USOORE43825E
(19) United States
12y Reissued Patent (10) Patent Number: US RE43.825 E
Apisdort et al. 45) Date of Reissued Patent: Nov. 20, 2012
(54) SYSTEM AND METHOD FOR DATA 5,197.130 A 3/1993 Chen et al.
FORWARDING IN A PROGRAMMABIE 5,274,809 A 12/1993 Iwasaki et al.
e
MULTIPLE NETWORK PROCESSOR 379036 A * 11995 Storer oo 45
ENVIRONMENT 5,450,563 A * 9/1995 GIEZOT .vrvveoveerreerrrererenn 711/3
5487024 A * 1/1996 Girardeau, Jr. 708/606
(75) Inventors: Joel Zvi Apisdorf, Reston, VA (US); 5,493,669 A * 2/1996 Denman, Jr.ccc..., 711/133
Sam Brandon Sandbote, Dallas, TX gaggiagg i gﬁggg (831‘0‘*"@ et ?1*1
N ; 524, omani et al.
(US)3 MIChael Danlel POOlej Herndon? 555923628 A =k 1/1997 Ueno et al‘ “““““““““““ 709/200
VA (US) 5623.670 A 4/1997 Bohannon et al
5,640,524 A 6/1997 Beard et al.
(73) Assignee: The United States of America as 5,787,484 A * 7/1998 Norman 711/159
Represented by the Secretary of the gagg?,g ég i) g//{ iggg gélkiﬂson et &}. e
: : : ramson et al.
Navy, Washington, DC (US) 5005712 A * 5/1999 Cresswelletal. 370/238
5,964,841 A 10/1999 Rekhter
(21) Appl. No.: 11/942,275 5,978,855 A 11/1999 Metz et al.
5,987,622 A * 11/1999 Lo Versoetal. 714/6
(22) Filed: Nov. 19, 2007 6,000,024 A * 12/1999 Maddoxoovvvviiniinin, 712/11
6,044,438 A 3/2000 Olnowich
Related U.S. Patent Documents 6,065,112 A 5/2000 Kishida et al.
Reissue of 6,151,644 A * 11/2000 WU .oovveoroveeorrerorrererre 710/52
(64) Patent No.- 6.968.447 6,182,210 Bl 1/2001 Akkary et al.
Issued: Nov. 22, 2005 (Continued)
Appl. No.: 09/833,578
Filed: Apr. 13, 2001 Primary Examiner — ldriss N Alrobaye
(74) Attorney, Agent, or Firm — Sterne, Kessler, Goldstein
(51) Int. CL & Fox PLLC
Go6l 9/00 (2006.01)
(52) US.CL ... 712/225; 712/28; 712/216; 712/217; (37) ABSTRACT
712/235;712/22

A system and method forward data between processing ele-
ments. A first processing element includes an address register
that stores a first memory address. A forwarding storage ele-
ment 1s coupled to the first processing element. A second
processing element, coupled to the forwarding storage ele-
ment, transmits a second memory address to the forwarding,
U.S PATENT DOCUMENTS storage element. The forwarding storage transmits the second
memory address to the first processing element, and the first

(58) Field of Classification Search 712/223,
712/235, 17, 28, 216, 217
See application file for complete search history.

(56) References Cited

H .
j’gg;’%j i 5 éiiggg ﬁ:ﬂ;owskl “““““““““ 36750/;/93; g processing element compares the second memory address
4941.143 A 7/1990 Twitty et al. with the first memory address.
5,029,169 A 7/1991 Smyk
5,161,230 A * 11/1992 Carteretal.cco......... 707/700 13 Claims, 12 Drawing Sheets
900
9028
908C 008K
9088 § s
902A 9060 902D Q02E
PE PE Z
s nun | F g
906A FQ i\{;@
g04C \
904A/ 906B J04E
g §
904D \ oar
908A

S08D

US RE43,825 E
Page 2

U.S. PATENT DOCUMENTS

6,493,804 Bl
0,496,871 Bl
6,567,840 Bl
6,629,233 Bl
0,633,865 Bl
6,763,519 Bl

S

12/2002
12/2002
5/2003
9/2003
10/2003
7/2004

Soltis et al.
Jagannathan et al.
Binns et al.
Kahle

L0 i,
McColl et al.

6,950,927 Bl
6,968,447 Bl *
6,978,459 Bl
2001/0023479 Al
2003/0016686 Al*

* cited by examiner

9/2005
11/2005
12/2005

9/2001

1/2003

Apisdort et al.
Apisdorfetal. 712/235
Apisdort et al.
Kimura et al.

Wynne etal. 370/412

U.S. Patent Nov. 20, 2012 Sheet 1 of 12 US RE43,825 E

.
104
108 1 112, 106
A
_ ‘ B 114,
112,
« /A
N - 116,
110
SWITCH
FABRIC
104, 112,

FIG. 1

U.S. Patent Nov. 20, 2012 Sheet 2 of 12 US RE43,825 E

200
MEMORY CONTROLLER

204

INPUT OUTPUT
INTERFACE —_ INTERFACE s -
206 208
MULTIPROGESSOR
CORE

202

il
— —
R

HOST CONTROL
PROCESSOR
210

FIG. 2

U.S. Patent Nov. 20, 2012 Sheet 3 of 12 US RE43.825 E

05

ON-CHIP PERIPHERAL UNITS 310 300 / ; 306,
L)L %,

e T e e
3%1 : =y d
E #Hﬂmmﬂﬂ—-—*ﬁm“mmmm E
' = 1
:]
: 1
: k
' m I
I ..,._._... ad
3021 : _':..-_-:-_-.-.'.-m E O L) :
: _]I Lo
3022 " WM—-—-M E X !
B e e e e e i !
; S e s e s S s e e e e O '
3“23 ’ == m b :
, HIEIERENE
302, 4 * ‘
. ;
" DR
: e - I
e —— iseesesawnsoe :
3(52) — = e = e = = :
e B P R J
ON-CHIP PERIPHERAL UNITS 312 ‘ 302y, 4
3041-304H
314

PM: PROGRAM MEMORY
PM: DATA MEMORY
F'G' 3 PE: PROCESSING ELEMENT

U.S. Patent Nov. 20, 2012 Sheet 4 of 12 US RE43,825 E

404A 4048 404D
PE PE PE
404H 404G 404F 404E
FIG. 4A
406A 4068 : 406G 406D
406H 4060 406F 406t

PE

F1G. 4B

U.S. Patent Nov. 20, 2012 Sheet 5 of 12 US RE43.825 E

- — — e sy e r A e — Al -----l
L i
: :
.
) INSTRUCTION FETCH UNIT !
i ;
! ;
!]
: |
! i
! S i
) 504 '
i NSTRUCTION BUFFER :
i ;
! i
! — i
: 506 508 i
:)
! INSTRUCTION 510 i
T ISSUE CONTROL :

i STATE !

314 EXECUTION SWITCH B | STATE :

i i

! !

! 516 |

< | 512 514 !

e ! MEMORY/ !

5 ! PERIPHERAL. FUNCTION !

< [INTERFACE UNIT o !

= { UNIT I

= ;)

! REGISTER :
! ADDRESS j
: BINDING W !
! MEMORY !
! !
I I
! 624 S |
: / %24 | uppATE — X1 UPDATE 526 |
: RECEIVE TRANSMIT

CONTROL. !
: CONTROL :
| a
! " j
)]

U.S. Patent Nov. 20, 2012 Sheet 6 of 12 US RE43.825 E

610 630
608

PO Al O B
o ‘:':';:-';-':W‘:?'-?-'El‘} R AT

.?PI"F i

" " L l'q_.llp_- ;i:-;;:] 'ﬂ_-‘":_'_':'é:g

f-. |
» > 2 Siarn 2 ey 5y S
job O{PE-0) Sy 3fainy
.:p-..:.,u- :::"":.-d' " ill.- ‘;'- :.-'::r:rﬁ::’::.--: " .

. AN
ot W Sy e
S (3] ais
;ti'..'-’-l-‘:-.-:!.-:'-':‘!‘.f:";:r-:".::i::
I'I:l.: rI:I:I .r.l: J:i':h"":'l y
R SR Y e

Lt T '-';r‘- A A o
llf'..,. -" - ' I.I---llldJ -l B .] " [] ‘-‘c‘l -q,:.
e
= lqlfp ']. - -J :l":l' '{:‘.i.
e
- Mo g
:.nl.'.r'.-.'. l‘l'I'.i::-'f - H.i'-;":‘: !
R LR M i W oA
I.".I. . ;—_r ‘:'_:-: r, |:l'_-.r _p_-:'-:: -r::
N LT R R T

mon .

et
o |
2
-
".J

Il.-‘.
Sl

TIME

FIG. 6

U.S. Patent Nov. 20, 2012 Sheet 7 of 12 US RE43.825 E

/604

PE-{

634
JIL-PRE

I /?28

SYNGC
636
HL-CRIT
/ 732
30\ END CRIT o
END_SYNC _SECTION, nownsTREAM

JIL.POST

FIG. 7

U.S. Patent Nov. 20, 2012 Sheet 8 of 12 US RE43.825 E

802
start

£04

process critical section at {first

processing element

suspend processing task before
critical section at second
processing element

e ey

complete processing critical 803
section at first processing
element

send end critical section signal | » 810
from first processing element to
second processing element

vyt

resume processing task at
second processing element

- A

812

814

FIG. 8

U.S. Patent Nov. 20, 2012 Sheet 9 of 12 US RE43.825 E

908G /0B 908F
H‘

pt. c¥eir ey

/ Q04E
908E

S08A 04D \
808D

FIG. 9

U.S. Patent Nov. 20, 2012 Sheet 10 of 12 US RE43,825 E

F1G. 10

/m /9028 /9020 /9020

PE-1 PE-Z PE-3

INIL

U.S. Patent Nov. 20, 2012 Sheet 11 of 12 US RE43.825 E

1102
(start 1

J o 1104

first PE generates data value to
be written to shared resource

I 1166

first PE forwards data value and
address to forward gueue

second PE rolneves daia vaiue V 1108

1100

and address from forward

) queue

second PE compare address
from forward queue with
shadow address register

1112

1110

addresses
match?

YES 1144
! / NO

update data register with data]
1116

vaiue

N

h . —

decrement time-to-live value

1118

fime-to-live
value > 07

YES
— 1422

forward data value and address
to next fonwvard queue NO

124]

stop

FIG. 11

U.S. Patent Nov. 20, 2012 Sheet 12 of 12 US RE43.825 E

12060

1202 1204 1206 1208 1210
/ /

1212 | DATA | ADDRESS | REGISTERZ | T7L LAST UPDATE
3

N
7 -
B A F

R |

1

FIG. 12
1300
1302 1304 1306 1308 1310 1312, 1314 1316

cpcode ~ source 0 sowrce 1 |deslination| update sSyNG endstores | beginloads

FIG. 13

US RE43,825 E

1

SYSTEM AND METHOD FOR DATA
FORWARDING IN A PROGRAMMABLE
MULTIPLE NETWORK PROCESSOR
ENVIRONMENT

Matter enclosed in heavy brackets |] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present mvention i1s related to patent applications
“System and Method for Processing Overlapping Tasks 1n a
Programmable Network Processor Environment” (Ser. No.

09/833,3581) and “System and Method for Instruction-Level
Parallelism in a Programmable Network Processor Environ-

ment” (Ser. No. 09/833,380), both of which are incorporated
herein by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to digital comput-
ing apparatus. More specifically, the present invention relates
to network processors for processing network data elements.

2. Discussion of the Related Art

Network switches and routers, or network switch elements,
form the backbone of digital networks, such as the Internet.
Network switch elements connect network segments by
receiving network data from ingress network segments and
transierring the network data to egress network segments.
Because large telecommunications switching facilities and
central offices aggregate network traific from extensive net-
works and many network segments, they require high-speed
and high-availability switches and routers.

Network switch elements select the egress network seg-
ment by processing the address or destination included in the
network data according to network data processing program
logic. Traditionally, network switch elements included Appli-
cation Specific Integrated Circuits (ASICs) that provided the
program logic. Because ASICs are “hard-coded” with pro-
gram logic for handling network traflic, they provide the high
speed necessary to process a large volume of network data.
ASICs, however, make it difficult to upgrade or reconfigure a
network switch element, and 1t 1s expensive to design and
tabricate a new ASIC for each new type of network switch
clement.

In response to these drawbacks, manufacturers of network
switch elements are turning to programmable network pro-
cessors to enable network switch elements to process network
data. Programmable network processors process network
data according to program instructions, or software, stored 1n
a memory. The software allows manufacturers and users to
define the functionality of the network switch elements—
functionality that can be altered and changed as needed. With
programmable network processors, manufacturers and users
can change the software to respond to new services quickly,
without costly system upgrades, as well as implement new
designs quickly.

To the extent that there 1s a drawback to the use of pro-
grammable network processors 1n network switch elements,
that drawback relates to speed. Because programmable net-
work processors process network data using soiftware, they
are usually slower than a comparable hard-coded ASIC. One

10

15

20

25

30

35

40

45

50

55

60

65

2

of the major design challenges, therefore, 1s developing pro-
grammable network processors fast enough to process the
large volume of network data at large telecommunications
switching facilities.

One technique used to increase speed 1n traditional proces-
sor design 1s “parallel processing,” or processing multiple
instructions in parallel. Parallel processing requires that
instructions processed 1n parallel share access to devices,
such as memory or peripherals. Known systems and methods
for sharing access to devices, however, are not suitable for use
in programmable network processors because network data 1s
received at very high speeds, and must be processed on a time
critical basis. Traditional device access techniques introduce
unacceptable delays and timing problems into the network
data processing.

SUMMARY OF THE INVENTION

The present mvention provides a system and method for
forwarding data between processing elements. In the system,
a lirst processing element includes an address register that
stores a first memory address. A forwarding storage element
1s coupled to the first processing element. A second process-
ing element, coupled to the forwarding storage element,
transmits a second memory address to the forwarding storage
clement. The forwarding storage transmits the second
memory address to the first processing element, and the first
processing element compares the second memory address
with the first memory address.

In the method, data 1s forwarded between processing ele-
ments. A first memory address 1s stored to an address register
at a first processing element. A second memory address asso-
ciated with a second processing element 1s retrieved from a
forwarding storage element. The first memory address 1s
compared with the second memory address. A data register at
the first processing element 1s updated with a data value from
the second processing element in response to the comparing.

BRIEF DESCRIPTION OF THE DRAWINGS

The present 1nvention 1s described with reference to the
accompanying drawings. In the drawings, like reference
numbers 1ndicate identical or functionally similar elements.
Additionally, the left-most digit(s) of a reference number
identifies the drawing in which the reference number first
appears.

FIG. 1 illustrates a system block diagram of a data com-

munications system.
FIG. 2 illustrates a system block diagram of a program-

mable network processor.
FIG. 3 illustrates a system block diagram of a multiproces-

SOr Core.
FIGS. 4A-4B illustrate connections between processing,
clements.
FIG. 35 illustrates a system block diagram of an exemplary
processing element.
FIG. 6 1llustrates concurrent processing of three jobs.
FIG. 7 1llustrates a job processing diagram.
FIG. 8 1llustrates a process for executing overlapping tasks.
FIG. 9 illustrates a block diagram of a data forwarding
system.
FIG. 10 illustrates an instruction processing diagram.
FIG. 11 illustrates a process for data forwarding.
FIG. 12 illustrates the contents of a forward queue.

FIG. 13 illustrates an exemplary instruction.

DETAILED DESCRIPTION

Exemplary embodiments of the invention are discussed 1n
detail below. While specific implementations are discussed, 1t

US RE43,825 E

3

should be understood that this 1s done for illustrative purposes
only. A person skilled 1n the relevant art will recognize that
other components and configurations may be used without
parting from the spirit and scope of the invention.

Programmable network processors offer a number of
advantages including flexibility, low cost, maintenance ease,
decreased time to market, and increased service life. It 1s
difficult, however, to develop a programmable network pro-
cessor capable of meeting the demand for ever-increasing
speed. One technique for increasing the speed of a program-
mable network processor 1s to employ a number of processing,
clements that can process network data elements in parallel.
One example of processing network data elements 1n parallel
1s distributing individual network data elements from a
stream of network data elements among a number of process-
ing elements.

The nature of network data elements, however, poses prob-
lems to employing more than one processing element. First,
due to the nature of network communications, network data
clements are often order dependent and it 1s preferable that a
programmable network processor send the network data ele-
ments 1n the same order that they are recerved. As such, 1t 1s
also pretferable that a programmable network processor main-
tain correct order 1n processing network data elements. Sec-
ond, network management tasks, such as network traific man-
agement, network policing, tratfic shaping, etc., often depend
on processing network data elements 1n order. This 1s because
network data elements are often related (e.g., associated with
the same network connection, ATM virtual circuit, or path),
and the processing of successive network data elements 1s
often dependent upon the processing of prior related network
data elements. Although traditional techniques for employing
multiple processing elements can be used to coordinate
instruction sequencing to ensure correct order of actions, such
traditional techniques would 1ntroduce unacceptable delays
in high-performance network applications.

In addition to the “order” problem, other problems arise
when multiple processors are intended to access shared
resources. Examples of shared resources are shared memory,
shared peripheral units, shared variables, etc. First, latency
inherent 1n accessing shared resources results 1 lower pro-
cessing speed. For example, when a processing element 1ni-
tiates a load operation to retrieve data from memory, 1t may
take a significant amount of time before the data 1s recerved.
This delay results in lower overall processing speed.

Second, because of the related nature of network data ele-
ments, conflict can occur between processing elements for
access to shared resources. Consider, for example, a {first
processing element and a second processing element that are
accessing the same shared variable. Suppose that the first
processor accesses the shared vaniable, changes i1t, and 1ni-
tiates a storage operation to store the new value to memory.
Because of latency and other timing 1ssues, the second pro-
cessing element may, while the first processing element 1s
manipulating the shared vanable, retrieve an 1invalid copy of
the shared variable. Consequently, processing the invalid
copy of the shared varnable leads to corrupted data.

A first aspect of the present invention 1s primarily directed
to a system and method for multiple processing elements
arranged 1n a ring, or loop, to process network data elements
cooperatively. One feature of the present invention 1s a system
and method for providing communication between process-
ing elements that enables a programmable network processor
to ensure the correct order of processing of network data
clements. In one embodiment, a first processing element sus-
pends processing instructions until receiving a signal from a
second processing element. The signal indicates that the first

5

10

15

20

25

30

35

40

45

50

55

60

65

4

processing element may continue processing without risk of
changing the order of network data elements or corrupting
data values held by a shared resource.

A second aspect of the invention 1s primarily directed to a
system and method for processing network data elements
with yet greater efficiency than i1s possible just using the
aspect of the invention summarized above. A feature of the
present invention facilitates communicating data between
processing elements. In one embodiment, a first processing
clement includes data to be written to a shared resource. In
addition to writing the data to the shared resource, the data 1s
forwarded to a second processing element. The second pro-
cessing element 1s able to use the forwarded data immedi-
ately, rather than retrieving the data from the shared resource.
Forwarding data between processing clements eliminates
time delay due to latency. It should be recognized that the
concepts described below are not restricted to processing
network data elements but are extensible to a generic form of
data processing. Prior to discussing the features of the present
invention, a brief description of a data communications sys-
tem 1s provided.

FIG. 1 illustrates a block diagram of a network data com-
munications system, according to an embodiment of the
present invention. Data communications system 100 can be,
for example, of the type used by network service providers
and telecommunication carriers to provide voice and data
communications services to consumers. Data communica-
tions system 100 includes network 102, network line modules
104.-104,, and switch fabric 106. Network 102 1s connected
to network line modules 104,-104,, which, in turn, are con-
nected to switch fabric 106. Although data communications
system 100 1s shown as including physical connections
between the various components, other configurations are
possible, such as wireless connections. Connections between
network 102, network line modules 104,-104,,, and switch
tabric 106 can be, for example, wireless data connections,
clectrical signals over wires, fiber optic connections (e.g.,
0OC-48, OC-192, OC-768), or other data communications
connections as would be apparent.

Network line modules 104,-104,, send and receive net-
work data elements to network 102. Network line modules
104 ,-104,, process the network data elements and communi-
cate the processed network data elements with switch fabric
106. Network data elements are signals carrying information
including communications information. Examples of net-
work data elements are asynchronous transfer mode (“ATM™)
cells, Frame Relay frames, Internet Protocol (*“IP”") packets,
etc., mcluding portions or segments of these. Processing
includes performing a calculation or manipulation mnvolving
a network data element. Processing can include, for example,
determining the next hop or egress port to which the network
data element should be routed, network management, such as
traffic shaping or policing, network monitoring, etc. Network
102 1s a network for communicating network data elements.
Network 102 can be, for example, the Internet, a telecommu-
nications data network, an intranet, an extranet, a voice over
data communications network, etc., and combinations
thereof.

For explanatory purposes, operation of data communica-
tion system 100 1s described in terms of network line module
104, . Network line module 104, includes network line mod-
uleingress port 108, network line module egress port 110, and
programmable network processors 112,-112,. Note that the
configuration of network line modules 104,-104,; is shown
tor 1llustrative purposes only, and alternate configurations for
network line modules 104, -104 ., are possible. Alternate con-
figurations include, for example, single or additional pro-

US RE43,825 E

S

grammable network processors per network line module,
additional network line module 1ngress ports, multiple egress
ports, additional connections to network 102, etc.

Network line module 104, receives network data elements
from network 102 at network line module ingress port 108.
Programmable network processor 112, recetves network data
clements from network line module 1ingress port 108. Pro-
grammable network processor 112, enables network line
module 104, to process the received network data elements.
Programmable network processor 112, provides the network
data elements to switch fabric 106 after processing.

Switch fabric 106 includes switch fabric ingress ports
114,-114,; and switch fabric egress ports 116,-116,,.. Switch
fabric ingress ports 114, -114,,receive data from network line
modules 104 ,-104 ., and switch fabric egress ports 161,-116,;
ports provide data to network line modules 104 ,-104,,.
Switch fabric 106 outputs network data elements received
from network processor 112, on the desired switch fabric
egress port 116,-116,,. Network line module 104, receives
processed network data elements from switch fabric egress
port 116, and performs additional processing, as required,
and transmits the network data element to network 102 via
network line module egress port 110. Note that network line
module 1ngress port 108, network element egress port 110,
switch fabric ingress ports 114,-114,, and switch fabric
egress ports 116,-116,,are logical representations of physical
devices, and other combinations, such as single ports that
transmit and receive network data elements are possible.

FIG. 2 illustrates a system block diagram of a program-
mable network processor, according to an embodiment of the
present invention. Programmable network processor 200 can
be considered an exemplary embodiment of both ingress and
egress programmable network processors 112,-112,, as
described above. Programmable network processor 200
includes memory controller 204, input interface 206, multi-
processor core 202, and output interface 208. Multiprocessor
core 202 1s connected to mput interface 206, output interface
208, and memory controller 204. Note that the particular
configuration, number, and type of elements of program-
mable processor 200 are shown for illustrative purposes only
and other configurations of programmable network processor
200 are possible as would be apparent.

In operation, programmable network processor 200
receives network data elements from network line module
ingress port 108 via mput interface 206. Input interface 206
receives the network data elements and provides them to
multiprocessor core 202 for processing as described above.
Multiprocessor core 202 processes the network data elements
and provides the result to output interface 208. Output inter-
tace 208 recerves processed network data elements from mul-
tiprocessor core 202 and forwards them to switch fabric 106
for routing. Multiprocessor core 202 accesses storage located
off programmable network processor 200 via memory con-
troller 204.

Multiprocessor core 202 1s connected to host control pro-
cessor 210. Host control processor 210 provides host tunc-
tionality for programmable network processor 200. Such host
functionality includes, for example, generating and receiving
network data elements for controlling switch fabric 106, net-
work line modules 104,-104,, and other network compo-
nents. Host control processor 210 performs other functions,
such as generating network data elements for switch fabric
control, setting up network connections, and loading pro-
grams 1nto multiprocessor core 202 for operation.

FI1G. 3 illustrates a system block diagram of a multiproces-
sor core, according to an embodiment of the present inven-
tion. Multiprocessor core 300 1s an exemplary embodiment of

10

15

20

25

30

35

40

45

50

55

60

65

6

multiprocessor core 202, as described above, and 1s of the
type that can be employed 1n data communications system
100. Multiprocessor core 300 includes processing elements
(PE) 302,-302,, data memories (DM) 304,-304,, program
memories (PM) 306,-306,,, intraswitch 314, and host con-
troller interface 308. Processing elements 302,-302,,are con-
nected to program memories 306,-306,, and intraswitch 314.
Data memories 304, -304,, are connected to intraswitch 314.
Program memories 306,-306,, are connected to processing
clements 302,-302,, and intraswitch 314. Host controller
interface 308 1s connected to intraswitch 314. Intraswitch 314
1s connected to on-chip peripheral umts 310 and 312.
Examples of on-chip peripheral units 310 and 312 are input
interface 206, output interface 208, and memory controller
204 of FIG. 2.

While not shown 1n FIG. 3 for purposes of diagrammatic
clarity, a number of direct connections exist between process-
ing elements 302,-302,. Similarly, host controller interface
308 1s connected to each of processing elements 302,-302,..
Examples of the connections between processing elements
302,-302,, are described 1n further detail with reference to
FIGS. 4A-4B below.

Processing elements 302,-302,, process network data ele-
ments, thereby providing the processing functionality for
multiprocessor core 300. Processing elements 302,-302,;
execute program instructions from program memories 306, -
306, and load and store data 1n data memories 304,-304,..
Note that processing elements 302 ,-302,,can be anything that
processes program 1nstructions including, for example,
microprocessors, configurable processors, etc.

Program memories 306,-306,, and data memories 304, -
304, provide data storage functionality for the various ele-
ments of multiprocessor core 300. Program memories 306, -
306, store program instructions for the processing ol network
data elements by processing elements 302,-302,.. Although
FIG. 3 depicts groups of four processing elements directly
connected to one of program memories 306,-306,, other
configurations connecting program memory to processing
clements are possible including, for example, the use of a
separate program memory with each processing element, as
would be apparent. Data memories 304,-304 ., provide on-
chip storage for data, such as intermediate-results data from
processing network data elements, for the operation of pro-
cessing elements 302,-302.,..

Intraswitch 314 enables communication between the vari-
ous components of multiprocessor core 300. For example,
processing elements 302,-302,, access data memories 304, -
304, through intraswitch 314. Intraswitch 314 can be, for
example, a switching fabric in multiprocessor core 300, or
individual trace connections in multiprocessor core 300. Host
controller interface 308 connects multiprocessor core 300 to
host control processor 210. Multiprocessor core 300 1s con-
nected to on-chip peripheral units 310 and 312 via intraswitch
314.

In operation, multiprocessor core 300 receives network
data elements from on-chip peripheral units 310 and 312.
Processing elements 302,-302,, receive the network data ele-
ments and process them according to the programs stored as
instructions in program memories 306,-306,. The interme-
diate results and final results of the processing operations are
stored 1n data memories 304,-304,,. After a network data
clement has been processed, it 1s sent to on-chip peripheral
units 310 and 312.

FIGS. 4A-4B are block diagrams illustrating exemplary
confligurations of connections between processing elements,
according to an embodiment of the present invention. Each of
processing eclements 404A-404H and processing elements

US RE43,825 E

7

406A-406H are exemplary embodiments of one of process-
ing elements 302,-302,,1n FIG. 3, and of the type that can be
employed in data communications system 100. The process-
ing elements of FIGS. 4A-4B can be chosen as a combination
of processing elements 302,-302,, of multiprocessor core
300.

The connections between processing elements processing,
clements 404A-404H and processing elements 406 A-406H
enable communication of data and signals between the con-
nected processing elements. More specifically, the connec-
tions between processing elements 404A-404H and process-
ing elements 406 A-406H enable the communication of end
critical section signals, data forwarding signals, and end
stores signals described 1n further detail below. Examples of
connections are metal or doped silicon traces included 1n
multiprocessor core 300, optical connections, etc.

FIG. 4 A 1llustrates one exemplary embodiment for a pro-
cessing team. The team defined by processing clements
404A-404H 1s 1n a ring, or loop, configuration. Each of pro-
cessing clements 404A-404H can communicate via the con-
nections. In one possible embodiment, the communication
occurs 1n one direction (1.€., clockwise or counterclockwise)
around the ring. Fach processor 1s connected to an
“upstream” processor and a “downstream” processor. For
example, assuming that processing elements 404 A-404H
communicate 1n a clockwise direction, processing element
404H 1s upstream from processing element 404A, and pro-
cessing element 4048 1s downstream from processing ele-
ment 404A. Likewise, from the perspective of 404H, process-
ing clement 404 A 1s downstream, while 404G 1s upstream.

Note that new teams can be formed by making and break-
ing connections between processing elements. The connec-
tions between the processing elements can be made and bro-
ken, for example, in the manufacturing process, electrically
through the configuration of multiprocessor core 300, 1n soft-
ware by enabling or disabling the connections between pro-
cessing elements, or through optical switching 1n the case of
optical connections between the processing elements.

FI1G. 4B illustrates an alternate configuration for two pro-
cessing element teams. In comparison to FIG. 4A, there are
no connections between processing elements 4068 and
406C, nor between processing elements 406G and 406F. The
arrangement forms two teams. Each of the teams ((406A,
4068, 406G, and 406H) and (406C, 406D, 406E, and 406F))
are 1n a ring configuration. Note that although FIGS. 4A-4B
show teams of processors including eight and four processing
clements, respectively, other configurations are possible. A
team of processing elements may include as many processing,
clements as 1s practical.

FI1G. 5 illustrates a system block diagram of an exemplary
processing element, according to an embodiment of the
present invention. Processing element 500 1s an example of
one of the processing elements shown in FIGS. 3-4, and of the
type that can be employed 1n data communications system
100. Note that processing element 500 1s provided for 1llus-
trative purposes only and other processing element configu-
rations are possible. Processing element 500 includes instruc-
tion fetch unit 502, instruction bulter 504, function decode
and execution switch 506, instruction 1ssue control 508,
memory/peripheral interface unit 516, function unit 512, reg-
ister file 514, update receive control 520, update transmuit
control 522, upstream connection 524, and downstream con-
nection 526. Instruction 1ssue control 508 further includes
state element 510. Note, however, that although state element
510 1s shown as part of 1nstruction 1ssue control 508, other
configurations are possible where state element 510 15 con-
nected to, but not included 1n, 1instruction 1ssue control 508.

10

15

20

25

30

35

40

45

50

55

60

65

8

Instruction fetch unit 502 retrieves program instructions
from program memory 306 for execution within processing
clement 500 and 1s connected to instruction buiier 504.
Instruction buffer 504, 1n turn, 1s connected to function
decode and execution switch 506 and instruction 1ssue control
508. Function decode and execution switch 506 1s connected
to 1nstruction buffer 504, address binding memory 518, and
instruction 1ssue control 508. Function decode and execution
switch 506 1s connected to memory/peripheral interface unit
516 and function unit 512.

Memory/peripheral interface unit 516 and function unit
512 receive memory/peripheral access instructions and pro-
cessing instructions, respectively, from function decode and
execution switch 506. Memory/peripheral mterface unit 516
1s connected to intraswitch 314, over which memory/periph-
eral interface unit 516 accesses data memory 304,-304,, and
peripheral units (not shown 1n FIG. §). Function unit 512 1s
connected to fTunction decode and execution switch 506, reg-
ister file 514, and update transmit control 5322. Update trans-
mit control provides end critical section signals to a down-
stream processing element via downstream connection 326,
as described below in further detail in conjunction with FIG.
6.

Memory/peripheral interface unit 516 1s connected to
address binding memory 518. Address binding memory 518
1s connected to update transmit control 522. Address binding
memory 318 stores memory addresses received Ifrom
memory/peripheral interface umt 316, as described 1n further
detail below. Update receive control 520 i1s connected to
update transmit control 522, mstruction 1ssue control 508,
and an upstream processing element via upstream connection
524.

FIG. 6 1s a diagram 1illustrating concurrent processing of
three jobs by three processing elements 1n a processing ele-
ment team, according to an embodiment of the present inven-
tion. A job 1s a series of program 1nstructions that are executed
on a processing element. A job can be, for example, the
instructions associated with processing a single network data
clement.

Consider, for example, the situation in which each job 1s
associated with a single ATM cell. A programmable network
processor, such as programmable network processor 200,
receives an AITM cell from network 102. A program of
instructions running on a processing element, such as one of
processing elements 302,-302 ., processes the ATM cell as a
job. Each time another network data element 1s received, a
new job 1s created for processing the cell. Although an ATM
cell 1s provided as an example, other configurations are pos-
sible. A j0b can be associated with one or more of any type of
network data element, or a portion thereof.

FIG. 6 includes three jobs, job 0 (*j0b 602”), job 1 (*0b
604’), andjob 2 (*10b 606”). Each o1j0b 602, j0b 604, and job
606, are shown as being processed by processing element 0
(“PE-0"), processing element 1 (“PE-1""), and processing ele-
ment 2 (“PE-2”), respectively. PE-0, PE-1, and PE-2 can be,
for example, processing element 500 shown 1n FIG. 5.

In the example of FIG. 6, each of PE-0, PE-1, and PE-2 are
members of a single processing team i which PE-0 1s
upstream from PE-1, and PE-1 1s upstream from PE-2. Con-
sider, for example, the processor element team of FIG. 4B.
Each of jobs 602-606 1s associated with a single processing
clement 1n the team. In this example, processing element
404H executes job 602, processing element 404A executes
10b 604, and processing element 404B executes job 606. In
this example, each of the succeeding jobs 1s associated with
the processing element downstream from the previous job, so
that processing element 404H 1s upstream from the process-

US RE43,825 E

9

ing element executing the instructions of job 604. Note, how-
ever, that this example 1s provided for illustrative purposes
only, and other processor team configurations that process

concurrent jobs are possible.
Additionally, each of jobs 602, 604, and 606 includes three

(for illustration) sequential tasks shown as three boxes 1n a
horizontal row. A task 1s a portion of a job that includes at least
one 1nstruction. The tasks of each job are processed chrono-
logically from lett to right, as indicated by the “TIME” legend
at the bottom of FIG. 6. Job 602 includes tasks JOA, JOB, and
JOC; job 604 includes tasks J1L, J1M, and JIN; job 606

includes tasks J2X, J2Y, and J27Z. Task JOA includes critical

section 610; task JOB includes critical section 630; and task
J1L mcludes critical section 636.

A critical section 1s an mstruction or series of istructions
that utilize a shared resource. A shared resource can be any
resource that includes data or information that i1s capable of
being referenced by more than one job. Examples of shared
resources are shared memory, shared peripherals, shared vari-
ables, etc. Consider, for example, a variable stored 1n data
memory and shared between two jobs (1.e., a “shared vari-
able”). A first job reads the shared variable from memory with
a load struction, uses the variable to perform processing,
changes the variable value, and stores the new value back to
the shared variable i1n memory. Subsequent to the first job
accessing the shared vanable, for example, a second job
accesses the shared vanable from the memory location for
processing.

A shared peripheral can be any resource that maintains
state information between references by jobs. For example, a
shared peripheral can be a device with more than one state.
Examples of state sensitive resources mclude counters, flip-
flops, latches, etc. Consider, for example, a hardware counter
that 1s shared between two jobs. A first job reads the value of
the hardware counter, and subsequently increments the hard-
ware counter. A second job reads the value of the hardware
counter, and increments the hardware counter. Counters, and
other state sensitive hardware peripherals can be used to
ensure the validity of recerved network data elements, track
the number of network data elements recetved for a given
network connection, etc.

Returning to the ATM cell example, consider a possible
relationship between ATM cells. A relationship can exist, for
example, 11 the cells are associated with the same network
connection. Because the program processing the related cells
1s likely similar, 1f not i1dentical, it 1s likely that the jobs
processing the cells will access the same shared resources.
Often, correct processing ol related cells requires that the jobs
access the shared resource 1n the same order that the cells are
assigned to jobs.

The tasks of FIG. 6 include pre-critical sections and post-
critical sections. Task JOA includes pre-critical section 608;
task JOB includes pre-critical section 628; and task JIL
includes pre-critical section 634. A pre-critical section 1s an
instruction or series of instructions in a task that are processed
before mnstructions of a critical section. Task JOA includes
post-critical section 612; task JOB includes post-critical sec-
tion 632; and task J1L includes post-critical section 638. A
post-critical section 1s at least one instruction that 1s pro-
cessed after the critical section instructions in a task. Note that
although the tasks of FIG. 6 are shown as including pre-
critical sections, critical sections and post-critical sections,
other combinations are possible, for example, tasks that do
not mclude critical sections, tasks that do not include pre-
critical sections, and tasks that do not include post-critical
sections.

10

15

20

25

30

35

40

45

50

55

60

65

10

FIG. 6 illustrates the problem of conftlict between overlap-
ping critical sections. FIG. 6 shows how critical sections can
overlap, causing contlict, 1n the absence of the present inven-
tion. As shown, critical section 610 of task JOA overlaps with
critical section 636 of task J1L.. In this situation, conflict can
occur between instructions in two jobs that access the same
shared resource. Consider, for example, instructions in criti-
cal section 610 and critical section 636 accessing a shared
variable. Instructions in critical section 610 may access the
shared wvariable, and increment the variable. Meanwhile,
instructions in critical section 636 have accessed the same
shared variable. Because the two accesses are 1n contlict (1.e.,
attempting to access the shared variable at the same time),
task JOA or task J1L. may not operate on the correct value of
the shared vanable, resulting in program failure. Processing
multiple network data elements concurrently on multiple pro-
cessing elements, therefore, requires a mechanism to ensure
preservation of order 1n processing network data elements.

FIG. 7 illustrates a job processing diagram, according to an
embodiment of the present invention. Job processing diagram
700 shows PE-0 and PE-1 processing job 602 and job 604
from top to bottom, respectively. Job processing diagram 700
flows from top to bottom, showing the processing steps for
task JOA and JOB of job 602, and the processing steps for task
J1L of job 604. PE-1 1s a processing element downstream
from PE-0.

Task JOA includes pre-critical section 608, sync indicator
708, critical section 610, end sync indicator 712 and post-
critical section 612. Task JOB includes pre-critical section
628, sync indicator 718, and critical section 630. End critical
section signals 724 and 726 are signals received from a pro-
cessing element upstream from PE-0 (not shown 1n FIG. 7).

Task J1L of job 604 1s shown as being processed by PE-1,
and 1includes pre-critical section 634, sync indicator 728,
critical section 636, end sync indicator 730, and post-critical
section 638. End critical section signal 722 1s a signal sent
from upstream PE-0 to downstream PE-1, as described 1n
turther detail below.

Processing job 602 and job 604 according to job processing,
diagram 700 advantageously solves the overlapping critical
section problem and maintains the processing order of net-
work data elements. In general, a downstream processor does
not process a critical section until an end critical section
signal 1s recetved from an upstream processor. Consider, for
example, PE-1 processing job 604. If PE-1 detects a critical
section 1n a task, such as critical section 636, before end
critical section 1s received, PE-1 suspends processing task
J1L. If, on the other hand, PE-1 receives end critical section
signal 722 before encountering critical section 636, PE-1
never suspends operation, and processes critical section 636
without interruption. End critical section signal 722 indicates
that the upstream processor has finished processing a critical
section, such as critical section 610, and ensures that PE-0 and
PE-1 are not in contlict for shared or state sensitive resources.

It should be noted that although job 602 and job 604 are
described as suspending processing of tasks until end critical
section signals are received, this 1s for illustrative purposes
only. In operation, 11 an end critical section 1s received belore
a critical section of a task 1s encountered, processing can
continue without suspension.

Job processing diagram 700, and the operation of PE-0 and
PE-1 are now described with reference to the elements of
exemplary processing element 5300, shown 1n FIG. 5. PE-0
begins processing task JOA at pre-critical section 608.
Instruction fetch unit 502 fetches the instructions associated
with pre-critical section 608 from program memory 306.
After instruction bufier 3504 loads the instruction from

US RE43,825 E

11

istruction fetch unit 502, instruction 1ssue control 508 exam-
ines the nstruction in instruction butter 504.

Instruction 1ssue control 508 determines 1t the nstruction
in instruction buffer 504 includes a sync indicator. A sync
indicator identifies the beginning of a critical section. If the
instruction does not include a sync mdicator (as 1s the case
with instructions 1n pre-critical section 608) instruction butier
504 provides the mstruction to function decode and execution
switch 506. If the instruction 1s a load instruction (1.e.,
retrieves data from memory), or a store instruction (1.€., stores
data to memory), function decode and execution switch 506
issues the instruction to memory/peripheral interface unit
516. Memory/peripheral interface unit 516 accesses the
memory or peripheral, per the instruction. If the instruction 1s
an arithmetic instruction, function decode and execution
switch 506 provides the instruction to function unit 512 for
execution. Other types of mnstruction execution units can be
included, as would be apparent. After PE-0 has processed the
istructions in pre-critical section 608, instruction fetch unit
502 fetches sync indicator 708 from program memory 306.

Sync mdicator 708 1dentifies the beginning of critical sec-
tion 610 1n task JOA. In one embodiment, sync indicator 708
1s the first instruction 1n critical section 610 that includes an
additional bit, or “sync bit,” 1dentifying the instruction as
included 1n a critical section. The sync bit can be included 1n
a number of ways to indicate the beginning or end of a critical
section. For example, setting the sync bit in every instruction
in a critical section, setting the sync bit 1n the first and last
instructions 1n a critical section, setting the sync bit 1n the first
instruction of a critical section and the first instruction 1n a
post-critical section, additional instruction bits indicating the
end of a critical section, etc. Note also that a sync indicator
can be associated with the first instruction of a critical section
(in which case it takes eflect before the instruction 1s
executed) or can be associated with the preceding instruction
(in which case it takes effect after the instruction 1s executed).
Similarly, an end sync indicator can be associated with the
last instruction 1n a critical section, or the instruction imme-
diately following the last instruction 1n a critical section.

Although one embodiment 1s described 1n terms of sync
bits, other types of sync indicators are possible. For example,
sync indicator 708 can be a particular type of instruction, such
as a shared memory instruction or shared peripheral instruc-
tion, that instruction 1ssue control 508 identifies, sync indica-
tor 708 can be a type of no-op instruction identifying the
beginning of a critical section, etc. Note that although job
processing diagram 700 shows sync indicator 708 separate
from critical section 610, 1n one embodiment, sync indicator
708 1s part of an mstruction included 1n critical section 610.

Instruction fetch unit 502 loads the sync indicator 708 1nto
instruction buifer 504. Instruction 1ssue control 508 detects
the presence of sync indicator 708 in instruction butier 504,
indicating that PE-0 1s to change from a first operative state, or
“normal mode” into a second operative state, or “critical
section mode.” Generally, in normal mode, PE-0 operates
normally, processing non-critical section instructions. In
critical section mode, processing element 500 processes criti-
cal-section instructions. In order for PE-0 to enter critical
section mode, update receive control 520 must recerve end
critical section signal 724 from an upstream processing ele-
ment. End critical section signal 724 indicates that the
upstream processing element 1s not 1n critical section mode,
and that PE-01s free to enter critical section mode withoutrisk
of conflict.

State element 510 stores state information (e.g., a bit)
identifying either normal mode or critical section mode for
PE-0. To process sync indicator mstruction 708, or mstruc-

10

15

20

25

30

35

40

45

50

55

60

65

12

tions 1n critical section 610, PE-0 must have receitved end
critical section signal 724 from the upstream processor. In
example processing element unit 300, update recerve control
520 receives critical section end signal 724 via upstream
connection 524. If instruction 1ssue control 508 receives a
signal from update receive control 520 indicating the pres-
ence of end critical section signal 724, instruction 1ssue con-
trol 508 1s permitted to set state element 510 to critical section
mode. PE-0 then processes instructions in critical section
610.

If, on the other hand, instruction 1ssue control 508 has not

received indication from update recerve control 508 of arrival
of end critical section signal 724, processing element 500
suspends processing instructions when it reaches sync 1ndi-
cator 708. When end cnitical section signal 724 1s recerved
from the upstream processing element, imstruction 1ssue con-
trol 508 resumes 1ssuing instructions for execution.
PE-0 processes the instructions of critical section 610 simi-
lar to processing pre-critical section 608, once update recerve
control 520 receives critical section end signal 724. While
processing critical section 610 in critical section mode,
instruction 1ssue control 508 detects end sync indicator 712,
identifying the end of critical section 610. Instruction 1ssue
control signals update transmit control 522, causing end criti-
cal section signal 722 to be sent to downstream processing
clement PE-1. PE-0 then continues processing task JOA at
post-critical section 612.

It should be noted that provisions should be made for the
case 1n which a processing element sends multiple end critical
section signals to a downstream processing element before
the downstream processing element processes the corre-
sponding critical sections. Consider, for example, the case 1n
which a processing element, such as PE-0, processes two end
sync indicators, causing PE-0 to generate two end critical
section signals. IT a downstream processing element, such as
PE-1, has not yet processed a critical section associated with
the first end critical section signal (e.g., 1t 1s suspended), PE-1
and PE-0 may gel out of sync and cause program errors. Some
mechanism, such as an acknowledge signal from PE-1 to
PE-0 can be provided that ensures that PE-0 suspends pro-
cessing critical sections 1t PE-1 has yet to process a critical
section. Alternately, a counter can record the number of end
critical section signals that have been received, as described
below.

In an alternate embodiment, each processing element can
include an end critical section signal counter that records
receipt ol end critical section signals. Generally, the counter
can be mnitialized to some value, and each time the processing
clement processes a critical section, the counter can be dec-
remented. Eventually, the counter reaches zero, and the pro-
cessing element suspends instruction execution before enter-
ing a new critical section. The processing element resumes
processing when the counter 1s incremented upon recerving
an end critical section signal from an adjacent, upstream,
processing element. If, for example, the counter 1s mnitialized
at zero, processing elements downstream from a particular
processing element can not process critical sections before
receiving an end critical section signal. In one possible
embodiment, state element 510 provides the physical imple-
mentation for an end critical section signal counter.

Consider, for example, a team 1ncluding three processing,
clements. Since none of the processing elements can process
a critical section without recerving an end critical section
signal, one of the processors 1s designated as the “start”
processing element. The end critical section signal counter of
the start processing element 1s incremented to at least one
(e.g., by system software or a host controller), and the end

US RE43,825 E

13

critical section signal counters of the rest of the processing
clements are zeroed. The team begins processing jobs 1n
normal mode. Necessarily, the start processing element 1s the
first processing element to encounter and process a critical
section. The start processing element decrements 1ts end criti-
cal section signal counter when it processes the critical sec-
tion. After processing the critical section, the start processing,
clement provides an end critical section signal to a second,
downstream, processing element.

The second processing element increments its critical sec-
tion end signal counter when the end critical section signal 1s
received from the start processing element. The second pro-
cessing element may now decrement the counter and process
a critical section. Processing was suspended 11 the second
processing element had encountered a critical section before
receiving the end critical section signal. In the alternative,
processing the next critical section will proceed uninterrupted
if a critical section has not yet been encountered. As 1s appar-
ent, the processing element downstream may not process a
critical section until an end critical section signal 1s recerved
from the second processing element. This advantageously
ensures that no processing elements in the team process a
critical section until an end critical section signal 1s received.

The size of the end critical section signal counter can be
chosen to accommodate the number of critical sections a job
can include. Jobs for processing network data elements often
include a known or predictable number of critical sections.
An end critical section signal counter that can be incremented
a number of times equal to the maximum number of critical
sections 1n a job ensures that a processing element will not
overflow the counter of a downstream processing element.
For example, given a suilicient number of end critical section
signals (that increment the end critical section signal
counter), a processing element can process all of the critical
sections 1n a job. As a result, the processing element sends an
end critical section signal to a downstream processing ele-
ment each time a critical section 1s completed. If the down-
stream processing element 1s stalled, the end critical section
signal counter should be of sulficient size to accommodate all
of the end critical section signals. Once the downstream pro-
cessing element resumes processing the job, 1t can process
critical sections and decrement the end critical section signal
counter. Note that to ensure that end critical section signal
counters 1n a processing element team do not get out of sync,
care should be taken to ensure that the jobs on different
processing clements include same number of critical sec-
tions, or that some mechanism 1s provided that accounts for
branching in the program flow of jobs.

Additionally, other incrementing and decrementing
schemes can be used to maintain synchronization between
processing elements when processing critical sections. For
example, a processing element can decrement an end critical
section signal counter when an end critical section signal 1s
received from an upstream processing element, and incre-
ment the counter when a critical section 1s processed. In this
example, a threshold can be set that limits the number of
critical sections that can be processed before end critical
section signals are recerved from the upstream processor. This
would allow a processing element to process critical sections
before recerving an end critical section signal, up to some
threshold. For example, with a counter mnitialized at zero, and
a threshold set at two, a processing element could process two
critical sections and increment the end critical section signal
counter twice before suspending processing and waiting for
an end critical section signal from an upstream processing

10

15

20

25

30

35

40

45

50

55

60

65

14

clement. Once the signal 1s received, the processing elements
decrements the counter to less than two, and processing can
resume.

Returning to processing diagram 700, PE-1 processes job
604 concurrent with PE-0. PE-1 begins processing job 604
with pre-critical section 634. PE-1 detects sync indicator 728
alter processing pre-critical section 634. After detecting sync
indicator 728, PE-1 suspends processing instructions until
update recerve control 520 receives end critical section signal
722 from upstream processor PE-0. Upon receipt of end
critical section signal 722, PE-1 enters the critical section
mode and processes the mstructions of critical section 636.
PE-1 leaves the critical section mode after processing critical
section 636, and sends end critical section signal 732 to a
downstream processing element. After exiting critical mode,
PE-1 processes post-critical section 638.

Meanwhile, PE-0 continues processing task JOB at pre-
critical section 628 after processing post-critical section 612.
While processing pre-critical section 628, PE-0 detects sync
indicator 718 1n a manner similar to as described above 1n
conjunction with sync indicator 708. PE-0 suspends process-
ing until receiving end critical section signal 726 from the
upstream processor. Once end critical section signal 726 1s
received, PE-0 enters critical mode and processes critical
section 630.

FIG. 8 1llustrates a process for executing overlapping tasks,
according to an embodiment of the present invention. Method
800 1s described 1n terms of a first, upstream processing
clement and a second, downstream processing element.
Examples of such processing elements can be PE-0 and PE-1
of FIG. 7, processing element 404A and processing element
404B of FIG. 4B, efc.

After method 800 starts 1n step 802, the first processing
clement processes a critical section in step 804. Since the first
processing element 1s processing a critical task, no end criti-
cal section signal, such as end critical section signal 722, 1s
provided to the second, processing element.

In step 806, a second processing element 1s processing a
task that includes a critical section. Since the second process-
ing element has not recerved an end critical section signal
from the upstream processing element, the second processing
clement suspends processing the task before processing
instructions in the critical section.

In step 808, the first processing element detects an end sync
indicator, indicating the end of processing the critical section.
In step 810, the first processing element sends an end critical
section signal, such as end critical section signal 722 to the
second processing element, downstream. The end critical
section signal indicates that the second processing element
can resume processing a critical section. In step 812, the
second processing element resumes processing the task at the
point at which 1t was suspended. After step 812, the process of
FIG. 8 ends 1n step 814.

In general, the present invention provides a system and
method for processing network data elements concurrently at
high speed across multiple processing elements. A network
line module, such as network line module 1041, receives
network data elements from a network or switch fabric via a
network line module mgress port. The network data elements
are provided to a multiprocessor core on the network line
module. The received network data elements are distributed
to multiple processing elements within the multiprocessor
core.

The processing elements process the network data ele-
ments according to program instructions stored 1n a program
memory. In one embodiment, teams of processing elements
are arranged 1n a ring configuration. The network data ele-

US RE43,825 E

15

ments are distributed to processing elements within the team
for processing. Each processing element 1n the team executes
program instructions for processing a network data element

as a job. Communication between processing elements 1n the
team maintains the order in which the network data elements >
are recerved during processing. In one embodiment, a first
processing element suspends processing instructions until
receiving a signal from a second processing element upstream
trom the first processing element. The signal indicates that the
first processing element may continue processing without
risk of changing the order of network data elements or cor-
rupting data values held by a shared resource.

After processing, the multiprocessor core provides pro-
cessed network data elements to the network line module. The
network line module provides the processed network data
clement to an egress port connected to a network or switch
fabric.

The aspect of the present invention described above pro-
vides techniques by which multiple processing elements can 20
concurrently process multiple network data elements. The
processing order ol network data elements 1s maintained
within the team by coordinated processing among the team
processing elements. Communication 1s provided between
adjacent team processing elements so that a processing ele- 25
ment does not process a critical section until recerving an end
critical section signal from an upstream processing element.
The upstream processing element finishes processing a criti-
cal section before sending the end critical section signal. In a
sense, permission to process a critical section 1s passed 30
around the team of processing elements.

Although this first aspect of the present invention can be
implemented independently, 1t may also be implemented 1n
conjunction with another aspect of the present invention that
increases processing speed by eliminating shared resource 35
access latency from the successive executions of critical sec-
tion code by a team of processing elements. According to this
other aspect of the mvention, rather than retrieving shared
resource data from a shared resource, a processing element
can recetrve shared resource data from an upstream processing 40
clement in the team. The recerved data can be used instead of
data from a shared resource load or other shared resource
access operation. In one embodiment, an upstream process-
ing element forwards data representing a new value to be held
by the shared resource to a forward queue of a downstream 45
processing element. This aspect of the invention 1s described
in more detail below.

FIG. 9 1llustrates a block diagram of a data forwarding
system, according to the present invention. Data forwarding
system 900 1includes processing elements 902A, 9028, 902C, 50
902D, and 902E, which are of a type that can be employed 1n
data communications system 100. Each of processing ele-
ments 902A-902F includes a forward queue, or forwarding,
storage element, shown as forward queues 904A-904E. In
general, data forwarding system 900 operates to forward data 55
between processing elements 902A-902E. A first processing
clement provides a copy of data to be written to a shared
resource, such as a shared variable 1n memory, to a forward
queue at a second processing element, downstream. When the
downstream processing element 1s to access the shared 60
resource, 1t determines if the forward queue includes a copy of
the data. I the forward queue includes the data, the down-
stream processing element uses the copy and need not wait to
retrieve it from the shared resource. Data forwarding provides
a high level of elliciency when processing data from shared 65
resources, since processing elements need not wait for data to
be written to, or retrieved from, shared resources.

10

15

16

Note that FIG. 9 shows data forwarding system 900 as
including a portion of a team of processing elements. The
number and configuration of processing elements 902A-
902F are chosen for ease of description, and any configura-
tion 1ncluding one or more processing elements 1s possible
(e.g., one processing element may be used as a test case). For
example, data forwarding system 900 can include two pro-
cessing elements, three processing elements, four processing
clements, etc. Additional examples of team configurations are
shown i FIGS. 4A-4B.

Processing elements 902A-902E are connected by data
forwarding connections 906A-906F. Processing eclement
902A 1s connected to processing element 902B via data for-
warding connection 906B. Processing element 902B 1s con-
nected to processing element 902C via data forwarding con-
nection 906C. Processing element 902C 1s connected to
processing element 902D via data forwarding connection
9006D. Processmg clement 902D 1s connected to processing
clement 902E via data forwarding connection 906E.

End stores connections 908A-908H provide addltlonal
connections between processing elements 902A-902E. Pro-
cessing element 902A 1s connected to processing element
902D wvia end stores connection 908B. Processing element
902B 1s connected to processing element 902E via end stores
connection 908D. Each of processing elements 902A-902E
includes an incoming end stores connection and an outgoing
end stores connection. Partial end stores connections (i.e.,
end stores connections 908 A, 908C, 908E, 908F, 908G, and
908H) are to processing elements not shown 1n FIG. 9 (i.e.,
farther upstream or downstream from the shown processing
clements). For example, end stores connection 908 A con-
nects processing element 902A to a processing element fur-
ther upstream.

Data forwarding connections 906 A-906F can be any con-
nection that allows one processing element to provide data to
another. Examples of data forwarding connections are traces,
or wires, between processing elements, optical connections, a
data bus connecting processing elements, etc. In the embodi-
ment of FIG. §, for example, upstream connection 524 and
downstream connection 526 provide data forwarding connec-
tions 906 A-906F.

End stores connections 908 A-908H can be anything that
allows one processing element to provide a signal to another.
Examples of end stores connections are traces between pro-
cessing elements, optical connections, a data bus, etc. Note
that although end stores connections 908B and 908D are
shown as connecting every third processing element (e.g.,
processing elements 902A to 902D and 902B to 902E) other
configurations are possible. For example, end stores connec-
tions can connect every processing element, every other pro-
cessing element, or processing elements with multiple pro-
cessing elements mterposed between.

In one embodiment, the particular processing elements
within a team that are connected by end stores connections are
chosen based on shared resource access latency. Generally, 1t
takes time to forward data downstream from one processing
clement to another. Eventually, it 1s more efficient for a pro-
cessing element to retrieve the data from the shared resource,
rather than wait to receive the data via data forwarding. In
such a case, the processing element 1s connected to a process-
ing element farther upstream via an end stores connection.

Each of forward queues 904 A-904E receives data from an
upstream processing element 1n the team. A forward queue
can be anything that receives data from a processing element
via a data forwarding connection. For example, a forward
queue can be a bufler, a latch, a queue, a first-in-first-out
storage element, a content addressable memory, an address-

US RE43,825 E

17

able memory, etc. Although forward queues 904 A-904E are
shown as part of processing elements 902A-902E, other con-
figurations are possible. For example, forward queues 904 A -
904E can be interposed between processing elements 902 A -
902FE as separate elements or included in the upstream
processing elements.

In operation, a first processing element, such as processing,
clement 902 A, accesses and changes data that 1s associated
with a shared resource. In addition to writing the changed data
to the shared resource, processing element 902 A forwards the
changed data to forward queue 904B via data forwarding
connection 906B.

Processing element 902B, 1n conjunction with an attempt
to access the shared resource, attempts to access the data from
forward queue 904B. If the changed data in forward queue
904B corresponds to the data the in the shared resource (e.g.,
based on address or other 1dentifier information), processing
clement 902B accesses the data from forward queue 904B. If
the data i forward queue 904B does not correspond the data
in the shared resource, the processing element 902B accesses
the data from the shared resource.

Additionally, processing element 902B forwards the data
from the forward queue 904B downstream to processing ele-
ment 902C, so that additional downstream processing ele-
ments have access to the changed data from processing ele-
ment 902A. Because of complexity constraints, however,
data cannot be forwarded downstream indefinitely. Eventu-
ally, 1t 1s more eflicient for a downstream processing element
to access the shared resource itself, rather than wait for the
data to be forwarded through a number of upstream process-
ing clements.

In one embodiment, each 1tem of data 1n forward queues
904A-904F includes a time-to-live (*“ITL”") value. Because
data can not be forwarded indefinitely, the TTL value defines
how many times data will be forwarded to downstream for-
ward queues. Each processing element decrements the TTL
value associated with a particular data 1tem each time 1t 1s
torwarded to another processing element downstream. Even-
tually, the TTL value reaches zero, and the data 1s not for-
warded. Note that although the present invention 1s described
as including a TTL value, the TTL value can be omitted in an
embodiment in which data 1s not forwarded to more than one
processing element downstream. Note that the TTL value 1s
one example of a mechanism for limiting forwarding, and
other configurations are possible. For example, an update
item can be forwarded one time and then discarded, obviating
the need for a T'TL value.

Since data 1s not forwarded indefinitely, a processing ele-
ment far enough downstream will have to access the shared
resource to retrieve data in question. Absent another protec-
tive mechanism, 1t 1s possible that a contlict for access to the
shared resource could arise between the upstream and down-
stream processing elements. To address this concern,
upstream processing elements provide an “end stores” signal
to downstream processing elements via end stores connec-
tions 908 A-908H signaling that the downstream processing
clements may access the shared resource without risk of
contlict. For example, processing element 902A, signals to
processing element 902D that data has been written to the
shared resource. After receiving the signal, processing ele-
ment 902D can access the shared resource. End stores con-
nections 908A-908H are described in further detail below.
Note that the end stores signal 1s one example of a mechanism
for precluding conflict with processing eclements farther
downstream, and other configurations are possible.

FIG. 10 illustrates an instruction processing diagram,
according to an embodiment of the present invention. Instruc-

10

15

20

25

30

35

40

45

50

55

60

65

18

tion processing diagram 1000 shows the processing of
instructions for data forwarding by members of a processing
clement team. Instruction processing diagram 1000 shows
instruction processing as four vertical columns, each of which
1s associated with one of processing elements 902A, 902B,

902C, and 902D.

Reference to the processing elements of FI1G. 9, as well as
the number and configuration of the processing elements, are
chosen for ease of description, and other configurations are
possible. For example, as few as one processing element, and
as many processing elements as 1s practical can be included.
Additionally, other configurations of signaling between pro-
cessing elements are possible. For example, processing ele-
ment 902A can provide forward data signal 1068 to process-

ing elements farther downstream than processing element
902B.

Additionally, processing element 902A provides end
stores signal 1078 to processing element 902D for illustrative
purposes only, and the signal can be provided to other pro-
cessing elements 1n the team. For example, processing ele-
ment 902A can provide end stores signal 1078 to processing
clement 902B, processing element 902C, or other processing
clements not shown 1 FIG. 9.

Instruction processing diagram 1000 shows processing
clement 902 A processing a stream of instructions including
begin loads indicator 1030, load instruction 1032, sync indi-
cator 1034, critical section 1nstructions 1036, update instruc-
tion 1038, end sync indicator 1040, store instruction 1042,
and end stores indicator 1044. Note that the combinations of
istructions ol instruction processing diagram 1000 are
shown for 1llustrative purposes only, and the underlying con-
cepts of the present invention encompass other combinations
of instructions. For example, the processing elements 1n a
team are configured 1n a ring and each processing element
processes all of the types of instructions, generates all of the
signals, and receives all of the signals shown in 1nstruction
processing diagram 1000.

Instruction processing diagram 1000 shows processing
clement 902 A providing forward data signal 1068 to process-
ing element 902B, end critical section signal 1070 to process-
ing element 902B, end stores signal 1078 to processing ele-
ment 902D.

Instruction processing diagram 1000 shows processing
clement 902B processing a stream of instructions including
load istruction 1080, sync indicator 1046, critical section
instructions 1048, update mstructions 1050, end sync indica-
tor 1052, store instruction 1054, and end stores indicator
1056. Instruction processing diagram 1000 shows processing,
clement 902B providing forward data signal 1072 to process-
ing element 902C and end critical section signal 1074 to
processing element 902C.

Instruction processing diagram 1000 shows processing
clement 902C processing a stream of 1nstructions including
load mstruction 1094, sync indicator 1038, critical section
instructions 1090, update mstructions 1084, end sync indica-
tor 1060, store instruction 1086, and end stores indicator
1088. Instruction processing diagram 1000 shows processing,
clement 902C providing forward data signal 1092 to process-
ing element 902D and end critical section signal 1082 to
processing element 902D.

Instruction processing diagram 1000 shows processing
clement 902D processing a stream of instructions including
begin loads indicator 1064, load instruction 1066, and end
sync indicator 1062. Instruction processing diagram 1000
shows processing element 902D receiving end stores signal
1078 from processing element 902A.

US RE43,825 E

19

While processing a stream of instructions, processing ele-
ment 902A encounters begin loads indicator 1030. Begin
loads indicator 1030 indicates an impending load instruction
that references a shared resource. Generally, begin loads indi-
cator 1030 1s used to coordinate load and store access to a
shared resource. In one embodiment, begin loads indicator
1030 1s an 1instruction that precedes load instruction 1032 and
includes an additional bit, or “begin loads bit,” identiiying the
instruction as a begin loads indicator. Note also that a begin
loads indicator can be included with the load instruction
itsell, with any instruction preceding a load instruction.
Although one embodiment 1s described 1n terms of begin
loads bits, other types of begin loads indicators are possible.
For example, begin loads indicator 1030 can be a particular
type of instruction or a type ol no-op 1nstruction 1dentifying
an 1mpending load instruction. Processing of begin loads
indicators 1s described 1n further detail below 1n conjunction
with end stores signal 1078 and processing element 902D.

Processing element 902A processes load instruction 1032
alter processing begin loads indicator 1030. Load instruction
1032 causes processing element 902A to begin loading data
from a shared resource, as described above 1n reference to
FIG. 7. In an embodiment of the present invention, load
instructions are processed before entering a critical section, or
betfore processing a sync indicator. When the results of load
istruction 1032 are recerved, processing element 902A
stores the data recerved from the shared resource for process-
ing, such as 1n a register. Next, processing element 902A
processes sync indicator 1034, and critical section 1nstruc-
tions 1036. Sync indicator 1034 and critical section mnstruc-
tions 1036 are processed as described above with reference to
FIG. 7. Critical instructions 1036, however, include at least
one instruction that references or modifies the data loaded
from the shared resource. Since other processing elements
may need to reference the shared data, a store instruction later
in the program causes processing element 902A to write the
modified data back to the shared resource.

Processing element 902A processes update instruction
1038 after processing critical section instructions 1036. Note
that update instruction 1038 is part of the critical section
defined by sync indicator 1034 and end sync indicator 1040.
As such, update 1nstruction 1038 1s a critical section 1nstruc-
tion, but 1s separately shown for i1llustrative purposes. Update
instruction 1038 causes processing element 902 A to provide
the modified data to processing element 902B as forward data
signal 1068, via data forwarding connection 906B.

Although a specific example of an update 1nstruction 1s
described, a number of embodiments are possible. An update
instruction 1038 can be, for example, an 1nstruction that
includes additional bits that indicate to processing element
902A that the instruction results should be forwarded. As
such, update mstruction 1038 can be one of the instructions 1n
critical section instructions 1036 that, when processed,
causes the results to be forwarded to processing element
902B. In another embodiment, update instruction 1038 can be
an mstruction identitying a particular register, the contents of
which are to be forwarded to processing element 902B. Note
that only one update instruction (update instruction 1038) 1s
shown for descriptive clarity, and that processing element
902A can process any number of update instructions 1n a
critical section, each of which forwards data values to pro-
cessing clement 902B.

Forward data signal 1068 can include a data value, a data
register number, a shared resource address, a TTL value, and
a last update indicator. The data value 1s the value of the data
being forwarded. The data register number identifies a par-
ticular data register with which the data 1s associated. For

5

10

15

20

25

30

35

40

45

50

55

60

65

20

example, a processing element may include a register file that
includes a number of registers, such as register file 514 of
processing element 500. The data register number 1dentifies a
particular register in register file 514. The shared resource
address 1dentifies the particular shared resource address of the
data originally loaded. The TTL (i.e., time-to-live) value indi-
cates how far downstream the data should be forwarded, as
described above. The last update flag indicates that the pro-
cessing element has processed the last update 1nstruction 1n
the critical section, and no more data forward signals will be
provided to the downstream processing element 1in relation to
that critical section.

FIG. 12 1llustrates the contents of a forward queue, accord-
ing to an embodiment of the present invention. Forward
queue 1200 includes a data value field 1202, a shared resource
address field 1204, a register number field 1206, a TTL value
field 1208, and a last update field 1210. In operation, process-
ing clement 902A generates forward data signal 1068 each
time an update instruction 1s processed. Each forward data
signal 1068 1s stored as a new row, or “update item™ 1212, 1n
torward queue 1200. Update item 1212 includes a data value
in data value field 1202, shared resource address in shared
resource address field 1204, a data register number 1n register
number field 1206, a TTL value 1n TTL field 120, and a last
update value 1n last update field 1210. The use of the various
values of forward queue 1200 1s described 1n further detail
below.

Returning to FIG. 10, processing element 902 A processes
end sync 1ndicator 1040 after processing update 1nstruction
1038. End sync indicator 1040 1s processed in the manner
described in conjunction with FIG. 7. End sync indicator
1040 causes processing element 902A to send end critical
section signal 1070 to processing element 902B via data
forwarding connection 906B. As described above 1n conjunc-
tion with FIG. 7, processing element 902B does not process
critical section instructions 1048 until recerving end critical
section signal 1070. Note, however, that although processing
clement 902B 1s 1illustrated as suspending processing until
end critical section signal 1070 1s recerved, other scenarios
are possible. For example, processing element 902B may
receive end critical section signal 1070 before encountering a
critical section, and in such a case, would process critical
section instructions 1048 without pausing.

Next, processing element 902 A processes store instruction
1042. Store mstruction 1042 causes processing element 902 A
to store data values from a register to the shared resource.
Processing element 902 A processes end stores indicator 1044
alter processing store mstruction 1042. Although a specific
example of an end stores 1indicator 1s described as a separate
instruction, other configurations are possible. For example,
end stores bits may be included in other instructions, for
example store mstructions, that identify the istruction as an
end stores indicator. End stores indicator 1044 causes pro-
cessing element 902A to send end stores signal 1078 to pro-
cessing element 902D via end stores connection 908B. End
stores signal 1078 indicates that processing element 902A has
processed the last store instruction, or store instruction 1042,

Although end stores signal 1078 indicates that store
istruction 1042 has been processed, due to memory or
peripheral latency the store operation may not be complete
when end stores indicator 1044 1s processed. This 15 to say
that end stores indicator 1044 1s processed without waiting for
completion of store instruction 1042. End stores signal 1078
1s discussed in more detail 1n conjunction with processing
clement 902D and begin loads indicator 1064, below.

Instruction processing diagram 1000 shows processing
clement 9028 as beginning processing at load instruction

US RE43,825 E

21

1080. At some point during instruction processing, process-
ing element 9028 receives forward data signal 1068 from
processing element 902A. The data included 1n forward data
signal 1068 1s included 1n forward queue 904B as an update
item.

Although nstruction processing diagram 1000 shows pro-
cessing element 9028 as receiving forward data signal 1068
between load struction 1080 and sync indicator 1046, for-
ward data signal 1068 can be recerved anytime before pro-
cessing element 902B begins processing critical section
instructions 1048. As discussed above 1n conjunction with
FIG. 7, processing element 902B suspends processing
instructions at sync indicator 1046 until recerving end critical
section signal 1070.

Once processing element 902B receives end critical sec-
tion signal 1070, processing resumes at sync indicator 1046.
Normally, there 1s a time delay between processing load
instruction 1080 and actually recerving the data from the
shared resource. As a result, processing element 902B may
not have recerved the data from the shared resource when end
critical section signal 1070 1s recerved. In such a case, pro-
cessing element 902B can still process critical section
instructions 1048 if forward queue 904B includes the data
referenced by load mstruction 1080.

Processing element 902B determines 1f forward queue
904B includes the data referenced by load instruction 1080 by
processing the update 1tems 1n the forward queue and com-
paring them to addresses from which data has been loaded by
load mstruction 1080. If forward queue 904B includes the
data referenced by load instruction 1080, processing element
902B uses the copies of the data from forward queue 9048
rather than waiting for load instruction 1080 to complete.
This allows processing element 902B to process critical sec-
tion instructions 1048 immediately using data from forward
queue 904B. How processing element 902B processes the
update 1items in forward queue 904B is described 1n further
detail below.

Additionally, processing element 902B decrements the
TTL wvalues associated with each update item, and update
items with a decremented TTL value of less than one are not
forwarded. The remaining update items are forwarded as
forward data signal 1072, such as forward data signal 1068,
via data forwarding connection 906C. In one embodiment,
processing element 902B forwards update items downstream
to processing element 902B as they are processed.

Note that consideration must be given to the case 1n which
multiple processing elements forward multiple versions of
the contents of a shared resource address, such as a single
shared variable. For example, processing element 902A can
forward a value of a shared variable to processing element
902B which, 1n turn, can forward the value to processing
clement 902C. Subsequently, processing element 902B can
modity the value, and forward the modified value to process-
ing element 902C. In this example, processing element 902C
receives two potentially contlicting copies of the shared vari-
able, the first from processing element 902A and the second
from processing element 902B. One way of addressing the
1ssue ol contlicting copies of the shared variable 1s to use a
first-1in-first-out (FIFO) storage element as a forward queue.
Using a FIFO, the processing element overwrites the older
copies of the shared variable with the last, or latest, copy of
the shared variable 1n the forward queue.

Once the update items in forward queue 904B are pro-
cessed, processing element 902B processes critical mstruc-
tions 1048. Any critical section instruction that 1s an update
istruction causes processing element 9028 to provide the
changed data (as described above 1n conjunction with update

10

15

20

25

30

35

40

45

50

55

60

65

22

instructions 1038) to processing element 902C as forward
data signal 1072 via data forwarding connection 906C. Pro-
cessing element 902B processes end sync indicator 1052 after
processing update instruction 1050. End sync indicator 1074
causes processing element 902B to provide end critical sec-
tion signal 1074 to processing element 902C via data for-
warding connection 906C.

Processing element 902B processes store instruction 1054
after processing end sync indicator 1052. Store instruction
1054 causes processing element 902B to store changed data
to the shared resource. Processing element 902B processes
end stores indicator 1056 after processing store instruction
1054. End stores indicator 10356 causes processing element
902B to provide an end stores signal (not shown), similar to
end stores signal 1078, to a processing element downstream
(notshown). In FIG. 9, for example, processing element 9028
provides the end stores signal to processing element 902EF via
end stores connection 908D.

Once processing element 902C receives end critical sec-
tion signal 1074, processing resumes at sync indicator 1058.
Processing element 902C determines if forward queue 904C
includes the data referenced by load instruction 1094. If for-
ward queue 904C includes the data referenced by load
instruction 1094, processing element 902C uses the copies of
the data from forward queue 904 B rather than waiting for load
instruction 1094 to complete.

Once the update items in forward queue 904C are pro-
cessed, processing element 902C processes critical istruc-
tions 1090. After processing critical instructions 1090, pro-
cessing element 902C processes update instruction 1084.
Update instruction 1084 causes processing element 902C to
provide the changed data to processing element 902C as
forward data signal 1092 via data forwarding connection
906C. Processing element 902C processes end sync indicator
1060 after processing update instruction 1084. End sync indi-
cator 1082 causes processing element 902C to provide end
critical section signal 1082 to processing element 902D via
data forwarding connection 906D.

Processing element 902C processes store instruction 1086
after processing end sync indicator 1060. Processing element
902C processes end stores indicator 1088 after processing
store mstruction 1086. End stores indicator 1088 causes pro-
cessing element 902C to provide an end stores signal (not
shown), similar to end stores signal 1078, to a processing
clement downstream (not shown).

Processing element 902D 1s shown beginning processing
with begin loads indicator 1064. Begin loads indicator 1064
enables processing elements to avoid conflict for shared
resources. Begin loads indicator 1064 ensures that processing
clement 902 A has finished processing store mstruction 1042
betore processing element 902D begins loading data from the
shared resource 1n load mstruction 1066. Processing element
902D suspends processing mstructions at begin loads 1ndica-
tor 1064 until end stores signal 1078 1s received from pro-
cessing element 902A.

As discussed above, because of practical considerations,
data 1s not forwarded 1ndefinitely. Eventually, the T'TL value
of an update 1tem 1s decremented to less than one and 1t 1s not
forwarded. In the example of FIG. 10, data from processing
clement 902A 1s forwarded to processing element 902B and
processing element 902C, but 1s not forwarded to processing
clement 902D. Since processing element 902D must access
the shared resource to retrieve data 1t 1s possible that a contlict
for access to the shared resource will arise with processing
clement 902A.

For example, in one possible embodiment, the TTL value
of an update 1tem 1s 1itially set so that the update 1tem 1s not

US RE43,825 E

23

forwarded so far downstream as to be received by the pro-
cessing element connected by an end stores connection. Con-
sider, for example, an update item generated by processing
clement 902A. The update item T'TL value 1s set to two. Since
both processing element 902B and processing element 902C
decrement the TTL value by one, processing element 902C
does not forward the update 1tem to processing element 902D.
Thus, processing element 902D, which 1s connected to pro-
cessing element 902A by end stores connection 9088, must
retrieve the data from the shared resource.

The problem 1s that processing element 902D needs to wait
for processing clement 902A to finish processing store
instruction 1042 before mitiating a load instruction, to avoid
receiving an outdated or invalid copy of data. Consider, for
example, the situation 1n which processing element 902D
processes load mstruction 1066 betore store instruction 1042
1s completed. In this situation, 1t 1s possible that processing
clement 902D will load an outdated version of data from the
shared resource before processing element 902A has com-
pleted storing the changed data. As a result, processing ele-
ment 902D will have an outdated version of the data, and may
result 1n program failure.

Begin loads indicator 1064 and end stores signal 1078
addresses the potential conflicting accesses to the shared
resource. Processing element 902D ensures that the data in
the shared resource has not been changed while the access 1s
taking place by suspending processing instructions at begin
loads indicator 1064, and waiting until end stores signal 1078
1s recerved. Careful consideration, however, should be given
to the timing of providing the end stores signal, so as to ensure
load 1nstruction 1066 always results 1n a valid copy of the data
stored by processing element 902A. Processing element
902D resumes processing at load instruction 1066 once end

stores signal 1078 1s receiwved. Instruction processing pro-
ceeds as described above for all instructions after load
instruction 1066.

The operation of data forwarding 1s described in reference
to processing element 500 of FIG. 5. Processing element 500
receives forward data signals via upstream connection 524
and transmits forward data signals via downstream connec-
tion 526. When processing element 500 processes an update
instruction, the data identified by the update instruction is
provided to update transmit control 522. Update transmit
control 522 generates the forward data signal that 1s provided
to the downstream processor.

When processing element 500 receives a forward data sig-
nal, update receive control 520 stores the forward data signal
as an update 1tem 1n the forward queue. In the embodiment of
FIG. 5, update recerve control 520 acts as the forward queue.
When processing element 500 reaches a sync indicator 1den-
tifying the beginning of a critical section 1n a job, processing,
update 1tems in update receive control 520 can begin. Pro-
cessing the update 1tems 1n update recerve control 520 pro-
vides the mechanism for using the data in update receive
control 520 rather than data from the shared resource. Pro-
cessing element 500 processes the update 1tems until the last
update indicator 1s found 1in the end update items signal 1s
found 1n update recerve control 520. Eventually, processing
clement 500 receives an end critical section signal via
upstream connection 524,

Generally, processing the update items involves comparing,
the shared resource address field for each update 1tem with the
address associated with the load 1nstructions processed in the
begin loads portion of the job. Processing element 500 has
already processed the load instructions 1n the begin loads
portion of the job when the sync indicator 1s encountered. As
processing element 500 processes the load instructions, the

10

15

20

25

30

35

40

45

50

55

60

65

24

shared resource addresses from which load instructions are to
retrieve the data are stored in address binding memory 518.
When processing element 500 begins to process the update
items 1n update receive control 520, an address comparator
compares the shared resource address field associated with
cach update 1tem with the addresses in address binding
memory 518 to determine 11 they are equal.

In one embodiment, address binding memory 518 includes
a number of registers equal to the number of registers 1n
register file 514. A load instruction includes a register number
identifying a register in register file 514 to which the retrieved
information 1s to be stored. In processing the load instruction,
the address associated with the load instruction 1s written to
the register 1n address binding memory 518 that corresponds
to the register number. When update items are processed, the
register number field of the update 1tem 1dentifies the particu-
lar register 1n address binding memory 518 with which to
compare the update item address field (e.g., address field
1204). I the update 1tem address field matches the address 1n
address binding memory 3518, the data value field associated
with the update 1tem 1s written to register file 514 at the
particular register 1dentified by the register number field. If,
on the other hand, the shared resource address field associated
with the update item does not match an address 1n address
binding memory 518, processing element 500 does not write
the value from update receive control 520 to the register file
514.

Similarly, the address binding memory 518 1s accessed
when processing element 500 generates an update item. An
update 1tem 1s generated 1n response to processing an update
instruction. An update nstruction includes a register number
that identifies the register to which the result of the instruction
1s to be written. To generate an update item, the address 1s
retrieved from the location in address binding memory 518
that corresponds to the register number. Both the register
number and the address are used to generate the update 1tem
for forwarding.

In an alternate embodiment, the address binding memory
518 can be small content addressable memory (CAM). In this
embodiment, the size of the CAM can be chosen to store as
many addresses as there can be load instructions between a
begin loads indicator and a sync indicator in a job. When
processing element 500 processes the load instructions, the
register number associated with each load instruction 1s writ-
ten to the CAM and associated with the load instruction
shared resource address. When update 1tems are processed,
the CAM 1s accessed using the address field from the update
item. I1 the address field corresponds to an address stored 1n
the CAM, the CAM outputs the register number. Subse-
quently, the update item 1s written to register file 5314 at the
register 1dentified by the register number field, as described
above.

Similarly, the CAM 1is accessed when processing element
500 generates an update 1item. To generate an update 1tem, the
register number from an update instruction 1s used to access
the CAM. The CAM provides the address associated with the
register number, and the address 1s used to generate the update
item for forwarding.

In yet another embodiment, the address binding memory
518 can be a CAM that stores as many addresses as there are
registers 1n register file 514. In this embodiment, processing
clement 500 stores the shared resource address associated
with the load instruction at a location in the CAM correspond-
ing to the register number from the load instruction. When
update 1items are processed, the CAM 1s accessed using the
address field from each update 1tem. If the address matches an
address 1n the CAM, the CAM provides the register number

US RE43,825 E

25

associated with the address. If a match 1s found, the update
item 1s written to register file 514 at the register 1dentified by
the register number, as described above.

Similarly, the CAM 1s accessed when processing element
500 generates an update item. To generate an update 1tem, the
register number from an update mnstruction 1s used to access a
location of the CAM. The CAM provides the address associ-
ated with the register number, and the address 1s used to
generate the update item for forwarding.

When the update 1tems are processed, the TTL value field
of each update item 1s decremented. If the decremented T'TL
valueisless than 1, the update item 1s not forwarded. If, on the
other hand, the decremented TTL wvalue 1s not less than 1,
update transmit control 522 provides the update item as a
forward data signal to a downstream processor via down-
stream connection 526.

When processing element 500 begins to process the update
items 1n update receiwve control 520, the shared resource
address field associated with each update item 1s compared
with the addresses 1n address binding memory 518. If the
shared resource address field matches an address 1n address
binding memory 518, the data value field associated with the
update 1tem 1s written to register file 514 at the particular
register 1dentified by the register number field.

FI1G. 11 1llustrates a process for data forwarding, according,
to an embodiment of the present invention. Method 1100 1s
described in terms of a first (upstream) processing element
and a second (downstream) processing element.

After method 1100 starts 1n step 1102, the first processing
clement generates a data value to be written to a shared
resource, 1n step 1104. The data value can be anything to be
written to a shared resource. In step 1106 the first processing,
clement forwards the data value, and any associated informa-
tion generated in step 1104 to a forward queue. Associated
information can include, for example, the shared resource
address to which data value was to be written, a TTL value, a
last update flag, a register 1dentifier, etc.

In step 1108, the second processing element retrieves the
data value and associated information from the forward
queue. The forward queue can be included 1n the first pro-
cessing element, the second processing element, or as an
clement separate from both processing elements.

In step 1110, the second processing element compares the
address information from the forward queue with address
information 1n the address binding memory. The address
information 1n the address binding memory can be any infor-
mation associated with a request for data from a shared
resource. In the example of FIG. 11, the address information
includes an address associated with a load instruction pro-
cessed by the second processing element.

Indecision step 1112, the second processing element deter-
mines whether the addresses 1n the address binding memory
match the address information associated with an update item
in the forward queue. Although the comparison 1s described
as matching, any configuration that identifies the information
as corresponding with the information received from the first
processor 1s possible. For example, the first processing ele-
ment can provide a hash of an address to the second process-
ing element for comparison with a hash in the address binding
memory. If the addresses match, method 1100 continues in
step 1114.

In step 1114, the second processing element updates a
register with the data value from the forward queue. In one
possible embodiment, the second processing element writes
the data value to a register 1dentified by the register identifier
associated with the update 1tem. In an alternate embodiment,
a memory element, such as a CAM, 1n the processing element

10

15

20

25

30

35

40

45

50

55

60

65

26

can provide the register identifier. After step 1114, process
1100 continues 1n step 1116. 11, on the other hand, the second
processing element determines that there 1s no match between
the addresses 1n step 1112, the process of method 1100 con-
tinues 1n step 1116. As described above, a TTL value 1s one
example of a mechanism for limiting forwarding, and other
conflgurations are possible. As such, steps 1116 through 1118
are optional, and depend upon the existence of a TTL value
among the information forwarded with the data value.

In step 1116, the second processing element decrements
the time-to-live value. In decision step 1118, the second pro-
cessing element determines 11 the time-to-live value 1s greater
than zero. If the time-to-live value 1s not greater than zero, the
update 1tem 1s not forwarded, and method 1100 ends 1n step

1124.

I1, on the other hand, the time-to-live value 1s greater than
zero, method 1100 continues 1n step 1122. In step 1122, the
second processing clement forwards the data value and

address information as an update 1item to a downstream pro-
cessor. After step 1122, method 1100 stops 1n step 1124.

FIG. 13 1llustrates an exemplary instruction, according to
an embodiment of the present invention. Exemplary istruc-
tion 1300 includes opcode 1302, source 0 1304, source 1
1306, destination 1308, update 1310, sync 1312, end stores
1314, and begin loads 1316.

Opcode 1302 1s the operator for instruction 1300. Source 0
1304 specifies a first operand operated upon by opcode 1302.
Source 1 1306 specifies a second operand operated upon by
opcode 1302. Destination 1308 1dentifies a register to which
the results of opcode 1302 are stored.

Update 1310 1s a flag, such as a bit, that identifies mnstruc-
tion 1300 as an update 1nstruction. Sync indicator 1312 1s a

flag that 1dentifies instruction 1300 as beginning a critical
section.

End stores 1314 1s a flag that identifies instruction 1300 as
an end stores indicator. Begin loads 1316 1s a flag that 1den-
tifies instruction 1300 as a begin loads 1ndicator.

The system and method of the present invention provide
techniques by which multiple processing elements can pro-
cess multiple network data elements concurrently at high
speed. A team of processing elements 1s defined as a loop, or
ring, and communication between processing elements in the
team enables a programmable network processor to maintain
correct order in processing network data elements. The order
for processing network data elements 1s maintained by coor-
dinated processing of critical sections of tasks. Upon finish-
Ing processing a critical section, a processing element gener-
ates an end critical section signal and sends 1t to a downstream
processing element. The downstream processing element
does not process a critical section before receiving the end
critical section signal.

The system and method of the present imvention also
increases processing speed by eliminating shared resource
access latency from the critical path for processing multiple
network data elements by a team of processing elements.
Rather than accessing a shared resource, a processing element
receives shared resource data from an upstream processing
clement 1n the team. The data from the upstream processing
clement 1s used mstead of data from a shared resource load or
other shared resource access operation. The upstream pro-
cessing element forwards any data to be written to the shared
resource to a forward queue, where the data 1s recerved by the
processing element. The processing element 1s able to use the
torwarded data directly, rather than retrieving the data from
the shared resource. Forwarding data between processing
clements eliminates time delay due to access latency.

US RE43,825 E

27

It will be apparent to one skilled in the art that various
changes and modifications can be made therein without
departing from the spirit and scope thereof. Thus, 1t 1s
intended that the present ivention cover the modifications
and variations of this invention provided they come within the
scope of the appended claims and their equivalents.

What 1s claimed 1s:

1. A data processing apparatus comprising;

a first processing element;

a forwarding storage element; and

a second processing element,

wherein said first processing element 1s operable to send
first data to a resource and to send second data to said
forwarding storage element, wherein the first data cor-
responds to original data,

wherein the second data corresponds to the original data,

wherein said second processing element 1s operable to

attempt to access the first data in the resource,

wherein said second processing element 1s operable to

attempt to access the second data 1n said forwarding
storage element, and
wherein when said second processing element accesses the
first data 1n the resource and accesses the second data 1n
said forwarding storage element, and when 1t 1s deter-
mined that the first data 1n the resource and the second
data 1n said forwarding storage element are not the same,
said second processing element [uses] reads the second
data from said forwarding storage element.
2. The data processing apparatus of claim 1, wherein said
first processing element includes an update-transmait element
operable to provide a signal indicating that said first process-
ing element 1s processing an instruction that utilizes the
resource.
3. The data processing apparatus of claim 1, wherein said
first processing element includes an update-transmit element
operable to provide a signal indicating that said first process-
ing clement has fimshed processing an i1nstruction that uti-
lizes the resource.
4. The data processing apparatus of claim 1, wherein said
forwarding storage element comprises a first-1n {first-out stor-
age element.
5. The data processing apparatus of claim 1, wherein said
torwarding storage element 1s operable to store data elements
n a queue.
6. A data processing method comprising:
sending first data, which corresponds to original data, from
a first processing element to a resource;

sending second data, which corresponds to the original
data, from the first processing element to a forwarding
storage element; accessing, via a second processing ele-
ment, the first data in the resource;

accessing, via the second processing element, the second

data 1n the forwarding storage element; determining
whether the first data in the resource and the second data

in the forwarding storage element are not the same; and

10

15

20

25

30

35

40

45

28

[using] reading one of the first data in the resource and the
second data 1n the forwarding storage element when said
determining determines that the first data 1n the resource
and the second data in the forwarding storage element
are the same and [using] reading the second data from
the forwarding storage element when said determining
determines that the first data in the resource and the
second data 1n the forwarding storage element are not the
same.

7. The data processing method of claim 6, further compris-
ing providing, to the second processing element, a signal
indicating that the first processing element 1s processing an
instruction that utilizes the resource.

8. The data processing method of claim 6, further compris-
ing providing, to the second processing element, a signal
indicating that the first processing element has finished pro-
cessing an 1nstruction that utilizes the resource.

9. A data processing apparatus comprising:

a memory configured to store instructions comprising.

instructions to send first data from a first processing
element to a resource and to send second data from
the first processing element to a forwarding storvage
element, the first and second data corresponding to
original data,

instructions to attempt to access the first data in the
resource by a second processing element,

instructions to attempt to access the second data in the
forwarding storage element by the second processing
element,

instructions to determine that the first data in the
resource and second data in the forwarding storvage
element are not the same, after accessing the first data
and the second data by the second processing ele-
ment, and

instructions to vead the second data from the forwarding
storage element, vesponsive to determining that the
first data and the second data are not the same by the
second processing element; and

one ov more processors configurved to process the
Instructions.

10. The data processing apparatus of claim 9, the instruc-
tions further comprising instructions to provide a signal indi-
cating that the first processing element is processing an
instruction that utilizes the resource.

11. The data processing apparatus of claim 9, the instruc-
tions further comprising instructions to provide a signal indi-
cating that the first processing element has finished process-
ing an instruction that utilizes the rvesource.

12. The data processing apparatus of claim 9, wherein the

50 forwarding storvage element comprises a first-in fivst-out stov-

age element.

13. The data processing apparatus of claim 9, the instruc-
tions further comprising instructions to stove data elements in
a queue by the forwarding storvage element.

% o *H % x

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : RE43,825 E Page 1 of 1
APPLICATION NO. : 11/942275

DATED : November 20, 2012

INVENTOR(S) . Apisdorf et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Specifications:

In Column 9, Line 54, delete “JIL” and mmsert -- J1L --, therefor.

In Column 10, Line 28, delete “712” and insert -- 712, --, therefor.
In Column 12, Line 38, delete “gel” and insert -- get --, therefor.

In Column 14, Line 57, delete “1041.” and msert -- 104, --, therefor.
In Column 16, Line 29, delete “to”” and insert -- two --, therefor.

In Column 17, Line 16, delete ““the 1n the” and insert -- 1n the --, therefor.

Signed and Sealed this
Seventh Day of May, 2013

Teresa Stanek Rea
Acting Director of the United States Patent and Trademark Olffice

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

