the steps of]:

recording an annular representation of a panorama via an image capture system;

storing [said], *at a storage device, the* annular representation of [said] *the* panorama as a digitized annular representation;

geometrically transforming [said], *via a computer system*, *the* digitized annular representation of [said] *the* panorama into a rectangular projection of [said] *the* panorama; [and]

[displaying said rectangular projection of said panorama,] wherein [said] *the* step of geometrically transforming further comprises sampling [said] *the* digitized annular representation with a dynamically changing sampling shape, *and* wherein [said] *the* sampling shape is dependent upon a viewing angle.

2. A method of presenting panoramic images, [said] *the* method comprising [the steps of]:

Telepresence: Video and Audio

To more completely convey the experience of being at a different location, the present invention can be combined with a three-dimensional sound system. Referring to FIGS. 14a 55 and 14b, an embodiment of the camera system is illustrated with four directional microphones 1441, 1442, 1443, and 1444. The four directional microphones 1441, 1442, 1443, and 1444 capture sound emanating from four cardinal directions. 60 To add three dimensional sound, the sound from the various directional microphones is mixed depending on the viewing angle that a user has selected. For example, if a viewer that is seeing a real-time image from camera **1400** of FIG. **14**a is viewing straight out of the page, then the left speaker will 65 receive information from microphone 1443 and the right speaker will receive information from microphone 1441. The

recording an annular representation of a panorama via an image capture system;

storing [said], *at a storage device, the* annular representation of [said] *the* panorama as a digitized annular representation;

geometrically transforming [said], *via a computer system*, *the* digitized annular representation of [said] *the* panorama into a rectangular projection of [said] *the* panorama; and

[displaying said rectangular projection of said panorama,] wherein [said] *the* step of geometrically transforming further comprises sampling [said] *the* digitized annular representation with a dynamically changing sampling shape orientation, *and* wherein [said] *the* sampling shape orientation is dependent upon a horizontal viewing angle.

3. A method of presenting panoramic images, [said] *the* method comprising [the steps of]:

recording an annular representation of a panorama via an image capture system;

storing [said], *at a storage device, the* annular representation of [said] *the* panorama as a digitized annular representation; *and*

geometrically transforming [said], via a computer system,
the digitized annular representation of [said] the panorama into a cylindrical representation of [said] the panorama[; and displaying said cylindrical representation of said panorama using a computer program].
4. The method [as claimed in] of claim 3 [wherein said step
of], further comprising displaying [said] the cylindrical representation of [said] the panorama [using a computer program].

13

5. The method of claim 4, wherein the step of displaying the cylindrical representation of the panorama comprises displaying the cylindrical representation of the panorama using a computer program running QuickTime VR program.

6. The method of claim 3, wherein the step of geometrically 5 transforming comprises sampling the digitized annular representation with a dynamically changing sampling shape orientation.

7. The method of claim 6, wherein the sampling share 10 orientation is dependent upon a horizontal viewing angle. 8. The method of claim 6, wherein the sampling shape is proportional to a vertical viewing angle.

9. The method of claim 3, wherein the step of storing

14

23. An apparatus comprising:

an image capture system configured to record an annular representation of a panorama;

- a storage device configured to store the annular representation of the panorama as a digitized annular representation; and
- a computer system configured to geometrically transform the digitized annular representation of the panorama into a rectangular projection of the panorama by, at least in part, sampling the digitized annular representation with a dynamically changing sampling shape orientation, wherein the sampling shape orientation is dependent upon a horizontal viewing angle.

comprises storing the annular representation in a polar coordinate system.

10. The method of claim 9, further comprising converting the annular representation from the polar coordinate system to a cylindrical coordinate system.

11. The method of claim 1, further comprising displaying 20 the rectangular projection of the panorama.

12. The method of claim 1, wherein the sampling shape is proportional to at least one of a vertical viewing angle and a *horizontal viewing angle.*

13. The method of claim 12, wherein the sample shape is 25 dependent on both the vertical and horizontal viewing angles.

14. The method of claim 2, further comprising displaying the rectangular projection of the panorama.

15. The method of claim 2, wherein the sampling shape is proportional to a vertical viewing angle.

16. An apparatus comprising:

an image capture system configured to record an annular representation of a panorama;

a storage device configured to store the annular representation of the panorama as a digitized annular represen- 35

24. The apparatus of claim 23, further comprising a dis-15 play configured to display the rectangular projection of the panorama.

25. The apparatus of claim 23, wherein the sampling shape is proportional to a vertical viewing angle.

26. The apparatus of claim 23, further comprising: a convex mirror configured to collect light from a 360 degree scene;

an astigmatism correction lens configured to focus the collected light from the convex mirror;

an objective lens configured to form an image using the focused light from the astigmatism correction lens; and a field flattening lens configured to flatten a field of optimum focus of the focused light from the objective lens into a two-dimensional image.

27. The apparatus of claim 23, wherein the image capture 30 system comprises a charge coupled device array configured to capture the annular representation of the panorama.

28. The apparatus of claim 27, wherein the charge coupled device array comprises a plurality of charge coupled device chips arranged across an image plane in a mosaic pattern. 29. An apparatus comprising:

tation; and

a computer system configured to geometrically transform the digitized annular representation of the panorama into a rectangular projection of the panorama by, at least in part, sampling the digitized annular representa- 40 tion with a dynamically changing sampling shape, wherein the sampling shape is dependent upon a viewing angle.

17. The apparatus of claim 16, further comprising a display configured to display the rectangular projection of the 45 panorama.

18. The apparatus of claim 16, wherein the sampling shape is proportional to at least one of a vertical viewing angle and a horizontal viewing angle.

19. The apparatus of claim 16, wherein the sample shape is 50 dependent on both the vertical and horizontal viewing angles.

- 20. The apparatus of claim 16, further comprising: a convex mirror configured to collect light from a 360 degree scene;
- an astigmatism correction lens configured to focus the 55 collected light from the convex mirror;

an objective lens configured to form an image using the focused light from the astigmatism correction lens; and a field flattening lens configured to flatten a field of optimum focus of the focused light from the objective lens 60 into a two-dimensional image.

an image capture system configured to record an annular representation of panorama;

- a storage device configured to store the annular representation of the panorama as a digitized annular representation; and
- a computer system configured to geometrically transform the digitized annular representation of the panorama into a cylindrical representation of the panorama.

30. The apparatus of claim 29, further comprising a display configured to display the cylindrical representation of the panorama.

31. The apparatus of claim 30, wherein the display is configured to display the cylindrical representation of the panorama in accordance with instructions from a computer program running a QuickTime VR program.

32. The apparatus of claim 29, wherein the computer system is further configured to sample the digitized annular representation with a dynamically changing sampling shape orientation.

33. The apparatus of claim 32, wherein the sampling shape orientation is dependent upon at least one of a horizontal viewing angle and a vertical viewing angle.

21. The apparatus of claim 16, wherein the image capture system comprises a charge coupled device array configured to capture the annular representation of the panorama. 22. The apparatus of claim 21, wherein the charge coupled 65 device array comprises a plurality of charge coupled device chips arranged across an image plane in a mosaic pattern.

34. The apparatus of claim 29, wherein the storage device is configured to store the annular representation in a polar coordinate system.

35. The apparatus of claim 34, wherein the computer system is further configured to convert the annular representation from the polar coordinate system to a cylindrical coordinate system.

36. A non-transitory computer-readable medium having instructions stored thereon for causing a computing device to perform operations comprising:

15

recording an annular representation of a panorama; storing the annular representation of the panorama as a digitized annular representation; and

geometrically transforming the digitized annular representation of the panorama into a rectangular projection 5 of the panorama by, at least in part, sampling the digitized annular representation with a dynamically changing sampling shape, wherein the sampling shape is dependent upon a viewing angle.

37. The non-transitory computer-readable medium of claim 36, wherein the instructions further cause the comput- ¹⁰ ing device to perform operations comprising displaying the rectangular projection of the panorama.

38. The non-transitory computer-readable medium of

16

43. A non-transitory computer-readable medium having instructions stored thereon for causing a computing device to perform operations comprising:

instructions for recording the annular representation of a panorama;

instructions for storing the annular representation of the panorama as a digitized annular representation; and instructions for geometrically transforming the digitized annular representation of the panorama into a cylindrical representation of the panorama.

44. The non-transitory tangible computer-readable medium of claim 43, wherein the instructions further cause the computing device to perform operations comprising displaying the cylindrical of the panorama.

claim 36, wherein the sampling shape is proportional to at least one of a vertical viewing angle and a horizontal viewing angle.

39. The non-transitory computer-readable medium of claim 38, wherein the sampling shape is dependent on both the vertical and horizontal viewing angles.

40. A non-transitory computer-readable medium having instructions stored thereon for causing a computing device to perform operations comprising:

recording an annular representation of a panorama; storing the annular representation of the panorama as a digitized annular representation;

geometrically transforming the digitized annular representation of the panorama into a rectangular projection of the panorama by, at least in part, sampling the digitized annular representation with a dynamically changing sampling shape orientation, wherein the sampling shape orientation is dependent upon a horizontal viewing angle.

41. The non-transitory computer-readable medium of claim 40, wherein the instructions further cause the computing device to perform operations comprising displaying the rectangular projection of the panorama. 45. The non-transitory computer-readable medium of claim 44, wherein the instructions further cause the computing device to perform operations comprising displaying the cylindrical representation of the panorama using a computer program running a QuickTime VR program.

46. The non-transitory computer-readable medium of claim 43, wherein the instructions further cause the computing device to perform operations comprising sampling the digitized annular representation with a dynamically changing sampling shape orientation.

47. The non-transitory computer-readable medium of claim 46, wherein the sampling shape orientation is dependent upon at least one of a horizontal viewing angle and a vertical viewing angle.

48. The non-transitory computer-readable medium of 30 claim 43, wherein the instructions further cause the computing device to perform operations comprising storing the annular representation in a polar coordinate system.

49. The non-transitory tangible computer-readable medium of claim 48, wherein the instructions further cause 35 the computing device to perform operations comprising con-

42. The non-transitory computer-readable medium of claim 40, wherein the sampling shape is proportional to a vertical viewing angle.

verting the annular representation from the polar coordinate system to a cylindrical coordinate system.

* * * * *