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FIG. 6
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FIG. 7
MCSST INSTRUCTION
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FIG 8A

25 24 17 16 8 7 1
IIIIIIIIIIIIIIIIIIIIIIII NRNANRNRNRNRY

CODEBIT. MULTIPLIER, MULTIPLICAND

Fij Gji
25 24 17 16 9.8 1
IIIIIIIIIIIIIIII NN ANANNNNNNN

CODE BIT SUM-PRODUCT RESULT

1

32 24 16 0 8 |
HERERENENEEEEEEEEEEEEEEENNNYNNNNN

Y
MATRIX MULTIPLICATION RESULT Hij

FIG. 8B
SUM-PRODUCT RESULT
32767 R
(7FFF) ; :
I ‘(i-/yl
Hij !
+255 ;r ‘
Gi (FF) //
+127 p7 /
(1R [ /
7

-

— 32767 ;



U.S. Patent Oct. 9, 2012 Sheet 9 of 17 US RE43,729 E

FIG. 9

LOGIC VALUE X|LOGICVALUE Y| SELECTED INPUT VALUE

1 0 0x0000 _OOFF
] ] 0x0000_0000
0 ] 0x0000_0000
0 0 STORED VALUE OF

SUM-PRODUCT RESULT
REGISTER



U.S. Patent Oct. 9, 2012 Sheet 10 of 17 US RE43,729 E

FIG. 10

EXAMPLE OPERATION: D0OXD1(0x7f X 0x70)
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FIG. 11

EXAMPLE OPERATION: DOXD1(0x7f X 0x80)
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F1G. 13
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FIG. 16
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PROCESSOR WHICH CAN FAVORABLY
EXECUTE A ROUNDING PROCESS
COMPOSED OF POSITIVE CONVERSION
AND SATURATED CALCULATION
PROCESSING

Matter enclosed in heavy brackets [ ] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

[This is a divisional application of U.S. Ser. No. 08/980,
676 now U.S. Pat. No. 5,974,540 filed Dec. 1, 1997.] More

than one reissue application has been filed for the veissue of

US. Pat. No. 6,237,084. The reissue applications are the
present application and application Ser. Nos. 10/366,502
(reissued as Re. 39,121 on Jun. 6, 2006) and 11/016,920
(reissued as Re. 43,145 on Jan. 24, 2012), all of which are
divisional reissues of U.S. Pat. No. 6,237,084. This applica-
tion is a divisional reissue of application Serv. No. 11/016,920,
filed on Dec. 21, 2004, now U.S. Pat. No. Re. 43,145, which is
a divisional reissue of application Ser. No. 10/366,502 filed
Feb. 13,2003, now U.S. Pat. No. Re. 39 121, whichis a reissue
of 09/399,577 filed on Sep. 20, 1999, now U.S. Pat. No.
6,237,084, which is a divisional of application Ser. No.
08/980,676 filed Dec. 1, 1997, now U.S. Pat. No. 5,974,540.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a processor that performs
processing according to mstruction sequences that are stored
in a ROM or the like.

2. Background of the Invention

In recent years, there has been a visible increase 1n the use
of application soitware that can interactively reproduce vari-
ous kinds of data, such as video data, still image data, and
audio data, that have been compressed according to tech-
niques such as frame encoding, field encoding, or motion
compensation. As such software has been developed, there
has been increasing demand for multimedia-oriented proces-
sors that can efficiently execute the software. These multime-
dia-oriented processors are processors designed with a spe-
cial architecture to {facilitate programming, such as the
compression and decompression of video and audio data. The
high-speed processing required for handling video data 1s the
matrix multiplication of compressed data that has N*N
matrix elements with coelficient data that also has N*N
matrix elements. Representative examples of compressed
data that has N*N matrix elements are the luminescence
block composed of 16*16 luminescence elements, the blue
color difference block (Cb block) composed of 8*8 color
difference elements, and the red color difference block (Cr
block) composed of 8*8 color difference elements used in
MPEG (Moving Pictures Experts Group) techniques. The
matrix multiplication for compressed data referred to here 1s
performed very frequently when executing the approxima-
tion calculations for an inverse DCT (Discrete Cosine Trans-
form) 1n 1mage compression methods such as MPEG and
JPEG (Joint Photographic Experts Group).

The following 1s a description of conventional multimedia-
oriented processors that can perform high-speed matrix mul-
tiplication. The basic architecture of conventional multime-
dia-oriented processors 1s provided with a sum-product result
register (herematter simply referred to as an MCR register) as
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2

hardware, and 1s provided with an instruction set that includes
a “MOV MCR,**” transfer instruction for transferring a sum-
product value.

An example of the hardware construction of a conventional
multimedia-oriented processor 1s shown 1n FIG. 1. As shown
in FI1G. 1, the arithmetic logic unit (heremaftter, “ALU”) 61
performs the multiplication of an element F17 that forms part
of the compressed data and an element Gyi1 that forms part of
the coelflicient matrix 1 accordance with a multiplication
instruction. The ALU 61 also reads the sum-product value
stored 1n the sum-product result register 62, adds the multi-
plication result of Gy1*F13 to the read sum-product value, and
has the result of this addition stored 1n the sum-product result
register 62. By repeating the above calculation, a sum-prod-
uct value 1s accumulated in the sum-product result register 62.
Once the multiplication has been performed a predetermined
number of times, the programmer 1ssues a sum-product value
transier instruction. By 1ssuing a transier instruction, the
accumulated value 1n the sum-product result register 62 is
transierred to the general registers, and 1s used as the matrix
multiplication result for one row and one column. By per-
forming N*N 1terations of the above processing, the matrix
multiplication of N*N compressed data and an N*N coetfi-
cient matrix can be completed.

When a conventional multimedia-oriented processor 1s
used, however, positive correction saturation operations for
amending the sum-product value pose many difficulties for
programmers.

Positive conversion processing refers to the conversion of a
sum-product value that 1s a negative value 1nto either zero or
a positive value. Normally, compressed data 1s expressed as a
coded relative value that reflects the relation of the present
value to the preceding and succeeding values. As a result,
there are many cases when the sum of products for each
clement 1n the compressed data and the corresponding coet-
ficients 1s a negative value. Most reproduction-related hard-
ware, such as displays and speakers, however 1s only able to
process uncoded data, so that when the sum-product values
are to be reproduced, 1t 1s first necessary to perform positive
conversion processing.

Saturation calculation processing refers to processing that
sets all values that exceed a given range (or, 1n other words,
which are “saturated”) at a predetermined value. This 1s to
say, when an element that includes an erroneous bit generated
during transfer 1s used 1n a sum-product calculation as part of
the sum-product processing for compressed data, there 1s an
increase in the probability of the sum-product value exceed-
ing a value that can be expressed by the stated number of bits.
Since most reproduction-related hardware 1s only physically
capable of reproducing uncoded data with a fixed valid num-
ber of bits, such as eight bits, saturation processing 1s required
to convert the sum-product value into a value that can be
expressed using the valid number of baits.

It has been conventional practice to perform this kind of
positive value conversion processing and saturation calcula-
tion processing by converting the-sum-product value using a
subroutine that corrects the sum-product value. An example
of a subroutine that corrects the sum-product value 1is
explained below. In this example, the register width and the
calculation width of the calculation unit are 32 bits, with the
width of the MCR being 32 bits, and the sum-product value
being expressed as a coded 16-bit integer. The data that can be
handled by the reproduction-related hardware needs to be
expressed using uncoded 8-bit integers. This subroutine is set
as using the data register D0 for storing the calculation result.
Each instruction 1s expressed using two operands, with the
left and right operands being respectively called the first and
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3

the second operands. The second operand 1s used both to
indicate the transfer address of a transfer instruction and the

storage address of an arithmetical instruction.
Instruction 1: MOV MCR,D0

Instruction 2: CMP OXFFFF _8000,D0
Instruction 3: BCC CARRY

Instruction 4: MOV 0x0000__00000,D0
Instruction 5: BRA END

CARRY:
Instruction 6:
Instruction 7: BCS END

Instruction 8: MOV 0x0000__0O0FF,D0

END: (end of positive conversion saturation calculation
processing)

Describing the above instructions in order, Instruction 1,
“MOV MCR.DO0”, transiers the stored value of the MCR
register mnto the data register DO0. Instruction 2, “CMP

OxFFFF__8000,D0, compares the value 1n the data register

with the immediate “OxFFFF__ 80007, where “0x” shows that
the value 1s given 1n hexadecimal. This comparison 1s per-
tormed by subtracting the immediate “OxFFFF__8000” given
in the first operand from the stored value of the data register
D0 given 1n the second operand.

The sixteenth bit of the immediate “OxFFFF__8000” in
Instruction 2 1s the code bit used for a 16-bit coded integer, so
that when the stored value of the data register D0 1s greater
that the immediate “OxFFFF_ 8000, this shows that the
value stored in the MCR 1s a negative number.

On the other hand, when the stored value of the D0 register
1s less than “OxFFFF 8000, this shows that the value stored
by the MCR 1s a positive number. I this number 1s a positive
number, a carry 1s performed and the carry flag 1n the flag
register 1s set.

The letter “B” 1n the “BCC” 1n Instruction 3 stands for
“Branch”, while the letters “CC” stand for “Carry Clear”.

When the comparison 1n Instruction 2 finds that the stored
value of the register DO 1s less than the immediate “OxFFFF__
80007, a branch 1s performed to Instruction 6 which has the
label “CARRY”. Conversely, when the comparison 1n
Instruction 2 finds that the stored value of the register DO 1s
greater than the immediate “OxFFFF__ 8000, Instruction 4,
“MOV 0x0000_0000,D0” transters the value zero into the
register D0, amending the sum-product value to zero. After
this amendment, the unconditional branch “BRA END” in
Instruction 5 1s performed to transfer the processing to the
“END” label, thereby completing the positive conversion
processing.

The processing described above 1s performed when the
stored value of the register DO 1s negative. The following 1s a
description of the processing performed when the stored
value of the register D0 1s greater than the immediate
“OxFFFF_ 8000”. In such a case, Instruction 6, “CMP
0x0000__00FE,D0” compares the stored value of the register
D0 with the immediate “0x0000__00FF”. This comparison 1s
performed by subtracting the immediate “0Ox0000_ 00FF”
given 1n the first operand from the stored value of the data
register D0 given 1n the second operand. When the stored
value of the DO register 1s smaller than the immediate
“Ox0000_00FF”, a carry 1s performed and the carry flag 1n
the flag register 1s set.

The letters “CS” 1n Instruction 7, “BCS END”, stand for
“Carry Set”, so that when the carry flag 1s set, a branch 1s
performed to the label “END” from Instruction 7.

When the carry flag 1s not set, no branch 1s performed in

Instruction 7 and processing advances to Instruction 8, “MOV
Ox0000_ OOFF,DO0”, where the immediate “0Ox0000 OOFEF”

CMP 0x0000__00FF,D0
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4

1s transierred into the register D0 to amend the calculation
result to “0x0000__00FF”, thereby completing the saturation
calculation processing.

The problem with the sum-product value amendment pro-
cess described above lies 1n the considerable increase 1n code
s1ze caused by the insertion of the above eight instructions for
one amendment of a sum-product value. When the program 1s
written 1nto a ROM to embed the software 1nto the informa-
tion processing apparatus, the required amount of installed
ROM will have to need to be increased by an amount equal to
this increase in code size, leading to an increase in manufac-
turing cost. A large number of manufacturers of domestic
appliances such as digital video players, electronic note-
books, and word processors seek to improve on their rivals’
products by using their own decompression processing pro-
grams, although the installation of such decompression pro-
cessing programs presently has the drawback of increasing
costs by increasing the required amount of ROM, making
such 1nstallation problematic.

There 1s also the problem that since eight instructions need
to be executed to correct one sum-product value, there 1s a
large 1ncrease in processing time. When, as shown 1n FIG. 2,
an approximation calculation for an iverse DCT 1s per-
tformed by multiplying compressed data Fij (where 1,1=1,2,3,
4.5 ...8)composed of 8*8 elements with a coellicient matrix
G11 (where1,5=1,2.3,4,5 .. . 8) also composed of 8*8 elements
to produce the multiplication result matrix Hij (where 1,1=1,
2,3,4,5 . .. 8), the calculation of the matrix multiplication
result element H21 requires the sum-product processing of
the multiplication results of one column of compressed data

clements F11, F21, F31, F41, F51, F61, F71, F81 by one row
of coeflicient data elements G11, G12, G13, G14, G15, G16,
(17, G18. The result 1s then subjected to positive conversion
saturation calculation processing. Following this, the calcu-
lation of the matrix multiplication result element H12
requires the sum-product processing of the multiplication

results of the column of compressed data elements F12, F22,
F32, F42, F52, F62, F72, F82 by one row of coellicient data

clements G11,G12,G13,G14,G15,G16,G17, G18, with the
sum-product result then being subjected to positive conver-
s1on saturation calculation processing.

The same sum-product processing and positive conversion
saturation calculation processing 1s required to obtain the
other matrix multiplication result elements H21, H31, H41,
H51, H61, H71, H81, . . ., and since there are 64 elements 1n
the coeflicient matrix G1; (where 1,=1,2,3,4,5 . . . 8), the
sum-product value amending subroutine for positive conver-
s10n saturation calculation processing needs to be performed
64 times. This sum-product value amending subroutine
includes branch instructions (as Instructions 3, 5, and 7), so
that when this sum-product value amending subroutine 1s
executed, branches will occur regardless of whether negative
values or saturation occur, so that the 64 iterations of the
subroutine will not be performed smoothly. When attempts
are made to improve the processing speed of the sum-product
operation by introducing pipeline processing to the processor,
the execution of the stated three branch instructions will result
in a noticeable drop 1n processing eificiency.

In order to 1increase the speed of the matrix multiplication,
it 1s possible to install a specialized circuit for performing
matrix multiplication. However, 11 all of the matrix multipli-
cations are performed by a specialized circuit, there would be
a vast icrease in hardware, and the processor characteristic
known as versatility, whereby the processor executes a variety
of processes 1n accordance with the program written by the
programmer, 1s lost. If the versatility of the processor 1s lost,
there 1s the risk that the processor will not be able to respond
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to programmers’ wishes, and so will not, for example, be able
to execute an original decompression processing program.

SUMMARY OF THE INVENTION

It 1s a primary object of the present invention to provide a
processor that can perform a rounding process made up of a
positive conversion process and a saturation calculation pro-
cess at high speed, while minimizing the increase 1n code size
caused by the rounding process.

The stated object can be achieved by a processor that suc-
cessively decodes and executes instructions 1n an instruction
sequence, the mstruction sequence including instructions that
indicate a storage address of a value used 1n an operation, the
processor including: a detecting unit for detecting whether a
next istruction to be decoded includes an operation content
indication showing that the next instruction 1s a correction
instruction and, if present, reading the operation content indi-
cation; and a rounding unit for rounding, when the detecting
unit has detected an operation content indication showing that
the next instruction 1s a correction instruction, a coded m-bait
integer stored at a storage address indicated by the instruction
to a value expressed as an uncoded s-bit integer (where s<m).

With the stated construction, the processing for rounding
values 1s performed once each time a correction mstruction 1s
detected out of the 1nstruction sequence, so that the rounding
process can be executed by the programmer writing only one
instruction.

As the rounding process 1s performed according to one
correction instruction, the execution time for one execution of
the rounding process 1s extremely short. When the rounding
of calculated values i1s required very often, such as when
decompressing data, there will not be a significant increase 1n
the time taken by the decompression processing.

Since the rounding process can be performed by simply
executing a correction instruction, when the processor
attempts to perform a sum-products operation at high speed
through pipeline processing, there will be no confusion in the
pipeline. Accordingly, the code size of the instruction
sequence can be reduced and the execution of the 1nstruction
sequence made faster by adding a small amount of hardware
to the processor.

The stated object can also be achieved by a processor that
successively decodes and executes instructions 1n an mnstruc-
tion sequence, the instruction sequence including instructions
that indicate a storage address of a value to be used 1n an
operation, the processor including: a first detecting unit for
detecting whether a next instruction to be decoded includes an
indication showing that the instruction has a calculation per-
formed; a second detecting unit for detecting whether the next
instruction to be decoded includes an indication showing that
calculation 1s to be performed and that rounding 1s-to be
performed on a calculation result; a calculating unit for per-
forming, when the first detecting unit detects that the next
instruction includes an indication showing that the instruction
has a calculation performed, a calculation using an m-bit
integer 1n accordance with the indication; and a rounding unit
for rounding, when the second detecting unit has detected that
the next instruction to be decoded includes an indication
showing that rounding 1s to be performed, a calculation result
of a calculation that uses an m-bit integer to a value expressed
as an uncoded s-bit integer (where s<m).

With the stated construction, correction instructions for
performing a rounding process of a coded calculation result
are provided, so that the two processes composed of a calcu-
lation process and a rounding process can be performed 1n a
single step. As a result, positive conversion saturation calcu-
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lation processing 1s performed 1n the same step as the calcu-
lation processing, so that the effective number of steps taken
the positive conversion saturation calculation processing 1s
ZErO0.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other objects, advantages and features of the
invention will become apparent from the following descrip-
tion thereol taken in conjunction with the accompanying
drawings which illustrate a specific embodiment of the mven-
tion. In the drawings:

FIG. 1 shows a conventional construction composed of an
ALU 61 and a sum-product result register 62;

FIG. 2 gives a representation of multiplication of matrices
composed of N*N elements;

FIG. 3 shows the construction of the processor of the first
embodiment of the present invention;

FIG. 4 shows the construction of the operation execution
apparatus 14 1n the present embodiment;

FIG. 5 shows an instruction sequence composing the
matrix multiplication subroutine 1n the present embodiment;

FIG. 6 shows the instruction format of a sum-product func-
tion multiplication instruction “MACCB D0,D1” in the
present embodiment;

FIG. 7 shows the mstruction format of a positive conver-
sion saturation calculation instruction “MCSST” in the
present embodiment;

FIG. 8A shows the 32-bit expressions that are the multi-
plier, the multiplicand, the sum-product value, and the matrix
multiplication result element;

FIG. 8B shows how the sum-product value 1s converted by
the positive conversion saturation calculation circuit 3;

FIG. 9 1s a truth value table showing the relation of the
combination of the output values of the constant generator 21
and the zero generator 25 with the output of the multiplexer
24;

FIG. 10 shows the flow of data when performing an 8*8 bit
multiplication using a 32%*32 bit multiplication/sum-product
unit;

FIG. 11 shows the flow of data when performing an 8*8 bit
multiplication using a 32*32 bit multiplication/sum-product
unit;

FIG. 12A shows an example of the pipeline processing
performed by the processor shown 1n FIG. 3;

FIG. 12B shows the execution according to pipeline pro-
cessing of a matrix multiplication subroutine inside the pro-
cessor shown in FIG. 3;

FIG. 13 shows the instruction format of a positive conver-
sion saturation calculation instruction “MCSST” 1n the
applied example 1n the first embodiment;

FIG. 14 shows the internal construction of the operation
execution apparatus 14 1n the first embodiment;

FIG. 15 shows the internal construction of the operation
execution apparatus 14 1n the second embodiment; and

FIG. 16 shows the instruction format of a positive conver-
s10n saturation calculation multiplication instruction “MulB-

SST Dm,Dn”.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

First Embodiment

The following 1s an explanation of the first embodiment of
the present mvention with reference to the drawings. FIG. 3
shows the internal construction of the processor 1n the first
embodiment of the present invention, which can be seen to be
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composed of a ROM 11, an instruction fetch circuit 12, a
decoder 13, an operation execution apparatus 14, an address

bus 17, and a data bus 18, with the address bus 17 and the data
bus 18 being connected to the RAM 10.

The RAM 10 stores the compressed data F1y (1,=1,2,3.4, 5
5. ..8)composed of 8*8 matrix elements and coellicient data
G171 (1,=1,2,3,4,5 . . . 8) composed of 8*8 matrix elements.
When a fetch address for the 1th row and jth column 1s out-
putted to the address bus 17, the data indicated by the output-
ted address 1s outputted to the data bus 18. When the operation 10
execution apparatus 14 calculates the ith row and jth column
clement of the multiplication result matrix Hyy (1,1=1,2,3.4,

5 ... 8) for the multiplication of the compressed data Fij
composed of 8*8 matrix elements and the 8*8 matrix coelli-
cients 1y, and the 1ith row and jth column address 1s outputted 15
to the address bus 17 as the write address, the 1th row and jth
column element transferred to the data bus 18 1s written 1nto
the storage area indicated by the outputted address. The mul-
tiplication result matrix Hij 1s used 1n an approximation cal-
culation using an mverse DCT, 1s subjected to predetermined 20
processing, and 1s used by the reproduction-related hardware
(not illustrated). It should be noted here that F1j and Gy are
expressed as 8-bit coded integers whose the eighth bat
counted from the LSB (least significant bit) 1s used as the code
bit. 25

ROM 11 stores a decompression processing program for
the compressed data stored in the RAM 10, so that when a
read address 1s outputted from the instruction fetch circuit 12,
the instruction indicated by the read address in the stored
decompression processing program 1s outputted to the data 30
bus 18. The decompression processing program stored by the
ROM 11 1s composed of a variety of instructions, such as
transfer instructions, arithmetic instructions, and branch
mstructions. Of these, the arithmetic instructions can be
roughly classified into arithmetic calculation instructions, 35
sum-product function multiplication instructions, and logic
operation 1nstructions. Arithmetic calculation instructions,
such as addition instructions, subtraction instructions, and
multiplication instructions each have a first operand and sec-
ond operand. The first operand has two addressing modes that 40
are an indication of an immediate and an indirect indication of
a register. On the other hand, an indirect indication of a
register 1s the only possible addressing mode for the second
operand, although the second operand also doubles as an
indication of the storage address for the calculationresult. For 45
the example of the addition instruction “ADD 1mm,D1”, the
first operand 1s the immediate value 1mm, while the second
operand 1s the register D1. Since the second operand indicates
the storage address for the calculation result, the calculation
result of the addition instruction “ADD D0,D1” stores the 50
result of the addition of the values 1n registers D0 and D1 in
register D1.

In the present embodiment, the decompression processing,
program includes a matrix multiplication subroutine that gen-
crates the matrix multiplication result Hij with 8*8 elements 55
by multiplying the compressed data Fij composed of 8*8
matrix elements by the coetlicient data G11 composed of 8*8
matrix elements. It should be especially noted that this matrix
multiplication subroutine 1s mainly composed of sum-prod-
uct function multiplication istructions “MACCB Dm,Dn” 60
and positive conversion saturation calculation instructions
“MCSST Dm”.

The following 1s a description of the generation of the
matrix Hij with 8*8 elements by multiplying the compressed
data F11 (1,1=1,2,3,4,5 . .. 8) composed of 8*8 matrix elements 65
by the coellicient data G1 (1,5=1,2,3,4,5 . . . 8) also composed
of 8*8 matrix elements. When doing so, the calculation

8

shown in Equation 1 below is necessary to calculate the 1%
row, 1°* column element H11 of the matrix Hij.

H11=G11*F11+G12*F21+G13*F31+G14*F41+
G15*F514+G16*F614+G17*F714+G18*FR1 Equation 1

This Equation 1 has Gy1*F1y (1,)=1,2,3,4,5 . . . 8) as 1ts
clemental operations and 1s a compound operation which
finds an algebraic sum of the elemental operations. The cal-
culation of the respective elemental operations and the calcu-
lation of the algebraic sum are expressed 1n the present matrix
multiplication subroutine by a loop statement (this loop state-
ment being called a “sum-product loop™) that repeatedly has
a sum-product function multiplication instruction “MACCB
Dm,Dn” performed.

FIG. 5§ shows an example of the matrix multiplication
subroutine. It should be noted here that the summaries of the
mstructions i FIG. 5 are given 1n the comments given to the
right of each instruction (starting with the symbol “#7). In
FIG. 5, F_ENTRY is a label attached to the start of the region
in the RAM 10 that stores the compressed data, while G_
ENTRY 1s a label attached to the start of the region 1n the
RAM 10 that stores the coelficient data. In the same way,
H_ENTRY is a label attached to the start of the region 1n the
RAM 10 that stores the result of the matrix multiplication.
Instruction 1, “MOV F_ENTRY, A0”, instruction 2, “MOV
G_ENTRY, Al” and instruction 3, “MOV H_ENTRY, A2”

are transier 1nstructions that respectwely transier the
addresses F_ ENTRY, G_ENTRY, and H ENTRY into the
address register A0, the address register Al, and the address
register A2.

As aresult of the transfer instructions mentioned above, the
address registers A0, Al, and A2 are used to indicate the read
addresses for the compressed data, the coeltlicient data, and
the matrix multiplication result data which are each com-
posed of 8*8 elements.

Instruction 4, “MOV INIT,D2”, sets the 1nitial value INIT
for the number of 1iterations 1nto the data register D2, while
istruction 35, “MOV (A0),D0”, has the coefficient data Fji
read from the address indicated by the address register A0
transterred to the data register DO0. Instruction 6, “MOV 30
(A1),D1”, has the compressed data G17 read from the address
indicated by the address register Al transierred to the data
register D1. Instruction 7, “MACCB D0,D1”, 1s a multiplica-
tion 1nstruction with a sum-product function that uses the data
register D0, the data register D1, and the sum-product result
register 6. Instruction 8, “CMP NUMBER,D2” is an 1nstruc-
tion which performs an upper limit check on the number of
iterations by subtracting the total number of 1terations NUM-
BER from the number of iterations stored in the data register

D2.

Instruction 9, “BCS LP1_NEXT” 1s a conditional branch
instruction that branches to mstruction 13 “ADD 1,D2” with
the label LP1_NEXT when the carry tlag 1s ON as a result on
the subtraction performed in 1nstruction 8 “CMP NUMBER,
D2”.

Instruction 10, “MCSST D1” 1s an instruction that per-
forms conversion to a positive value and saturation calcula-
tion processing (hereinafter referred to as “positive conver-
s10n saturation calculation processing”) when the carry flag 1s
OFF.

Instruction 13, “INC D2” 1s an addition instruction that
increments the number of 1terations stored 1n the data register
D2 by 1, while instruction 14, “INC A0, 1s an addition
instruction that increments the read address for coeltficient
data stored 1n the address register A0 by 1. Instruction 15,
“ADD ROW1,A1”, 1s an addition instruction that adds one
row number ROW1 to the read address of the coelficient data
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stored 1n the address register Al. Instruction 16, “BRA
LP1_START”, 1s an unconditional branch instruction that
branches to the label LP1 START.

The label LP1_START 1s attached to instruction 5, “MOV
(A0),D0”, with the instruction sequence from instruction 3 to
instruction 12, “BRA LP1_END” calculating one elemental
operation, with the algebraic sum of the calculation results of
all 1terations of this instruction sequence being found.

The label LP1 _NEXT 1s attached to instruction 13, “ADD
1,D2”, with the instruction sequence from instruction 13 to
instruction 16, “BRA LP1_START” moving the read address
of the compressed data to a next row and the read address of
the coelficient data to the next column when the matrix mul-
tiplication of one row of elements by one column of elements
has been completed. At the same time, the number of itera-
tions stored 1n the data register D2 1s incremented by 1.

FIG. 6 shows the format of the sum-product function mul-
tiplication nstruction “MACCB Dm,Dn”. As shown 1n FIG.
6, the sum-product function multiplication 1nstruction
“MACCB Dm,Dn” includes a one-bit field for indicating the
storage address of a sum-product value, a one-bit field for
indicating the calculated content of the algebraic sum, a one-
bit field for indicating the elemental calculation content of the
clemental operation, a two-bit field for indicating a read
address of the multiplier, and a two-bit field for indicating a
read address of the multiplicand.

The field indicating the read address of the multiplier and
the field indicating the read address of the multiplicand can
cach be set at one of “007, <017, “10”, and “117, thereby
indicating one of data register D0, data register D1, data
register D2, and the sum-product result register 6 as a read
address for the multiplier Gi1 or the multiplicand Fi;.

The one-bit field for indicating the calculated content of the
clementary operation shows the content of the calculation of
the elementary operation performed for the multiplier Gj1 and
the multiplicand F17. When “1” 1s written into thus field, the
multiplication “Gy1*F17” of the multiplier G173 and the multi-
plicand F1j 1s indicated as the content of the elementary opera-
tion on the multiplier Gy1 and the multiplicand Fi;.

When the one-bit field indicating the storage address of a
sum-product value 1s set at “1”, this indicates that the MCR
(the sum-product result register 6 which 1s described later) 1s
set as the storage address of the sum-product value. When the
one-bit field indicating the calculated content of the algebraic
sum 1s set at “1”, this shows that the algebraic sum is set so
that the multiplication result “Gj1*F11” 1s added to the sum-
product value stored in the sum-product result register 6.

When the sum-product operation “G11*F11+G12*F21+
G13*F31...” 1s performed, 1t should be noted that a bit error
when transferring the element F1j of the compressed data can
result n a sum-product value ““G11*F11+G12*F21+
G13*F31 . ..” which 1s beyond a reproducible range for the
reproduction-related hardware. Since this risk exists, the
matrix multiplication subroutine performs the positive con-
version saturation calculation instruction “MCSST Dm™ after
the loop processing repeating the sum-product function mul-
tiplication instruction “MACCB D0,D1” has been com-
pleted, so that positive conversion saturation calculation pro-
cessing 1s performed for the sum-product value.

The format of the operation codes for the positive conver-
sion saturation calculation instruction “MCSST Dm” 1s
shown 1n FIG. 7. As shown 1n FI1G. 7, the positive conversion
saturation calculation instruction “MCSST Dm” includes a
field (“rounding field”) indicating the positive conversion/
saturation calculation width and a field indicating the storage
address of the positive conversion saturation calculation
result. By writing one of “017, 107, and “11” into the round-
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ing field, the rounding width of the positive conversion satu-
ration calculation processing can be set at 24 bits, 16 bits, or
8 bits. Conversely, by writing one of “007, “01”, “10”, and
“11” 1nto the storage address indicating field, one of the data
register DO, the data register D1, the data register D2, and the
dataregister D3 can be indicated as the storage register for the
positive conversion saturation calculation processing.

As described above, the decompression processing pro-
gram stored 1n the ROM 11 1s such that the elementary opera-
tions and the algebraic sum calculation that compose the
compound operation that 1s required by the matrix multipli-
cation subroutine are performed by a sum-product function
multiplication mstruction “MACCB Dm,Dn”, so that the
algorithm 1s very compact. Since only this operation needs to
be performed by the processor, the memory area of the ROM
11 that 1s used by the decompression processing program 1s
extremely small.

This completes the description of the instruction sequences
stored 1n the ROM 11, so that the following explanation will
instead focus on the constructional elements of the processor
shown in FIG. 3.

The 1nstruction fetch circuit 12 shown in FIG. 3 includes a
program counter that successively generates read addresses
and outputs them to the address bus. This instruction fetch
circuit 12 then transfers the instructions outputted to the data
bus 18 by the ROM 11 to the decoder 13.

The decoder 13 has an instruction buffer for accumulating,
the plurality of instructions that are read from the data bus 18
and an 1nstruction register for holding an 1nstruction to be
decoded, out of the plurality of instructions accumulated 1n
the mstruction butfer. The decoder 13 decodes the instruction
stored 1n the mstruction buffer and has the operation execu-
tion apparatus 14 perform the necessary control to have the
decoded mstruction executed. Of the control operations men-
tioned here, special attention should be paid to (1) register
output control, (2) calculation execution control, and (3) con-
stant generation control. These are described 1n more detail
below.

(1) Register output control refers to a controlling of the
operation execution apparatus 14 to output a stored value of a
register indicated by either the first or second operand 1n an
arithmetic calculation nstruction, a logic operation instruc-
tion, or a sum-product function multiplication instruction. (2)
Calculation execution control refers to a controlling of the
operation execution apparatus 14 to execute the calculation
indicated by an arithmetic calculation instruction, a logic
operation 1nstruction, or a sum-product function multiplica-
tion istruction. (3) Constant generation control refers to a
controlling of the operation execution apparatus 14 to gener-
ate a maximum value or zero for performing a positive con-
version saturation calculation instruction. The (1) register
output control and the (2) calculation execution control are
performed when an arithmetic calculation instruction, a logic
operation 1nstruction, or a sum-product function multiplica-
tion 1nstruction 1s decoded by the decoder 13, while the (1)
register output control and the (3) constant generation control
are performed when a positive conversion saturation calcula-
tion instruction 1s decoded by the decoder 13. Occurrences of
(2) calculation execution control only happen when a sum-
product function multiplication function 1s decoded, while

occurrences ol (3) constant generation control only happen
when a positive conversion saturation calculation instruction
1s decoded, so that the (2) calculation execution control and
the (3) constant generation control are mutually exclusive.
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The address bus 17 has a bit width of 32 bits and 1s used to
transier the compressed data Fj1, the coetlicient data G1j, and

the matrix multiplication data Hij when data 1s outputted by
the RAM 10.

The operation execution apparatus 14 includes a register
file and an AL U circuit, and performs calculation according to
control by the decoder 13.

It should be especially noted here that the construction 1s
such that the instruction fetch circuit 12 performs the fetch
stage, the decoder 13 the decoding stage, and the operation
execution apparatus 14 the operation execution stage, the
memory write stage, and the register write stage. These five
stages are realized by a five-stage pipeline process. The
instruction fetch circuit 12 starts to fetch another instruction
once an instruction has entered the decoding stage performed
by the decoder 13, and so does not wait for the execution of
the present and preceding instructions to be completed. In the
same way, the decoder 13 does not wait for the execution of
the present and preceding instructions to be completed, and so
starts to decode a new 1nstruction once a decoded 1nstruction
has entered the operation execution stage performed by the
operation execution apparatus 14. By performing such pro-
cessing, the processor processes the instruction sequence
stored 1n the ROM 11 according to a five-stage pipeline pro-
cess composed of an instruction fetch stage, a decoding stage,
an execution stage, a memory access stage, and a register
write stage, as shown 1n FIG. 12A.

This completes the description of the constructional ele-
ments of the processor. The following description will focus
on the 1nternal construction of the operation execution appa-
ratus 14. As shown in FIG. 4, the operation execution appa-
ratus 14 1s composed of a register file 1, an ALU circuit 2, a
positive conversion saturation calculation circuit 3, a code
extension circuit 4, a code extension circuit 5, a sum-product
result register 6, a first internal bus 15, and a second internal
bus 16. A number of control signal lines are used to connect
these components to the decoder 13 so that the control opera-
tions (1), (2), and (3) described earlier can be performed,
although for ease of understanding these control signal lines
have been omitted from FIG. 4.

The register file 1 1s composed of four 32-bit data registers

DO-D3, and three 32-bit address registers AO-A2. During (1)

register output control, when one or two register names are
indicated by the decoder 13, the register file 1 has the stored
values of the registers with the indicated register names out-
putted via paths C2, C3 to the first internal bus 15 and the
second 1nternal bus 16. The register file 1 also holds the value
transierred on the data bus 18 which 1t receives via the path
Cl1.

The first internal bus 15 1s 32 bits wide and transfers a
32-bit stored value outputted by the register file 1 to the ALU
circuit 2.

The second internal bus 16 1s also 32 bits wide and transters
a 32-bit stored value outputted by the register file 1 to the ALU
circuit 2.

The code extension circuit 4 performs code extension when
the stored value of a data register transierred from the register
file 1 via the first internal bus 15 1s a negative number. In the
present embodiment, multipliers and multiplicands are
defined as coded 8-bit numbers, so that the code extension
circuit 4 performs code extension of 8-bit negative numbers.
As one example, when the stored value transferred via the first
internal bus 15 1s the 8-bit negative value “0x0000__0080”,
the code in the 87 bit is extended to the 9" through 327 bits
so that the value “OxFFFF_FF80” 1s outputted to the ALU

circuit 2.
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The code extension circuit 5 performs code extension when
the stored value of a data register transferred from the register
file 1 via the second internal bus 16 1s a negative number. In
the present embodiment, multipliers and multiplicands are
defined as coded 8-bit numbers, so that the code extension
circuit 5 performs code extension of 8-bit negative numbers.
The method used for code extension 1s the same as for the
code extension circuit 4.

The ALU circuit 2 1s composed of an addition unit, a
multiplication unit, and a barrel shifter that are all 32-bits
wide, and performs calculations according to the (2) calcula-
tion execution control indicated by the decoder 13. Since the
input terminals of the ALU circuit 2 are connected to the
output terminals of the code extension circuit 4 and the sum-
product result register 6, the calculation performed according
to the (2) calculation execution control 1s performed using the
32-bit stored value of a register which 1s outputted by the code
extension circuit 4 and the 32-bit stored value of a register
which 1s outputted by the sum-product result register 6.

When a sum-product function multiplication instruction
“MACCB Dm,Dn” 1s decoded, the ALU circuit 2 performs
multiplication of the 32-bit stored value of a register output-
ted by the code extension circuit 4 and the 32-bit stored value
of a register outputted by the code extension circuit 5 and
outputs a 64-bit multiplication result. The ALU circuit 2 also
adds the 32-bit value transierred on the path P1 to the lower-
order 32 bits of the 64-bit multiplication result and outputs a
32-bit addition result on the path P2.

It should be noted here that when the sum-product function

multiplication instruction “MACCB D0,DL1” 1s decoded,
the stored values of the read address registers indicated by the
first and second operands of the sum-product function multi-
plication mstruction “MACCB D0,D1” will be transferred on
the first internal bus 15 and the second internal bus 16, so the
ALU circuit 2 will perform the multiplication of the stored
value of the register D0 and the stored value of the register D1.
Also, when the sum-product function multiplication nstruc-
tion “MACCB D0,D1” 1s decoded, the stored value of the
sum-product result register 6 will be transferred on the path
P1, so that the multiplication result of the data register D0 and
the data register D1 will be added to the stored value of the
sum-product result register 6 which has been outputted to the
path P1. The result of this addition 1s then outputted on the
path P2.
The sum-product result register 6 stores the sum-product
value which has hitherto been accumulated, and outputs its
stored value on the path P1 every time a sum-product function
multiplication instruction 1s decoded. When the stored value
on the path P1 and the multiplication result have been added
by the ALU circuit 2, the addition result 1s outputted on the
path P2, with this value being latched by the sum-product
result register 6 and stored as the updated sum-product value.
It should be noted here that the sum-product result register 6
stores the result of the multiplication by the ALU circuit 2 of
the multiplier Gj1 and the multiplicand F1; as a coded 16-bit
value.

The positive conversion saturation calculation circuit 3
rounds the stored value of the sum-product result register 6
expressed as a coded 16-bit value to a positive 8-bit integer.
FIGS. 8A and 8B show the rounding process performed by

the positive conversion saturation calculation circuit 3. The
top part of FIG. 8A shows the multiplier and multiplicand
expressed in 32-bit data. Here, the black-shaded 8" bit is
allocated as the code bit, so that by using oblique-shaded 7
bits, the multiplier Gyj1 and the multiplicand F13 can be
expressed as values within the range —127 to +127.
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The middle part of FIG. 8A shows the sum-product result
expressed in 32-bit data. Here, the black-shaded 16™ bit is
allocated as the code bit, so that by using oblique-shaded 15
bits, the sum-product value can be expressed as a value in the
range -32767 to +32767.

The lower part of FIG. 8A shows the multiplication matrix
clement Hij expressed 1n 32 bits. Here, the oblique-shaded
first to eighth bits are used without a code bit, so that the
multiplication matrix element Hij can be expressed as any
value 1n the range O to +253.

In FIG. 8B, the bar on the leit shows the range of stored
values of registers that can be used as the multiplier and
multiplicand, which 1s a seven bit range of positive and nega-
tive values. The bar 1n the center shows the range of values
that can be stored 1n the sum-product result register 6 as the
sum-product value, which 1s a fifteen bit range of positive and
negative values. The bar on the right shows the range of values
that can be used for the multiplication matrix Hij, which 1s the
range ol 8-bit positive values that can be handled by the
reproduction-related hardware.

It should be noted here that the range of values that can be
used the sum-product value 1s a range of 135-bit positive and
negative values to avoid the totaling of rounding errors. In
more detail, when the sum-product value 1s found from the
multiplication result of the multiplier Gj1 and the multipli-
cand F1y which are both coded 8-bit values, 11 the multiplica-
tion result were to be rounded to eight bits every time because
the range of the multiplication matrix element Hij 1s eight
bits, the rounding error would increase every time multipli-
cation 1s performed. To avoid such increases in rounding
error, the sum-product result register 6 sets the sum-product
result as 16 bits and the positive conversion saturation calcu-
lation 1s only performed when the multiplication of one row
by one column has been completed.

The stored value of the sum-product result register 6 shown
by the bar 1n the center of FIG. 8B 1s rounded to the 8-bit
positive value shown by the right bar, so that the range of
values indicated by the symbol y1 (the range of positive
values that exceed “Oxpb 0000__00FF”) are all rounded to
“0x0000__00FF”™.

The positive conversion saturation calculation circuit 3
rounds the range of values shown by the symbol y2 (negative
values) to the value “0x0000__0000.

The internal construction of the positive conversion satu-
ration calculation circuit 3 1s shown inside the broken line y8
in FIG. 4. As shown 1n FIG. 4, the positive conversion satu-
ration calculation circuit 3 1s composed of a constant genera-
tor 21, a comparator 22, a polarity judging unit 23, a multi-
plexer 24, and a zero generator 25. These components are
connected by control lines to the decoder 13, although these
have been omitted from FIG. 4 for ease of understanding.

When the mstruction read by the mstruction fetch circuit
12 and decoded by the decoder 13 i1s a positive conversion
saturation calculation instruction “MCSST”, the constant
generator 21 generates a maximum positive value which, 1n
accordance with the content of the positive conversion-satu-
ration calculation width field, 1s an 8-bit uncoded value, a
16-b1t uncoded value, or a 24-bit uncoded value. When the
generation ol an 8-bit uncoded value 1s 1ndicated by the
positive conversion-saturation calculation width field, the
constant generator 21 generates the 32-bit coded value
“Ox0000_OOFF”, which 1s the maximum value for an
uncoded 8-bit value, and outputs 1t to the multiplexer 24.
When the generation of a 16-bituncoded value 1s indicated by
the positive conversion-saturation calculation width field, the
constant generator 21 generates the 32-bit coded value

“Ox0000_FFFF”, which 1s the maximum value for an
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uncoded 16-bit value, and outputs it to the multiplexer 24.
Similarly, when the generation of a 24-bit uncoded value 1s
indicated by the positive conversion-saturation calculation
width field, the constant generator 21 generates the 32-bit
coded value “Ox00FF_FFFF”, which 1s the maximum value
for an uncoded 24-bit value, and outputs it to the multiplexer
24.

The comparator 22 compares the magnitude of the value
held by the sum-product result register 6 with the magnitude
of maximum value outputted by the constant generator 21.
This comparison 1s performed by subtracting the value held
by the constant generator 21 from the maximum value out-
putted by the constant generator 21 and detecting whether a
carry has occurred as aresult of the subtraction. When an 8-bit
value 1s indicated by the positive conversion-saturation cal-
culation width field, the stored value of the sum-product
result register 6 1s subtracted from the 32-bit coded integer
“Ox0000__O00OFF”, which 1s the maximum value for an
uncoded 8-bit value. When a 16-bit value 1s indicated by the
positive conversion-saturation calculation width field, the
stored value of the sum-product result register 6 1s subtracted
from the 32-bit coded mteger “Ox0000_FFFF”, which 1s the
maximum value for an uncoded 16-bit value. Similarly, when
a 24-bit value 1s indicated by the positive conversion-satura-
tion calculation width field, the stored value of the sum-
product result register 6 1s subtracted from the 32-bit coded
integer “Ox00FF_FFFF”, which 1s the maximum value for an
uncoded 24-bit value.

When a carry 1s detected as the result of the subtraction
described above and the latched value 1s judged to exceed the
maximum value, the comparator 22 outputs the logic value
“1” to the multiplexer 24. Conversely, when the value held by
the sum-product result register 6 1s judged to be equal to or
below the maximum value, the comparator 22 outputs the
logic value “0” to the multiplexer 24.

The polarity judging unit 23 judges whether the code bit of
the value stored by the sum-product result register 6 1s “ON”’.
Here, depending on the content the positive conversion-satu-
ration calculation width field of the positive conversion satu-
ration calculation istruction “MCSST”, an 8-bit uncoded
value, a 16-bit uncoded value, or a 24-bit uncoded value 1s
indicated, so that the position of the code bit will change. As
a result, the polarity judging unit 23 changes the bit which 1s
to be judged 1n accordance with the indication 1n the positive
conversion-saturation calculation width field of the positive
conversion saturation calculation instruction “MCSST™.

When the indication 1n the positive conversion-saturation
calculation width field of the positive conversion saturation
calculation istruction “MCSST” 1s for a 24-bit uncoded
value, the polarity judging unit 23 judges whether the 24 bit
from the LLSB side 1s “ON”’, while when the 1indication 1n the
positive conversion-saturation calculation width field of the
positive conversion saturation calculation 1nstruction
“MCSST” 1s for a 16-bit uncoded value, the polarity judging
unit 23 judges whether the 16 bit from the LSB side is “ON”".
Similarly, when the indication in the positive conversion-
saturation calculation width field of the positive conversion
saturation calculation instruction “MCSST™ 1s for an 8-bit
uncoded value, the polarnty judging unit 23 judges whether
the 8” bit from the LSB side is “ON”. This judgement refers
to a judgement of whether the sum-product value held by the
sum-product result register 6 1s expressed as a negative num-
ber when values are expressed 1n accordance with the indica-
tion given in the positive conversion-saturation calculation
width field of the positive conversion saturation calculation
istruction “MCSSTI”. When the value 1s a negative value,
the polarity judging unit 23 outputs the logic value “1” to the
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multiplexer 24. Conversely, when the value 1s zero or a posi-
tive value, the polarity judging unit 23 outputs the logic value
“0” to the multiplexer 24.

The zero generator 25 generates the integer “0Ox0000__
0000 when the decoded 1nstruction 1s a positive conversion
saturation calculation mstruction “MCSST™.

The multiplexer 24 selects and outputs one of the maxi-
mum value generated by the constant generator 21, the zero
value “0x0000__0000” generated by the zero generator 25,
and the sum-product value held by the sum-product result
register 6, in accordance with the combination of the logic
values outputted by the comparator 22 and the polarity judg-
ing unit 23.

If the logic value outputted by the comparator 22 1s set as
the logic value x and the logic value outputted by the polarity
judging umt 23 1s set as the logic value vy, the correspondence
between the combinations of these logic values and the output
value of the multiplexer 24 can be expressed by the truth table
shown 1n FI1G. 9. It should be noted here that the example truth
table shown i FIG. 9 shows the case when the maximum
value outputted by the constant generator 21 “0x0000__
O00FF”.

As shown 1n FI1G. 9, when the output value of the compara-
tor 22 1s “0” and the output value of the polarity judging unit
23 1s “07, the multiplexer 24 outputs the held value of the
sum-product result register 6.

When the output value of the comparator 22 1s “1” and the
output value of the polarity judging unit 23 1s “0”, the multi-
plexer 24 outputs the maximum value “0x0000__00FF” gen-
crated by the constant generator 21.

When the output value of the comparator 22 1s “0” and the
output value of the polarity judging unit 23 1s “17°, the multi-
plexer 24 outputs the zero value “0x0000__0000” generated
by the zero generator 25. When the output value of the com-
parator 22 1s “1” and the output value of the polarity judging,
unit 23 1s “17, the multiplexer 24 outputs the zero value
“0x0000__0000” generated by the zero generator 25.

FIGS. 10 and 11 show the data flows in the operation
execution apparatus 14. FIG. 10 shows the case when the
sum-product function multiplication instruction “MACCB
D0,D1” 1s decoded by the decoder 13, indicating the data
register D0 as the multiplier and the data register D1 as the
multiplicand. In this case, the stored value “0x0000__007F”
of the data register D0 and the stored value “0x0000__0070”
of the data register D1 stored in the register file 1 are outputted
to the first internal bus 15 and to the second internal bus 16 to
transier the values to the code extension circuit 4 and the code
extension circuit 5. The multiplication of the 32-bit values
outputted by the code extension circuit 4 and the code exten-
s1on circuit 3 1s then performed by the AL U circuit 2 (since the
operation performed by the ALU circuit 2 here 1s a multipli-
cation, the term “multiplier” 1s given in FIG. 10), and the
lower 325-bits “0x0000_3790” of the 64-bit wvalue
“0X0000__0000_0000_3790” that 1s the multiplication
result are outputted to the sum-product result register 6. Since
the positive conversion saturation calculation instruction
“MCSST D1” 1s next decoded, the held value of the sum-
product result register 6 1s outputted to the positive conver-
sion saturation calculation circuit 3, where the outputted
value “0x0000_3790” 1s judged to exceed the maximum
value “Ox0000 OOFF” for an uncoded 8-bit value, so that the
maximum value “0x0000__00FF” for an uncoded 8-bit value
1s outputted to the data bus 18 and stored in the data register
D1 1n the register file 1.

In FIG. 11, the sum-product function multiplication
instruction “MACCB D0,D1” which indicates the data reg-
ister D0 and the data register D1 as the read addresses for the
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multiplier and the multiplicand has been decoded by the
lecoder 13. As a result, the held value “0x0000 007F” of the

lata register D0 and the held value “0x0000__ 0080 of the

C

C

data register D1 stored in the register file 1 are transierred to
the code extension circuit 4 and the code extension circuit 3
via the first internal bus 13 and the second internal bus 16. The
held value “0x0000__0080" of the data register D1 1s an 8-bit
negative number, so that the code extension circuit S extends
the eighth bit of the held value “0x0000__0080” of the data

register D1 to the ninth through thirty-second bits, and so
outputs the value “OxFFFF_FF80” to the ALU circuit 2.

The multiplication of the 32-bit held value “0x0000__

007F” of the data register D0 outputted by the code extension
circuit 4 and the 32-bit value “OxFFFF_FF80” extended by

the code extension circuit S 1s performed by the code exten-
sion circuit 5, and the lower 32-bits “OxFFFF_CO80” of the
64-bit multiplication result “OxFFFF_FFFF_FFFF_(CO080”

are outputted to the sum-product result register 6. When the
positive conversion saturation calculation instruction
“MCSST” has been decoded, the sum-product result register
6 outputs its held value to the positive conversion saturation
calculation circuit 3, which judges that the 32-bit value
“OxFFFF_CO80” 1s a coded 16-bit negative number. As a
result, the positive conversion saturation calculation circuit 3
outputs the 8-bit zero value “0x0000__0000 to the data bus
18 so that this zero value 1s held by the data register D1 1n the
register file 1.

The following 1s a description of the operation of the pro-
cessor constructed as described above. A transfer imstruction
included 1n the matrix multiplication subroutine 1s first writ-

ten 1nto the instruction butter of the decoder 13 by the nstruc-
tion fetch circuit 12 and the instruction “MOV(A0), D0 1s
decoded by the decoder 13. This mstruction 5:“MOV (A0),
D0’ 1s a transier instruction that indicates a data read for the
RAM 10 using indirect register referencing that indicates the
read address using the address register A0. As a result, an
clement on the first row and first column (F11) of the com-
pressed data matrix Fij that 1s composed of 8*8 matrix ele-
ments stored in the RAM 10 1s transterred to the data register
D0. The following instruction, mstruction 6:*MOV(A1),D0”
similarly writes an element on the first row and first column
(G11) of the coellicient data matrix Gji1 that 1s composed of
8*8 matrix elements into the data register D1 1n the register
file 1 via the data bus 18.

The next mnstruction in the matrix multiplication subrou-
tine 1s instruction 7 which 1s the sum-product function mul-
tiplication mstruction “MACCB D0,D1”. Thus 1s fetched by
the 1instruction fetch circuit 12 and written into the instruction
butiler of the decoder 13, before being decoded by the decoder
13. When the decoder 13 decodes the sum-product function
multiplication instruction “MACCB D0,D1”, the held values
F11 and G11 of the data register D0 and the data register D1
are transferred to the first internal bus 15 and the second
internal bus 16.

When the sum-product function multiplication mstruction
“MACCB D0,D1” 1s decoded, the first internal bus 15 and the
second internal bus 16 transier the held values F11 and G11 of
the read address registers indicated by the first and second
operands of the sum-product function a multiplication
instruction “MACCB D0,D1”. These values are then output-
ted by the code extension circuit 4 and the code extension
circuit 3 into the ALU circuit 2, where the multiplication of
the held value of the data register D0 and the held value of the
data register D1 1s performed. The multiplication result “
F11*G11” 1s then transierred to the sum-product result reg-

ister 6 and 1s held by the sum-product result register 6.
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Once the sum-product result register 6 has stored the mul-
tiplication result “F11*G11”, a branch 1s performed to the
label “LLP1 NEXT” due to the execution of instruction 3:
“CMP NUMBER.,D2” and ‘““mstruction 9:*BCS
LP1 NEXT”, so that the instruction 13:“ADD 1,D2” 1s
decoded. This instruction 13:“ADD 1,D2” increments the
number of iterations. After instruction 13:“ADD 1,D27,
mstruction 14:“ADD 1,A0” and instruction 15:“ADD ROW,
A1 are executed, so that read addresses of the ROM 11 are
advanced to the next column and row. As a result of the
incrementing in these instructions, the read address of the
compressed data is advanced to the 27 row, 1* column ele-
ment and the read address of the coellicient data Gj1 1s
advanced to the 1°? column, 2”¢ row element.

After the read addresses have been incremented, the fol-
lowing 1instruction, instruction 16:“BRALP1_START™ 1s
decoded. The branch address of instruction 16:“BRA
LP1_START” 1s mstruction 5:“MOV(A0),D0” which has
label “LLP1_START” attached, so that the branch 1n instruc-
tion 16 has instruction 3:“*MOV(A0),D0” and instruction
6:“MOV (A1),D1” re-executed.

As a result of these transfer instructions, the 2”¢ row, 1%
column element F21 in the compressed datainthe RAM 10 1s
transferred into the data register D0, while the 1% row, pid
column element G12 1n the compressed data 1s transferred
into the data register D1 1n the register file 1 via the data bus
18.

In the matnix multiplication subroutine, these transier
instructions are followed by the sum-product function multi-
plication instruction “MACCB D0,D1”, so that this sum-
product function multiplication 1nstruction “MACCB
D0,D1” 1s written 1nto the internal buifer of the decoder 13 by
the mstruction fetch circuit 12 and 1s decoded by the decoder
13. As a result of the decoding, the held values of the data
register D0 and the data register D1 are transferred to the first
internal bus 15 and the second internal bus 16.

When the sum-product function multiplication instruction
“MACCB D0,D1” 1s decoded, the first internal bus 15 and the
second internal bus 16 transter the held values F11 and G11 of
the read address registers indicated by the first and second
operands of the sum-product function multiplication instruc-
tion “MACCB D0,D1”. These values are the matrix elements
(G12 and F21, so that the multiplication of the held value G12
of the data register D0 and the held value F21 of the data
register D1 1s performed by the ALU circuit 2. At this point,
the sum-product result register 6 holds the value “G11*F11”
which 1s the total of the elemental operations thusfar per-
formed 1n the sum-product calculation. When the sum-prod-
uct function multiplication instruction “MACCB D0,D1” 1s
decoded, the sum-product result register 6 outputs this held
value onto the path P1.

Since the held value of the sum-product result register 6 1s
outputted onto the path P1, the multiplication result
“G12*F21” of the data register D0 and the data register D1 1s
added to the held value of the sum-product result register 6 on
the path P1. The result of the addition 1s then outputted onto
the path P2.

Once the addition of the held value “G11*F11” and the
multiplication result “G12*F21” has been performed by the
ALU circuit 2, the addition result “G11*F11+G12*F21” 15
outputted onto the path P2, so that the sum-product result
register 6 holds this addition result as the sum-product value
“G11*F11+G12*F21”.

The processing described above 1s repeated for all of the
clements on the first row of the coetlicient data Gy1 and all of
the elements 1n the first column of the compressed data Fij, so
that the sum-product value 1s calculated for “G11*F11+
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G12*F21+G13*F31+G14*F41+G15*F51+G16*F61+G17*
F71+G18*F81” and stored 1n the sum-product result register
6. Here, should there be a bit error during the transfer of the
element 31 from the RAM 10, there 1s the risk that the sum-
product value held by the sum-productresultregister 6 will be

a value (such as “0x000__78FF”) that clearly exceeds the

range ol values that can be reproduced by the reproduction-
related hardware.
After this, the next loop statement in the ROM 11, the

positive conversion saturation calculation 1nstruction
“MCSST D17, 1s written into the internal buffer of the

decoder 13, this positive conversion saturation calculation
istruction “MCSST D1 1s decoded by the decoder 13.
When the positive conversion saturation calculation

instruction “MCSST D1” 1s decoded by the decoder 13, the
held value “0x000__78FF” of the sum-product result register
6 1s outputted onto the path P1. After this value has been
outputted to the P1, the comparator 22 1s activated by the
decoder 13. The comparator 22 compares the held value of the
sum-product result register 6 with the 32-bit coded integer
“0x0000__00FF” to see which 1s larger. Here, since the held
value of the sum-product result register 6 “0x000__78FF”
exceeds the 32-bit coded mteger Ox0000__00FF”, the com-
parator 22 outputs the logic value “1” to the multiplexer 24.

The polarity judging unit 23 judges whether the 16” bit
counting from the LSB side i1n the value held by the sum-
product result register 6 1s “ON”". This judgement equates to

a judgement as to whether the held sum-product value of the
sum-product result register 6 1s a negative number. The held

value “0x000__78FF” expressed in binary 1s “0000__0000
0000__ 0000 0111_1000 1111_11117, so that the 16™ bit
counting from the LSB side can be seen to be “0”. As a result,
the logic value “0” 1s outputted to the multiplexer 24.

In the present case, the maximum value “0x0000__O0OFEF”
and the zero value “0x0000__0000” are generated by the
constant generator 21 and the zero generator 25, and the
multiplexer 24 selectively outputs one of the maximum value,
the zero value, and the held value of the sum-product result
register 6 1n accordance with the combination of the logic
values outputted by the comparator 22 and the polarity judg-
ing unit 23. In the present example, the output of the com-
parator 22 1s “1”” and the output-of the polarity judging unit 23
1s “0”, so that the multiplexer 24 outputs the maximum value
“0x0000__00FF” to the data bus 18.

According to control by the decoder 13, the selected maxi-
mum value outputted to the data bus 18 1s transferred to the
dataregister D1 that 1s indicated by the operand of the positive
conversion saturation calculation instruction “MCSST D17,
and 1s held by the data register D1. This held value 1s then
written into the RAM 10 as the element H11 for the 1% row, 1%
column of the multiplication result matrix Hiy.

When the sum-product has been completed for all of the
clements 1n the first column of the compressed data matrix Fij
and the elements on the first row of the coefficient matrix G,
the sum-product processing 1s performed for the elements 1n
the second column of the compressed data matrix F1y and the

clements on the first row of the coefficient matrix Gj1. When
the calculation of “G11*F12+G12*F22+G13*F32+

G14*F42+G15*F52+G16*F62+G17*F72+G18*F82”  has
been completed, the sum-product value 1s held by the sum-
product result register 6.

Here, 11 there 1s a bit error when transferring the element
F32 from the RAM 10, the sum-product value held by the
sum-product result register 6 ends up at a negative value
“Ox0000__86FF” that cannot be reproduced by the reproduc-
tion-related hardware.
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After this, the next loop statement in the ROM 11, the
positive conversion saturation calculation instruction
“MCSST D17, 1s written into the internal buffer of the
decoder 13, this positive conversion saturation calculation
mstruction “MCSST D1 1s decoded by the decoder 13.

When the positive conversion saturation calculation
instruction “MCSST D1” 1s decoded by the decoder 13, the
held value “0x000__86FF” of the sum-product result register
6 1s outputted onto the path P1. After this value has been
outputted to the P1, the comparator 22 1s activated by the
decoder 13. The comparator 22 compares the held value of the
sum-product result register 6 with the 32-bit coded integer
“Ox0000__00FF” to see which 1s larger. Here, since the held
value of the sum-product result register 6 “0x000_ 86FF”
exceeds the 32-bit coded integer “0x0000__00FF”, the com-
parator 22 outputs the logic value “1” to the multiplexer 24.

The polarity judging unit 23 judges whether the 16 bit
counting from the LSB side 1n the value held by the sum-
product result register 6 1s “ON”". This judgement equates to
a judgement as to whether the held sum-product value of the
sum-product result register 6 1s a negative number. The held
value “0x000__86FF” expressed 1n binary 1s “0000__0000
0000 0000 1000 0110 1111 1111~ so that the 16™ bit
counting from the LSB side can be seen to be “1”. As a resullt,
the logic value “17 1s outputted to the multiplexer 24.

In the present case, the maximum value “0x0000__ 00FF”
and the zero value “0x0000__0000” are generated by the
constant generator 21 and the zero generator 25, and the
multiplexer 24 selectively outputs one of the maximum value,
the zero value, and the held value of the sum-product result
register 6 1n accordance with the combination of the logic
values outputted by the comparator 22 and the polarity judg-
ing unit 23. In the present example, the output of the com-
parator 22 1s ““1”” and the output of the polarity judging unit 23
1s “1”, so that the multiplexer 24 outputs the zero value
“0x0000__0000” to the data bus 18.

According to control by the decoder 13, the selected zero
value outputted to the data bus 18 1s transierred to the data
register D1 that 1s indicated by the operand of the positive
conversion saturation calculation instruction “MCSST D17,
and 1s held by the data register D1. This held value 1s then
written into the RAM 10 as the element H12 for the 1% row,
27 column of the multiplication result matrix Hij.

By repeating the above processing and writing in the
remaining e¢lements in the matrix multiplication table, the
matrix multiplication table 1s written into the RAM 10, and by
using the result of this matrix multiplication as the result of an
approximation calculation of an inverse DC'T, the decompres-
s10n processing of compressed data can be performed.

FI1G. 12B shows the execution of the matrix multiplication
subroutine according to a pipeline process composed of five
stages which namely are an instruction fetch stage, an instruc-
tion decoding stage, an execution stage, a memory access
stage, and a register write stage. When 1nstruction 10:“MC-
SST D17 1s fetched by the decoder 13, the preceding instruc-
tion 9:“BCS LP1_NEXT” will be 1n the decode stage. Since
in struction 8:“CMP NUMBER,D2” a calculation 1s per-
formed to subtract the total iteration number “NUMBER”
from the number of iterations held by the data register D2, 1f
the carry tlag 1s set at “ON”" as a result of the subtraction, a
branch 1s performed to mstruction 13:“ADD 1,02 so that the
execution stage of instruction 10:“MCSST D1” 1s stopped.

On the other hand, when the carry flag 1s set at “OFF”, the
decoding stage of instruction 10:“MCSST D1” 1s performed
at the same time as the execution stage of instruction 9:“BCS
LP1_NEXT”. After this, the execution stage of instruction
10:“MCSST D17 1s performed at the same time as the
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memory access stage of instruction 9:“BCS LP1_NEXT”.
The positive conversion saturation calculation processing for
the matrix multiplication result of one row of elements by one
column of elements 1s performed when the instruction located
before 1t 1s 1n the memory access stage, so that the processing
can be seen to be performed without confusion in the pipeline.

In this way, even if the processor provided 1n the positive
conversion saturation calculation circuit 3 needs to perform
the matrix multiplication of one row of elements and one
column of elements with a very high frequency, the positive
conversion saturation calculation processing 1s expressed 1n
the machine language program as a single instruction, so that
there 1s no confusion in the pipeline. As a result, the processor
can operate at high speed.

With the present embodiment described above, the positive
conversion saturation calculation processing of sum-product
values 1s performed by subjecting the sum-product value
accumulated 1n the sum-product result register 6 to positive
conversion saturation calculation processing, so that applica-
tion programs for matrix approximation calculations required
by decompression processing of video data and audio data
can be easily coded using a remarkably small code size. Since
there 1s a large reduction in code size, a large reduction-can be
made 1n the amount of ROM that needs to be installed to store
the program.

The positive conversion saturation calculation processing,
for the sum-product value 1s such that the positive correction
processing and the saturation calculation processing are per-
formed at the same time for the held value of the sum-product
result register 6, so that the processing 1s performed at high
speed. The positive conversion saturation calculation pro-
cessing needs to be performed every time one row of elements
1s multiplied by one column of elements so that when 8 rows
are multiplied by 8 rows, 64 executions of the positive con-
version saturation calculation processing are necessary. How-
ever, since the positive correction processing and the satura-
tion calculation processing are performed smoothly, each
execution of the positive conversion saturation calculation
processing 1s completed 1n a very short time. If the positive
conversion saturation calculation processing 1s completed 1n
a short time, the decompression processing for image data
and audio data that require the matrix multiplication of a large
amount of data can be performed at high speed.

Since the positive conversion saturation calculation pro-
cessing performed by the positive conversion saturation cal-
culation circuit 3 does not include branch instructions, the
processor can perform high-speed pipeline processing with-
out the risk of confusion in the pipeline. By executing such a
high-performance pipeline, matrix multiplication can be per-
formed at an improved speed.

Since positive conversion saturation calculation process-
ing 1s performed without installing a specialized circuit for
matrix multiplication, there 1s no loss 1n versatility for the
processor. Accordingly, should a user wish to control the
processor according to an original decompression processing
program, this 1s still possible.

Applied Example for the First Embodiment

In this example, one of the data registers D0 to D2 1s
indicated as the read address for the positive conversion satu-
ration calculation processing according to the positive con-
version saturation calculation instruction “MCSST”, with the
sum-product result register 6 being indicated as the storage
address for the calculation. In this example, the instruction
format of the positive conversion saturation calculation
istruction “MCSST” 1s shown 1n FIG. 13. As shown 1n FIG.
13, the positive conversion saturation calculation instruction
“MCSST” has aread address indication field which can be set
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a value which 1s one of 117, 007, 107, and “01”, thereby
indicating the sum-product result register 6, the data register
DO, the data register D1, or the data register D2.

By writing one of “117, “007, “10”, and “01” into the
storage address indication field, one of the sum-product result
register 6, the data register D0, the data register D1, and the
data register D2 can be indicated as the storage address.

The instruction format of this positive conversion satura-
tion calculation mstruction “MCSST™ has been amended so
the internal construction of the operation execution apparatus
14 shown 1n FI1G. 4 1s also slightly changed, as shown 1n FIG.
14. The changes in the operation execution apparatus 14
shown in FI1G. 14 are the addition of the paths C6 to C8 and the
selector 30.

The path C6 1s a path for transferring the held value of the
data register D0, the data register D1, or the data register D2
on the second 1nternal bus 16 to the positive conversion satu-
ration calculation circuit 3.

In the same way, the path C7 1s a path for transferring the
held value of the data register D0, the data register D1, or the
data register D2 on the first internal bus 135 to the positive
conversion saturation calculation circuit 3.

The selector 30 outputs one of the held value of the data
register DO, the data register D1, or the data register D2
transierred on the path Cé6 or C7, or the held value of the
sum-product result register 6 to the comparator 22 1n the
positive conversion saturation calculation circuit 3 based on
an indication of the storage address field 1n the positive con-
version saturation calculation instruction “MCSST™.

The path C8 1s a path for transferring the processing result
of the positive conversion saturation calculation circuit 3
from the data bus 18, to which 1t has been transferred from the
positive conversion saturation calculation circuit 3 via the
path C4, to the sum-product result register 6.

By making the simple addition described above, the func-
tiomng of the positive conversion saturation calculation
instruction “MCSS'T” can be extended 1n the present embodi-
ment.

Second Embodiment

The second embodiment of the present invention executes
positive conversion saturation calculation processing for a
multiplication result when multiplication 1s performed by the
ALU circuit 2. To perform positive conversion saturation
calculation processing for a multiplication result, the second
embodiment 1s constructed as shown 1n FIG. 15, so that the
positive conversion saturation calculation circuit 3 1s con-
nected via the path P3 to the output stage of the ALU circuit
2 to enable the positive conversion saturation calculation
circuit 3 to perform positive conversion saturation calculation
processing on the multiplication results outputted by the ALU
circuit 2. In order to activate the positive conversion satura-
tion calculation circuit 3, the decompression processing pro-
gram stored in the ROM 11 of the present embodiment also
includes the “MULBSST Dm.,Dn” instruction described
below.

A “MULBSST Dm,Dn” instruction 1s a multiplication
instruction that indicates that the multiplication result should
be further subjected to positive conversion saturation calcu-
lation processing. In other words, multiplication 1s performed
using the lower 8 bits of the Dm register and the Dn register,
and the positive conversion saturation calculation circuit 3 1s
then instructed to perform positive conversion saturation cal-
culation processing on the coded 16-bit multiplication result.

FIG. 16 shows the 1nstruction format of the positive con-
version saturation calculation function multiplication
instruction “MULBSST Dm,Dn”. As shown 1n FIG. 16, this

positive conversion saturation calculation function multipli-
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cation instruction “MULBSST Dm,Dn” includes a 1-bit field
indicating the calculation content of an elemental operation, a
2-bit field indicating the read address of the multiplier, a 2-bat
field indicating the read address of the multiplicand, and a
2-bit field indicating the storage address for the result of the
positive conversion saturation calculation processing.

By writing one of “017, “10”, and “11” into the positive
conversion saturation calculation processing field, it 1s pos-
sible to specily that the positive conversion saturation calcu-
lation processing with a rounding width of a 24-bit positive
number, a 16-bit positive number, or an 8-bit positive number.

By writing one of <007, “01”, “10”, and “11” mto the
multiplier read address indicating field and the multiplicand
read address indicating field, any of the data register D0, the
data register D1, the data register D2, and the sum-product
result register 6 can be indicated as the read address register
tor the multiplier F1j and the multiplicand G.

When executing the positive conversion saturation calcu-

lation function multiplication i1nstruction “MULBSST
Dm,Dn”, the register file 1 outputs the held values of the
registers with the register names indicated by the first and
second operands. The AL U circuit 2 then multiplies the val-
ues of registers Dm and Dn and outputs the multiplication
result. The same positive conversion saturation calculation
processing as in the first embodiment 1s then performed on the
multiplication result by the positive conversion saturation
calculation circuit 3, and the result of the positive conversion
saturation calculation processing 1s stored in the register indi-
cated by the second operand of the positive conversion satu-
ration calculation function multiplication nstruction.

The following 1s an explanation of the operation of the
above processor based on a matrix multiplication subroutine.

First, a transier instruction included 1in the matrix multiplica-
tion subroutine 1s written into the instruction buffer of the
decoder 13 by the mstruction fetch circuit 12, and the fetched
transier instruction 1s decoded by the decoder 13. As a result,
the first row, first column element (F11) of the compressed
data F1j which 1s composed of 8*8 matrix elements stored 1n
the RAM 10 1s transierred in the data register D0 and the first
row, first column element (G11) of the coelficient data Gyi
which 1s also composed of 8*8 matrix elements 1s transierred
into the data register D1.

In the matrix multiplication subroutine, the positive con-
version saturation calculation function multiplication
instruction “MULBSST D0,D1” follows the transter instruc-
tion, so that this istruction 1s next fetched by the mstruction
tetch circuit 12 and written into the instruction buifer of the
decoder 13, before being decoded by the decoder 13. When
the decoder 13 decodes the positive conversion saturation
calculation function multiplication nstruction “MULBSST
D0,D17, the values F11 and G11 held by the data register DO
and the data register D1 are transierred to the first internal bus
15 and the second internal bus 16.

When the positive conversion saturation calculation func-
tion multiplication instruction “MULBSST D0,D1” 1s
decoded, the held values F11, G11 of the read address instruc-
tions indicated by the first and second operands of the positive
conversion saturation calculation function multiplication
instruction “MULBSST D0,D1” are transierred onto the first
internal bus 15 and the second internal bus 16, so that held
value of the data register D0 and the held value of the data
register D1 are multiplied by the ALU circuit 2, with the
multiplication result being outputted onto the path P1. Here,
however, a bit error occurs for F11, so that the multiplication
result becomes “Ox0000  78FF”’, which 1s a value that cannot
be expressed using one byte.
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When the decoder 13 has decoded the positive conversion
saturation calculation function multiplication instruction
“MULBSST D0,D1”, the decoder 13 also activates the posi-

tive conversion saturation calculation circuit 3. As aresult, the

24

designated by the predetermined instruction to a value
expressed as an unsigned s-bit integer wherein s 1s less
than m.]

[2. The processor of claim 1, wherein the predetermined

comparator 22 compares the magnitude of the held value of 5 jnstruction includes a transfer address of a value rounded by

the sum-productresult register 6 with the 32-bit coded integer
“Ox0000_OOFF”. Here, since the held value of the sum-

product result register 6 exceeds the maximum value
“0x0000__00FF” for the held value of the sum-product result
register 6, the comparator 22 outputs the logic value “1” to the
multiplexer 24.

The polarity judging unit 23 judges whether the sixteenth
bit of the value held by the sum-product result register 6 1s
“ON”. This refers to a judgement as to whether the value held

by the sum-product result register 6 1s a negative number.
When expressed 1in binary, the held number “0x0000__78FF”
1s “0000__0000 0000__ 0000 0111_1000 1111_1111~, so
that the sixteenth bit can be seen to be “1”. As a result, the
polarity judging unit 23 outputs the logic value “0” to the
multiplexer 24.

In the present case, the constant generator 21 generates the
maximum value “0x0000__00FF” and the zero generator 25
generates the zero value “0x0000__ 0000, The multiplexer 24
selects and outputs one of the maximum value, the zero value,
and the held value of the sum-product result register 6 1n
accordance with the combination of the logic values output-
ted by the comparator 22 and the polarity judging umt 23. In
the present example, the output of the comparator 22 1s “1”
and the output of the polarity judging unit 23 1s “0”, so that the
multiplexer 24 outputs the maximum value “0x0000__00FEF”
generated by the constant generator 21 to the data bus 18.

According to control by the decoder 13, the value outputted
to the data bus 18 1s transferred to the data register D0 1ndi-
cated by the operand of the positive conversion saturation
calculation mstruction “MULBSST D0, and 1s held by the
data register DO.

By means of the second embodiment described above, a
calculation instruction that performs saturation calculation
processing and positive conversion processing on the coded
calculation result 1s provided, so that three types of process-
ing composed of calculation processing, positive conversion
processing, and saturation calculation processing can be per-
formed 1n one step, meaning that positive conversion satura-
tion calculation processing 1s performed 1n the same step as
the calculation processing. As a result, the effective number of
execution steps required by positive conversion saturation
calculation processing 1s reduced to zero.

It should be noted here that this second embodiment has
been described as performing a rounding process for an
uncoded 8-bit width, although the maximum number can be
freely set at any positive integer.

Although the present invention has been fully described by
way of examples with reference to accompanying drawings, it
1s to be noted that various changes and modifications will be
apparent to those skilled 1n the art. Therefore, unless such
changes and modifications depart from the scope of the
present invention, they should be construed as being included
therein.

What 1s claimed 1s:

[1. A processor that decodes and executes instructions,

the processor comprising:

a detecting unit for detecting whether an instruction to be
decoded 1s a predetermined instruction; and

a rounding unit for rounding, when the detecting unit 1s
detecting that the instruction 1s the predetermined
istruction, a signed m-bit integer stored at an operand
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the rounding unit, and the rounding unit includes:

a first judging circuit for judging, when the detecting unitis
detecting that the instruction 1s the predetermined
instruction, whether a signed m-bit integer stored at the
operand 1s a negative number; and

a second judging circuit for judging when the detecting
unit 1s detecting that the instruction 1s the predetermined
instruction, whether a signed m-bit integer stored at the
operand exceeds a maximum value expressed as an
unsigned s-bit integer, and

wherein the processor further comprises:

transierring unit for transferring one of a first predeter-
mined value expressed as an unsigned s-bit integer a
second predetermined value expressed as an unsigned
s-bit integer, and a value stored at the operand to the
transier address for a rounding result, based on the com-
bination of respective judging results of the first judging
circuit and the second judging circuit.}

[3. The processor of claim 2,

wherein the ftransferring unit transiers a value zero
expressed as an s-bit integer as the first predetermined
value to the transfer address for the rounding result,
when the first judging circuit judges that the signed
m-bit integer stored at the operand 1s a negative number;

wherein the transferring unit transfers the maximum value
expressed as an unsigned s-bit integer as a second pre-
determined value to the transter address for the rounding
result, when the second judging circuit judges that the
signed m-bit integer stored at the operand exceeds the
maximum value expressed as an unsigned s-bit integer,
and

wherein the transferring unit transfers the value stored at
the operand to the transfer address for the rounding
result, when the first judging circuit judges that the
signed m-bit integer stored at the operand 1s not a nega-
tive number and the second judging circuit judges that
the signed m-bit integer stored at the operand does not
exceed the maximum value.]

[4. The processor of claim 3,

wherein the first judging circuit includes a judging unit for
judging whether a sign bit of an s-bit mteger in the
signed m-bit integer stored at the operand 1s on or off,
and

wherein the second judging circuit includes a calculator for
subtracting a maximum positive value for an s-bit inte-
ger from the signed m-bit integer stored at the operand.}

[5. The processor of claim 4, wherein m-bit is 32 bits in size

and the predetermined 1nstruction includes an indication field
indicating one of 8 bits, 16 bits, and 24 bits as s-bit,
wherein the judging unit of the first judging circuit exam-
ines one ol an eighth, sixteenth, and twenty-fourth bit
counted from a least significant bit side as the sign bit, 1n
accordance with a content of the indication field
included in the predetermined instruction, and

wherein the second judging circuit includes a generating
unit for generating one of an unsigned 8-bit integer, and
an unsigned 16-bit integer, and an unsigned 24-bit 1nte-
ger, 1n accordance with a content of the indication field
included in the predetermined instruction.}

[6. The processor of claim 2, further comprising a special-

1zed register and a calculation unit for performing a calcula-
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tion in the instruction sequence and adding a calculation
result to a value held by the specialized register,

wherein the predetermined nstruction designates the spe-
cialized register as the operand, and

the transferring unit transfers the value stored in the spe-
cialized register to the transier address for the rounding
result, when the first judging circuit judges that a signed
m-bit mteger stored in the specialized register 1s not a
negative number and the second judging circuit judges
that the signed m-bit integer stored 1n the specialized
register does not exceed the maximum value.}

[7. The processor of claim 6, further comprising a register

file composed of a plurality of general registers,

wherein the predetermined instruction designates one of
the general registers in the register file as a transfer
address for a rounding result, and

wherein the transferring unit transiers one of a first prede-
termined value express as an unsigned s-bit integer, a
second predetermined value expressed as an unsigned
s-bit integer, and a value stored 1n the specialized register
to the general register being designated by the predeter-
mined instruction.}

[8. A processor that decodes and executes instructions,

the processor comprising:

first detecting unit for detecting whether an instruction to
be decoded 1s an instruction performing a calculation;

second detecting unit for detecting whether an 1nstruction
to be decoded 1s an instruction performing both a calcu-
lation and a rounding of the calculation result;

calculating unit for performing, when the first detecting
unit detects that the istruction performs a calculation, a
calculation using a signed m-bit integer; and

rounding unit for rounding, when the second detecting unit
detects the instruction performing both a calculation and
a rounding, a result of the calculation performed with a
signed m-bit mnteger to a value expressed as an unsigned
s-bit integer wherein s is less than m.]

[9. The processor of claim 8, wherein the instruction per-
forming both a calculation and a rounding further includes an
indication of a transier address for a rounding result,

and wherein the rounding unit includes:

a first judging circuit for judging, when the second detect-
ing unit detects the instruction performing both a calcu-
lation and a rounding, whether the calculation result of
the calculating unit 1s a negative number; and

a second judging circuit for judging, when the second
detecting unit detects that the instruction performing
both a calculation and a rounding, whether the calcula-
tion result of the calculating unit exceeds a maximum
value expressed as an unsigned s-bit integer, and

wherein the processor further comprises:

transferring unit for transierring one of a first predeter-
mined value expressed as an unsigned s-bit integer, a
second predetermined value expressed as an unsigned
s-bit integer, and the calculation result of the calculating,
unit to the transfer address, based on the combination of
respective judging results of the first judging circuit and
the second judging circuit.]

[10. The processor of claim 9,

wherein the transferring umt transifers a value zero
expressed as an s-bit integer as the first predetermined
value to the transier address, when the first judging
circuits judges that the calculation result of the calculat-
ing unit 1s a negative number;

wherein the transferring unit transiers the maximum value
expressed as an unsigned s-bit integer as the second
predetermined value to the transfer address, when the
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second judging circuit judges that the calculation result
of the calculating umt exceeds the maximum value
expressed as an unsigned s-bit integer; and

wherein the transferring unit transfers the calculation result

of the calculating unit to the transfer address for the
rounding result, when the first judging circuit judges that
the calculation result of the calculating unit 1s not a
negative number and the second judging circuit judges
that the calculation result of the calculating unit does not
exceed the maximum value.]

[11. The processor of claim 10, wherein the first judging
circuit includes a judging unit for judging whether a sign bit
of the calculation result of the calculating unitis on or oit, and

wherein the second judging circuit includes a calculator for

subtracting a maximum positive value for an unsigned
s-bit integer from the calculation result of the calculation
unit. ]

[12. The processor of claim 11, wherein m bits is 32 bits in
s1ze and the correction instruction includes an indication field
indicating one of 8 bits, 16 bits, and 24 bits as s bits,

wherein the judging umit of the first judging circuit exam-

ines one of an eighth, sixteenth, and twenty-fourth bat
from a least significant bit as the sign bit, 1n accordance
with a content of the indication field included in the
correction instruction, and

wherein the calculator includes a generating unit for gen-

erating one of an unsigned 8-bit integer, an unsigned
16-bit integer, and an unsigned 24-bit integer, 1n accor-
dance with a content of the indication field included 1n a
correction instruction. ]

[13. The processor of claim 12, further comprising a reg-
ister file composed of a plurality of general registers,

wherein each calculation instruction designates one of the

general registers 1n the register file as a transfer address
for a rounding result.]
[14. A machine readable medium storing a program that
enables a processor for executing a rounding process coms-
prising:
detection step for directing the processor for detecting
whether an 1nstruction to be decoded by the processor 1s
a predetermined instruction; and

rounding step for directing the processor for rounding a
signed m-bit integer stored at an operand designated by
the predetermined instruction to a value expressed as an
unsigned s-bit integer wherein s is less than m.]

[15. A program recording medium that enables a processor
to decode and execute 1nstructions comprising:

first direction for directing the processor to detect whether

an instruction to be decoded 1s an instruction for per-
forming a calculation;

second direction for directing the processor to detect

whether an 1nstruction to be decoded 1s an struction
performing both a calculation and a rounding of the
calculation result;

third direction for directing the processor to perform, when

the processor detects that the instruction performs a
calculation, a calculation using a signed m-bit integer;
and

fourth direction for directing the processor, when the pro-

cessor 1s detecting an 1nstruction performing both a cal-
culation and a rounding, for rounding a result of the
calculation performed with a signed m-bit integer to a
value expressed as an unsigned s-bit integer wherein s 1s
less than m.]

[16. The program recording medium of claim 15 further
including fifth direction for directing the processor to desig-
nate a register as a transfer address for a rounding result.}
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[17. The program recording medium of claim 16 wherein
the fourth direction 1includes:

a first judging step for judging, when the processor detects
the instruction performing both a calculation and a
rounding, whether the calculation result of the calculat-
Ing means 1s a negative number; and

a second judging step for judging, when the processor
detects that the instruction performing both a calculation
and a rounding, whether the calculation result of the
calculating means exceeds a maximum value expressed
as an unsigned s-bit integer, and

transferring step for directing the processor to transfer one
of a first predetermined value expressed as an unsigned
s-bit integer, a second predetermined value expressed as
an unsigned s-bit integer, and the calculation result of the
calculating data to the transfer address, based on the
combination of respective judging results of the first
judging step and the second judging step.]

[18. The program recording medium of claim 17 wherein
the transferring step directs the processor to transier a value
zero expressed as an s-bit integer as the first predetermined
value to the transfer address, when the first judging data
judges that the calculation result of the calculating data 1s a
negative number,

wherein the transierring step directs the processor to trans-
fer the maximum value expressed as an unsigned s-bit
integer as the second predetermined value to the transter
address, when the second judging step judges that the
calculation result of the calculating data exceeds the
maximum value expressed as an unsigned s-bit integer;
and

wherein the transferring step directs the processor to trans-
fer the calculation result of the calculating data to the
transier address for the rounding result, when the first
judging step judges that the calculation result of the
calculating data 1s not a negative number and the second
judging step judges that the calculation result of the
calculating data does not exceed the maximum value.]
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[19. The processor of claim 18, wherein the first judging
step directs the processor to determine whether a sign bit of
the calculation result of the calculating data 1s on or off, and

wherein the second judging step directs the processor to

subtract a maximum positive value for an unsigned s-bit
integer from the calculation result of the calculation

data.]
[20. The program recording medium of claim 19, wherein

m-bit 1s 32 bits 1n size and the fourth direction includes an
indication field indicating one of 8 bits, and 24 bits as s bits,
wherein the first judging step directs the processor to exam-
ine one ol an eighth, sixteenth, and twenty-fourth bat
from a least significant bit as the sign bit, 1n accordance
with a content of the indication field,
wherein the second judging step directs the processor to
generate one of an unsigned 8-bit integer, an unsigned
16-b1t integer, and an unsigned 24-bit integer, 1n accor-
dance with a content of the indication field.]
21. A processor that decodes and executes instructions, the
processor cCOmprising:
a detecting unit for detecting whether an instruction to be
decoded is a predetermined instruction; and
a rounding unit for rounding, when the detecting unit is
detecting that the instruction is the predetermined
instruction, a signed m-bit integer stoved at an operand
designated by the predetermined instruction to a value
expressed as an unsigned s-bit integer, wherein
s is less than m and the rvounding of the vounding unit
includes the following plural arithmetic operations
which are performed within one cycle:
(a) testing whether the signed m-bit integer is a negative
number or not,
(b) testing whether the signed m-bit integer exceeds a pre-
determined positive number ov not, and
(c) defining the value expressed as the unsigned s-bit inte-
ger in accorvdance with the testing results of (a) and (b).
22. The processor of claim 21, wherein the value of s is
specified by the predetermined instruction.
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