USOORE43624E
(19) United States
a2y Reissued Patent (10) Patent Number: US RE43,624 E
Kedma et al. 45) Date of Reissued Patent: Aug. 28, 2012
(54) SENSOR FOR DETECTING AND (38) Field of Classification Search 726/3, 11-13,

ELIMINATING INTER-PROCESS MEMORY
BREACHES IN MULTITASKING OPERATING
SYSTEMS

(75) Inventors: Gabriel Kedma, Omer (IL); Doron
Havazelet, Omer (IL)

(73) Assignee: Xiloprem Tre Limited Liability
Company, Dover, DE (US)

(21) Appl. No.: 12/545,569

(22) Filed: Aug. 21, 2009

Related U.S. Patent Documents

Reissue of:

(64) Patent No.: 7,260,845
Issued: Aug. 21, 2007
Appl. No.: 10/041,429
Filed: Jan. 8, 2002
U.S. Applications:
(60) Provisional application No. 60/260,203, filed on Jan.
9, 2001.
(51) Int.CL
GO6Il 7/04 (2006.01)
GO6l 17/00 (2006.01)
GO6l’ 12/14 (2006.01)
HO4L 29/06 (2006.01)
HO4L 9/32 (2006.01)
GO6F 11/30 (2006.01)
GO6Ll 7/00 (2006.01)
GO6l 15/173 (2006.01)
(52) US.CL ... 726/3;726/11; 726/12; 726/13;

726/23;,7726/26; 713/151; 713/166; 713/168,;
713/188; 713/189;°707/603; 707/609; 7077/687;
707/694; 7077/781; 7077/785; 709/224

&
a EY. "
,‘ N 50
!'l‘ h.-.
t :1- b-f--l-'-"i“-- - om0
..................................... B
" } T ol ol ol e gk b bk kL
i,_‘.'ﬁ !. 1:{'::-:: '.I:;-- , . r g hgaphobpk, L
' P -'-I-"' .}l'-
v -'.? { . |'-* ! - o .h .i'
h“ : é ":iL..-_.': - : n
L T ! . LT R L e
ETAUK . i y
- . y L]
. .
L |
A, ol Ll []
- ; ‘:._ |]
‘.{_,rﬁ.- :
--------------------------------- "
[]
|
|]
:
I-- L P
- i
.".t .i‘: :l {_p nam,m _h a g Al
'
L]
‘1"‘ - T
) ~
e
[]
':‘i..""’ . i or -a om o
STAA 2 T ; N
'i ---------------------------- q.‘ o,
L ¥
. - -
] i
¥ - :'
] 'I"r 1
] i e ey, A R A —
[] L]
:’!
if‘dl .
_,}-1] =
it ll":' *

726/23, 26; 713/151, 166, 168, 188, 189;
707/603, 609, 687, 694, 781, 785; 709/224;
3770/230
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,634,114 A * 5/1997 Shipley ..ccooooeviiiriinnnnns, 717/170
(Continued)

FOREIGN PATENT DOCUMENTS

WO WO09309498 ¥ 5/1993
(Continued)

OTHER PUBLICATIONS

Baratloo, Tsa1 and Singh, Dec. 25, 1999, Libsafe Protecting Critical
Elements of Stacks, Bell Labs Lucent Technologies, White Paper.™

(Continued)

Primary Examiner — Aravind Moorthy
(74) Attorney, Agent, or Firm — Dorsey & Whitney LLP

(57) ABSTRACT

The invention relates to a method for detecting and eliminat-
ing SCR breach operations by a second party within the
memory space allocated to a first party, 1n a multi-tasking
system, which comprises: (a) pre-recording by the first party
within a knowledge base the structure and/or behavior of an
SCR stack; (b) implanting within the SCR stack a dedicated
SCR for reporting on the structure and/or behavior of said
SCR stack when the SCR stack 1s activated; (¢) when the SCR
stack 1s activated, comparing the data reported by the dedi-
cated SCR with the pre-recorded stack structure and/or
behavior; (d) whenever non-matching 1n the structure and/or
behavior 1s found, ceasing the activity of the activated stack,
and alerting.

33 Claims, 13 Drawing Sheets

E‘.. ‘‘‘‘‘‘‘‘‘ Pl bl T Tl Ll Tl Tl il bl Tl B | 3

|]
L]
L Tl i X . S
Ll v : ' "t'h:
- 1

1,
. " wa !F\f_“l-‘h -
l"' ﬂ"h‘q‘. o “q"'l.l"l-.‘:‘l‘.l“' .r-*'\ ‘#‘l- - T il i i el b dr R R R R R R A A s A s R = ‘m oam
l:' -l.'lq_:'!'l-..- 1.1-.‘..“"‘.!“.*- - N “ i
e = T e B e - . : 1
-ty [» F
- ‘:I"'- ke Rk k4 kW * !

-~

. . . . a a -* . -yl
: S e
.l.f.\-.‘.i'q‘.-hq-h‘ 'F"I‘" r‘.“_‘_‘ i
AR e
- [*
L 2

.":i rf " -. L I'|l| .-"'-"'-"'- Ip ' Te T e T e A AT T . 1T 1T

bbbbbbbbbbbbbbbbbbbbbbbbbbb

L HROALEDGE Ce A
'l 1 i

e Bl B Rl e e I e I LI TR)
i

US RE43,624 E
Page 2

5,805,880
5,819,091
5,949,973
5,970,245
5,974,549
0,141,698
0,243,692
0,275,938
6,301,699
6,405,316
0,578,094
0,578,146
0,708,330
6,728,964
0,832,302

2002/0083334
2005/0246522

U.S. PATENT DOCUMENTS

PEPERIFEZZZEFS S PP

* % % % ¥ ¥ ¥ H W ¥ ¥ ¥ H H K F *

9/1998
10/1998
9/1999
10/1999
10/1999
10/2000
6/2001
8/2001
10/2001
6/2002
6/2003
6/2003
3/2004
4/2004
12/2004
6/2002
11/2005

Pearceetal.ccoeevvininnn,
Arendtetal. 7
Yaromcooeoeviiiiniiinn. 7
Poteat et al. 7
Golanoooviiiiin, 7
Krishnan et al. 7
Floydetal.

Bondetal.o...

Hollander et al. 7
Krishnan et al. 7
Moudgill

Johnsonocoeeinil. 7
Mobergetal. 7
Butt ..o, 7
Fetzeretal. 7
Rogersetal. 7]
Samuelsson et al. 7

713/2
19/331
13/200
17/128
13/200
19/331
705/59
726/23
17/131

13/190
710/57
13/189
17/158
19/313
11/170
13/200
13/150

2006/0075260 Al* 4/2006 Tuckeretal. 713/190
2006/0085857 Al* 4/2006 Omoteetal. 726/24
2006/0242704 Al* 10/2006 Avianietal. 726/23

FOREIGN PATENT DOCUMENTS
W0O9704394 * o 2/1997

OTHER PUBLICATIONS

Cowan, Pu, Maier, Walpole, Bakke, SteveBeattie, Grier, Wagle and

Qian Zhang, StackGuard: Automatic Adaptive Detection and Preven-
tion of Bufter-Overflow Attacks, Jan. 29, 1998, USENIX, 7th Secu-
rity Symposium proceedings. ™
Mohay et al, Kernel and Shell Based Applications Integrity Assur-
ance, 1997, IEEE, pp. 34-43.*

Levine et al, Detecting and Categorizing Kernel-Level Rootkits to
Aid Future Detection, 2006, IEEE, pp. 24-32.*

WO

* cited by examiner

US RE43,624 E

Sheet 1 of 13

S 2 i e A B L R ."..ﬂ.,...ﬂi....rrx,uw..

. .) .) . . .) .) .) .) .) .) .) .) . . .) .) . m .) .) .) .) .) .) .) ..I-.-.I,.I.t”.l.q.. ..t.__-.._.t..l._.t.-.-.-..IlI.__..I.-..l.-...l.-..l.-...l.-..ll..tH.!.llt!.llif..llll.llll.llll.llll.q.t..qlll.lllﬁlm.q.i.q.i.q. .l.-.l.-.l_.-.l_.-.l_.-.l_.-.l.__..!lI.l..-.l..-.l..-l...1..1..1..1..1._1....!.!.- .
K]
A
[]

R |

g
gy

Aug. 28, 2012

e N L N W W » ") *_.__._-.__....___._,..._.._a.__.m_.__.__._.‘..‘%......._._f..r-....p...._..rf._.._._..”.h....__.-r.;...-.,...

U.S. Patent

> .-_I!.l.-.l!..ll.l.r..llll_.ll..lt.__.-_lt.__.rl.rl.-.l.r-.r-.-.-l_.llll.__l_ i e I..r..r...r..r..r.......-.. = adp dn g iy oy o e dp dp dp e e e e .-...-_ .r..r - X a aaaa
. I T T S A [l ' S

- e

..................... T
........ A N e

r

-
I
Al

1
%

attnta
‘.
“»

. E
“‘I'-.\JI-

[y

I P

[y

T
."“-“-j-‘"“ "‘:"‘
P TN TN TR TN TR, TN TR, N PR TN TN TN, TN TR T
FEEERERRFRFRFFREERE -'_-'_l'_.lll-"l:._l_':_"-'_

ot

:'-".

._l
';"
l}

- - -

e

e . s oh oy -

[K S N

l:l. = l = l = .-_ = I. =’ l =n .-.l'll.ll.ll.ll.-..l.—.l._..-. . .-.1._1__._1—_._1_.....-..__.-. -.rviv.rv.rv.r!-l.-l.-l.-l.-l.-l.-!.-l...!.-l.-l.-l.-.l.-l.-l._I-_l..l.-.l.-l.-l.__lll.-.l._lll.-l._l.._. —-I.__l v

A

A

R
Ut

4 _01_8_"%

R U R A B

T
Ll
g 4

I.ll-.q)

"t

e L R T L L O o o - R A L R I o L L A

e e e M T

' "."'.'".'.-'""7'*"'*'7""'*".”-'."*"'*'7"‘""'7'*""""'. "MWWWWWWE

.l.l.'.I.I.'.l.l.i.i..l.'..l.l.il.l.l.l.lv.l.'.ll.ll.ll.ll.llllllliaijii!llllllnt.r.r.r.r.r.r.-_._.-..__l_ I....-....I....I....-.I..-..ll.!tl.l.l.l.l..-.l_.

1_1 L]
e L L N Py T S

L g

...........*.*.*.*.*.-T*f-

.Iiihl‘l.i‘iih‘h‘h:i;h;h.h;hhnlvﬁw-l.l'l.;
1
£
LA
Ta]
[T T 'l"l_qi

e THOYIS

..-.

.-_._..-_I.-.._-.-_I.-..l.-.ll..__..-..._ l..ll..ll..'l.'l.l.-..'l..__ .-..__ oy .-..__ - .r.__..-.... .-_...r I_.__ a' .-.. - .r....l.....l_.... I.....I....l. e B R B B BN i ol B B J_ » .-.-.l.-..-.h.-.-.-_.-.i.-.l.. I.T‘ l_-.' -.Il.l_ ll_
...............

. . a
A

. -
a ¥

T

e R L A

R e R e i L e '-.'.-.-;-.-'.f.-'.f.-. R
VW N

L]
a -

S S N el il e st e et el e e e e e
ek

.l._-.__-l. lli‘i‘-. ..-1—1. Il.lll Il.llfl. li.ll I.-l.-.l._-. -_,.l._l...__ll.llh_ ...,..l...l.-.._ ..P,.l..._. ...l.-l__-. 1..P.l... ..P...l..,.“ 1....I.”I““ l”I.”

II‘.
'l-._:'
4
L]
-.
g
I.
L)

aa

- ‘-:
‘-
"
‘.-I
"
[]
|]
b
[]
"

(i

e l-'-!‘- |.-' [] - l-l'-:.i

..-.-.
1
5 = .

em.uM.........”..,.__.-.J....r__.r__.r__.r._,..r.....-.....ﬂ.,._....r....r...__....__.. .-..........-_t.t.t.t..._.i-.-t.t.tt.t ...Z.:.

""""‘
el
Wl
.-r?"-:
5

. - o .

-"_1- d

ok r oo
L]

- - F " EFEN
B i B e g

l
5:
-
T
‘.l
‘i
. - - - - - 3 - - - -
s
‘.i
"
-Il
#
l-
=I-
i
-Il
I-
i
i
'Y
T
'
T
¥,
T
‘.
A
LR
!
l-
!-
X
l
3
]
L]
-
e
g
>
‘J
b

[]

aaaaaa

US RE43,624 E

Sheet 2 of 13

Aug. 28, 2012

U.S. Patent

.W.
_w_m_”_m_”_m_”_”_”_”_”_”_”_”_”_M

izﬁzizf”

F]

__mmw; ,.}..fw ﬁ_w;%wﬁ;

-

wye

St
A
p LEN
s,
e
. i
e

J.-......J..-'-l

I..J.II..I...-....-.

.Lf' - - . PR - H .L..L PR . “MW..”......

* B

.}.-...J. .

L ”m- o e -............-.-..-......-:-.-...-..__.-.... ._...-:-- .,....._.,....:._..,ﬁ.............-...;.-...;-...-..-»M
) A < A
L e

wmmwmwmwmwmwmwmwmw”.u_ﬁ,.wmwmwmmmmm_wmmm”mwmmmm_wmwmwmw”w“._,._”

E "

__”_m_ﬁ_ﬁ_mﬂ_”_”_”_”_”_”_”_”_ﬁ_mu_”_”_”_m_ MW N“w

. “l. R +.-_ ol g Tl g l.- - l.- l.._.l.__ -~ .v.._ - I.-.l.-.I..__ lllll.__.ln.l.- l__ - I.W.__ .l.__ -t I.__ 1 .l..._ - l.__ ' .I.... .I_..l....l..,. RN, .I..,..I..,..I..,..I.. I..,. I.. I..,..l.,..l..,..l..,..l..,. l..,. .l..,. .l_... .l..,. - -

3
A

*-.-.a-;

L I I I B I I I Y C I I . B N T I I A I I I O T I I I DO O T O DO I I O K| I T T T I I I I T N I I I I N O I P I P N N N N I I B N P N I I B I N I N P | .
.1-_-.-_.1._-_.-.-.-_-.-.-_-_-.-_I_-.T!-_..._t__._.._..r.........vr.-.iilillii %mw-#ith..-_bkk!ktlill.—.it.—.rbk.—.ttv-__.r.rt.-.._T.-.._.T.-..._.__r._i

yoels en

e T

..i_..-_ln.__.__n.__.._.-.nln._...-n.-.._.__-.._.__n.._.__n I R R IR I I TR TR T A TR e

A A W e Wk o T

L TR IR T LI R |
]] ~ - [l Bl | - L] -] - kl '.' -.I.*' .'.. g‘. ‘.l *I ...I #' ’I. "' ‘.l ‘.I.*

O o a4 1 _1_1

-_-.Jl-_lldl-,llln_-;l:

t

L g

i

]
L}
l._. l
L] »
.-.l.-.l.-.-.-.-.-.l.-..-_l.-.-.l.-.-.-.-.-.-.-.-.-.- -.l.-.-.-..-..-.-.-.-.-.-.-.l.-.-.-.-.-..-.-.lt.-.-.-.-.-.-.-.-.l.-.-.-.-.-.l.-. .II.-.-.-.-.-.-.-.-.-.-.-.l.-.-.-.-.-.l.-.l.-.l.-.-.-.-.-..-.-..._.-..-.-.-.-.l -.l.-..__ -..._.r.-.-..__.-.-.-..-.r r.._.r.__ -..__.-.....r.__.r l.

..

F F -..-..‘ -.‘.T' "* -.‘ -....‘..‘l.".*“ F *..* T‘ -.-. *.....‘....‘..". *..‘.-.‘...““

. LI
-5

§ e

5

'l'_l'l'-l.l".l:l{.“_"‘-i‘l

0] BEBID 198

alay s aa

..._..__..-_.._i..-__t _-.__._._..__-_..i.__.-_-r.t_..__.._t EX R RN K E) _r.._._. % t,_._ - ._._.._i__i.._.-_ - .!_i i.__.-_r. ’ ii._._._i.._i.__.__.._i._t__.._-ui.._t-

o~
et

&m_m_mm_m_mmmmm_m_m_m_mmmmm_m_mmmm.m_mmmm,_._wmm

L T TR T T T T O T T T O T T T O T T O O T T T O T O T I O R TR TR P Y| - . -
Iil}ii.ril.ll.l}i'l!ll.lllii. .i.‘.‘.'.'...'.....'...‘.'.'.'.'.....'.‘...'.‘...'...‘.'.‘...'.‘.‘.'...I.'.'.'.'.'...i-.......‘.‘.-r.f...'...'.'-.l.'.....'.'...-. \")"‘

B e I

AR .-lr._...-_...-lmllt.-l.—u.-l.- - ..-l.—lruul..—.qll..-t-..-.- ST .-. l|.-l .-. " .-l I-l..__l.. ...t.__.__..-... w .-1 .-1.-1&.... lt.-.__.l. L g e l.__ .-lq!.l..__ !al.l..i...i..!.l-i.lr 5 ._1__._1._._1__._1__ .i...!....l._.i__ e e e e e e e e e as'sse e s ey w .

..._.t.....t.-_.-..t.t.t.t_-_. :

...

ﬁmﬁ%&

R R R N R N N R R N R R

ORI
. . . .
'-ll--l--i--i--l--i-
‘.I-."l-l-l-l-l-'.‘l-l-

. -
.

" -

a

. . -

4 []
......Il.- .

- -

- .

. a - . .

N . .

VW.?. mw.«w N.u.wf.. ,

.J,.J

..__..__....._l.l..__.!.._i.__l.l.._l.l l...l..l l.._l.__l....._. -’ ._1___! L A .!'.J.!,.!'.!'.!n!'l'l.n-_.'...

CELEU I R

) #++++++++_+

s
T T
B SRR 4

Mﬂh R e I-'I - l-.- 1-.1-'-:- et e

e ..._i.._i

.ma
St e e e e e e e e e e e T e e e et .-I...lll..__-_.-_._.. ._..._4._.._.-..._..._-_..._-_.._ .__..__ " .-_-_...._-_. -_-l.- B e e i O o e e e

L

Co e e P R ...J.:J-.?-....JJJJJ-...' *

,._.._.”_”_”mmmm_m_m_”_m_ﬂ_..,..‘..v.

+

US RE43,624 E

Sheet 3 0f 13

Aug. 28, 2012

U.S. Patent

S e A e e A e e e T e e e T i e e e e A R R e o e e -l-:t-_'l-_‘+_'+_‘+f-|-_‘+_'+_‘+_'+_‘+_'+f»'§

.-ll-

B) t..-i#-t.-.-.-..-...-..........—:.-...rlllllrli-.- lln.l-..._l- -I.-__..__-..-_llll-.l-..._llll-..._.-...-

........... N T I T T .. - m m m m m = [—

L SVE BDOEIOS

-..-.—.

:-.ll_l-_.i.-.ll_.[.l.l_.lt.'_.'.-.}r .l..—...r £ ..r -y ..rq.fq..fq..rq..rq..r dp oy dp dp dp dp dp dp sy dp i Al e e

3

f.-gghﬁk%u%uff.;. R ARG ALL R L

wﬁ

FF FFFF. . @ . .« rFrFr 0 F « o F « & =

l..

L '-.'-?*."rf"r.'-f'-f-t‘.'-'-‘.'-'-.'

e e e . .._...._.l_..l_..l_...l_..l_..l_...l
N N R L N N ._........4.4...._.._._..,I”._-ﬂl,._._,_..‘.._._....._._._._......._-..._-..l..l..l..l.ll e ey i_..l.._.

> 3

T AR |
. . - . . .+ f . - . . -
o

v
;

.

.1-.'..‘-.“..-. R
e
"a
._ll
a lﬁl

e

L RS

S,

4
"
r

M
b

™

a
i)
.

.
"
"
.
]
A

- om
e
-3
-

-
3

R

"
g
S
AU

0y
L]

L Pttt el ettt et

e
: . n - n .I ..-.. n .‘.‘.‘.-....-......'.-..'.F.'ﬂ Hﬂ E.."......‘ i .. -..‘.l...' - '.“..I..‘. I.' I.' -.. -.' . ' . . . Hh. % . F Eﬁ . - .

R R s
.-. . . .
M‘ﬂ"’fﬂ;m‘*h"-"-w

. l}.l.l..l..l-.i.}..l.l..l 5 i.__-1 l..._-1 l.__t.._l..__.l.__l.._.i .l._..l.ll.._.l.ll...i._..l._.l...l.nl._..l.-i..l l..l!.__l.ll..ll..__l.ll ' l * l....l....l..!l.ll..__

.) . ' - ' .) . ' - ' .) . ' - ' .) . ' - ' .) . ' - ' 1.{.1.{.%‘- ' .) . ' - ' .) . ' - .“ ‘l‘.“l"‘.“.‘-‘l"‘.'*' '*.“ - ‘..."..""l.-.'...J.."*“‘.‘{.‘J-‘P‘P‘P&J.&*P"‘ “““““‘P&' .'..J%-w- .) . ' - ' ﬁ.‘ﬂr A .' -”M '

ey

T W.,...,...,...,...,...,...,...,................,..........,...,}...,....,.....p.....i.__._..{.......,...,...,.......,...,...,...,...,...........

T

o

. : . : .) “.Il..l__. -llll-_ : -Elll.l 3 L[IJ. 3 r.l_...l.-.. -tl![t 'I-_I- * “-ll_...l-l .-..l:..l_r.. .1I-..[-.- .I_I.__L_.'i 1.l._-1.Il..lEIl. ”-..l._...li._.. Ll.t[-_. -..Ill.ﬁ_....lit..qls_lﬁ. .. .r-_[_..l.. l.__L_.q.l.. !LL..‘.I_.. lq...-_q.-_.

L

Team A0 Ceiala)

e el el

:_- L

ERRRERS

* lvialal

Vool eelal oNetel T oTelels CTeTe Telele Delel eles lelele elele slele)

e T

-
-
T

DL TR A AT R A

US RE43,624 E

Sheet 4 of 13

Aug. 28, 2012

.-_. 'I..l...l.-.l.....l.l.l.l.l.l..-.!llll: '

- l.-l.-..___l..l - - l.__.l.i_v.._ L] »

U.S. Patent

. .. . = = = & = = = = = = = = = _m = = = m_a = = = = = a2 a2 = = = = a2 2 = = = = = _ = = = = = = = = = _ =% = = = m a2 a2 = = = _m a2 _ a2 = = = = = a2 _ = _ = & = = = = = = = = _a =
. . ‘.1....'. . . .-1*—..1—..'..-..1.-..-—-.‘ —..JI.lH l..T-..I-..T-..J-..-—..T-..J.—..-.—.*—..J—..- F -..a.l.—..l—.}.-.l —..J.-..l-.}.T}.-.l—..r.-.}.T —..-I.Il.}.-.*-.ﬁ.l I.-.-.}.T.a.-.b.-..-..'..-.-..J.-..'.—..T-..J.-.}.—.* -—.*-l —.I-.l.—-.a —..J.—.*-.l.—.*—.l—.*-..f—.j—..l—..l1* l. ‘ " .
., a

T,
nx

. I—..- —..- —..- —..-l-.a I.-.‘.l'.—..-.-l—..- -I—.l-.-.fl —.l —..-li.l -I—..-.I.l -.‘.h.-.l.-.- -.'I.l -I -..‘.I I.I -.lI.l- -l-.‘.‘.f‘-l I.I 1.....?.-“.-.-..‘..1‘ 1.l

N)
P) oo e 1... .
- .-_._..__.t__....-._ -y .-.__.__._.__._M.v S e -.__..-......h_.,._.._h_ﬂ-...__...-...

47
e

e

jfi%

_-5%5
A
R T W

,......ﬁz

ﬁ

‘Ff

+

muw

.I..-..I .-..I..-..I .-..I..-..‘ -..I..-..I..F-..-..l..-..l..-..l .-..I h.l..-..l..-..' L] .-..'.-.l..-..'.-..‘ oy .-..'b..l. L .-..' -..' -...h.l..-..l.h.l..—..l. .I..-..I..-.

e ... J
.F.
e e e w
e Coe e e
e
. f
e . ., L e
e L. C

'_.i.i.ﬁ'

ilt&iii&l&&i&&ti&i&&i&-i}&ti& OO e

S
. 3
Sk
3
. 5
.5.
.1..
k.
.un.
.5.
. u
. M.
._m.
-

T

st

_l',.,

T xR

E

]
]

]

]

]

i

[]
1.
1

]

1

1

1

o

kR R R

a = Fs
& kR FEFFE o F o N I. .lj.*.ll.*‘.j.‘..ll.j*l.*l..f.ﬂ*j.T.J.*.a.* * .T.-*.-.I. '-“”.T.J

e e

:. L

Y Al A
- PR el Sl el 'l
I#II’I‘I’II’

. .Ii..-.....*i}ii}i}}*#}ii.{l.ﬂ}..ﬂ#ix

i,

a*s .—..._.._..4..."_._.-.....__.4..;_.......-._-...__._.4.. ...__...__._...._-_...._._.__._.__...__._.__._.__...._._.__._._q .__._.._._._.._-_._.__._.._...__._._._.__...__._._._.__...__.r

aa

L et JUT UORBOIUNIIS Dy

ol b= = e vk =

-l
*
L]
I
L]
¥
i
.

:‘ 'I.‘I l.‘l 'I-‘I‘ . a

]

ity iyt
“n
"
)
]
]
"
"
)
"
)
L)
. v
u
"
»
n
n
"
»
)
.
W
u
"
)
L)
"
n
n
"
)
"
.
n
"
"
]
L)
.
n
]
-
n
"
-
n
]
"
]
"
.
n
]
"
]
]
.
n
K]
s
a
u
N

...

s

s

et Cetet Tetat dfatel heheT tel

T L]
I-IIII-I

TPty
T T T e T T e T e T T T T T

M'ﬂ;at;tﬁ;tﬁ;ﬁt;tﬁ;' R AN,

.._._.'_,-.

i

.x

o w un wew!
o ﬁw% 5

4 L p a2 a2 L 2 a2 a2 =1 &2 =1 = &2 a2 = & a 4 & 2 g2 2 2 m 2 2 a2 a2 = a2 = a .
t‘."if.‘.‘lfif"l'.f'r‘ i.l |.I.| ii.lr.l.'ii'.l"'."f.l

QREEENLE

. L LU LI L UL
CE T .llllll-

'\."‘-i.Ili

L]

RS R

R TR

R A

b

b ‘_l' ‘_"l"‘_"_i ‘_i ‘_4 ‘_l

b

LI
1-"1-'1-'1-‘1-

P

R

L]

o AT

Ay
) ."_"‘_"‘I

—.-_l.._l

: f... .ﬂ.w M.N Tm. ... W : N PR Y
W.EM, ﬁ... iR

~
3
4

’?E\
L héf o
R
SR I
-.h "i.

.
-I-
i L
A -~
L] ;|

)
-
*
L]
L AT TR

...

L e

j

]

§-

i

%

!

i

i

3

|
ﬁ?:?:?:?:?:?:?:?”
i

|

|

:

:

:

:

i

US RE43,624 E

_m__m______m___ B _ww_m_,___m mmﬁ

S__.-.._._...-.-u.._w....__.-q.-.._.h.-l.-.lll.._.__._.__.iqi_...__qi_.._ﬂ..__..._

Sheet So0f 13

Aug. 28, 2012

U.S. Patent

M

-':_I': oot al i il al ol A

g
v
.
.
o E e Ty
........__..—.........,..,...
e m L . <M_ G .__w JJJ..;JJJ.!:.-L._L._-._-L._ |||t......|..|..|...|..t.-¢...|-_||..._.|._.|...|... -___.l___.__.._____...u._......l..r___r___.
* m
. '3

i

LI L R

]
"

-'.-.-'.-.-'.a.-.-.-;a-;-.-;-.-mm;-. '

W joi .ﬁﬁ u

v...n% .F.._.

lr_ll-'l-'-'l-'l- »*)

' '.'-:-%-i-e-é-:*? e d i

._
................................ r... e l_nl.nl.rl il l_rlrl_._.l.rltl ltlt!tltltltltltltl_rlnltlllrltlrlrtﬂr- .-.._.m.-.-l__.l___..-___...._._ ._...-l... IR R RS

.ﬁ%ﬁ Wmﬁ

*“‘“M'WWWMWMWM :
-lh'-l-:-:lrl'dr.'!.".'#fi'l_
i
*
'..
%
.J-
‘j
I'J-
l.i
l.j
l.j
I'J-
‘ -
'J
‘j
I.J-
l'i
I'J-
-I:_
..
I‘
I

'.'..l..l...... l.l * .-.-.i..i i l li l.l.l at l .l..i..i #‘&.‘.‘.‘.‘.“.‘.l.l—..l.—..l.—..‘-.‘—..i.—..‘.—..i 1.-_.-.—.1h.'

.........

.»f.___ o pmers L |
.- .ﬁ... - ...M . ﬂM— - IR R) S l...i..i..l...i..i....-_.l.__l”.l.”.I”.l”.l..l.__l..l....._....l...l.._!..l..l..l‘__l”i”!..._l”i”‘”_l...iw_-...-rrl.vlp!..v.-_'.._...lvrl-_.._g.-_._.-.-l.,._._..__-.-i.___-_v.._..-l-..lu
. - . . --..-....................-..-.....-..-.......................-..l.J.. . v, POy . - .. . -'. .'.-J.'..--'. . - .Ll.................-..-..-..-.................. ..-..-..

-.*-}-h'.nv o

1

-J

‘J

.J

v

.

[|

-J'

.J-

.i

v

-

.J

:.,

‘J

‘J

-Jl

-J

‘J-

..

-

..

.

..

Wt

- "

VE

%

.

%

5

%

%

%

.

¥

“»

-J

h

-

..'

ME

-~

.
e T

. ': -@.- L :' .
-!"H"'-!"'f
"wny"

U.S. Patent

o
aa e

L]

L]

-"-'!-'-'!- L0 IE N MM M el W q-:q:-_q- ' o i-‘_u -'.u_- e A Y N R e e e,

R N e

4 4 4 4 4 4 4 4 4

o L e

-
E |
T
-
L]

h

o

S e e e e e e e e e e e e e e e e e .-
. P - . "
...-...-..--.-.-...-...-.-.-.-...---.- '
T e e
T

Ly ﬁiyﬂ.ﬁ.qﬁ-ﬁ o

S S 93 1054 .-'~;-.-:~::':!:'.,-".*~.~',':*'.'

f#‘***#*fff#"-"#ifi'-"#‘fififi####‘iIﬁ'###-l‘

"-.«.-* f&

mmmmmmm

LI _I.-._- 1t b-lbl'.'l*-l*l*l ._-l ._-l .

""-.-..m"n,‘“r

T

T

Ll TR RN .ﬁ*.ﬁ‘.ﬂ'.'g .

M'ﬁ:. .
'.*l' %— .

L]

"ass:sﬁﬁ 5“"“;‘
Fm i%'é: g ol

Aug. 28, 2012

.;‘#

L
ﬁh*-“*"a“'{f,ﬁ

hl‘ﬂ-'

e

R ,-,'
'!3
}'F-ll-l ':-

1.&"‘ ;)

441 141
L]

e e e e e

]

..'

R R RN RN NN N
.

[el il A N N N e

L3

. .hi. .
. .::. .
. ." .
-k.-
. h‘. .
.hi.
3
..:::.
.‘....
O

l'}.- .

'v-. g

'ﬁvi'g

FEEENENEF AR AN A A AN

.;:.‘.'.:.*.'m-*ﬂﬁ"“ "*"'" ke

Sheet 6 0of 13

1 -1 ..-'.-'.“'.'.'. 1 ﬁ

v
LR

-ﬁﬁ"!"ﬁ.&ﬂ W'l'."."'. o -‘.‘i.q'.‘-.-‘h L ll l LN i_i

L

ll-lbil LI

%

L, %

" .' ""'-F

L

e

""»"'-t

it

...‘ " " " " ""I"-l'-

B ohs

£
3

1' 1-‘1 I-I‘ Py
FI}; R AN

' ﬁ'

'-I
a

s

P
-'--

J

;.

LT

-i--tq.---lr--------'b--

. ‘-"M‘\.‘\-‘\-‘."."."." ‘\-' 1.

;..-;

'?: f"&ﬂ i

h
J
"

ff-n-.-i--.ﬂ‘m*”*'-"-.l

’ .) “‘"‘ I' .E.WL“..-.L' -' L] “‘ - l.-' LA "'-"" ""'"ﬂ'.l'm'“w

f -E""*ﬁ'» ﬁ:-

"‘“‘{~§

I’H

. l
"
. A& [[y P N)
'r'. -
. " .""..":..'.........

¥ % B0

"'.-

l-"' "M' o M“' -" o .".".""-'-"‘"n"

. . l -' l- ‘ l' . . -'.'-' J’“‘.‘."‘.‘.‘l-‘.

4 "

l‘ .
RN

-

:a [1:.- L)
e e

o m*-r*-r"-"-r*-r'-r'-r'-r"»'-r'-r'ﬂ-r‘-’m‘-r‘-r'

EEE] . LI T T T T |
4"44"{""#"""'

el

"m.:'? -.q:.éﬁ"t'” ;

.-;.zt

O

ll'f""."".".""'.:r
.

q‘-hl-mhll-llil-l-

R X

..... $‘ .-.-.-.'-. .n-.-.-.vﬂm-.-. " .*._

ﬁi"‘? ia.d- g mﬁﬂﬁﬁ
Z}J%ﬂ?"&f

'M'q'q'-‘i'ﬂ'ﬂ'- ﬂ'l-"'ﬂ"qﬂq. ,,,.

_ mh m-

I'# I-‘I-.I*I-*I*I.I-.Ikl*l-*l*l"l'

11 T & T

F
Al

3o

L
N

.3;"“ (*

"-“q’- u"m -"'-p"qﬁ"-"'qﬂ"-'-"

'-"--.----"-'-'-'-----l-----.----.

- ! L L L L AL L L e B A L e

US RE43,624 E

¥ *T*T*W

e
. . -‘".h-"-

. T R
.. .ﬁi .
'.{:.Il... . ‘ . lli-._

SR

.:g"l- . .

ol
A

Ao R P P A bt e AT 0 L 0 AN TR 3 88 i i i i n T e e

T,
e E

!qi"'

. .
+
PR
"-
I'l.

L
"_

ﬂf-:l'-

"
.‘EI‘"!‘“" o

N
o,

f f-!-?-!*-f'-.'-'-'-

RO U R

.-'-1'-1"’-"""""‘-"-.'-'1- o

| el Rl S

..-.
L el ek b) ;' ll-'l;' l-'l-‘!-"l-'l-';'

U.S. Patent

[P

.;*,:;f.-__‘_:_:f.,f.,-_;f_f;f_‘; I

e

el

w

.r-.

4

Celeleg

T

s, R T E RN

. bll-.ll

P
Rl i I-I-I'ii'

I L] l' L] I 'I-.'.-.-'-.-."l-. . ’ .l. ‘-l.'-* : 'I‘.-I“-.I-I-. ’

L

. . :r lﬁ#l*l‘ L *l‘-l-‘.ltl'.ltl*l‘l* L -i-.-#.t'#' #"i"#"#"i"#lt'-b"#'-bli"#'i'-b'#'-b't"-b'#'-b'

A o i’#.i.h'i'#lt'#"i-ﬂ' -

{;ﬁ i::a%‘%.am

4

N ey ;.a-j--é-r-*-

- -"-"'-"‘- ..

-l

-»'-'.-*-f-'-f-' otet’

b
[

wiwlnlatelsl

4
[

o
LK LN K

4.4

-!-!'ll'l-'l-_-lr-'ll

v m

i gl

?-ﬁa {ﬁ%“‘;

AL A

4_4 4 4d 4
alnlelete’

Sttt

I' "l . v “.'I-‘ I"I-'I" I'I-'I'I'I'IW I'l' I"I'- I# I-" »

) 'l-#ﬂ!'l-_-'ll-r-'ll-'lr_-l-'l-!r-#.-'-'ﬂ!t#ﬂrﬂ!#t#dr_###ir#
.. - - - - - - - - - - - - - - - -
.

W]

a

-hur-u-_-r-r-r

‘et

. . et
.-F-'-'-‘r'r"'r'lr'lr'r"'-'-'-'-'-" lr Lol Ir'{-‘- ='mn'm lr__r_lr‘lr II- '

ity
SRR

-l

4

bttt

elalatele

L hewtelelet

AR AN

4

4 _d o

4

LN

- _d
.-.-.-.‘.b..)

-l

4

.-
L)
.
Ty
.
*
-
T
-
L
.
. Tat

4 dd

' .‘ .‘- .' .' .‘

4

Aol e
LI

.-l-‘l.
_*.

Sl .
hm W W'WML M m_m M b,

it LT

o
.-'
g
L
g
‘-’
..,..-.
'-'
.1,...
¥

-
.
e
.
- A
i
..,..-.

Aug. 28, 2012

A g A d i i

.i- ... L)-.-.-.-..-.-*-- . :

4

-

-" -'.‘-"-#-T :

ruinln l'l"- M"t'l'l'l'l"l"l L e e .l‘:.n

Sheet 70f 13

M‘-‘HH—*‘M-"'-'-'-‘-!'u'-!-"-h"-MMM-"-;'-"-;‘-"-;‘-"-;"'-;‘ ' ;‘ "-."':‘"'."'.-...-b

e

Rkl aate -*-*-'-:v‘-r

RSB ol T
f "':' ,.?’"'-";
"ll*r"l"ll"ﬁ

L]

&
- . r
- . . - ' ' -

LT RN I I)

3%*

"

3*fﬁ

1111111111

”ﬁ?%ﬁﬁﬁ

%%&u

L e

%i*é.:f:f:i:f:f:f:f:f:f:f:f:f._.

i

4

?i«*ﬁ“"m i

-|-|-a|

'ﬂ#

iﬁ:;'-

e A T Y

i i 1 _1_1
L I |

Al

Al

-.-* | - r. ‘ *, ‘ | 5 . P ".'*".'*'*'*".'*'..*' " -’- "il"il " -"il -i! =" lll‘"ll‘.'* et - hi"--“ll“' 'll - .'i‘ ' I-Il‘.lll“;l“I - ";' 'I'-. .

* I-' ll' l-t ll- l-. .‘i.'l-

W
.;-.-
f"“"“'l"

2‘*:

RN R RN Py LR R RN N TV

A
[]

4:

f,:'

.;:_'.':':'

'1-"--"1-"-"1-"-"1.' q-f » q-f q-f - 'y ..'-"' \'"I"""'"!'"III' . q-f ' If " l-f ! Irf ' 4-f v ﬁf . I': ! llfl-f !-f 4-f "

-‘. s ..

:}“ié: .:‘:__ %S gi ::

¥ e ‘A 0N CIC

'- = 0 0 0 . s o= L 1 L 1 L 1

.. r . e ..."." . e

: fan v SR £

3 i L EOR

. Co e e

..-. . e -r.l--

. A e e ﬁl— . .

T "h.- .
. “‘ .

..,"."......".:.‘. .:."".... .
....-.'_f.,._. ST ey T e .
.*.‘1.'_. o . :;;.....__‘:*_-_ .
".r_."‘.i'*.‘-." o
s
'*T.f.,.. .__,-.". o :
= 0 . .*. . L 1 CRY = = L 1
T N A e .
A At AR AR AR ERARARE T
. R .. ' .,.I..
. d %1% ig* .. .o
. R .. .,...
--" - = - - - =

CE
- = -'*-- - = . . - - . - = - .
. --,*-- - . - = - . - - - =
L 1 l_‘ll L 1 0 . LT 0 L 1 CRY
. ---'*-- - . - = - . | - - - =
* S R . - = - .
L. s .
... .."_..
. ...,."‘.. - - ...
L 1 I-Il L 1 0 . - 0 L 1 CRY
. . - -‘*W‘- l""".‘.‘."‘.‘.‘.‘.‘."l -‘-‘-"-‘-‘-‘ ' - . - . . - . .
o S S %0 T .

e - R RaE .

o el .

T ittt oSl Sl Aol ool ST

A T .

$ é&'..:.' Ty B TN .

W s % e a S R I T

":. . ;‘. . .."_{ T) ':: . . . 1_ ! -6_ .:-

£ - A CoREEE

"" " *.1.1 tutata f.*.ﬁ.ﬁ.*mwu.'."* S
eisislelals T sewiews o eEmREE 0w e s korovers 0 ekl whomn o repaan L bame

H""'*-*-‘.h‘#‘#‘#‘#‘*‘#‘#‘#.“J'.‘I’"‘.I".I"I"I"I'"i'i"l“"" . .

US RE43,624 E

. Wieimislals T slulslelelal

‘e

v

L L | LI |
. Cee T T N
. LN .. T Lok
. Lo .. S B
W . .
-
. T - S
- - - -- - I-- - -
.
- . T .
. C .
-
. T
S
. . .
S
. CoTe
. T .
. A
- - '-- -
- - ‘. -
2
. Co e
. T .
. ST
. o .
.
| R
. SRS
" Coee
. e
s
. . TE .
X
1'-'
1"
. Coee
. o .
. A
. . .
2
. -
X
. . e .
B
. e
S
. . .
WX
. A
W
. . "- .
o
. B
-
. . .
o
. R
- - 'I.- -
. e e
-
. - Ta .
S
. C e
. S .
. ST
. . e .
. . a .
i
. A
-E
. . CE .
.
. A
g
. - E .
;
. -
. C .
-
. A
A
. . s .
WX
. N
S
. C e .
- . .,'. .
A
. . .
. Coea
. . 1,.‘ .
A
1"
)
A
. e e
W
T'-'
. e -
g. .
. S
.
.
. -
.
. -
;
. -
;
. -
- L*l."l.\l..hl.\l. . .*n.‘n.*n.*n.*n.‘. . L T L e

US RE43,624 E

Sheet 8 0f 13

Aug. 28, 2012

U.S. Patent

...............................

............................

- .l.h l.l.lll.l.l .I.I.Ill

* [Sl il
a
......

I!-I-"

..

.........

..

......................

....................u.r.. .r..u.w.e{.er_,r_.{ﬁ

US RE43,624 E

i ..I - ._-M..n.r._.ﬁ,-..--ﬂ..-ﬂ._-..--._ --------------------- .___...,. .

. . . . =
= ""l-"'l-"'l'“ 'r"'l-"'l"'l-"'l- - »

'r"'l-"'l"'l-"'l-"

.J-L'l-l-"l-‘g

. L
et

Sheet 9 0of 13

T TR
e e e
LR R R

: -\.-n. q.q |..|. |.-|. |..|.-
-I_i_-i_l-_-l_l-_#_#_i_i-_l_"_ "_#_i_-i_l LN

. . 1,
...,:.’. A
...'.

ol
[}
.M
I .
' .
-r'.- -
¥
I‘ 0

[]

*

)

L |
o
o

L

L
--:-:_-i-.'

.-.lll!.v.._..._.....n_.__...!.._..i.._..._ll.._.r.._-_......_ ttttt T,
L

Aug. 28, 2012

-:-" . "-‘.-. :

U.S. Patent

...
....................................

L.

R ™

wmﬁ%mm # mm

.m_

mﬁaﬂ am,w

d w %ﬁ @%wa ,”.

.mmmmm_mmww__m_mw

'.- l...l..l...- l.. l..l..l ety l..l..l l..l...l..l..l..l..l..lnln.l..l..l..lll...lllnl..lnlnl...ln.lll..ln.l.upl..l_r..n.__

B RO R R RSO R O RO RE RN E I PORR) wrmmmf ﬁwwsw{w@@._.._.,_..
____m____m_______m_______.__m._._._._._._,_..a;%ﬁ e

Y ..q N T T o N ol A e Ay

77

w.. w. w ﬂwﬁ. memnmywﬁe.x

? rg. mw;

ﬁi

§ .
| B |} * .

........

...............................

.-._..l. i .-.I.tlr.' I.-.I '

.......... wwwm.w..www..mx w...p.wm..m .”w B A5

e e o o e e o e e o e S ke e e ok e e e o ke e e e oy e o e e e ke e ek e e e e e e e e e e e e e e e e e e

e o T B T T P P P PR F PP S B R A AR R E LR e R LR LR LR E e s e L

‘m'we'w'Er PR R R R OE R R OR

US RE43,624 E

Sheet 10 of 13

Aug. 28, 2012

U.S. Patent

e :
.................... e e
...... i .. - . . - & -
... . Mwmﬂ
............................ I.._Il_.vlllll. - na I....l.....l...i.....-_..-_....l...-_.l....l....l...IT..-..l...-_.l_,..-_.-.llrlr.l.llrlrl.llrl_.ll_.ll..ll_.l.r.ll.. ln.ltll.l.-l...!..-..__.h_.-.-. - - ._-.-_

....... W L. T e e
[- a1 L]

gL . T T .
...... e T g et i e e N B N g N e T
_____________ mﬁﬂmwmmmﬁwm__.p.w%ﬁ«méwmw_..ﬂ_...:.......,.ﬂa..._.._.ﬂ..._é____H“________w_....__,___

B IEFEDIUHDTIUHDTIUEE SUTEDISMDTMIMREIMR 4 < = & 5. § 708 "8 F BN

mmmmmmm_m_m_m_m_m_wﬂﬁmmm.ﬁﬁmﬁ_wmm”_ﬁ.ﬁ_.”_”_”m.wwmmwﬁﬁ%mwmwﬂwmﬁm.__m_m;”_”_”_”_”_”_”_”m”_”_”_”_”_”_”_u_”M”_”_m_”u_”_;”_”_”_”_”_”_”_” _”_”_”_”_”_”_”_”_,_%_”_;”_”_m_”_”_”_”_”_”_”_”

Co R e R R

ke

AL L S W R T, |

.................
..................

...

....... M e L« IR R R R

...................... A

| e R e L h

o o S eammnne g N0 e 2 e S O ST TS
.
L

..

...

..

.........................
.............................
..

............

........................

..................

BRI TIRIRRRRON <=1 11 o &:4:c 8 4
....................... T A

..................... ,.-,“-. ..._-.-.r. e e s
u

.._ﬁjﬂﬁJMMan”dwivv
Rt R
s A

Tl T e

FREUE G

..
..................... -.'._.h.l.._.-.l-i_.ll_.l._..-._...tl.l. .

é..u.ffw
e o opud g owapys | SOMBIULGR
B AIBYD N ¥

..........................

US RE43,624 E

Sheet 11 of 13

Aug. 28, 2012

U.S. Patent

.-.._..-._

R R SR R R NN

.l..-_..L.. ’

,mmﬁ

L T ..?

A mmmﬁwi w

ow’

L

x

" '_.._-;-:-:-:-;-;-;;-;-:-:*:-:-:-.-.

,a‘

...

" I" r I"- |

..”.”.”.”.”.”.”.”.”.”.”.”.”...__.l...l.._!..._.__i..i.__.l.i.__i.__._r__i.t.ml_t”i”t_t”t.}.t.i.i{t.._..____:-__..._ .

. % .__w_

WE E .ﬂﬁ 7

.l-.._ll. . .-_-.u !
.._."....4.1.1.__........#__.. .i-.r..u.__....?__.m..u. -

......

.."\1. ﬁ'

L

:m
*.:EE
R
«z;z;z;”‘%;z;;
- iy
T
&
e
in-.-

....................
- g e e e e e e e A RN A A A b..._._..i..._..-_..____.i. -, i. - .__._ »' i. - l. 'n' - _1 - ...1_-. X o W

e gwim@m mﬁﬁﬂﬁ.‘» mi,...

............

. ._...r.l.._ "

-
: ¥

1 = = m = = _m a2 = _m 2 a2 = = 2 = g = m = = m_x_w = x oy oy o aw= . . .
T o, FUL L L o L o g fmmgra e . l...l. I..l..l.-l...l.._l..l... aaaaaaaaaaa 4 l.-l.-l.-l...l.__l..-l L .

mmm__mmmmmmmm@@___.t_;.m BNIEA SATRUIIOU UOIEW

"5

& tmw mwmmw i

.....................

e o
R e e T

rI“.-.........-l.........._.r.”l. .-_.”.-..__l..”.r.-.l.l.l.l.-_ll..-l..__.-.ll.....-..__.-.....-..__.-..__.-..._.r... Wt ._....._.__.r... -..._.-.....r.__.-.....-..__.-..__.-..._.-..__.-..__ -...l..-.-..__.-..._ !...!ll.}.!l.!.-l.l.!.-lllll.ﬁll.[l.ll.ll.[l.ll.ll.[lll.ll.ll g

:

mmmm_mmm_mm_m_m_m_m_m_mw
..”__.__”__.__”._”_”m”_;”_”_u_”_ﬁ_”_u_”mw
”W

@mmﬁﬁﬁwﬁ

L

Srayanen mg A

X L™ .li.llﬂ.ln

- - ' .' I .- ' I .".I .' o .I .I.- l..'.-l_l.ll .I.-.I...l.-.'...'...‘...l...'.lll'li...ll .I‘T.Illt.é.lﬂ.lj.l.-.j.‘jll‘j.'j'f .l .l | |.|1l !

-

.-.Il.llllll.l.-_l.-l.-l.-_l.-l.._.v.__.l. .I.-.-. .-_ll..-.l..-.l..__._.-....l”.-.l.-k. !....-.._.-..__l..-.-...l...l. ' I.-.l s l.._l .))l_lll.ﬂ)
JRF s

A

LU I NN NN NI N - r'|-) q-'q- »’ q-'q- L L

R .j-'.ﬁ-.'.;'

s .,_-... -.-.. .__.. "' _._ﬂ-_.._-_.-._-...qt.. ey oy :%%%

777777

I" I" I-‘ I" I"l-'l"‘l"‘l-'l" I" I-‘ I" I" I-‘ I'# -.'

TR R R R

L

el

Co et
. Hrrl.ti.lrnltrt-lpl.liln-r,ttin..ulli.trn-.. LT
F] r

"
r

a WOF. . . .

¥
.t

Ll ¥

RO pEe
-__._a”_w&x..._%_e.e:_m

. - . - - - - . - . - -_‘__:._-_1'_:.__ *‘? . - - - . " . -_:.'-_ '_:.__‘-_:.-_ - . - . -_:.-_ -_ . -_? . -_ '_ - ._ - - . - . - - _-_:. -n N . -t . - " - - - '_..__:.-_ - - - . . - '_:._-_.__:.__‘-_:.-_}-_ -_‘-_:.-_‘-_3'_'_ . '_'; _— '_; -y '_'; _—— '_;'_'. .

]

Frr B

. " .-_..ll.l..[.r.l. .I!..}IL.. '
..,.1.... Y

F kB

R R B R R R E = ke o

m.....m_.mm_m..____.».m__._m.r.”_w._....... m M:. m..mm..mmmm.._m_wm_m.._w.m_m_._M.W..M_fnw

US RE43,624 E

'])] '] '])] ' . '] '] ' . '])] ' . '])] '] ' ..1Ll..”l”- P ' '])] ' . '])] '] '] |l...#...lll...l...l..l..#.__I...-_-.r..._._......__l...-..h..l..tnl..l..._._.._t..__i_.__.l....-_.__i_....-..i..l__.l.-r_..i.__.l.._i.__i.__.l Ill_._lll.._l..l...l..._.....l....._ I..lth.-—._...]

Sheet 12 of 13

.il_i .
-T'ﬂ .
n- nnnnnnnnnnn ‘a4

- - - - . l 4 & 4 4§ & > 2 Fm - . I L] -)) -)) -)) - - ' - l - l.)
I.-. I.-l.__.r |.__l r.__l.-l.-l.-l._.l.-l..l...! .-..__l.__.—.._l.__l.-l.._l.-l.__l.-l.__l.-!.._..-.._r s r.._.r o .-..__l.-.— P s .r.__r o r.__.— [Rarie ey !.__l...-._-..- l-_l...-....h....—.....-....ht.—....r....r.rh.q.r...l r.... FFEF KA r...h -.._..-..__..-.__l LN
... ' . _- .
.Ilv

SeEaa g%

.........ﬂ.......”...”.w R J...........f..................f.........@ﬁWLﬁ.
AR

: T Tah.............??f................................. :W
ol LT _-...-_.,.___

.'._.l ..-lll-.
at. -. .l = I_..t—...r_.i._..t—.i._...r_..t-..[_..[_..t—.i._.._. .__.—.._._-_._...r—..r_..r__t._i..-..[.-.tlll..._._..t.._._..r_..r—.i.-..[_..t-i._..[_..tﬂ".[- ..r - ._...__._...r_..t—.i._..[_..t—.i._...r_..t .r o k. Il_ .r-i.-i.-.t-i._..[_..t—..”nx-.t o oy -_._ .._. .-. .__. = .r x. __t—..r__i.__t—..t_...r-..t-..t_.... .
*
L] T
]
-__.

:f...

._mmmm_mmm_m_m..mm._..m?.M} e e madsng e b .

. .-
11-1-.1-1-'-4-*4.',._#
T '

mwmm.._x._ _____.______”_”_ﬁ_”_ﬁ____.__3,,.3,,.%..,,.,__?._,..,_,,,._,.,._,.,,,.,5, e
wmwm_._ ﬁwwmwm _.___w.___”m___.”_”_m_ AML w g2 _.W__”_mm”mNW.”J.._..”,.W.”,.W..”,*w.qlm..,..ﬁ__.,m..w_,wmm
R wﬁnwﬂwﬂh J..:.m w_..".m_ww ,..._.,“w..ﬂ | m\,ﬁmmﬂw e B

o8 1 b A h 4 & 1 % 1 4 1

".‘I’
e e T]

'.:.:.:.:.:i;:}

"
[.._...1

r 1-.'1- - 1-

l...,"-n. T

r . P . m T g - ' . |
. |1|-§§;l.§ﬂ|-}*ﬂﬂﬂﬂlnﬁﬂﬂﬂﬂlﬁlaﬂﬂ a oL .._-ll.ﬁc L w.” .

pmpﬂﬁ_mmmm_ | _,..,._..__”_”.mw_.ﬁ__.pmpﬁu.h._.
__”_”_”_____”_”_”_____”_v..f....“..m_m_”_”_____”_”_”___”_”mm_m_mm._._ wwm“.:... .._. .;: ﬁwﬁi w....&.vm

t-.-'b"l-'x-'q.
LIV IS ISL IR O IR TR DR TOL TN LT

. LR &

L]
I.I.

e T Ry anb B3 Mﬂmﬁmwﬁ..ﬁ oy m | m B o

._I...l.i-. ._-l- ..-. e l.-.l-..ll.__.l. '

.mum._wummm...___m,_.w.w.m.w,w,__.w.w.m._ mm 3443 &w% fLa RN

. Ll - r
=+ l....r.__..-..-_.-.l.-..-.l_.-_l_.._.....-..._..-..-.l_.-..-.l..-..-.l..-..-..l.rh.i.... |......_....__....__.__..._.__.|.._.__.|.._..__.l..._......lla.

.”.ff”.ff”.ff”.ff”...._:f”.ff”.ff”.ff”.ff”.........,..,..,..,..,..............,..,............,..,..,......,..,.......”.ff”.f......w.”....... .

A A A T T A T

) tq - .-lttt._...lml..l..-.....__..._.4-_....-...-....-...._-_..-_..-_.......l...i...._l....l."i...i.__._...! .-_.._1-..........)

A oo Ef

e ,.;h._.”.... L ...”.k'
e e : Ce At et R N

L gERRad m oo e B .
m.....m____w.mm....mmm..mm.._m el

K
2
%
"'..
L 3
T
4
Q.'

l‘_!-l‘ll-l
7%
'-‘-.?"
e N
., .. N :
R
e
*
,I

%ﬁvmﬁ?f

Ve e .
P N N N L Lo U A N

A - illttttttttllllltlllllllllt-..rv.r-l_..r—l_.l-iv..ﬂl-..__l.__ -_..vn-..! ..___.__l..__ I.._l.-l...l.-l.._l.-I.._l.-.v.__.-._.__.__.-.._._..._.-.._.-..__.-.I_..__.-.._.-..._ll.l....l...l a-.l. .

.._nu.___.-_-_.-t WlMMLWM-wg.?. \lﬁﬂm llm__.-..-......................4._..,.,
. S SRR S N . . . llI..._.l-..__l."!. .
....,: o ww-.,.*..”..*.......,._,.-..1.......”.?5..4......_......

.__... .._:..._:.,J.n._,...?.....-.,._..._._....-..............-..“WJ--_, R LR T

Aug. 28, 2012

U.S. Patent

_mmmmmmmmmmmwmw_mmmmmm.__.F. m?a.&ma um.,,,w
Wﬂ%&@hmh%ﬂ%ﬁ%ﬁ%ﬂ%“a?n mﬁ&%ﬁﬂ.@

o AR R idois. g s gy
 ” ” ” ” ” mmw””””””””””””.._.L.....‘..__me._..wﬂ.%.” @wﬂmmwha% H,m ‘m“”...._.._xu.wmw.%.ﬁ””wf”

-h.w

-llli‘_#
" - .
!

.-._l-...._l-.l._..-.lnln..._l-.l._lnlnlnlnlnlnlnlnlnln... |.._.....__...ltl-t-.. -.__...4..............-.-_.l-_lnl._l._..-_l._l-_..._l-.l._l..l_.ll!l__i.. - .._..mia...___.-. e e e #
L. S) Attt ...atPWH ..”

L A R [S il B

..............................:._..n.....”...u.:ﬂ.r...,..,..,.{.”..,.”...“_....q...x._.a....*.....,.,..J.,......,....,....:......_..,...,._..ﬂ.ﬂ._.ﬂ.....

LA
...a. PToas

US RE43,624 E

Sheet 13 0of 13

Aug. 28, 2012

U.S. Patent

... ._.q..._-..... @uaﬁaﬁﬁt%%%%%%ﬂﬂﬂ%ﬂn%ﬂﬂnﬂﬂ-
... . __.-ulq.l.l_...l
-h? w I.J..! E

H ' - . ' . . ' : -
. i '
................................. e T R T T T T mr....................................“...“................« L
.................................. ll.».lJ_.Ilt-_. Ca. - . . - . will v, .
.............................. . .i!..I.. AL ._.._ x) . °
.............................. ll - . L-.lll.l .l+| mﬂ.l - . - -
............................ LT o N U T .,...t-_h. S 1..__.._..1..1 el nl&-.
[it G At e ke AL S XY DAL CHN RN RGO R XSl SN i .

S i A e e e e e,
... r]
..

...

i &y

....................

 swodwA

...................................

- - - [
Y e g
. .) r
¥ a - "I .
T R R T . * *) 3 \ . . K . .
: T . R AnmmeLMrhmmem
s . . X .
.................. E R - » w?.” gl ”_. o))
W . . ml - . A . . .

14 .

- . ' 4
- - -)

. '

F r F F

e al s
. B ..l- h
]

N, 25 e o0,
} RN 7 R DR .

FRAZERIASERE P OMMNE - 153 & § ¢ 34
: 3 * ko " ', vt ' . S .-.—.Il.l.;. - ; . o N L. ”_ o
T - - ' ! My L 4 W P PRI N, L

..........................-..-..l..”_l.. . . EF_II.- . -'l..“. Lo, " - [N .—.] __ Ty

. LN N -, N L

US RE43,624 E

1

SENSOR FOR DETECTING AND
ELIMINATING INTER-PROCESS MEMORY
BREACHES IN MULTITASKING OPERATING
SYSTEMS

Matter enclosed in heavy brackets |] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims the benefit of U.S. Provisional
Application No. 60/260,203, filed Jan. 9, 2001, the disclosure
of which 1s incorporated herein by reference.

FIELD OF THE INVENTION

The present invention relates to the field of protecting and
securing data in computerized systems. More particularly, the
invention provides a method and system for detecting inter-
process memory breaches in multitasking operating systems.

BACKGROUND OF THE INVENTION

Modern operating systems are actually a modular collec-
tion of building blocks rather than one monolithic object. This
form of architecture enables an Operation System (OS)
manufacturer to build and distribute new facilities (or new
versions for existing facilities) with relative ease. It also
enables third party programmers to add new capabilities to a
basic operating system without accessing 1ts source code, by
means ol well-defined extension interfaces.

In particular, the Input/Output (I/O) architecture of a con-
ventional operating system 1s multi-layered, scaleable and
extensible, 1.e., each packet o1 I/O data travels along a chain of
layers, wherein the layers are organized so that applications
that are being executed by the OS at the system of a user are
divided into separate functional components that interact in
some sequential and hierarchical way, with each layer 1n the
chain usually having an interface only to the layer above it and
the layer below 1t. Some of the layers are those provided with
the original software package of the OS, some are updates,
others are additional layers not present in the original soft-
ware package, and finally, some are actually built by third
party suppliers (including original parts of the original soft-
ware package that were subcontracted).

Operating systems usually make a distinction between a
privileged mode and non-privileged mode regarding the abil-
ity of a process to call ‘privileged’ services. The notion of
multi-layered architecture and underlying extension mecha-
nisms apply to both modes, but the implementation may ditier
significantly.

A Privileged mode (so-called “Kernel-mode™) 1s the essen-
t1al core of any OS, which provides basic services for other
parts of the OS. Typically, the Kermel-mode 1s the part of the
OS that resides in the memory of the computer at all times
during its operation, and provides basic services. It 1s the part
of the OS which 1s closest to the machine level and may
directly activate the hardware of such a computerized system,
or interface with another software layer which drives a hard-
ware. Due to performance considerations, kernel-mode pro-
cesses typically share the system’s physical memory space
without an extra mapping of their non-privileged mode rela-
tives. A kernel-mode process can be seen as a server to many

10

15

20

25

30

35

40

45

50

55

60

65

2

non-privileged mode processes, which 1s vulnerable to pos-
sible low-level breaches. A process of a non-privileged mode
(so-called “user-mode”) can call system services that are not
privileged.

In particular, user-mode multi-layer extension mecha-
nisms are quite vulnerable to memory-space breaches. These
enabling mechanisms are relatively well documented, and a
dedicated programmer having access to the interfaces of these
extension mechanisms 1s generally able to implement them 1n
quite a short time. Some well known books 1n the field of
general Operating Systems, particularly Windows™ OS pro-
vide relevant information regarding this subject.

From now on, and unless otherwise stated, the following
text will refer to user-mode.

The building blocks of standard applications, such as a
word processor, an Internet browser etc., are code modules,
usually divided into program modules and/or into Shared
Code Resources (SCRs). Examples for such SCRs are the
Dynamic Link Library (DLL), which are included in the
Windows OS of Microsoit. Furthermore, each application
may use several SCRs on the same session. Generally, SCRs
are grouped 1n stacks, wherein each stack contains several
SCRs, sometimes a dozen or more SCRs are grouped together
in one stack. The SCRs are organized in each stack in a
chain-like manner. Normally, whenever a service from a spe-
cific SCR 1s requested by a user application, the request
travels along the whole relevant stack, however, the user
application has no clue about the specific SCRs that actually
serve 1t along the way.

Moreover, when an extension 1s needed to one of the OS
services, for example, encrypting certain I/O data packets, an
insertion of an SCR 1nto the relevant stack chain should do. Of
course that SCR has to comply with a given interface and be
good mannered, the least 1t should do 1s to dispatch incoming
calls to the next SCR 1n the chain.

In a typical case, an extender, which might be, for example,
a specific process, requests from the OS to mnsert an SCR into
a specific extensible chaimn. If all goes well, the SCR 1s
inserted as anew “layer”, and starts receiving relevant calls as
i 1t was an original part of the stack, and of the OS. From this
point on, until this new SCR 1s appropriately removed from
the chain, the newly installed SCR 1s mapped into the address
space of any application that happen to use that relevant stack.

Due to resource-economy considerations, a reasonable
multitasking operating system would load just a single copy
of a given SCR 1nto the physical memory, and then map 1t to
the virtual address space of each process that might need 1t.
More particularly, each ‘instance’ of the SCR 1s mapped to the
appropriate process context. Unfortunately, there 1s more
than one way to share memory between the SCR’s
‘instances’.

Combining the aforementioned factors that compromise
the requirement for separation between memory spaces of
different processes, there 1s an opportunity for offenders to
abuse the inherent mechanisms of the operating system. In
fact, this provides a possible way for one process to break into
the memory space of another process.

An offender that has managed to break into the memory
space ol another process has a choice of options. Amongst
other threats, the offender may read or manipulate 1/0, 1t
might change the behavior of the invaded application, or 1t
may send information from one process to another process.

One of the most serious aspects of memory-space breaches
1s the ability of the offender to take the identity of the invaded
process. This makes life harder for auditing tools and intru-
sion-detection systems, and makes the search for accountabil-
ity more difficult.

US RE43,624 E

3

In general, memory-space breaching seems as an appropri-
ate technique for an mvader, whose goal 1s not mere vandal-
1zing of an mvaded site. Sophisticated contamination of the
victim’s valued information resources would be a possible
goal. Altering the behavior of unaware information-security
systems through their user-mode components 1s another goal,

s0 15 eavesdropping or stealing information, to mention just a
few

For example, a ubiquitous OS like MS Windows™ (Mi-

crosoit Corporation, USA) gives a program the ability to
order the OS to extend, on the fly, SCR stacks, wherein each
SCR provides a particular level of functionality. In many
cases this goes on without alerting the user of this OS. The
extension 1s done by adding at least one SCR to the chain,
wherein this SCR may serve more than one application or
process concurrently.

There are several mechanisms in the OS that might be
extended by additional SCRs. The following are examples for
some well known 1n the art of such mechanisms:

(1) windows-messages that may be hooked;
(1) video and audio Compressor/De-Compressor (codecs);

(111) Windows Open Services Architecture (WOSA) stacks,

which 1s a collective term for a variety ol programming

intertaces from Microsoit designed to provide application

interoperability across the Windows environment. An
example for WOSA 1s the Windows Socket (Winsock),
which 1s a Windows interface to a communications proto-
col over the Internet; and

(1v) There are more WOSA mechanisms like ODBC and

MAPI. Furthermore, there 1s the infrastructure for the

‘Component Services’ of Windows. This list 1s by no

means a complete list of all the vulnerable service chains 1n

a modern OS, but only a list of examples.

The art has not yet provided satisfactory protection means
for detecting and/or preventing such inter-process memory
breaches 1n multitasking OS.

It 1s an object of the present invention to improve the
security 1n multi-users and multitasking systems.

It 1s another object of the present mvention to provide a
method and system for detecting an 1llegal action of penetrat-
Ing a memory space of one process by another process.

It 1s further object of the present mvention to provide a
method and system for detecting a process that initiates such
penetrating action.

It 1s a still further object of the present invention to provide
a method and system for freezing the action of the invader
and/or the mvaded processes, and alerting on such 1llegal
action.

Other objects and advantages of the invention will become
apparent as the description proceeds.

SUMMARY OF THE INVENTION

The invention relates to a method for detecting and elimi-
nating SCR breach operations by a second party within the
memory space allocated to a first party, 1n a multi-tasking
system, which comprises: (a) pre-recording by the first party
within a knowledge base the structure and/or behavior of an
SCR stack; (b) implanting within the SCR stack a dedicated
SCR for reporting on the structure and/or behavior of said
SCR stack when the SCR stack 1s activated; (¢) when the SCR
stack 1s activated, comparing the data reported by the dedi-
cated SCR with the pre-recorded stack structure and/or
behavior; (d) whenever non-matching 1n the structure and/or
behavior 1s found, ceasing the activity of the activated stack,
and alerting.

10

15

20

25

30

35

40

45

50

55

60

65

4

Preferably the comparison of structure comprises verifica-
tion of one or more of the following: the number of SCRs

within the stack; the chain order of the SCRs within the stack;
the time-stamps of the SCRs within the stack; the names of
the SCRs within the stack; a signature of each SCR within the
stack: the number of bits of each SCR within the stack; a
checksum of each SCR within the stack; the physical path and
name of each SCR within the stack.

Preferably the comparison of behavior comprises verifica-
tion of one or more of the following: duration of performance
of the stack, and/or each SCR within the stack; the I/O devices
and/or addresses to which a communication 1s made when the
stack 1s activated by a specific process.

According to one embodiment of the mvention the SCR
breach operation 1s carried out by means of implanting SCRs
within a shared stack by the second party. According to
another embodiment of the mnvention the SCR breach opera-
tion 1s carried out by means of implanting or manipulating by
the second party an SCR within a shared stack supposed to be
activated by the first party, and wherein the SCR implanted or
mampulated by the second party 1s designed to perform
operations within the memory space exclusively allocated to
the first party.

Detecting and eliminating SCR breach operations by a
second party within the memory space allocated to a first
party, in amulti-tasking system 1s performed, preferably, with
respect to each stack supposed to be activated by the first
party.

Preferably, the stack behavior 1s checked independent of
the process that activating 1t and/or the stack behavior 1s
checked specifically with respect to the process that activat-
ing it.

The mvention further relates to a sensor for detecting and
climinating SCR breach operations by a second party within
the memory space allocated to a first party, in a multi-tasking
system, which comprises: (a) at least one probe implanted
within a stack by the first party, for reporting on the structure
and/or behavior of the SCR stack, when the SCR stack 1s
activated; (b) a knowledge base for containing information
relating to the structure and/or behavior of the stack, when
activated; (c¢) a comparing unit for comparing nformation
relating to the stack structure and/or behavior as reported by
the probe, with information recorded in the database; and (d)
a decision unit capable of initiating one or more of the fol-
lowing operations, 1f abnormal structure and/or behavior of
the active stack 1s detected 1n step c¢: ceasing operation of the
active stack; alerting the user of the detection of an abnormal
structure and/or behavior of the active stack; analyzing the
operation of the active stack to detect the second party that
originated the SCR breach operation; and informing other
tellow agents.

In order to increase the efficiency of the system of the
invention, it comprises a plurality of sensors for detecting and
climinating SCR breach operations by a second party within
the memory space allocated to a first party, in a multi-tasking
system.

According to one embodiment of the invention a sensor

comprises a plurality of probes implanted each within one
stack.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:

FIG. 1A 1llustrates the manner of activating SCRs by a
conventional multi-tasking operating system;

FIG. 1B schematically illustrates the architecture of the
extensible chain, according to the prior art;

US RE43,624 E

S

FIG. 1C 1llustrates how a sensor of the ivention 1s acti-
vated to protect a plurality of SCR stacks;

FIG. 2A schematically 1llustrates the main components of
a sensor, according to a preferred embodiment of the present
imnvention;

FIG. 2B schematically 1llustrates the placement of public
sensors and private sensors, according to an embodiment of
the present invention;

FI1G. 2C 1illustrates the interaction between the monitoring,
probe and the sensor main unit according to a preferred
embodiment of the present invention;

FIG. 3 1s a flow diagram showing the evaluation of a sus-
pect by its module-name;

FIG. 4A 1s a tlow diagram showing the evaluation on a
process level whether an SCR 1s added to a process;

FIG. 4B 1s a flow diagram showing the evaluation on the
chain level whether an SCR 1s added to an SCR chain;

FI1G. 4C shows handling the occurrence of areplacement of
a procedure address 1n a given process which may indicate a
previous unauthorized addition of an SCR to an SCR chain
used by the process;

FIG. 4D shows a check of a degradation of execution
performance or an indication of an unusual activity 1n a given
process which may indicate a previous unauthorized addition
of an SCR to an SCR chain used by the process;

FIG. 4E 1s a flow diagram showing the evaluation of a
change, wherein a new, unexpected thread 1s being created
within some process’s context. Where this 1s not an expected
behavior of the process, this may indicate a previous unau-
thorized addition of an SCR to an SCR chain used by the
process; and

FIG. 5 1s a flow diagram showing the operation of the
sensor’s decision unit.

DETAILED DESCRIPTION OF PR
EMBODIMENTS

(L]
Y

ERRED

Throughout this specification, the following definitions are

employed:

Handler: in the context of this application, the term handler
1s used herein 1n a free manner to denote (1) a software
routine that performs a particular task on the fly or (II) a
package of some routines with a common destination.

Each layer comprising of at least one handler.

SCR: Shared Code Resource—in the context of this appli-
cation, an SCR 1s an executable program module that
perform some particular functions on behalf of other
SCRs, mndependent executables, or the OS 1tself.

Computerized system: in the context of this application,
refers to one or more machines that operate by an OS.

Task: in the context of this application, a task 1s the running
sess10n of a program, an application, or some other piece of
code on a computerized system.

Process: action operating in a multi-tasking system which
uses part of the computerized system resources. Under
Windows, each process has at least one thread of execution
(see below).

User-mode process: Processes that run 1n the so-called
‘user-mode’ are assigned a virtual private address space,
and the OS maps between physical memory addresses
and each process address space. The ‘memory-space’ of
cach user-mode process should be 1solated. This require-
ment arises Irom stability considerations. For example, a
faulty operation of one user process should not crash the
operation of another process or the whole system.
Another reason for this 1solation 1s the need for security,

5

10

15

20

25

30

35

40

45

50

55

60

65

6

as discussed above. However, as will be shown herein-
after, this 1solation can be broken, resulting 1n a breach of
security.

Thread: a thread 1s a mechanism that enables concurrent
flow of execution within a given process. It can utilize
multiprocessor machines when available, or merely har-
ness CPU cycles. Threads are useful for tasks that
require concurrent processing, for tasks that need user
interaction while doing CPU-1ntensive activity, and for
‘server’ programs where new threads are launched for
cach incoming request, to smoothen and 1solate concur-
rent requests from multiple client applications and, pos-
sibly, multiple users.

Name: Throughout this document, when the term “SCR
name” or “module name” are used, 1t 1s referred to the
name of the disk-file that holds the image of an SCR or
a so-called module, including the whole sequence of
global path, local name, extension, etc. This 1s important
because a well-known technique for diverting the
expected functionality of a given SCR, at least under
Windows™, 1s to plant an SCR with the same local name
of the original SCR, but at the path where the OS 1s likely
to search first. Typically the new SCR will be placed at
the same folder of the target program (which expects to
use the original SCR) executable file, while the original
SCR rests at a common folder where the OS keeps such
SCREs.

FIG. 1A illustrates the manner of activating SCRs by a
conventional multi-tasking operating system. The operating
system (not indicated 1n this figure) contains a library 105 of
user-mode SCRs. A plurality of SCR stacks are generally
contained within the library 105, wherein each stack contains
a plurality of SCRs organized 1n a chain-like form. In the case
of Windows, such SCRs are DLL files. The SCR stacks are
generally available to service any process in the system for
carrying out specific tasks. For example, when a first process
101 activates a stack 103 of SCRs from the library 105, the
operating system creates a virtual mapping of stack 103, so
that the first process actually sees 1n 1ts memory space 120 a
copy 113 of stack 103, and activates the same. Generally, each
stack contains a plurality of SCRs, and the process selectively
uses only one or few SCRs from each stack, but the whole
stack 1s activated. If a second process 102, needs a service
from the same stack 103, the same procedure repeats, and a
virtual mapping 123 of stack 103 1s produced 1n the memory
space 121 of the second process. More particularly, the first
process sees a virtual copy 113 of the stack 103 within its
memory space 120, and the second process sees a virtual copy
123 of stack 103 within its memory space 121, however, both
actually operates the same stack 103. Security considerations
require a total separation between the virtual memory 120 of
the first process 101, and the virtual memory 121 the second
process 102. However, as will be shown, this 1s not always the
case. The fact that the same library stacks, in this example
stack 103, are shared by more than one process, enables a user
ol a second process to breach the memory space of a first
process, by altering an SCR stack that 1s used by said first
process. This 1s generally done by creating an SCR, and
implanting 1t within a stack that supposed to be used by said
first process. Whenever said altered stack 1s activated by said
first process, the implanted SCR 1s also activated. The
implanted SCR can perform essentially any activity within
the memory space of said first process. For example, 1f a user
of the second process implants an SCR within stack 103, said
SCR will appear 1n the memory space of any process that will
use stack 103 1n the future, for example as SCR 116" within
the memory space 120.

US RE43,624 E

7

FIG. 1B illustrates, 1n block diagram form, a typical archi-
tecture of an extensible multi-layered system 10. FIG. 1B
illustrates the relevant portions of system 10. Typically, sys-
tem 10 makes a distinction between kernel-mode and user-
mode, regarding the memory allocation. Such a distinction 1s
indicated by dotted line 20. When any of the processes 51,52,
or 53 wishes to get a service from an SCR stack, 1t calls the OS
(not shown), which in turn activates the stack. Each process
maps the stack to its 1solated memory space, however only
one copy of the stack exists within the physical memory. The
SCR stack manager 3 manages the operation of the stack, and
the Call Interface 4 interfaces between the stack 56 and each
process, for example 51, 52 or 53, that needs a stack service.
Call Interface 4 implies that a specific software module (not
shown) 1s available 1n the system to activate a stack and map
it to each process. The Call Interface 4 1s sometimes called an
Application Program Interface (API).

As said, essentially all the existing operating systems allow
a user to add one or more SCRs to any shared stack, for
enhancing the services he recerves from the stack. A person,
who, unfortunately, can be a possible offender, can add a new
SCR to an extensible stack, for example a Winsock stack. In
that way, the added SCR within the relevant stack would be
available to any process requiring the service of said stack 1n
user-mode. After activating the stack by a specific user, or by
the offender in a manner of inserting the stack into the
memory space of that specific user, the added SCR can per-
form any task as designated by the offender. For example, if a
specific application process 1s directed to store in memory any
character typed on a keyboard, and the added SCR 1s pro-
grammed to read from that memory storage and transmit the
content to the process of the offender, then the offender will
be mnformed on whatever typed by the user on his keyboard.

According to an embodiment of the present invention, at
least one sensor (or array of sensors) 140 1s provided for
detecting breach activities by means of 1llegally using SCRs,
and for preventing such breach activities. FIG. 1C illustrates
how such sensor activation 1s provided. Initially, a knowledge
base 150 1s prepared, which contains authentication informa-
tion regarding each stack that supposed to be checked. For
example, for stack 130 the knowledge base 150 contains at
least the list of all the SCRs within the stack, and the last date
of their updating. Within each stack 130-132 of library 139,
an authenticating SCR 136 1s implanted by the valid user.
Authenticating SCR 136 heremafter also referred to also as
“probe”. This SCR 1s implanted in such a manner as to be
activated any time when the stack 1s called, so preferably 1t
should be implanted as close as possible to the beginning of
the stack chain. Then, whenever a stack 1s activated, for
example stack 130, the authenticating SCR 136 activates the
sensor 140, which 1s a piece of code, the purpose of which 1s
to check the authenticity of the stacks of library 139, and to
detect any unauthorized action within the stacks of 1t. When
the stack 1s activated, the sensor 140 checks the authenticity
of the stack operation, and its structure. The sensor 140 per-
forms this operation by means of comparing the stack activity
and 1ts structure with the expected parameters as stored 1n the
knowledge base 150 for the same stack. For example, when-
ever stack 130 1s activated, sensor 140 compares the SCR
found 1n said stack 130 with the list of SCRs expected to be
included within this stack. Whenever a new SCR 1s found
within the stack, and absolutely 11 such a new SCR 1s acti-
vated, an alert 1s sent, and optionally 1ts activation 1s freezed
or inhibited as defined, until a further decision 1s made. It
should be noted that knowledge base 150 should preferably
be dynamically updated with new information regarding the
structure and authenticity of the stacks, and regarding sus-

10

15

20

25

30

35

40

45

50

55

60

65

8

pected parameters or signs that should be particularly

checked. In one embodiment of the invention, the sensor 140

1s a “public” sensor. A public sensor 1s a unit, which 1s com-

mon to all the stacks within library 139. In another embodi-
ment of the mvention, a plurality of dedicated “private” sen-

sors are provided, one for each stack in the library. In such a

case, each authenticating SCR 136 includes the sensor 140,

and the authenticating parameters (as stored 1 knowledge

base 150) relevant to the one stack supposed to be monitored.

It 1s important to note that:

(1) A sensor may encounter different scenarios, depending
mainly upon the behavior of the offender, whether it 1s an
cavesdropper, a manipulator, or another;

(11) Each scenario may comprise many states, either conse-
quently or concurrently; and

(111) There may be multiple operation-modes of a sensor: it
may be implemented as an independent service-program, 1t
may be mtegrated into common OS components, or 1t may
be a replacement of some standard 1nput element.

The invention provides a protection against manipulation
of SCRs by offenders. More particularly, the invention pro-
vides a sensor that examines the activity of the shared stacks
and SCRs, and 11 a suspected activity within the said shared
resources 1s detected, an alert to the legal user 1s provided. For
example, 1n a first embodiment of the invention used for a first
given range of services (which will reterred to heremafter as
the first setting, there 1s provided a sensor that can detect
whether an extra SCR has been added to a stack, without
determining the identity of the added SCR. The aforemen-
tioned sensor 1s implemented as an SCR (probe) that 1s added
to a stack chain, 1n a similar manner to the tainted SCRs 1t 1s
supposed to detect. The sensor uses the fact that 1t 1s inserted
and positioned first, when possible, within the stack chain and
then, when the stack 1s activated, it 1s inserted into the address
space of the user’s process and thus can monitor the activity
of the stack. For example, under Microsoit Windows™, the
first setting 1s typical with window messages and message-
hooks, that deal mainly with defining an application’s behav-
1or and 1ts reaction to standard OS messages. The sensor of the
invention therefore searches for unauthorized breaches
within the activity of these messages.

According to another embodiment of the mvention, a sen-
sor for detecting unauthorized activities within a second
range of services, referred to herein as the second setting, 1s
provided. The sensor 1n that case enumerates the chain within
each stack, and detects unauthorized activities in these stacks.
More particularly, the sensor for the second setting enables a
user to obtain a list of the SCRs within each stack chain, and
the SCRs relative position within the chain. Whenever a new
SCR 1s detected within the chain, when the stack 1s activated,
the sensor 1nitiates an alert. For example, under Microsoft
Windows™, second setting 1s typical with WOSA implemen-
tations, which deal mainly with information delivery.
Although an operation system, such as the Windows NT,
would normally prevent a user without appropriate permis-
sion from installing a new Winsock provider, the more ubiq-
uitous versions of Microsoft Windows (e.g., Windows 98)
would not prevent 1t. Furthermore, even under Windows NT,
when File Allocation Table (FAT) 1s used instead of the New
Technology File System (NTFS), a common user 1s free to
mampulate the system and cause hostile applications and
modules to activate when an admimistrator logs 1n; this obvi-
ously circumvents the prior limitation.

FIG. 2A schematically illustrates the overall architecture
ol a sensor for detecting breaches within shared resources.
The sensor comprises the sensor main unit 235, a probe 26 for
sampling the stack activity, wherein the probe 1s the SCR that

US RE43,624 E

9

1s 1nstalled within the stack chain, a decision unit 29 and a
communication unit 24. The sensor 1tself communicates and
compares information with knowledge base 150, that as said
includes authentication information relating to the expected
structure and activity of each stack.

The overall architecture may further comprise one or more
tellow agents 28 that can be used, generally, for notifying
other systems about the detection of a suspected SCR, or
notifying the system about suspected signs. The sensor’s
main unit 25 may communicate with external fellow agents
28 via the communication unit 25, for: (1) posting each state-
transition, from a currently activated SCR to the next SCR in
the chain, to form a log queue. (11) Alerting the decision unit
29, or a human user when a predefined threshold condition 1s
met, 1.e., a suspected SCR 1s detected. (111) Recerving instruc-
tions from the decision unit 29. (iv) Accepting new weights
from an agent 28 (or the human user). (v) Receiving load/
unload commands from a risk-assessor (not shown) and a
load-balancing agent (not shown). This 1s useful for (I) elimi-
nating false alarms, and (II) economize the usage of limited
system resources. Fellow agents 28 may reside either within
the same machine, or somewhere within the network.

As will be further discussed hereinafter, probe 26 has a
different implementation for each setting (i.e., first or second
settings), scenario or operation-mode.

The sensor’s main unit 25 creates and activates probe 26 as
said, which 1s an SCR 1nserted into the stack chain. After the
activation of probe 26, the sensor main unit 25 enters 1nto a
waiting state 1n which 1t waits for notifications from probe 26
on suspicious SCRs, when detected. Probe 26 operate as
follows:

1t waits for signals, 1n this context, ‘signals’ are indications

given by the OS, concerning some state transitions.
Since each sensor of the ivention 1s responsible for
checking just a limited range of state transitions, a ref-
erence 1s made herein to a ‘range of signals’ that a given
sensor should handle.

upon detecting a signal transition, probe 26 evaluates the

specific signal transition 1n order to detect whether the
transition 1s suspicious or not. The evaluation process 1s
described hereiaftter.

if the signal 1s found to be suspicious, then the probe 26

notifies the main unit 25, which in turn performs one or
more of the following procedures: 1t freezes the sus-
pected signal stack, 1t continuous monitoring of the
stack, or 1t initiates an alert.

Probe 26 recetves updates from the main unit 25 on its
desired mode of operation. The mode of operation may either
be user defined, or dominated by self learned rules. It uses
relatively fast heuristics to determine 1f a momtored signal
should be treated as suspected. If the heuristics indicate a state
transition, probe 26 flushes a dedicated cache of state-
records, which 1t keeps, for a more persistent storage, avail-
able also to sensor 25 and/or to fellow agent 28. If the heu-
ristics indicate that the current state requires itervention,
probe 26 freezes the suspected SCR 27 and, possibly, the
whole offended process as well, and 1t notifies the sensor’s
main unit 235.

FIG. 2B schematically illustrates the implementation of
sensors within a system 10, according to an embodiment of
the invention. Block 1 indicates the calling of a stack by the
kernel of the OS. Following this call, the stack 1s activated,
including its chain 179 of SCRs. SCR 21 1s a valid SCR. The
SCR probe 26, which 1s a part of the sensor of the invention,
1s indicated as numeral 26. Numeral 27 indicates a tainted
SCR, which 1s implanted by an offender. The call interface 4
interfaces between the active chain 179 and the application

5

10

15

20

25

30

35

40

45

50

55

60

65

10

via sensor 41, which 1s capable of freezing the operation of the
stack, or breaking the connection between the active chain
and the application 52.

As shown, whenever the suspect SCR 1s successiully
implanted within the chain by an offender, 1t, for example, 1s
capable of transferring information to another process of the
offender via connection 178. However, the private sensor 41
and the public sensor 25 are capable, according to the mven-
tion, of breaking the connection between the suspect SCR 27
and the suspect process 31. The public sensor 25 1s a sensor
common to a plurality of stacks and 1t can receive information
from the SCR probe 26 1n similarity to the private sensor 41.
It should be noted that 1t 1s important for the SCR probe 26 to
be installed as close as possible, whenever the OS enables 1t,
to the beginning of the chain, indicated by SCR 21.

The private sensor 41 1s implemented as a common com-
ponent, which may be coupled with call stack 1 1n the kernel-
mode. More particularly, the private sensor 41 1s actually a
hybrid: coupling the top-level input-element with a low-level
kernel-mode module (or a user-mode ‘base provider’ when 1t
1s guaranteed to stay lowest), using encryption/decryption to
(I) detect unauthorized manipulators and (1I) to provide more
‘passive’ security against silent eavesdroppers. Providing
‘trusted” SCRs with a private/public key pair can help 1ndi-
cating when an infiltrator has messed with 1/0, especially 1f
those keys are ‘short lived’: valid for only a limited short
period of time.

Note: In all the following flow diagrams, when a loop arrow
such as “no signal” arrow of block 221 of FIG. 2¢ appears, it
indicates that the procedures stays 1n the same block until the
block receives a new input or condition, in which 1t again
performs 1ts related operation.

FIG. 2C 1illustrates the interaction between the probe 26
and the sensor main unit 235, Initially, 1n step 221 the sensor
main unit 25 creates the probe, which is essentially an SCR,
and 1mplants 1t within the stack. The sensor main unit 23 then
waits for a call from probe 26. It should be noted that the main
unit 25 may create and control a plurality of probes, one for
cach stack, or a plurality of main units 25, each having one
probe 26, may be formed. At this stage, when the stack 1s
activated, the probe begins 1n step 222 to evaluate changes 1n
the activated stack, and looks for the existence of a possible
suspect SCR. If an abnormal condition 1s found 1n step 222, 1n
step 223 the probe freezes the activity of the stack, including
all its SCR components. In the next step, 224, the probe 26
flushes or transters the records collected by the probe either to
the main unit 25 or to a local storage maintained by the probe
26 1tself. In step 2235, the probe 26 calls the main unit 25. In
block 333, the main unit 25 transters the received records to
the decision unit 29, for evaluation. In step 226, the probe 26
waits for a conclusion made by the decision unit 29. When
such a conclusion 1s available, 1t 1s conveyed 1n step 334 to
probe 26. If the conclusion shows that the stack activity 1s
valid, the main unit 25 releases the previously freezed activity
in step 227, otherwise an alert 1s imitiated 1n step 227, or the
stack 1s further supervised as suspected.

FIG. 3 illustrates 1n a flow diagram form the evaluation of
a signal by probe 26, according to an embodiment of the
invention. As previously noted, a ‘signal’ 1n this context 1s an
indication given by the OS about some particular state tran-
sition. Initially (not shown), a range of operation for the
checking by the probe 1s defined. The range relates to the
parameters that are checked, their value, etc. and definition 1s
made with respect to the conditions where a further check 1s
needed. It should be noted that not all signals are handled by
cach sensor; rather, each sensor has a ‘range’ of signals which
it can handle. This range 1s implemented generally by a

US RE43,624 E

11

simple table or list that 1s saved 1n knowledge base 150. Next,
in block 31, probe 26 checks whether a condition has been
detected that justifies a further checking. If not, the procedure
stays 1n block 31 until the occurrence of an event indicating
that the checked parameters are within the predefined check-
ing range. IT a condition within the range of checking has been
detected, the procedure continues to block 32.

If a suspected SCR 1s detected, the procedure obtains in
block 32 its name. Whenever the name of the suspected SCR
1s available, a verification 1s made 1n step 33 1n a list of invalid
SCRs of knowledge base 150 to find whether the found SCR
1s listed there. Searching the said list, leads to one of the
tollowing three options:

First option: The SCR 1s found 1n the list of suspected SCRs
within the knowledge base 150. In that case, the proce-
dure continues to block 29 for a further test.

Second option: The SCR 1s not found 1n the list of mnvalid
SCRs or 1n the list of valid SCRs within the knowledge
base 150. In that case the procedure also continues to
block 29 for a further test.

Third option: the SCR 1s listed 1n the list of valid (autho-
rized) SCRs. In that case, a signature test 1s performed in
step 35. If the SCR pass the signature test, 1t 1s assigned
as avalid SCR 1in block 37. If, however, the SCR does not
pass the test, the procedure continues to step 29 for a
further test.

In step 29 a further test 1s performed until a decision 1s
obtained. In step 39, if the test of step 29 shows that the SCR
1s valid, the SCR 1s added 1n step 37 to the list of authorized
SCRs 1n knowledge base 150. IT however the test shows that
the SCR 1s unauthorized, 1ts name (and optionally other char-
acteristics of 1t) 1s first added 1n step 38 to the list of unautho-
rized SCRs, and an alert 1s initiated 1n step 417.

FI1G. 5 1s a block diagram illustrating the general operation
of the decision unit 29. In block 291, decision unit 29 moni-
tors the probe 26. As long as there are no suspected symp-
toms, the operation of unit 29 stays 1n block 291. Generally,
the monitoring of probe 26 can obtain one or more of the
following symptoms:

Negative symptoms, 1.€., unsuspected symptoms that indi-
cate that there are no signs for offenders or offending
activities.

Positive symptoms, 1.€., assured symptom of suspected
offender.

Fuzzy symptoms, 1.e., non-decisive symptoms, which can
not provide certain indication whether an offender or
suspected symptoms exist.

It 1s important to note that upon detecting a fuzzy symptom
or a positive symptom by probe 26, the sensor mechanism
may freeze the action of the invader, the invaded processes or
both, and alerting a human user or an intelligent software that
are authorized to decide upon a further action.

Upon recerving positive symptoms from probe 26, 1n block
296 the decision unit, by means of the sensor main unit 25 and
communication unit 24 1nitiates an alert and optionally also
notifies fellow agents 28.

Whenever the recerved symptoms are fuzzy, or non-deci-
stve, then 1n step 292 the sampled symptoms are received
from probe 26 and are evaluated and their weight 1s consid-
ered 1n step 294, by comparing them to a pre established
threshold level. Typically, the weights are mitially set to equal
values (1.0’s); when the user confirms an alert, the weights of
exitatory inputs are incremented while the weights of mhibi-
tory inputs are decremented, and vice versa. This simple
learning mechanmism, however, 1s implemented by a separate
module. Also, the user may explicitely set the weights to some
reasonable values. If a comparison shows that the threshold

5

10

15

20

25

30

35

40

45

50

55

60

65

12

level 1s not met, then 1n step 295 the sensor main unit 25 orders
probe 26 to release the frozen process and resume the moni-
toring, and no alert 1s initiated. If, however, the threshold level
1s met, the procedure continues to block 296, in which the
sensor main unit 25 mitiates an alert, orders probe 26 to
mampulate the suspect signal, and optionally transmit an alert
to fellow agents 28.

When applicable, unit 25 may further maintain a ‘sand
box’, or a ‘redo buifer’ (which are respectively commercial
names for mechamsms that put the suspect into a secured
environment, or record a suspected sequence of actions so
that they may be inverse) or decerve the offender to think that
it 1s still performing unnoticed.

In a preferred embodiment of the mvention the sensor of
the invention 1s a learning unit, that accumulates information
from several sources. More particularly, 1ts knowledge base
150 1s dynamically updated as a result of the tests that are
made, or from information obtained from external sources, or
from the user himseli.

The present invention deals with several typical OS offend-
ers, as follows:

passive olfender: eavesdrops on signals passed between the

OS and another process. It plants 1ts SCR 1n the exten-
sible chain of handlers of a stack, and then simply waits
for the OS to route signals to that SCR. When the SCR
receives such a signal from the OS, 1t can push it into a
shared memory area that 1s available for the originating,
process of the offender, that process would typically
cache the information and send it out later through some
output device or communication port.

direct approach passive offender: operates after the SCR 1s

implanted. It directly sends out eavesdropped 1informa-
tion, or mampulates signals before passing them on, all
without 1involving the SCR’s oniginating process. This
behavior implies that logged output actions would go
under the 1dentity of the offended process. on the other
hand, this direct approach may result in both noticeable
degradation and anomalies 1n the performance of the
offended process.

active offender: takes hold of the offended process main

logic (or a ‘subclass’ of i1t). It plants 1ts SCR 1n the
extensible chain, and then deliberately initiates a signal
that triggers the SCR 1nto action, rather than wait for the
OS to pass such a signal. When the SCR receives that
signal, 1t would transplant a predefined wrapper on the
offended process’ relevant procedure, forcing a new
behavior. Except for the mitiating signal, this type of
activity would typically go on without intervention of
the mmitiating offender process, as with the ‘direct
approach’ offender.

The mvention provides several examples of sensors that
can be implemented in some known in the art operating
systems.

public sensor mechanism: a public sensor, according to the

present mvention, 1s an independent process, preferably
a program that runs by itself directly under the OS, and
exists for the purpose of handling periodic service
requests that the system expects to receive (1.e., daemon
as 1n the Umix OS or a service) to ensure 1ts continuous
availability. The main unit (i.e., main unit 25) of the
public sensor mechanism plants its probe 26 (imple-
mented as an SCR) into the stack chain (e.g., Winsock)
in much the same way that an offender does. Public
sensor mechanism 1s capable of protecting various stack
types with minimal or no preparations on their part,
however, each stack requires 1ts specific probe. It also
pushes its own 1dentifier onto the probe’s shared

US RE43,624 E

13

memory section, for a later use. The ‘1dentifier’ n this
case 15 a unique string or number that enables the probe

to distinguish the relevant public sensor from other mod-
ules. The 1dentification 1s typically provided by the OS.

private sensor mechanism: a private sensor 1s implemented
as a part of an mput-element (such as an HTML 1nput
tag, which 1s a code that informs the web browser how to
display information) that i1s protected. The enhanced
input-element 1s either available to developers of com-
piled programs before compilation, or replaces the stan-
dard component/library in case of scripting programs
and authoring environments (like an HI'ML put tag).
In that case, the load on the system performance 1s
minimized since protection 1s applied only when actu-
ally needed. Sensor 41 as shown in FIG. 2B, 1s an
example of a private sensor.

The following 1s a description of a first operation mode of
a public sensor for first setting with passive offender, accord-
ing to an embodiment of the invention:

In the first operation mode, the sensor has to detect and
evaluate whether a new code module was inserted into the
context of a specific extensible process.

FIGS. 4A-4E are flow diagrams describing several
optional verification tests that are performed by the sensor of
the 1invention in order to detect illegal memory breach by
means of shared codes resources.

In the Embodiment of FI1G. 4A

In some cases, the Operating System enables an on-line
identification of the occurrence of adding an SCR to a process
during the process operation. The embodiment of FI1G. 4A, 1s
applicable for the case when the operating system enables
obtaining a list of SCRs mapped to given processes. The
procedure therefore checks the available list, and 11 a new,
suspected SCRs 1s found within the list, an alert 1s 1ssued.

1. In step 410, the sensor checks whether enough parameters
are available for carrying out the test.

2. In step 411, the procedure enumerates the SCRs mapped
into the currently running process, giving both the total
number of SCRs and, pretferably, also their order. If the
enumeration 1s successiully obtained, the procedure con-
tinues to step 412.

3. In step 412, the procedure compares the obtained enumera-
tion with the previously recorded SCR enumeration of
same SCR list 1n knowledge base 150.

4. If a match of the enumeration i1s found 1n step 412, the
procedure assumes that the stack operation 1s legal, no alert
1s 1ssued, and the operation returns to step 410, to check the
next available occurrence of this type.

5. If no match 1s found 1n step 412 due to non-existence of
SCR enumeration record of said stack within knowledge
base 150, and 11 there are no other signs in knowledge base
150 of a suspected breach, 1t 1s assumed that this 1s not a
sign for a breach, and the obtained enumeration is recorded
within knowledge base 150 for a future use. In some other
cases, however, this may be considered as a suspected sign,
and the user 1s notified accordingly.

6. If the enumeration verification of step 412 shows no enu-
meration match, the procedure continues to step 414.

7. In step 414, the name of the SCR that has been found to be
added to the stack 1s obtained. If, however, the name of the
new SCR cannot be obtained for some reason, an alert 1s
issued (1n step 417).

8. In step 415, the SCR which has been found to be added to
the process 1s evaluated. The evaluation may include sev-
eral tests, such as, the SCR function, its structure, etc. The

10

15

20

25

30

35

40

45

50

55

60

65

14

evaluation of this stage may use data stored 1n knowledge
base 150, in order to characterize the added SCR. Of
course, 1I more than one SCR 1s found to be added, the
procedure 1s carried out separately for each SCR. If the
evaluation shows that the SCR 1s suspected, an alert 1s
1ssued 1n step 417. Otherwise, the procedure continues to

step 416, which does not 1ssue an alert, and continues in
supervising the shared code activity 1n step 410.

In the Embodiment of FI1G. 4B

In some cases, the Operating System enables an on-line
identification of the occurrence of adding an SCR to a func-
tional-stack chain during operation. The embodiment of FIG.
4B, 1s applicable for the case when the operating system
enables obtaining a detailed list of SCRs 1n a given functional
chain. The procedure therefore checks the available list, and 1f
new, suspected SCRs are found within the list, an alert 1s
issued. Initial checking of SCR chains by this embodiment,
unlike mitial checking of processes by the embodiment of
FIG. 4A, should be done when the system 1s booting, and
assumed to be free of breaches.

1. In step 420, the sensor checks whether enough parameters
are available for carrying out the test.

2. In step 421, the procedure enumerates the SCRs within a
specific chain, giving both the total number of SCRs and,
preferably, also their order. If the enumeration 1s success-
tully obtained, the procedure continues to step 422.

3. In step 422, the procedure compares the obtained enumera-
tion with the previously recorded SCR enumeration of
same chain 1n knowledge base 150.

4. If a match of the enumeration 1s found in step 422, the
procedure assumes that the addition of the SCR to the chain
1s legal, no alert 1s 1ssued, and the operation returns to step
420, to check the next relevant occurrence of this type.

5. If the enumeration comparison of step 422 shows that the
enumeration does not match, the procedure continues to
step 424.

6. In step 424, the name of the SCR that has been found to be
added to the chain 1s obtained. If, however, the name of the
new SCR cannot be obtained for some reason, an alert 1s
1ssued (1n step 427).

7. In step 425, the SCR which has been found to be added to
the chain 1s evaluated. The evaluation may include several
tests, such as, the SCR function, its structure, etc. The
evaluation of this stage may use data stored 1n knowledge
base 150, in order to characterize the added SCR. Of
course, 1 more than one SCR 1s found to be added, the
procedure 1s carried out separately for each SCR. If the
evaluation shows that the SCR 1s suspected, an alert 1s
1ssued 1n step 427. Otherwise, the procedure continues to
step 426, which does not 1ssue an alert, and continues in
supervising the shared code activity 1n step 420.

In the Embodiment of F1G. 4C

In some cases, the Operating System enables a change 1n
the logic of a process by replacing the address of the proce-
dure of one of 1ts user mode components (e.g., a parent
window, or one of 1ts children). More particularly, one of the
tasks of a modern Operating System 1s to manage multiple
user-tasks through multiple windows. The following refers
essentially to Windows™. The “user” part of the Operating
System routes messages to and from different windows. Each
window has 1ts message loop waiting for incoming messages.
Of course when the address pointing to the procedure that
implements that loop 1n a given window 1s altered, the whole

US RE43,624 E

15

behavior or function of the window 1s altered without provid-
ing a proper notification to the user. This 1s one of the typical

hostile activities that a sophisticated offender may wish to
exercise after breaching the memory address space of a pro-
cess by mserting a hostile SCR 1n one of the stacks connected
to that process. The embodiment of FIG. 4C does not assume
that the system may provide a notification on such a symp-
tom, and 1t also assumes that the breach has already occurred,
either without being notified or 1t was notified but at the time

ol the breach there was not enough evidence to cause an alert.

1. In step 430, the sensor checks whether enough parameters
are available for carrying out the test.

2. In step 431, the procedure tries to obtain the current pro-
cedure-address for a given object. If the address 1s success-
tully obtained, the procedure continues to step 432.

3. In step 432, the procedure compares the obtained address
with the previously recorded procedure-address of the
same object in knowledge base 150.

4. It a match of the procedure-address 1s found 1n step 432, no
alert 1s 1ssued, and the operation returns to step 430, to
check the next relevant occurrence of this type.

5. If no match 1s found 1n step 432 due to non-existence of
procedure-address of the same object within knowledge
base 150, and if there are no other signs 1n knowledge base
150 of a suspected breach, 1t 1s assumed that this 1s not a
sign for a breach, and the obtained procedure-address 1s
recorded within knowledge base 150 for a future use. In
some other cases, however, this may be considered as a
suspected sign, and the user 1s notified accordingly.

6. If the enumeration comparison of step 432 shows that the
enumeration does not match, the procedure continues to
step 434.

7. In step 434, the name of the SCR that contains the new
procedure-address 1s obtained. I, however, the name of the
SCR cannot be obtained for some reason, an alert 1s 1ssued
(1n step 437).

8. In step 435, the SCR which has been found to be containing,
the new procedure-address 1s evaluated. The evaluation
may include several tests, such as, the SCR function, its
structure, etc. The evaluation of this stage may use data
stored 1n knowledge base 150, 1n order to characterize that
SCR. That SCR 1s at relatively high odds of being an added
SCR that was not caught at the moment of addition. If the
evaluation shows that the SCR 1s suspected, an alert 1s
issued 1n step 437. Otherwise, the procedure continues to
step 436, which does not 1ssue an alert, and continues 1n
supervising the shared code activity in step 430.

In the Embodiment of FI1G. 4D

This embodiment of the invention discloses a public sensor
for passive direct approach offender with first setting and/or
with second setting, according to the preferred embodiment
of the mvention:

Typically, when an SCR, such as the SCR that 1s being
suspected as an offender, 1s engaged 1n either processor-
intensive or I0-1ntensive activity and 1s not using a separate
thread, the performance of the process 1s due to degrade. The
public sensor looks for statistical evidence of both degrada-
tion 1n expected normal performance and increased abnormal
activities of processes while they are executing.

The procedure of the embodiment of FIG. 4D shows the
detection and evaluation of degrading performance or
exceeding resource-consumption within a given task. The
procedure checks the activity of the counters dealing with the
stack operation. For example, the activity of the counters
during the activation of a stack 1s characterized, and com-

10

15

20

25

30

35

40

45

50

55

60

65

16

pared with statistical mformation previously accumulated

and recorded 1n knowledge base 150 regarding the operation

of same stack. If a deviation beyond a predefined threshold 1s
found, an alert 1s 1ssued.

1. In step 440, the sensor checks whether enough parameters
are available for carrying out the test.

2. In step 441, the activity of the counters dealing with the
activation of either the monitored SCR-chains or the spe-
cifically momtored processes 1s characterized. Some
parameters that are checked are: their speed of operation,
the manner of their incrementing, the load on the system’s
memory, on the processor(s), the disk activity, etc.

3. In step 442, the procedure compares the obtained charac-
teristics with corresponding statistical characteristics pre-
viously accumulated, using a standard deviation. If a devia-
tion above a predefined threshold value 1s found, the
procedure continues to step 447. If, however, no record 1s
found for comparison, the obtained information 1s
recorded (step 443) 1n knowledge base 150, and the proce-
dure continues to step 446, in which no alert 1s 1ssued. If 1n
step 442 the mformation i1s found to be within the pre-
defined statistical threshold range, knowledge base 150 1s
statistically updated by the new data, and the procedure
continues to step 446, 1n which no alert 1s 1ssued. From step

446 the procedure returns to step 440, and the procedure
inmitiates the test again for any new occurrence of the same

type.
In the Embodiment of FI1G. 4]

L1l

A suspect SCR may launch new threads to conceal 1ts
activity, because multithreading enables relatively smooth
operation when compared to the sequential execution of extra
code. The sensor looks for suspicious signs, like a new thread
being created under a process context.

The procedure of FIG. 4EF illustrates the detection and
evaluation of a new thread created 1n the context of a given
process. In some cases, when this 1s not a normal activity of
the process, 1t may indicate an offender SCR trying to hide its
extra activity by performing 1t on a separate thread. During
the following activation of a process, the procedure of FIG.
4E compares the current threads with the threads as recorded,
and alerts 11 1t finds new ones. Getting the name of the SCR
that stores the 1nstructions that are run directly by the new
thread, or the SCR that has 1ssued the 1nstruction of creating
t.
C

ne new thread 1s not guaranteed: failing to get that name leads

irectly to an alert.

1. In step 450, the sensor checks whether enough parameters
are available for carrying out the test.

2. In step 451, the sensor enumerates the threads as created by
the present process.

3. In step 452, the procedure compares the obtained thread
enumeration with the corresponding thread enumeration
previously recorded in knowledge base 150 for that pro-
cess. I a match 1s found, the procedure continues to step
457, 1n which no alert 1s 1ssued. If no thread enumeration
record 1s found for that specific process, the found thread
enumeration 1s recorded (step 433). I, however, no match-
ing 1s found, the procedure continues to step 454.

4. In step 454, the procedure tries to obtain the name of the

SCR that stores the instructions that are run directly by the

new thread, or the SCR that has 1ssued the instruction of

creating the new thread. If the procedure fails to get the new

SCR name, an alert 1s 1ssued (step 456). Otherwise, 11 the

procedure obtains the name of the new SCR, the procedure

continues to step 4355.

US RE43,624 E

17

5. In step 455, the procedure evaluates the newly found SCR.
The evaluation involves checking the available information

contained in the suspected module, for example, the list of

legal SCRs that the current process expects to use, check-
sums, etc. I the procedure concludes that the new SCR 1s
produced by a valid source, no alert 1s 1ssued (step 457). I,
however, the SCR 1s determined to be a suspected one, an
alert 1s 1ssued (step 456).

In the Embodiment of FIG. 5

In the embodiment of FIG. 5 the sensor performs more than
one of the procedures as described in FIGS. 4A-4E. If a
procedure of any of said tests detects with certainty an illegal
action, an alert 1s 1ssued. However, 1f non of said tests pro-
vides a result with certainty, a weight 1s given to each test
result, and 1f the accumulated result of all the tests 1s found to
be above a threshold value, an alert 1s 1ssued.

1. In step 291, the sensor accumulates iformation from a
plurality of tests. The tests of block 291 are dealing with the
comparison of structure by verification of characteristics
such as: the number of SCRs within the stack; the chain
order of the SCRs within the stack; the time-stamps of the
SCRs within the stack:; the names of the SCRs within the
stack; a signature of each SCR within the stack; the number
of bits of each SCR within the stack:; a checksum of each
SCR within the stack; the physical path and name of each
SCR within the stack. Some of these tests and few orthogo-
nal tests are elaborated by the block diagrams of FIGS.
4A-4E, and their corresponding descriptions.

2. In step 292 a weight 1s given to each accumulated resullt,
and a combined result 1s calculated. This 1s explained by
FI1G. 5.

3. In step 294 the combined result of all tests 1s compared with
a preset threshold value, as registered in knowledge base
150.

4. If the combined result 1n step 294 1s found to be above the
threshold, an alert 1s 1ssued.

5. If, however, the combined result 1n step 294 1s found to be
below the threshold, no alert 1s 1ssued.

General Considerations

1. A private sensor may also cover almost all the cases that are
covered by a public sensor. Public sensors better handle
active oflenders of the ‘brain-transplanting’ type (..,
offenders that try to modily the behavior of a process).
However, when implementing a private sensor, the special
activities of the sensor’s probe (which 1s an SCR) typically
g0 1nto a separate thread, to minimize the extra load on the
protected component.

2. Hybnid sensors, such as the sensor of FIG. 2B (a high-level
component coupled with a ‘guaranteed’ bottom-level han-
dler), are best for detecting silent manipulators, including
those of the ‘direct-approach’ type, which do not commu-
nicate with their originating process.

3. Preferably, the sensor comprises an authorized ‘learning’
program which may be operated periodically to set and
tune the threshold values by analyzing the sensor’s perfor-
mance. It may further tune the weights of mputs to the
threshold function, change action parameters (e.g., to
freeze an oflender or not to freeze), and enhance the small
heuristic knowledge base of the sensor (e.g., a digest of
distinguished offenders).

4. A risk-assessor program would weigh current threats
against available system resources and ask a load-balanc-
ing program to load or unload sensors (or other agents) as
needed.

10

15

20

25

30

35

40

45

50

55

60

65

18
EXAMPLES

The following are some examples for possible implemen-
tations of some of the concepts that are described herein. The
implementations should run on 32 bit Windows™ operated
machines. More particularly, the two offender mechanisms
that are described here can run on both Win9x and NT, while
the defender mechanism can run as 1s on Win9x, and a slight
modification enables it to run on NT as well.

The concepts and mechanisms described here may of
course be adapted to other Operating Systems. Furthermore,
even on the OSs referenced herein, namely Windows™, there
are many SCR chains, beyvond the Windows Message Hook
mechanism, that may be exploited using the principles and
concepts that are described herein above.

The description herein 1s not meant to be tully detailed or
comprehensive: 1t 1s given here just for providing an intuitive
understanding of the mechanism. Many details are omitted
for the sake of brevity while keeping the essence clear.

Following are the descriptions of two offender mecha-
nisms, a description of a defender for the second scenario; this
defender mechanism may be adapted to the other first
offender mechanism with a slight modification. Thereafter,
some notes are provided, concerming reference material and
technical details.

This appendix should be read and interpreted only within

the context of the main text.
Offender, Mechanism #1

1. The offender launching program, LAUNCHER1.EXE, 1ni-
tializes 1ts connection to the windows-hooks stack and does
other common startup things.

2. LAUNCHERI1.EXE looks for its victim, APP.EXE, by
calling ::GetWindow. If found, 1t finds its thread ID by
calling ::GetWindowThreadProcessld and passes 1t to
CatchlnnocentApp, a function that 1s supplied by HELP-
ER.DLL.

3. Function CatchInnocent App retrieves it’s current thread 1D
by calling ::GetCurrentThreadld and stores 1t for global
use, then 1t calls ::SetWindowsHookEx(WH_GETMES-
SAGE, . . .) on the victim’s thread ID.

4. It then calls ::PostThreadMessage on that thread, passing 1t
a WM_NULL or other nonsense message, just to activate
the hook on APPEXE.

5. The callback function GetMsgProc, supplied by

HELPERI1.DLL, waits for a WM_NULL (or equivalent)
message. This function always returns with a call to ::Call-
NextHookEX.

6. When GetMsgProc recerves the anticipated message, it
calls SubclassInnocentApp which simply calls ::SetWin-
dowLong (..., GWL_WNDPROC, . ..) on either the
victim’s window or one of its children, passing the address
of NewVictimProc while storing the returned original pro-
cedure address for a later use.

7. The callback function NewVictimProc does whatever 1t
wishes upon receiving the messages 1t wishes to divert.
Other messages are passed to the original procedure with ::
CallWindowProc.

8. Clean-up procedures are not covered here.

Offender, Mechanism #2

1. The offender launching program, LAUNCHER2.EXE, 1ni1-
tializes 1ts connection to the windows-hooks stack and does
other common startup things.

2. LAUNCHER2.EXE calls CatchlnnocentApp, a function
that 1s supplied by HELPER2.DLL, passing 1t 1t’s own
current thread ID.

3. Function CatchlnnocentApp calls ::SetWindowsHookEx

(WH_KEYBOARD, . ..) on all threads on this ‘desktop’

US RE43,624 E

19

object (last argument 1s 0). On advanced versions of win-

dows, calling ::SetWindowsHookEx (WH_KEY-
BOARD_LL, ...) can provide low-level keyboard input
events.

4. The callback function KeyBoardProc supplied by
HELPER2.DLL, waits for a keyboard message. It also
checks to see that the current thread ID 1s not the thread ID
of LAUNCHER2.EXE. This function always returns with
a call to: CallNextHookEXx.

5. When KeyBoardProc recetves a keyboard message, 1t can
do with 1t whatever 1t wishes. This would typically include
processing the keyboard status and the thread current lan-
guage setting to interpret the exact meaning of the key(s)
pressed, then sending the information out to an unautho-
rized person.

6. Clean-up procedures are not covered here.
Detfender for Offender Mechanism #2

1. The launching program, DEFENDER.EXE, 1mitializes 1ts
connection with the windows-hooks stack and does other
common startup things.

2. DEFENDER.EXE calls to CatchBad App, a function which
1s supplied by ASSITANT.DLL, passing it 1ts own current
thread ID.

3. Function CatchBadApp calls ::SetWindowsHookEx(WH-
_DEBUG, ...)onall threads on this ‘desktop’ object (last
argument 1s 0).

4. It then calls ::SetWindowsHookEx(WH_GETMESSAGE,
...) on all threads on this ‘desktop’ object (last argument
1s 0). There are now two hooks managed by ASSISTANT-
DLL (the purpose of the second hook will be apparent
thereatter).

5. The callback function DebugProc, supplied by ASSIS-
TANT.DLL, waits for a keyboard hook notification,
WH_KEYBOARD. This function always returns with a

call to :CallNextHookEXx.
6. When DebugdProc recetves an anticipated notification (in

this case, a keyboard), the OS also supplies 1t with a ::DE-
BUGHOOKINFO structure, so 1t can retrieve both the
thread ID of the thread contaiming the filter function and the
thread ID of the thread that installed the debugging hook.
(Important note: this step was demonstrated on Win9x but
not on N'T. See the notes 1n a later section for more details).
7. Now DebugdProc calls ::PostThreadMessage on the
installer thread ID, passing 1t a user-defined message,
WM_DEFENDER. It also supplies the containing thread

ID as LPARAM as a hint f

for the receiver.

8. GetMsgProc waits for a WH_MSG notification of message
type WM_DEFENDER. When recerved, 1t calls ::GetMod-
uleFileName to retrieve the bad application’s name (and
tull path).

9. Now GetMsgProc can do whatever 1t wishes with the

offending program, acting from within the thread of the

offending program. The simplest act would be posing a
message to the user, asking him 11 he wishes to close the
program and letting him know the name and path of the
suspected offender. I the user decides to close the suspect,
GetMsgProc would simply call ::ExitThread for a gracetul
exit. Of course there are many other, more sophisticated
acts that may be taken.

10. Clean-up procedures are not covered here.

Some Notes

1. A part of the mechanism that 1s described herein 1s covered
in well known programming books and in other publicly
available articles. These, however, are mainly concerned
with the task of bringing a DLL into the address space of
another process (or ‘injecting’ 1t)—not with the malicious

5

10

15

20

25

30

35

40

45

50

55

60

65

20

acts that may follow, nor in the ways of detecting such
acts—the later being the main concern of the present inven-
tion.

2. On Windows NT and 1ts descendants (like Windows 2000),
the system seems not to provide the offender thread ID with
the DEBUGHOOKINFO structure. This behavior seems to
be 1nconsistent with the current oificial on-line documen-
tation that also seems to state that the DEBUGHOOK-
INFO structure 1s not implemented on Win9x, a statement
that 1s apparently imprecise. Neglecting to handle these
(apparently misdocumented) details will lead to a lame
implementation of the defender under Windows N'T and 1ts
descendants, while the previously described offender goes
undisturbed.

3. The concepts are not dependent on the previously described
specific OS-supplied API for detecting the presence of a
new DLL or the invocation of some procedures; using such
a mechanism 1s just a convenience that keeps this example
simple. Many complementary tools and mechanisms exist,
and more may be devised for tulfilling this task.

4. The importance of retrieving and storing different thread
IDs 1s due to the fact that the mechanism which 1s described
herein spreads concurrently upon different threads 1n dii-
terent processes. An ‘1nstance’ of the DLL should therefore
examine 1ts own thread ID against thread IDs that come
from other participants. Global storage for these IDs, as
well as other inter-thread or inter-process variables, may be
provided either by a shared section inside the DLL, or by
some ‘named’ object such as a named memory mapped file.
The above examples and description have of course been

provided only for the purpose of illustration, and are not
intended to limit the invention 1n any way. As will be appre-
ciated by the skilled person, the invention can be carried out
1n a great variety of ways, employing more than one technique
from those described above, all without exceeding the scope
of the mvention.

The mvention claimed 1s:

1. A security method for detecting malicious inter-process
memory breaches 1 a computer using a multi-tasking oper-
ating system and having a memory divisible into memory
spaces with the memory including a plurality of shared code
resource (SCR) stacks, each stack including a plurality of
SCRs that while being executed for carrying out the various
demands of a plurality of program processes, during com-
puter operation, are organized in specific chain-like structures
with specific behaviors and with boundaries between
memory spaces for said program processes but with a com-
mon physical memory space for a SCR stack, said computer,
when carrying out a program process, having the capability of
extending an SCR stack by at least one of adding and replac-
ing at least one SCR to the organized chain-like structure of
the SCR stack and moditying the SCR stack’s behavior, said
security method comprising the steps of:

(a) creating and storing a knowledge base that 1s comprised
of structure and/or behavior information of each SCR
stack during its execution 1n the memory of the com-
puter;

(b) selecting for continuous monitoring an SCR stack
which 1s being activated and executed by the computer
operating system;

(¢) implanting a dedicated SCR within said selected and
activated SCR stack;

(d) monitoring said selected and activated SCR stack while
it 1s being executed in memory via said dedicated SCR
implanted 1n said selected and activated SCR stack to
determine at least one of its structure and behavior;

US RE43,624 E

21

(¢) generating a report by said dedicated SCR 1n said
selected and activated SCR stack while said selected and
activated SCR stack 1s activated and executing, said
report being indicative of at least one of the structure and
behavior of said selected and activated SCR stack;

(1) transmuitting said report for comparison with said stored

knowledge base;

(g) comparing the indications of said transmitted report
with said knowledge base;

(h) ceasing the activity and execution of said selected and
activated SCR stack responsive to any non-matching
detected between the indications of said report and said
knowledge base to stop any hostile activity resulting in
violation of the authenticity, structure and/or behavior of

said SCR stack:; and

(1) 1ssuing an alert indicative of the hostile activity respon-
stve to ceasing the activity and execution of said selected
and activated SCR stack according to step (h).

2. Method according to claim 1 wherein the knowledge
base includes at least a list of all of the SCRs within the SCR

stack, and the last date of their updating.

3. Method according to claim 1 wherein step (g) comprises
using a computer software code to compare SCR stack struc-
ture with the expected structure, the comparison comprising,
at least one of verifying one of the number of SCRs within the
activated SCR stack, verifying the chain order of the SCRs
within the SCR stack, verifying the time-stamps of the SCRs
within the activated SCR stack, verifying the names of the
SCRs within the activated SCR stack, verifying a signature of
cach SCR within the activated SCR stack, verifying the num-
ber of bits of each SCR within the activated SCR stack,
verilying a checksum of each SCR within the activated SCR
stack, veritying the physical path and name of each SCR
within the activated SCR stack, verifying the duration of
performance of the SCR stack, and veritying the duration of
performance of each SCR within the SCR stack.

4. Method according to claim 1 wherein step (g) comprises
using a computer software code to compare SCR stack behav-
1or with the expected behavior, the comparison comprising at
least one of veritying the I/O devices to which a communi-
cation 1s made when the stack 1s activated by a specific pro-
cess, and veritying the I/O addresses to which a communica-
tion 1s made when the stack 1s activated by a specific process.

5. Method according to claim 1 wherein at least one of the
SCRs 1n the activated SCR stack 1s a Dynamic Link Library
(DLL).

6. Method according to claim 1, including the step of
providing software code for controlling the dedicated SCR,
wherein said code 1s a self learning code, which i1s based on
sell learned rules.

7. A security apparatus for detecting malicious inter-pro-
cess memory breaches in a computer using a multi-tasking
operating system and having a memory divisible into memory
spaces with the memory including a plurality of shared code
resource (SCR) stacks, each stack including a plurality of
SCRs that while being executed for carrying out the various
demands of a plurality of program processes, during com-
puter operation, are organized in specific chain-like structures
with specific behaviors and with boundaries between
memory spaces for said program processes but with a com-
mon physical memory space for a SCR stack, said computer,
when carrying out a program process, having the capability of
extending an SCR stack by at least one of adding and replac-
ing at least one SCR to the organized chain-like structure of
the SCR stack and modifying the SCR stack’s behavior, said

security apparatus comprising:

10

15

20

25

30

35

40

45

50

55

60

65

22

[(a)] a knowledge base, accessible to the computer, that is
comprised of structure and/or behavior information of
cach SCR stack during 1ts execution 1n the memory of
the computer;

[(b)] a probe, executable by the computer, in a form of an
SCR that 1s implanted within a selected and activated
SCR stack for monitoring said selected and activated
SCR stack while the stack 1s being executed in memory
and for generating a report indicative of at least one of
the structure and behavior of said selected and activated
SCR stack;

[(c)] a sensor for receiving said report and for comparing
indications relating to at least one of the structure and
behavior of said selected and activated SCR stack with
said stored knowledge base;

[(d)] means for ceasing the activity and execution of said
selected and activated SCR stack responsive to any non-
matching detected between the indications of said report
and said knowledge base to stop any hostile activity
resulting in violation of the authenticity, structure and/or
behavior of said SCR stack; and

[(e)] means for issuing an alert indicative of the hostile
activity responsive to ceasing the activity and execution
of said selected and activated SCR stack.

8. Apparatus according to claim 7, which comprises a
separate probe implanted within each selected SCR stack, and
a common sensor recerving the report from one or more of the
said implanted probes.

9. Apparatus according to claim 7 wherein the knowledge
base includes at least a list of all of the SCRs within the SCR
stack, and the last date of their updating.

10. Apparatus according to claim 7 including means for
executing computer software code to compare an SCR stack
structure with the expected structure stored 1n the knowledge
base for a particular SCR stack.

11. Apparatus according to claim 7 including means for
executing a computer software code to compare SCR stack
behavior with the expected behavior stored in the knowledge
base for a particular SCR stack.

12. Apparatus according to claim 7 wherein at least one of
the SCRs 1s a Dynamic Link Library (DLL).

13. Apparatus according to claim 7, wherein said sensor
includes software code that 1s a self learning code, which 1s
based on self learned rules.

14. A non-transitory tangible computer readable medium
having stored thereon, computer-executable instructions
that, if executed by a computer, cause the computer to perform
operations comprising.

implanting a dedicated sharved code vesource (SCR) within
an SCR stack, wherein the SCR stack is configured to be
executable by the computer, wherein the SCR stack com-
prises one or more SCRs, and wherein the SCR stack has
an associated structure and an associated behavior; and

upon the computer activating the dedicated SCR, compar-
ing at least one member selected from the group consist-
ing of structure of the SCR stack and behavior of the SCR
stack with information of the SCR stack stored in a
knowledge base.

15. The medium of claim 14, wherein implanting the dedi-
cated SCR comprises requesting that an operating system
executing on the computer insert the SCR into the SCR stack.

16. The medium of claim 14, wherein comparing the struc-
tuve comprises verifving at least one member selected from
the group comnsisting of

a number of SCRs within the SCR stack,

a chain order of the SCRs within the SCR stack,

timestamps of the SCRs within the SCR stack,

US RE43,624 E

23

names of the SCRs within the SCR stack,
signatures of the SCRs within the SCR stack,
a number of bits of the SCRs within the SCR stack,
a checksum of the SCRs within the SCR stack, and
aphysical path and name of the SCRs within the SCR stack.
17. The medium of claim 14, whevein comparing the behav-
ior comprises verifying at least one member selected from the
group consisting of
a duration of performance of the SCRs within the SCR
stack,
a duration of performance of the SCR stack,
I/0 devices to which a communication is made when the
SCR stack is activated, and
I/0 addrvesses to which a communication is made when the
stack is activated.

18. The medium of claim 14, wherein the dedicated SCR is

executed in response to activating the SCR stack.

19. The medium of claim 18, wherein the dedicated SCR is
implanted at the beginning of the chain.

20. The medium of claim 14, wherein the one or more SCRs
within the SCR stack are ovganized in a chain.

21. The medium of claim 14, wherein at least one of the one
or more SCRs within the SCR stack is a Dynamic Link Library
(DLL).

22. A security apparatus comprising.

a knowledge base, encoded in memory accessible to a

computer, comprising at least one of structure and
behavior information of a sharved code vesource (SCR)
stack, wherein the SCR stack comprises one or more
SCRs;

a probe, executable by the computer, implanted within the
SCR stack for reporting at least one information of the
SCR stack selected from the group consisting of stric-
ture information and behavior information when the
SCR stack is activated; and

a comparing unit for comparing the information reported
by the probe with the information vecorded in the knowl-
edge base.

23. The security apparatus of claim 22, wherein the struc-
ture information comprises at least one member selected from
the group consisting of

a number of SCRs within the SCR stack,

a chain ovder of the SCRs within the SCR stack,

timestamps of the SCRs within the SCR stack,

names of the SCRs within the SCR stack,

signatures of the SCRs within the SCR stack,

a number of bits of the SCRs within the SCR stack,

a checksum of the SCRs within the SCR stack, and

aphysical path and name of the SCRs within the SCR stack.

24. The security apparatus of claim 22, wherein the behav-
ior information comprises at least one member selected from
the group consisting of

a duration of performance of the SCRs within the SCR
stack,

a duration of performance of the SCR stack,

5

10

15

20

25

30

35

40

45

50

24

I/0 devices to which a communication is made when the
SCR stack is activated, and

I/0 addresses to which a communication is made when the

stack is activated.
25. The security apparatus of claim 22, wherein the one or
more SCRs within the SCR stack are organized in a chain.
26. The security apparatus of claim 25, wherein the probe
is implanted at the beginning of the chain.
27. The security apparatus of claim 22, wherein at least one
of the one or more SCRs within the SCR stack is a Dynamic
Link Library (DLL).
28. The security apparatus of claim 22, further comprising
a decision unit for initiating an operation in vesponse to the
comparing unit detecting at least one member selected from
the group consisting of an abnovmal structure and an abnor-
mal behavior.
29. A system comprising.
means, including a non-transitory tangible computer read-
able medium having computer executable instructions
storved thereon, for reporting at least one information of
a sharved code resource (SCR) stack selected from the
group consisting of structure information and behavior
information when the SCR stack is activated; and

means for comparing the reported information with at least
one information of the SCR stack stoved in a knowledge
base selected from the group conmsisting of structure
information and behavior information, whervein the
means for comparing include means for implanting a
dedicated SCR within the SCR stack.

30. The system of claim 29, wherein the structure informa-
tion comprises at least one member selected from the group
consisting of

a number of SCRs within the SCR stack,

a chain order of the SCRs within the SCR stack,

timestamps of the SCRs within the SCR stack,

names of the SCRs within the SCR stack,

signatures of the SCRs within the SCR stack,

a number of bits of the SCRs within the SCR stack,

a checksum of the SCRs within the SCR stack, and

a physical path and name of the SCRs within the SCR stack.

31. The system of claim 29, wherein the behavior informa-
tion comprises at least one member selected from the group
consisting of

a duration of performance of the SCRs within the SCR

stack,

a duration of performance of the SCR stack,

I/0 devices to which a communication is made when the

SCR stack is activated, and

1/0 addresses to which a communication is made when the

stack is activated.

32. The system of claim 29, wherein the SCR stack com-

prises one or more SCRs ovganized in a chain.

33. The system of claim 29, wherein at least one of the one

or more SCRs is a Dynamic Link Libvary (DLL).

% o *H % x

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : RE43,624 E Page 1 of 1
APPLICATION NO. . 12/545569

DATED . August 28, 2012

INVENTOR(S) : Kedma et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On Page 2, m Field (56), under “OTHER PUBLICATIONS”, in Column 2, Line 5, delete “al,” and
Insert -- al., --, therefor.

On Page 2, m Field (56), under “OTHER PUBLICATIONS”, in Column 2, Line 7, delete “al,” and
Insert -- al., --, therefor.

In Column 8, Line 26, delete “will” and insert -- will be --, therefor.

In Column 8, Line 27, delete “setting,” and insert -- setting), --, therefor.

In Column 11, Line 63, delete “exitatory” and insert -- excitatory --, therefor.
In Column 11, Line 66, delete “explicitely” and insert -- explicitly --, therefor.
In Column 12, Line 36, delete “on the” and insert -- On the --, therefor.

In Column 17, Line 15, delete “non” and msert -- none --, therefor.

In Column 19, Line 36, delete ““:CallNextHookEx.”” and msert -- :;:CallNextHookEx. --, therefor.

In Column 19, Line 54, delete “posing” and insert -- posting --, therefor.

Signed and Sealed this
Twenty-sixth Day of February, 2013

Teresa Stanek Rea
Acting Director of the United States Patent and Trademark Olffice

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

