(19) United States

12 Reissued Patent
Geiger et al.

(10) Patent Number:
45) Date of Reissued Patent:

USOORE43483E

US RE43.483 E
Jun. 19, 2012

(54) SYSTEM AND METHOD FOR MANAGING
COMPRESSION AND DECOMPRESSION OF
SYSTEM MEMORY IN A COMPUTER
SYSTEM

(75) Inventors: Peter Geiger, Austin, TX (US); Manuel
J. Alvarez, 11, Austin, TX (US); Thomas
A. Dye, Austin, TX (US)

(73) Assignee: Mossman Holdings LL.C, Wilmington,
DE (US)
(21) Appl. No.: 12/121,598

(22) Filed: May 15, 2008

(Under 37 CFR 1.47)
Related U.S. Patent Documents

Reissue of:

(64) Patent No.: 7,047,382
Issued: May 16, 2006
Appl. No.: 09/915,751
Filed: Jul. 26, 2001

U.S. Applications:
(60) Provisional application No. 60/250,177, filed on Nov.

29, 2000.
(51) Imt. CL.
GO6F 12/00 (2006.01)
(52) US.CL ... 711/165; 711/2; 711/118; 711/154;
711/170; 711/205;711/206
(58) Field of Classification Search None

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,696,927 A * 12/1997 MacDonaldetal. 711/207
5,699,539 A 12/1997 GQGarber et al.

5,710,900 A 1/1998 Brown et al.

5,729,228 A 3/1998 Franaszek et al.

5,991,515 A * 11/1999 Falletal. 358/1.15
6,173,381 B1* 1/2001 Dyeccoooiviininniiinnnnn, 711/170
6,516,397 B2* 2/2003 Royetal. ... 711/170

(Continued)

FOREIGN PATENT DOCUMENTS

WO 97/23828 7/1997
(Continued)

OTHER PUBLICATIONS

International Search Report, Application No. PCT/US 01/45147,
mailed Nov. 15, 2002.

Primary Examiner — Kevin Verbrugge

(57) ABSTRACT

A method and system for allowing a processor or I/O master
to address more system memory than physically exists are
described. A Compressed Memory Management Unit
(CMMU) may keep least recently used pages compressed,
and most recently and/or frequently used pages uncom-
pressed 1n physical memory. The CMMU translates system
addresses mnto physical addresses, and may manage the com-
pression and/or decompression of data at the physical
addresses as required. The CMMU may provide data to be
compressed or decompressed to a compression/decompres-
s1on engine. In some embodiments, the data to be compressed
or decompressed may be provided to a plurality of compres-
s1on/decompression engines that may be configured to oper-
ate 1n parallel. The CMMU may pass the resulting physical
address to the system memory controller to access the physi-
cal memory. A CMMU may be integrated 1n a processor, a
system memory controller or elsewhere within the system.

5,490,260 A 2/1996 Miller et al.
5,638,498 A * 6/1997 Tyleretal. 358/1.18 29 Claims, 19 Drawing Sheets
CPU 100
CPUMMU 212
Memory
Codec | CMMU c18
odac . cto
Bridge 208
216 214 s S
et '.
Memory Controller
21
235
Hard Drive Video /O Device

300

US RE43,483 E

Page 2
U.S. PATENT DOCUMENTS 2002/0147893 Al* 10/2002 Royetal. ..cocovvereenn... 711/154
1 =

6523102 B1* 2/2003 Dyeetal .o 711/170 SooaolTo0d ALy 1Lz0nr Chrysabisetal o S
6,701,020 B2* 3/2004 Chrysafisetal. 382/239 - S
6,741,368 B1* 5/2004 Hoeloooviiiinil 358/1.9 FORFIGN PATENT DOCUMENTS
6,778,291 B1* 82004 Clouthier 358/1.16
6,879,266 B1* 4/2005 Dyeetal. .cooovvvvverveennnn.. 341/51 WO 00/45516 8/2000
7,089,391 B2* 82006 Geigeretal. ... 711/170 WO 0045516 8/2000
7212313 B1* 5/2007 Hoel ..ooooovveceeeceeraan.. 358/1.9
7,630,099 B1* 12/2009 Hoelcooovvvvevviinnne., 358/1.9 * cited by examiner

UoIEd 43I
aseqrle(]

MY Joud
SE

US RE43,483 E

d1Vd,
J8]|0U0D

18I0 -

0zE
54oRD XSIQ

Gee
&N
Y
I
- o —
v— 0t
D sabed aAloeu —
.m d SAljoey| 099
N cee SIoAl YSI]

__ Arepunog)jned abe
3T punog }ne{4 abed \w

lBjoquony |
m AIOWBN 0b9
S el Wa1SASG 8]l
s 0c¢
. __ abed 8AND
n. 07 S80Ed SAIDY
=

Gel 029

JoBeuey Alowsy [enuiA

- — 009
m _
& Ol
D-... 00}
4
-

U.S. Patent Jun. 19, 2012 Sheet 2 of 19 US RE43.483 E

Address Data &
& Controls Parity

Memory

Controller

Address Data &
& Controls ECC

FIG. 2
Prior Art

US RE43,483 E

Sheet 3 0f 19

Jun. 19, 2012

U.S. Patent

Vv Old

US RE43,483 E

00€

a0Ineq O] OSPIA aAlQ PIEH

=
- aee
-
11e

o
s Ja]jonuon) AoWaN |
o
R I
; o 80c 90pug
E 8L¢

AlOWBaN

¢le NWIN ND

U.S. Patent

US RE43,483 E

d7 9l
0d1Ae((/|
AIOWBN

U.S. Patent

00€

PORA SAl(pPJed

GEC

9l¢
08P0N

e
19]|0AU0N AIOWBA

80¢ obpug

IV Dl

- 901N O/ 03PIA

US RE43,483 E

- GES

= TR [1%4

=) 59p0N 18)[0U0D) AloWws|]
Olc Aowa

U.S. Patent

00€
SALI(PIeH

US RE43,483 F.

adv Dl
321AeQ O/

o .
S
e~
:
)
=
0“...; ———t
= ¥
= AOWB |

U.S. Patent

00€
oPA SN PIeH
GE¢
D8P0 o7 -
NAW NdD NAIND
[A%

18]|04u0n) Alows |

902 abpug 00F NdD

US RE43,483 E

Sheet 8 0f 19

Jun. 19, 2012

U.S. Patent

d7 Ol

[]¥=
AIOWBS

ool O/

vl
NIAIND

Gtc

00¢
9ALI(] PIBH

91¢
D8P0

[T J9|10u0n) Alowon

802

abpug

AL
NAIN NdO

0L Nd9j

US RE43,483 E

Sheet 9 0f 19

Jun. 19, 2012

U.S. Patent

17 Ol

so1neq O/

9l¢
08P07)

1z AOWs

O

03PIA

00g
AL PieH

vie
(AND

11
19|[0)U07) AIOWBN

80¢ ebpug

¢le

(NN NdO

00T NdD

US RE43,483 E

OF DIl
SIAS(O/
;
o __
E qx
NN

U.S. Patent

008
9N PJeH

Gte

1%

cle
NAIN NdD

19]|041u0n Alows

80¢ ebpug

00} NdO

US RE43,483 E

HY 9Id .
90N (/] 09PIA oA DIEH
. 5
3 312 cle
Alowop AW NdO
11e
ﬁ 191j0Jju0ND) AJICWB
05¢

U.S. Patent

US RE43,483 E

Sheet 12 0of 19

Jun. 19, 2012

U.S. Patent

Iv Old

AJOWI A

VlAR(] (/] OBPIA

vie

] _ NININD

te

r 18]|0J1u0D) AICWB

062 80¢ ebpug

00¢
oAl pieH

cle
AN NdO

00F NdD

ﬂ 25¢

U.S. Patent

Jun. 19, 2012 Sheet 13 of 19 US RE43.483 E
I R _
120 l CPU 110 | |
‘ CMMU
]
L3
130 |
/’\I
CPU Subsystem gl
| — Memory Subsystem 200
Active Pages
220
/\J
Page Fault Boundary

Inactive Pages
230

Compressed
Cache

240

211

—

]

l Disk Cache '
320

Digk

s

Disk Controller
IIRAIDII
310

FIG. 5A

Memory Controller

Nonvolatile Memory Subsystem 300

U.S. Patent Jun. 19, 2012 Sheet 14 of 19 US RE43.483 E

CPU
110

CPU Subsystem 100

' . - Memory Subsystem 200
Active Pages
220

Memory Controller
(, Page Fault Boundary l 211 l
Inactive Pages
I 240 l CMMU
214

Compressed | | |
Cache |
240 |
Disk Cache —
320
— Disk Controller
— "RAID"
310
Disk
330
Nonvolatile Memory Subsystem 300

FIG. 5B

U.S. Patent Jun. 19, 2012 Sheet 15 of 19 US RE43.483 E

Processor Processor Memory
Address Data Data

; - Page _
age
Table [(‘_Ij‘abrlle i Input buffer
Cache ache _ _
— Control ———————— —l
l i T
L | Codec
Read DMA .-1 . 216
Write DMA | OUtpUI bufter
SNoop l
Mamory Memory |
Address Address Data Data

FIG. 6 - CMMU with Codec

CMMU L — : ‘ Codec |
214 214

FIG. 7

U.S. Patent

Jun. 19

, 2012

402

404

Operating
System

Larger

Sheet 16 0of 19

P e
(TR

i

Himis

R L AT

<3 T -;:i':'\.'i.-'

402

Dynamic
Size <

no
- FLe L e _
i -a-ﬁ.-ﬁd‘_._.a::‘ _.FC: :. - ‘
Poae B " i
g ¥ FAENE B
i <3
- =
cor 1 YSICIT]
EEAEN -+ ==¥ o 2N
et Ml W e R el
"} Do By B IR daid éc,‘-'* g 1
E--.'a: - .ﬁ- = TR = \..E%E' z
£ = \
-

Kernel {
Driver :
Cache \

400

4006

i1

i
]

F
sl
el
oo
il g

R

e
W "'ﬁ.j;.l;'; ;
tav a

1 = o= 0= 9'.5 3'% E
1 - B Taaly, L
Vo B

I !_)% = <R
H
‘ eEt E':-!- g:hi-%*:r- £
3 T L ETE
IO R K T &:é
a8 Y E T u
‘ S S P j
2 - -
|

404

Operating
System

Same Size s

yrererer
peom TR H . . - . H
Ll R R v 1 g
-:Ff-:~.-wc~ = B T, o REENE Toe
TS B T A P P
SAEEY ime SR IR Fyoids
I Rt -
N NN Y
V-’Fﬂi:;_l'\-{i_cﬂ
L T & =S -
I Ve E B et dR
e A - I)
s B VAR DL
=5 A
=

FIG. 9

v

T

AR

US RE43,483 E

400

422

422

US RE43,483 E

Sheet 17 0of 19

Jun. 19, 2012
410

U.S. Patent

422

400

FIG. 10

PTT

e om0 TS T TR r Voo e

=-n e - FLERY A} LT

B 11 L L] o] oo
A 2 Sveen Ponw u...._-.s.m

- Ty . -_“
" - - L} - .
e § Wi WY e n A SR
A is ' RN . L4 L4
m LI M Ll ...M defem g e N u...,....}rm. Pﬂ
t ﬂm.“. i [P [ST LY

. I . - -
.-__..._. “,..._u:“. .".u...n”...s. - gt_.”...n ._.....n...ﬁ.n.._. H
Al Ry ! T W '
y i) " ’ - ﬁw“.u.x.x.m._.ﬂ.w; W a v T A S " .
L TR T I S A e e ey e et - y 2 i .. EURRT _w.m. Lo 1 ICRRPI A .
Ml M AmmA A b w R I T A T A 1 2 53 L1 R R o
b
R
.. L
0
[
S
r:
o]
-
5
Wi U
o U C C U
- n.l.” “l” “
~
-
-
S .
. r =
T - e Wwoood ek Y T A A R R R T L
o . B N T L I S T e ..,.E..,.__w._" FR R i e b ...w....”_.w."_,u_" bl W w T
.. . . o ' Ty, o H...“..._._.,_. o
] - -
T M
L - -
IR Ve
I
ey,]
A
L
.... C
- M
o
"
1T
-
- ERENEIIRY
Tl o e
.) -, o
Y
L] b u.l_......:. .-.u.qw

k- i}
L . LT, . - o
o .,.._.._u.. M.__.......,.,.. /j_n Y e X T .-..._.... Aol W
R 0.) , nLLL LR e

. .._.1.
....,......,......,..{..,,.,,.u,.
A .n. - -

e T .m e A
o

g
CPTE
UPTE
CPTE
CPTE
UPTE
UPTE

- i
o R S

t FER T
- w '

420

412

/Os
416
42

CPUs
414
424a

392
O
424

390

FIG. 11

U.S. Patent

PTE
424

L

Jun. 19, 2012

430 v 432 v

Sheet 18 0f 19

US RE43,483 E

Attributes

pPage

4

FIG. 12

440

L

R T
3 :.'::l":'\.:'

;

WY A R

bbb

"

Y

L e e
oo o
[

L]

oo

weeee o wngln

- — n — " rv—— —
T o - bl [] r t
- - deoA

" i,
c PE . , E,’: L
- £ o l E . "
™ - [r
ot oo B PR Tios o ML
|

-.EI ' —-
£ o L)
- £ ({'\.‘zh'iE- 2nf :
‘E "t"‘- .-ﬂ' =
| Lo o e s
LI PR :"-’»3:?;"""
N ﬂ;“‘-\: EE — = ok
i; fEr
L .%EA:::.-\.::R__,\':
hatagesale . -\._3"5:":"‘2-\#
em E -]
= = =
et

»
o

FIG. 14

P

o

s o
TEn

A 2 -
Agfk%§§]

:iERES

. s
]
2o .
p - =
FoatMaEha
:;%: 3#___:"
- - -
e
s
':I'
-
L= * E
-
.2 ;-: E =
5 T S
e T o
L] - =
£ 2 Al
foitf

.

el e oo
Al
]

US RE43,483 E

Sheet 19 0f 19

Jun. 19, 2012

U.S. Patent

1] =
Nd1 < NdA
POSSaIALI0N pessaldwiod / passaidLIooun passaIdwoou
N —— NYN / NdT - NHIN
/

US RE43,483 E

1

SYSTEM AND METHOD FOR MANAGING
COMPRESSION AND DECOMPRESSION OF
SYSTEM MEMORY IN A COMPUTER
SYSTEM

Matter enclosed in heavy brackets |] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue. 10

PRIORITY CLAIM

This application claims benefit of priority of provisional
application Ser. No. 60/250,177 titled “System and Method 1>
for Managing Compression and Decompression of System
Memory 1n a Computer System™ filed Nov. 29, 2000, whose
inventors are Thomas A. Dye, Manny Alvarez and Peter Gei-

ger.
20

FIELD OF THE INVENTION

The present invention relates to memory systems, and more
particularly to an integrated compressed memory manage-
ment unit comprising a compression/decompression circuit 25
where the unit operates to improve performance of a comput-
ing system by the storage of compressed system memory data
in system memory or physical memory.

DESCRIPTION OF THE RELATED ART 30

Computer system and memory subsystem architectures
have remained relatively unchanged for many years. While
memory density has increased and the cost per storage bit has
decreased over time, there has not been a significant improve- 35
ment to the effective operation of the memory subsystem or
the software which manages the memory subsystem. The
majority of computing systems presently use a software
implemented memory management unit which performs vir-
tual memory functions. In a virtual memory system, the non- 40
volatile memory (e.g., hard disk) 1s used as a secondary
memory to provide the appearance of a greater amount of
system memory. In a virtual memory system, as system
memory becomes full, least recently used (LRU) pages are
swapped to the hard disk. These pages can be swapped back 45
to the system memory when needed.

Software-implemented compression and decompression
technologies have also been used to reduce the size of data
stored on the disk subsystem or in the system memory data.
Current compressed data storage implementations use the 50
system’s CPU executing a software program to compress
information for storage on disk. However, a software solution
typically uses too many CPU compute cycles and/or adds too
much bus traific to operate both compression and decompres-
sion 1n the present application(s). This compute cycle prob- 55
lem increases as applications increase 1n size and complexity.

In addition, there has been no general-purpose use of com-
pression and decompression for im-memory system data.
Prior art systems have been specific to certain data types.
Thus, software compression has been used, but this technique 60
limits CPU performance and has restricted use to certain data
types.

Similar problems exist for programs that require multiple
applications of software threads to operate 1n parallel. Soft-
ware compression does not address heavy loaded or multi- 65
threaded applications, which require high CPU throughput.

Other hardware compression solutions have not focused on

2

“mn-memory’” data (data which reside 1n the active portion of
the memory and soitware hierarchy). These solutions have
typically been I/O data compression devices located away
from the system memory or memory subsystem. In general,
the usage of hardware compression has been restricted to
slow 1put and output devices usually located at the I/O sub-
system, such as the hard drive.

Mainframe computers have used data compression for
acceleration and reduction of storage space for years. These
systems require high dollar compression modules located
away Irom the system memory and do not compress in-
memory data 1n the same memory subsystem for improved
performance. Such high dollar compression subsystems use
multiple separate engines running 1n parallel to achieve com-
pression speeds at super computer rates. Multiple separate,
serial compression and decompression engines running in
parallel are cost prohibitive for general use servers, worksta-
tions, desktops, or mobile units.

Lower cost semiconductor devices have been developed
that use compression hardware. However, these devices do
not operate fast enough to run at memory speed and thus lack
the necessary performance for imn-memory data. Such com-
pression hardware devices are limited to serial operation at
compression rates that work for slow 1/0 devices such as tape
backup units. The problem with such I/O compression
devices, other than tape backup units, 1s that portions of the
data to compress are often too small of a block size to etiec-
tively see the benefits of compression. This 1s especially true
in disk and network subsystems. To operate hardware com-
pression on in-memory data at memory bus speeds requires
over an order of magmtude more speed than present day
state-oi-the-art compression hardware.

Prior Art Computer System Architecture

FIG. 1 1llustrates a block diagram example of a prior art
computer hardware and soitware operating system hierarchy
of present day computing systems. The prior art memory and
data storage hierarchy comprises the CPU Subsystem 100,
the main memory subsystem 200, and the disk subsystem
300. The CPU subsystem 100 may comprise an L1 cache
memory 120 and an L2 cache memory 130 coupled to the
CPU 110 and the CPU’s local bus 135. The CPU subsystem
100 1s coupled to the main memory subsystem 200 through
the CPU local bus 135. The main memory subsystem 200 1s
also coupled to the disk subsystem 300. The main memory
subsystem 200 comprises the memory controller 210, for
controlling the main system memory banks, active pages of
memory 220, mactive pages ol memory 230, and a dynami-
cally defined page fault boundary 232. The page fault bound-
ary 232 1s dynamically controlled by the virtual memory
manager soltware 620 to optimize the balance between active
and 1nactive pages in the system memory and “stale” pages
stored on disk. The memory subsystem 200 1s coupled to the
I/O or disk subsystem 300 by the IO peripheral bus interface
235, which may be one of multiple bus standards or server/
workstation proprietary 1/0O bus interfaces, e.g., the PCI bus.
For purpose of illustration, the I/O disk subsystem 300 com-
prises the disk controller 310, the optional disk cache memory
320, and the actual physical hard disk or disk array 330 which
1s used to store nonvolatile/non-active pages. In general, mul-
tiple subsections of CPU 100, memory 200, and disk 300
subsystems may be used for larger capacity and/or faster
operation.

The prior art drawing of FI1G. 1 also illustrates the software
operating system 600. The typical operating system (OS)
comprises multiple blocks. FI1G. 1 shows a few of the relevant
OS blocks, including the virtual memory manager (VMM)
620, file system 640, and disk drivers 660.

US RE43,483 E

3

The operation of prior art systems for storage and retrieval
of active and non-active pages from either the system memory
or the disk 1s now described for reference. Again referring to
the prior art system of FIG. 1, the VMM 620 1s responsible for
allocation of active pages and reallocation of 1nactive pages.
The VMM 620 defines page fault boundary 232 separating
the active pages 220 and the inactive pages 230 located in
both the system memory subsystem 200 and disk subsystem
300. An active page may be defined as an area or page of
memory, typically 4096 bytes, which 1s actively used by the
CPU during application execution. Active pages reside
between or within system memory or CPU cache memory. An
inactive page may be defined as an area or page of memory,
typically 4096 bytes, which 1s not directly accessed by the
CPU for application execution. Inactive pages may reside 1n
the system memory, or may be stored locally or on networks
on storage media such as disks. The page fault boundary 232
1s dynamically allocated during run time operation to provide
the best performance and operation as defined by many indus-
try standard algorithms such as the LRU/LFU lazy replace-
ment algorithm for page swapping to disk. As applications
grow, consuming more system memory than the actual avail-
able memory space, the page fault boundaries 232 are rede-
fined to store more mactive pages 230 1n the disk subsystem
300 or across networks. Thus, the VMM 620 1s responsible
for the placement of the page fault boundary 232 and the
determination of active pages 220 and inactive pages 230,
which reside in memory and on the disk subsystem 300.

The file system software 640, among other tasks, and along
with the disk drnivers 660, are responsible for the effective
movement of 1nactive pages between the memory subsystem

200 and the disk subsystem 300. The file system soitware 640
may have an interface that 1s called by the VMM 620 software
for the task of data movement to and from the computer disk
and network subsystems. The file system 640 software main-
tains file allocation tables and bookkeeping to locate mactive
pages that have been written to disk. In order for the file
system to operate, the file system calls the software disk
drivers 660 for DMA control of data movement and physical
disk control. Instructions are programmed 1nto the disk con-

troller 310 of the disk subsystem 300 by the file system 640
software. Thus, when application data exceeds the available
system memory space, the VMM 620 allocates and reallo-
cates active and 1nactive pages for best operation of applica-
tion data and instructs the file system 640 to instruct the disk
driver 660 to carry out the DMA operation and page move-
ment tasks.

FIG. 2 illustrates a block diagram example of a prior art
computer system memory configuration with a Host Bus or
CPU local bus 135 coupled to a Memory Controller. Four
standard DIMMs are shown 1nstalled 1n the memory slots. In
this system, data written to system memory 1s recerved from
the host bus by the memory controller and written to one or
more of the DIMMs “as 1s”, with the possible inclusion of
error correction information. The memory controller may
include error correction and detection logic (ECC) to detect
errors on data read back from memory. This 1s generally
accomplished by appending error detection data to the written
data; for example, a 64-bit write to memory may have 8-bit
error detection data appended to the 64 bits.

The amount of system memory available for executing
processes within Prior Art computer systems 1s generally
limited by the amount of physical memory installed 1n the
system. It 1s desirable to provide a method of increasing the
elfective size of system memory without increasing actual

10

15

20

25

30

35

40

45

50

55

60

65

4

physical memory, and to thus allow processors and/or 1/0O
masters of the system to address more system memory than
physically exists.

SUMMARY OF THE INVENTION

The present invention comprises various embodiments of a
system, such as a computer system, that includes a Com-
pressed Memory Management Unit (CMMU) and one or
more compression/decompression engines. In various
embodiments, the CMMU may be comprised either in the
CPU, the system memory controller, or on a separate chip.
Where the computer system includes multiple CPUs, the
CMMU may be comprised in one or a plurality of the CPUs.
The one or more compression/decompression engines may be
comprised 1n the CPU, the system memory controller, or 1n
the memory subsystem, €.g., on one or more memory mod-
ules, or elsewhere 1n the system.

The Compressed Memory Management Umt (CMMU)
may operate 1 conjunction with the one or more compres-
s10n/decompression engines to allow a processor or I/O mas-
ter to address more system memory than physically exists.
The CMMU may translate system addresses received 1n sys-
tem memory accesses into physical addresses. The CMMU
may pass the resulting physical address to the system memory
controller to access physical memory (system memory). In
one embodiment, the CMMU may manage system memory
on a page granularity. The CMMU may increase the effective
s1ze of system memory by storing the least recently used
pages 1n a compressed format 1n system memory (and possi-
bly also on the hard drive), and storing the most recently and
frequently used pages uncompressed 1n system memory. The
most recently and frequently used data may also be cached in
one or more locations, such asinan L1, .2, and/or L.3 cache.

In one embodiment, a programmable compression ratio
may be used 1n determining the amount by which the system
memory address space can be increased. In one embodiment,
the CMMU may monitor the actual compression ratio and, 1
the actual ratio drops below a threshold compression ratio,
may act to compress one or more uncompressed pages to thus
maintain the desired programmed compression ratio.

In some embodiments, the operating system may be aware
of the increased size of system memory provided by the
CMMU. In embodiments where the operating system 1is
aware, akernel driver may be used to ensure that the operating
system may safely use the entire system memory space with-
out overtlowing physical memory. In other embodiments, the
operating system may not be aware of the increased size of
system memory. In embodiments where the operating system
1s not aware of the increased size of system memory, only the
kernel driver may be aware of the increased size of system
memory. The kernel driver may selectively compress system
memory pages 1nto a portion of the system memory, referred
to as a compressed cache. In one embodiment, the com-
pressed cache may dynamically vary in size. In one embodi-
ment where the operating system 1s not aware of the increased
s1ze of system memory, the CMMU may allocate additional
space by using physical addresses above locations of physical
memory. In yet other embodiments, the operating system may
be aware of the increased size of a first portion of the system
memory, but not be aware of the increased size of the second
portion of the system memory provided by the CMMU.

In one embodiment, the CMMU may be integrated 1nto a
system memory controller. For example, the CMMU may be
integrated into PC chipset logic, e.g. a North Bridge and/or
South Bridge. In another embodiment, the CMMU may be
integrated into a CPU or CPU chip.

US RE43,483 E

S

The CMMU may include, but 1s not limited to, the follow-
ing hardware components: a Page Translation Cache (PTC)
and one or more scatter/gather DMA channels. In one
embodiment, the CMMU may include a compression/decoms-
pression engine (CODEC). In one embodiment, the PTC may
be tully associative. Software resources that the CMMU man-
ages may include, but are not limited to: a Page Translation
Table (PTT) comprising Page Translation Entries (PTEs),
Uncompressed Pages (UPs), and Compressed Blocks (CBs).
The PTC may include one or more recently or frequently used
PTEs from the PTT, and may thus reduce the overhead of
accessing a frequently or recently used PTE from the PTT
stored in physical memory. In one embodiment, the unused
Ups may be linked together to form an Uncompressed Page
Free List (UPFL). In one embodiment, the unused CBs may
be linked together to form a Compressed Block Free List
(CBFL). In one embodiment, the PTEs that reference uncom-
pressed pages may be linked together to form an Uncom-
pressed Least Recently Used (LRU) List (ULRUL). In one
embodiment, the PTEs that reference compressed blocks may
be linked together to form a Compressed LRU List (CLRUL).

When a processor or /O master generates an access to
system memory, the CMMU may translate the system
memory address of the access into a physical memory
address. In translating the system memory address, the
CMMU may perform a PTC lookup. If the PTE 1s already 1n
the PTC, and 11 the PTE points to an uncompressed page, then
the CMMU may pass the pointer to the uncompressed page
from the PTE to the memory controller. The memory control-
ler may use this pointer to directly access physical memory
for the access. If the PTE 1s not already 1n the PTC, then the
CMMU may read the PTE from the PT'T located in physical
memory. The CMMU may then write or cache the PTE to the
PTC as a recently or frequently used PTE. Once the PTE 1s
obtained, either from the PTC or read from the PTT, the PTE
may be used to access the uncompressed page. In t__le case of
a read, the uncompressed page may be readily returned to the
requesting processor or I/O master.

If the PE points to a compressed page, then the CMMU
may read the PTE from the P1TT located 1n physical memory
into the PTC (if 1t was not already cached 1n the PTC), and
may load the pointer to the first compressed block from the
PTE imto the DMA channel. The DMA channel may read the
appropriate number of linked compressed blocks and copy
them into the CODEC. The CODEC may decompress the
compressed page substantially in real-time. For example, the
CODEC may decompress the compressed page at a sufficient
speed such that, to the accessing processor or I/O master,
there 1s no detectable delay 1n the memory access, or 1n one
embodiment less than a 5% delay detected in the memory
access, or 1n one embodiment less than a 20% delay detected
in the memory access. In one embodiment, a parallel decom-
pression algorithm as described below may be used.

After decompression has been performed, the uncom-
pressed page or datamay be provided directly to the accessing,
processor or I/O master from the CODEC to satisty the
access. Alternatively, the uncompressed page or data may be
stored back in system memory and accessed from there. In
addition, after decompression, the DMA channel may read
the uncompressed page from the CODEC and copy 1t into an
unused page 1n system memory pointed to by an entry in an
Uncompressed Page Free List (UPFL). The compressed
blocks pointers may be returned to a Compressed Block Free
List (CBFL). The CMMU may update the PTE to point to the
uncompressed page. In an embodiment where the uncom-
pressed page 1s written back to system memory and accessed

from there, the CMMU may update the CLRUL and ULRUL

10

15

20

25

30

35

40

45

50

55

60

65

6

appropriately. The CMMU may pass the pointer to the
uncompressed page to the memory controller, and the
memory controller may use this pointer to directly access
physical memory. Thus, when a request for a compressed
page occurs, the compressed page 1s decompressed in the
memory controller 1n real time, and the resulting uncom-
pressed page may be etther 1) provided directly to the
requestor and stored back in system memory or 2) stored back
in system memory and accessed from there.

When the CMMU needs to compress an uncompressed

page, for example, to free up additional space in system
memory, the CMMU may perform a PTC lookup. If the PTE

1s already in the PTC, then the CMMU may obtain the PTE
from the PTC and load the pointer to the uncompressed page
from the PTE into the DMA channel. If the PTE 1s not already
in the PTC, then the CMMU may read the PTE from the PTT
located 1n physical memory. In one embodiment, the CMMU
may then load or cache the PTE into the PTC. The DMA
channel may read the uncompressed page from physical
memory and load 1t mto the CODEC. The CODEC may
compress the page in real-time, e.g. at memory speed. In one
embodiment, a parallel compression/decompression algo-
rithm may be used as described herein. The DMA channel
may read the compressed page from the CODEC and copy 1t
into linked compressed blocks from the CBFL. The address
of the uncompressed page may be returned to the UPFL. The
CMMU may update the PTE 1n physical memory to point to
the first compressed block of the compressed page. The
CMMU may update the CLRUL and ULRUL as needed.
Thus, when additional space 1s desired 1n system memory, the
CMMU may operate to read uncompressed pages (preferably
leastrecently used uncompressed pages), compress them, and
store them back into the system memory as compressed
pages, thus freeing up space 1n system memory.

In one embodiment where the operating system 1s aware of
the increased size of system memory, the CMMU may be
initialized and enabled by BIOS. In one embodiment where
the operating system 1s not aware of the increased size of
system memory, the CMMU may be 1nitialized and enabled
during BIOS. In another embodiment where the operating
system 1s not aware of the increased size of system memory,
the CMMU may be mnitialized and enabled after the operating
system has booted.

As noted above, 1n an embodiment where the operating
system 1s aware of the increased size of system memory, the
kernel driver may be used to ensure that the operating system
1s able to safely use the entire system memory space without
overflowing physical memory. In one embodiment, the kernel
driver may accomplish this by ensuring that a minimum aver-
age compression ratio across the entire system memory space
1s maintained. In one embodiment, the CMMU may provide
an Application Programming Interface (API) that enables a
kernel driver to imitiate various CMMU operations.

In one embodiment, one or more Compression/Decom-
pression engines (CODECs) may be optimized to perform
page-based compressions and decompressions. If a system
memory page 1s uncompressible, then the CMMU keeps the
page uncompressed. In one embodiment, a plurality of DMA -
based CODECs may be included. In one embodiment, the one
or more CODECs may 1nclude at least one parallel data
compression and decompression engine, designed for the
reduction of data bandwidth and storage requirements and for
compressing/decompressing data at a high rate.

In one embodiment, one or more pages may be very highly
compressed so that the pages take up much less space 1n the
memory. In one embodiment, this may be performed by set-
ting an attribute in the page translation entry that references

US RE43,483 E

7

the page. In one embodiment, the attribute 1s a single bit that
may be set to indicate the page 1s highly compressed. In one
embodiment, setting this attribute forces the page to be com-
pressed to the maximum amount so that the page takes zero
space. A highly compressed page may be represented by an
entry in the page table that does not actually point to any
blocks of memory. Any compressed or uncompressed blocks
formerly occupied by the page may be returned to the
memory for use by other processes. In one embodiment,
marking pages as Highly Compressible may occur when the
operating system 1s aware ol compression, and the current or
actual compression ratio 1s near or below a threshold com-
pression ratio. In one embodiment, a pool of pages that are
inactive and clean may be available to be highly compressed
to meet the required compression ratio.

The CMMU may monitor the performance of compress-
ibility in the system. The amount of data that can be active for
any one program may be restricted, and a pool of 1nactive
pages that represent the least recently used active pages may
be maintained. Some of these pages may be compressed and
some of them may be uncompressed. Active pages may be
dirty or clean. Inactive pages represent real pages and com-
prise real data. If an active page 1s dirty, the page may need to
be written back to disk (1.e. made clean) before moving to the
inactive pool. Thus, the inactive pages by definition are clean.
These iactive pages may be invalidated and marked to be
very highly compressible without making any memory allo-
cations or requiring action by or notification to the operating
system.

In one embodiment, when decompressing a page, 1 the
page 1s marked as highly compressed (e.g. the Highly Com-
pressed attribute 1s set in the page translation entry, a “zeroed”
page may be synthesized by the CMMU) rather than having
the decompression engine decompress the highly com-
pressed page. Alter the zeroed page 1s synthesized, data may
be read from the non-volatile storage to the page. This data
may include data that was previously written back to the
non-volatile storage during the process of highly compress-
ing the page.

In one embodiment, the system may include a plurality of
compression/decompression engines (CODECs) that may
cach implement one of a plurality of compression algorithms
and a corresponding decompression algorithm. In one
embodiment, a page translation entry for a page may indicate
the particular compression algorithm that was used to com-
press the page. In one embodiment the page translation entry
may include an attribute, which may be referred to as a
CODEC selector attribute, that may be set to cause a particu-
lar compression algorithm to be used to compress the page,
and thus also indicates the corresponding decompression
algorithm. In one embodiment, two or more different com-
pression algorithms may be performed on the data, and one of
the compression algorithms may then be selected as the
desired compression algorithm for the data. The desired com-
pression algorithm for the data may be selected, for example,
based on compression ratio. In other words, the compression
algorithm that yields the highest compression ratio for the
data may be selected. Other criteria, or a combination of two
or more criteria, may be used to select a compression algo-
rithm from the plurality of different compression algorithms.
For example, the fastest compression algorithm may be
selected. When the data needs to be decompressed, the page
translation entry may be examined to determine the appropri-
ate decompression algorithm for the data, and the compressed
page or pages containing the data may then be routed to one
or more CODECs that implement the appropriate decompres-
s1on algorithm to be decompressed. In one embodiment, the

10

15

20

25

30

35

40

45

50

55

60

65

8

plurality of CODECs may perform the compression or
decompression of the page 1n parallel. In one embodiment,

the system may include a plurality of compression/decom-
pression engines (CODECs) that may each implement a sub-
stantially stmilar compression algorithm and a corresponding
decompression algorithm. In this embodiment, a page of data
to be compressed or decompressed may be divided 1nto por-
tions, and each of the portions may be compressed or decom-
pressed by a different CODEC. After the portions are com-
pressed or decompressed, the uncompressed or compressed
portions of the page are merged to form the uncompressed or
compressed page. In one embodiment, the plurality of
CODECs may perform the compression or decompression of
the portions of the page 1n parallel.

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the present invention can be
obtained when the following detailed description of the pre-
ferred embodiment 1s considered 1n conjunction with the
tollowing drawings, in which:

FIG. 1 illustrates the prior art computer data memory and
storage hierarchy from the CPU cache, to the main system
memory to the disk subsystem;

FIG. 2 1s a block diagram illustrating a prior art system
memory configuration;

FIG. 3 illustrates an exemplary computer system which
implements one embodiment of the present invention;

FIG. 4a1s a block diagram of an embodiment of a computer
system where the CMMU 1s included in the CPU Memory
Management Unit (MMU) and the Compression/Decoms-
pression engine (CODEC) 1s included 1n the CPU subsystem:;

FIG. 4b 15 a block diagram of an embodiment of a computer
system where the CMMU 1s 1included 1n the CPU MMU and
the CODEC 1s included 1n the memory controller;

FIG. 4c1s a block diagram of an embodiment of a computer
system where the CMMU 1s 1included 1n the CPU MMU and
the CODEC 1s included 1n the memory;

FIG. 4d 1s a block diagram of an embodiment of a computer
system where the CMMU 1s included in the CPU subsystem
and the CODEC 1s included 1n the memory controller;

FIG. 4e1s a block diagram of an embodiment of a computer
system where the CMMU and the CODEC are included 1n the
memory controller;

FIG. 411s a block diagram of an embodiment of a computer
system where the CMMU 1s included 1n the memory control-
ler and the CODEC 1s included 1n the memory;

FIG. 4g 1s a block diagram of an embodiment of a computer
system where the CMMU 1s 1ncluded between the memory
controller and the memory and the CODEC 1s included in the
memory;

FI1G. 4h 15 a block diagram of an embodiment of a computer
system where the CMMU 1s included 1n the memory control-
ler and there are multiple DMA channels between the
memory controller and the memory;

FIG. 4115 a block diagram of an embodiment of a computer
system where the CMMU 1s included 1n the memory control-
ler, there are multiple DMA channels between the CPU sub-
system and the memory controller, and there are multiple
DMA channels between the memory controller and the
memory;

FIG. 3a 1s a block diagram illustrating a computer system
configuration with the CMMU 1n the CPU according to one
embodiment;

FIG. 5b 1s a block diagram 1llustrating a computer system
configuration with the CMMU 1n the memory controller
according to one embodiment;

US RE43,483 E

9

FIG. 6 1s a block diagram of a CMMU according to one
embodiment;

FIG. 7 1s a block diagram illustrating a CMMN and a
CODEC coupled by multiple DMA channels according to
one embodiment;

FI1G. 8 1llustrates an embodiment where the operating sys-
tem 1s aware of the increased size of system memory provided
by the CMMU;

FI1G. 9 1llustrates an embodiment where the operating sys-

tem 1s not aware of the increased size of system memory
provided by the CMMU;

FIG. 10 illustrates a CMMU i1ntegrated into a system
memory controller according to one embodiment;

FI1G. 11 illustrates software resources that the CMMU may
manage 1n physical memory according to one embodiment;

FI1G. 12 1llustrates a Page Translation Entry (PTE) includ-
ing several elements according to one embodiment;

FIG. 13 illustrates a CMMU placing unused compressed
blocks on a Compressed Block Free List (CBFL) according to
one embodiment;

FI1G. 14 illustrates PTEs that point to compressed pages
and linked together to form a Compressed LRU List (CL-
RUL) according to one embodiment; and

FI1G. 15 illustrates a fully associative mechanism for man-
aging compressed and uncompressed pages ol memory
according to one embodiment.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

Incorporation by Reference

The following patents and patent applications are hereby
incorporated by reference 1n their entirety as though fully and
completely set forth herein.

U.S. Pat. No. 6,173,381 titled “Memory Controller Includ-
ing Embedded Data Compression and Decompression
Engines” 1ssued on Jan. 9, 2001, whose inventor 1s Thomas A.
Dye.

U.S. Pat. No. 6,170,047 titled “System and Method for

Managing System Memory and/or Non-volatile Memory
Using a Memory Controller with Integrated Compression and
Decompression Capabilities” 1ssued on Jan. 2, 2001, whose

inventor 1s Thomas A. Dye.

U.S. patent application Ser. 09/239,659 titled “Bandwidth
Reducing Memory Controller Including Scalable Embedded
Parallel Data Compression and Decompression Engines”
whose mventors are Thomas A. Dye, Manuel J. Alvarez 11 and
Peter Geiger and was filed on Jan. 29, 1999. Pursuant to a
Response to Office Action of Aug. 5, 2002, this application 1s
currently pending a title change from the above to “Selective
Lossless, Lossy, or No Compression ol Data Based on
Address Range, Data Type, and/or Requesting Agent.”

U.S. Pat. No. 6,208,273 titled “System and Method for
Performing Scalable Embedded Parallel Data Compression™
1ssued on Mar. 27, 2001, whose inventors are Thomas A. Dye,
Manuel J. Alvarez II and Peter Geiger.

U.S. patent application Ser. No. 09/491,343 titled “System
and Method for Performing Scalable Embedded Parallel Data
Decompression” whose inventors are Thomas A. Dye, Man-

uel J. Alvarez I and Peter Geiger, and was filed on Jan. 26,
2000.

U.S. Pat. No. 6,523,102 B1 titled *“Parallel Compression/
Decompression System and Method for Implementation of
In-Memory Compressed Cache Improving Storage Density
and Access Speed for Industry Standard Memory Subsystems

10

15

20

25

30

35

40

45

50

55

60

65

10

and In-Line Memory Modules™ 1ssued on Feb. 18, 2003,
whose inventors are Thomas A. Dye, Manuel J. Alvarez I1 and
Peter Geiger.
FIG. 3—Exemplary Computer System

FIG. 3 illustrates an exemplary computer system that may
implement embodiments of the present mnvention. Embodi-
ments of the present invention may be implemented 1n any of
various systems, such as a computer system, Internet appli-
ance, network appliance, personal digital assistant (PDA),
television, telephone, such as a wireless telephone, or 1n gen-
eral, any device that includes a memory.
FIGS. 4A—4]—FExemplary Computer System Architectures

FIGS. 4A-41 illustrate several embodiments of system
architecture that include a Compressed Memory Manage-
ment Unmit (CMMU). As shown 1n FIGS. 4A—41, the systems
may include a CPU 100 coupled to a bridge 208. CPU 100
may include a Memory Management Unit (MMU) 212. The
bridge 208 may 1include a memory controller 211. The bridge
208 may include additional logic or functionality, such as
North Bridge and/or South Bridge functionality. The bridge
208 may couple to a system memory 218. The memory con-
troller 211 1n the bridge 208 may couple to system memory
218 and may manage accesses to the system memory. The
bridge 208 may couple to an I/O bus 235. A hard drive or other
non-volatile memory 300 may couple to the I/O bus 235. A
video device and on or more other I/O device may also couple
to the 1I/O bus 235. The various embodiments may also
include one or more compression/decompression engines
(CODEC) 216 that may perform data compression and
decompression under control of the CMMU 214. In one
embodiment, at least one of the one or more CODECs may be
a parallel compression/decompression engine that may per-
form parallel data compression and decompression under

control of the CMMU 214.

In one embodiment as illustrated in FIG. 4A, the CPU
Memory Management Umt (MMU) 212 may include a
CMMU 214 as described herein. In this embodiment, the
CPU 100 may also include CODEC 216. In one embodiment
as 1llustrated 1n F1G. 4B, the CPU Memory Management Unait
(MMU) 212 may include a CMMU 214 as described herein.
In this embodiment, the memory controller 211 1n bridge 208
may include a CODEC 216. In one embodiment as 1llustrated

in FIG. 4C, the CPU Memory Management Unit (MMU) 212
may include a CMMU 214 as described herein. In this
embodiment, the memory 218 may include a CODEC 216. In
one embodiment as illustrated 1n FIG. 4D, the CPU 100 may
include a CMMU 214 that 1s implemented separately from
the CPU MMU 212, and that interfaces with CPU MMU 212
to manage the compression/decompression of data using a
CODEC 216. In this embodiment, the memory controller 211
in bridge 208 may include the CODEC 216. In one embodi-
ment as 1llustrated 1n FI1G. 4E, the memory controller 211 in
bridge 208 may include both the CMMU 214 and the CODEC
216. In one embodiment as 1llustrated in FIG. 4F, the memory
controller 211 in bridge 208 may include the CMMU 214. In
this embodiment, the memory 218 may include a CODEC
216. In one embodiment as 1llustrated in FIG. 4G, the CMMU
214 may be coupled between the bridge 208 and memory 218.
In this embodiment, memory 218 may include a CODEC 216.
In one embodiment, as 1llustrated 1n FI1G. 4H, the CMMU 214
may be included 1n the memory controller 211. In this
embodiment, there may be a plurality of DMA channels 250
coupling the memory 218 to the bridge 208 that may be used
by the CMMU 214 1n transierring memory. In one embodi-
ment, as illustrated i FIG. 41, the CMMU 214 may be
included in the memory controller 211. In this embodiment,
there may be a plurality of DMA channels 250 between the

US RE43,483 E

11

memory 218 to the bridge 208 and a plurality of DMA chan-
nels 252 between the bridge 208 and the CPU subsystem 100
that may be used by the CMMU 214 1n transferring memory.
FIGS. SA-5B—Computer System with Compressed Cache

FIG. 5A illustrates a computer system with a Compressed
Memory Management Unit (CMMU) 214 embedded in a
CPU according to one embodiment. The computer system of
FIG. SA includes a CPU subsystem 100, a memory sub-
system 200, and a nonvolatile memory subsystem 300. The
CPU subsystem 100 may be coupled to the memory sub-
system 200, which may be coupled to the disk subsystem 300.
The CPU subsystem 100 includes a CPU 110 and may also
include one or more caches suchasan L1 cache 120 and an 1.2
cache 130. The CPU 210 may include a Compressed Memory
Management Unit (CMMU) 214. In another embodiment, the
CMMU 214 may be included 1n the CPU subsystem external
to the CPU 110.

In one embodiment, the CMMU 214 may be driven by
hardware control logic internal to the CPU subsystem 100. In
one embodiment, the hardware control logic may be 1nte-
grated 1n the CPU 210. In another embodiment, the CMMU
214 may be controlled by software, for example a driver,
executable within the CPU 110.

The memory subsystem 200 may include memory control-
ler 211 and system memory 218 (also referred to as main
memory or RAM). Within the memory subsystem 200 of one
embodiment, the memory controller 210 may be coupled to
system memory 218. System memory 218 may be comprised
of one or more volatile memory devices such as DIMMs,
SIMMs, SDDIMMs, RIMMs, or C-DIMMSs (compression
cnabled DIMMSs). System memory 218 may store active
pages 220, mactive pages 230, and compressed cache 240.

FIG. 5B 1llustrates a computer system with a Compressed
Memory Management Unit (CMMU) 214 embedded 1n a
memory controller 211 according to one embodiment. The
computer system of FIG. 3B includes a CPU subsystem 100,
a memory subsystem 200, and a nonvolatile memory sub-
system 300. As indicated 1n FIG. 5B, the CPU subsystem 100
may be coupled to the memory subsystem 200, which may be
coupled to the disk subsystem 300 The CPU subsystem 100
includes a CPU 110 and may also include one or more caches
such as an L1 cache 120 and an L.2 cache 130.

The memory subsystem includes memory controller 211
and system memory 218 (also referred to as main memory or
RAM). Within the memory subsystem of one embodiment,
the memory controller 210 may be coupled to system
memory 218. System memory 218 may be comprised of one
or more volatile memory devices such as DIMMs, SIMMs,
SDDIMMs, RIMMs, or C-DIMMSs (compression enabled
DIMMSs). System memory 218 may store active pages 220,
inactive pages 230, and compressed cache 240. The memory
controller 211 may include the CMMU 214. In one embodi-
ment, the CMMU 214 may be driven by hardware control
logic internal to the memory controller 211. In another
embodiment, the CMMU 214 may be controlled by software,
for example a driver, executable within the CPU 110.

In the embodiments 1illustrated 1n FIGS. SA and 5B, a
portion of the system memory 218, referred to as the com-
pressed cache 240, may store compressed memory pages.
Thus the compressed cache 240 may be located in the
memory subsystem 200 of the computer. In one embodiment,
the CMMU 214 may allocate the compressed cache 240. The
compressed cache 240 may be allocated within the normal
memory map of the computer system. Compressed pages
may be stored 1n the compressed cache 240. Pages are gen-
erally 4096 bytes. In alternate embodiments, page sizes can
be any size as desired by the operating system software.

5

10

15

20

25

30

35

40

45

50

55

60

65

12

Instead of swapping inactive pages to the nonvolatile
memory 330, embodiments of the system and method as
described herein may operate to store inactive pages in a
compressed format 1n the compressed cache 240. In addition,
pages from the compressed cache 240, which are maintained
in compressed format, can be moved to disk or network 1n
such format for future data storage, retrieval, or transmission
over LANs or WANSs. Thus, a second order benefit 1s achieved
by storage of compressed pages in the I/O subsystem 300
instead of non-compressed pages.

Computer Architecture of Several Embodiments

The present invention provides various embodiments of a
Compressed Memory Management Unit (CMMU) 214 that
allows a processor or I/O master to address more system
memory than physically exists. FIG. 6 1s a block diagram
illustrating the architecture of a CMMU 214 according to one
embodiment. Note that CODEC 216 may be integrated in the
CMMU 214 or alternatively may be external to the CMMU
214. F1G. 7 illustrates a CMMU 214 coupled to a CODEC
214 via multiple DMA channels.

The CMMU may increase the eflective size of system
memory by keeping the least recently used pages com-
pressed, and the most recently and frequently used pages
uncompressed 1n physical memory. The CMMU 214 may
also increase the effective speed of system memory by storing
least recently used pages in a compressed format in system
memory.

A processor or I/O master accesses system memory using
a system address. The CMMU 214 translates the system
address 1nto a physical address. The CMMU 214 passes the
resulting physical address to the system memory controller
211 to access physical memory 218 (also called system
memory). The CMMU 214 may decompress compressed data
to produce uncompressed data for the memory access. The
CMMU 214 may also compress uncompressed data to pro-
duce compressed data for storing 1n physical memory 218.
One or more software sources may be used for the manage-
ment of the compressed and uncompressed data in physical
memory 218. In one embodiment, the CMMU 214 manages
system memory 218 on page granularity. In one embodiment,
the page size 1s programmable.

In one embodiment, the maximum compression ratio that
can be achieved by the CMMU 214 1s programmable. The
compression ratio may intluence the amount by which the
system memory address space can be increased. In some
embodiments, since the compressibility of system memory
218 may vary, a kernel driver may be used to ensure that a
minimum compression ratio 1s maintained. For example, 1
the CMMU 214 were programmed to achieve a maximum
compression ratio of 16:1, then the size of the system memory
address space may be increased by 4 times. In other words,
the kernel driver may ensure a minimum compression ratio of
4:1.

FIG. 8 shows one embodiment of the system memory
address space, wherein a portion 404 of the address space 1s
used to store the operating system and a portion 402 1s used
for general system memory. The system memory portion 402
may store applications and other data. In one embodiment, a
Page Translation Table (PTT) 422 may reside in physical
memory 400 and may include a list of Page Translation
Entries (PTEs). In one embodiment, a PI'E may exist for each
page 1n system memory. Each PTE may include a pointer to
either a compressed page or uncompressed page located 1n
physical memory 400. In some embodiments, as illustrated in
FIG. 8, the operating system 404 may be aware of the
increased size of system memory 402. In one embodiment, a
kernel driver may be used to ensure that the operating system

US RE43,483 E

13

1s able to safely use the entire system memory space 402
without overflowing physical memory 400. In embodiments
where the operating system 1s aware of the increased size of
system memory 402, 1t may be desired to maintain a ratio
between compressed and uncompressed memory to provide
the increased size of system memory 402. In these embodi-
ments, the CMMU 214 may dynamically decide when to
compress and/or decompress pages of memory to maintain
the desired compression ratio and thus the increased size of
system memory 402.

In some embodiments, as illustrated in FI1G. 9, the operat-
ing system 404 may not be aware of the increased size of
system memory 402. In these embodiments, only the kernel
driver may be aware of the increased size of system memory
402. In yet other embodiments, the operating system may be
aware of the increased size of a portion of system memory, but
not be aware of another portion of system memory with
increased size. In these embodiments, the kernel driver may
be aware of all portions of system memory in which compres-
sion 15 being used to virtually increase the size of system
memory. Some embodiments may provide for a plurality
modes of operation, which may include a mode where the
operating system 1s aware of the increased size of memory
402, a mode where the operating system 1s not aware of the
increased size of system memory 402, and a “mixed mode™
where the operating system 1s only aware of the increased size
ol a portion of system memory 402.

In some embodiments, a kernel driver may selectively
compress system memory pages into a compressed cache 406
that, in one embodiment, 1s allowed to dynamically vary in
s1ze. In one embodiment, the kernel driver may not compete
with, or allocate system memory 402 away from, the operat-
ing system 404. In one embodiment where the operating
system 404 1s not aware ol the increased size of system
memory 402, the CMMU 214 may allocate additional space
by using physical addresses above locations of physical
memory. In one embodiment where the operating system 404
1s not aware, the Virtual Memory (VM) system may directly
control the Compressed L3 cache.

In one embodiment, immediate data required for directory
information may be held on-chip (e.g. eDRAM). In another
embodiment, an on-chip (e.g. eDRAM) Most Recently Used
(MRU) uncompressed page cache may be used. In one

embodiment, this cache may be dynamically controlled, e.g.
by the CMMU 214.

FIG. 10 1llustrates embodiments where a CMMU 410 1s
integrated mto a system memory controller 420. The CMMU
410 may comprise the following hardware components: a
Page Translation Cache (PTC) 412, one or more scatter/
gather DMA channels 414, and a compression/decompres-
sion engine (CODEC) 416. The CMMU 410 may interact
with the memory controller 420 to manage the system
memory, including management of PT'T 426, scattered UPs
426 and CBs 428. In one embodiment, the PTC 412 may be
tully associative.

In one embodiment, the Compressed Memory Manage-
ment Unit (CMMU) 410 may manage system memory on a
page basis. In one embodiment, the CMMU 410 may allow an
arbitrary number ol pages to be compressed or uncompressed
in system memory at any time. The number of compressed
pages may be based on the compressibility of the data. In
general, as the compressibility of the least recently used pages
increases, the number of most recently and frequently used
uncompressed pages can be increased.

In one embodiment, each uncompressed system page may
be mapped to a page 1n physical memory 400. The page may
be located anywhere 1n physical memory. Each compressed

10

15

20

25

30

35

40

45

50

55

60

65

14

system page may be mapped to one or more smaller com-
pressed blocks. Each compressed block may be located any-
where 1n physical memory. During normal operations, physi-
cal memory may become fragmented, so the compressed
blocks may not be contiguous. Therefore, 1n one embodi-
ment, the compressed blocks may be linked together.

FIG. 11 illustrates resources that the CMMU 410 may
manage 1n physical memory. These resources include, but are
not limited to: a Page Translation Table (PTT) 422 compris-
ing Page Translation Entries (PTEs) 424, Uncompressed
Pages (UPs) 426, and Compressed Blocks (CBs) 428. As
shown, PTEs 424 may include Uncompressed PTEs (UPTEs)
424b that reference UPs 426 1n system memory, and may also
include compressed PTEs (CPTEs) 424a that reference CBs
428. In one embodiment, the unused UPs 426 may be linked
together to form an Uncompressed Page Free List (UPFL). In
one embodiment, the unused CBs 428 may be linked together
to form a Compressed Block Free List (CBFL). In one
embodiment, the PTEs 424 that reference uncompressed
pages 426 may be linked together to form an Uncompressed
Least Recently Used List (ULRUL). In one embodiment, the
PTEs 424 that reference compressed blocks 428 may be
linked together to form a Compressed LRU List (CLRUL)
450, as i1llustrated 1n FI1G. 14.

In one embodiment, the Page Translation Table (P17T) 422
may be anchored anywhere in physical memory 400. PTT
422 may include a contiguous list of Page Translation Entries
(PTEs) 424. In one embodiment, a PTE 424 may exist for
cach page 1n system memory. Each PTE 424 may include a
pointer to either a compressed page 428 or uncompressed
page 426 located 1n physical memory 400. In one embodi-
ment, there may be two or more P17Ts. In one embodiment,
there may be one PTT for PI'Es to compressed pages (CPTEs)
424a and one PTT for PTEs to uncompressed pages (UPTEs)
424b. In one embodiment, each table may be assigned a
lookup virtual address range for entries.

FIG. 12 illustrates one embodiment of a PTE 424. Each
PTE 424 may include several elements. PTE 424 may include
a page pointer 432 that may be used to indicate a compressed
or uncompressed page associated with the PTE 424. In one
embodiment, PTE 424 may include a next pointer 434 and
previous pointer 436 that may be used 1n maintaining various
lists, e.g. LRU lists. One or more LRU lists may be used by the
CMMU 410 to maintain LRU information across the entire
system memory address space. Maintaining LRU informa-
tion 1n this manner may enable the CMMU 410 to employ a
replacement strategy realizing much higher uncompressed
page hit rates than otherwise possible.

Each PTE may include one or more attributes 430. In one
embodiment, attributes 430 may include a Compressed
attribute that may be used to indicate whether the PTE 424
points to a compressed page 428 or uncompressed page 426.

In one embodiment, attributes 430 may include Enabled
and Valid attributes. If the PTE 424 1s not E

Enabled as indicated
by the Enabled attribute, then the CMMU 410 may use the
system address to access physical memory directly. In one
embodiment, the Enabled attribute may provide a mechanism
for preventing certain system memory pages from ever being
compressed, for example, critical operating system
resources. If the PTE 424 1s Enabled but not Valid as indicated
by the Enabled and Valid attributes, then the CMMU 410 may
only use the system address the first time the system memory
page 1s accessed. Once the page has been accessed, the
CMMU 410 may write the system address into the PTE 424
and marks the PTE 424 as Valid and not Compressed. In other
words, the system address may become the pointer to the
uncompressed page. In one embodiment, Enabled and not

US RE43,483 E

15

Valid may indicate the VM has previously written the uncom-
pressed page, e.g. to I/O. In this embodiment, the page may
not be compressed because this 1s a Most Recently Used
(MRU) page.

In one embodiment, PTE 424 attributes 430 may include a
Highly Compressible attribute which may be used to mark
pages to be very highly compressible so that the pages take up
much less space 1n the memory. In one embodiment, this
attribute 1s a single bit attribute. In one embodiment, setting
this attribute forces the page to be compressed to the maxi-
mum amount so that the page takes zero space. An optimally
compressed page may be represented by an entry 1in the page
table that does not actually point to any blocks of memory.
Any compressed or uncompressed blocks formerly occupied
by the page are thus returned to memory for use. In one
embodiment, marking pages as Highly Compressible may
occur when the OS 400 1s aware of compression (as 1llustrated
in FIG. 8), and the compression ratio 1s near or below the
operating system’s expected level. In this embodiment, a pool
ol pages that are inactive and clean may be maintained. These
pages are available to be highly compressed to meet the
required compression ratio. Thus, in embodiments where the
operating system 1s aware of the increased size of memory,
the operating system 1s “aware” 1n order to interact with the
CMMU 1n dynamically maintaining a compression ratio. The
operating system may not be directly aware that compression
1s being performed; rather, the operating system may only be
aware that the memory appears larger than the actual physical
s1ize of memory. In this embodiment, while the operating
system 1s aware that memory 1s larger, 1t may not be aware of
which pages are compressed or uncompressed.

As an example of operation 1n an embodiment where the
operating system 1s aware of the compression ol memory,
assume that the operating system currently desires a 2:1 com-
pression ratio. To help maintain the 2:1 ratio, there may be an
interrupt mechanism that may interrupt the kernel mode
driver. When the interrupt handler 1s invoked, 1t can read the
hardware (e.g. CMMU) to determine the current compression
rat10. If the desired compression ratio 1s not currently being,
met, 1t may be necessary to free some pages. To free the pages,
there may be an operating system call that allows the CMMU
to start marking some pages to be very highly compressible.
In embodiments where the operating system 1s not aware of
the increased si1ze of memory, the CMMU manages compres-
sion of memory without requiring operating system action.

There may be a plurality of programs running within the
system. The programs each have a certain amount of active
memory (e.g. pages in use). The CMMU may not be able to
make active pages inactive and write them to disk in real time,
as this may degrade system performance. Thus, the CMMU,
through the interrupt mechamism, may monitor the perfor-
mance of compressibility in the system. The amount of data
that can be active for any one program may be restricted, and
a pool of mactive pages that represent the least recently used
active pages may be maintained. Some of these pages may be
compressed and some of them may be uncompressed. Active
pages may be dirty or clean. Inactive pages represent real
pages and comprise real data. If an active page 1s dirty, the
page may need to be written back to disk (1.e. made clean)
before moving to the 1nactive pool. Thus, the inactive pages
by definition are clean. These inactive pages may be invali-
dated and marked to be very highly compressible without
making any memory allocations or requiring action by or
notification to the operating system.

Thus, the data from an inactive page that has been marked
highly compressible has been written to non-volatile storage

(e.g. a disk). The PTE 424 for the page has been marked

5

10

15

20

25

30

35

40

45

50

55

60

65

16

highly compressible. In one embodiment, a field m the
attributes 430 may be used to indicate the page as “highly
compressed”. In one embodiment, this highly compressed
attribute field may be a 1-bit field. The memory formerly
occupied by the page may be freed for use by other processes
(or by the same process). At some point, it may be necessary
to “decompress’” the page, now represented by only the PTE
424 (1.e. there 1s no memory allocated to the page). For
example, a process may request one or more pages, and the
PTE 424 may be used for the page. In one embodiment, 11 the
Highly Compressed bitof a PTE 424 indicates that the page 1s
highly compressed, rather than the decompression engine
decompressing the highly compressed page represented by
the PTE 424, a “zeroed” page may be synthesized by the
CMMU. After the zeroed page 1s synthesized, data may be
read from the non-volatile storage to the page. This data may
include data that was previously written back to the non-
volatile storage during the process of highly compressing the

page.

Note that, 1n setting the highly compressed attribute field,
the page 1s marked to be compressed as 11 the page was filled
with all zeroes to achieve maximum compression. The page
itself, however, does not have to be filled with all zeroes, nor
does the page have to be compressed by the CODEC.

In one embodiment, once the CMMU 410 1s enabled, the
PTT 422, Compressed Block Free List (CBFL) and Uncom-
pressed Page Free List (UPFL) may no longer be directly
accessible by a processor or I/O master. To facilitate this,
PTEs 424 that would normally point to these resources 1f
marked not Enabled or not Valid, may be marked instead as
Enabled, Valid and Highly Compressible.

In one embodiment, PTE 424 attributes 430 may include an
Uncompressible attribute. If a page cannot be compressed,
then the page may be marked Uncompressible. In one
embodiment, future attempts by the CMMU 410 to compress
the page marked as Uncompressible may be avoided. 11 the
page 1s modified 1n the future by a processor or I/O master,
then the Uncompressible attribute may be un-marked to indi-
cate the page 1s compressible.

In one embodiment, PTE 424 attributes 430 may include a
Reused attribute. When a processor or I/0O master accesses a
page, the page may be marked as Reused. The CMMU 410
may scan the uncompressed PTEs 424 looking for pages that
have not been Reused recently according to the Reused
attribute. These pages may become candidates for compres-
s1on. One embodiment may use multiple levels of re-use, and
thus may have a Reused attribute that supports the multiple
levels, for example, with multiple flags.

In one embodiment, PTE 424 attributes 430 may include
Next Accessed or Previous Accessed attributes, which may be
used to indicate whether the next or previous page was
accessed immediately after this page the last time that this
page was accessed. In one embodiment, PTE 424 attributes
430 may only include the Next Accessed attribute. In one
embodiment, the Next Accessed and/or Previous Accessed
attributes may enable the CMMU 410 to predict the next page
to be accessed. In one embodiment, this may used by the
CMMU 410 to hide some or all decompression latency asso-
ciated with the next page accessed in the event that, the next
page accessed 1s compressed.

In one embodiment, the size of the P1TT 422 may be based
on a desired size of system memory 402. The following 1s
included for exemplary purposes only, and 1s not intended to
be limiting 1n any way. I a system contains 1 GB of physical
memory 400 and the CMMU 410 1s programmed to manage
4 GB of system memory 402 based on a compression ratio of

US RE43,483 E

17

4:1, 4 KB pages and 12-Byte PTEs 424, then the PTT 422
may require 1 MB of PTEs 424, which would occupy 12 MB
of physical memory 400.

In one embodiment, PTE 424 attributes 430 may include an
attribute that may be used to indicate a particular compression
algorithm used on a page. In one embodiment, a system may
include a plurality of compression/decompression engines
(CODECs) that may each implement one of a plurality of
compression algorithms and 1ts corresponding decompres-
s1on algorithm. In one embodiment, this attribute, which may
be referred to as a CODEC selector attribute, may be set to
cause a particular compression algorithm to be used to com-
press the page, and thus also indicates the corresponding
decompression algorithm. Alternatively, two or more alterna-
tive compression algorithms may be performed on the data,
and one of the alternative compression algorithms may then
be selected as the desired compression algorithm for the data.
The optimal compression algorithm for the data may be
selected, for example, based on compression ratio. In other
words, the compression algorithm that yields the highest
compression ratio for the data may be selected. Other critena,
or a combination of two or more criteria, may be used to select
a compression algorithm from the plurality of alternative
compression algorithms. For example, the fastest compres-
sion algorithm may be selected. When the data needs to be
decompressed, the CODEC selector attribute may be used to
determine the appropriate decompression algorithm for the
data, and the compressed page or pages containing the data
may then be routed to one or more CODECs that implement
the decompression algorithm for decompression.

Page Translation Cache

In one embodiment, a Page Translation Cache (PTC) may

be used to cache the most recently and frequently used PTEs
424 from the PTT 422. In this embodiment, the most recently
and frequently used PTEs 424 may be accessed from the PTC
rather than from the PT'T 422, reducing access latency.
In one embodiment, the number of PTEs 424 1n the PTC
may be greater than the product of the number of Translation
Lookaside Butier (TLB) entries in each processor times the
maximum number of processors supported by the system. In
one embodiment, the PTC may be fully associative. In a tully
associative cache, compares are performed on all entries 1n
the cache 1n parallel. In one embodiment, 1f the PTC 1s very
large, then a highly set associative cache at least equal to the
product of the set associativity of the processor’s largest
cache times the maximum number of processors supported by
the system may be used. In one embodiment, the rate at which
PTEs 424 are reloaded into the PTC may be substantially
lower than the rate at which processors reload their TLB
entries. Thus, the latency added to reload a PTE 424 into the
PTC may only occur when the processor has to perform a
reload of a TLB entry or handle a page fault.

The following 1s intended for exemplary purposes only and
1s not intended to be limiting 1n any way. In one embodiment,
if the PTC caches the most recently used (MRU) 32 MB of
system memory, then 8K PTEs 424, or 96 KBs of SRAM,
would be needed based on 4 KB pages and 12 B PTEs 424.
Uncompressed Page and Compressed Block Free Lists

In one embodiment, physical memory may be partitioned
into an arbitrary number of uncompressed pages and com-
pressed blocks. In one embodiment, each PTE 424 may point
either to an uncompressed page or to a first compressed block
of a compressed page. In one embodiment, a portion (for
example, the first four bytes) of a compressed block may
point to the next compressed block of the compressed page. In
one embodiment, a portion (for example, the second four
bytes) of a compressed block may point back to a previous

5

10

15

20

25

30

35

40

45

50

55

60

65

18

compressed block of the compressed page. This may provide
the CMMU 410 with a mechanism to convert contiguous
compressed blocks mto uncompressed pages when needed.
In one embodiment, the CMMU 410 may place unused
uncompressed pages on an Uncompressed Page Free List
(UPFL). In one embodiment, as illustrated in FIG. 13, the
CMMU 410 may place unused compressed blocks on a Com-
pressed Block Free List (CBFL)440. As uncompressed pages
and compressed blocks are needed, they may be pulled off
these lists, 11 available. In one embodiment, a portion, for
example, the first eight bytes, of a page or block may be used
to build the free lists.

In one embodiment, when a compressed page 1s decom-
pressed, the compressed blocks may be decompressed and
copied to the oldest page pointed to by the UPFL. The com-
pressed blocks may then become the newest blocks on the
CBFL 440. In one embodiment, when an uncompressed page
1s compressed, the uncompressed page may be compressed
and copied into the oldest blocks on the CBFL 440. The

uncompressed page may then become the newest page on the
UPFL.

In one embodiment, when an uncompressed page 1s com-
pressed, the CMMU 410 may check ifthe CBFL 440 contains
enough unused blocks to hold the compressed page. It there
are enough unused blocks, then the CMMU 410 may transfer
the compressed page into the unused blocks 1t needs. In one
embodiment, 1f there are not enough unused blocks, then the
CMMU 410 may convert an uncompressed page to com-
pressed blocks. The CMMU 410 may convert an unused page
from the UPFL, the original uncompressed page being com-
pressed, or alternatively may convert the next LRU uncom-
pressed page. Once the conversion 1s complete, and a sudfi-
cient number of unused compressed blocks are available, the
CMMU 410 may complete the compression transier. Any
unused compressed blocks may be added to the CBFL 440.

In one embodiment, when a compressed page 1s decom-
pressed, the CMMU 410 may check 11 the UPFL contains at
least one unused page to hold the uncompressed page. It there
1s an unused page, then the CMMU 410 may transfer the
decompressed page into 1t. In one embodiment, 1f the UPFL 1s
empty, then the CMMU 410 may use the next LRU uncom-
pressed page. In one embodiment, 1f the UPFL 1s empty, then
the CMMU 410 may convert enough contiguous compressed
blocks to create a page. In one embodiment, enough contigu-
ous compressed blocks may not be found 1n the CBFL 440. In
one embodiment, the CMMU 410 may copy the contents of
contiguous compressed blocks currently 1n use by other com-
pressed pages 1nto unused blocks from the CBFL 440. The
CMMU 410 may check the CBFL 440 to ensure there are
enough unused blocks to hold a page before copying the
contiguous compressed blocks. In one embodiment, if more
unused blocks are needed, then the CMMU 410 may com-
press LRU uncompressed pages until enough unused com-
pressed blocks are available.

In one embodiment, page-to-block and block-to-page con-
versions may only occur when there are insufficient unused
blocks on the CBFL 440, or when the UPFL 1s empty, respec-
tively. In one embodiment, a kernel driver may be used to tune
the CMMU 410 by keeping each of these lists suiliciently
large. The kernel driver may accomplish this using a CMMU
APIL.

Compressed LRU and Uncompressed LRU Lists

In one embodiment, PTEs 424 that point to uncompressed
pages may be linked together to form an Uncompressed LRU
List (ULRUL). In one embodiment, PI'Es 424 that point to
compressed pages may be linked together to form a Com-
pressed LRU List (CLRUL) 450 as illustrated in FIG. 14.

US RE43,483 E

19

In one embodiment, when PTEs 424 are moved within a list
or to another list, the next and previous pointers associated
with the affected PTEs 424 are updated. In one embodiment,
to reduce overhead, PTEs 424 may only be moved when
accompanied by a compression or decompression operation.
In one embodiment, a compression or decompression opera-
tion may not accompany an LRU update when a processor or
I/O master accesses an uncompressed page that does not
happen to be the MRU page 1n the ULRUL. In one embodi-
ment, every uncompressed page access updates the ULRUL.
Alternatively, the PTE 424 may be marked Reused.

In one embodiment, the CMMU 410 may periodically scan
the ULRUL starting from the least recently used PTE 424. IT
the CMMU 410 finds a PTE 424 that1s not marked as Reused,
the system page address may be added to a Not Reused List
(NRL). In one embodiment, the NRL may be a contiguous list
of system addresses. In one embodiment, each NRL entry 1s
four bytes. In one embodiment, the NRL 1s embodied as a
hardware component and 1ts length may be fixed. In another
embodiment, the NRL is located 1n physical memory, and 1ts
length may be dynamically adjustable or programmable. In
one embodiment, if the CMMU 410 finds a PTE 424 that 1s
marked as Reused, the Reused attribute may be cleared. In
one embodiment, whenever an uncompressed page needs to
be compressed, the CMMU 410 may reference the NRL.
When the CMMU 424 begins a new scan, 1t may overwrite the
old NRL. If the NRL 1s empty, then the LRU uncompressed
page on the ULRUL may be used. In one embodiment, once
the NRL 1s full, the CMMU 410 may abort the current scan.
In one embodiment, the generation and update of the NRL
may be a memory controller background task. In another
embodiment, the generation and update may be under driver
control.

When a processor or I/O master accesses a compressed
page, the page may be decompressed and become the MRU
uncompressed page on the ULRUL. When replacing an
uncompressed page or growing compressed space, the LRU
uncompressed page may be compressed and become the
MRU compressed page on the CLRUL 450. When shrinking
compressed space, the MRU compressed page on the CLRUL
450 may be decompressed and become the LRU uncom-
pressed page on the ULRUL. In one embodiment, when a
kernel driver forces an uncompressed page to be compressed,
the uncompressed page may be compressed and become a
LRU compressed page on the CLRUL 450.

FI1G. 15 illustrates a fully associative mechanism for man-
aging compressed and uncompressed pages ol memory.
Using this fully associative mechanism, pages that are inac-
tive and genuinely LRU are more likely to be compressed.
The fully associative mechanism may also help 1n minimizing
the degradation of system performance when compressing/
decompressing pages of memory. In one embodiment, com-
pressed and uncompressed pages of memory may be main-
tained using a fully associative page translation cache (PTC).
In this embodiment, active pages (compressed and/or uncom-
pressed) may not be where the operating system thinks they
are, but instead may be cached by the CMMU 1n the fully
associative PTC.

In the fully associative PTC, all compares are done in
parallel. Data from any address may be stored in any PTC
location. In one embodiment, the entire address may be used
as the tag. All tags may be compared simultaneously (asso-
ciatively) with the requested address, and 11 one matches then
its associated data may be accessed. The fully associative
PTC may be used for all pages 1n system memory.

An LRU algorithm may be used that spans all of memory.
The tully associative algorithm may be able to maintain LRU

10

15

20

25

30

35

40

45

50

55

60

65

20

across the entire congruence class. In one embodiment, there
1s only one congruence class. In one embodiment, a linked
list, as 1llustrated 1n FIG. 15, may be used to determine what
the true associativity 1s. This list may be a doubly linked list.
The linked listmay be partitioned at a dynamic point based on
the compressibility of the data into an uncompressed page list
portion and a compressed page list portion. Pages within each
list portion may be ordered from Most Recently Used (MRU)
pages to Least Recently Used (LRU) pages. When deciding to
change the ratio of compressed pages to uncompressed pages,
pages may be switched at the boundary created by the parti-
tion (1.e. LRU uncompressed pages may become MRU com-
pressed pages). Thus, overall, the list may be used to maintain
all pages from MRU to LRU, with the MRU uncompressed
pages being the MRU pages and the LRU compressed pages
being the LRU pages.
Basic Operations

The following describes embodiments of a method of
operation of a CMMU 410 as 1llustrated 1n FIG. 10. When a
processor 390 or I/O master 392 accesses system memory, the
CMMU 410 may translate the system memory address of the
access mto a physical address. The CMMU 410 may perform
a Page Translation Cache (PTC) lookup. If the PTE 424 1s
already 1n the PTC and points to an uncompressed page, then
the CMMU 410 may pass the pointer to the uncompressed
page to the memory controller. The memory controller may

use this pointer to directly access physical memory. The PTE
424 may be marked Reused. If the PTE 424 1s not already 1n

the PTC, then the CMMU 410 may read the PTE 424 from the
PTT 422 located 1n physical memory. The CMMU 424 may
replace the LRU PTE 424 1n the PTC to make room for the
new PTE 424. In one embodiment, this replacement may
occur after the transaction 1s completed to avoid more CPU
and 1I/O contention during the current transaction. In one
embodiment, an address range for uncompressed data may be
used that does not require any look-up or translation.

If the PTE 424 points to a compressed page, then the
CMMU 410 may read the PTE 424 from the PT'T 422 located
in physical memory into the PTC 412, and may load the
pointer to the first compressed block mto the DMA channel
414. If necessary, the CMMU 410 may replace the LRU PTE
424 1n the PTC 412 to make room for the new PTE 424. The
DMA channel 414 may read the appropriate number of linked
compressed blocks and copy them into the CODEC 416. The
CODEC 416 may decompress the compressed page 1n real-
time. In one embodiment, a parallel decompression algorithm
as described below may be used. The DMA channel 414 may
read the uncompressed page from the CODEC 416 and copy
it into an unused page pointed to by the Uncompressed Page
Free List (UPFL). The compressed blocks pointers may be
returned to the Compressed Block Free List (CBFL) 440. The
CMMU 410 may update the PTE 424 to point to the uncom-
pressed page. The CMMU 410 may update the CLRUL 4350
and ULRUL appropriately. The CMMU 410 may pass the
pointer to the uncompressed page to the memory controller.
The memory controller may use this pointer to directly access
physical memory.

In one embodiment, the above described method of han-
dling the PTE 424 pointing to a compressed page may only be
performed on memory operations that a kernel driver detects
as VM requests to activate a stale page. In another embodi-
ment, the above-described method may be performed on all
memory operations.

In compressing an uncompressed page, the CMMU 410
may perform a PTC lookup. If the PTE 424 1s already 1n the
PTC 412, then the CMMU 410 may load the pointer to the
uncompressed page into the DMA channel 414. If the PTE

US RE43,483 E

21

424 1s not already 1n the PTC 412, then the CMMU 410 may
read the PTE 424 from the PTT 422 1n physical memory. In
one embodiment, the CMMU 410 may not load the PTE 424
into the PTC 412. The DMA channel 414 may read the
uncompressed page from physical memory and load 1t mnto
the CODEC 416. The CODEC 416 may compress the page in
real-time. In one embodiment, a parallel compression algo-
rithm as described below may be used. The DMA channel 414
may read the compressed page from the CODEC 416 and
copy 1t 1nto an appropriate number of linked compressed
blocks from the CBFL 440. The uncompressed page may be
returned to the UPFL. The CMMU 410 may update the PTE
424 in physical memory to point to the first compressed block
of the compressed page. The CMMU 410 may update the
CLRUL 450 and ULRUL as needed.

BIOS

In one embodiment where the operating system 1s aware of
the increased size of system memory, the CMMU 410 may be
initialized and enabled by BIOS. In one embodiment where
the operating system 1s not aware of the increased size of
system memory, the CMMU 410 may be imitialized and
enabled during BIOS. In another embodiment where the
operating system 1s not aware of the increased size of system
memory, the CMMU 410 may be 1initialized and enabled after
the operating system has booted.

In one embodiment where BIOS 1nitializes and enables the
CMMU 410 before the operating system 1s booted, after
BIOS has tested physical memory, BIOS may reserve a por-
tion of physical memory for P1T 422 use. In one embodi-
ment, BIOS may initialize the P1TT 422 so that all PTEs 424
are marked Fnabled and Invalid. BIOS may partition a por-
tion of physical memory into compressed blocks and uncom-
pressed pages. BIOS may link unused compressed blocks
together to create a CBFL 440. BIOS may link unused
uncompressed pages together to create the UPFL. BIOS may
initialize and enable the CMMU 410. Initializing the CMMU
410 may include programming a maximum size of system
memory and a maximum compression ratio. In one embodi-
ment, once enabled, the PTEs 424 may become Valid natu-
rally over time as a processor 390 or I/O master 392 accesses

system memory. In one embodiment, once enabled, the PTT
422, CBFL 440 and UPFL may be transparent to a processor
390 or I/O master 392.

In one embodiment, BIOS may prevent certain system
memory pages from being compressed, such as critical oper-
ating system resources. For example, BIOS may mark the
PTEs 424 associated with critical pages in the P 1T 422 as not
Enabled.

Kernel Driver

In one embodiment where the operating system 1s aware of
the increased size of system memory, a kernel driver may be
used to ensure that the operating system may safely use the
entire system memory space without overtlowing physical
memory. In one embodiment, the kernel driver may accom-
plish this by ensuring that a minimum average compression
rat10 across the entire system memory space 1s maintained.

In one embodiment, the CMMU 410 may include registers
that indicate the number of compressed blocks and uncom-
pressed pages that are currently 1n use. A kernel driver may
use this mnformation to determine the effective size of system
memory. In one embodiment, 11 the average compression
ratio drops below a programmable threshold, then a kernel
driver may respond by: 1) allocating system memory pages
from the operating system 2) filling these memory pages with
a highly compressible data code to force all processors to
tflush their caches associated with these pages, and 3) forcing

the CMMU 410 to mark these pages as highly compressible

10

15

20

25

30

35

40

45

50

55

60

65

22

so that no compressed blocks are wasted. In one embodiment,
the kernel driver does not actually use these pages. The kernel
driver may do this to control the average compression ratio of
system memory. When the average compression ratio rises
above a programmable threshold, then the kernel driver may
deallocate these system memory pages back to the operating
system.

In one embodiment where the operating system 1s aware of
the 1ncreased size of system memory, in order for a kernel
driver to access system memory beyond the amount of which
the operating system 1s aware, the kernel driver may create its
own processor PTEs 424. The kernel driver may use this
space to selectively compress system memory pages into a
compressed cache. The compressed cache may grow into the
system memory space of which the operating system 1s not
aware. As a result, the kernel driver may not compete with or
allocate system memory away from the operating system.
This may eliminate the need for a kernel driver to guarantee a
minimum compression ratio. Performance-sensitive applica-
tions that either allocate non-paged system memory or are
self-tuning based on the amount of system memory available
thus may not be affected. In one embodiment, the size of the
compressed cache may be dynamic and may vary based on
the compressibility of system memory. In one embodiment,
the compressed cache may grow as large as the maximum size
of system memory minus the actual size of physical memory.

In one embodiment, when a kernel driver wants to com-
press a system memory page into a compressed cache that 1s
not accessible by the operating system, the kernel driver may
force the page to be conditionally compressed by initiating a

special CMMU 410 operation. In one embodiment, if a mini-
mum compression ratio specified 1in the Command Block 1s
not achieved by the CODEC 416, then the CMMU 410 does
not copy the compressed page into the compressed cache.

In one embodiment, using a compressed cache that 1s not
accessible by the operating system may allow a kernel driver
to employ software caching algorithms without burdening the
hardware to selectively choose which pages to allocate or
deallocate from a compressed cache. In one embodiment,
using a compressed cache that 1s not accessible by the oper-
ating system may allow a kernel driver to manage the
dynamic size of the compressed cache. In one embodiment,
compressed caches managed by one or more kernel drivers
may be used for various functions including local and remote
disk caching, virtual memory caching, network caching,
RAM disks, etc.

In one embodiment where BIOS does not enable the
CMMU 410, the kernel driver may 1nitialize and enable the
CMMU 410. In this embodiment, the kernel driver may allo-
cate a small portion of system memory for PT'T 422 use. In
one embodiment, the kernel driver may 1nitialize the P11 422
so that all PTEs 424 are marked Enabled and Invalid. The
kernel driver may allocate a small portion of system memory
and partition 1t into compressed blocks and uncompressed
pages. The kernel driver may link the unused compressed
blocks together to create the CBFL 440, and the unused
uncompressed pages together to create the UPFL. The kernel
driver may mmitialize and enable the CMMU 410. In one
embodiment, 1mtializing the CMMU 410 may include pro-
gramming a maximum size of system memory and a maxi-
mum compression ratio. In one embodiment, once enabled,
the PTEs 424 may become valid naturally over time as a
processor 390 or I/O master 392 accesses system memory. In
one embodiment, once enabled, the PTT 422, CBFL 440 and
UPFL may be transparent to a processor 390 or I/O master
392.

US RE43,483 E

23

In one embodiment, a kernel driver may prevent certain
system memory pages from being compressed, such as criti-
cal operating system resources. For example, the kernel driver

may mark the PTEs 424 associated with critical pages 1n the
PTT 422 as not Enabled.

CMMU API

In one embodiment, 1n addition to managing and handling
accesses to the uncompressed and compressed pages 1n sys-
tem memory, the CMMU 410 may have an Application Pro-
gramming Interface (API) that enables a kernel driver to
initiate various CMMU 410 operations.

In one embodiment, when a kernel driver wants to 1nitiate
a CMMU 410 operation, it may set up a Command Block 1n
system memory and write the system address of the Com-
mand Block into the appropriate CMMU 410 register. When
the CMMU 410 1s not busy, 1t may read the Command Block
and perform the operation. When the operation 1s complete,
the CMMU 410 may update the Status of the Command
Block. In one embodiment, the CMMU 410 performs one
operation at a time. In one embodiment, the kernel driver may
manage the serialization of operations to the CMMU 410.
The kernel driver may poll the Status of the Command Block
to determine when the operation 1s complete. In one embodi-
ment, the Command Block may reside 1in coherent system
memory so that the kernel driver may cache the Status of the
Command Block 1n the processor. The processor may come
back out on the host bus when the CMMU 410 updates the
Status of the Command Block, causing the corresponding
cache line to be 1nvalidated 1n the processor’s cache.

Examples of CMMU 410 operations that may be initiated
by a kernel driver include, but are not limited to operations to:
1) force a specific or LRU/MRU system memory page to be
compressed/decompressed, 2) change the PTE 424 attributes
of a system memory page, 3) compress/decompress and copy
a system memory page to another system memory page loca-
tion, 4) copy a compressed page “as 1s” to an uncompressed
page without decompressing the page, 5) copy an uncom-
pressed page “as 1s” to a compressed page without compress-
ing the page, and 6) convert contiguous compressed blocks
into an unused uncompressed page.

Scatter/Gather DMA Channel

In one embodiment, scatter/gather DMA channel 414 may
not need to be coherent during compressed block transters,
since these transfers may be transparent to a processor 390 or
I/O master 392. However, the uncompressed page transiers
may need to be coherent in order to force a processor to flush
any cache lines associated with the transier. If a processor 390
or I/O master 392 accesses the system memory page while 1t
1s being compressed, then the CMMU 410 may abort the
compression operation. In one embodiment, there may be a
plurality of scatter/gather DMA channels 414.

In one embodiment, 1f the CMMU 410 decompresses a
system memory page that 1s marked Zeros, then the scatter/
gather DMA channel 414 may fill the uncompressed page
with a data pattern, e.g. all zeros.

In one embodiment, the scatter/gather DMA channel 414
may utilize a CODEC 416 that 1s integrated into the system
memory controller 420 to compress or decompress a page
using a single memory-to-memory DMA transfer. Alterna-
tively, the DMA channel 414 may utilize one or more
CODECs 416 that reside elsewhere, for example, on one or
more memory modules such as industry standard DIMM:s, to
compress or decompress a page using a memory-to-CODEC
and a CODEC-to-memory DMA transfer.

In one embodiment, 1 the memory controller 420 executes
processor 390 and I/O master 392 system memory accesses
“in order”, then the memory controller 420 may stall all

10

15

20

25

30

35

40

45

50

55

60

65

24

subsequent system memory accesses 1 the current access 1s to
a compressed page that has to be decompressed before 1t can
be accessed. In one embodiment, the memory controller may
return a Deferred response for those system memory accesses
that miss the PTC and thus require additional physical
memory accesses.

Compression/Decompression Engine

In one embodiment, the Compression/Decompression
Engine (CODEC) 416 may be optimized to perform page-
based compressions and decompressions. If a system
memory page 1s uncompressible, then the CMMU keeps the
page uncompressed. The CMMU 410 may mark the system
memory page’s PTE 424 as Uncompressible. When the sys-
tem memory page 1s modified by a processor 390 or /O
master 392, the CMMU 410 may mark the page not Uncom-
pressible (1.e. Compressible).

In one embodiment, a DMA-based CODEC 416 1s unlikely
to Tully utilize the physical memory bus bandwidth available,
and thus multiple DMA-based CODECs 416 may be
included. In one embodiment, there may be a DMA-based
CODEC 416 for each processor 1n the system.

Parallel Compression/Decompression Engine

In one embodiment, the CODEC 416 may be a parallel data
compression and decompression engine, designed for the
reduction of data bandwidth and storage requirements and for
compressing/decompressing data at a high rate. The parallel
compression/decompression engine may alternatively be
included 1n any of various devices, including a memory con-
troller; memory modules; a processor or CPU; peripheral
devices, such as a network interface card, modem, IDSN
terminal adapter, ATM adapter, etc.; and network devices,
such as routers, hubs, switches, bridges, etc., among others. In
the present embodiment, the parallel compression and
decompression engine may be included on a CMMU as
described above. In embodiments where the parallel com-
pression and decompression engine 1s included on another
device, the CMMU may interface with the engine on the
device to perform compression and decompression opera-
tions on memory transiers as needed. In one embodiment, the
system may include a plurality of parallel data compression
and decompression engines.

Data transfers initiated by the CMMU on the system may
be 1n either of two formats: compressed or normal (non-
compressed). In one embodiment, the CMMU includes par-
allel compression and decompression engines designed to
process stream data at more than a single byte or symbol
(character) at one time. These parallel compression and
decompression engines modily a single stream dictionary
based (or history table based) data compression method, such
as that described by Lempel and Ziv, to provide a scalable,
high bandwidth compression and decompression operation.
The parallel compression method examines a plurality of
symbols 1n parallel, thus providing greatly increased com-
pression performance.

Parallel Compression

The parallel data compression engine and method included
on one embodiment of the CMMU operate to perform parallel
compression of data. In one embodiment, the parallel com-
pression method first imnvolves receiving uncompressed data,
wherein the uncompressed data comprises a plurality of sym-
bols. The method also may maintain a history table compris-
ing entries, wherein each entry comprises at least one symbol.
The method may operate to compare a plurality of symbols
with entries 1n the history table in a parallel fashion, wherein
this comparison produces compare results. The method may
then determine match information for each of the plurality of
symbols based on the compare results. The step of determin-

US RE43,483 E

25

ing match information may mvolve determining zero or more
matches of the plurality of symbols with each entry in the
history table. The method then outputs compressed data in
response to the match information.

In one embodiment, the method maintains a current count
of prior matches that occurred when previous symbols were
compared with entries 1n the history table. The method may
also maintain a count tlag for each entry in the history table.
In this embodiment, the match information 1s determined for
cach of the plurality of symbols based on the current count,
the count flags and the compare results.

The step of determining match information may involve
determining a contiguous match based on the current count
and the compare results, as well as determining 1 the con-
tiguous match has stopped matching. If the contiguous match
has stopped matching, then the method updates the current
count according to the compare results, and compressed data
1s output corresponding to the contiguous match. The step of
determining match information may also include resetting the
count and count flags 1f the compare results indicate a con-
tiguous match did not match one of the plurality of symbols.
The count and count tlags for all entries may be reset based on
the number of the plurality of symbols that did not match in
the contiguous match.

For a contiguous match, the output compressed data may
comprise a count value and an entry pointer. The entry pointer
points to the entry 1n the history table that produced the
contiguous match, and the count value indicates a number of
matching symbols in the contiguous match. The count value
may be output as an encoded value, wherein more often
occurring counts are encoded with fewer bits than less often
occurring counts. For non-matching symbols that do not
match any entry in the history table, the non-matching sym-
bols may be output as the compressed data.

The above steps may be repeated one or more times until no
more data 1s available. When no more data 1s available, com-
pressed data may be output for any remaining match in the
history table.

The parallel data compression engine may be used to per-
form parallel compression, operating on a plurality of sym-
bols at a time. In one embodiment, the parallel compression
method accounts for symbol matches comprised entirely
within a given plurality of symbols, referred to as the “special
case”. Here presume that the plurality of symbols includes a
first symbol, a last symbol, and one or more middle symbols.
The step of determining match information includes detect-
ing if at least one contiguous match occurs with one or more
respective contiguous middle symbols, and the one or more
respective contiguous middle symbols are not involved 1n a
match with either the symbol belfore or after the respective
contiguous middle symbols. If this condition 1s detected, then
the method selects the one or more largest non-overlapping,
contiguous matches mvolving the middle symbols. In this
instance, compressed data 1s output for each of the selected
matches involving the middle symbols.

The compression circuit of the parallel data compression
engine may include an mput for recerving uncompressed
data, a history table, a plurality of comparators, a memory,
match information logic, and an output for outputting com-
pressed data. The inputrecerves uncompressed data that com-
prises a plurality of symbols. The history table comprises a
plurality of entries, wherein each entry comprises at least one
symbol. The plurality of comparators are coupled to the his-
tory table and operate to compare a plurality of symbols with
cach entry in the history table in a parallel fashion, wherein
the plurality of comparators produce compare results. The
memory maintains a current count of prior matches that

10

15

20

25

30

35

40

45

50

55

60

65

26

occurred when previous symbols were compared with entries
in the history table. The memory may also maintain a count
flag or value for each entry 1n the history table. The match
information logic 1s coupled to the plurality of comparators
and the memory and operates to determine match information
for each of the plurality of symbols based on the current
count, count flags and the compare results. The output is
coupled to the match information logic for outputting com-
pressed data 1n response to the match information.

For more information on the parallel compression opera-
tion, please see U.S. patent application Ser. No. 09/421,968
titled “System and Method for Performing Scalable Embed-
ded Parallel Data Compression™, which was incorporated by
reference above.

Parallel Decompression

The parallel decompression engine and method imple-
mented ona CMMU operate to decompress mput compressed
data 1n one or more decompression cycles, with a plurality of
codes (tokens) typically being decompressed 1n each cycle 1n
parallel. A parallel decompression engine may include an
iput for recerving compressed data, a history table (also
referred to as a history window), and a plurality of decoders
for examining and decoding a plurality of codes (tokens) from
the compressed data 1n parallel 1n a series of decompression
cycles. A code or token may represent one or more coms-
pressed symbols or one uncompressed symbol. The parallel
decompression engine may also include preliminary select
generation logic for generating a plurality of preliminary
selects 1n parallel. A preliminary select may point to an
uncompressed symbol 1n the history window, an uncom-
pressed symbol from a token 1n the current decompression
cycle, or a symbol being decompressed 1n the current decom-
pression cycle. The parallel decompression engine may also
include final select generation logic for resolving preliminary
selects and generating a plurality of final selects 1n parallel.
Each of the plurality of final selects points either to an uncom-
pressed symbol 1n the history window or to an uncompressed
symbol from a token 1n the current decompression cycle. The
parallel decompression engine may also include uncom-
pressed data output logic for generating the uncompressed
data from the uncompressed symbols pointed to by the plu-
rality of final selects, and for storing the symbols decom-
pressed 1n this cycle in the history window. The decompres-
sion engine may also include an output for outputting the
uncompressed data produced 1n the decompression cycles.

The decompression engine may be divided into a series of
stages. The decoders may be included in a first stage. The
preliminary select generation logic may be included in a
second stage. The final select generation logic may be
included 1n a third stage. The output logic may be included 1n
a fourth stage.

Decompression of compressed data may begin in the
decompression engine when the decompression engine
receives a compressed input stream. The compressed input
stream may then be decompressed 1n parallel in one or more
decode (or decompression) cycles, resulting in a decom-
pressed output stream.

In a decompression cycle, a plurality of tokens from the
compressed data stream may be selected for the decompres-
s1on cycle and loaded 1n the decompression engine, where N
1s the total number of decoders. The tokens may be selected
continuously beginning with the first token in the input data
stream. A section may be extracted from the compressed data
stream to serve as mput data for a decompression cycle, and
the tokens may be extracted from the extracted section. For
example, a section of four bytes (32 bits) may be extracted. A
token may be selected from an mput section of the input data

US RE43,483 E

27

stream for the decompression cycle 1if there 1s a decoder
available, and 1f a complete token 1s included in the remaining
bits of the mput section. If any of the above conditions fails,
then the decompression cycle continues, and the token that
tailed one of the conditions 1s the first token to be loaded 1n the
next decompression cycle.

As the tokens for the decompression cycle are selected, the
tokens are passed to the decoders for decoding. One decoder
may process one token in a decompression cycle. The decod-
ers may decode the mput tokens 1nto start counts, indexes,
index valid tlags, and data valid tlags, with one copy of each
from each decoder being passed to the next stage for each of
the output bytes to be generated 1n the decompression cycle.
The original input data bytes are passed from the decoders for
later possible selection as output data. A data byte 1s valid
only 1f the token being decoded on the decoder represents a
byte that was stored 1n the token in uncompressed format by
the compression engine that created the compressed data. In
this case, the uncompressed byte 1s passed 1n the data byte for
the decoder, the data byte valid bit for the decoder 1s set, and
the index valid bt for the decoder 1s cleared.

Next, the information generated by the decoders 1s used to
generate preliminary selects for the output bytes. Overtlow
bits are also generated for each preliminary select. The pre-
liminary selects and overflow bits are passed to the next stage,
where the overtlow bits are imnspected for each of the prelimi-
nary selects. If the overflow bit of a preliminary select 1s not
set, then the contents of the preliminary select point to one of
the entries 1n the history window 1f the index valid bit 1s set for
the output byte, or to one of the data bytes 11 the data byte valid
bit 1s set for the output byte. Preliminary selects whose over-
flow bits are not set are passed as final selects without modi-
fication. If the overflow bit 1s set, then the contents of the
preliminary select are examined to determine which of the
other preliminary selects 1s generating the data this prelimi-
nary select refers to. The contents of the correct preliminary
select are then replicated on this preliminary select, and the
modified preliminary select 1s passed as a final select.

The final selects are used to extract the uncompressed
symbols. The final selects may point either to symbols in the
history window or to data bytes passed from the decoders.
The uncompressed symbols are extracted and added to the
uncompressed output symbols. A data valid flag may be used
for each of the output data symbols to signal 11 this output
symbol 1s valid 1n this decompression cycle. The uncom-
pressed output data may then be appended to the output data
stream and written 1nto the history window.

For more information on the parallel decompression opera-
tion, please see U.S. patent application Ser. No. 09/491,343
titled “System and Method for Performing Scalable Embed-
ded Parallel Data Decompression”, which was incorporated
by reference above.

Although the system and method of the present invention
has been described 1n connection with the preferred embodi-
ment, 1t 1s not mtended to be limited to the specific form set
forth herein, but on the contrary, 1t 1s intended to cover such
alternatives, modifications, and equivalents, as can be reason-
ably included within the spirit and scope of the invention as
defined by the appended claims.

What 1s claimed 1s:

1. A method for compressing memory 1n a system com-
prising a plurality of compression engines and a physical
memory, wherein the physical memory comprises system
memory, the method comprising:

locating a page translation entry 1n a page translation table,

wherein the page translation entry references an uncom-
pressed page 1n the physical memory;

10

15

20

25

30

35

40

45

50

55

60

65

28

providing the referenced uncompressed page to the plural-
ity of compression engines, wherein each of the plurality
of compression engines implements a different com-
pression algorithm;
the plurality of compression engines each compressing the
uncompressed page using the compression algorithm
implemented by the particular compression engine to
produce a plurality of compressed pages each com-
pressed by a different compression algorithm;

selecting the compressed page with the highest compres-
s1on ratio of the plurality of compressed pages; and

writing the selected compressed page to the physical
memory.

2. The method of claim 1, further comprising marking the
page translation entry associated with the selected com-
pressed page to indicate the particular compression algorithm
used 1n said compressing the page.

3. The method of claim 1, further comprising:

determiming that the compressed page needs to be decom-

pressed:

examining the page translation entry to determine the
particular compression algorithm used to compress
the page;

selecting a decompression engine from a plurality of
decompression engines, wherein the selected decom-
pression engine implements a decompression algo-
rithm for decompressing data compressed using the
particular compression algorithm;

providing the page to the selected decompression
engine; and

the selected decompression engine decompressing the
page using the decompression algorithm to produce
the decompressed page.

4. The method of claim 1, wherein the compression of
pages of the memory 1n the system 1s operable to increase the
clfective size of the system memory by keeping least recently
used data as compressed data in the physical memory and
most recently and frequently used data as uncompressed data
in the physical memory.

5. The method of claim 4, wherein the system further
comprises an operating system, wherein the operating system
1s not aware of the increased effective size of the system
memory.

6. A method for managing compression of pages of memory
in a computer system comprising physical memory, wherein
the physical memory comprises system memory, the method
COmprising.

receiving a system memory access;

locating a page translation entry for the system memory

access in a page translation table, wherein the page
translation table comprises a plurality of page transia-
tion entries;

in rvesponse to determining that a page in the physical

memory referenced by the page tramnslation entry is

uncompressed, the computer system.

determining that the uncompressed page is to be com-
pressed;

selecting one of a plurality of compression engines
based at least in part on a compression ratio associ-
ated with using a compression algorithm imple-
mented by the selected compression engine to com-
press the uncompressed page, wherein individual
ones of the plurality of compression engines are con-
figured to implement different compression algo-
rithms;

US RE43,483 E

29

compressing the uncompressed page to produce a com-
pressed page, wherein said compressing is performed
using the selected compression engine; and

writing the compressed page to the physical memory.

7. The method of claim 6, wherein said compressing com-

prises.

a Dirvect Memory Access (DMA) channel veading the
uncompressed page from the physical memory; and

the DMA channel writing the uncompressed page to the
selected compression engine.

8. The method of claim 6, wherein said writing the com-

pressed page to the physical memory comprises.

a Direct Memory Access (DMA) channel reading the com-
pressed page from the selected compression engine; and

the DMA channel copying the compressed page into one or
morve linked compressed blocks in the physical memory.

9. The method of claim 6, wherein said compressing com-

prises.

a plurality of Divect Memory Access (DMA) channels read-
ing the uncompressed page from the physical memory;,
and

the plurality of DMA channels writing the uncompressed
page to the selected compression engine.

10. The method of claim 6, whevein said writing the com-

pressed page to the physical memory comprises.

a plurality of Divect Memory Access (DMA) channels read-
ing the compressed page from the selected compression
engine; and

the plurality of DMA channels copying the compressed
page into one ov movre linked compressed blocks in the
physical memory.

11. The method of claim 6, wherein said selecting one of a

plurality of compression engines comprises:

compressing the uncompressed page using two ov move of
the plurality of compression engines to produce two or
more compressed pages compressed using diffevent
compression algorithms,; and

selecting the selected one of the plurality of compression
engines based at least in part on the selected one pro-
ducing a compressed page having the highest compres-
sion ratio of the two or more compressed pages.

12. A method for managing compression of pages of

memory in a system comprising physical memory, wherein
the physical memory comprises system memory, the method
COmprising:
receiving a system memory access;
locating a page translation entry for the system memory
access in a page translation table, wherein the page
translation table comprises a plurality of page transla-
tion entries; and
in response to determining that a page in the physical
memory referenced by the page tramnslation entry is
uncompressed.:
determining that the uncompressed page is to be com-
pressed;
compressing the uncompressed page to produce a com-
pressed page; and
writing the compressed page to physical memory;
wherein said compressing the uncompressed page com-
prises:

providing the uncompressed page to a plurality of
compression engines, wherein individual ones of

the plurality of compression engines implement dif-
Jerent compression algorithms;

individual ones of the plurality of compression
engines compressing the uncompressed page using
the compression algorithm implemented by the

10

15

20

25

30

35

40

45

50

55

60

65

30

particulay compression engine to produce a plural-
ity of compressed pages compressed by different
compression algorithms; and

selecting the compressed page from the plurality of
compressed pages, wherein the selected com-
pressed page has the highest compression ratio of
the plurality of compressed pages.

13. The method of claim 12, further comprising.

providing a different portion of the compressed page to
individual ones of a plurality of decompression engines;
and

the individual omnes of the plurality of decompression
engines decompressing the portion of the compressed
page provided to the particular decompression engine.

14. The method of claim 13,

wherein the individual ones of the plurality of decompres-
sion engines implement a same data decompression

algorithm.
15. The method of claim 13,

wherein the plurality of decompression engines decom-
presses the portions of the compressed page in parallel.

16. The method of claim 13, further comprising:

combining the decompressed portions of the page to pro-
duce the decompressed page.

17. A method for managing compression of pages of
memory in a system comprising physical memory, wherein
the physical memory comprises system memory, the method

COmprising.
receiving a system memory access,

locating a page translation entry for the system memory
access in a page translation table, wherein the page

translation table comprises a plurality of page transia-
tion entries;

determining if a page in the physical memory referenced by
the page translation entry is compressed ov uncom-
pressed; and

in response to determining indicates the page is com-
pressed.:

decompressing the compressed page to produce a
decompressed page;

writing the decompressed page to the physical memory;

providing a first physical memory address of the decom-
pressed page in the physical memory to fulfill the
system memory access,; and

prior to said providing the page to a decompression
engine.
examining the page translation entry to determine a

compression algorithm used to compress the page;
and

selecting the decompression engine from a plurality
of decompression engines, wherein the decompres-
sion engine is configured to decompress data com-
pressed using the determined compression algo-
rithm;

wherein said decompressing the compressed page com-
prises.
providing the page to a decompression engine; and

the decompression engine decompressing the page to
produce the decompressed page.

18. An article of manufacture including a computer-read-
able medium having instructions stoved theveon that, vespon-
sive to execution by a computing device, cause the computing
device to perform operations comprising.

US RE43,483 E

31

receiving a system memory access;
locating a page translation entry for the system memory
access in a page translation table, wherein the page
translation table comprises a plurality of page transla-
tion entries; and 5
in response to determining that a page in physical memory
of the computing device referenced by the page transla-
tion entry is compressed.
examining the page tramnslation entry to determine a
compression algorithm used to compress the page;
selecting a decompression engine from a plurality of
decompression engines, wherein the selected decom-
pression engine is configured to decompress data
compressed using the determined compression algo-
rithm;
decompressing the compressed page using the selected
decompression engine to produce a decompressed
page;
writing the decompressed page to the physical memory;
and
providing a first physical memory addvess of the decom-
pressed page in the physical memory to fulfill the
syStem memory access.
19. A method for managing compression of pages of
memory in a computer system comprising physical memory, 25

10

15

20

wherein the physical memory comprises system memory, the
method comprising:
receiving a system memory access;
locating a page translation entry for the system memory
access in a page translation table, wherein the page
transilation table comprises a plurality of page transia-
tion entries; and
in response to determining that a page in the physical
memory referenced by the page translation entry is com-
pressed, the computer system.
examining the page translation entry to determine a
compression algorithm used to compress the page;

selecting a decompression engine from a plurality of

decompression engines, wherein the selected decom-
pression engine is configured to decompress data
compressed using the determined compression algo-
rithm;
decompressing the compressed page using the selected
decompression engine to produce a decompressed
page;
writing the decompressed page to the physical memory;
and
providing a first physical memory addvess of the decom-
pressed page in the physical memory to fulfill the
syStem memory access.
20. An article of manufacture including a computer-read-
able medium having instructions storved theveon that, vespon-
sive to execution by a computing device, cause the computing
device to perform operations comprising:
locating a page translation entry in a page translation
table, wherein the page translation entry veferences an
uncompressed page in physical memory of the comput-
ing device, and whevrein the page translation table com-
prises a plurality of page translation entries;

determining whether the uncompressed page is to be com-
pressed; and

in response to determining that the uncompressed page is

to be compressed:

compressing the uncompressed page to produce a com-
pressed page; and

writing the compressed page to the physical memory,
wherein the compression of pages of the memory in

30

35

40

45

50

55

60

65

32

the system is operable to increase the effective size of

the system memory by keeping least recently used

data as compressed data in the physical memory and

most recently and frequently used data as uncom-

pressed data in the physical memory;,

wherein said compressing the uncompressed page com-

prises.

selecting one of a plurality of compression engines
based at least in part on a compression ratio asso-
ciated with using a compression algorithm imple-
mented by the selected compression engine to com-
press the uncompressed page, wherein individual
ones of the plurality of compression engines are
configured to implement different compression
algorithms; and

using the selected compression engine to produce the
compressed page;

wherein an operating system of the computing device is not

aware of the increased effective size of the system
MEemory.

21. The article of manufacture of claim 20, wherein the
plurality of compression engines compress portions of the
uncompressed page in parallel to produce the compressed
page.

22. A method for managing compression of pages of
memory in a system comprising an operating system and

physical memory, wherein the physical memory comprises

system memory, the method comprising:
locating a page translation entry in a page translation
table, wherein the page translation entry references an
uncompressed page in the physical memory, wherein the
page translation table comprises a plurality of page
translation entries;
determining whether the uncompressed page is to be com-
pressed,; and
in vesponse to determining that the uncompressed page is
to be compressed.:
compressing the uncompressed page to produce a com-
pressed page; and
writing the compressed page to the physical memory,
wherein the compression of pages of the memory in
the system is operable to increase the effective size of
the system memory by keeping least recently used
data as compressed data in the physical memory and
most recently and frequently used data as uncom-

pressed data in the physical memory;,
wherein said compressing the uncompressed page com-
prises:
providing the uncompressed page to a plurality of
compression engines, wherein individual ones of
the plurality of compression engines implement dif-
Jerent compression algorithms;
the individual ones of the plurality of compression
engines compressing the uncompressed page using
the compression algorithm implemented by the
particulay compression engine to produce a plural-
ity of candidate compressed pages compressed by
different compression algorithms; and
selecting the compressed page from the plurality of
candidate compressed pages 1 based at least in
part on the selected compressed page having the
highest compression ratio of the plurality of candi-
date compressed pages;
wherein the operating system is not aware of the increased
effective size of the system memory.

US RE43,483 E

33
23. The method of claim 22, further comprising:

marking the page translation entry associated with the
compressed page to indicate the particular compression
algorithm used in said compressing the page.

24. A system comprising.

one or move processors;

a physical memory comprising a system memory;

a system memory controller;

a plurality of compression/decompression engines,
wherein at least two of the plurality of compression/
decompression engines implement different compres-
sion/decompression algorithms; and

a compressed memory management unit (CMMU), config-
ured to:
receive from a first processor of the one or movre proces-

SO¥S a system memory access COmprising a system
memory address;
translate the system memory address into a first physical
memory address, whevein the first physical memory
address veferences compressed data;,
cause decompression of the compressed data at the fivst
physical memory address in the physical memory to
produce decompressed data,
write the decompressed data to a second physical
memory address,; and
pass the second physical memory address to the system
memory controller,
prior to said writing the compressed data to the com-
pression/decompression engine:
determine a particular compression algorithm used
to compress the compressed data; and
select the compression/decompression engine from
the plurality of compression/decompression
engines, wherein the selected compression/decom-
pression engine is configured to decompress data
compressed using the particular compression
algorithm;,

wherein the system memory controller is configured to
fulfill the system memory access from the decompressed
data at the second physical memory address; and

wherein the CMMU is operable to increase the effective
size of the system memory by keeping least vecently used
data as compressed data in the physical memory and
most vecently and frequently used data as uncompressed
data in the physical memory.

25. The system of claim 24,

wherein said translating comprises locating a page trans-
lation entry for the system memory address in a page
translation table and determining the first physical
memory address from the page translation entry for the

10

15

20

25

30

35

40

45

34

system memory address, wherein the page translation
table comprises a plurality of page translation entries.
26. A system comprising.
one or more Processors;
a system memory contrvoller;
a physical memory comprising a system memory;
a plurality of compression/decompression engines,
whevrein individual ones of the plurality of compression/
decompression engines implement different compres-
sion algorithms; and
a compressed memory management unit (CMMU), config-
ured to:
translate a system memory address into a first physical
memory address, wherein the first physical memory
address references uncompressed data;

select a compression/decompression engine based at
least in part on a compression ratio associated with
compressing the veferenced uncompressed data using
the compression algorithm implemented by the
selected compression/decompression engine;

cause compression of the veferenced uncompressed data
using the selected compression/decompression
engine to produce compressed data; and

write the compressed data to a second physical memory
address;

wherein the system is operable to increase the effective size
of system memory by keeping least recently used pages
compressed in the physical memory and most recently
and frequently used pages uncompressed in the physical
Memory.

27. The system of claim 26,

wherein the CMMU selects the compression/decompres-
sion engine that implements an compression algorithm
that provides a highest compression ratio for the refer-
enced uncompressed data.

28. The system of claim 26,

wherein the system further comprises a page translation
table comprising one ov more page translation entries;

wherein one of the one or more page translation entries
veferences a page of physical memory at the second
physical memory address; and

wherein the CMMU is further configured to mark the page
translation entry to indicate the particular compression

algorithm used in said compressing the uncompressed
data.

29. The system of claim 26,
wherein the plurality of compression/decompression

engines is configured to compress the uncompressed
data in parallel.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : RE43,483 E Page 1 of 1
APPLICATION NO. : 12/121598

DATED : June 19, 2012

INVENTORC(S) . Geiger et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On Title Page 2, Item (56), under “FOREIGN PATENT DOCUMENTS?”, in Column 2, Line 2, delete
“WO 0045516 &/20007.

In Column 5, Line 14, delete “Ups’ and insert -- UPs --, therefor.
In Column 5, Line 39, delete “PE” and insert -- PTE --, therefor.
In Column 32, Line 62, m Claim 22, delete “pages 17 and insert -- pages --, therefor.

In Column 34, Line 33, 1n Claim 27, delete “an’ and insert -- a --, therefor.

Signed and Sealed this
Sixth Day of November, 2012

David J. Kappos
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

