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1

INTERFACE CIRCUITS FOR MODULARIZED
DATA OPTIMIZATION ENGINES AND
METHODS THEREFOR

Matter enclosed in heavy brackets | ] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

BACKGROUND OF THE INVENTION

The present invention relates to a data optimization engine
for optimizing data transmission bandwidth and storage
capacity 1n electronic systems and computer networks. More
particularly, the present invention relates to highly modular
data optimization engines, which are designed to be recon-
figurable 1n an efficient and simplified manner to work with
different protocols, and methods therefor.

Data transmission links and data storage devices are basic
building blocks of modern electronic systems and computer
networks. Data transmission links are present 1n every elec-
tronic system and are also fundamental for mterconnecting,
nodes 1n a computer network. In an electronic system, such as
in a computer for example, a data transmission link such as an
address bus or a data bus may be employed to transmit digital
data between two or more subsystems. Within a computer
network (e.g., a local area network, a metro area network, a
wide area network, or the Internet), data may be transmitted
from one networked device to another via one or more data
transmission links using a variety of well-known networking,
protocols. As 1s well known, the data transmission links them-
selves may be implemented using any physical media, such as
wireless, copper or fiber optics, and may transfer data 1n a
serial or parallel format.

In modern high-speed electronic systems, the data trans-
mission link has long been regarded as one of the bottlenecks
that limit overall system performance. To facilitate discussion
of the foregoing, FIG. 1 shows simplified CPU, bus, and
memory subsystems within an exemplary computer 100. In a
typical computer system, such as in computer 100, a central
processing unit (CPU) 102 typically operates at a much
higher speed than the speed of a bus 104, which 1s employed
to transmit data between CPU 102 and the various subsystems
(such as a memory subsystem 106). By way of example, 1n
some Windows™-based or Unix-based computer systems, 1t
1s not unusual to see a CPU having a clock speed in the
(igahertz range being coupled to a data bus runming 1n the
low hundreds of Megahertz range. There are many reasons
behind the disparity between the CPU speed and the bus clock
speed. For one, advances in processor technologies tend to
tollow the so-called Moore’s law, which states that the speed
of a typical electronic device can be expected to double
roughly every 18 months. The clock speed of a typical data or
address bus, on the other hand, 1s limited by the impedance
and other physical characteristics of conductive traces that
comprise the bus. Thus, 1t 1s often times 1mpractical to run
these buses at a higher speed to match the speed of the fast
CPU due to 1ssues related to power, interference, and the like.

The data storage device, such as a memory subsystem 106
within computer system 100, also represents another bottle-
neck to higher overall system performance. With regard to
memory subsystem 106, there are generally three 1ssues: 1)
the speed of data transter to and from memory subsystem 106,
2) the operating speed of memory subsystem 106, and 3) the
storage capacity of memory subsystem 106. With regard to
the data transier speed 1ssue, the discussion above regarding,
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2

the data transmission link bottleneck applies. With regard to
the operating speed of memory subsystem 106, dynamic ran-
dom access memory (DRAM), which 1s widely employed for
storage of data and instructions during operation, must be
refreshed periodically (by a memory controller 108 as shown
or by some type of refresh circuitry), and the capacitors
employed 1n the DRAM to store the charges representing the
0’s and 1’s have a finite response time. Together, these factors
tend to limit the speed of a typical DRAM to well below the
operating speed of the CPU. Even 1f static random access
memory (SRAM) 1s employed (assuming the high power
consumption and low density issues can be tolerated) in
memory subsystem 106, the operating speed of a typical
SRAM 1s also well below that of a typical CPU 1n computer
system 100.

Because of the relative slow response of memory sub-
system 106, attempts have been made, some more successiul
than others, to improve memory access speed. Caching 1s one
popular technique to improve the memory access speed for
frequently used or most recently used data. In caching, a small
amount of dedicated very high-speed memory 110 1s inter-
posed between memory subsystem 106 and CPU 102. This
high-speed memory 1s then employed to temporarly store
frequently accessed or most recently used data. When there 1s
a memory read request from the CPU, the cache memory 1s
first checked to see whether 1t can supply the requested data.
If there 1s a cache hit (i.e., the requested data 1s found in the
cache memory), the faster cache memory, instead of the
slower main memory, supplies the requested data at the higher
cache memory access speed.

Caching, however, increases the overall complexity of the
computer system architecture and 1ts operating system. Fur-
ther, the use of expensive and power-hungry cache memory
(e.g., on-board high speed custom SRAM) disadvanta-
geously increases cost, power consumption, and the like.
Furthermore, the cache hit rate 1s somewhat dependent on the
soltware application and other parameters. If the cache hit
rate 1s low, there may not be a significant improvement in
memory access speed to justity the added complexity and cost
ol a cache subsystem.

As mentioned above, the memory capacity in memory
subsystem 106 also represents another constraint to higher
overall system performance. Modern complex software,
which 1s often employed to manipulate large database, graph-
ics, sound, or video files, requires a large amount of main
memory space for optimum performance. The performance
of many computer systems can be greatly improved 1f more
storage 1s provided in the computer system’s main memory.
Due to power consumption, board space usage, and cost
concerns, however, most computer systems are however
manufactured and sold today with a less-than-optimum
amount of physical memory on board. Consequently, the
overall system performance suffers.

The same three 1ssues pertaining to main memory 106 (1.e.,
the speed of data transfer to and from memory, the operating
speed of the memory, and the storage capacity) also apply to
a permanent memory subsystem (such as a hard disk). When
a hard disk drive 1s employed for storing data, for example,
the limited speed of the data transmission link between the
hard disk drive and the main system bus, the slow access time
due to the mechanical rotation nature of the hard disk’s plat-
ters and the mechanical movement of the actuator arm that
contains the read/write head, as well as the fixed storage
capacity of the platters all represent factors that tend to limat
system performance. Yet, with the advent of the Internet and
improved multimedia technologies, users nowadays rou-
tinely transmit and store large graphics, video, and sound files
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using the permanent memory subsystem 1n their computers.
Consequently, 1t 1s generally desirable to increase both the
memory access speed and the storage capacity of the perma-
nent memory subsystem.

The same three 1ssues pertaining to main memory 106 (1.¢.,
the speed of data transfer to and from memory, the operating,
speed of the memory, and the storage capacity) also apply to
Network-Assisted Storage (NAS) systems, storage area net-
works (SANs), RAID storage systems, and other networked
clectromagnetic or optical-based data storage systems. With
reference to FI1G. 2, irrespective of the protocol implemented
on a transmission link 202 between a drive controller 204 and
the actual storage media 206 (e.g., hard disks, optical platters,
and the like), storage performance can be improved if the
elfective data throughput through transmission link 202 can

be improved. This 1s true 1rrespective whether the protocol
implemented 1s serial ATA (S-ATA), IDE, FCAL, SCSI, Fiber

Channel over Ethernet, SCSI over Ethernet, or any other
protocol employed to transfer data between disk controller
204 and storage media 206. With respect to the storage capac-
ity 1ssue, there 1s a fixed capacity to storage media 206 based
on physical limitations and/or formatting limitations. From a
cost-elfectiveness standpoint, 1t would be desirable to trans-
parently increase the capacity of storage media 306 without
requiring a greater number and/or larger platters, or changing,
to some exotic storage media.

The data transmission bandwidth bottleneck also exists
within modern high-speed computer networks, which are
widely employed for carrying data among networked
devices, whether across a room or across a continent. In a
modern high-speed computer network, the bottlenecks may,
for example, reside with the transmission media (e.g., the
wireless medium, the copper wire, or the optical fiber) due to
the physical characteristics of the media and the transmission
technology employed. Further, the bottleneck may also reside
with the network switches, hubs, routers, and/or add-drop
multiplexers which relay data from one network node to
another. In these devices, the line cards and/or switch fabric
are configured to operate at a fixed speed, which 1s typically
limited by the speed of the constituent devices comprising the
line card. The device speed 1s 1n turn dictated the latest
advances 1n microelectronics and/or laser manufacturing
capabilities. In some cases, the bottleneck may be with the
protocol employed to transmit the data among the various
networked devices. Accordingly, even 1f the transmission
media 1tsell (such as a fiber optic) may theoretically be
capable of carrying a greater amount of data, the hardware,
soltware, and transmission protocols may impose a hard limait
on the amount of data carried between two nodes 1n a com-
puter network.

To further discuss the foregoing, there are shown in FIG. 3,
in a simplified format, various subsystems of a typical Ether-
net-based network 300. Components of Ethernet-based net-
work 300 are well known and readily recognized by those
skilled 1n the art. In general, digital data from a Media Access
Controller (MAC) 302 1s transformed 1nto physical electrical
or optical signals by a transceiver 304 to be transmitted out
onto a Ethernet network 308 via a data transmission link 306,
which 1s an Ethernet link 1n this case. MAC 302, as well as
transceiver 304, generally operate at a predefined speed,
which 1s dictated in part by the Ethernet protocol involved
(e.g., 10 Mbps, 100 Mbps, 1 Gbps, or 10 Gbps). Thus, the
throughput of data through the Ethernet arrangement 300 of
FIG. 3 tends to have a finite limit, which cannot be exceeded
irrespective of capacity requirement or the theoretical maxi-
mum capacity of data transmission link 306.
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As the network grows and the capacity requirement for
Ethernet-based network 300 increases, 1t 1s customary to
upgrade MAC 302 and transceiver 304 and other associated
clectronics to enable data transmission link 306 to carry more
data. With the advent of the Internet, however, a 300% growth
in data traffic per year 1s not unusual for many networks. A
hardware upgrade to one of the higher speed protocols, unfor-
tunately, tends to involve network-wide disruptive changes
(since the sending and receiving network nodes must be
upgraded to operate at the same speed). A system-wide
upgrade 1s also costly as many network nodes and compo-
nents must be upgraded simultaneously to physically handle
the higher speed protocol. It would be desirable to have the
ability to enable Ethernet 300 to effectively carry more data
for a given transmission speed. It would also be desirable to
have the ability to upgrade, 1n a scalable manner, selective
portions of the network so that both the upgraded and the
legacy equipment can interoperate in an automatic, transpar-
ent mannetr.

In a commonly-owned, co-pending patent application
entitled Data Optimization Engines And Methods Therefor
(filed by mventor Isaac Achler on the same date, and incor-
porated by reference herein), various implementations of a
data optimization engine and methods therefor are described
in detail. In particular, various implementations of an optimi-
zation processor which are capable of performing at least one
or both of the compression/decompression and encryption/
decryption tasks are described 1n detail. Since the optimiza-
tion processor and data optimization engine described 1n the
above-discussed patent application have utility 1n many dii-
ferent environments, such as in computer systems and com-
puter networks to transparently optimize the data transmis-
sion bandwidth, in storage systems (e.g., hard disks, RAID
systems, Network Assistant Storage or NAS systems, Storage
Area Networks or SANs, and other networked electromag-
netic or optical-based data storage systems) to optimize the
data transmission bandwidth and storage capacity, 1t 1s real-
1zed that 1t would be highly advantageous to create a univer-
sal, modular data optimization engine that can be easily and
cificiently adapted to work with different protocols.

Generically speaking, for a data optimization engine to
optimize a stream of data having a given protocol, certain
1ssues need to be addressed 1n addition to the actual compres-
sion/decompression and/or encryption/decryption tasks
themselves. To allow the data optimization engine to be uni-
versal, protocol adaptation, 1.e., the translation of the data
from the protocol received to one that can be understood by
the optimization processor, needs to be performed. After the
data 1s optimized by the optimization processor, the opti-
mized data needs to undergo protocol adaptation again prior
to outputting.

Data alignment and data parsing are also protocol-specific
tasks that need to be handled differently for different data
input protocols. Data alignment refers to the need to recog-
nize and frame the incoming data properly with respect to
some reference data frame as the mcoming data 1s received.
Data alignment facilitates data parsing, since efficient data
parsing relies on the correct relative positioning of the various
data fields within some reference data frame. For each data
frame that can be optimized (since not all data frames are
cligible for optimization), some portion of the optimizable
data frame needs to be preserved while other portions can be
optimized by the optimization processor. Data parsing sepa-
rates the optimizable portion from the non-optimizable por-
tion of the data frame so that the optimizable portion can be
optimized by the optimization processor.
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A related task 1s optimizable data handling, which refers to
the need to reassemble the data frame, putting together the

non-optimizable portion of the data frame with the optimiz-
able portion after the optimization processor has finished 1ts
optimizing task. Optimizable data handling ensures that a
properly reassembled data frame 1s presented at the output for
transmission to the next hop or to the final destination. As
mentioned, some incoming data frames may be non-optimi-
zable, e.g., due to an explicit request from software or from
some other higher layer 1n the communication stack. Bypass
data handling needs to be performed on the incoming data to
ensure that the data optimization engine will handle these
non-optimizable data frames properly.

Another task 1s congestion control, which 1s necessary to
ensure that the optimization processor 1s not overloaded 1f
incoming data 1s received at the data optimization engine 1n
rapid bursts. Congestion control gives the optimization pro-
cessor time to complete 1ts optimization task on a frame-by-
frame basis while minimizing and/or eliminating the possi-
bility of dropping incoming data frames 11 they arrive in rapid
bursts. Yet another related task 1s traffic handling, which
ensures that while data optimization takes place within the
inline data optimization engine, the communication channel
remains error-free. Traific handling 1s necessary 1f the data
optimization engine 1s to be transparent to the transmitting
and receiving devices.

Since these tasks all need to be performed, and they are all
different for different protocols, the challenge of creating a
universal data optimization engine rests, in part, in the ability
to mnovatively section and modularnze the data optimization
engine and to innovatively arrange the various circuits therein
in a manner such that when the data optimization engine
needs to be reconfigured to work with a different protocol, the
reconfiguration may be done quickly and efficiently and
changes to the data optimization engine may be minimized.

In view of the foregoing, there are desired improved tech-
niques and apparatus for optimizing the data transmission
bandwidth 1n data buses and network transmission links, as
well as for optimizing the storage capacity of temporary and
permanent memory 1n electronic devices and computer net-
works.

SUMMARY OF THE INVENTION

The 1nvention relates generally to a highly modularized,
protocol-flexible data optimization engine for performing
high speed, adaptive, in-line optimization (compression/de-
compression and/or encryption/decryption) ol data using
either hardware or software. The data optimization engine
includes a transmit interface circuit that 1s protocol-tlexible, a
high speed optimization processor, and recetve iterface cir-
cuit that 1s also highly flexible with regard to the protocol on
the transmission medium. The data optimization engine also
implements, in one embodiment, a novel high speed adaptive
compression technique that improves on the standard LZW
compression.

The invention relates, in one embodiment, to a data opti-
mization engine for optimizing selected frames of a first
stream of data. The data optimization engine includes a trans-
mit interface circuit coupled to an optimization processor, the
transmit interface circuit being configured for recerving the
first stream of data. The transmit interface circuit includes a
traffic controller circuit for separating frames in the first
stream of data into a first optimizable frame and a first non-
optimizable frame, and an optimization front-end circuit
coupled to the tratfic controller circuit to recerve at least a first
portion of the first optimizable frame. The optimization front-
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end circuit includes a protocol conversion circuit configured
to convert data in the first portion of the first optimizable
frame from a first protocol to a second protocol suitable for
processing by the optimization processor, the first protocol
speciflies a first word length, the second protocol specifies a
second word length different from the first word length. The
optimization front-end circuit further includes an end-of-op-
timization-file processing circuit, the end-of-optimization-
file processing circuit flagging an end of the first portion of the
first optimizable frame to the optimization processor, wherein
the optimization processor 1s configured to optimize the first
portion of the first optimizable frame by performing at least
one of compression and encryption on the first portion of the
first optimizable frame.

These and other features of the present invention will be
described in more detail below 1n the detailed description of
the invention and 1n conjunction with the following figures.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention 1s illustrated by way of example, and
not by way of limitation, in the figures of the accompanying
drawings and 1n which like reference numerals refer to similar
clements and 1n which:

FIG. 1 shows simplified CPU, bus, and memory sub-
systems within an exemplary computer to facilitate discus-
s10n of the transmission bandwidth bottleneck 1ssue therein.

FIG. 2 1s a simplified 1illustration of a portion of a data
storage system to facilitate discussion of the transmission
bandwidth bottleneck and capacity bottleneck 1ssues therein.

FIG. 3 1illustrates, 1n a simplified format, various sub-
systems ol a typical Ethernet-based network to discuss the
bandwidth bottleneck 1ssue therein.

FI1G. 4 shows, 1n accordance with one embodiment of the
present invention, a high level block diagram of the inventive
data optimization engine.

FIG. 5 shows, 1n accordance with one embodiment of the
present imvention, how a data optimization engine may be
deployed 1n a Fiber Channel setting.

FIG. 6 depicts, in accordance with one aspect ol the present
invention, how a data optimization engine may be employed
to improve the performance of a data storage system.

FIG. 7 depicts, in accordance with one aspect ol the present
invention, how a data optimization engine may be employed
to 1mprove performance 1 a computer system when a CPU
accesses 1ts main memory.

FIGS. 8 and 9 depict how a data optimization engine may
be employed 1n a communication network.

FI1G. 10 shows, 1n accordance with one embodiment of the
present invention, an arrangement whereby the inventive data
optimization engine 1s interposed between two PCI devices 1n
an extended PCI (PCI-X) system.

FIG. 11 shows, 1n a logic diagram format, the logic func-
tions of a data optimization engine in accordance with one
embodiment of the present invention

FIG. 12 15 a flowchart describing the inventive HSO com-
pression technique in accordance with one aspect of the
present invention.

FIG. 13 1s a flowchart describing the mventive HSO
decompression technique 1n accordance with one aspect of
the present invention.

FI1G. 14 shows, 1n accordance with one embodiment of the
present invention, another high-level block diagram of the
data optimization engine.

FIG. 15 illustrates a typical Fiber Channel data frame.
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FIG. 16 illustrates the structure of an Idle word, represent-
ing a type of primitive signal word 1n the Fiber Channel

protocol.

FIG. 17 shows, 1n accordance with one embodiment of the
present invention, a transmit interface circuit in greater detail.

FIG. 18 1llustrates, 1n accordance with one embodiment of
the present mvention, a flowchart showing how the traffic
controller circuit may process each 40-bit word received from
the frame alignment circuit.

FIG. 19 1llustrates, 1n accordance with one embodiment of
the present invention, how the end-of-optimized-data-flag-
handler circuit handles optimized data recerved from the opti-
mization processor.

FIG. 20 illustrates, 1n accordance with one embodiment,
how the protocol conversion circuit may perform the protocol
conversion such that output words having the correct polari-
ties may be output to bus framing circuit.

FIG. 21 shows, 1n accordance with one embodiment of the
present mnvention, a recerve interface circuit in greater detail.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The present invention will now be described 1n detail with
reference to a few preferred embodiments thereof as illus-
trated i1n the accompanying drawings. In the following
description, numerous specific details are set forth 1n order to
provide a thorough understanding of the present invention. It
will be apparent, however, to one skilled in the art, that the
present invention may be practiced without some or all of
these specific details. In other instances, well known process
steps and/or structures have not been described 1n detail 1n
order to not unnecessarily obscure the present invention.

FIG. 4 shows, 1n accordance with one embodiment of the
present invention, a high level block diagram of the inventive
data optimization engine 400. Referring now to FIG. 4, the
inventive data optimization engine mcludes three main logic
blocks 1n each of the transmit and receive data paths. In the
transmit data path, data input at a bus 402 1s received by a
protocol recognition engine 404. Protocol recognition engine
404, which 1s tailored to one or more specific protocols,
serves to extract the payload from the input data, which 1s
formatted 1n accordance with the dictates of the protocol
employed. By way of example, data mput at bus 402 may
conform to the Peripheral Component Interconnect (PCI)
interface, PCI-X interface (an extension of the PCI interface
to enable higher speed), Infiniband (a high speed competing,
protocol to PCI), High Speed Senal Interface (HSSI), 10-bit
interface (TBI, such as that developed under the guidance of
the X3 technical committee of the American National Stan-
dards Institute), serial ATA (Serial AT attachment, an 1nter-
tace for coupling with storage devices), or the 64/66 protocol
(which may be seen as either a dertvative of the 10-bit proto-
col or an extension of the PCI protocol). Protocol recognition
engine may also perform some or all of other tasks such as
traific handling, congestion control, data alignment, data
parsing, optimizable data handling, and the like. These tasks
are discussed 1n greater detail 1n connection with FIG. 17
herein.

FIG. 4 also shows block 440, representing the processing
block that may be provisioned within protocol recognition

engine 404 to handle higher layer or overlay protocols such
as, for example, Ethernet (1/10/40 Gigabit), Fiber Channel

(1/2/10 Gigabit), Extended Attachment Umit Interface
(XAUI), or I-SCSI (a storage over Ethernet interface).

The payload extracted by protocol recognition engine 404
1s then transmitted to a transmit payload processor 406 via a
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bus 408. In one embodiment, protocol recognition engine 404
also performs congestion management. That 1s, protocol rec-
ognition engine 404 manages the flow of data mto transmait
payload processor 406 to ensure that transmit payload pro-
cessor 1s not overloaded. Additionally, protocol recognition
engine 404 may also perform some level of bypass traffic
management, such as detecting certain data frames or words
that do not need to and/or should not be compressed and/or
encrypted based on the information provided in the header.
These data frames or words are then permitted to bypass
transmit payload processor to proceed immediately to the
output port.

At transmit payload processor 406, compression and/or
encryption may be performed. Whether transmit payload pro-
cessor 406 performs compression and/or encryption on a
particular data block received from protocol recognition
engine 404 depends on many factors, which will be discussed
later herein. After compression and/or encryption, transmit
payload processor 406 outputs the processed payload data
onto a bus 412 to be transmitted to a protocol restoration
engine 410. Since transmit payload processor 406 deals pri-
marily with the payload portion of the data received on bus
402, 1t 1s necessary to make the processed payload data trans-
mitted from transmit payload processor 406 conform to the
appropriate protocol for eventual transmission to another
device. Thus protocol restoration engine 410 performs the
appropriate processing and packaging on the processed pay-
load data to render the processed payload data conformant to
the protocol expected by the downstream device receiving
such a device coupled to media 414 (which can be optical,
wired, or wireless media).

In accordance with one advantageous embodiment, the
protocol restoration engine 410 may 1n fact package the opti-
mized payload data received from the transmit payload pro-
cessor 1 a protocol different from the protocol associated
with that of bus 402. For example, the data may employ the
Fiber Channel protocol on bus 402 but may be packaged by
protocol restoration engine 410 to be transmitted out on bus
414 using the Gigabit Ethernet protocol. In fact, any of the
aforementioned protocols or a well-known protocol may be
received and data optimization engine 400 may perform pro-
tocol translation 1n addition to or in place of optimization so
that a different protocol, which may be any of the aforemen-
tioned protocols or another well-known protocol, may be sent
out. Together, protocol recognition engine 404 and protocol
restoration engine 410 may be thought of as the interface
circuitry for transmit payload processor 406.

On the receive path, the protocol recognition engine 420
receives data from media 418 and performs payload extrac-
tion (and/or congestion management and/or bypass traffic
management) and other tasks similar to those performed by
protocol recognition engine 404 associated with the transmit
path. The payload extracted 1s then transmitted to a receive
payload processor 422 via a bus 416. Receive payload pro-
cessor 422 then decrypts and/or decompresses the payload as
necessary. Whether receive payload processor 422 performs
decryption and/or decompression on a particular data block
received from protocol recognition engine 420 depends on
many factors, which will be discussed later herein. After
decryption and/or decompression, receive payload processor
422 outputs the processed payload data onto a bus 424 to be
transmitted to a protocol restoration engine 426. Since
receive payload processor 422 deals primarily with the pay-
load portion of the data received on media 418, 1t 1s necessary
to make the processed payload data transmitted from receive
payload processor 422 conform to the appropriate protocol
for eventual transmaission to another device. Thus protocol
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restoration engine 426 performs the appropriate processing,
and packaging on the processed payload data to render the
processed payload data conformant to the protocol expected
by the device receiving such data from media 430 (which can
be optical, wired, or wireless media). Again, protocol trans-
lation may occur on the receive path as well.

To provide an example of how the data optimization engine
ol F1G. 4 may be employed, FI1G. 5 shows, 1n accordance with
one embodiment of the present invention, how a data optimi-
zation engine 502 may be deployed 1n a Fiber Channel set-

ting. In FIG. §, the data optimization engine 502 1s interposed
between a Fiber Channel controller 504 and a SERDES (Se-

rializer/Deserializer) 506 via 10-bit interface 508 and 510
respectively. This 10-bit interface implements the 10-bit
encoding scheme to transmit information on the Fiber Chan-
nel link. Further information regarding the 10-bit encoding
may be found 1n the text “Fibre Channel: A comprehensive
Introduction” by Robert W. Kembel (Northwest Learning
Associates, Inc., Tucson, Ariz., 2000), incorporated by refer-
ence herein. Fiber Channel controller 504 may, for example,
be part of an I/O plug-in board or an integral part ol a com-
puter system.

Data recerved at Fiber Channel controller 504 1s com-
pressed and/or encrypted as appropriate 1n real time by data
optimization engine 502 prior to being output to SERDES
506 for transmission over media 520. Data received from
media 520 1s decrypted and/or decompressed as appropriate
by data optimization engine 502 prior to being output to Fiber
Channel controller 504. It should be noted that although the
Fiber Channel protocol 1s employed 1n the example of FI1G. 5,
other protocols such as some of those mentioned (e.g., Eth-
ernet, Infimband, XAUI) may well be implemented.

The data optimization engine may {ind use 1n many diverse
applications where there 1s a need to increase the bandwidth
of the transmission link, the memory/storage access speed
and capacity, and/or a need for the ability to implement com-
pression/encryption in a manner so as to guarantee compat-
ibility with other devices irrespective whether those other
devices implement the data optimization engine.

FIG. 6 depicts, 1in accordance with one aspect of the present
invention, how a data optimization engine may be employed
to improve the performance of a data storage system. In FIG.
6, there 1s shown a host device 602, which transmits data to
and recerves data from a storage device 604 using a suitable
protocol. By way of example, FIG. 6 shows four exemplary
interfaces 606, 608, 610, and 612, representing alternative
interfaces for permitting host 602 to communicate with stor-
age device 604 using the fiber channel protocol, the Ethernet
protocol, the SCSI protocol, or the Infinitband protocol
respectively.

The data optimization engine may be disposed at location
614, either as a separate device or integrated directly with host
device 602. For manufacturers of processors or mother-
boards, this arrangement 1s useful to transparently improve
I/O performance vis-a-vis storage device 604. Alternatively,
the data optimization engine may be disposed at locations 616
and 618 to facilitate communication via the Fiber Channel or
the Ethernet protocols. This arrangement 1s useful for periph-
eral device manufacturers, who may want to mncorporate the
advanced compression and encryption capabilities of the
inventive data optimization engine without requiring changes
in e1ther host device 602 or storage device 604 (which may be
manufactured by other parties). Alternatively, the data opti-
mization engine may be integrated with storage device 604
(shown by reference number 630), thereby allowing storage
device 604 to store more nformation and responds to
memory requests in less time without requiring changes in
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either host device 602 or interfaces 606—612. Note that 1n
general, only one data optimization engine 1s required (1.e.,
only one of data optimization engines 614, 616, or 618 is
required) between host device 602 and storage device 604.

FIG. 7 depicts, in accordance with one aspect ol the present
invention, how a data optimization engine may be employed
to 1mprove performance 1 a computer system when a CPU
accesses 1ts main memory. In the case of FIG. 7, since data
communication between a CPU 702 and a memory 704
occurs within a closed system, encryption 1s generally unnec-
essary. However, the encryption capability of the data opti-
mization engine may be employed 1t encryption 1s deemed
desirable (e.g., 1n highly secure systems or when the commu-
nication takes place over a networked link). With respect to
FIG. 7, CPU 702, memory 704, cache 705, and memory
controller 706 are conventional and generally communicate
among themselves using a bus-based protocol or a high speed
serial protocol. The data optimization engine may be dis-
posed at a location 708, which 1s generally considered part of
the CPU subsystem or even integrated within the die of the
processor 1tself. This arrangement 1s highly advantageous for
processor manufacturers looking for a competitive advantage
since 1t permits the CPU to transparently and apparently
improve the rate of data transfer between 1tself and memory
704, as well as to transparently and apparently increase the
capacity of memory 704 as well as to implement encryption
without taking up a significant amount of CPU processing
resources, all without requiring changes in memory control-
ler 706 or memory 704.

The data optimization engine may be disposed at location
710, 1.e., between CPU 702 and memory controller 706. In
one preferred embodiment, the data optimization engine may
be made part of the memory controller subsystem or inte-
grated with one of the memory controller ICs. This arrange-
ment 1s advantageous for memory controller manufacturers
who wish to offer the ability to apparently increase the speed
of data transier between CPU 702 and memory 704 without
requiring changes in memory 704, CPU 702, or cache 705. In
the background, the data optimization engine compresses
(and/or encrypts) the data before passing the processed data
onward. The fact that the data 1s optimized means that fewer
bits need to be transmitted between CPU 702 and memory
704. This increases, 1n an apparent manner, the transmission
speed/bandwidth of the bus between CPU 702 and memory
704. Furthermore, fewer bits need to be stored 1n memory
704, which means that fewer memory cycles are needed to
store/access the required data. This 1n turn also 1ncreases the
speed, 1n an apparent manner, of memory access by CPU 702
for any given {ile. It should be pointed out that the apparent
speed increase and bandwidth increase due to the fact that few
bits need to be transmitted also apply 1n both the data storage
system setting (e.g., FIG. 6) and 1n the networking setting.

The data optimization engine may be disposed at a location
712, 1.e., as part of memory 704. This arrangement 1s advan-
tageous for memory manufacturers, such as DRAM or RAM
manufacturers or hard disk or optical drive manufacturers, to
apparently increase the speed of data transfer between CPU
702 and memory 704 as well as to increase the apparent
capacity ol the physical memory without requiring changes in
memory controller 706, CPU 702, or cache 705. In the back-
ground, the data optimization engine compresses the data
betore storing on the physical media to reduce the number of
bits that need to be stored. Since the bottleneck to higher
performance 1n permanent memory subsystems tends to be
found 1n the relatively slow mechanical movement of the
access arm (as 1n the case of hard disk drives) or the speed at
which the bits can be recorded onto storage locations 1n the



US RE43,558 E

11

media (e.g., the speed at which the magnetic particles can be
aligned to store information or the speed at which the optical
media records information, or the speed at which the latches
or capacitors may be able to store or read a bit of data),
reducing the number of bits that need to be stored tend to
increase the overall performance of memory 704 as well as
apparently increase 1ts capacity to store information.

FIGS. 8 and 9 1llustrate, 1n accordance with embodiments
of the present invention, how a data optimization engine may
be employed to transparently and apparently increase the data
transmission speed and bandwidth (i.e., carrying capacity)
between networked devices (such as network interface cards,
routers, or switches). In FIG. 8, a data optimization engine
may be provided with each networked device 1n network 802.
In this case, the payload data 1s compressed and/or encrypted
for transmission prior to being transmitted on a network link
in order to maximize the speed and bandwidth of the link, as
well as to ensure data security (if encryption 1s performed).
Thus, the payload data 1s compressed and/or encrypted by
network interface card (NIC) 804 prior to being transmitted
via link 806 to switch 808. At switch 808, the destination 1s
looked up to ascertain the appropriate output port. If the
destination device does not have the data optimization engine,
the payload data may be decrypted and/or decompressed in
switch 808. Thereatter, the data 1s transmitted out via link 810
to a router 812. At router 812, the destination 1s looked up to
ascertain the appropriate output port. If the destination device
does not have the data optimization engine, the payload data
may be decrypted and/or decompressed 1n router 812 (unless
decryption and/or decompression occurred already 1n switch
808). Thereaftter, the data 1s again transmitted out via a link
814 to a NIC 816. At NIC 816, the data 1s decrypted and/or
decompressed for use by a data optimization engine provi-
sioned therein. If NIC 816 does not have a data optimization
engine, the decryption and/or decompression occurs at one of
the earlier nodes as discussed.

Since the data optimization engine of the present invention
can transparently work with legacy networked devices, a NIC
822 or a switch 824 which does not have the data optimization
engine built-in can also utilize switch 808 and router 812 to
transmit data to and receive data from NIC 804 and 816. If the
data received at switch 808 or router 812 1s uncompressed
and/or not encrypted, the inventive data optimization engine
can perform encryption and/or compression, eflectively
upgrading the legacy networked devices up to the level of the
upgraded network. Furthermore, 1 unencrypted/uncom-
pressed date arrives at a NIC having therein the inventive data
optimization engine, the data optimization engine therein
simply does not perform decryption and/or decompression
betore passing the data on to 1ts host. This 1s an advantage
since 1t allows network 802 to be upgraded in a modular,
gradual manner. In other words, one part of the network may
be upgraded and be expected to work with other parts of the
network, which contain legacy devices. This ability mini-
mizes disruption to the network during upgrade cycles and
gives network managers great flexibility in the provisioning
ol their networks.

FIG. 9 depicts a network 852 wherein switch 858 and
router 862 are both legacy network devices without the data
optimization capability. NICs 854 and 866 are, however,
equipped with the mventive data optimization engine. The
situation of FIG. 9 1s often realized, for example, when two
computers equipped with NICs having integrated therein the
inventive data optimization engines communicate with one
another via a public network. In this case, the ability to reduce
the amount of data that needs to be transmitted (via compres-
sion) still yields advantages since such optimization appar-
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ently improves the speed of data transier between NICs 854
and 866 (since fewer bits need to be transmitted for a given
amount of mformation) and the carrying capacity of links
856, 860, and 864. Encryption increases the security of the
data transmitted, which 1s also an important consideration
when data 1s transmitted/received over computer networks.

Note that when only one of NIC 854 or NIC 866 is
equipped with the data optimization capability and the other
1s not, data transmission 1s still possible. In this case, the
switch or router device equipped with the data optimization
capability simply receives the uncompressed (and/or nonen-
crypted) data and passes such data transparently through the
data optimization engine. Prior to retransmission of the data
on the output port of that switch or router, the payload data
may be compressed and/or encrypted to transparently
improve the transmission speed or network capacity or data
security. In one embodiment, however, a ficld may be
employed 1n the header portion of the received data that
informs switch 838 or router 862 that the payload data should
not be compressed and/or encrypted (as in the case wherein
the recerving NIC does not have the ability to decrypt and/or
decompress).

In yet another embodiment, the networked devices at the
edge of the network (e.g., the Label Edge Routers or LER 1n
a MPLS network) are all equipped with data optimization
engines to permit the all data transterred among nodes of the
network to be compressed and/or encrypted irrespective
whether the sending and/or recerving NICs have the ability to
encrypt/decrypt (and/or compress/decompress). Thus, the
payload data1s compressed and/or encrypted once at the input
edge of the network and decrypted and/or decompressed
again at the output edge of the network. In between, the
payload data 1s 1n 1ts compressed and/or encrypted form to
yield the bandwidth/speed-enhancing advantages and/or the
security advantages.

In yet another embodiment, only the routers or switches at
the edge of the network for a given data flow perform the
compression/decompression and/or encryption/decryption
even though the network nodes 1n between may also be pro-
visioned with the inventive data optimization engines (which
can perform the compression/decompression and/or encryp-
tion/decryption for other data flows). In this case, the data
frames or blocks may be marked with a flag (e.g., in the
header) so as to isure that compression/decompression and/
or encryption/decryption cycle only takes place once through
the network. This 1s an advantage 1n heterogeneous networks
(such as the Internet) where no single entity may control the
various end-to-end paths through which various data tflows
are expected to traverse.

Irrespective of the specific implementation, the inventive
data optimization engine allows network providers to appar-
ently increase the speed of data transmission among the nodes
of the network, as well as apparently increase the capacity of
the network links, as well as increase the data security among
the network nodes without requiring an upgrade to all the
NICs and/or all network nodes to those capable of compres-
s1on/decompression and/or encryption/decryption.

FI1G. 10 shows, 1n accordance with one embodiment of the
present invention, an arrangement whereby the inventive data
optimization engine 1s mterposed between two PCI devices
1002 and 1004 in an extended PCI (PCI-X) system. In a
PClI-based system, a PCI device may either be a PCI master or
a PCI target, depending on the type of communication that
takes place between 1tself and one or more other PCI devices.

For discussion purposes, there are two broad types of trans-
action that PCI device 1002 may wish to initiate vis-a-vis PCI
device 1004. PCl device 1002 may write configuration data to
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PCI device 1004 via the CW (configuration write) transaction
1006A. In this case, data, address, signaling, and other types
of information pertaining to configuration would be sent from
PCI device 1002 and received and/or acknowledged by PCI
device 1004. Likewise, PCI device 1002 may receive con-
figuration information from PCI device 1004 via the CR
(configuration read) transaction 1008A. Again, in this CR
transaction, data, address, signaling, and other types of infor-
mation pertaining to configuration would be sent from PCI
device 1004 and received and/or acknowledged by PCI
device 1002. Configuration read transactions may be initiated
by either PCI device 1002 or PCI device 1004 to enable PCI
device 1002 to receive configuration data.

Memory Write (MW) transaction 1010 and Memory Read
(MR) transaction 1012 are two other types of transaction
between PCI device 1002 and PCI device 1004. In MW
transaction 1010, PCI device 1002 writes one or more blocks
of data to PCI device 1004 at certain address locations. In
addition to clocking and signaling data, both the address and
data are specified. In MR transaction 1012, PCI device 1002
requests one or more blocks of data from PCI device 1004.
Again, 1in addition to clocking and signaling data, both the
address and data are specified.

As shown 1n FIG. 10, a data optimization engine 1020 1s
interposed inline between PCI device 1002 and PCI device
1004 and monitors the transactions between these two
devices. Configuration transactions are passed through data
optimization engine 1020 substantially transparently without
significant processing. In FIG. 10, these CW transaction
1006 A and CR transaction 1008 A are shown passing substan-
tially transparently through data optimization engine 1002 as
are CW transaction 10068 and CR transaction 1008B.

Memory write transactions MW 1010, on the other hand,
are examined by optimization processor 1030 for possible
encryption and/or compression. If encryption and/or com-
pression are appropriate for this data, the data to be written to
PCI device 1004 1s encrypted and/or compressed (shown by
reference number 1040) prior to being transmitted to PCI
device 1004.

Conversely, memory read transactions 1012 are also exam-
ined by optimization processor 1030 for possible decryption
and/or decompression. If decryption and/or decompression
are appropriate (shown by reference number 1042), the data
to be written from PCI device 1004 to PCI device 1002 1s
decrypted and/or decompressed prior to being transmitted to
PCI device 1002.

Within the optimization processor, there are two engines: a
compression engine and a decompression engine. In one
embodiment, at the output side the compression engine, there
1s provided a packer in order to recerve the compression
output, which comes from the compression engine from time
to time, and packs those compression output as a continuous
stream 1n groups ol n, with n being the number of bits required
by the mterface circuitry. Thus, the packer 1s flexible with
regard to the number of bits of data that 1t packs into. For
example, the 3-bit code output 1s received by the packer from
time to time as output by the compression engine, and 1s
packed by the packer into groups of two, assuming 2 1s the
number of bits required by the interface circuitry.

At the mput side of the decompression engine, there 1s
provided a corresponding unpacker, which receives from the
packer associated with the compressor continuous streams of
data in groups of n, with n being the number of bits employed
by the interface circuitry. In this case, the unpacker then
unpacks this stream of bits into the compressed code having a
s1ze corresponding to the size of the compressor output code.
In the previous example, the unpacker would recerve a stream
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of compressed data 1n groups of two and unpacks this stream
into 3-bit codes to be fed to the decompressor.

If the packing results 1n a partial group, then padding may
be needed. For example, 11 the compression output code 1s 11
bits and the interface circuitry requires 8 bits, the receipt ol 3
compression output codes 1s 33 bits of data. Packing 33 bits of
data mto groups of 8 will result 1n a partial group. In one
embodiment, padding 1s performed so that the number of bits,
including the pad, 1s a multiple of n (or a multiple of 8 1n this
example). Thus, another 7 bits will be padded. In another
embodiment, this 1s solved by padding the 33 bits up to a
group size that 1s equal to the size of the compression output
code multiplied by the size of the group output by the packer.
In this example, this group size 1s 88 bits (or 11 bitsx8 bits).
In other words, 55 bits are padded. The unpacker then looks at
cach 88-bit group that comes 1n, and 1n any 88-bit group that
contains the EOF, the padding that comes aiter the EOF 1s
1gnored.

FIG. 11 shows, 1n a logic diagram format, the logic func-
tions of data optimization engine 1020 in accordance with
one embodiment of the present invention. In block 1102, the
method first decides whether the transaction under consider-
ation 1s a control transaction or a data transier. If the transac-
tion under consideration 1s a transaction other than a data
transier, the method proceeds to block 1104 to pass the trans-
action substantially transparently through the data optimiza-
tion engine. On the other hand, 1f the transaction 1s a data
transter transaction, the method proceeds to block 1106. One
skilled 1n the art should readily appreciate that the discussion
also applies to other types of data transier transactions, such
as data transmission 1nside a computer system or between a
computer and 1ts storage device(s).

In block 1106, 1t 1s ascertained whether the data transfer
transaction under consideration 1s a transmit transaction or a
receive transaction. In general, recerve data appears on the
receive data mput port; transmit data appears on the transmit
data mput port. If a transmit transaction 1s detected, the
method proceeds to block 1108 to ascertain whether the data
therein 1s compressible. In one embodiment, the header can
be analyzed to see if the data 1s already compressed, or 11 the
data 1s of a type that cannot be compressed. This may be
indicated via one or more ficlds i the header. By way of
example, the Fiber Channel header typically has one or more
fields to indicate such information. Alternatively or addition-
ally, this information may be provided by higher level soft-
ware 1n a pre-determined field. If the examined transmait data
contains non-compressible data, compression 1s not per-
formed and the data 1s immediately passed to block 1110 to
ascertain whether encryption should be performed.

In block 1110, the decision whether to encrypt may be
based on whether an encryption key 1s detected. In most
public key transcription schemes, a key 1s typically present 1
encryption 1s desired. Of course there exist other ways to
detect whether encryption 1s desired, depending on the
encryption scheme employed (such as, e.g., flagging 1n an
appropriate field in the header of the data frames). If encryp-
tion 1s desired (as ascertained i1n block 1110), the method
proceeds to block 1120 to encrypt. After encryption, the
encrypted data 1s passed to block 1124 to transier out. On the
other hand, if encryption i1s not desired (as ascertained 1n
block 1110), the method bypasses the encryption block 1120
and proceeds directly to block 1124 to transfer the data out.

If the transmit transaction under consideration contains
compressible data (as ascertained in block 1108), the method
proceeds to block 1122 to perform compression. Thereatter,
the compressed data 1s passed onto block 1110 to decide
whether encryption should also be performed. If encryptionis
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desired (as ascertained in block 1110), the method proceeds
to block 1120 to encrypt. In general, any encryption technique
may be employed. In one embodiment, encryption 1s per-
formed using 118-bit AES public key encryption. However,
since the mventive data optimization engine performs com-
pression prior to encryption, even lower powered encryption
schemes (e.g., 64-bit public key) may be employed with a
high degree of confidence since the combination of compres-
sion and subsequent encryption renders the encrypted data
much more difficult to break than encryption alone. This 1s an
advantage since it 1s not possible in some markets, due to
governmental restrictions or other administrative restrictions,
to employ a high-powered encryption scheme.

Thereafter, the encrypted data 1s passed to block 1124 to
transier out. On the other hand, 1f encryption 1s not desired (as
ascertained 1n block 1110, the method bypasses the encryp-
tion block 1120 and proceeds directly to block 1124 to trans-
ter the data out.

As can be seen, when data transmit transaction 1s under
consideration, the data optimization engine, 1n real time,
decides whether to compress. Irrespective whether compres-
sion 1s performed, another independent decision 1s made
whether to encrypt. There 1s thus a great deal of flexibility
with regard to how data may be treated prior to being sent
onward to the recerving device/interface.

On the other hand, 1f the data transfer transaction 1s a
receive transaction (as ascertained in block 1106), the method
proceeds to block 1130 to ascertain whether the data recerved
was encrypted earlier. In one embodiment, the information
pertaining to whether a data frame 1 a data block was
encrypted may be stored using a bit 1n the header of the data
frame (e.g., a SONFET or Ethernet header). Alternatively or
additionally, the information pertaining to whether a data
frame or a data block (which comprises multiple data frames)
was encrypted may also be stored 1n a table/database associ-
ated with a data storage device during a data write transaction
to that data storage device. This table/database 1s then con-
sulted during a data retrieval transaction to determine whether
encryption was involved. In yet another embodiment, encryp-
tion 1s ascertained by detecting whether a key 1s present with
the data frame or data block associated with the memory read
transaction (assuming a public key encryption scheme).

If the data associated with the receive transaction 1s
encrypted data, the method proceeds to block 1132 to decrypt
the data block received. Thereafter, the method proceeds to
block 1134 to ascertain whether the data was compressed
earlier. On the other hand, 1f the data associated with the
receive transaction 1s non-encrypted data, the method
bypasses block 1132 and proceeds directly to block 1134
(which ascertains whether the data associated with the
memory transaction was compressed).

In one embodiment, each data frame 1n the block 1s marked
with a bit that flags whether that data frame contains com-
pressed data. By way of example, this bit may be in the header
of the data block 1tself (such as the Ethernet or SONET
header). In another embodiment, the information pertaining
to whether a data block contains compressed data 1s stored in
a table or database 1n the memory storage device (e.g., hard
drive). During a transmit transaction, the table 1s updated 1f
the data block stored contains compressed data. Responsive
to the data retrieval request, the table/database 1s then con-
sulted to ascertain whether the requested data was com-
pressed earlier.

If the data block was compressed (as ascertained by block
1134), the method proceeds to block 1136 to decompress the
data block. After decompression, the method proceeds to
block 1138, representing the 1/0 block to output the data to

10

15

20

25

30

35

40

45

50

55

60

65

16

the device that requested it. On the other hand, if the data
block was not compressed earlier, the method bypasses block
1136 to proceed directly to block 1138 to output the data to
the device that requested 1t.

As can be seen, when a data receive 1s under consideration,
the data optimization engine, 1n real time, decides whether the
data was compressed earlier and to decompress if needed.
Uncompressed data transparently bypasses the decompres-
s1on logic of the inventive data optimization engine. Irrespec-
tive whether decompression 1s performed, another indepen-
dent decision 1s made whether to decrypt. In this manner, the
inventive data optimization engine 1s highly flexible and fully
compatible with other subsystems/devices that do not have
compression and/or encryption capabilities 1n that data from
those devices may bypass the decompression/decryption
logic of the data optimization engine. This flexibility permits
the data optimization engine to be employed to upgrade a
computer network 1n a modular, gradual fashion since the
flexibility 1n working with both compressed and uncom-
pressed data, as well as with encrypted and un-encrypted
data, permits the network devices that implement the mnven-
tive data optimization engine to interoperate smoothly with
other legacy and upgraded network devices. This flexibility
also permits the data optimization engine to be employed to
upgrade a computer system or a data storage system 1n a
manner so as to minimize the number of changes required in
the various subsystems of the computer system or the data
storage system, since the flexibility in working with both
compressed and uncompressed data, as well as with
encrypted and un-encrypted data, permits the subsystems tha
implement the inventive data optimization engine to iterop-
crate smoothly with other legacy or ofi-the-shelf subsystems
of the computer system or data storage system.

In accordance with another aspect of the present invention,
there 1s provided an mnventive High Speed Optimized (HSO)
compression/decompression technique to enable the data
optimization engine to perform high speed, in-line adaptive
loss-less compression/decompression. To facilitate discus-
s10n of the mventive HSO compression/decompression tech-
nique, some background discussion on LZW compression
may be in order first.

LZW compression 1s the compression of a file mnto a
smaller file using a table-based lookup algorithm invented by
Abraham Lempel, Jacob Ziv, and Terry Welch. A particular
LZW compression algorithm takes each input sequence of
bits of a given length (for example, 12 bits) and creates an
entry 1n a table (sometimes called a “dictionary”™ or “code-
book™) for that particular bit pattern, consisting of the pattern
itsell and a shorter code. As iput is read, any pattern that has
been read before results in the substitution of the shorter code,
clfectively compressing the total amount of 1nput to some-
thing smaller. The LZW algorithm does include the look-up
table of codes as part of the compressed file. However, one
particularly usetul feature of LZW compression/decompres-
s10m 1s that it 1s capable of building the table (1.e., dictionary
or codebook) on the fly during decompression. That 1s, the
decoding program that uncompresses the file 1s able to build
the table 1tself by using the algorithm as 1t processes the input
compressed data. An explanation of the LZW algorithm may
be found 1n Mark Nelson’s “LZW Data Compression” from
the October, 1989 1ssue of Dr. Dobb’s Journal (2800 Campus
Drive, San Mateo, Calif. www.ddi.com). Further details
regarding LZW compression may be found, for example, in
the article “A Technique for High Performance Data Com-
pression,” Terry A. Welch, IEEE Computer, 17(6), June 1984,
pp. 8—19 (all of the above articles are incorporated herein by
reference).
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Further, LZW compression 1s highly adaptable to any type
of mput data. It 1s this adaptability of LZW that renders 1t
highly useful as a starting point for the compression engine
employed 1n the present invention. Many other data compres-

sion procedures require prior knowledge, or the statistics, of >

the data being compressed. Because LZW does not require
prior knowledge of the data statistics, it may be utilized over
a wide range of information types, which 1s typically the
requirement 1n a general purpose data optimization engine.

LZW, as an algorithm for compression, 1s known in the art.
An example of known LZW compression/decompression in
operation 1s discussed below. Suppose the mnput string / WED/

WE/WEE/WEB needs to be compressed using LZW.

TABL.

L1l

1

Example of standard .ZW compression.

New code value and

Character mput Code output associated string
/W / 256 =/W

E W 257 =WE

D E 258 =ED

/ D 259 =D/
WE 256 260 = /WE

/ E 261 =L/
WEE 260 262 = /WEE
/W 261 263 =E/W
EB 257 264 = WEB
<END> B

In this example, LZW starts with a 4K dictionary, of which
entries 0-253 refer to individual bytes, and entries 2564095
refer to substrings. This type of dictionary 1s useful for text
compression, for example. Each time a new code 1s generated
it means a new string has been parsed. New strings are gen-
crated by appending the current character K to the end of an
existing string w.

The algorithm for LZW compression is as follows:

set w = NIL
loop
read a character K
if wK exists 1n the dictionary
w =wkK
else

output the code for w
add wK to the string table
w=K

end loop

A sample run of LZW over a (highly redundant) input
string can be seen 1inthe Table 1 above. The strings are builtup
character-by-character starting with a code value of 256.
LZW decompression takes the stream of codes and uses it to
exactly recreate the original input data. Just like the compres-
sion algorithm, the decompressor adds a new string to the
dictionary each time 1t reads 1n a new code. All 1t needs to do
in addition 1s to translate each incoming code 1nto a string and
send 1t to the output.

A sample run of the LZW decompressor 1s shown 1n below
im Table 2. Using the compressed code
/WED<256>E<260><261><2357>B as mput to decompres-
sor, decompression yields the same string as the iput to the
compressor above.
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TABLE 2

Example of standard LLZW decompression.

New code value and

Input code Output string associated string
/ /

W " 256 =/W

E E 257 =WE
D D 258 =ED
256 /W 259 =D/

E E 260 =/WE
260 /WE 261 = E/
261 E/ 262 =/WEE
257 WE 263 =LE/W
B B 264 = WEB

As can be seen, one remarkable feature of LZW compres-
s1on 1s that the entire dictionary has been transmitted to the
decompressor without actually explicitly transmitting the
dictionary. At the end of the run, the decompressor will have
a dictionary identical to the one the encoder has, built up
entirely as part of the decoding process.

The above discussion relates to the known LZW compres-
sion algorithm. To optimize the compression for use 1n the
data optimization engine of the present invention, several
improvements are added. In one embodiment, to minimize
the size of the dictionary and the time spent looking up the
dictionary, the invention limits the number of different output
codes to a fixed number. In other words, whereas the standard
LZW compression algorithm assumes that there would be a
suificient number of output codes to represent each unique bit
pattern in the dictionary, the invention 1n one embodiment 1s
optimized to guarantee correct compression and decompres-
sion even 1f there are far fewer output code values than the
number of unique bit patterns requiring storage in the dictio-
nary.

One disadvantage with storing one unique compression
output code with each unique bit pattern 1n the dictionary 1s
that for a umiversal data optimization engine, 1t 1s oiten not
known 1n advance what type of data would be encountered,
how compressible the input data would be, and thus how
many unique bit patterns may be encountered. In such as case,
the known LZW algorithm would require one to overprovi-
sion the dictionary, 1.e., to allot a suflicient large number of
code values and a sufficiently large amount of storage space
so as to ensure that there 1s a unique code for each unique bit
pattern to be stored into the table for all types of data that may
be encountered.

However, the challenge with limiting the number of output
codes and the size of the dictionary 1s that there exists a risk
that the number of unique bit patterns encountered would
exceed the number of output codes provided. When the num-
ber of unique bit patterns that need to be stored 1n the dictio-
nary exceeds the number of output codes in the dictionary,
known LZW compression techniques break down, as far as
the inventor 1s aware. Yet, limiting the number of output codes
and the size of the dictionary 1s often the key to keeping the
memory size to a reasonable number and the dictionary
search time low to enable real-time operation and/or to make
a unmiversal data optimization engine.

In accordance with one aspect of the present 1nvention,
there 1s provided an adaptive High Speed Optimized (HSO)
compression technique that addresses the need for a high
speed, low memory usage, adaptive compression technique,
and which can be implemented 1n hardware for high speed,
in-line operation, or in software for portability. The inventive
HSO compression technique in accordance with one embodi-
ment of the present invention may be better understood with

reterence to Table 3 and FIG. 12 herein.
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TABLE 3

Example of inventive HSO compression.

20

Bit Pattern
Input to Search Counter CAM  CAM Code

Row character (3 bits+  Value  content address Output

No. (2 bits) 2 bits) (3 bits) (3 bits) (5 bits) (3 bits) Note

R1 la

R2 1b lal b 4 4 11 la

R3 lc 1blc

R4 1d 41d 5 5 41 4

R5 le ldle

R6 1f 411

R7 lg Slg 6 6 51 5

R¥ 1h lglh

R9 11 411

R10  1j 515

RI11 1k 61k 7T—=4 4 61 6 The CAM address
11, which
previously stored
the value 4 (Row
R2) is now freed up

R12 1L 1k1L 5 1k Special Case

R13 1m 1L.1m 6 1L Special Case

R14 1n Imln 7 —=4 lm Special Case

R15 1o Inlo 5 In Special Case

R16 1p lolp 6 6 11 lo The CAM address
51, which
previously stored
the value 6 (Row
R7) 1s now freed up

R17 Oq 1pOq 7—=4 4 10 1p The CAM address
61, which
previously stored
the value 4 (Row
RH) 1s now freed
up

R18 1Ir Oqlr S 5 01 Oq

R19 1s Irls

R20 1t 61t 6 6 61 6 The CAM
address 11,
which previously
stored the value
6 (Row R16) is
now freed up

R21 1u 1tlu 7—=4 1t Special Case

R22 1v lulv S 5 11 lu

R23 EOF 1v lv

R24 EOF

In the example of Table 3, the input pattern 1s as shown in
rows R1-R22, with row R23 having the special input EOF,
which marks the end of the 1input file. Each mput “character”
1s assumed to be two bits (and thus can have the value of O, 1,
2, or 3). Since 3 1s the maximum value of the input character,
the value 4 1s selected to be the first counter value representing
the smallest code output from the dictionary. It should be
apparent that any value higher than 3 can be chosen as the
smallest code output from the dictionary, albeit with some
loss of efficiency since a larger number of bits will be required
to represent a larger output code value.

To 1llustrate the ability of the present inventive technique to
compress and decompress with only a limited number of
output code values to save memory, the number of bits of the
output code value will be artificially constrained to be 3 and
the maximum value to 6. The value 7 (the largest value that
can be produced using 3 bits) 1s used, 1n this example, to
represent the EOF flag 1n the output stream to be sent to the
decompressor. Thus, there are only 3 additional output code
values (1.e., 4,5, and 6), other than the input characters and the
EOF flag, that will be in the compressed output stream. As can
be appreciated by one skilled 1n the art, this allows the content
addressable memory dictionary (or a dictionary implemented
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in any other type of memory technology) to be vastly reduced
in size and also substantially simplifies the process of search-
ing through the dictionary for a matching bit pattern.

In the example of Table 3, the input sequence 1s 1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1, EOF. To simplify under-
standing, the input characters are given subscripts (a—v) to aid
the reader 1n tracking the explanation through the table. It1s to
be understood that these subscripts (a—v) are present only to
aid the reader 1n understanding the example of Table 3; these
subscripts are not present in the stream of data. Also, two
temporary string variables Charlnl and Charln2 are
employed in FI1G. 12 to track the input and output values when

stepping through the compression technique.

With reference to Table 3, 1n row R1, the input character
“1” 1s mputted (FIG. 12: 1202). For ease of reference to Table
3, the subscript “a” 1s employed in the discussion. Thus, row
R1 has “1a” as the input character. Since this is the first input

value, nothing 1s written to the dictionary or outputted.
In row R2, the input characteris 1b (FI1G.12:1206). The bit

pattern 1s now lalb (FIG. 12: 1208). It should be noted that
prior to forming the bit pattern to search through the dictio-
nary, the prior input character 1a is padded (i.e., pre-pended
with zero) to make 1t 3 bits to match the size of the output code




US RE43,558 E

21

value (FIG. 12: 1204). Because of this padding, the resultant
bit pattern 1s now uniformly 5 bits at all times, which simpli-
fies the search and storage process. Since 11 1s not 1n the

dictionary (FIG. 12: 1210), the counter value 1s incremented
to 4 (F1G. 12:1212/1214) and 1s written to the CAM at CAM

address 11 (FIG. 12: 1216). The output code 1s 1a (FIG. 12:
1218/1220/1204).

In row R3, the input character 1s 1¢ (FI1G. 12: 1206). Since
“la” 1s just outputted, the remaining bit pattern representative
of 1b 1s padded (FIG. 12: 1204) and then merged with 1¢ to
form the bit pattern 1b1c (FIG. 12: 1208). Since 11 1s already

in the dictionary (stored at row R2), the dictionary is not

updated and nothing 1s outputted. However, the content of
CAM address location 11 (which i1s 4 as shown 1n row R2) 1s

noted for use with the next input character (FIG. 12: 1210/
1222).
In row R4, the mput character 1s 1d (FI1G. 12: 1206). Now

the bit pattern 1s 41d (FIG. 12: 1208), which 1s a merging of

the content of CAM address location 11 (which 1s 4 as shown
in row R2), and the new nput character 1d. Since the content
of CAM address location 11 (which 1s 4 as shown 1n row R2)
1s already 3 bits, no padding 1s needed, and the new bit pattern
41d1s 5 bats as before, which simplifies searching and storage.
Since 41 1s not 1n the dictionary (FI1G. 12: 1210), the counter
value 1s increased to 5 (FIG. 12: 1212/1214) and 1s written to
the CAM at CAM address 41 (FIG. 12: 1216). The output
code 1s 4(FIG. 12: 1218/1220/1204).

In row RS, the input character 1s 1e (FIG. 12: 1206). Now
the bit pattern 1s 1dle (FIG. 12: 1208), which 1s a merging of
what remains (1d) of the previous bit pattern for searching
(41d) after a code 1s outputted (4). Note that since what
remains comes from the iput character 1d, the subscript “d”
1s again used for ease of understanding. Since 11 1s already 1n
the dictionary (stored atrow R2), the dictionary 1s not updated
and nothing 1s outputted. However, the content of CAM

address location 11 (which 1s 4 as shown 1n row R2) 1s noted
for use with the next input character (FI1G. 12: 1210/1222).

In row R6, the input character 1s 11 (FIG. 12: 1206). Now
the bitpatterni1s 411 (FI1G. 12: 1208), which 1s amerging of the
content of CAM address location 11 (which 1s 4 as shown 1n
row R2), and the new mput character 11. Since 41 1s already 1n
the dictionary (stored at row R4), the dictionary 1s not updated
and nothing 1s outputted. However, the content of CAM
address location 41 (which 1s 5 as shown 1n row R4) 1s noted
for use with the next input character (FI1G. 12: 1210/1222).

In row R7, the mnput character 1s 1g (FI1G. 12: 1206). Now
the bit pattern 1s 5S1g (FI1G. 12: 1208), which 1s a merging of
the content of CAM address location 41 (which 1s 5 as shown
in row R4), and the new input character 1g. Since 51 1s not 1n

the dictionary, the counter value i1s increased to 6 and 1s
written to the CAM at CAM address 51 (FI1G. 12: 1210/1212/

1214/1216). The output code 1s 5 (FIG. 12: 1218/1220/1204).

In row R8, the input character 1s 1h (FI1G. 12: 1206). Now
the bit pattern 1s 1glh (FIG. 12: 1208), which 1s a merging of
what remains (1g) of the previous bit pattern for searching (51
g) after a code 1s outputted (5). Since 11 1s already 1n the
dictionary (stored at row R2), the dictionary 1s not updated
and nothing 1s outputted. However, the content of CAM

address location 11 (which 1s 4 as shown 1n row R2) 1s noted
for use with the next input character (FI1G. 12: 1210/1222).

In row R9, the mput character 1s 11 (FIG. 12: 1206). Now
the bitpattern1s 411 (FIG. 12: 1208), which 1s a merging of the
content of CAM address location 11 (which 1s 4 as shown 1n
row R2), and the new 1nput character 11. Since 41 1s already in
the dictionary (stored atrow R4), the dictionary 1s not updated
and nothing 1s outputted. However, the content of CAM
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address location 41 (which 1s 5 as shown in row R4) 1s noted
for use with the next input character (FIG. 12: 1210/1222).

In row R10, the input character 1s 17 (FIG. 12: 1206). Now
the bit pattern 1s 511 (FIG. 12: 1208), which 1s amerging of the
content of CAM address location 41 (which 1s 5 as shown 1n
row R4), and the new input character 13. Since 51 1s already in
the dictionary (stored at row R7), the dictionary 1s not updated
and nothing 1s outputted. However, the content of CAM
address location 51 (which 1s 6 as shown 1n row R7) 1s noted
for use with the next input character (FIG. 12: 1210/1222).

In row R11, the input character 1s 1k (F1G. 12: 1206). Now
the bit pattern 1s 61k (FIG. 12: 1208), which 1s a merging of
the content of CAM address location 51 (which 1s 6 as shown
in row R7), and the new nput character 1k. Since 61 1s not 1n
the dictionary, the counter ordinarily would be incremented
and that value (7 in this case) stored into the dictionary.
However, for the purpose of illustrating this embodiment of
the imnvention, the counter value was arbitrarily constrained at
6 as the maximum value. Thus, the counter overtlows (FIG.
12:1212/1224) and returns to 4, as shown inrow 11 (FI1G. 12:
1218/1220/1204).

Also 1n row R11, the value 4 was noted to have been
associated with CAM address location 11 earlier (see row R2)
(FI1G. 12: 1226/1216). In one advantageous embodiment, a
small shadow memory, which 1s employed to store associa-
tive pairings between a CAM content value and its associated
CAM address, 1s searched to determine which CAM address
was used previously to store the value 4 (FI1G. 12: 1228). That
1s, the shadow memory addresses are the counter values, and
the content stored at each address in the shadow memory 1s
the CAM address currently used to store the counter value
that forms the shadow memory address. The use of a shadow
memory advantageously allows the CAM address to be rap-
1dly ascertained for any given counter value. This shadow
memory 1s updated every time there 1s an update to the CAM.
Once this CAM address location 11 1s ascertained, it 1s freed
up inthe CAM (FIG. 12:1230). In other words, CAM address
11 1s now considered free to store another value. In one
embodiment, each CAM address has associated with 1t a
Free/Not Free flag bit, and the flag bit 1s set whenever that
CAM address 1s written to and reset when that CAM address
1s freed. Alternatively or additionally, the content of that
CAM address may be reset to 0 when the CAM address 1s
freed. Once CAM address location 11 1s freed, the value 4 1s
written into location 61 (FI1G. 12: 1216), and the code value 6
1s outputted (FI1G. 12: 1218/1220/1204).

In row R12, the input character 1s 1L (FIG. 12: 1206). The
search bit pattern 1s now 1k1L (FIG. 12: 1208), which 15 a
merging of what remains (1k) of the previous bit pattern for
searching (61k) after a code 1s outputted (6). However, this 1s
a special case. At this point, an explanation of the special case
1s 1n order. A special case exists when the current search bit
pattern 1s the same as the search bit pattern that 1s associated
with the next input character. Using an input builer and a
pipelined input structure in the input stage of the compressor,
for example, 1t 1s possible to determine 1n advance the next
input character and the search bit pattern that would be
employed with that next input character. If one refers to the
next row R13, 1t 1s possible to see that the next input character
1s 1m, and the next search bit pattern would be 1L1m. When
the special case 1s encountered, the mvention simply incre-
ment the counter (if such does not cause the counter to over-
flow) and outputs the first part of the search bit pattern. Thus,
the counter 1s incremented to 5 (FIG. 12: 1212/1214) and the
output code 1s 1k (FI1G. 12: 1226/1218/1220/1204).

In row R13, the input character 1s 1m (FIG. 12: 1206). The
search bit pattern 1s now 1L1m (FIG. 12: 1208), which 1s a
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merging of what remains (1L) of the previous bit pattern for
searching (1k1L) after a code 1s outputted (1k). However, this
1s a special case. IT one refers to the nextrow R14, 1t 1s possible
to see that the next mnput character 1s 1n, and the next search
bit pattern would be 1mln. The special case, 1t should be
recalled, exists when the current search bit pattern 1s the same
as the search bit pattern that 1s associated with the next input
character. When the special case 1s encountered, the invention
simply 1ncrement the counter (if such does not cause the
counter to overtlow) and outputs the first part of the search bit
pattern. Thus, the counter i1s incremented to 6 (F1G. 12: 1212/
1214) and the output code 1s 1L (FIG. 12: 1226/1218/1220/
1204).

In row R14, the input character 1s 1n (FIG. 12: 1206). The
search bit pattern 1s now 1mln (FIG. 12: 1208), which 1s a
merging of what remains (1m) of the previous bit pattern for
searching (111m) after a code 1s outputted (1L). However,
this 1s a special case. If one refers to the next row R15, it 1s
possible to see that the next input character 1s 10, and the next
search bit pattern would be 1nlo. The special case, it should
be recalled, exists when the current search bit pattern 1s the
same as the search bit pattern that 1s associated with the next
input character. When the special case 1s encountered, the
invention simply increment the counter (if such does not
cause the counter to overflow) and outputs the first part of the
search bit pattern. However, the increment of the counter
causes 1t to overflow, and 1t 1s reset to 4 (FI1G. 12: 1212/1224),
as shown 1n row R14. The output code 1s 1m (FIG. 12: 1226/
1218/1220/1204).

In row R15, the input character 1s 10 (FI1G. 12: 1206). The
search bit pattern 1s now 1nlo (FIG. 12: 1208), which 1s a
merging of what remains (1n) of the previous bit pattern for
searching (1mln) after a code 1s outputted (1m). However,
this 1s a special case. If one refers to the next row R16, it 1s
possible to see that the next input character 1s 1p, and the next
search bit pattern would be 1olp. The special case, it should
be recalled, exists when the current search bit pattern 1s the
same as the search bit pattern that 1s associated with the next
input character. When the special case 1s encountered, the
invention simply increment the counter (if such does not
cause the counter to overflow) and outputs the first part of the
search bit pattern. Thus, the counter 1s incremented to 5 (FIG.

12: 1212/1214) and the output code 1s 1n (FIG. 12: 1226/
1218/1220/1204).

In row R16, the input character 1s 1p (FI1G.12: 1206). Now
the bit pattern 1s 1olp (FIG. 12: 1208), which 1s a merging of
what remains (10) of the previous bit pattern for searching
(1nlo) after a code 1s outputted (1n). This 1s not a special case
since the ext mput character in row R17 1s 0q, and the next
search bit pattern 1s 1p0q, which 1s different from the current
search bit pattern 1olp. Since CAM address 11 1s not used 1n
the dictionary (1t was freed up earlier in row R11), the counter
value incremented (FI1G. 12: 1212/1214) and 1s written to the
CAM at CAM address 11. The output code 1s 1o (FIG. 12:
1226/1218/1220/1204).

In row R17, the input character 1s 0q (FI1G. 12: 1206). Now
the bit pattern 1s 1p0q (FIG. 12: 1208), which 1s a merging of
what remains (1p) of the previous bit pattern for searching
(1olp) after a code 1s outputted (10). Since 10 1s not 1n the
dictionary, the counter ordinarily would be incremented and
that value (7 1n this case) stored into the dictionary. However,
tor the purpose of illustrating this embodiment of the mven-
tion, the counter value 1s arbitrarily constrained at 6. Thus, the
counter overflows and returns to 4 (FIG. 12: 1212/1224), as
shown in row R17.

Also 1n row R17, the value 4 was noted to have been
associated with CAM address location 61 earlier (see row
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R11) (FIG. 12: 1216). Once this CAM address location 61 1s
ascertained (FIG. 12: 1228), it 1s freed up 1n the CAM (FIG.
12:1230). In other words, CAM address 61 1s now considered
free to store another value. Once CAM address location 61 1s
freed, the value 4 1s written 1nto location 10 (FI1G. 12: 1216),
and the code value 1p 1s outputted (FIG. 12: 1218/1220/
1204).

In row R18, the mput character 1s 1r (FIG. 12: 1206). Now
the bit pattern 1s 0qlr (FI1G. 12: 1208), which 1s a merging of
what remains (0q) of the previous bit pattern for searching
(1p0q) after a code 1s outputted (1p). Since 10 1s not 1n the
dictionary (FIG. 12: 1216), the counter value 1s increased to 5
(FIG. 12: 1212/1214) and 1s written to the CAM at CAM
address 01 (FIG. 12: 1216). The output code 1s 0q (FIG. 12:
1218/1220/1204).

In row R19, the input character 1s 1s (FIG. 12: 1206). Now
the bit pattern 1s 1rls (FIG. 12: 1208), which 1s a merging of
what remains (1r) of the previous bit pattern for searching
(0g1r) after a code 1s outputted (0q). Since 11 15 already 1n the
dictionary (stored at row R16), the dictionary 1s not updated
and nothing 1s outputted. However, the content of CAM

address location 11 (which 1s 6 as shown inrow R16) 1s noted
for use with the next input character (FIG. 12: 1210/1222).

In row R20, the input character 1s 1t (FI1G. 12: 1206). Now
the bitpattern1s 61t (FI1G. 12: 1208), which 1s amerging of the
content of CAM address location 11 (which 1s 6 as shown 1n
row R16), and the new input character 1t. Since CAM address
61 1s not used 1n the dictionary (it was freed up in row R17),
the counter value 1s increased to 6 (FIG. 12: 1210/1212/
1214). In row R20, the value 6 was noted to have been asso-
ciated with CAM address location 11 earlier (see row R16)
(F1G.12:1216). Once this CAM address location 11 1s ascer-
tamned (FIG. 12: 1228), 1t 15 freed up 1n the CAM (FIG. 12:
1230). In other words, CAM address 11 1s now considered
free to store another value. Once the CAM address 11 1s freed.,
the counter value 1s written to the CAM at CAM address 61
(F1G. 12: 1216). The output code 1s 6 (FIG. 12: 1218/1220/
1204).

In row R21, the input character 1s 1u (FI1G. 12: 1206). Now
the bit pattern 1s 1t1u (FIG. 12: 1208), which 1s a merging of
what remains (1t) of the previous bit pattern for searching
(61t) after a code 1s outputted (6). However, this 1s a special
case. I one refers to the next row R22, 1t 1s possible to see that
the next input character 1s 1v, and the next search bit pattern
would be 1ulv. The special case, 1t should be recalled, exists
when the current search bit pattern 1s the same as the search
bit pattern that 1s associated with the next input character.
When the special case 1s encountered, the mvention simply
increments the counter (if such does not cause the counter to
overflow) and outputs the first part of the search bit pattern.

However, the increment of the counter causes it to overflow,
and itisresetto 4 (F1G.12:1212/1224), as shown inrow R21.

The output code 1s 1t (FI1G. 12: 1226/1218/1220/1204).

In row R22, the input character 1s 1v (FI1G. 12: 1206). Now
the bit pattern 1s 1ulv (FIG. 12: 1208), which 1s a merging of
what remains (1u) of the previous bit pattern for searching
(1t1u) after a code 1s outputted (1t). Since 11 1s not 1n the
dictionary (the CAM address location 11 was freed in row
R20), the counter value 1s increased to 5 (F1G. 12: 1212/1214)
and 1s written to the CAM at CAM address 11 (FIG. 12:
1216). The output code 1s 1u (FIG. 12: 1218/1220/1204).

In row R23, the special end of file character EOF (FI1G. 12:
1206-1207) 1s encountered, and the compressor outputs the
remaining character (FIG. 12: 1240), which 1v (what remains
of the previous search bit pattern 1ulv after the code 1u 1s
outputted). The compression process ends at block 1242 of

FIG. 12.
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Note that the CAM only stores the counter value as its
content, which allows each row 1n the CAM table to be
relatively small. This 1s advantageous 1n helping to reduce the
overall CAM size. The size of the CAM 1s further reduced by
allowing the CAM address to be reused. Although a greater
number of operations 1s required to search for CAM
addresses 1n the shadow memory, to update the shadow
memory, and to reuse the CAM addresses, it 1s noted that the
speed of logic circuitry nowadays typically outpaces the
speed of memory devices. Thus, 1t 1s believed that the greater
number of logic operations does not materially reduce the
speed of the compression engine since the factors that limait
compression engine speed tends to be memory-related 1n the
first place.

Table 4 shows a HSO decompression example for the bit
pattern outputted by the compressor discussed 1n connection
with Table 3. In one preferred embodiment, the mmvention
employs Random Access Memory mnstead of CAM to store
the dictionary. It should be noted, however, that although the
use of RAM simplifies the implementation of the decompres-
sor, 1t will be apparent to those skilled 1n the art that any
memory technology may be employed for the dictionary of
the decompressor.

The counter 1s employed as the address value for storing
and accessing the bit patterns used to decompress the com-
pressed data. Since the counter value, with 1ts relatively small
value range, 1s employed for addressing memory locations,
the amount of memory required 1s advantageously quite
small. Thus, 1t 1s possible to implement the dictionary without
resorting to a CAM. However, it should be recognized that the
decompressor of the present mvention 1s not limited to the
decompression technique disclosed herein (i.e., a standard
LZW algorithm may be employed instead).

TABLE 4

Example of invention’s HSO decompression.
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italicized numbers 1n the New Code column for these rows) to
generate decompressed output values.

The column New Code contains the values for the exter-
nally input characters (referred herein as External New Code)
for the decompression cycles, as well as the values for the
internally generated input values (referred herein as Internal
New Code) for the decompression cycles. To clarity, External
New Codes represent the compressed data received by the
decompressor from an external source. The Internal New
Codes represent the iterim values generated by the decom-
pressor itsell to facilitate decompression and the generation
of the decompressed output values. Both the External New
Code and Internal New Code values are 3 bits in the example
herein.

The columns Old Code and Zero are columns containing,
intermediate values generated for the decompression cycles.
The column Char Out contains the values outputted from the
decompressor, which are further processed 1nto the decom-
pressed output values, as shown 1n column Decomp Value.
Old Code and Zero values are all 3 bits long 1n the present

example, whereas the Char Out values are 2 bits long.

The dictionary comprises two columns: 1) the Counter
column, which represents the address into the RAM, and 2)
the Content column, which represents what 1s stored into the
dictionary. The Counter value 1s generated by a counter cir-
cuit or soitware 1s 3 bits long. As will be seen later during the
explanation of the decompression steps, the value of each
entry 1n the Content column comprises the values from both
the Old Code and Char Out columns for the current decom-
pression cycle. Accordingly, each Content value 1s 5 bits long.

Since the Char Out value 1s 2 bits, the maximum value of
Char Out 1s 11(binary) or 3 (decimal). The counter value 1s

Content

New Old Zero Decomp Counter/ (Old Code +
Row Code Code Column CharOut Output Address Char Out)
No. (3 bits) (3 bits) (3 bits) (2 bits) (2 bits) (3 bits) (5 bits)
R1 la 0 0 la la
R2 4 la la la la
R3 ia la 0 la la 4 I1xly
R4 5 4 4 la 1x
R5 4 4 Ix ly ly
R6 Ix 4 0 1x la 5 41z
R7 0 D 5 1x 1x
R& J S 4 1z ly
R9 4 D 1x ly 1z
R10  iIx S 0 1x 1x 6 51x
R11 1c 0 0 lc lc 4 olc
R12 1d Ic 0 1d 1d 5 lcld
R13 e Id 0 le le 6 ldle
R14 1f le 0 11 11 4 lelf
R15 g 11 0 lg 1h 5 1flg
R16 1h lg 0 lh lg 6 lglh
R17 0 lh 0 0 0] 4 1hOj
RI® 6 0] lg lh lh
R19 g 0 0 lg lg 5 Ojlg
R20 1k 6 0 1k 1k 6 61k
R21 1m 1k 0 1m lm 4 1klm
R22 1n lm 0 In In 5 Imln
R23 EOF

In the example of Table 4, the input pattern 1s as shown 1n
the column New Code 1in rows R1, R2, R4, R7, R11-R18,

Group

preferably set to be larger than the maximum value of Char
Out. In the example of Table 4, the counter value has a range

R20-R22, withrow R23 having the special input EOF, which g5 o1 4-6 to match the conditions imposed during compression,

marks the end of the mput file. Rows 3, 5-6, 8-10, and 19
operate on internally generated input values (shown by the

with 4 being the MinCounter value and 6 being the Max-
Counter value. In general, the counter value range 1s known to
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both the compressor and the decompressor. Initially, the
Counter 1s set to be MinCounter-1, or 3.

The example of Table 4 will be more easily understood
with reference to FIG. 13. In row R1, the mitial compressed
value 1a 1s recerved. Again, the subscrlpt “a” and other sub-
scripts are added to help the reader follow the explanation.
They do not exist in implementation. For this 1nitial value,
similar to the start of the standard LZW decompression tech-
nique, a value 1s outputted (Char Out=New Code or 1a). It
should be noted that since Char Out 1s 2 bits and New Code 1s
3 bits, 1t 1s necessary to remove the MSB of New Code to form
Char Out. For this first cycle, both the Old Code column and

the Zero column are set to 0. These steps are shown 1n blocks
1302, 1304 and 1306 1n FIG. 13.

In row R2, it 1s ascertained whether the previous row (1.e.,
cycle) has a value 0 1n the Zero column (block 1308). If the
Zero column of the previous row (row R1) has the value 0, the
Old Code column 1s set to be equal to the previous External
New Code value (block 1310), which 1s 1a 1n this case. The
New Code value for the current row 1s recerved, as shown by
the value 4 1n row R2 of Table 4 (block 1312). It 1s then
ascertained (block 1314) whether the New Code for the cur-
rent cycle (which 1s an External New Code 1n this case) 1s less
than the MinCounter value (which 1s 4 1n the present
example). Since the External New Code 1s 4, the method
proceeds to block 1316 to ascertain whether the New Code 1s
in the dictionary. In one embodiment, the determination of
whether a code 1s already 1n the dictionary 1s as follows. If the
counter value 1s less than New Code and there 1s no overtlow
of the counter, then 1t 1s assumed that the New Code 1s not in
the dictionary. On the other hand, 1f the counter value 1s
greater than or equal to New Code or there 1s an overflow, then
the New Code 1s assumed to be 1n the dictionary.

Recall that the dictionary 1s dynamically built for adaptive
decompression. In this case, the address location 4 has not
been used, and the method proceeds to block 1318 to set the
value 1n the Zero Column to be equal to the Old Code value
(or 1a). The Char Out value 1s set (block 1320) to be equal to
the Char Out value of the previous cycle (row R1) or the value
1a. The method then returns to block 1308 as shown 1n FIG.
13.

With reference to row R3, it 1s ascertained (block 1308)
whether the previous row (1.e., cycle) has a value 0 1n the Zero
column. Since the Zero column of the previous row (row R2)
has the value 1a, the method proceeds to block 1322 to obtain
an Internal New Code, which 1s equal to the Zero column
value of the previous cycle (row R2). That value 1s 1a as
shown in Table 4. Next, the Old Code value 1s set (block 1324)
to be equal to the value of the Old Code value in the previous
cycle (row R2). That value 1s 1a as shown in Table 4. Next, the
method proceeds to block 1314 to ascertain whether the New
Code for the current cycle (which 1s an Internal New Code 1n
this case) 1s less than the MinCounter value (which 1s 4 1n the
present example). Since the Internal New Code 1s 1, the
method proceeds to block 1326 to put the value 0 into the Zero
column. The Char Out value 1s then set (block 1328) to be
equal to Internal New Code (which 1s 1a 1n this case). It
should be noted that since Char Out 1s 2 bits and New Code 1s
3 bits, 1t 1s necessary to remove the MSB of New Code to form
Char Out. The method then proceeds to step 1330 to incre-
ment the counter from its current value, going from 3 to 4. In
step 1332, 1t 1s ascertained whether the counter has over-
flowed by the increment step of block 1330. If an overflow
occurs, the counter 1s reset in block 1334. Since the current
counter value 4 1s not greater than MaxCounter (or 6 1n this
example), the method proceeds to block 1336 to store the
Content value (Old Code+Char Out) into the address location
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specified by Counter. Thus, the value 11 1s stored into address
location 4 for row R3. For ease of explanation, these have
been marked with subscript 1x1y 1n Table 4 (with the sub-
script having no meaning in actual implementation as they are
merely an explanation aide). The method then returns to block
1308 as shown in FIG. 13.

In row R4, it 1s ascertained whether the previous row (1.e.,
cycle) has a value 0 1n the Zero column (block 1308). Smce
the Zero column of the previous row (row R3) has the value 0,
the Old Code column 1s set to be equal to the previous Exter-
nal New Code value (block 1310), which 1s 4 1n this case. The
New Code value for the current row 1s received, as shown by
the value 5 1n row R4 of Table 4 (block 1312). It 1s then
ascertained (block 1314) whether the New Code for the cur-
rent cycle (which 1s an External New Code 1n this case) 1s less
than the MinCounter value (which 1s 4 1n the present
example). Since the External New Code 1s 5, the method
proceeds to block 1316 to ascertain whether this New Code 1s
in the dictionary. In this case, the address location 5 has not
been used, and the method proceeds to block 1318 to set the
value 1 the Zero Column to be equal to the Old Code value
(or 4). The Char Out value 1s set (block 1320) to be equal to
the Char Out value of the previous cycle (row R3) or the value
1a. The method then returns to block 1308 as shown 1n FIG.
13.

With reference to row RS, it 1s ascertained (block 1308)
whether the previous row (1.e., cycle) has a value 0 1n the Zero
column. Since the Zero column of the previous row (row R4)
has the value 4, the method proceeds to block 1322 to obtain
an Internal New Code, which 1s equal to the Zero column
value of the previous cycle (row R4). That value 1s 4 as shown
in Table 4. Next, the Old Code value 1s set (block 1324) to be
equal to the value of the Old Code value 1n the previous cycle
(row R4). That value 1s 4 as shown 1n Table 4. Next, the
method proceeds to block 1314 to ascertain whether the New
Code for the current cycle (which 1s an Internal New Code 1n
this case) 1s less than the MinCounter value (which 1s 4 1n the
present example). Since the Internal New Code 1s 4, the
method proceeds to block 1316 to ascertain whether the Inter-
nal New Code 1s 1n the dictionary, 1.e., whether the address
location 4 (which 1s the value of the Internal New Code) has
been used. Since address location 4 was employed to store the
value 1x1y in row R3, the method proceed to block 1340 to
find the content of the dictionary entry whose address 1s New
Node value (or 4 1n this cycle). The first 3 bits of the Content
value (previously the Old Code portion of row R3) 1s parsed
and assigned to the Zero column of row R5 (block 1342). The
last 2 bits of the Content value (previously the Char Out
portion of row R3) 1s parsed and assigned to the Char Out
column of row RS (block 1344). Thus, the value 1x 1s
assigned to the Zero column. The Char Out column 1is
assigned value 1y. The method then returns to block 1308 as
shown 1 FIG. 13.

With reference to row R6, it 1s ascertained (block 1308)
whether the previous row (1.e., cycle) has a value 0 1n the Zero
column. Since the Zero column of the previous row (row R5)
has the value 1x, the method proceeds to block 1322 to obtain
an Internal New Code, which 1s equal to the Zero column
value of the previous cycle (row RS). That value 1s 1x as
shown 1n Table 4. Next, the Old Code value 1s set (block 1324)
to be equal to the value of the Old Code value in the previous
cycle (row RS). That value 1s 4 as shown 1n Table 4. Next, the
method proceeds to block 1314 to ascertain whether the New
Code for the current cycle (which 1s an Internal New Code 1n
this case) 1s less than the MinCounter value (which 1s 4 1n the
present example). Since the Internal New Code 1s 1, which 1s
a primary case (1.¢., the value of the Internal New Code 1s less
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than the minimum code value, or 4 1n this example since the
codes are either 4, 5, or 6 as discussed earlier), the method

proceeds to block 1326 to put the value 0 into the Zero
column. The Char Out value 1s then set (block 1328) to be
equal to New Code (which 1s 1x 1n this case). It should be

noted that since Char Out 1s 2 bits and New Code 1s 3 bats, 1t

1s necessary to remove the MSB of New Code to form Char
Out. The method then proceeds to block 1330 to increment
the counter from 1ts current value, going from 4 to 5. In block
1332, 1t 1s ascertained whether the counter has overtlowed by
the increment step of block 1330. If an overtlow occurs, the
counter 1s reset in block 1334. Since the current counter value
5 1s not greater than MaxCounter (or 6 in this example), the
method proceeds to block 1336 to store the Content value
(Old Code+Char Out) 1nto the address location specified by
Counter. Thus, the value 41 i1s stored into address location 5
for row R6. For ease of explanation, these have been marked
with subscript 41z in Table 4 (with the subscript having no
meaning 1n actual implementation as they are merely an
explanation aide). The method then returns to block 1308 as
shown in FIG. 13.

In row R7, 1t 1s ascertained whether the previous row (1.¢.,
cycle) has a value 0 1n the Zero column (block 1308). Slnce
the Zero column of the previous row (row R6) has the value 0,
the Old Code column 1s set to be equal to the previous Exter-
nal New Code value (block 1310), which 1s 5 in this case. The
New Code value for the current row 1s recerved, as shown by
the value 6 1n row R7 of Table 4 (block 1312). It 1s then
ascertained (block 1314) whether the New Code for the cur-
rent cycle (which 1s an External New Code 1n this case) 1s less
than the MinCounter value (which 1s 4 1n the present
example). This 1s equivalent to checking whether the New
Code for the current cycle 1s a primary value. Since the
External New Code 1s 6, the method proceeds to block 1316
to ascertain whether this New Code 1s in the dictionary. In this
case, the address location 6 has not been used, and the method
proceeds to block 1318 to set the value 1n the Zero Column to
be equal to the Old Code value (or 5). The Char Out value 1s
set (block 1320) to be equal to the Char Out value of the
previous cycle (row R3) or the value 1x. The method then
returns to block 1308 as shown 1n FIG. 13.

With reference to row R8, it 1s ascertained (block 1308)
whether the previous row (1.e., cycle) has a value 0 1n the Zero
column. Since the Zero column of the previous row (row R7)
has the value 5§, the method proceeds to block 1322 to obtain
an Internal New Code, which 1s equal to the Zero column
value of the previous cycle (row R7). That value 1s 5 as shown
in Table 4. Next, the Old Code value 1s set (block 1324) to be
equal to the value of the Old Code value 1n the previous cycle
(row R7). That value 1s 5 as shown 1n Table 4. Next, the
method proceeds to block 1314 to ascertain whether the New
Code for the current cycle (which 1s an Internal New Code 1n
this case) 1s less than the MinCounter value (which 1s 4 in the
present example). Since the Internal New Code 1s 5, the
method proceeds to block 1316 to ascertain whether the Inter-
nal New Code 1s 1n the dictionary, 1.e., whether the address
location 5 (which 1s the value of the Internal New Code) has
been used. Since address location 5 was employed to store the
value 41z 1n row R6, the method proceed to block 1340 to find
the content of the dictionary entry whose address 1s New
Code value (or 5 1n this cycle). The first 3 bits of the Content
value (previously the Old Code portion of row R3) 1s parsed
and assigned to the Zero column of row R8 (block 1342). The
last 2 bits of the Content value (previously the Char Out
portion of row R3) 1s parsed and assigned to the Char Out
column of row R8 (block 1344). Thus, the value 4 1s assigned
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to the Zero column. The Char Out column 1s assigned value
1z. The method then returns to block 1308 as shown 1n FIG.
13.

With reference to row R9, it 1s ascertained (block 1308)
whether the previous row (1.e., cycle) has a value 0 in the Zero
column. Since the Zero column of the previous row (row R4)
has the value 4, the method proceeds to block 1322 to obtain
an Internal New Code, which 1s equal to the Zero column
value of the previous cycle (row R4). That value 1s 4 as shown
in Table 4. Next, the Old Code value 1s set (block 1324) to be
equal to the value of the Old Code value 1n the previous cycle
(row R8). That value 1s 5 as shown 1n Table 4. Next, the
method proceeds to block 1314 to ascertain whether the New
Code for the current cycle (which 1s an Internal New Code 1n
this case) 1s less than the MinCounter value (which 1s 4 in the
present example). Since the Internal New Code 1s 4, the
method proceeds to block 1316 to ascertain whether the Inter-
nal New Code 1s 1n the dictionary, 1.¢., whether the address
location 4 (which 1s the value of the Internal New Code) has
been used. Since address location 4 was employed to store the
value 1x1y 1n row R3, the method proceed to block 1340 to
find the content of the dictionary entry whose address 1s New
Node value (or 4 1n this cycle). The first 3 bits of the Content
value (previously the Old Code portion of row R3) 1s parsed
and assigned to the Zero column of row R9 (block 1342). The
last 2 bits of the Content value (previously the Char Out
portion of row R3) 1s parsed and assigned to the Char Out
column of row R9 (block 1344). Thus, the value 1x 1s
assigned to the Zero column. The Char Out column 1is
assigned value 1y. The method then returns to block 1308 as
shown 1n FIG. 13.

With reference to row RIO, 1t 1s ascertained (block 1308)
whether the previous row (1.e., cycle) has a value 0 in the Zero
column. Since the Zero column of the previous row (row R5)
has the value 1x, the method proceeds to block 1322 to obtain
an Internal New Code, which 1s equal to the Zero column
value of the previous cycle (row R9). That value 1s 1x as
shown 1n Table 4. Next, the Old Code value 1s set (block 1324)
to be equal to the value of the Old Code value in the previous
cycle (row R9). That value 1s 5 as shown 1n Table 4. Next, the
method proceeds to block 1314 to ascertain whether the New
Code for the current cycle (which 1s an Internal New Code 1n
this case) 1s less than the MinCounter value (which 1s 4 in the
present example). Since the Internal New Code 1s 1x, the
method proceeds to block 1326 to put the value 0 1nto the Zero
column. The Char Out value 1s then set (block 1328) to be
equal to New Code (which 1s 1x 1n this case). It should be
noted that since Char Out 1s 2 bits and New Code 1s 3 bats, it
1s necessary to remove the MSB of New Code to form Char
Out. The method then proceeds to block 1330 to increment
the counter from 1ts current value, going from 3 to 6. In block
1332, 1t 1s ascertained whether the counter has overtlowed by
the increment step of block 1330. If an overtlow occurs, the
counter 1s reset in block 1334. Since the current counter value
6 1s not greater than MaxCounter (or 6 in this example), the
method proceeds to block 1336 to store the Content value
(Old Code+Char Out) 1nto the address location specified by
Counter. Thus, the value 51 1s stored into address location 6
for row RIO. The method then returns to block 1308 as shown
in FIG. 13.

Inrow R11, 1t 1s ascertained whether the previous row (1.e.,
cycle) has a value 0 1n the Zero column (block 1308). Since
the Zero column of the previous row (row R10) has the value
0, the Old Code column 1s set to be equal to the previous
External New Code value (block 1310), which 1s 6 1n this
case. The New Code value for the current row 1s received, as

shown by the value 1¢ in row R11 of Table 4 (block 1312). It
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1s then ascertained (block 1314) whether the New Code for
the current cycle (which 1s an External New Code 1n this case)
1s less than the MinCounter value (which 1s 4 1n the present
example). Since the External New Code 1s 1c¢, the method
proceeds to block 1326 to put the value 0 into the Zero
column. The Char Out value 1s then set (block 1328) to be
equal to New Code (which 1s 1c 1n this case). It should be
noted that since Char Out 1s 2 bits and New Code 1s 3 bats, 1t
1s necessary to remove the MSB of New Code to form Char
Out. The method then proceeds to block 1330 to increment
the counter from 1ts current value, going from 6 to 7. In block
1332, 1t 1s ascertained whether the counter has overtlowed by
the increment step of block 1330. If an overflow occurs, the
counter 1s reset in block 1334. Since the current counter value
7 1s greater than MaxCounter (or 6 1n this example), the
method resets the counter to MimnCounter (or 4 in this
example). The method then proceeds to block 1336 to store
the Content value (Old Code+Char Out) into the address
location specified by Counter. Thus, the value 61 1s stored into
address location 4 for row RIO. Note that in this case, the
counter has overtlowed and the method simply overwrites the
address location 4 (previously used to store the Content value
1x1y 1mn row R3). As will be seen later in this example, this
overwriting of the old dictionary entry, while allowing the use
of a much smaller RAM to implement the dictionary, still
gives the correct decompression result. The method then
returns to block 1308 as shown 1n FIG. 13.

Inrow R12, 1t 1s ascertained whether the previous row (1.¢.,
cycle) has a value 0 1n the Zero column (block 1308). Since
the Zero column of the previous row (row R11) has the value
0, the Old Code column 1s set to be equal to the previous
External New Code value (block 1310), which 1s 1c in this
case. The New Code value for the current row 1s received, as
shown by the value 1d inrow R12 of Table 4 (block 1312). It
1s then ascertained (block 1314) whether the New Code for
the current cycle (which 1s an External New Code 1n this case)
1s less than the MinCounter value (which 1s 4 1n the present
example). Since the External New Code 1s 1d, the method
proceeds to block 1326 to put the value 0 into the Zero
column. The Char Out value 1s then set (block 1328) to be
equal to New Code (which 1s 1d in this case). It should be
noted that since Char Out 1s 2 bits and New Code 1s 3 bats, 1t
1s necessary to remove the MSB of New Code to form Char
Out. The method then proceeds to block 1330 to increment
the counter from 1ts current value, going from 4 to 5. In block
1332, 1t 1s ascertained whether the counter has overtlowed by
the increment step of block 1330. If an overtlow occurs, the
counter 1s reset 1in block 1334. Since the current counter value
5 1s not greater than MaxCounter (or 6 in this example), the
method proceeds to block 1336 to store the Content value
(Old Code+Char Out) into the address location specified by
Counter. Thus, the value 1c1d 1s stored into address location
5 forrow R12. Again, note that in this case, the method simply
overwrites the address location 5 (previously used to store the
Content value 41z in row R6). As will be seen later 1in this
example, this overwriting of the old dictionary entry, while
allowing the use of a much smaller RAM to implement the
dictionary, still gives the correct decompression result. The
method then returns to block 1308 as shown 1n FIG. 13.

Inrow R13, it 1s ascertained whether the previous row (1.¢.,
cycle) has a value 0 1n the Zero column (block 1308). Since
the Zero column of the previous row (row R12) has the value
0, the Old Code column 1s set to be equal to the previous
External New Code value (block 1310), which 1s 1d in this
case. The New Code value for the current row 1s received, as
shown by the value 1e in row R13 of Table 4 (block 1312). It
1s then ascertained (block 1314) whether the New Code for
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the current cycle (which 1s an External New Code 1n this case)
1s less than the MinCounter value (which 1s 4 1n the present
example). Again, this 1s equivalent to checking whether the
New Code 1s a primary case. Since the External New Code 1s
1¢, the method proceeds to block 1326 to put the value 0 1nto
the Zero column. The Char Out value 1s then set (block 1328)
to be equal to New Code (which 1s 1e 1n this case). It should
be noted that since Char Out 1s 2 bits and New Code 1s 3 bits,
it 15 necessary to remove the MSB of New Code to form Char
Out. The method then proceeds to block 1330 to increment
the counter from 1ts current value, going from 3 to 6. In block
1332, 1t 1s ascertained whether the counter has overtlowed by
the increment step of block 1330. If an overflow occurs, the
counter 1s reset in block 1334. Since the current counter value
6 1s not greater than MaxCounter (or 6 in this example), the
method proceeds to block 1336 to store the Content value
(Old Code+Char Out) into the address location specified by
Counter. Thus, the value Idle 1s stored into address location 6
for row R13. Again, note that in this case, the method simply
overwrites the address location 6 (previously used to store the
Content value 51 1n row R10). As will be seen later 1n this
example, this overwriting of the old dictionary entry, while
allowing the use of a much smaller RAM to implement the
dictionary, still gives the correct decompression result. The
method then returns to block 1308 as shown 1n FIG. 13.

Inrow R14, 1t 1s ascertained whether the previous row (1.e.,
cycle) has a value 0 1n the Zero column (block 1308). Since
the Zero column of the previous row (row R13) has the value
0, the Old Code column 1s set to be equal to the previous
External New Code value (block 1310), which 1s 1¢ 1n this
case. The New Code value for the current row 1s received, as
shown by the value If 1n row R14 of Table 4 (block 1312). It
1s then ascertained (block 1314) whether the New Code for
the current cycle (which 1s an External New Code 1n this case)
1s less than the MinCounter value (which 1s 4 1n the present
example). Since the External New Code 1s If, the method
proceeds to block 1326 to put the value 0 into the Zero
column. The Char Out value 1s then set (block 1328) to be
equal to New Code (which 1s If 1n this case). It should be noted
that since Char Out 1s 2 bits and New Code 1s 3 bats, 1t 1s
necessary to remove the MSB of New Code to form Char Out.
The method then proceeds to block 1330 to increment the
counter from 1its current value, going from 6 to 7. In block
1332, 1t 1s ascertained whether the counter has overtlowed by
the increment step of block 1330. If an overtlow occurs, the
counter 1s reset in block 1334. In this example, the value 7 1s
reserved for the EOF flag and thus the maximum value of the
code 1s 6 although the theoretical maximum value of the code
would have been 7 (due to 1ts 3-bit length). Using the maxi-
mum theoretical value to represent the EOF flag 1s one con-
venient way of handling EOF flagging. Since the current
counter value 7 1s greater than MaxCounter (or 6 1n this
example), the method resets the counter to MinCounter (or 4
in this example). The method then proceeds to block 1336 to
store the Content value (Old Code+Char Out) into the address
location specified by Counter. Thus, the value 1el1 1s stored
into address location 4 for row R14. Note that in this case, the
counter has overflowed and the method simply overwrites the
address location 4 (previously used to store the Content value
61 1n row R11). As will be seen later 1in this example, this
overwriting of the old dictionary entry, while allowing the use
of a much smaller RAM to implement the dictionary, still
gives the correct decompression result. The method then
returns to block 1308 as shown 1n FIG. 13.

Inrow R15, 1t 1s ascertained whether the previous row (1.e.,
cycle) has a value 0 1n the Zero column (block 1308). Since
the Zero column of the previous row (row R14) has the value
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0, the Old Code column 1s set to be equal to the previous
External New Code value (block 1310), which 1s 11 in this
case. The New Code value for the current row 1s received, as
shown by the value 1g in row R15 of Table 4 (block 1312). It
1s then ascertained (block 1314) whether the New Code for
the current cycle (which 1s an External New Code 1n this case)
1s less than the MinCounter value (which 1s 4 1n the present
example). Since the External New Code 1s 1g, the method
proceeds to block 1326 to put the value 0 into the Zero
column. The Char Out value 1s then set (block 1328) to be
equal to New Code (which 1s 1g in this case). It should be
noted that since Char Out 1s 2 bits and New Code 1s 3 bats, 1t
1s necessary to remove the MSB of New Code to form Char
Out. The method then proceeds to block 1330 to increment
the counter from its current value, going from 4 to 5. In block
1332, 1t 15 ascertained whether the counter has overtflowed by
the increment step of block 1330. If an overtlow occurs, the
counter 1s reset 1n block 1334. Since the current counter value
5 1s not greater than MaxCounter (or 6 in this example), the
method proceeds to block 1336 to store the Content value
(Old Code+Char Out) into the address location specified by
Counter. Thus, the value 111g 1s stored into address location 3
for row R15. Again, note that in this case, the method simply
overwrites the address location 5 (previously used to store the
Content value 1c1d in row R12). As will be seen later 1n this
example, this overwriting of the old dictionary entry, while
allowing the use of a much smaller RAM to implement the
dictionary, still gives the correct decompression result. The
method then returns to block 1308 as shown 1n FIG. 13.
Inrow R16, 1t 15 ascertained whether the previous row (1.¢.,
cycle) has a value 0 1n the Zero column (block 1308). Since
the Zero column of the previous row (row R15) has the value
0, the Old Code column 1s set to be equal to the previous
External New Code value (block 1310), which 1s 1g in this
case. The New Code value for the current row 1s received, as
shown by the value 1h inrow R13 of Table 4 (block 1312). It
1s then ascertained (block 1314) whether the New Code for
the current cycle (which 1s an External New Code 1n this case)
1s less than the MinCounter value (which 1s 4 1n the present
example). Since the External New Code 1s 1h, the method
proceeds to block 1326 to put the value 0 into the Zero
column. The Char Out value 1s then set (block 1328) to be
equal to New Code (which 1s 1h 1n this case). It should be
noted that since Char Out 1s 2 bits and New Code 1s 3 bats, 1t
1s necessary to remove the MSB of New Code to form Char
Out. The method then proceeds to block 1330 to increment
the counter from 1ts current value, going from 5 to 6. In block
1332, 1t 1s ascertained whether the counter has overtlowed by
the increment step of block 1330. If an overtlow occurs, the
counter 1s reset in block 1334. Since the current counter value
6 1s not greater than MaxCounter (or 6 1n this example), the
method proceeds to block 1336 to store the Content value
(Old Code+Char Out) into the address location specified by
Counter. Thus, the value 1glh 1s stored into address location
6 forrow R16. Again, note that 1n this case, the method simply
overwrites the address location 6 (previously used to store the
Content value Idle 1n row R13). As will be seen later in this
example, this overwriting of the old dictionary entry, while
allowing the use of a much smaller RAM to implement the
dictionary, still gives the correct decompression result. The
method then returns to block 1308 as shown 1n FIG. 13.
Inrow R17, 1t 1s ascertained whether the previous row (1.¢.,
cycle) has a value 0 1n the Zero column (block 1308). Since
the Zero column of the previous row (row R16) has the value
0, the Old Code column 1s set to be equal to the previous
External New Code value (block 1310), which 1s 1h in this

case. The New Code value for the current row 1s received, as
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shown by the value 07 1n row R17 of Table 4 (block 1312). It
1s then ascertained (block 1314) whether the New Code for
the current cycle (which 1s an External New Code 1n this case)
1s less than the MinCounter value (which 1s 4 1n the present
example). This 1s the same 1s checking whether the current

New Code 1s a primary case. Since the External New Code 1s
07, the method proceeds to block 1326 to put the value 0 1nto
the Zero column. The Char Out value 1s then set (block 1328)
to be equal to New Code (which 1s 07 1n this case). It should be
noted that since Char Out 1s 2 bits and New Code 1s 3 bats, 1t
1s necessary to remove the MSB of New Code to form Char
Out. The method then proceeds to block 1330 to increment
the counter from its current value, going from 6 to 7. In block
1332, 1t 1s ascertained whether the counter has overtlowed by
the increment step of block 1330. If an overflow occurs, the
counter 1s reset in block 1334. Since the current counter value
7 1s greater than MaxCounter (or 6 1n this example), the
method resets the counter to MinCounter (or 4 in this
example). The method then proceeds to block 1336 to store
the Content value (Old Code+Char Out) into the address
location specified by Counter. Thus, the value 1h0j 1s stored
into address location 4 for row R14. Note that in this case, the
counter has overtlowed and the method simply overwrites the
address location 4 (previously used to store the Content value
1elf 1in row R14). As will be seen later in this example, this
overwriting of the old dictionary entry, while allowing the use
of a much smaller RAM to implement the dictionary, still
gives the correct decompression result. The method then
returns to block 1308 as shown 1n FIG. 13.

Inrow R18, 1t 1s ascertained whether the previous row (1.e.,
cycle) has a value 0 1n the Zero column (block 1308). Since
the Zero column of the previous row (row R17) has the value
0, the Old Code column 1s set to be equal to the previous
External New Code value (block 1310), which 1s 07 1n this
case. The New Code value for the current row 1s received, as
shown by the value 6 inrow R18 of Table 4 (block1312). It1s
then ascertained (block 1314) whether the New Code for the
current cycle (which 1s an External New Code 1n this case) 1s
less than the MinCounter value (which 1s 4 1n the present
example). Since the External New Code 1s 6, the method
proceeds to block 1316 to ascertain whether the Internal New
Code 1s 1n the dictionary, 1.e., whether the address location 6
(which 1s the value of the Internal New Code) has been used.
Since address location 6 was employed to store the value
1glhinrow R16, the method proceed to block 1340 to find the
content of the dictionary entry whose address 1s New Node
value (or 6 in this cycle). The first 3 bits of the Content value
(previously the Old Code portion of row R16) 1s parsed and
assigned to the Zero column of row R18 (block 1342). The
last 2 bits of the Content value (previously the Char Out
portion of row R16) 1s parsed and assigned to the Char Out
column of row R18 (block 1344). Thus, the value 1g 1is
assigned to the Zero column. The Char Out column 1is
assigned value 1h. Note that the method still decompresses
correctly even if the address location 6 had been written over
a few times. Note that the counter 1s not incremented 1n this
cycle because the zero column 1s not zero. The method then
returns to block 1308 as shown 1n FIG. 13.

Inrow R19, 1t 1s ascertained whether the previous row (1.e.,
cycle) has a value 0 1n the Zero column (block 1308). Since
the Zero column of the previous row (row R18) has the value
1g, the method proceeds to block 1322 to obtain an Internal
New Code, which 1s equal to the Zero column value of the
previous cycle (row R18). That value 1s 1g as shown 1n Table
4. Next, the Old Code value 1s set (block 1324) to be equal to
the value of the Old Code value in the previous cycle (row
R18). That value 1s 07 as shown 1n Table 4. Next, the method
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proceeds to block 1314 to ascertain whether the New Code for
the current cycle (which 1s an Internal New Code 1n this case)
1s less than the MinCounter value (which 1s 4 1n the present
example). Since the Internal New Code 1s 1g, the method
proceeds to block 1326 to put the value 0 into the Zero
column. The Char Out value 1s then set (block 1328) to be
equal to New Code (which 1s 1g in this case). It should be
noted that since Char Out 1s 2 bits and New Code 1s 3 bats, 1t
1s necessary to remove the MSB of New Code to form Char
Out. The method then proceeds to block 1330 to increment
the counter from 1ts current value, going from 4 to 5. In block
1332, 1t 1s ascertained whether the counter has overtlowed by
the increment step of block 1330. If an overflow occurs, the
counter 1s reset in block 1334. Since the current counter value
5 1s not greater than MaxCounter (or 6 1n this example), the
method proceeds to block 1336 to store the Content value
(Old Code+Char Out) into the address location specified by
Counter. Thus, the value 01 1s stored into address location 5 for
row R19. The method then returns to block 1308 as shown in
FIG. 13.

Inrow R20, 1t 1s ascertained whether the previous row (1.¢.,
cycle) has a value 0 1n the Zero column (block 1308). Since
the Zero column of the previous row (row R19) has the value
0, the Old Code column 1s set to be equal to the previous
External New Code value (block 1310), which 1s 6 in this case
(from row R18). The New Code value for the current row 1s
received, as shown by the value 1k 1 row R20 of Table 4
(block 1312). It 1s then ascertained (block 1314) whether the
New Code for the current cycle (which 1s an External New
Code 1n this case) 1s primary, 1.e., less than the MinCounter
value (which 1s 4 1n the present example). Since the External
New Code 1s 1k, the method proceeds to block 1326 to put the
value 0 into the Zero column. The Char Out value 1s then set
(block 1328) to be equal to New Code (which 1s 1k 1n this
case). It should be noted that since Char Out 1s 2 bits and New
Code 1s 3 bits, 1it1s necessary to remove the MSB of New Code
to form Char Out. The method then proceeds to block 1330 to
increment the counter from 1ts current value, going from 5 to
6. In block 1332, 1t 1s ascertained whether the counter has
overflowed by the increment step of block 1330. I an over-
flow occurs, the counter 1s reset 1in block 1334. Since the
current counter value 6 1s not greater than MaxCounter (or 6
in this example), the method proceeds to block 1336 to store
the Content value (Old Code+Char Out) into the address
location specified by Counter. Thus, the value 61k 1s stored
into address location 6 for row R20. Again, note that in this
case, the method simply overwrites the address location 6
(previously used to store the Content value 1g1h 1n row R16).
As will be seen later 1n this example, this overwriting of the
old dictionary entry, while allowing the use of a much smaller
RAM to implement the dictionary, still gives the correct
decompression result. The method then returns to block 1308
as shown in FIG. 13.

Inrow R21, 1t 1s ascertained whether the previous row (1.e.,
cycle) has a value 0 1n the Zero column (block 1308). Since
the Zero column of the previous row (row R20) has the value
0, the Old Code column 1s set to be equal to the previous
External New Code value (block 1310), which 1s 1k 1n this
case. The New Code value for the current row 1s received, as
shown by the value 1m 1n row R21 of Table 4 (block 1312). It
1s then ascertained (block 1314) whether the New Code for
the current cycle (which 1s an External New Code 1n this case)
1s primary, 1.€., less than the MinCounter value (which i1s 4 1n
the present example). Since the External New Code 1s 1m, the
method proceeds to block 1326 to put the value 0 1nto the Zero
column. The Char Out value 1s then set (block 1328) to be
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noted that since Char Out 1s 2 bits and New Code 1s 3 bats, 1t
1s necessary to remove the MSB of New Code to form Char
Out. The method then proceeds to block 1330 to increment
the counter from its current value, going from 6 to 7. In block
1332, 1t 1s ascertained whether the counter has overtlowed by
the increment step of block 1330. If an overtlow occurs, the
counter 1s reset in block 1334. Since the current counter value
7 1s greater than MaxCounter (or 6 1n this example), the
method resets the counter to MinCounter (or 4 in this
example). The method then proceeds to block 1336 to store
the Content value (Old Code+Char Out) into the address
location specified by Counter. Thus, the value 1k1lm 1s stored
into address location 4 for row R21. Note that in this case, the
counter has overflowed and the method simply overwrites the
address location 4 (previously used to store the Content value
1h07 1n row R17). As will be seen later 1n this example, this
overwriting of the old dictionary entry, while allowing the use
of a much smaller RAM to implement the dictionary, still
gives the correct decompression result. The method then
returns to block 1308 as shown 1n FIG. 13.

Inrow R22, 1t 1s ascertained whether the previous row (1.e.,
cycle) has a value 0 1n the Zero column (block 1308). Since
the Zero column of the previous row (row R14) has the value
0, the Old Code column 1s set to be equal to the previous
External New Code value (block 1310), which 1s 1m 1n this
case. The New Code value for the current row 1s received, as
shown by the value 1n in row R15 of Table 4 (block 1312). It
1s then ascertained (block 1314) whether the New Code for
the current cycle (which 1s an External New Code 1n this case)
1s primary, 1.€., less than the MinCounter value (which 1s 4 1n
the present example). Since the External New Code 1s 1n, the
method proceeds to block 1326 to put the value 0 1nto the Zero
column. The Char Out value 1s then set (block 1328) to be
equal to New Code (which 1s 1n 1n this case). It should be
noted that since Char Out 1s 2 bits and New Code 1s 3 bats, 1t
1s necessary to remove the MSB of New Code to form Char
Out. The method then proceeds to block 1330 to increment
the counter from 1ts current value, going from 4 to 5. In block
1332, 1t 1s ascertained whether the counter has overtlowed by
the increment step of block 1330. If an overflow occurs, the
counter 1s reset in block 1334. Since the current counter value
5 1s not greater than MaxCounter (or 6 1n this example), the
method proceeds to block 1336 to store the Content value
(Old Code+Char Out) 1nto the address location specified by
Counter. Thus, the value 1m1n 1s stored into address location
5 forrow R22. Again, note that 1n this case, the method simply
overwrites the address location 5 (previously used to store the
Content value 01 1n row R19). As will be seen later 1n this
example, this overwriting of the old dictionary entry, while
allowing the use of a much smaller RAM to implement the
dictionary, still gives the correct decompression result. The
method then returns to block 1308 as shown 1n FIG. 13.

In row 23, the FOF end-of-file marker 1s encountered.
Decompression 1s finished except for final processing, as
discussed below.

As mentioned earlier, the values 1n the Char Out column
are further processed in order to obtain the decompressed
output value (Decomp Output). In one embodiment, the value
in the zero column signals that decompression for the current
External New Code value 1s finished. Since decompression
may vield a set of output values for each External New Code
value recerved, each set of output values produced for each
External New Code value received 1s considered a group.
These groups are shown in Table 4 as groups G1-G15 as
shown. Note that groups G2, G3, G4, and G12 have multiple
values 1n each group. As the Char Out values are obtained for
cach group, they are inputted 1into a temporary memory space.
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Once decompression 1s finished for that group, the Char Out
values for that group are outputted 1n the reverse order such
that the Char Out value received first 1s output last, and
vice-versa. With reference to the group G3, for example, the
Char Out values are produced in the order 1a, 1y, and 1x.
Outputting to column Decomp Output 1s accomplished for
this group G3 by reversing the order so that the order now
reads 1x, 1y, and 1a for rows R4, RS, and Ré6 respectively.
Similarly, the group G4 1s reversed to output, the Decomp
Output column, the values 1x, 1y, 1z, and 1x forrows R7, RS,
R9, and R10 respectively. One skilled 1in the art will readily
recognize that reversing the order for each group may be
accomplished using any technique, including using a First-
In-Last-Out queue.

With reference to Tables 3 and 4, when one 1gnores the
subscripts, 1t should be apparent that the Decomp Output
values of Table 4 1s 1dentical to the values in the Input Char-
acter column of Table 3. This 1s proot that the improved HSO
compression technique of the present invention can correctly
compress and decompress data even with a small dictionary.

It should be kept 1n mind that although the input characters
in the example of Tables 3 and 4 are 2 bits each, the inventive
HSO compression technique can compress mput characters
having any si1ze. As can be appreciated from the foregoing, the
inventive HSO technique has many unique features and
advantages. For example, the mnvention allows the use of a
smaller number of output codes for compression, much fewer
than the number of codes that would have been required if one
unique code were allocated for a unique bit pattern that needs
to be represented during compression. As the code overtlows,
it resets to 1ts mimmimum value to allow compression to con-
tinue. This 1s seen during, for example, the compression of
row R11 1n the compression example of Table 3. The reduc-
tion 1n the number of unique output codes required in turn
allows the use of a smaller dictionary during compression,
which advantageously reduces the memory requirement,
which 1s an advantageous situation whether the compression
logic 1s implemented 1n hardware or software.

Another unmique feature 1n the inventive combination that 1s
the present inventive HSO compression technique relates to
the use of a small shadow memory to track the associated
pairings between a CAM content value and its associated
CAM address to allow a previously used CAM address to be
freed up when the counter (code output) overtlows the
imposed maximum value. As discussed earlier, the shadow
memory addresses are the counter values, and the content
stored at each address 1n the shadow memory 1s the CAM
address currently used to store the counter value that forms
the shadow memory address. This shadow memory advanta-
geously allows the CAM address to be rapidly ascertained for
any given counter value. This 1s seen, for example, during the
compression of row R11 1n the compression example of Table
3. The use of the shadow memory advantageously makes the
compression process more elll

icient when a smaller number of
output codes, much fewer than the number of codes that
would have been required 1f one unique code were allocated
for a unique bit pattern that needs to be represented during
compression.

Another umique feature 1n the inventive combination that 1s
the present iventive HSO compression technique relates to
the way the special cases are handled when 1t 1s realized that
the current search bit pattern i1s the same as the search bit
pattern that 1s associated with the next input character during,
compression. This 1s seen during the compression of, for
example, R12, R13, R14, R15, and R21 R11 1n the compres-
sion example of Table 3. When a special case 1s encountered,
the mventive HSO compression technique simply increments

5

10

15

20

25

30

35

40

45

50

55

60

65

38

the counter (1f such does not cause the counter to overflow)
and outputs the first part of the current search bit pattern.
Neither the CAM nor the shadow memory 1s updated, which
saves processing cycles.

To enable the handling of the special cases during com-
pression, the mventive HSO compression technique, in one
embodiment, advantageously employs mput buffer and a
pipelined mput structure 1n order to have multiple mnput char-
acters available for examination and detection of the special
cases. This 1s also another unique feature in combination with
other features of the mventive HSO compression techmique.

Even the CAM 1s structured 1n a unique, memory-saving,
manner that ensures processing etficiency. In one embodi-
ment, the CAM only stores the counter values (output codes),
with the CAM address representing the current bit pattern to
search. To signal whether a given CAM address 1s employed
or iree, one or more tag bits may be provided with each CAM
address location. One tag bit suffices to indicate whether a
grven CAM address 1s used. In one embodiment, multiple tag
bits allow the tag bits to be cycled through when the dictio-
nary 1s reused for compressmg the next burst. For example, at
the end of compression of a partlcular burst, the dictionary 1s
then cleared for compressing the next burst (which may
belong to another process and/or data flow). If a CAM 1s
turmished with, for example two tag bits T1 and T2 for each
CAM address to mark whether the CAM address 1s currently
used, and tag bit T1 was used in the compression of the
previous burst, the CAM can be used immediately for com-
pression of the next burst by utilizing tag bit T2. Of course, 1t
1s possible to provide more than two tag bit fields 11 desired for
higher bandwidth. Alternatively or additionally, multiple
CAM arrays (with one or multiple tag bit fields) can be
provided. The CAMs can be employed 1n a ping-pong fashion
to store the dictionaries associated with consecutive input
sequences. Thus, 1f two CAMs are provided, the first CAM
will be used to store the dictionary associated with the first
input sequence, the second CAM will be used to store the
dictionary associated with the second 1mput sequence (in this
sense, the input sequence refers to a pattern of incoming bits
comprising one or more frames or packets and associated
with a single flow or file and can be compressed together), and
the first CAM will be used again to store the dictionary
associated with next (third) input sequence, and so on (e.g.,
the second CAM used for the dictionary associated with the
next (fourth) mput sequence). When one CAM 1s currently
employed for storing the dictionary, the other CAM can be
reset (e.g., by rewriting the tag field or tag fields) to get that
CAM ready for use with the next input sequence. Thus, the
compression process does not have to be interrupted 1n order
to reseta CAM. One skilled 1n the art will recognize that three
or more CAMSs can be used i1n a round-robin fashion to
achieve the same purpose 1f two CAMs cannot satisiy the
bandwidth requirement.

In one embodiment, the end of burst (EOF) 1s signaled to
the compression logic using a umique bit pattern. This end of
burst signal may be created by, for example, the input inter-
face of the data optimization engine. The input interface 1s
endowed with knowledge regarding the protocol employed to
transmit the data and therefore would know where the burst
ends and where the next burst begins in the data stream. By
using a special end of burst (EOF) signal, 1t 1s unnecessary for
the compression engine to know in advance how long the
burst 1s. This allows compression to be truly flexible and
adaptive with regard to how long the burst can be, further
extending the flexibility of the inventive HSO compression
technique (which 1s tlexible and adaptive with regard to what
type of data 1s recerved).
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With regard to the decompression logic, the ability to use a
small number of address locations 1n the dictionary to decom-
press advantageously allows the dictionary to be quite small.
In the example of Table 4, for example, the dictionary has
only three addresses: 4, 5, and 6. Unique 1n the combination
that 1s the mventive HSO decompression technique 1s the
ability to overwrite existing memory locations when the
counter overflows. This overwrite feature 1s seen, {for
example, during the decompression of row R11 1in the
example of Table 4 when the counter overflows and 1s reset to
4. In this case, the address location 4 1s stmply overwritten
with the new content value.

The overwrite ability and the use of the counter value as
addresses 1nto the decompression dictionary allow the mven-
tive decompression logic to be implemented with a minimal
memory requirement, which 1s advantageous irrespective
whether the decompression logic 1s implemented 1n software
or hardware. Minimizing the memory requirement both
increases the processing speed and reducing complexity/size
of the decompression logic. In one embodiment, the reduc-
tion 1n the size of the memory allows the decompression
dictionary to be implemented using simply random access
memory (RAM), with the attendant benefit 1n higher speed,
reducing complexity and power consumption. The smaller
memory requirement also makes 1t possible to design the
dictionary memory using special high speed custom logic 1n
an economical manner, which facilitates high speed decom-
pression to keep up with higher data rate requirements.

In one embodiment, the end of burst (EOF) 1s signaled to
the decompression logic using a unique bit pattern. This end
of burst signal may be created by, for example, the mput
interface of the data optimization engine or the decompres-
s1on engine may simply utilize the end of burst (EOF) signal
provided by the compression circuitry when the packet or
data frame was compressed earlier. As 1n the compression
case, the input interface 1s endowed with knowledge regard-
ing the protocol employed to transmit the data and therefore
would know where the burst ends and where the next burst
begins 1n the data stream. By using a special end of burst
(EOF) signal, 1t 1s unnecessary for the decompression engine
to know 1n advance how long the burst 1s. This allows decom-
pression to be truly flexible and adaptive with regard to how
long the burst can be, further extending the flexibility of the
inventive HSO decompression technique (which 1s flexible
and adaptive 1n that no prior knowledge of the dictionary 1s
required for decompression of any type of compressed data).

Also unique 1n the combination that 1s the mventive HSO
decompression techmque 1s the reshuitling feature that allows
the output to be properly ordered to restore the original
uncompressed stream. With reference to the example of Table
4, this reshuilling process 1s seen within each group G1-G15,
which process reshuitles the values CharOut values to derive
the Decomp Output. As can be seen by a comparison with the
compression mput stream, Decomp Output 1s an exact copy
ol the original uncompressed data stream.

FIG. 14 shows, 1n accordance with one embodiment of the
present invention, a data optimization engine 1402, which
receives an icoming data stream on a communication chan-
nel 1404A, optimizes the optimizable data frames in the
incoming data stream, and passes the optimized data frames,
along with the data frames that cannot be optimized, out via a
communication channel 1404B. In the reverse direction, data
optimization engine 1402 receives an mcoming data stream
on a communication channel 1406A that may contain data
frames previously optimized. Data optimization engine 1402
then de-optimizes the previously optimized data frames 1n the
incoming data stream recerved at communication channel
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1406 A, and passes the de-optimized data out on a communi-
cation channel 1406B. Furthermore, data frames previously
unoptimized are bypassed directly from commumnication
channel 1406A to communication channel 14068 by data
optimization engine 1402.

In FIG. 14, data optimization engine 1402 comprises a
transmit interface circuit 1408, an optimization processor
1410, and a rece1ve intertace circuit 1412. Transmit interface
circuit 1408 couples on the lett side (transmit side) of FI1G. 14
to a transmit-side SERDES (Senalizer/Deserializer) 1420,
and on the right side of FIG. 14 (recerve side) to a recerve side
SERDES 1422. Transmit side SERDES 1420 receives the
serial incoming data stream on communication channel
1404 A, and converts the incoming serial data to a parallel data
format to be transmitted to transmit interface circuit 1408 via
a 10-bit bus 1424. Transmit interface circuit 1408 performs
data alignment on the data frames of the mmcoming data
stream, separates the optimizable data frames from the non-
optimizable data frames, and bypasses the non-optimizable
data frames out to recerve side SERDES 1422 to be output on
communication channel 1404B. Transmit interface circuit
1408 also performs data parsing on the optimizable data
frames 1n the imncoming data stream (receirved on communi-
cation channel 1404 A), thus separating the optimizable por-
tion of a data frame from the non-optimizable portion. The
data in the optimizable portion is then translated or adapted by
transmit interface circuit 1408 to a protocol or format that 1s
suitable for optimization by optimization processor 1410.

With reference to FIG. 14, the optimizable portion of the
optimizable data frame 1s sent from transmit interface circuit
1408 to optimization processor 1410 via a bus 1426. After the
optimizable portion of the data frame 1s optimized, the now-
optimized optimizable portion 1s received at transmit inter-
face circuit 1408 via a bus 1430 to be reassembled by transmiut
interface circuit 1408 with the non-optimizable portions of
the optimizable data frame for retransmission onward, via a
bus 1428, to recerve side SERDES 1422 and communication
channel 1404B.

Furthermore, transmit interface circuit 1408 performs con-
gestion control to ensure that if incoming data frames arrive 1n
rapid bursts on communication channel 1404 A, optimization
processor 1410 1s not swamped, and can have time to perform
the optimization task on the optimizable portions of the opti-
mizable data frames. While optimization processor 1410 per-
forms 1ts optimization task on the optimizable portion of the
optimizable data frames, transmit interface circuit 1408 also
performs traific handling to ensure that meaningful data
appears on communication channel 1404B (if requured by the
protocol on the communication channel 1404B) so as to ren-
der data optimization engine transparent to the receiving
device.

Receive iterface circuit 1412 couples on the left side
(transmit side) of FIG. 14 to a transmit-side SERDES 1460,
and on the right side of FIG. 14 (receive side) to a receive-side
SERDES 1462. Recerve-side SERDES 1462 receives the
serial incoming data stream on communication channel
1406 A, and converts the incoming serial data to a parallel data
format to be transmitted to receive interface circuit 1412 via
a 10-bit bus 1464. The incoming data stream may contain
both non-optimized data frames, as well as data frames pre-
viously optimized by another data optimization engine.

Receive interface circuit 1412 performs data alignment on
the data frames of the mmcoming data stream, separates the
de-optimizable data frames (i.e., those previously optimized
and now need to be decompressed and/or decrypted) from
those that do not need de-optimization, and bypasses those
data frames that do not need de-optimization out to transmait
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side SERDES 1460 to be output on communication channel
1406B. Receive mterface circuit 1412 also performs data
parsing on the de-optimizable data frames 1n the incoming
data stream (recerved on communication channel 1406A),
thus separating the de-optimizable portion of a data frame
from the non-de-optimizable portion. The data in the de-
optimizable portion 1s then translated or adapted by receive
interface circuit 1412 to a protocol or format that 1s suitable
for de-optimization by optimization processor 1410 (which
performs the de-optimization for data recerved from receive
interface circuit 1412 as discussed later herein).

With reference to FIG. 14, the de-optimizable portion of
the de-optimizable data frame 1s sent from receive interface
circuit 1412 to optimization processor 1410 via a bus 1490.
After the de-optimizable portion of the data frame 1s de-
optimized, the now-de-optimized portion 1s received at
receive interface circuit 1412 via a bus 1492 to be reas-
sembled by receive mterface circuit 1412 with the non-de-
optimizable portion of the de-optimizable data frame for
retransmission onward, via a bus 1466, to transmit side SER-
DES 1460 and communication channel 1406B. Furthermore,
receive interface circuit 1412 performs congestion control to
ensure that if incoming data frames arrive 1n rapid bursts on
communication channel 1406 A, optimization processor 1410
1s not swamped, and can have time to perform the de-optimi-
zation task on the de-optimizable portions of the de-optimi-
zable data frames. While optimization processor 1410 per-
forms 1ts de-optimization tasks on the de-optimizable portion
of the de-optimizable data frames, receive interface circuit
1412 also performs tratfic handling to ensure that meaningftul
data appears on commumnication channel 1406B (if required
by the protocol on the communication channel 1406B) so as
to render data optimization engine transparent to the receiv-
ing device.

In the following figures, a data optimization engine con-
figured to optimize data having the Fiber Channel (FC) pro-
tocol 1s discussed in detail. To facilitate discussion of the
Fiber Channel implementation of data optimization engine
1402, a review of the frame format of a Fiber Channel data
frame may be 1n order. Referring now to FIG. 15, there 1s
shown a typical Fiber Channel data frame 1502. Adjacent
Fiber Channel data frames 1502 are typically separated from
one another by one or more primitive signals (an Idle word 1s
a type of primitive signal word). Further information regard-
ing these primitive signal words may be obtained from the
alorementioned Kembel text. Generally, there 1s a minimum
of six primitive signal words between the end of one Fiber
Channel data frame 1502 and the start of the next Fiber
Channel data frame. These primitive signal words are shown
in FIG. 15 as primitive signal words 1504. A start-of-frame
(SOF) delimiter 1510, which 1s typically negative 1n polarity,
1s 40 bits long and defines the start of Fiber Channel data
frame 1502. There are six 40-bit words defining frame header
1512 adjacent to start-of-frame delimiter 1510. Following
frame header 1512, there may be up to 528 of 4-byte words of
payload (or up to 2,112 bytes of payload). This 1s shown as
data payload 1514 1n FIG. 15. The payload may also include
optional header data, which reduces the actual payload capac-
ity. Additional information regarding the Fiber Channel pro-
tocol may be obtained from the Kembel reference. Following
data payload 1514, there 1s one 40-bit CRC (Cyclic Redun-
dancy Check) to be followed by an end-of-frame delimaiter,
which 1s also 40 bits long. These are shown as CRC 1520 and
end-of-frame (EOF) delimiter 1522 respectively 1 FIG. 15.
With respect to polarity, as 1s well known to those familiar
with the Fiber Channel specification, each 40-bit word in
Fiber Channel data frame 1502 may have a different polarity.
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In FIG. 16, an Idle word 1600, representing a type of
primitive signal word 1s shown. As mentioned earlier, each
primitive signal word 1s 40 bits long and organized into four

10-bit words. The first 10-bit word of primitive signal word
1504 bears a special code K28.5 (shown by reference 1602 1n

FIG. 16). The Fiber Channel specification requires that all 10
bits of the K28.5 word be located within a single 40-bit word.
To put it differently, the 10-bit K28.5 word cannot be split
among adjacent 40-bit words. Following the K28.5 10-bat
word, there are three other 10-bit words shown 1n FIG. 16 by
reference numbers 1604, 1606, and 1608 respectively. As
there are different primitive signal words, the content of the
three 10-bit words that follow the K28.5 10-bit word may
vary. Furthermore, start-of-frame delimiter 1510 and end-oi-
frame delimiter 1522 also start with a K28.5 10-bit word. As
in the case of primitive signal words, the next three 10-bit
words of a start-of-frame delimiter 1510 or an end-of-frame
delimiter 1522 may vary in content as there are different
start-of-frame delimiters 1510 and end-of-frame delimiters
1522 specified for each class.

FI1G. 17 shows, 1n accordance with one embodiment of the
present mnvention, a transmit interface circuit 1702 1n greater
detail. As discussed 1n connection with FI1G. 14, the incoming
serial data stream 1s converted by the transmit side SERDES
(1420 in FIG. 14) to 10-b1t words and received at bus 1424.
Generally speaking, bus 1424 1s a parallel bus, but it may also
be a high-speed serial bus, for example. If bus 1424 1s a 10-b1t
parallel bus, bus 1424 typically operates at between around
100 MHz to around 125 MHz to yield roughly one GHz or
slightly above. In the case of Fiber Channel data, bus 1424, as
a 10-bit parallel bus, may run at roughly 106 MHz. In the case
of gigabit Ethernet data (which 1s not the case in FIG. 17), bus
1424 may run at, for example, 125 MHz.

A FIFO 1710 converts the 10-bit data on bus 1424 mto
40-bit data. Besides performing framing of the incoming data
from 10 bits to 40 bits, FIFO 1710 also acts as a shock
absorber to absorb data bursts coming 1n via bus 1424. Fram-
ing the imncoming data as 40-bit words allows transmuit inter-
face circuit 1702 to operate on a longer word, thereby
enabling transmit interface circuit 1702 to operate at a lower
clock speed while still maintaining a high throughput. Fram-
ing the incoming data as 40-bit words also makes 1t simpler to
perform frame alignment 1n frame alignment circuit 1712.

Frame alignment circuit 1712 looks for the 10-bit K28.5
word within each 40-bit word. If i1t finds the 10-bit K28.5
word, that 10-bit K28.5 word and the next three 10-bit words
are considered, as a 40-bit word unit, to be either an FC fill
40-bit word (1504 1n FIG. 15), a start-of-frame delimiter
(1510 1n FIG. 15), or end-of-frame delimiter (1522 1n FIG.
15). Using the start of the 10-bit K28.5 word to frame the
40-bit words recerved 1nto transmit interface circuit 1702
accomplishes frame alignment by ensuring that the beginning
of the start-of-frame delimiter 1510 can be accurately framed.,
or aligned, with respect to a reference 40-bit word. Conse-
quently, the frame header 1512, as well as payload 1514 can
also be properly framed with respect to reference 40-bit
words and analyzed.

After frame alignment circuit 1712 frames the incoming
data stream, the 40-bit words are passed to trailic controller
circuit 1714 for further processing. Traific controller circuit
1714 recerves the 40-bit words from frame alignment circuit
1712, and ascertains whether a received 40-bit word 1s a
primitive signal word, a start-of-frame delimiter, one of the
frame header 40-bit words, a 40-bit CRC word, or a 40-bit
end-of-frame delimiter, or part of the data payload. Since the
primitive signal words and the start-of-frame delimiter are
aligned with 40-bit reference words by frame alignment cir-
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cuit 1712, the parsing of a Fiber Channel data frame into 1ts
constituent parts can be achieved with the knowledge of the
relative positions of each 40-bit word in the Fiber Channel
data frame, both relative to one another and relative to the
start-of-frame delimiter and the end-of-frame delimiter (as

discussed in FI1G. 15).

FIG. 18 1llustrates, 1n accordance with one embodiment of
the present invention, a flowchart showing how traffic con-
troller circuit 1714 may process each 40-bit word received
from frame alignment circuit 1712. As each 40-bit word 1s
received from frame alignment circuit 1712, traific controller
circuit 1714 first checks to see whether the first 10-bit of that
40-bit word 1s a 10-bit K28.5 word. This 1s shown 1n block
1802 of FIG. 18. If the first 10 bits of the incoming 40-bit
word from frame alignment circuit 1712 1s not a 10-bit K28.5
word, that 40-bit word must be either one of the frame header

40-bit words (1512 1n FIG. 15), part of the data payload (1514
in FIG. 15), or a 40-bit CRC word (1520 in FIG. 15).

In this case, the 40-bit word 1s passed to an optimizable
portion parser (block 1804 of FIG. 18), which ascertains
whether the 40-bit word received 1s part of the optimizable
portion of the Fiber Channel data frame, or part of the non-
optimizable portion of the Fiber Channel data frame. In one
preferred embodiment, only the data payload (1514 of FIG.
15) 1s optimizable, 1.e., eligible to be processed further via
either compression and/or encryption by optimization pro-

cessor 1410. In another embodiment, even a whole or a por-
tion of the frame header (1512 of FIG. 15), and/or the CRC

40-bit word (1520 of FIG. 15) may also be eligible to be
optimized further via compression or encryption by optimi-
zation processor 1410. Typically, however, when only the
payload 1s optimized, the CRC 1s recalculated by transmit
interface circuit 1702 for each Fiber Channel data frame that
has been optimized and thus the CRC does not need to be
optimized Irrespective of the specific implementation of the
optimizable portion parser, the 40-bit word deemed to be part
of the non-optimizable portion is allowed to bypass directly to
output of transmit 1nterface circuit 1702 while the optimiz-
able portion 1s further processed.

In one embodiment, the header and/or payload 1s further
analyzed to determine 11 the Fiber Channel data frame should
not be optimized (in some cases, one or more fields in the
header may indicate that this particular Fiber Channel data
frame should not be optimized). In this case, even the opti-
mizable portion (i.e., the portion eligible to be compressed
and/or encrypted by optimization processor 1410) would also
be bypassed directly to the output of transmit interface circuit
1702 via bus 1722, thereby, allowing the payload, header,
and/or CRC portions of the Fiber Channel data frame to
transparently pass through transmit interface circuit 1702
without modification or significant processing. If the header
and/or payload do not indicate that the Fiber Channel data
frame under consideration should not be optimized, the opti-
mizable portion 1s then passed on to optimization front-end
circuit 1720 (shown in FIG. 17) for further processing. On the
other hand, 1f the first 10-bit of the 40-bit word received {from
frame alignment circuit 1712 1s indeed a 10-bit K28.5 word,
this 40-bit word 1s either a primitive signal word, a start-oi-
frame delimiter, or an end-of-frame delimaiter. If the recerved
40-bit word 1s a primitive signal word (as ascertained in block
1810 of FIG. 18), the primitive signal word 1s bypassed

directly to the output of transmit interface circuit 1702 via
bypass bus 1722.

In one embodiment, traffic controller circuit 1714 monitors
a threshold level at output FIFO 1724 (see FIG. 17) and
outputs additional Idle words (or one of the fill words) to
output FIFO 1724 to essentially cause output FIFO 1724 to
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output Idle words from transmit interface circuit 1702. In one
embodiment, two fill words are output whenever the thresh-
old 1s below a certain level. This 1s useful since the Fiber
Channel protocol expects there to be protocol-acceptable data
on the communication channel at all times. If optimization
processor 1410 1s busy optimizing a particularly long Fiber
Channel data frame, traffic controller circuit 1714 fills the
communication channel with protocol-acceptable data
instead of allowing gibberish data to appear on the commu-
nication channel. In one embodiment, the Idle words may
come from the output FIFO 1724 1tself (as opposed to from
the traffic controller circuit). The threshold within output
FIFO 1724 that triggers the output of additional Idle words
may be set via software during configuration or execution, or
may be adaptively changed based on traffic pattern and band-
width usage pattern of the incoming data stream.

On the other hand, 11 1t 1s ascertained in block 1810 that the
incoming 40-bit word starts with a 10-bit K28.5 word but that
40-bit word 1s not a primitive signal word, a further decision
point 1s made 1n block 1812, which ascertains whether the
incoming 40-bit word is the start-of-frame delimiter or the
end-of-frame delimiter. If the incoming 40-bit word 1s ascer-
tained 1n block 1812 to be a start-of-frame delimiter, this
start-of-frame delimiter 1s immediately bypassed to the out-
put of transmit interface circuit 1702 via bypass bus 1722. On
the other hand, if 1t 1s ascertained 1in block 1812 that the
incoming 40-bit word 1s an end-of-frame delimiter, the end-
of-frame delimiter 1s held by traffic controller circuit 1714
until traific controller circuit 1714 recerves a signal from an
end-of-optimized-data-flag-handler circuit 1740 (see FIG.
17) that indicates that traific controller circuit 1714 can
release a polarity-correct version of the end-of-frame delim-
iter to the output of transmit interface circuit 1702. This 1s
shown 1n blocks 1816, 1818, and 1820 of FIG. 18 respec-
tively. Furthermore, the end-of-frame delimiter 1s also
bypassed to the output of transmit interface circuit 1702 11 1t
turns out that the optimizable portion belongs to a Fiber
Channel data frame that has been marked as one that should
not be optimized (e.g., as ascertained by examining a relevant
field i the header or by analysis of the payload data). This 1s
because such a Fiber Channel data frame will not be opti-
mized and there 1s no need to hold on to the end-of-frame
delimiter waiting for the optimization processor to finish
optimizing the optimizable portion because there 1s 1n fact no
optimization to be done.

As mentioned earlier, 1n connection with block 1804 of
FIG. 18, the optimizable portion of a Fiber Channel data
frame that can be optimized 1s passed on to an optimization
front-end circuit 1720 (see FIG. 17) for further processing
prior to actually being optimized by optimization processor
1410. Referring back to FIG. 17 now, 1n optimization front-
end circuit 1720, the 40-bit words are de-framed 1nto 10-bit
words by a bus framing circuit 1742. In one embodiment, bus
framing circuit 1742 1s implemented by four 10-bit multi-
plexers that are selected by a counter. Thus, 40 bits of data are
received 1n parallel and are separated into groups of four
10-b1t words, and the counter selects the 10-bit words 1n a
round-robin fashion.

These 10-bit words are input into a protocol conversion
circuit 1744, which converts the optimizable portion 1nto a
format acceptable for optimization by optimization processor
1410. In one embodiment, the 10-bit words received from bus
framing circuit 1742 are converted to 8-bit words using a
10-bit/8-bit look-up table.

The use of a look-up table to convert 10-bit data to 8-bit
data 1s well known 1n the art.
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One 1mplementation of such a 10-bit/8-bit lookup table
may be found at, e.g., the alorementioned Kembel text.

The data to be optimized, now converted to 8-bit 1n the
example of FIG. 17, 1s input into an end-of-optimization-file-
processing circuit 1746, which tags or marks the last word of
the optimizable portion of the Fiber Channel data frame with
a flag to indicate to optimization processor 1410 that the 8-bit
word so flagged represents the last 8-bit word of the file to be
optimized for the current Fiber Channel data frame. In one
embodiment, an extra bit 1s added to each 8-bit word received
from protocol conversion circuit 1744. Consequently, 9-bit
words are sent to optimization processor 1410 with one bit of
cach 9-bit word representing the end-of-optimization-file
flag.

The last 9-bit word of the optimization file would have its
end-of-optimization-file 1-bit flag set. When optimization
processor 1410 receives these 9-bit words, a circuit 1 the
optimization processor 1410 (e.g., an input FIFO within opti-
mization processor 1410) performs the task of detecting the
end of the optimization file, and strips away the additional flag
bit after detection to allow the optimization core within opti-
mization processor 1410 to operate only on the 8-bit words. In
other words, the extra 1-bit 1s added to flag the end of the
optimization file between transmit interface circuit 1408 and
optimization processor 1410, and 1s stripped away before the
optimizable portion of the Fiber Channel data frame 1s opti-
mized (compressed and/or encrypted) by optimization pro-
cessor 1410. In this manner, substantially no overhead 1is
incurred by the optimization core (1.e., the actual compres-
sion/decompression engine or the encryption/decryption
engine) within the optimization processor by this universal
and flexible (1.e., easily adaptable to different incoming pro-
tocols) mn-band signaling technique for communicating the
end-of-optimized-file information between the transmit 1nter-
face circuit and the optimization processor.

In another embodiment, transmit interface circuit 1408
may flag the end of the optimization file by other means, such
as by a dedicated signal (out of band signaling vs. 1n band
signaling). In this case, the data may be sent, using the above
example, as 8-bit data. In any case, the optimizable portion of
the Fiber Channel data frame 1s then optimized by optimiza-
tion processor 1410, and sent back to transmit interface cir-
cuit 1702 as 8-bit words via a bus 1430. Optimization pro-
cessor 1410 also generates a unique end-of-optimized-data
flag 1n the optimized data sent back to transmit interface
circuit 1702 via bus 1430. As discussed earlier, this end-of-
optimized-data flag 1s detected by an end-of-optimized-data-
flag-handler circuit 1740.

The optimized data 1s then converted back to 10-bit via
protocol conversion circuit 1760, which, i the case of FIG.
17, 1s a conventional 8-bi1t/10-bit table look-up. Thus, 10-bit
words are sent from protocol conversion circuit 1760 to a bus
framing circuit 1762 (via a bus 1768) to frame four 10-bit
words 1nto one 40-bit word for output to a multiplexer 1764.
In one embodiment, bus framing circuit 1762 1s implemented
using four shift registers and a counter that shifts, 1n a round-
robin fashion, the first, second, third, and fourth 10-bit words
into a 40-bit word, and outputs the 40-bit word to a multi-
plexer 1764. For the last 40-bit word of the optimized data,
bus-framing circuit 1762 also pads the data so that a full
40-bit word 1s sent to multiplexer 1764.

Thus, as each 40-b1t word 1s received from frame alignment
circuit 1712, traffic controller circuit 1714 ascertains whether
the 40-bit word recerved 1s a primitive signal word, a start-
of-frame delimiter, an end-of-frame delimiter. If a primitive
signal word 1s detected, 1t 1s immediately bypassed viabypass

bus 1722 and multiplexer 1764 to output FIFO 1724. Multi-
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plexer 1764 merely selects, based on whether data 1s
bypassed via bypass bus 1722 or sent through bus framing
circuit 1762, whether output FIFO 1724 will receive data
from the bypass bus 1722 or from bus framing circuit 1762. If
a start-of-frame delimiter 1s detected, traflic controller circuit
1714 immediately bypasses the start-of-frame delimiter to

output FIFO 1724 via bypass bus 1722 and multiplexer 1764.
The start-of-frame delimiter then waits in output FIFO 1724
to be assembled with the optimized data sent back by optimi-
zation processor 1410. The non-optimizable portion of the
Fiber Channel frame 1s also bypassed directly to output FIFO
1724 (see FIG. 18) via bypass bus 1722 and multiplexer 1764.

I1 the 40-bit word 1s neither a primitive signal word nor one
of the start-of-frame delimiters and end-of-frame delimiters,
traffic circuit 1714 sorts the incoming 40-bit word as either an
optimizable portion or a non-optimizable portion (as dis-
cussed 1n FI1G. 18). The optimizable portion 1s then processed
by optimization front-end circuit 1720 and optimization pro-
cessor 1410, and received as optimized data to be assembled
with the waiting start-of-frame delimiter and any bypassed
non-optimizable portion (such as the header).

After the end-of-optimized-data flag 1s detected 1n the opti-
mized data stream coming from optimization processor 1410
by end-of-optimized-data-tlag-handler circuit 1740, a new
CRC may be calculated and assembled with the optimized
data 1n output FIFO 1724. The detection of the end-of-opti-
mized-data-tflag-handler circuit 1740 also permits tratfic con-
troller circuit 1714 to release a polarity-correct version of the
end-of-frame delimiter 1t stored earlier for the current Fiber
Channel data frame. This end-of-iframe delimiter 1s bypassed
via bypass bus 1722 and multiplexer 1764 to be assembled
with the waiting but incomplete Fiber Channel data frame in
output FIFO 1724.

As mentioned earlier, transmit interface circuit 1702 also
performs congestion control to ensure that optimization pro-
cessor 1410 1s not overloaded when data arrives at data opti-
mization engine 1402 1n rapid bursts. In one embodiment,
when tratfic controller circuit 1714 detects an end-of-frame
delimiter, 1t waits until after processing of the current Fiber
Channel data frame 1s finished before 1t recerves the next
Fiber Channel data frame for processing. For example, 1t may
wait until 1t receives a signal from end-of-optimized-data-
flag-handler circuit 1740, indicating that optimization pro-
cessor 1410 has finished processing the current optimizable
portion of the current Fiber Channel data frame before 1t
receives additional data from frame alignment circuit 1712.
In the meantime, FIFO 1710 may act as a shock absorber to
absorb the data bursts while waiting for optimization proces-
sor 1410 to finish 1ts current processing.

In one embodiment, the transmit interface circuit 1408 also
marks the header of the optimized Fiber Channel data frame
so that that Fiber Channel data frame may be recognized 1n
the future as one that contains optimized data. This marking
helps another data optimization engine to ascertain whether a
Fiber Channel data frame has been optimized earlier by a data
optimization engine.

FI1G. 19 1llustrates, 1n accordance with one embodiment of
the present mvention, how end-of-optimized-data-flag-han-
dler circuit 1740 handles optimized data recerved from the
optimization processor 1410 and detects an end-of-opti-
mized-data flag 1n the stream of optimized data received. In
FIG. 19, optimized data 1s recerved from optimization pro-
cessor 1410 via a bus 1430 (shown 1n both FIGS. 17 and 19).
Since the word s1ze of the optimized data words received from
optimization processor 1410 may differ from the actual size
of the codes output by the compressor and/or encryption



US RE43,558 E

47

engine, a strategy needs to be developed to ensure that the
end-of-optimized-data flag can be reliably detected.

In one embodiment, the optimization processor 1410
implements the aforementioned high-speed optimized com-
pression algorithm, and yields 11 bits of code for the incom-
ing 8-bit words 1nto the optimization processor. The use o111
bits 1s advantageous since 1t allows the use of a dictionary that
can compress the entire Fiber Channel payload (2112 bytes
maximum ) without a significant possibility of overtlowing. In
this case, although the optimized data received from bus 1430
are words that are 8-bit long each (which 1s the size of data
words expected by the transmit interface circuit), the data 1s
packed 1nto 8-bit words and sent in frames of 88 bits (8x11).

In the present example, 11-bit of code 1s generated for the
incoming 8-bit data words by optimization processor 1410
implementing an adaptive compression scheme (such as
LZW or the alorementioned inventive HSO). In block 1902,
it 1s ascertained whether the last 11 bits of the 88-bit frame of
optimized data recerved from optimization processor 1410
contains the hex value 7FF. This 1s because 1n this example,
the hex value 7FF 1s chosen as the special end-of-optimized-
data flag to allow optimization processor 1410 to flag to
transmit mtertace circuit 1702 that this particular data frame
contains the last of the optimized data. If the optimized data
does not fill up the 88-bit frame, the remainder of the 88-bit
frame may be padded with 1’°s to make sure that the last 11 bits
would contain the hex value 7FF. However, end-of-opti-
mized-data-flag-handler circuit 1740 may simply look, in one
embodiment, for this specific pattern (or another unique pat-
tern designated to represent the end of the optimized data flag)
anywhere within the 88-bit frame.

In one embodiment, the unique 11-bit code 7FF that rep-
resents the FOF may straddle a maximum of 3 consecutive
bytes. In this case, monitoring for 3 consecutive 7FF bytes
will ensure that EOF will be detected 1n the data stream. In
another aspect of the present invention, padding 1s performed
alter the 3 consecutive 7FF bytes until the frame reaches 32
bits, which 1s the word size (for 8-bit encoding) for the Fiber
Channel payload. If another protocol 1s employed, padding 1s
performed on the last frame to add to the byte that contains the
EOF until the last frame reaches a size that would be output-
ted from the data optimization engine.

If the end-of-optimized-data flag 1s detected 1n the 88-bit
optimized data frame, the end-of-optimized-data-tflag-han-
dler circuit 1740 signals (1n block 1904) to traflic controller
circuit 1714 to bypass the end-of-frame delimiter with the
correct polarity that 1t stored earlier to output FIFO 1724. In
this manner, a universal and flexible (i.e., easily adaptable to
different incoming protocols) in-band signaling technique for
communicating the end-of-optimized-data information
between the optimization processor and the transmuit interface
circuit 1s accomplished.

With respect to the polanty of the end-of-frame delimaiter,
in one embodiment, when tratfic controller circuit 1714
detects an end-of-frame delimiter 1n the incoming data
stream, 1t stores both the CRD+(Current Running Disparity)
and CRD-versions of the end-of-frame delimiter detected for
an optimizable Fiber Channel data frame. When end-of-op-
timized-data-flag-handler circuit 1740 signals that the end-
of-frame delimiter, with the correct polarity, should be
bypassed to output FIFO 1724, traffic controller circuit 1714
consults protocol conversion circuit 1760 to determine
whether the positive or the negative polarity version should be
sent onward to output FIFO 1724. This decision 1s based on
the polanity of the last word of optimized data converted by
protocol conversion circuit 1760. In any case, the optimized
data recerved from bus 1430 1s passed on to protocol conver-
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s1on circuit 1760 (in step 1906) to be converted to 10-bit data.
Note that this unique code signifying the end of the optimized
data remains embedded in the optimized data stream after
protocol conversion, and 1s detectable by the recerved inter-
face circuit (1412 of FIG. 14) when 1t comes time to “de-
optimize” the data.

As 1s well known, different words 1n the Fiber Channel data
frame may have different polarities as specified by the Fiber
Channel specification. FI1G. 20 1llustrates, 1n accordance with
one embodiment, how protocol conversion circuit 1760 may
perform the protocol conversion such that output words hav-
ing the correct polarities may be output to bus framing circuit
1760 for eventual output to output FIFO 1724 (see FIG. 17).
In FIG. 20, the protocol conversion from 8-bit words to 10-bit
words 1s performed using an 8-b1t/10-bit table look-up. How-
ever, the 8-bit/10-bat table 1s pre-processed to generate two
different tables: A CRD+table and a CRD-table. The CRD+
table includes entries from 8-bit words to CRD+10-bit words.
The CRD-table has entries for translating 8-bit words 1nto the
CRD-10-bit words.

Furthermore, there 1s a neutral flag in the form of an extra
bit 1n each entry. This extra bit may be appended or pre-
pended to the 10-bit code, or may be a separate column
altogether. For each 10-bit word 1n the table entry (either
CRD+ or CRD-entry), 1f the number of 0’s and 1°s are equal
in the 10-bit code, the neutral flag 1s set. The use of two
polarity tables and a neutral flag allows the protocol conver-
sion circuit to rapidly generate the polarity-correct 10-bit
words for output.

In the flowchart of FIG. 20, each mput 8-bit code 1nto
protocol conversion circuit 1760 (block 2010) 1s ascertained
in block 2012 to determine whether the previous 10-bit code
output 1s positive in polarity, negative in polarity, or neutral
(1.e., thenumber o1 0’s and 1’s are equal 1n the 10-bit code and
flagged as being neutral). If the previous 10-bit code 1s output
from the CRD+table and the neutral flag of the previous
10-bit code 1s not set, then the previous 10-bit code 1s deemed
to be positive for the purposes of block 2012. On the other
hand, 11 the previous 10-bit code 1s output from the CRD-
table, and the neutral flag ot the previous 10-bit code 1s not set,
then the previous 10-bit code 1s deemed to be negative 1n
polarity for the purposes of block 2012. It the previous 10-bit
code 1s output from either the CRD Plus or the CRD Minus
table, but the neutral flag 1s set, then the previous 10-bit code
1s deemed to be neutral for the purposes of block 2012.

In the case of a previously negative 10-bit code, the next
10-bit code to be output comes from the CRD+table, as seen
in block 2014. In the CRD+table, the 10-bit code 1s then
obtained (or 11-bit code 11 the one neutral flag bit 1s directly
appended or pre-pended to the 10-bit code). This 1s shown 1n
block 2016. In block 2018, the flag bit 1s removed, and the
10-bit code 1s output (1n block 2024) to the bus framing circuit
1762 (see F1G. 17). In the case where the previous 10-bit code
1s positive in polarity, the next 10-bit code 1s obtained from the
CRD-table (as shown 1n block 2020). Thereatfter, the 10-bat
code 1s obtained and forwarded to bus framing circuit 1762. If
the previous 10-bit code 1s neutral, the next 10-bit code 1s

obtained from the table that was used to obtain the previous
10-bit code. This 1s shown 1n block 2022. In so doing, the

11-bit code 1s obtained (2016), the flag bit 1s stripped (2018)
and the 10-bit code 1s passed (2024) onto bus framing circuit

1762.
Note that the polarity of the last 10-bit code of the opti-
mized data stream 1s also employed to determine the polarity

ol the end-of-frame delimiter to be bypassed by traffic con-
troller circuit 1714 of FI1G. 17 to output FIFO 1724 to com-
plete the Fiber Channel data frame encapsulating the opti-
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mized data to be output onto the media. If the polarity of the
last 10-bit code of the optimized data stream 1s positive, a
negative end-of-frame delimiter 1s sent. Conversely, i the
polarity of the last 10-bit code of the optimized data stream 1s
negative, a positive end-of-frame delimiter 1s sent.

FIG. 21 shows, 1n accordance with one embodiment of the
present invention, a receive interface circuit 2102 in greater
detail. The recerve interface circuit reverses the process per-
tormed by the transmit interface circuit, with some important
differences as discussed herein. The mcoming serial data
stream 1s first converted by the recerve side SERDES (1462 1n
FIG. 14) to 10-bit words and recetved at bus 1464. Generally
speaking, bus 1464 1s a parallel bus, but it may also be a
high-speed serial bus, for example. If bus 1464 1s a 10-b1t
parallel bus, bus 1464 typically operates at between around
100 MHz to around 125 MHz to yield roughly one GHz or
slightly above. In the case of Fiber Channel data, bus 1464, as
a 10-bit parallel bus, may run at roughly 106 MHz. In the case
of gigabit Ethernet data (which 1s not the case 1n FIG. 21), bus
1464 may run at, for example, 125 MHz.

A FIFO 2110 converts the 10-bit data on bus 1464 into

40-bit data. Besides performing framing of the incoming data
from 10 bits to 40 bits, FIFO 2110 also acts as a shock
absorber to absorb data bursts coming 1n via bus 1464. Fram-
ing the mcoming data as 40-bit words allows transmit inter-
face circuit 2102 to operate on a longer word, thereby
enabling transmit interface circuit 2102 to operate at a lower
clock speed while still maintaining a high throughput. Fram-
ing the incoming data as 40-bit words also makes 1t simpler to
perform frame alignment in frame alignment circuit 2112.

Frame alignment circuit 2112 looks for the 10-bit K28.5
word within each 40-bit word. If 1t finds the 10-bit K28.5
word, that 10-bit K28.5 word and the next three 10-bit words
are considered, as a 40-bit word unit, to be either a FC fill
40-bit word (1504 1n FIG. 15), a start-of-frame delimiter
(1510 1n FIG. 15), or end-of-frame delimiter (1522 1n FIG.
15). Using the start of the 10-bit K28.5 word to frame the
40-bit words received into receive interface circuit 2102
accomplishes frame alignment by ensuring that the beginning
ol the start-of-frame delimiter 1510 can be accurately framed.,
or aligned, with respect to a reference 40-bit word. Conse-
quently, the frame header 1512, as well as payload 1514 can
also be properly framed with respect to reference 40-bit
words and analyzed.

After frame alignment circuit 2112 frames the incoming
data stream, the 40-bit words are passed to trailic controller
circuit 2114 for further processing. Traffic controller circuit
2114 recerves the 40-bit words from frame alignment circuit
2112, and ascertains whether a received 40-bit word 1s a
primitive signal word, a start-of-frame delimiter, one of the
frame header 40-bit words, a 40-bit CRC word, or a 40-bit
end-of-frame delimiter, or part of the data payload. Since the
primitive signal words and the start-of-frame delimiter are
aligned with 40-bit reference words by frame alignment cir-
cuit 2112, the parsing of a Fiber Channel data frame into 1ts
constituent parts can be achieved with the knowledge of the
relative positions of each 40-bit word 1n the Fiber Channel
data frame, 1.e., relative to one another and/or relative to the
start-of-frame delimiter and/or the end-of-frame delimiter (as
discussed in FI1G. 15).

In one embodiment, the traffic controller circuit 2114 may
check an appropriate flag in one of the fields 1n the frame
header, which flag 1s set by the transmit interface circuit or the
optimization circuitry earlier, to see 11 this Fiber Channel data
frame had been optimized before. If decryption 1s mvolved,
the traific controller may also, alternatively or additionally,
check for the presence of an encryption key (assuming pubic
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key encryption was involved) to determine if this Fiber Chan-
nel data frame had been optimized before. If 1t had not been
optimized before, the entire Fiber Channel data frame, up to
the end-of-frame delimiter may be immediately bypassed to
the output of receive interface circuit 2102 via bypass bus
2122, thereby rendering the data optimization engine sub-
stantially transparent with respect to the Fiber Channel data
frames previously not optimized.

In another embodiment, as each 40-bit word 1s received
from frame alignment circuit 2112, traflic controller circuit
2114 first checks to see whether the first 10-bit of that 40-bat
word1s a 10-bit K28.5 word. If the first 10 bits of the incoming
40-bit word from frame alignment circuit 2112 1s not a 10-bat
K28.5 word, that 40-bit word must be either one of the frame
header 40-bit words (1512 1n FIG. 15), part of the data pay-
load (1514 1n FIG. 15), or a 40-bit CRC word (1520 1n FIG.
15).

In this case, the 40-bit word 1s passed to a de-optimizable
portion parser, which ascertains whether the 40-bit word
received 1s part of the de-optimizable portion of the Fiber
Channel data frame, or part of the non-de-optimizable portion
of the Fiber Channel data frame. In one preferred embodi-
ment, only the data payload (1514 of FIG. 15) 1s de-optimi-
zable, 1.e., eligible to be processed further via either decom-
pression and/or decryption by optimization processor 1410.
In another embodiment, even a whole or a portion of the
frame header (1512 of FIG. 15), and/or the CRC 40-bit word
(1520 of FIG. 15) may also be eligible to be de-optimized
turther via decompression or decryption by optimization pro-
cessor 1410. Typically, however, when only the payload 1s
de-optimized, the CRC 1s recalculated by receive interface
circuit 2102 for each Fiber Channel data frame that has been
de-optimized and thus the CRC does not need to be de-
optimized Irrespective of the specific implementation of the
de-optimizable portion parser, the 40-bit word deemed to be
part ol the non-de-optimizable portion 1s allowed to bypass
directly to output of recerve interface circuit 2102 while the
de-optimizable portion 1s further processed.

The header and/or payload 1s further analyzed to determine
if the Fiber Channel data frame should not be de-optimized
(1n some cases, one or more fields in the header may indicate
that this particular Fiber Channel data frame should not be
de-optimized). In this case, even the de-optimizable portion
(1.e., the portion eligible to be decompressed and/or decrypted
by optimization processor 1410) would also be bypassed
directly to the output of transmit interface circuit 2102 via bus
2122, thereby, allowing the payload, header, and/or CRC
portions ol the Fiber Channel data frame to transparently pass
through transmit interface circuit 2102 without modification
or significant processing.

On the other hand, 11 1t 1s ascertained that the de-optimiz-
able portion should be de-optimized (due to a detection that
the Fiber Channel data frame was optimized earlier or due to
the presence of a public key), the de-optimizable portion 1s
then passed on to optimization front-end circuit 2120 (shown
in FIG. 21) for further processing.

If the first 10-bit of the 40-bit word received from frame
alignment circuit 2112 1s indeed a 10-bit K28.5 word, this
40-bit word 1s either a primitive signal word, a start-of-frame
delimiter, or an end-of-frame delimiter. If the received 40-bit
word 1s a primitive signal word (as ascertained in block 1810
of FIG. 18), the primitive signal word 1s bypassed directly to
the output of transmit interface circuit 2102 via bypass bus
2122,

In one embodiment, traffic controller circuit 2114 monitors
a threshold level at output FIFO 2124 (see FIG. 21) and

outputs additional Idle words (or one of the fill words) to
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output FIFO 2124 to essentially cause output FIFO 2124 to
output Idle words from transmit interface circuit 2102. In one
embodiment, two fill words are output whenever the thresh-
old 1s below a certain level. This 1s useful since the Fiber
Channel protocol expects there to be protocol-acceptable data
on the communication channel at all times. If optimization

processor 1410 1s busy de-optimizing a particularly long
Fiber Channel data frame, traffic controller circuit 2114 fills
the communication channel with protocol-acceptable data
instead of allowing gibberish data to appear on the commu-
nication channel. In one embodiment, the Idle words may
come from the output FIFO 2124 1itself (as opposed to from
the traific controller circuit). The threshold within output
FIFO 2124 that triggers the output of additional Idle words
may be set via software during configuration or execution, or
may be adaptively changed based on traffic pattern and band-
width usage pattern of the incoming data stream.

On the other hand, 1t 1t 1s ascertained that the imncoming
40-bit word starts with a 10-bit K28.5 word but that 40-bit
word 1s not a primitive signal word, a further decision point 1s
made, which ascertains whether the mncoming 40-bit word 1s
the start-of-frame delimiter or the end-of-frame delimaiter. It
the incoming 40-bit word 1s ascertained to be a start-of-frame
delimiter, this start-of-frame delimiter 1s 1mmediately
bypassed to the output of transmit interface circuit 2102 via
bypass bus 2122. On the other hand, if it 1s ascertained in
block 1812 that the incoming 40-bit word 1s an end-of-frame
delimiter, the end-of-frame delimiter 1s held by traffic con-
troller circuit 2114 until traffic controller circuit 2114
receives a signal from an end-of-deoptimized-data-flag-han-
dler circuit 2140 (see FIG. 21) that indicates that tratfic con-
troller circuit 2114 can release a polarity-correct version of
the end-of-frame delimiter to the output of receive interface
circuit 2102. A technique for selecting the polarity-correct
end-of-frame delimiter based on the polarity of the words
previously examined has been discussed 1n connection with
transmit interface circuit of FI1G. 17.

Furthermore, the end-of-frame delimiter 1s also bypassed
to the output of transmit interface circuit 2102 1f 1t turns out
that the de-optimizable portion belongs to a Fiber Channel
data frame should not be de-optimized (e.g., as ascertained by
examining a relevant field 1n the header or by analysis of the
payload data). This 1s because such a Fiber Channel data
frame will not be de-optimized and there 1s no need to hold on
to the end-of-frame delimiter waiting for the optimization
processor to finish de-optimizing the de-optimizable portion
because there 1s 1n fact no de-optimization to be done.

The de-optimizable portion of a Fiber Channel data frame
that can be de-optimized 1s passed on to a de-optimization
front-end circuit 2120 (see FIG. 21) for further processing
prior to actually being de-optimized by optimization proces-
sor 1410. Referring back to FIG. 21 now, 1n de-optimization
front-end circuit 2120, the 40-bit words are de-framed into
10-bit words by a bus framing circuit 2142. In one embodi-
ment, bus framing circuit 2142 1s implemented by four 10-bit
multiplexers that are selected by a counter. Thus, 40-bits of
data are received 1n parallel and are separated into groups of
four 10-bit words, and the counter selects the 10-bit words 1n
a round-robin fashion.

These 10-bit words are 1mput into a protocol conversion
circuit 2144, which converts the de-optimizable portion into a
format acceptable for de-optimization by optimization pro-
cessor 1410. In one embodiment, the 10-bit words received
from bus framing circuit 2142 are converted to 8-bit words
using a 10-bit/8-bit look-up table. The use of a look-up table
to convert 10-bit data to 8-bit data 1s well known 1n the art.
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Information regarding 8b/10b encoding and decoding may be
obtained, for example from the aforementioned Kembel text.

The de-optimizable portion of the Fiber Channel data
frame 1s then de-optimized (decompressed and/or decrypted)
by optimization processor 1410, and sent back to transmit
interface circuit 2102 as 8-bit words via a bus 1430. Optimi-
zation processor 1410 can ascertain the end of the de-opti-
mized data file by detecting the end-of-optimization-data flag
previously provided with the de-optimizable portion during
the optimization process. This end-of-optimized-data tlag 1s
also detected by an end-of-de-optimized-data-flag (EODD)
handler circuit 2140.

The de-optimized data 1s then converted back to 10-bit via
protocol conversion circuit 2160, which, 1n the case of FIG.
21, 1s a conventional 8-bit/10-bit table look-up. Thus, 10-bit
words are sent from protocol conversion circuit 2160 to a bus
framing circuit 2162 (via a bus 2168) to frame four 10-bat
words 1nto one 40-bit word for output to a multiplexer 2164.
Multiplexer 2164 merely selects, based on whether data 1s
bypassed via bypass bus 2122 or sent through bus framing
circuit 2162, whether output FIFO 2124 will receive data
from the bypass bus 2122 or from bus framing circuit 2162. In
one embodiment, bus framing circuit 2162 1s implemented
using four shift registers and a counter that shiits, in a round-
robin fashion, the first, second, third, and fourth 10-bit words
into a 40-bit word, and outputs the 40-bit word to a multi-
plexer 2164. For the last 40-bit word of the de-optimized data,
bus-framing circuit 2162 also pads the data so that a full
40-bit word 1s sent to multiplexer 2164.

After the end-of-de-optimized-data flag 1s detected in the
de-optimized data stream coming from optimization proces-
sor 1410 by end-of-optimized-data-flag-handler circuit 2140,
a new CRC may be calculated and assembled with the de-
optimized data i output FIFO 2124. The detection of the
end-of-de-optimized-data-flag-handler circuit 2140 also per-
mits tratfic controller circuit 2114 to release a polarity-correct
version of the end-of-frame delimiter 1t stored earlier for the
current Fiber Channel data frame. This end-of-frame delim-
iter 1s bypassed via bypass bus 2122 and multiplexer 2164 to
be assembled with the waiting but incomplete Fiber Channel
data frame 1n output FIFO 2124.

As mentioned earlier, receive interface circuit 2102 also
performs congestion control to ensure that optimization pro-
cessor 1410 1s not overloaded when data arrives at data opti-
mization engine 1402 1n rapid bursts. In one embodiment,
when traific controller circuit 2114 detects an end-of-frame
delimaiter, 1t waits until after processing of the current Fiber
Channel data frame 1s finished before 1t receives the next
Fiber Channel data frame for processing. For example, 1t may
wait until 1t recerves a signal from end-oi-de-optimized-data-
flag-handler circuit 2140, indicating that optimization pro-
cessor 1410 has finished processing the current de-optimiz-
able portion of the current Fiber Channel data frame before 1t
receives additional data from frame alignment circuit 2112,
In the meantime, FIFO 2110 may act as a shock absorber to
absorb the data bursts while waiting for optimization proces-
sor 1410 to finish 1ts current processing.

While this invention has been described 1n terms of several
preferred embodiments, there are alterations, permutations,
and equivalents which fall within the scope of this invention.
For example, although the Fiber Channel protocol has been a
preferred embodiment discussed in details, 1t should be
understood that the modular architecture of the data optimi-
zation engine herein, its ability to work with different proto-
cols, the HSO compression technique, and other innovative
techniques and arrangements described herein, may be
readily applicable to any protocol, including packet-based
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protocols such as Ethernet, TCP/IP, etc. When packet-ori-
ented protocols are mvolved, processing by the data optimi-
zation engine 1s performed on a packet-by-packet basis. It
should also be noted that there are many alternative ways of
implementing the methods and apparatuses of the present
invention. It 1s therefore intended that the following appended
claims be interpreted as including all such alterations, permu-
tations, and equivalents as fall within the true spirit and scope
of the present invention.

What is claimed 1s:

1. A data optimization engine for optimizing selected
frames of a first stream of data, comprising:

a transmit intertace circuit coupled to an optimization pro-
cessor, said transmit interface circuit being configured
for recerving said first stream of data, said transmit inter-
face circuit includes
a traflic controller circuit for separating frames 1n said

first stream of data into a first optimizable frame and

a first non-optimizable frame, and

an optimization front-end circuit coupled to said traflic

controller circuit to receive at least a first portion of

said first optimizable frame, said optimization front-

end circuit including

a protocol conversion circuit configured to convert
data 1n said first portion of said first optimizable
frame from a first protocol to a second protocol
suitable for processing by said optimization pro-
cessor, said first protocol specifies a first word
length, said second protocol specifies a second
word length different from said first word length,
said optimization front-end circuit further includes

an end-of-optimization-file processing circuit, said
end-of-optimization-file processing circuit flag-
ging an end of said {irst portion of said first optimi-
zable frame to said optimization processor,

wherein said optimization processor 1s configured to
optimize said first portion of said first optimizable
frame by performing at least one of compression
and encryption on said first portion of said first
optimizable frame.

2. The data optimization engine of claim 1 wherein said
end-of-optimization-file [flagging] processing circuit is con-
figured to add, after said data in said first portion of said first
optimizable frame 1s converted from said first protocol to said
second protocol, an end-of-optimization-file flag to each
word sent from said transmit interface circuit to said optimi-
zaf10n processor.

3. The data optimization engine of claim 2 wherein said
end-of-optimization-file tlag 1s one bit long.

4. The data optimization engine of claim 1 wherein said
first protocol 1s the 10-bit interface protocol, and said protocol
conversion circuit mcludes a 10-bit/8-bit lookup table.

5. The data optimization engine of claim 4 further includ-
ing a frame alignment circuit for detecting and aligning a start
ol a primitive signal word 1n said first stream of data with a
start of a reference 40-bit word, thereby framing said primi-
tive signal word with respect to said reference 40-bit word.

6. The data optimization engine of claim § wherein said
frame alignment circuit detects said start of said primitive
signal word by monitoring fora K28.5 10-bit word in said first
stream of data.

7. The data optimization engine of claim 4 further includ-
ing an output FIFO coupled to said trailic controller circuit
and said optimization front-end circuit, said tratfic controller
circuit further includes a start-of-frame handler circuit and an
end-of-frame handler circuit, said start-of-frame handler cir-
cuit 1s configured detect a start-of-frame 40-bit word 1n said
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first optimizable frame and to send said start-of-frame 40-bit

word to said output FIFO, effectively bypassing said optimi-

zation front-end circuit, said end-of-frame handler circuit 1s

configured to detect an end-oi-frame 40-bit word 1n said first
> optimizable frame and to temporarily retain said end-of-
frame 40-bit word while waiting for said optimization pro-
cessor to complete optimizing said first portion of said {first
optimizable frame, said end-of-frame handler circuit 1s fur-
ther configured to furnish a polarity-correct version of said
end-of-frame 40-bit word to said output FIFO for appending
to first optimized data within said output FIFO, said first
optimized data represents a first optimized version of said first
portion of said first optimizable frame after being optimized
by said optimization processor.

8. The data optimization engine of claim 7 wherein said
transmit interface circuit further includes an end-of-opti-
mized-data flag handler circuit coupled to receive second
optimized data from said optimization processor, said second
optimized data represents a second optimized version of said
first portion of said first optimizable frame after being opti-
mized by said optimization processor, said end-of-optimized
data flag handler being configured to detect an end-of-opti-
mized data flag in said second optimized data and signals,
upon detecting said end-of-optimized data flag 1n said second
optimized data, said end-of-frame handler circuit to furnish
said polarity-correct version of said end-of-frame 40-bit word
to said output FIFO.

9. The data optimization engine of claim I, wherein the
data optimization engine is configured to be deploved in a
Fiber Channel setting.

10. The data optimization engine of claim 1, wherein the
data optimization engine is configured to be interposed
between a Fiber Channel controller and a serializev/desevri-
alizer.

11. The data optimization engine of claim 1, wherein the
data optimization engine is configured to work in conjunction
with protocols selected from a group of protocols comprising:
Ethernet protocols, Extended Attachment Unit Interface
(XAUI) protocols, or I-SCSI protocols.

12. The data optimization engine of claim 1, wherein the
data optimization engine is configured to be deployved
between a host device and a storage device.

13. The data optimization engine of claim 12, wherein the
data optimization engine is configured to be deploved
between the host device and multiple diffevent types of inter-
faces.

14. The data optimization engine of claim 13, wherein said
multiple different types of interfaces comprise interfaces
50 selected from a group of interfaces comprising at least: a

Fiber Channel interface, an Ethernet interface, a SCSI inter-

face and an Infiniband interface.

15. The data optimization engine of claim 1, wherein the
data optimization engine is configured to be deploved

55 between a CPU and a memory.

16. The data optimization engine of claim 1, wherein the
data optimization engine is configured to be deployved
between networked devices.

17. The data optimization engine of claim 16, wherein said

60 networked devices comprise networked devices selected from

a group of networked devices comprising: a network inter-

Jace card, a router, or a switch.

18. The data optimization engine of claim 16, wherein a
network associated with the networked devices is a networkin

65 which only routers and switches at an edge of the network
perform compression/decompression and/or encryption/de-

Ccryption.

10

15

20

25

30

35

40

45



US RE43,558 E

3

19. The data optimization engine of claim 1, wherein the
data optimization engine is configured to be interposed
between two PCI devices.

20. The data optimization engine of claim 19, wherein the
data optimization engine is configured to:

process memory write transactions between the two PCI

devices for possible encryption and/ov compression;
and

process memory read transactions between the two PCI

devices for possible decryption and/or decompression.
21. A method comprising:

receiving a stream of data,

separating frames in said stream of data into a first opti-
mizable frame and a first non-optimizable frame;

converting data in a first portion of said first optimizable
frame from a first protocol to a second protocol suitable
for processing by an optimization processov, wherein
said first protocol specifies a first word length and said

second protocol specifies a second word length diffevent
from said first word length;

adding an indication to an end of said first portion of said
first optimizable frame for the optimization processor,
and

in vesponse to said adding, performing, with said optimi-

zation processor, at least one of compression or encryp-
tion on said first portion of said first optimizable frame.

22. The method of claim 21, wherein said adding said
indication comprises adding a flag indicating an end-of-op-
timization to a last word of said first portion of said first
optimizable frame.

23. The method of claim 22, wherein said flag is one bit
long.

24. The method of claim 21 wherein said first protocol is a
10-bit interface protocol, and said converting comprises
using a 10-bit/8-bit lookup table.

25. The method of claim 24 further comprising detecting
and aligning a start of a primitive signal word in said first
stream of data with a start of a reference 40-bit word effective
to frame said primitive signal wovd with vespect to said ref-
erence 40-bit word.

26. The method of claim 25 wherein said detecting is per-
formed by monitoring for a K28.5 10-bit word in said first
stream of data.

27. The method of claim 24 further comprising:

detecting a start-of-frame 40-bit word in said first optimi-

zable frame and sending said start-of-frame 40-bit word
to an output FIFO;

detecting an end-of-frame 40-bit word in said first optimi-

zable frame and temporarily retaining said end-of-
frame 40-bit word while waiting for completion of opti-
mizing said fivst portion of said first optimizable frame;
and

furnishing a polarity-correct version of said end-of-frame

40-bit word to said output FIFO for appending to first
optimized data within said output FIFO, said first opti-
mized data vepresenting a first optimized version of said
first portion of said first optimizable frame after being
optimized by said optimization processor.

28. The method of claim 27 further comprising:

receiving second optimized data from said optimization

processor, said second optimized data vepresenting a
second optimized version of said first portion of said first
optimizable frame after being optimized by said optimi-
zation processor;

detecting an end-of-optimized data flag in said second

optimized data; and
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upon detecting said end-of-optimized data flag in said sec-
ond optimized data, furnishing said polarity-correct

version of said end-of-frame 40-bit word to said output
FIFO.

29. The method of claim 21, wherein each of the first and

second protocols is one of an optical protocol, a wired pro-
tocol, or a wireless protocol, and whevrein the first protocol is
different from the second protocol.

30. The method of claim 21, wherein each of the first and
second protocols is one of an Ethernet protocol, a Transmis-
sion Control Protocol (I'CP), an Internet Protocol (IP), a
TCP/IP protocol, a Fiber Channel Protocol (FCP), an
Extended Attachment Unit Interface (XAUI) protocol, a Small
Computer System Interface (SCSI) protocol, a storage over

Ethernet (I-SCSI) protocol, a Peripherval Component Inter-
connect (PCI) protocol, an extended PCI (PCI-X) protocol,

an Infiniband protocol, a High Speed Serial Interface (HSSI)
protocol, a 10-bit interface (IBI) protocol, an Advanced
lechnology Attachment (A1A4) protocol, an Integrated Drive
FElectronics (IDE) protocol, or a 64/66 protocol, and wherein
the first protocol is different from the second protocol.

31. A system comprising.

means for rveceiving a stream of data;

means for separating frames in said stream of data into a

first optimizable frame and a first non-optimizable
frame;

means for converting data in a first portion of s