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CONFIGURABLE CACHE ALLOWING
CACHE-TYPE AND BUFFER-TYPE ACCESS

Matter enclosed in heavy brackets [ ]| appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

[This application is a continuation of application Ser. No.
08/341.,416, filed Oct. 10, 1995, now U.S. Pat. No. 6,101,

590.1 Multiple reissue applications have been filed for U.S.

Pat. No. 6,427,190. This reissue is a continuation of Reissue
application Ser. No. 10/901,482, filed Jul. 29, 2004 now U.S.
Pat. No. Re. 39,500. The original U.S. Pat. No. 6,427,190 is a
continuation of application Ser. No. 08/541,416, filed Oct. 10,
1995 now U.S. Pat. No. 6,101,590.

FIELD OF THE INVENTION

The present invention relates to computer memory systems
and particularly to virtual memory systems.

BACKGROUND OF THE INVENTION

In order to enhance performance and utility in a computer
system a technique called virtual memory 1s frequently used.
One motivation for using virtual memory 1s to allow multiple
programs to simultaneously share a computer system’s main
memory. This 1s achieved by allocating individual portions
(referred to as blocks or segments) of the main memory to
cach of the programs being run (also referred to as a tasks).
Virtual memory systems are also used 1n cases when a single
program 1s too large to fit mnto main memory. In this case,
portions of the program are stored 1n secondary memory and
the virtual memory system assists 1n retrieving these portions
from the secondary memory.

Virtual memory 1s implemented by using virtual addresses
at the task or program level-—each task having its own set of
independent addresses. When a program performs a memory
access, the virtual addresses are translated into physical
addresses that may or may not be the same as other physical
addresses for other tasks. The translation may be successiul,
leading to an access to main memory using that physical
address. The translation may be unsuccessiul, indicating that
physical, or main memory has not been allocated for that
virtual address, leading to a processor exception, from which
the program may be aborted or physical memory may be
allocated and the task restarted. To enhance the translation
performance, virtual addresses are translated to physical
addresses using information stored 1n a translation lookaside
butter (TLB), also known as a translation cache. The TLB
provides the information that defines the mapping for each of
the virtual addresses.

There are basically two categories of virtual memory sys-
tems presently utilized: paging and segmentation. Paging
systems typically use fixed size blocks for allocating memory
to processes. Segmentation, 1 contrast uses variable size
blocks which may range from a value as small as one byte.
Paging suilers from the disadvantage that sections of contigu-
ous physical memory become unused because the page size 1s
fixed: this 1s known as internal fragmentation. Segmentation,
on the other hand, has disadvantages that the variable-sized
segments may create unused regions of memory as segments
are allocated, deallocated, and reallocated 1n arbitrary order,
leaving holes in the consecutive memory allocation which
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become unused or unusable because they are not of a suitable
s1ze. A hybrid of the two categories has been employed 1n

prior art systems in which segmentation and paging are both
employed together.

Virtual memory systems may also employ a memory cache
system to minimize virtual memory misses which includes a
cache data storage and its corresponding cache tag storage.
The cache stores recently accessed data and the tag storage
stores a portion of the virtual address or physical address,
providing the means by which 1t can be determined whether
the cache contains the requested address. Only a portion of
the address 1s usually required because the remaining portion
of the address 1s used to locate (1index) a reference within the
cache data and tag storage, and so need not be checked again.

Caches may use either a virtual or physical address to index
the cache, known as a virtual-index cache or a physical-index
cache. Additionally, caches may use either a virtual or physi-
cal address stored and compared against 1n the cache tag
storage, known as a virtual-tag cache or a physical-tag cache.
Virtual-index and virtual-tag caches are generally able to
attain higher peak performance, but add constraint to the
mapping ol addresses available when sharing data or chang-
ing the address mapping. In particular, the problem called
aliasing occurs, 1n which two tasks use different virtual
addresses to reference the same physical memory. Aliasing
may require that tasks sharing memory space use 1dentical or
similar virtual addresses.

Since virtual memory allows two processes to share the
same portion of physical memory such that each of the pro-
cesses’ virtual memory are mapped to different addresses, 1t
1s necessary to implement a protection scheme that prevents
one task (1.e. a set of program 1nstructions) from modifying a
portion ol memory, unless specifically allowed. Typically,
tasks are assigned privilege levels which indicate the task’s its
ability to modity areas within physical memory and establish
a control hierarchy, where higher privileged tasks are able to
mamipulate the storage of lower privileged tasks, including
the possibility of higher privileged tasks manipulating the
state of the virtual memory system 1tself.

One mmplementation of a protection scheme presently
employed by virtual memory systems are “gateways” or “call
gates” that function to provide a given task limited access
privilege to areas in the physical memory having higher privi-
lege than the task. The disadvantages of this prior art gateway
implementation 1s that they utilize the CPU’s status register
requiring additional instructions 1n order to modily the status
registers, and fail to provide securely imitialized machine
state, requiring additional 1nstructions to mitialize CPU reg-
isters used to access privileged memory registions. As a
result, prior art gateway methods tend to reduce overall sys-
tem performance by increasing execution times.

The present invention 1s a virtual memory system that
performs virtual address-to-physical address translations in a
manner that increases the overall efficiency and flexibility of
the virtual memory system.

SUMMARY OF THE INVENTION

A virtual memory system that functions to translate a task
specific virtual address (referred to as a local virtual address)
into a virtual address that 1s generalized to all or a group of
tasks (referred to as a global virtual address) and then trans-
lates the global virtual address into an address which points to
a block of physical memory, (referred to as the physical
address) 1s described. A first embodiment of the virtual
memory system of the present mvention includes a local-to-
global virtual address translator for translating the local vir-
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tual address 1nto the global virtual address and a global vir-
tual-to-physical address translator for translating the global
virtual address into the physical address. In an alternate
embodiment, separate local-to-global virtual address transla-
tors are used for translating each of the data and instruction
access addresses.

In one embodiment of the present invention, the local-to-
global virtual address translator and the global virtual-to-
physu:al address translator each include a plurality of cells,
cach cell implementing a single entry 1n a translation looka-
side bufler (TLB) which defines a particular address space
mapping. The TLB entry includes a match field, a mask field,
an XOR field, and a protection field. Each cell includes a first
logic means for matching the mput address to be translated
with the contents of the cell’s match field to generate a match
indicator output signal, a second logic means for masking the
match mdicator output signal with the contents of the cell’s
mask field to generate a masked output signal, a third logic
means for generating a select signal if all of the signals mating,
up the masked output signal are at the same logic level, a
fourth logic means for outputting the cell’s XOR value 11 the
cell 1s selected, and a fifth logic means for providing a pro-
tection signal when the cell 1s selected. Each of the translators
also includes a means for multiplexing all of the XOR values
from each cell and outputting the XOR value of the selected
cell and a second means for multiplexing all of the protection
information from each cell and outputting the protection
information of the selected cell. Further, each of the transla-
tors includes a logic means for combining the XOR value
from the selected cell with the address to be translated, using
a bitwise exclusive-or operation to generate the translated
address (erther global virtual address or physical address).

In another embodiment, the local-to-global virtual address
translator comprises a single cell. In this case, all of the local
virtual addresses are translated by the one cell and thus this
embodiment of the local-to-global virtual address translator
does not require the first and second multiplexers.

The local-to-global virtual address translator, the global
virtual-to-physical (GV/P) address translator and a cache tag
storage provide protection information for each mstruction or
data access. The protection information includes the task
privilege for the given access. The address’s protection infor-
mation 1s passed to the processor and 1s checked with the
protection information associated with the corresponding
local virtual, global virtual, or physical memory area that the
address 1s attempting to access.

The present mvention utilizes gateways to allow a given
address to access high privilege areas of memory at certain
entry points. A gateway instruction includes a gateway opera-
tion code and the gateway operation’s privilege level 1n its
protection information. The gateway instruction also pro-
vides an address that points to the gateway for the gateway
operation. The gateway 1s a register that stores the gateway
entry pointer and a data register pointer. The gateway opera-
tion comprises several steps which include storing the address
of the gateway entry pointer in the processor program
counter, storing the contents of the previous value stored 1n
the program counter in a first register, initializing a second
register with data to be used in the operation, performing the
gateway operation, reloading the contents of the first register
into the program counter.

The virtual memory system also includes a cache and a tag
structure. The cache stores the accessed data or 1nstruction
that was recently retrieved by a previously translated virtual
address. In one embodiment of the present invention a sepa-
rate cache and tag system 1s used for each of the data and
instruction accesses. In this embodiment, if an instruction
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4

access 1s being performed, the 1nstruction cache tag utilizes
the virtual address’s corresponding global virtual address to
tag the mnstruction stored 1n the virtual instruction cache. If a
data access 1s being performed, the data cache tag utilizes the
virtual address’s corresponding physical address to tag the
data stored 1n the virtual data cache.

The virtual cache structure also employs a means for deter-
mining whether a local virtual address cache hit or miss has
occurred. If a cache hit occurs, the data 1n the virtual cache 1s
accessed and the access operation 1s complete. If a cache miss
occurs, the global virtual address 1s passed to the global
virtual-to-physical address translator where 1t 1s translated
into a physical address. The physical address 1s then used to

access the data from either main memory or secondary
memory.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1 shows one embodiment of the block diagram of the
virtual memory system of the present invention.

FIG. 2 illustrates an embodiment of the local virtual-to-
global translator 110 of the present invention.

FIG. 3 1llustrates an embodiment of the local TLB of the
present 1nvention.

FIG. 4 illustrates an embodiment of a protection field uti-
lized to provide protection information in the virtual memory
system of the present invention.

FIG. 5 illustrates an embodiment of the gateway instruc-
tion of the present invention.

FIG. 6 1llustrates the manner 1n which gateways are imple-
mented 1n an embodiment of the present invention.

FIG. 7 illustrates another embodiment of the wvirtual
memory system of the present invention having independent
data address and instruction address local-to-global virtual
translation buffers and independent data and instruction
cache systems.

FIG. 8 1llustrates a configurable cache in accordance with
the system and method of the present invention.

FIG. 9 shows one embodiment of a logic circuit employed
in the system of the present invention to translate cache
addresses for accessing the configurable cache of the present
invention.

DETAILED DESCRIPTION

A virtual memory system 1s described. In the following
description, numerous specific details are set forth, such as
cache size, address field size and bus widths etc., in order to
provide a thorough understanding of the present invention. It
will be obvious, however, to one skilled 1n the art that these
specific details need not be employed to practice the present
invention. In other instances, well-known memory system
structures have not been described 1n detail 1n order to avoid
unnecessarily obscuring the present invention.

Overview of the Virtual Memory System

FIG. 1 shows a block diagram of one embodiment of the
virtual memory system of the present invention. FIG. 1 shows
an address represented 1n three address forms: local virtual
address 100, global virtual address 102, and physical address
104. The local virtual address for a given task 1s a virtual
address that 1s specific to that given task. The global virtual
address 1s also a virtual address. However, the global virtual
address 1s an address that resides 1n a virtual memory space
that 1s common to a large group of the tasks. In one embodi-
ment of the present invention, there 1s only one global virtual
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memory space. In another embodiment, there are several
global virtual memory spaces. The physical address indicates
the actual location of the address within the physical memory
when 1t 1s present 1n the main memory.

FIG. 1 shows a 64-bit local virtual instruction address 100

comprising two portions 100a and 100b. Portions 100a and
100b correspond to the 16 and 48 bit portions of the address,
respectively.

FIG. 1 also shows a local-to-global virtual address trans-
lator 110 for translating local virtual address 100. As 1llus-
trated, the higher order 16 bits of address 100, 1.e. portion
100a, are coupled to the local-to-global virtual translator.
Portion 100a defines a large area (referred to as a block) of
virtual memory space allocated to a specific task. The lower

48 bits of address 100, (portion 100b) are the offset bits of the

local virtual address. Portions 100b points to a specific area
within the block.

Local-to-global virtual address translation 1s performed by
mapping the higher order 16 bit portions 100a of local virtual
address 100 to 16 bit portions 102a of global virtual address
102. As shown 1n FIG. 1, translator 110 outputs the 16 higher
order bits (102a) of global virtual address 102. The lower
order 48 bits of address 100 (1.e. 100b) are passed directly to
the lower order 48 bits of global virtual address 102 (desig-
nated as portions 102b and 102c¢).

Global virtual-to-physical address translation 1s performed
by translator 130. The higher order 58 bits of global virtual
address 102 (i1.e. portions 102a and 102b) are coupled to
translator 130. Translator 130 maps the 58 bits of the selected
global virtual address to 58 bits of a physical address. Portion
104a 1n physical address 104 corresponds to the translated 38
higher order bits of the global virtual address. The 6 lower bits
of address 102 (1.¢. portion 102¢) are coupled to the 6 lower
order bits of address 104 (1.e. portion 104b).

FI1G. 1 also shows a cache storage 111 and 1ts correspond-
ing cache tag 112. The cache and tags are virtual-indexed and
virtual-tagged to facilitate reducing memory access times.
The cache storage stores the data corresponding to recently
accessed virtual addresses. The cache tag stores global-vir-
tual addresses corresponding to the data stored in the cache
storage.

When an address accesses the virtual memory system
shown 1n FIG. 1, the system performs three tasks simulta-
neously. First, the lower order 48 bits (i.e. the oflset) of the
local virtual instruction address 1s coupled to virtual cache
111 to access a block of data 1n the cache. In one embodiment
of the present mnvention, a 32K byte cache 1s employed, hav-
ing 512 blocks with 64 bytes each. The block of data accessed
from cache 111 1s coupled to the cache’s data bus 133 and
transmitted to the CPU. Second, while the cache is being
accessed, local virtual address 100 1s translated into a global
virtual address 102. This 1s performed as described above.
Third, portion 100b 1s coupled to cache tag 112 to access the
index corresponding to the accessed cache data. The accessed
index 1s coupled to a tag compare unit 113 to determine 11 1t
matches with the higher order 52 bits of the global virtual
instruction address, portion 102a and 102b. If it does, a cache
hit occurs. This means that the block of data stored 1n cache
111 1s the desired data that corresponds to the original local
virtual address. The cache hit indicator 1s transmitted to the
processor on bus 136 and indicates to the processor that the
data transmitted on the cache bus 1s valid. Protection infor-
mation from cache tag 112 1s coupled to the processor on bus
135. At this point global virtual-to-physical address transla-

tion 1s not necessary since valid data has been transmitted to
the CPU.
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If a cache miss occurs, (1.e. the accessed index provided by
the cache tag does not match the higher order 32 bits 1n the
global virtual instruction address ), a cache miss 1s transmuitted
to the CPU on bus 136 indicating that the data sent on data bus
133 1s not valid—at which time the CPU discards the data sent
by the cache and the global virtual address 1s translated into a
physical address. If the translation 1s successful, as indicated
by translation hit and protection information 160, the physical
address 1s then used to access the physical memory and the
data return from memory 1s written into the cache storage 111
and the global-virtual address 102 and protection information
160 1s written 1nto cache tag 112. If the translation 1s unsuc-
cessiul, an exception 1s indicated to the CPU, and the physical
memory access may not occur.

Physical-Tagged Caches

It should be noted that 1n one embodiment of the present
invention, the type of addresses stored 1n the cache tag 112 1s
a physical address that can be used to access the physical
memory. In such an embodiment, tag compare umt 113 1s
coupled to physical address 104 instead of global virtual
address 102. Because a virtual-index cache 1s employed, the
portion of the physical address which must be stored in cache
tag 112 1s larger and therefore a more limited set of protection
information 1s stored in cache tag 112 and transmitted to the
processor on bus 135. This information 1s supplemented by
protection information 160 from the global virtual to physical
translator 130.

Employing physical address indexes 1n the cache tag facili-
tates memory operations such as writing data out of the cache
storage 111 and into physical memory when data 1s modified
in the cache 1n order to retain data consistency. Another rea-
son for using physical address indexes 1n the cache tag 112 1s
to facilitate purging data from the cache in order to make
room for recently accessed memory storage. In both of these
situations, since the cache tag stores physical address indexes,
the data can be written into the physical memory without
going through a global virtual-to-physical address transla-
tion. It should be apparent that the type of address (virtual or
physical) stored in the cache tag 1s chosen so as to optimize
the overall accessing operations in the memory system.

Separate Instruction and Data Caches

In the embodiment shown in FIG. 1, the memory system
employs a single path to perform both data and instruction
accesses. In another embodiment (shown i FIG. 7), both
istruction memory accesses and data memory accesses are
performed using partially separated paths. These accesses are
cach separately cached by multiple instances of cache stor-
age, cache tag, and tag compare unit. In this embodiment, the
instruction cache is virtual-indexed and virtual-tagged, and
the data cache 1s virtual-indexed and physically-tagged.
Local-virtual to global-virtual address translation 1s accom-
plished by two instances of the local-virtual to global-virtual
translator. These multiple instances may be made to appear as
i a single translator 1s shared by 1nitializing and writing the
same data and control mformation to each instance of the
translator.

For instance, referring to FI1G. 7, the instruction access path
includes a local-to-global virtual address translator 110, an
instruction cache 111, an 1nstruction cache tag 112, and cache
hit/miss flag 113 and the data access path includes a separate
local-to-global virtual address translator 120, a data cache
121, a data cache tag 122, and a cache hit/miss flag 123. It

should be understood that the above-mentioned instruction
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and data access path elements correspond to and function
similarly to the access path elements (i.e. translator 110,

cache 111, cache tag 112, and flag 113) shown in FIG. 1.
Furthermore, buses 133 and 137 (FIG. 7) correspond to bus
133 (F1G. 1) in that they provide the cached instruction or data
to the CPU, buses 134 and 138 correspond to bus 134 (FIG. 1)
in that they provide the protection information from the local-
to-global virtual address translator, buses 135 and 139 (FIG.
7) correspond to bus 135 (FIG. 1) 1n that they provide protec-
tion information from the cache tag, and buses 136 and 140
(FIG. 7) correspond to bus 136 (FI1G. 1) 1n that they provide a
signal to the CPU to indicate whether a cache hit or miss has
occurred.

It should also be understood that since the global virtual-
to-physical address translator 130 1s shared between paths
multiplexers 131 and 132, controlled by path select signals,
are employed to route the global virtual instruction or data
addresses through the shared path.

In an alternate embodiment of the present invention, local-
to-global virtual address translation for both of the instruction
and data addresses 1s performed by a single, shared translator.

Address Translation

The virtual instruction or data address 1s referred to as local
since 1t belongs to a virtual address space that 1s unique to one
specific task. Generally, in a computer system that performs
multiple tasks, each task in the system has a unique local
virtual address space. Accordingly, in one method of the
present invention for performing local-to-global virtual trans-
lation, each of the local virtual address spaces are mapped
into a common global virtual address space. An alternative
embodiment, 1s that the local virtual address spaces are
mapped into more than one global virtual address space.

FI1G. 2 1llustrates the local-to-global virtual address trans-
lator 110 of the present invention having four translator cells
1-4. Each translator cell comprises exclusive OR (XOR) logic
gate 511 having a first parallel mput coupled to the highest
order 16 bits of the local virtual address (1nstruction or data)
and a second parallel imnput coupled to register 402. Register
402 stores a 16 bit match value. Logic gate 511 1s used to
perform a bit-by-bit comparison between the higher order 16
bits from the local virtual address and the 16 bit match value.
If the match value 1s the same as the 16 bits from the local
virtual address, the XOR gate 511 outputs 16 bits that are all
0’s—indicating a match. In the case 1n which bits differ, gate
511 outputs a “1” for the mis-matched bit locations and “0°”’s
for the matched bit locations. A non-zero match indicator
signal from XOR gate 511 indicates a mis-match.

The 16 bit match indicator output signal from XOR gate
511 1s coupled to a first parallel input of AND gate 512. The
second parallel input 1s coupled to 16 bit mask register 401.
The mask register 1s used to mask out certain of the 16 bits that
are non-zero. The two parallel inputs of AND gate 312 are
bit-by-bit ANDed together. I all of the 16 bits from XOR gate
511 are zero, then the output of AND gate 16 will also be zero
no matter what the mask value 1s. If any of the bits from XOR
gate 511 are non-zero, the mask may be employed to mask
these out so that the output of AND gate 512 1s 16 bits of all
zeros. However, 1f any of the bits from AND gate 512 are
non-zero and they are not masked out by mask 401 then no

match occurs and the 16 bit masked output signal of AND
gate 512 will contain a “1”. The 16 bits from AND gate 512

are coupled to NOR gate 513 and are NORed together. If all
of the 16 bits are zero, NOR gate 513 outputs a “1” indicating
that the cell 1s selected. IT any of the 16 bits are non-zero, NOR
gate 513 outputs a “0” indicating that the cell 1s not selected.
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The select signal 1s ANDed with each of the values in XOR
register 403. If the select signal 1s a 1, indicating that the cell

1s selected, then AND gate 514 outputs the contents of XOR
register 403. If the select signal 1s a O, indicating the cell 1s not
selected, AND gate 514 outputs a 16 bit word of “0’s.

FIG. 2 also shows three other cells (cells 2-4)—each cell

determining whether a match exists between the 16 bits of
local virtual address and match register 402. Only one of the
cells will match the local virtual address at a time. Thus, only

one of the cells outputs the 16 bit contents of their correspond-
ing XOR register 403 and the rest output 16 bits of “0”’s. Each
of the 16 bits of each cell are ORed with the corresponding
bits from the other cells (all at a “0” logic level) by OR gate
550 causing gate 550 to output the contents of the XOR value
from the selected cell. This value 1s then XORed with the
higher order 16 bits from the original local virtual address
being translated by gate 560 to generate the global virtual
address.

The select signal from the output of NOR gate 513 1s also
coupled to one mput of AND gate 515. The other input of gate
515 1s coupled to register 404 which contains the protection
information for the global virtual address space defined by
cell 1. In the event the select signal 1s a *“1”, AND gate 515
passes the content of the protection register 404 to one input
of OR gate 570. If the select signal 1s a “0”, then AND gate
515 outputs all *“0”’s. Since only one cell 1s selected at a time,
gate 570 outputs protection information from only one cell. In
other words, OR gate 570 outputs the protection information
from the selected cell. This information 1s then transmitted to
the CPU on bus 111.

It should be noted that an alternative space conservative
embodiment of the present invention translator 110 com-
prises a single cell 1. In this embodiment, the match register
1s all “0”’s and the mask register 1s all “1”’s so that they become
ineftective. As a result, all of the local virtual addresses are
translated by the single cell having a mapping defined by the
XOR register 403 1n that cell. Also, since only one cell (1.e.
only one global virtual address space) 1s used local protection
1s not required. Thus, the local-to-global translator would not
need to generate any local protection at this point and the local
protection portion of the cell would not be used.

Global virtual-to-physical address translator 130 1s 1mple-
ment the same as translator 110 except that bus widths are
increased to accommodate translation of the higher order 58
bits ofthe global virtual address. It should be apparent that the
match, mask, and XOR values are also increased to 58 bits.

As shown 1n FIG. 2, translator 110 has multiple cells 1-4
cach cell having 1ts own unique set of match, mask, XOR and
protection registers—each defining a different mapping and
consequently a global virtual memory space having its own
set of addresses. The match, mask, XOR and protection reg-
isters used with translator 110 are stored 1n a memory butifer
referred to as the local TLB. Similarly, the match, mask,
XOR, and protect registers used for translator 130 are stored
in a global TLB.

FIG. 3 illustrates four entries 1n a local TLB corresponding,
to each of the cells 1n the translator illustrated in FI1G. 2. In one
embodiment, each entry 1s a 64 bit word having four fields;
the mask field 401, the match field 402, the XOR field 403,
and the protect field 404. As can be seen 1n FIG. 3, a different
entry 1s used for each cell. For example, Mask|[1], Match [1],
XOR]1], and Protect[1] are all used by cell 1 (FIG. 2). Simi-
larly, Mask]| 2], Match [2], XOR[2], and Protect|2] are all used
by cell 2.

The global TLB 1s similarly structured, having a different
field for each of the mask, match, XOR and protect values. In
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other embodiments of the present invention, the number of
entries 1n the global TLB range from 64 to 256.

Protection Information

As described above, each of the local and global TLBs
generate protection information by passing the contents of the

cells protection register 404 (FI1G. 2) from the selected cell to
OR gate 570 and then to the CPU (FIGS. 1 and 2). A portion
or all of the protection information 1s also concatenated onto
the cache tag index for both the data and instruction caches
(FIG. 7). The protection information field 1s stored within
cach of cache tags 112 and 122 and 1s concatenated onto the
cache tag when these caches are accessed. FIG. 4 illustrates
one embodiment of the protection imnformation field of the
present invention. As can be seen the 16 bit protection field
comprises many sub-fields. The sub-fields define different
aspects of a given address’s ability to access data and modity
it. Since the present invention’s virtual memory system 1s
particularly useful when utilized 1n a computer system
employing multiple processors and multiple caches it 1s nec-
essary to provide information to ensure that the data stored 1in
cach of the caches and the main memory are consistent. This
1s also referred to as maintaining cache coherency. Fields cs
and cc are used to ensure cache coherency. The cc field (cache
control) defines the different states (1.e. cached, coherent,
noallocate, physical) of the data stored at the address being
accessed and the cs field (coherence state) defines what may
be done to the data when it 1s accessed (read, write, or
replace). The p field defines the scheduling priority with
which the memory access 1s to be handled, so that high-
priority memory accesses may be performed earlier 1n pref-
erence to low-priority memory accesses. The d field defines
that a particular exception is to be taken when accesses occur
to memory controlled by this field, called a detail exception.
The s field defines whether the access 1s to be strongly or
weakly ordered with respect to other memory accesses.

The d field, when set causes a detail exception to take place.
This exception passes control to a soltware routine which
may use a variety ol methods to further determine whether an
exception should be handled or suppressed for this particular
memory reference. For example, it may determine from the
virtual address which bytes within a memory block are to be
accessed, and consult a bit-map for each byte as to whether
the particular type of access 1s to proceed. In this manner,
access may be controlled at the byte level. In order to suppress
the handling of the exception, the software routine sets sys-
tem state which 1s preserved only until the target instruction 1s
re-executed upon returming from the exception handler. The
system state 1s then reset so that detail exceptions may occur
on the next successive instruction and particularly upon any
turther re-execution of the same 1nstruction as may occur
alter a branch operation.

Ther, w, X, and g fields define the minimum privilege level
of the access being performed. In one embodiment of the
present invention, each field 1s two bits wide thus allowing for
tour levels of privilege for each type of access (1.e. minimum
privilege=3 and maximum privilege=0). The r field indicates
the access privilege level for a read access, the w field 1ndi-
cates the privilege level for a write access, the x field indicates
the privilege level for an execute access and the g field 1ndi-
cates the privilege level for a gateway access. A higher privi-
lege level can always access a memory space having a lower
privilege level, but a lower privilege level cannot access data
stored at a higher privilege level unless a gateway access 1s
specified.
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It should be noted that since the cache coherency informa-
tion 1 addition to access privilege level 1s provided for at the
local virtual, global virtual and physical memory level, cache

coherency 1s maintained throughout the virtual memory sys-
tem of the present invention at each of these levels.

(ateway Accesses

(Gateway accesses provide a means of accessing high privi-
leged areas of memory 1 a very controlled manner. For
instance, it may be desired to protect certain types of routines,
such as operating system solftware, 1n a more robust manner
than other software routines stored in memory. To provide
this protection, the system software 1s stored 1n an area of
memory (physical or virtual) having the highest privilege
level where accesses only having that privilege level 1s able to
access the system software. Further access control to this area
1s imposed by ensuring that lower types of accesses are only
allowed to access this high privileged area by passing through
a gateway. The gateway controls the specific entrance and exit
points into the privileged memory area.

Gateway accesses are implemented with gateway pointers
which are 128 bits of data providing two pointers. The first
pointer gives the memory address of where the higher priority
area of memory 1s to be entered. The second pointer 1s 64 bits
of data that can be used for a general purpose, but has the
special characteristic that it 1s loaded as the gateway 1s entered
and that the target procedure may depend upon 1t being prop-
erly loaded 1nto a particular general register of the processor.
Because of this characteristic, 1t 1s normally loaded with a
pointer to a data region to be employed by the target proce-
dure.

Gateways are implemented by the gateway instruction of
the present invention. FIGS. SA and 5B illustrate two formats
of gateway 1nstructions of the present invention.

The Branch: Gateway: Immediate (B.GATE.I) Operation

The B.GATE.I operation, provides a secure means to call a
procedure, including those at a higher privilege level. The
operation code for the gateway 1nstruction format shown 1n
FIG. SA 1s shown below:

Operation Code

B.GATE.I Branch gateway immediate

For the instruction format shown in FIG. SA, a virtual
address of the gateway pointer 1s computed from the sum of
the contents of register ra and the sign-extended value of the
12-bit immediate field. The contents of 16 bytes of memory
using the little-endian byte order 1s fetched. A branch and link
occurs to the low-order octlet (1.e. eight bytes) of the memory
data, and the successor to the current program counter, cat-
cnated with the current execution privilege 1s placed in reg-
ister 0 (FIG. SA). The privilege level 1s set to the contents of
the low-order two bits of the memory data. Register 1 1s
loaded with the high-order octlet of the memory data.

An access disallowed exception occurs 1f the new privilege
level 1s greater than the privilege level required to write the
memory data, or i the old privilege level 1s lower than the
privilege required to access the memory data as a gateway.
Furthermore, an access disallowed exception occurs 1f the
target virtual address 1s a higher privilege than the current
level and gateway access 1s not set for the gateway virtual
address, or if the access 1s not aligned on a 16-byte boundary.
A reserved instruction exception occurs 1if the rb field 1s
non-zero.
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The following 1s a definition 1n terms of an algorithm
showing the operations performed to 1mplement the
B.GATE.I instruction of the present invention.

Definition
def BranchGatewayImmediate(ra,rb,ymm) as

a<=—RegRead(ra, 64)

VirtAddr<—a+(imm,, >~ |[imm)

if VirtAddr, ,=0 then

raise AccessDisallowedByVirtual Address
endif

if rb=0 then

raise ReservedInstruction

endif
b<—LoadMemory(VirtAddr,128,1)

bXx<=b,,, «. || ProgramCounter., ,+1 || Privilegelevel
ProgramCounter<—b,, , || 0
Privilegelevel«<—b, |
RegWrite(rb, 128, bx)
enddef
Exceptions
Reserved Instruction
Access disallowed by virtual address
Access disallowed by tag
Access disallowed by global TLB
Access disallowed by local TLB
Access detail required by tag
Access detail required by local TLB
Access detail required by global TLB
Cache coherence intervention required by tag
Cache coherence intervention required by local TLB
Cache coherence intervention required by global TLB
Local TLB miss
(Global TLB miss
Branh Gateway Operation
This operation provides a secure means to call a procedure,
including those at a higher privilege level. The operation code
for the gateway 1nstruction format shown 1n FIG. 5B 1s shown
below:
Operation Codes

B.GATE Branch gateway

For the instruction format shown in FIG. 5B, a virtual
address of the gateway pointer 1s computed from the sum of
the contents of register ra and register rb. The contents of 16
bytes of memory using the little-endian byte order 1s fetched.
A branch and link occurs to the low-order octlet of the
memory data, and the successor to the current program
counter, catenated with the current execution privilege is
placed inregister 0. The privilege level 1s set to the contents of
the low-order two bits of the memory data. Register 1 1s
loaded with the high-order octlet of the memory data.

An access disallowed exception occurs 11 the new privilege
level 1s greater than the privilege level required to write the
memory data, or if the old privilege level 1s lower than the
privilege required to access the memory data as a gateway. An
access disallowed exception occurs 1f the target wvirtual
address 1s a higher privilege than the current level and gate-
way access 15 not set for the gateway virtual address, or 11 the
access 1s not aligned on a 16-byte boundary. A reserved
instruction exception occurs 1if the rb field 1s non-zero.

The following 1s a definition 1n terms of an algorithm
showing the operations performed to implement the B.GAT.
instruction of the present ivention.

(Ll
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Definition
def BranchGateway(ra,rb,rc) as

a<—RegRead(ra, 64)

b<—RegRead(rb, 64)

VirtAddr<—a+b

1f VirtAddr; ,=0 then

raise AccessDisallowedByVirtual Address
endif

11 rc=0 then

raise Reservedlnstruction

endif

c<—LoadMemory(VirtAddr,128,L)

CX<—C,,7 44 || ProgramCounter., ~+1 || Privilegelevel

ProgramCounter<—c,, - ||0

PrivilegelLevel<—c, |,

RegWrite(rc, 128, ¢x)
enddef
Exceptions
Reserved Instruction
Access disallowed by virtual address
Access disallowed by tag
Access disallowed by global TLB
Access disallowed by local TLB
Access detail required by tag
Access detail required by local TLB
Access detail required by global TLB
Cache coherence intervention required
Cache coherence intervention required
Cache coherence intervention required
Local TLB miss
Global TLB miss

FIG. 6 1llustrates the manner 1n which gateways are imple-
mented 1n one embodiment of the present invention. Register
1001 corresponds to the address location of the gateway
instruction 1n virtual memory. The address stored 1n register
1001 points to the address (1002) where the 128 bit gateway
pointers are stored. Link register 1002 stores index 1011 that
indicates the entry poimnt of memory area 1010 being
accessed. As shown 1n FIG. 6, register 1002 points to address
1011 1n memory area 1010. Data pointer 1003 stores the
index into the designated data register 1021 within the
memory area 1020.

The gateway operation includes several steps. First, the
address stored at the first pointer 1s loaded into the CPU’s
program counter, causing the CPU to start fetching instruc-
tions at that address, performing the instructions, and incre-
menting the program counter. Further, the previous address
stored 1n the program counter 1s stored 1n the location of the
first pointer. In addition, the second pointer indicates the
address of a data register that 1s mitialized with any data
needed to process the mstructions. After the access operation
1s performed, the value stored 1n the first register 1s reloaded
into the program counter so that processing can return back to
its original processing location. This gateway method, 1.e. 1)
setting the program counter to an entry point address, 2)
loading another register with the program counters previous
value, and then 3) initiating a data register, reduces processing,
steps 1n comparison to prior art methods that utilize CPU
status registers.

In one embodiment of the present mnvention a 64 bit pro-
gram counter register 1s employed where the lower order two
bits of the register correspond to the privilege level of the
access and the rest of the bits make up the instruction address.
At the beginning of the gateway operation, the new 1nstruc-
tion address provided by the 128 bit gateway 1s loaded into the
program counter register along with 1ts corresponding new
privilege level. At the end of the gateway procedure, another

by tag
by local TLB
by global TLB
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istruction 1s executed which causes the program counter to
be reloaded with the return address and the old privilege level.
In this way, privilege level consistency 1s maintained.

Cache Partitioning,

FI1G. 7 illustrates one embodiment of the memory system
ol the present invention 1n which independent local-to-global
data buflers and independent cache and cache tags are
employed for each of the instruction and data paths. In this
embodiment, each of the instruction cache 111 and the data
cache 121 may be selectively configured into a cache portion
300 and a buffer portion 301 (FIG. 8). One advantage to
configuring and accessing cache 111/121 as a buifer 1s that
butiler access times are fixed and typically short, compared to
cache accesses which potentially are longer and variable due
to cache misses.

Each of the cache portions 300 for each of the instruction
and data caches utilizes 1ts corresponding cache tag. For
instance, the cache portion in the mmformation cache 111
utilizes cache tag 112 and the cache portion in data cache 121
utilizes cache tag 122. When cache portion 300 of cache 111
1s accessed, a portion of the instruction address that 1s used to
access the cache portion 1s also coupled to cache tag 112.
Butfer portion 301, on the other hand, does not make use of
cache tags 112 or 122. Caches 111 and 121 are configured
with 2 bits each of configuration information: instruction
cache configuration (1cc) information and data cache configu-
ration (dcc) information, respectively, that are mitially set in
a status register when the processor 1s configured by software
prior to running tasks.

In one embodiment of the present invention, 32K bytes of
memory are utilized for each of 1nstruction and data caches
111 and 121. In the case of instruction cache 111, when icc=0,
zero bytes of cache 111 function as a cache portion and 32K
bytes of cache 111 function as a bulfer portion. For 1cc=1,
cache 111 1s divided into 4K bytes of a cache portion and 28K
bytes of a butfer portion. For icc=2, 8K bytes are utilized as
cache and 24K bytes function as buifer, and finally for 1cc=3,
16K bytes are cache and 16K bytes are bufler. Thus, for this
embodiment, a maximum of half of the 32K bytes of cache
111 can may be used as cache and a maximum of 32K bytes
of cache 111 may be used as butier.

In addition to the configuration information, a flag bitin the
instruction address (a,-, for this embodiment) 1s used to 1ndi-
cate whether the access 1s being performed with cache portion
300 or butifer portion 301 of either of caches 111 or 121. If
a,-—1, then buffer portion 301 1s accessed with the address 1n
the 1nstruction register and if a,=0, cache 300 1s accessed.

In the embodiment shown 1n FIG. 7, address bits a,--a, are
used to access data and instruction caches 111 and 121. Since
the size of each of the cache and buifer portions for each of
caches 111 and 121 1s selectable, address bits a, ,-a, must be
modified respective of the selected sizes of each of portions
300 and 301. Address bits a, ,-a, are coupled to C1 (FIG. 7) 1n
the case of the instruction cache 111 and C2 1n the case of the
15 data cache 121. C1 and C2 (shown 1n detail in FIG. 9)
translate addresses a,,-a, depending on the configuration
indicators 1cc and dcc, respectively. In the case in which
a,-—1, bits a,,-a, are not modified and are always directly
coupled to bulfer portion 301 no matter what 1cc 1s equal to.
Similarly, for a,-=0 and 1icc=0 cache 111 or 121 1s configured
such that there are zero bytes of cache portion 300 and 32K
bytes of bufler portion 301. As a result, a,,-a, are again
directly coupled to cache 111 or 121 without modification. In
the case in which a,=0 and icc=3, 16K bytes of cache portion
300 are being accessed. As a result, a,, 1s set to 1 before
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coupling bits a, ,-a, to the cache. When a,—=0 and icc=2, 8K
bytes of cache portion 300 are being accessed and a, , and a, ,

are set to 1 before coupling bits a, ,-a, to the cache. Finally, 1f
a,-—0 and 1cc=1, 4K bytes of cache portion 300 are being
accessed and a,,, a,,, a,, are set to 1 before coupling bits
a,,-a, to the cache 111 or 121.

In one embodiment of the present immvention the cache
portion 1s divided 1nto blocks of 64 bytes. Thus, in the case of
the maximum cache portion size condition (1.e. 1cc=3) 16K
bytes of the cache portion, 1s divided 1nto 256 blocks of 64
bytes each. In order to access each of the 256 blocks, eight
address bits are needed to access each cache entry (i.e.
2°=256). In the embodiment shown in FIG. 7, instruction
address bits a, y-a, are coupled to the cache tag when the cache
portion 1s being accessed.

Boundary Crossing Detector

The present mvention also stores static information ndi-
cating the minimum page size ol the memory. For the embodi-
ment shown in FIG. 7, a S-bit field of data designates the page
s1ize. The page size 1s set by system software and 1s deter-
mined by the number of bits that are always masked in the
global TLB when performing address translation. For
instance, 1f the lower order ten bits are masked 1n each cell of
the global TLB, the page size 1s 1024 words of data.

In one embodiment of the present invention, portions of the
local-to-global virtual address translator 1s shared between
the instruction path and the data path. The main translator 1s
located 1n the data path as block 120, and the instruction
translator 110 1s loaded upon demand from the data translator
120. Consequently, the number of entries in instruction trans-
lator 110 need not be as large as that of data translator 120. In
one embodiment, the mstruction translator 110 holds a single
entry. The single entry 1s loaded from the data translator 120
whenever either a branch operation occurs or a page boundary
1s crossed. In one embodiment, the single entry further may
climinate the masking and matching portions of the entry,
thus consisting only of XOR data or the global virtual address
which 1s coupled to address 102.

When the mformation cache 111 1s accessed as a cache
portion (a,,=0), cache tag 112 1s simultaneously accessed and
provides previously cached protection information to the pro-
cessor on bus 135 to multiplexer 154, (FIG. 7). In the case
when cache 111 1s accessed as a butler portion (a,-=1) and the
cache tag 1s not used, protection information butler 150 pro-
vides the appropriate protection information on bus 156 to
multiplexer 154, (FIG.7). Instruction address bit ad7 which
indicates whether 1nstruction cache 111 is configured as a
builer or a cache controls multiplexer 154 so that it passes the
correct protection information to the CPU. Protection infor-
mation 160 (FIG. 7) 1s loaded into the protection information
buifer from the global translator 130 whenever either a branch
operation occurs or a page boundary 1s crossed.

Boundary crossing detector 151 functions to evaluate
whether a page boundary 1s potentially crossed by detecting a
carry in certain bits 1n the mstruction address, (bits a5, -a 1n
this embodiment) as controlled by the minimum page size.
When the instruction address indicates that a boundary 1s
potentially being crossed or the instruction corresponds to a
branch operation, OR gate 152 outputs a reload butfer signal
indicating that the protection information provided on bus
153 from the global TLB for that particular instruction 1s to be
loaded 1nto instruction protection buffer 150.

Protection information buffer 150 1s used when translating,
consecutive addresses, such as instruction addresses. For
instance, when an instruction address 1s first translated by




US RE43,798 E

15

local-to-global TLB 110 and then translated by global-to-
physical TLB 130, protection information 1s provided to the
processor by the global TLB. For the previously described
embodiment shown 1n FIG. 1, 1f the next instruction address
to be translated 1s consecutive with respect to the previous
address 1t will also be translated through the local and global
TLBs. Since the consecutive address has all of the same
higher order address bits as the previously translated address
the global TLB would provide the same protection informa-
tion as that of the previously translated address.

In the embodiment of the present invention shown in FIG.
7, protection mformation buifer 150 provides a means of
by-passing the step of translating consecutive addresses
through the global TLB to obtain the protection information
as 1s done 1n the FIG. 1 embodiment of the present invention.
Instead, protection information 160 from the previously
translated address 1s loaded 1n protection information butier
150 when a boundary 1s detected and 1t 1s transmitted to the
CPU when the consecutive address 1s being translated 1f 1)
a,-—1, 1.e. the buller portion of instruction cache 111 is being
accessed and 2) a given number of higher order bits (as
specified by the mimimum page size) in the local virtual
address match the same given number of higher order bits 1n
the local virtual address of the previously translated address.

The virtual memory of the present invention may be imple-
mented 1 a computer system having multiple simultaneous
threads of execution—relerred to as a superthreaded or multi-
threaded computer system. The computer system 1s designed
such that 1t employs a different copy of the register file, the
local-to-global TLB, the data and instruction caches and the
protection information buffer for each thread and only one
data cache, instruction cache and global-to-physical TLB for
all threads. Consequently, each of the threads of the machine
may correspond to diflerent tasks that operate independently
and may be protected from each other. Data may be shared or
maintained mdependently between each thread using the vir-
tual memory system of the present invention since each
thread has a distinct version of the local-to-global TLB so that
they may use the same address to mean different things, or
may use the different addresses to mean the same thing, or
may use the same address to reference the same memory,
depending on the settings of the local-to-global translators.

Thus, a virtual memory system utilizing local virtual and
global virtual addresses 1s described. Although the elements
of the present mvention have been described 1n conjunction
with a certain embodiment, it 1s appreciated that the invention
may be implemented in a variety of other ways. Conse-
quently, 1t 1s to be understood that the particular embodiment
shown and described by way of illustration are in no way
intended to be considered limiting. Reference to the details of
these embodiments 1s not mtended to limit the scope of the
claims which themselves recite only those features regarded
as essential to the invention.

I claim:

[1. A memory storage system for storing recently accessed
data from a main memory in a computer system, said memory
storage system comprising:

a memory storage area which 1s configurable 1nto a cache

portion and a buffer portion; and

means for storing indices corresponding to data stored 1n

saild memory storage area;

wherein when said cache portion i1s accessed by a given

address, said index storage means 1s also accessed by
said address to check 11 said data accessed from said
cache portion 1s valid and when said bufler portion is
accessed by said given address, said index storage means
is not checked.]
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[2. The memory system as described in claim 1 wherein
said index storage means further includes protection infor-
mation indicating the access privilege of said given address
into said main memory and when said index storage means 1s
accessed by said given address, said protection information 1s
concatenated onto an address accessed from said index stor-
age means by said given address and provided to a CPU }

[3. The memory system as described in claim 2, wherein
said protection mmformation includes a field that defines a
coherence state of data stored at said given address, wherein
said coherence state indicates whether data stored at said
given address may be read, written into, or replaced.]

[4. The memory system as described in claim 2 wherein
said protection information includes a field that defines an
access priority of said given address, wherein said access
priority indicates the order at which said given address 1s
accessed with respect to other accesses 1 said memory sys-
tem.J

[5. The memory system as described in claim 2 wherein
said protection information includes a field for indicating
when a detail exception should occur.]

[6. The memory system as described in claim 2 wherein
said protection mmformation includes a field that defines a
cache control condition of said given address, wherein said
cache control condition indicates states of said data stored 1n
said given address including a cache coherent state, a non-
allocated state, and a physical state.}

[7. The memory system as described in claim 1, wherein
said given address includes an indication of whether an access
1s being performed on at least one of said cache portion and
said buffer portion.]

[8. A method for storing recently accessed data from a main
memory 1n a computer system, comprising the steps of:

configuring a memory storage area into a cache portion and

a bulfer portion; and

storing 1ndices corresponding to data stored in said

memory storage area;

wherein when said cache portion 1s accessed by a given

address, said stored indices are also accessed by said
given address to check 1f said data accessed from said
cache portion 1s valid and when said builer portion 1s
accessed by said given address, said stored indices are
not checked.]

[9. The method of claim 8, wherein said given address
includes an indication of whether an access 1s being per-
formed on at least one of said cache portion and said buifer
portion.}

[10. The method of claim 9, wherein said protection infor-
mation includes a field that defines a coherence state of data
stored at said given address, wherein said coherence state
indicates whether data stored at said given address may be
read, written into, or replaced.]

[11. The method of claim 9, wherein said protection infor-
mation includes a field that defines an access priority of said
grven address, wherein said access priority indicates the order
at which said given address 1s accessed with respect to other
accesses in said memory system.]

[12. The method of claim 9, wherein said protection infor-
mation includes a field for indicating when a detail exception
should occur.]

[13. The method of claim 9, wherein said protection infor-
mation 1mncludes a field that defines a cache control condition
of said given address, wherein said cache control condition
indicates states of said data stored in said given address
including a cache coherent state, a non-allocated state, and a
physical state.]
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[14. The method of claim 8, wherein said stored indices
turther include protection information indicating the access
privilege of said given address into said main memory and
when said stored 1ndices are accessed by said given address,
said protection information i1s concatenated onto an address
accessed from said stored indices by said given address and
provided to a CPU]

[15. A computer-readable medium containing a program
that performs the steps of:

receiving an indication that a memory storage area has

been configured 1nto a cache portion and a buliler por-
tion; and

storing 1ndices corresponding to data stored in said

memory storage area;

wherein when said cache portion 1s accessed by a given

address, said stored indices are also accessed by said
given address to check 1f said data accessed from said
cache portion 1s valid and when said bufier portion is
accessed by said given address, said stored indices are
not checked.]

[16. The method of claim 15, wherein said given address
includes an indication of whether an access 1s being per-
formed on at least one of said cache portion and said buifer
portion. ]

[17. The computer-readable medium of claim 16, wherein
said protection information includes a field that defines a
coherence state of data stored at said given address, wherein
said coherence state indicates whether data stored at said
given address may be read, written into, or replaced.]

[18. The computer-readable medium of claim 16, wherein
said protection information includes a field that defines an
access priority of said given address, wherein said access
priority indicates the order at which said given address 1s
accessed with respect to other accesses 1 said memory sys-
tem.]

[19. The computer-readable medium of claim 16, wherein
said protection mnformation includes a field for indicating
when a detail exception should occur.]

[20. The computer-readable medium of claim 16, wherein
said protection information includes a field that defines a
cache control condition of said given address, wherein said
cache control condition indicates states of said data stored 1n
said given address including a cache coherent state, a non-
allocated state, and a physical state.}

[21. The computer-readable medium of claim 15, wherein
said stored indices further include protection information
indicating the access privilege of said given address into said
main memory and when said stored indices are accessed by
said given address, said protection information 1s concat-
enated onto an address accessed from said stored indices by
said given address and provided to a CPU

22. A method of storing data accessed by a processor, the
method comprising:

receiving configuration information;

accessing a main memory,

partitioning a memory storage area into one of a predeter-

mined number of combinations of a cache portion size
and a buffer portion size in accordance with the received
configuration information;
receiving an address within an addrvess space divided into
a cache address space portion and a buffer address
space portion, wherein the address includes a field for
indicating whether an access includes a cache access or
a buffer access;

modifving at least a portion of the address using the con-
figuration information, to produce a modified address;
and
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accessing data in said memory storage arvea by means of

the modified address.
23. The method of claim 22 further comprising:
if a cache miss is detected in an access to the cache portion,
d accessing the main memory for transferring data to or
from the main memory,

wherein an access to the buffer portion does not vesult in an

access to the main memory.

24. The method of claim 22 further comprising:

storing indices corresponding to data stoved in the memory

storage avea in a cache tag memory;

upon accessing the cache portion, checking the cache tag

memory to determine whether the cache tag memory
contains an index corresponding to the cache access;
and

generating a cache hit if a corresponding index is found,

and generating a cache miss if a corresponding index is
not found.

25. The method of claim 22 wherein, in an access to the
cache portion, the memory storage system determines
whether an access to the main memory is requived, and in an
access to the buffer portion, no access to the main memory is
requirved.

26. The method of claim 22 wherein buffer accesses have a

fixed access time and cache accesses have a variable access
time due to cache misses.
27. The method of claim 22, wherein an address bit in said
address indicates whether the access is a cache access or a
30 buffer access.

28. The method of claim 22 further comprising:

partitioning the memory storage area between the cache

portion and the buffer portion in accordance with con-
figuration information received by the memory storvage
system.

29. The method of claim 22 further comprising:

setting the configuration information in a status rvegister

when the computer system is configured by software.

30. The method of claim 22 further comprising:

allocating address vanges to the cache portion and the

buffer portion in accovdance with the partitioning of the
memory storage area between the cache portion and the
buffer portion.

31. The method of claim 22 wherein the address space is
divided into a cache address space portion and a buffer
address space portion in accovdance with at least the state of
an address bit within the addvess space.

32. The method of claim 22 further comprising:

delivering a portion of the address to the memory storage

area without modification.

33. The method of claim 22 further comprising:

delivering the modified address to the cache portion.

34. The method of claim 22 whevrein the modified address is
used to access the entive memory storage arvea for accesses
within the buffer address space portion.

35. A method of storing data accessed by a processor, the
method comprising:

accessing a main memory,

receiving configuration information;

configuring a memory storvage area into a cache portion

and a buffer portion by partitioning the memory storage
area between the cache portion and the buffer portion in
accordance with the configuration information into one
of a predetermined number of combinations of cache
portion size and buffer portion size in accorvdance with
configuration information received by the memory stor-
age sysitem;
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receiving an address within an address space divided into
a cache address space portion and a buffer address
space portion;

modifving at least a portion of the address using the con-
figuration information, to produce a modified address;
and

accessing data in said memory storage arvea by means of an
address that includes a field for indicating whether the
access includes a cache access or a buffer access.

20

36. The method of claim 35 further comprising:

delivering a portion of the address to the memory storage
area without modification.

37. The method of claim 35 further comprising:

delivering the modified address to the cache portion.

38. The method of claim 35 whevrein the modified address is

used to access the entive memory storvage area for accesses
within the buffer address space portion.
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