USOORE43437E
(19) United States
a2 Reissued Patent (10) Patent Number: US RE43,437 E
Han et al. 45) Date of Reissued Patent: May 29, 2012
(54) STORAGE VOLUME HANDLING SYSTEM 5,363,487 A * 11/1994 Willmanetal. 710/8
WHICH UTILIZES DISK IMAGES 5,367,698 A * 11/1994 Webberetal. 709/203
5,374916 A 12/1994 Chuocevveviiiiinnnnnn, 340/146
5,394,534 A 2/1995 Kulakowskietal. 395/425
(75) Inventors: Byron B. Han, Honolulu, HI (US); 5.410.676 A * 4/1995 Huangetal. ... 711/202
James F. Kateley, San Jose, CA (US); 5414,850 A * 5/1995 WHhitingcoccoovveverenn.. 719/321
Colm Murphy, Tower Blarney (IE); 5,426,645 A 6/1995 Haskincooveevnenne, 370/118
Kenneth FitzGerald-Smith, Passage 5,452,454 A % 9/1995 BAaSU .coocooroororrerererrenn. 713/2
West (IE) (Continued)
(73) Assignee: Apple Inc., Cupertino, CA (US) OTHER PUBLICATIONS
(21) Appl. No.: 09/990,887 IEEE “The Authoritative Dictionary of IEEE Standards Terms”,
2000, IEEE, 7th, p. 797.%
(22) Filed: Nov. 21, 2001
Related U.S. Patent D) Primary Examiner — Jason Mitchell
_ clated@ Lo, Taltil Documents (74) Attorney, Agent, or Firm — Fenwick & West LLP
Reissue of:
(64) Patent No.: 5,991,542 (57) ABSTRACT
Issued: Nov. 23, 1999 o _
Appl. No.: 08/713,500 Disk images, and the like, are used to emulate storage vol-
Filed: Sep. 13, 1996 umes for the distribution of computer software. An image of
a data storage volume, such as a hard disk drive, 1s stored 1n a
(51) Int.CL file having a format that enables 1t to exhibit a behavior which
GOGF 9/44 (2006.01) 1s the same as the storage volume itself. The image files are
GOGEF 9/445 (2006.01) accessed by means of an associated driver which can support
(52) UsS.CLl oo, 717/176; 717/170 ~ avariety of different file system protocols, thereby permutting
(58) Field of Classification Search None the files themselves to be independent of the format require-
See application file for complete search history. ments of particular file systems. The data in the image file can
be compressed 1n a manner such that a storage volume being
(56) References Cited emulated appears to be of a specified size, while actually
requiring less space to store 1ts contents. With these proper-
U.S. PATENT DOCUMENTS ties, the 1image files can be mounted in the manner of a
4864577 A 9/1980 Rechen ef al. 371/7 hardware storage device, and large files can be readily trans-
5:00 1 :5 1% A 3/1991 Johnson et al. ... 364/200 mitted and downloaded 1n an electronic format. Since the files
5,111,444 A 5/1992 Fukushima et al. 369/53.17 are preserved 1n their original form, end-to-end verification
5,117,350 A 5/1992 Parrish etal. ..o 711/1 remains possible, to ensure the integrity of the downloaded
g’zgg’ggg i %iggg %znﬁnaneiﬂallan etal. ... 3 Sg /17/ 3 (1) files. Multiple images can be combined 1nto a single tome, for
5208092 A 3/1994 Pietrasetal ... 348415 installation at a remote site using a one-button approach.
5,325,532 A 6/1994 Crosswyetal. 395/700
5,353,061 A 10/1994 Rodriguez etal. 348/409 19 Claims, 5 Drawing Sheets
67 3
. 00
T \

US RE43,437 E

Page 2
U.S. PATENT DOCUMENTS 5,754,853 A * 5/1998 Pearceco.occciiiviiinnniinnn, 713/2
;E{ i
5493649 A 21996 Sliva etal. ..o 3051185 38384 A+ 1998 Provinesral I 2001200
5,504,842 A 4/1996 Gentile ... 395/114 5704057 A * §/100% Harding 717/178
5,546,557 A 8/1996 Allenetal. 711/111 558293045 A * 10/1998 Motoyama ******************* 711/162
5,555416 A 9/1996 Owensetal. 395/700 558293053 A * 10/1998 Smith et al 711/202
5 _ 829, e,
5,604,906 A 2/1997 Murphy etal. ... 717/162 5838910 A 11/1998 Domenikosetal. 395/200
5,649,212 A * 7/1997 Kawamura et al. 713/324 5001542 A * 1171000 Han ot al 717/167
5,652,863 A * 7/1997 Asensioetal. ... 711/173 o o
5,692,190 A * 11/1997 Williams ..coocoveeeeeeveereeennn., 713/2 * cited by examiner

U.S. Patent May 29, 2012 Sheet 1 of 5 US RE43.437 E

12
_

I /18

10
- Paralfel Bus =
— a1 |
~N. 7

Boot Drive 20

Y

Image Drive

FIG. 1

L ogical

Blocks System Startup

{

] B Information

Z Volume Information
S

Volume
Bitmap

n+7 |

File
Contents

FlG. 2

US RE43,437 E

Sheet 2 of S

May 29, 2012

U.S. Patent

A
-

l\[

pasnuf

0107

dow)igg
aUIN[O

4

UOIDLIIOJUT SLUNIOA

uonDWIIOJUT

dn)ip)S WalSAG

sbowil 81y /Po3Y

£ Ol

£

05

[L

tl-

05

pl—

JOVANI
ASId

el

SINTYT

[oS vt Y B
| — ¢!
D}10(]
downig
LUNJoN

UON DWIIOJUT SLUIOA

vonouwliofur
dnin)S Wa)sAG

ys1g Addoj4
A4S

(VA 87 re A4

aH 1&0d WOy 42 aH

| 3ar WIMYIS ISOS ISOS
. s gs 49 43

SN HIN[HT SINIYT || HINTHT

WILSAS INLLYHId0

Qo ©

U.S. Patent May 29, 2012

Sheet 3 of 5

52
Floppy Disk /

US RE43,437 E

Uncompressed
Read/Only Image

56

0 System Startup System Startup 0
Informoaotion 1 Informtion
Vofurne Information Volume Information
Volume Volume
Bitmap Bitmap
1.4
FIG. 4B
Compressed 'f o
Floppy Disk 52 Read/Only Imaoge
16K Chunk
K Chun —
16K Chunk T1IK

16K Chunk

e
AN

gnused

index

| 60
~ [

l §ourz:e' Addr

Adar Comp. Alg.

FIG. 4C

U.S. Patent May 29, 2012 Sheet 4 of 5 US RE43.437 E

67
-
FIG. 6
Headers
/—H Server Client
A|PISITINIDIP| Datal| Application Application
PISTTINDIP[Dotel Presentation
SITMDIP[Dolo
TINDIP[Datal| Tronsport
DIP|Datal| Data Link Doto Link
\P|Datal| Physical
Fl G. 6 Cable/Fiber /Wireless Al
Image Server
L0 ~s80
4IDDD
52 - L1010 Low—Level
Protocols
100
AN
N
N
N
AN
> | Remote
FIG 7 A’}%’gégd Ciien't

54

U.S. Patent May 29, 2012

Disk 1

86/'
88f

Sheet 5 of 5 US RE43,437 E

Disk 7

S

Dfs_k 3 Df'S‘kJ 4
CS)

Image 1 Image 2 Image 3 Imoage 4
\ \

N\

FlG. 8

/ /

Script File

Image 1 Image 2 Image 3 Image 4 Image 5

3

“-—_—n—-_—.—_

96 ~

FiG. g

100 94

Script
Fife

g8

Image File
fome

Instaoller

US RE43,437 E

1

STORAGE VOLUME HANDLING SYSTEM
WHICH UTILIZES DISK IMAGES

Matter enclosed in heavy brackets []| appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

FIELD OF THE INVENTION

The present mvention 1s directed to the replication and
distribution of electronic files, such as computer software,
and more particularly to a system for the creation and manipu-
lation of 1images of electronic storage media.

BACKGROUND OF THE INVENTION

With the expanding use of computers 1n widely varied
environments, and more significantly the increasing size of
software programs and data files that are employed on those
computers, the dissemination of computer software 1s becom-
ing significantly more complex. Originally, when software
programs and data files were of relatively small size, distri-
bution of the programs and files by means of floppy disks was
teasible. However, as the processing power of computers
continues to expand, and internal storage media such as hard
disks offer greater capacity, there 1s a tendency for software
programs to become larger 1n size. Concomitantly, data files
which are processed by those programs, particularly files
relating to 1mages and other graphics, have also increased in
s1ze. As a result, floppy disks no longer offer a convenient
medium for distributing electronic data, due to their limited
storage capacity. While a user may be quite willing to 1nstall
a new soltware program that 1s contained on a few floppy
disks, the time and effort required to install a large program
that occupies a significant number of disks to store all of its
contents, e¢.g., 20 or more disks, becomes intolerable.

For this reason, other media having larger storage capacity,
such as CD ROMs, have been employed more recently for the
distribution of larger amounts of software. While these other
types of media decrease the time and effort required to install
the software, they still have certain limitations associated
with them. For example, the need to separately package and
ship each CD ROM, or the like, requires an appreciable
amount of overhead on the part of the software manufacturer.
In addition, the storage of the media, both at retail outlets and
at the end user’s site, represents a growing burden as the
number of programs and data files continues to expand.

To overcome these limitations associated with the limited
s1ze of transportable storage media and the need to accom-
modate or dispose of the media, 1t 1s desirable to distribute
software, including both programs and data files, 1n an elec-
tronic format. Currently, installer programs are available
which provide a user with an opportunity to mstall a program
on a computer from a remote site. In one type of installer, a
large number of bundled files are downloaded from the
remote site 1n a compressed format, and then expanded on the
user’s computer. From this large number of files, the user
picks the few that are desired, and they are installed on the
user’s computer system. From the standpoint of user conve-
nience, this approach 1s less than 1deal, because of the time
spent downloading a number of unnecessary files, as well as
the effort required by the user to select the needed files. In
contrast to this approach, a “one-button” installation system
1s preferable. In such an approach, the user 1s only required to

10

15

20

25

30

35

40

45

50

55

60

65

2

perform a single action, e.g., select a single button in a graphi-
cal user interface, to have the approprate files downloaded
and 1nstalled.

Typically, 1n a one-button installer, all required files are
compressed 1nto a single file known as a “tome.” The tome 1s
provided together with an installer program and a script file
that 1s downloaded to the user’s site. The 1nstaller program,
together with the mformation contained 1n the script file,
expands the tome back into the individual files, and installs
the files onto the user’s computer system. To perform the
installation, the user 1s only required to select the installer
program to run. All other actions are carried out automatically
thereatter.

While the latter approach offers the convenience of a one-
button installation system, to date it has been limited in the
types of programs with which 1t can be employed. More
specifically, due to restrictions associated with the number of
resources that can be handled 1n a tome, it 1s not possible to
use the one-button installer system for programs having large
files, or a large number of files, such as operating system
soltware.

Furthermore, since installer programs operate on files indi-
vidually, they are not able to ensure the integrity of {files
installed on the user’s system. More particularly, since each
individual file 1s compressed and expanded during the instal-
lation process, 1t 1s not possible to provide end-to-end verifi-
cation of each file. For example, the original file may have a
checksum value tagged to 1t, to provide for verification of the
integrity of the file when it 1s copied. However, as part of the
process of compressing the file, the checksum value 1s not
always preserved. For example, the file might be renamed.
Consequently, when the file 1s expanded and 1nstalled, 1t 1s not
impossible to employ the checksum value to verily the integ-

rity of the file.

SUMMARY OF THE INVENTION

In accordance with the present invention, the foregoing
limitations associated with the distribution of computer sofit-
ware are addressed through the use of disk 1images, and the
like, to emulate storage volumes. An 1image of a data storage
volume, such as a hard disk drive, 1s stored 1n a file having a
format that enables it to exhibit a behavior which 1s the same
as the storage volume itself. The image files are accessed by
means of an associated driver which can support a variety of
different file system protocols, thereby permitting the files
themselves to be independent of the format requirements of
particular file systems. The data in the image file can be
compressed 1n a manner such that a storage volume being
emulated appears to be of a specified size, while actually
requiring less space to store 1ts contents. With these proper-
ties, the 1mage files can be mounted 1n the manner of a
hardware storage device, and large files can be readily trans-
mitted and downloaded 1n an electronic format. Since the files
are preserved in their original form, end-to-end verification
remains possible, to ensure the integrity of the downloaded
files. Multiple 1images can be combined into a single image
file tome, for mstallation at a remote site using a one-button
approach.

The foregoing features of the invention, as well as the
advantages provided thereby, are explained in greater detail
hereinafter with reference to exemplary embodiments 1llus-
trated 1n the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a general block diagram of one arrangement for
downloading software onto a computer;

US RE43,437 E

3

FIG. 2 1s a block diagram of the organization of data in a
storage volume;

FIG. 3 15 a block diagram of a computer system having a
number of physical I/O devices and access to a disk 1image
file;

FIGS. 4A-4C are block diagrams of different disk image
formats;

FIG. 5 1s a block diagram of a software distribution system
which employs a disk 1image;

FIG. 6 15 a block diagram of network communication lay-
ers;

FIG. 7 1s a block diagram of an image server system;

FIG. 8 1s a block diagram of a script file for mounting
images and taking specified actions; and

FIG. 9 1s a block diagram of an installer system 1n accor-
dance with the present invention.

DETAILED DESCRIPTION

To facilitate an understanding of the present invention, 1t 1s
described hereinafter with reference to specific examples
relating to the downloading and 1nstallation of software on
computers. For example, the installation may take place at the
time of computer manufacture, or occur 1n a private context
via an enterprise network or a world-wide network, such as
the internet. It will be appreciated, however, that these
embodiments are merely exemplary, and do not constitute the
only practical applications of the invention. Rather, the inven-
tion can be successiully utilized in a variety of different
situations 1n which 1t 1s desirable to replicate and/or dissemi-
nate software 1n an electronic format.

Generally speaking, the present invention 1s based upon the
use of storage media images to facilitate the dissemination
and access to large quantities of data. In the context of the
present invention, a disk image 1s a file which 1s located on
any suitable storage medium and which has properties that
cause 1t to appear to computer system resources as 1i 1t were
a physical storage device 1tself, e.g. a hard disk drive. In one
aspect, the present invention 1s directed to a multiple-format
disk 1mage, 1n which the contents of a storage medium can be
stored 1n any one of a variety of formats that provide the most
eilicient use of backing storage commensurate with the needs
ol the user. In another aspect, the present invention 1s directed
to a disk image device driver which allows disk 1mages of any
of a variety of formats to be mounted and used 1n the same
manner as any type of physical storage device.

One environment in which the features of the present
invention are particularly desirable 1s the downloading of
soltware onto computers. For example, most new computers
are typically sold with bundled software, 1n which a number
of programs are installed on the storage media, e.g., hard disk,
of the computer. To this end, the software must be down-
loaded and installed at the manufacturing site. In one
approach, this can be accomplished through the use of a disk
image file. Referring to FIG. 1, a software bundle 1s to be
downloaded onto a hard disk 1n a target computer 10. The
downloading operation s carried out by a controller computer
12. In operation, the controller 12 creates a disk 1image of a
hard disk drive onto which the software bundle 1s to be down-
loaded. Preferably, the image 1s created in the controller’s
internal RAM. For explanation purposes, the image drive 1s
illustrated 1n FIG. 1 as a separate external drive 14. It will be
appreciated, of course, that the image drive could actually be
created on an external device, such as a RAM disk or a hard
disk drive, as 1llustrated in FIG. 1, rather than 1n the control-
ler’s internal memory.

10

15

20

25

30

35

40

45

50

55

60

65

4

The creation of the image 1s carried out by downloading the
soltware bundle to the 1mage drive and verifying its integrity,
for example, by means of a checksum operation. Thereatter, a
target computer 10 1s connected to the controller and powered
up. Preferably, the computer 10 1s connected to a boot drive
16, from which the computer begins a startup operation. At a
particular point in the boot process, the computer communi-
cates with the controller over a serial cable 18. In response to
a signal from the computer 10, the controller 12 downloads
the software bundle onto the internal disk drive of the com-
puter 10. This procedure 1s accomplished by means of a
block-to-block transter {from the image drive 14 to the target
drive of the computer 10 over a parallel bus, as illustrated by
the arrow 20 1n FIG. 1. For further information regarding this
operation, reference 1s made to copending, commonly
assigned U.S. application Ser. No. 08/383,864, filed Feb. 6,
1993, the disclosure of which 1s incorporated herein by ret-
erence thereto.

In the arrangement depicted in FIG. 1, the downloading of
the software onto the internal drive of the target computer 10
1s controlled by the controller 12. In such a case, the efliciency
with which the software bundle can be downloaded onto a
plurality of target computers 1s determined by the resources of
the controller 12. Specifically, the controller interacts with
one target computer 10, or at most a limited number of target
computers, at one time. In accordance with the present mnven-
tion, the efficiency with which the downloading operation can
be carried out 1s enhanced by making the disk image file
mountable 1n each target computer 10. If the disk 1image file 1s
mounted within the computer 10, the downloading operation
can be controlled by the individual target computers, rather
than the controller 12. As such, the same software bundle can
be downloaded onto a potentially unlimited number of target
computers at one time.

The mounting of a storage medium refers to the process by
which information 1s provided to the file management facility
of a computer’s operating system, so that the computer can
access mformation on the storage medium. In the following
discussion, the term “volume” will be used to refer to difter-
ent types of storage devices. In essence, a volume can be any
piece of a storage medium, such as a disk, which 1s formatted
to contain files. A volume can be an entire disk, or only part of
a disk. For example, a floppy disk might comprise a single
volume. A larger storage device, such as a hard disk or a file
server, can be divided mnto many different volumes, or parti-
tions, each of which can be formatted 1n a different manner.

Typically, information 1n a volume 1s organized 1n the form
of logical blocks, each of which contains a predetermined
amount of information, e.g., 512 bytes. One example of the
organization ol the logical blocks in a storage volume 1is
shown 1n FIG. 2. In this particular arrangement, the first two
blocks in the volume are known as 1ts boot blocks, and contain
information that 1s read at system startup. This information
might include, for example, configurable system parameters,
such as the capacity of various queues, and the number of
open files that are allowed at any given time. The next logical
block of the volume contains volume information, which 1s
discussed below. The following group of logical blocks (3—n)
contain the volume bitmap, which records whether each
block on the volume 1s used or unused. The remaining logical
blocks 1n the volume contain the contents of the files which
are actually stored 1n the volume.

The volume information in logical block 2 comprises vari-
ous fields that are used by the operating system’s file man-
agement facility, such as the volume name, 1t size, and the
number of files on the volume. This information 1s initially
created when the volume 1s initialized, or formatted, and

US RE43,437 E

S

modified thereafter whenever the file management system
writes information to the volume. Each time a volume 1s
mounted, the file manager reads the volume information from
the logical block and stores 1t 1n a predetermined area of the
computer’s working memory, ¢.g. its RAM. Once the file
manager has retrieved and stored the volume information, the
volume 1s considered to be mounted, and the file manager can
access mformation contained in the remaining blocks of the
volume. A volume becomes unmounted when the file man-
ager releases the memory that was used to store the volume
information.

Typically, each volume that 1s mounted 1n a computer
system represents a different physical device, e.g. a tloppy
disk, or a portion of a physical device, such as a partition on
a disk drive. In contrast, a disk 1mage 1s not associated with
any particular physical device. Rather, 1t comprises a file 1n
some storage medium, referred to hereinafter as the backing
store, and 1s capable of behaving 1n the manner of a physical
device. Thus, the file 1tself comprises logical blocks contain-
ing the information that 1s normally associated with a physi-
cal volume, 1.e. system startup information, volume informa-
tion, and a volume bitmap, 1n addition to the actual data of the
file 1tsell.

In operation, application programs running on a computer
communicate with the storage volumes by means of associ-
ated drivers. For example, FIG. 3 illustrates a computer sys-
tem having various physical volumes mounted thereon. These
physical volumes might include local devices, for example a
SCSI hard disk drive 22, a SCSI CD-ROM drive 24, and an
IDE hard disk drive 26. A serial port 28 provides access to
other remotely located physical devices (not shown), for
example by means of a communication network. Each of
these devices has an associated driver 32-38 stored in the
memory of the computer. Whenever an application program
40 running on the computer desires to read or write informa-
tion on one of these devices, 1t sends a logical address for the
desired information to the computer’s operating system 42. In
response thereto, the operating system determines which stor-
age device that logical address pertains to, and a correspond-
ing physical address on that device. The operating system
provides the physical address, and other associated com-
mands, such as read or write, to the appropriate driver, which
then accesses the device to obtain or provide the data at the
indicated address.

In a similar manner, when a disk image 1s mounted, a driver
1s employed to carry out the task of providing data to the
image {ile and retrieving data therefrom. As shown in FIG. 3,
a disk 1image 30 of a volume 1s located on a suitable backing
store 31, and 1s mounted as a local volume 1n the computer
system. Communications with the disk image are carried out
through an associated driver 50. This driver 1s loaded at sys-
tem boot time, or upon mounting of the disk image, 1n the
same manner as the conventional drivers 32-38. Once loaded,
the driver carries out the actual mounting operation, €.g. store
the volume information in an allocated portion ol memory,
and the like. The backing store 31 could be one of the other
local physical devices 22, 24 or 26, or it could be some other
local or remote device. By means of this arrangement, the
disk 1image 30 appears as another physical storage device to
the operating system.

In accordance with one aspect of the present invention, a
disk image can have any one of a number of different formats.
Three such formats, namely uncompressed read/write,
uncompressed read/only, and compressed read/only, are 1llus-
trated mm FIGS. 4A-4C, respectively, for an 1illustrative
example 1n which a 1.4 MByte floppy disk 52 i1s imaged. In
this particular example, only 1.2 MByte of the total storage

10

15

20

25

30

35

40

45

50

55

60

65

6

capacity of the disk 1s used to store data and volume-related
information. The last 200 kilobytes are unused. The image file
54 of FIG. 4A 1s 1n the uncompressed read/write file format.
Animage file in this format contains every logical block of the
source volume. Therefore, the 1mage file 54 has a s1ze of 1.4
MBytes, including 200 kilobytes which relate to the unused
portion of the tloppy disk. When this disk image 1s mounted,
it will appear as a 1.4 MByte volume, from which the stored
data can be read. In addition, new data can be written into the
unused storage blocks.

I1 there 1s no need to write information to the disk image, it
1s preferable to store 1t 1n a read/only format which saves
storage space. In this format, the size of the disk file 1s com-
mensurate with only the used portion of the source volume.
Retferring to FIG. 4B, an uncompressed read/only disk image
56 1s a file which contains only the actual data of the disk 52,
and hence has a size o1 1.2 MByte. However, when mounted,
this 1mage still appears as a 1.4 MByte volume, since the
volume information stored 1n logical block 2 1s the same as
that for the original tloppy disk 52. The data stored 1n the first
1.2 MBytes of the address range for the volume 1s read 1n the
normal manner by the disk driver. If an attempt 1s made to read
data from an address corresponding to the unused portion of
the floppy disk, the disk driver returns a value of zero, based
on information contained 1n an index resource, described
below.

To obtain the greatest savings 1n storage space, the com-
pressed read/only format 1s employed. In the creation of a
compressed read/only 1image file, the original data 1s divided
into “chunks” of any suitable size. In the example of FIG. 4C,
the data stored on the floppy disk 52 1s divided into chunks of
16 kilobytes each. Each chunk 1s separately compressed and
stored 1n the image file 38. Depending upon the nature of the
data, different compression algorithms can be employed for
the various chunks of data, to obtain the most efficient com-
pression for the file as a whole. As a result, different chunks
can be compressed by different amounts, and some chunks
may not be compressed at all. Thus, information which 1s
frequently accessed, such as directories and catalogs, might
not be compressed, to increase the speed with which they are
read. Although all of the source data chunks in the example of
FIG. 4C have the same size, there 1s no requirement that they
do so. Rather, the different chunks could be of various sizes,
to accommodate different compression algorithms, for
example.

Associated with the compressed 1image file 1s an index
resource 60. This index comprises a mapping of the logical
blocks of the source volume 52 to byte ranges in the com-
pressed 1mage file 58. The index also contains information
which 1dentifies a particular compression algorithm that was
used on the associated chunk of data, and perhaps also the
s1zes ol the chunks, to thereby provide information on the
manner 1n which to decompress the data from the file 58.

The 1index 60 can also be employed 1n connection with the
other disk 1mage file formats. For example, 1in the case of the
uncompressed read/only format of FIG. 4B, the index con-
tains information that the last 200 kilobytes of the source
volume are not mapped 1nto the disk image 56, and therefore
have a value of zero. In the case of the uncompressed read/
write formats of FIG. 4A, there 1s no need for an index since
the 1mage file stores every block of the source volume.

Another format for a disk image 1s a compressed read/write
format. In this format, the user can specily a container of a
particular size, e.g, a 1-Gigabyte volume. A disk image file 1s
then created with the appropriate volume information per-
taining to such a volume. When 1mitially created, the disk
image could be empty, 1.e. contain no file data. When a com-

US RE43,437 E

7

mand 1s generated to write data to the disk 1image, the data 1s
segmented into suitably sized chunks, 1f necessary, and each
chunk 1s compressed as appropriate. Each compressed chunk
of data1s then added to the disk image file, and the appropriate
mapping and compression data 1s entered into the index 60.
Thus, the disk image file grows as data 1s written to 1t, up to the
limit of 1ts specified capacity.

Referring again to FIG. 3, 1n operation the driver 50 for the
disk 1mage 30 contains data which identifies the physical
device 31 on which the image 1s actually stored, and the
address for the first byte of data 1n the 1image file 30 on that
device, which constitutes an offset address. When the driver 1s
provided with a data address from the operating system, it
employs this data address, together with the offset address for
the 1mage file, to locate and read the requested data. If the
image file 1s 1n a read/only or compressed format, the driver
refers to 1ts associated index resource 60. Upon receipt of a
data address from the operating system, the driver determines
where the compressed data corresponding to that address 1s
stored, and the appropriate algorithm necessary to decom-
press the data. The compressed data 1s then retrieved, decom-
pressed, and provided to the operating system. If the driver

receives a data address corresponding to part of the source
volume which 1s unmapped 1n the index resource 60, e.g. the
last 200 kilobytes in the example of FIG. 4B, the driver
returns a value of zero to the operating system for all data at
such addresses.

Disk image files of the type described above, which emu-
late the entire contents of the storage volume, can be
employed 1n the electronic dissemination and replication of
software. FI1G. 5 illustrates an example of a computer network
in which a software program 1s to be installed on a plurality of
individual computer systems. A network server 62 has an
associated disk drive 64 or other type of storage device. A disk
image 66 1s stored on the device 64, and contains all of the
files for a soitware program that 1s to be 1nstalled on remote
client computers 68. In this particular case, the disk image 66
can be 1n one of the two read/only formats. To perform the
installation, the disk image 66 1s mounted at each of the client
computers 68, as indicated by an associated icon 70 on each
computer’s display. In this particular case, the disk image 1s
mounted as a remote volume, which 1s accessed through a
communication network 72. This network could be a local
area network, for example, or a much larger wide-area net-
work, such as the internet. Once the disk image 1s mounted at
the individual computers 68, they can copy 1ts contents to
their local disk drives 74, to thereby install the software. The
particular advantage of this approach 1s the fact that the instal-
lation at each remote computer 68 1s controlled by the indi-
vidual client computers themselves, and therefore does not
require the resources of the network server 62. Consequently,
installation can take place on a number of client computers 68
simultaneously.

Several advantages are associated with the creation of disk
images to emulate mountable storage volumes and dissemi-
nate software. For example, by creating an image of an entire
volume, the individual files themselves remain intact. As
such, 1t 1s possible to employ a checksum technique, or simi-
lar such type of data integrity check, to provide end-to-end
verification that files have been successiully transierred.
More particularly, the disk image 66 contains all of the con-
tents of a source volume (not shown). When the disk1image 66
1s to be created, the network server 62 can calculate a check-
sum for the source volume, and store this value 1n the volume
information, which 1s then included 1n the disk image file 66.
Subsequently, when a remote client computer copies the con-

10

15

20

25

30

35

40

45

50

55

60

65

8

tents of the disk 1image file to 1ts own disk drive 74, it can run
a checksum on the copied data to determine whether the same
value 1s obtained.

Another advantage stemmning from the use of 1mages of
entire storage volumes 1s the fact that the dissemination of
files can be independent of the file systems themselves. For
example, with reference to FIG. 5, the source volume from
which the disk image 66 1s created can be formatted for a
given type of file system, e.g. DOS. However, the disk drives
74 for the remote client computers 68 might be formatted 1n
accordance with a different type of file system, e.g. HFS. To
permit the disk 1mage 66 to be mounted and read at the client
computers, the disk driver 50 for reading disk images 1is
provided with information relating to different disk formats.
For this purpose, when the driver 1s first opened 1t loads a table
which contains a list of file types that 1t 1s capable of recog-
nizing. For each type, the table contains entries which provide
the information needed to access data in files of that type, e.g.
how to 1dentity the beginning and end of a block of data. The
table might also indicate the type of operations that are
allowed for each file type, e.g. read/write or read-only. In the
particular example described above, therefore, the disk driver
includes information regarding the DOS format, so that it can
tell where data begins and ends in the 1image file 66. Using this
information, the disk driver 1s able to read the data in the
image file 66, and provide it to the operating system for the
remote client computer 68, so that 1t can be stored on the local
disk drive 74 1n the format required by the file system for the
computer 68. Thus, a disk 1mage stored on server which
employs any given file system can be mounted on and
accessed by a computer which uses a different type of file
system, without affecting the integrity of the files themselves.

Another advantage associated with the distribution of sofit-
ware via disk images lies 1n the reduced bandwidth require-
ments for disseminating the images over networks. Typically,
most network communications are carried out through vari-
ous layers that comprise distinct levels of capabilities, or
services, that build upon one another. One well-known layer
architecture 1s the OSI reference model, which employs seven
layers to describe network activities. These seven layers are
depicted 1n the block diagram of FIG. 6. A given layer on a
computer uses a predefined protocol to communicate with
that layer’s counterpart on another computer. Except for the
lowest, physical layer, however, the communications
between the respective layers are indirect. In other words,
direct communications take place between the physical lay-
ers, at which details of cable connections and electrical sig-
naling are specified. Each layer above the physical layer
communicates with the layers below 1t to send information.
As part of the process for sending a data packet, each layer
adds 1t own header to the actual data being communicated.
Thus, for communications between the two highest layers,
1.¢. the application layers, a significant amount of overhead 1s
associated with the network communications, as indicated in
FIG. 6. This overhead requires additional bandwidth to trans-
mit the data, as well as additional processing time at the
receiving computer to strip each layer’s associated header,
and communicate the remaining information to the layer
above it.

Typically, when a {ile 1s transferred from one computer to
another via their respective file managers, such communica-
tions take place through all seven layers of the network archi-
tecture. However, since a disk image functions as a physical
device on the computer system, only the lowest level proto-
cols need to be employed to communicate over the network.
The services of the higher level layers are not needed. For
example, transter of volume information, to permit a disk

US RE43,437 E

9

image to be mounted, only requires the two lowest protocol
layers. Consequently, the overhead associated with the higher
layers can be avoided, thereby enabling the transfer to take
place at extremely high speeds.

This capability 1s particularly advantageous 1n the case of 5

graphic files, which typically contain large amounts of data.
In one implementation of the invention, an 1image server can
be employed to provide large graphic files to remote sites.
Referring to FIG. 7, the image server has an associated stor-
age medium 80 containing disk images 82 which relate to
different respective graphic files. Using low level network
protocols, individual images can be mounted at remote client
computers 84. Thus, the client computers can access the
information in the image files over the network at extremely
high speeds. Alternatively, the image files can be copied from
the network server to the client computer by means of low-
level network protocols, and then mounted at the client com-
puter. With this approach, large 1mage files can be accessed
without having to use higher level network protocols, and be
encumbered by the overhead associated with them. Another
advantage, discussed previously, 1s the fact that the image
server need not use the same file formatting as the client
computers. As long as the disk image drivers at the client
computers 84 are capable of reading the file format at the
server, the disk images can be mounted as local volumes,
independent of the file format employed at the server.

In accordance with another aspect of the ivention, disk
images can be associated with pre-defined actions to be car-
ried out. For example, 1t might be desirable to make back-up
copies of files stored on a series of floppy disks. Referring to
FIG. 8, files to be replicated are stored on a series of four
floppy disks 86. Each disk may have a checksum (CS) com-
puted for it. A disk 1image 88 is created for each of the four
floppy disks. The checksum 1s included 1n the imaged nfor-
mation. Thereafter a script file 90 1s created, which lists disk
images to be automatically mounted and an action to be taken
alter the 1mages have been mounted. For the example
described above, the script file 90 could identify a disk copy
utility application, followed by an identification of each
image which 1s to be mounted and copied. The identification
of the application and 1mage files can specity the address at
which they are to be found. This address could be a local
address or a network address.

When the user actuates the script file, all of the identified
images are mounted at the user’s computer. If desired, a
checksum operation can be carried out with respect to each
mounted 1mage, to verily its integrity. The specified applica-
tion 1s then launched. In this case, the application creates a
backup of each imaged disk on a floppy disk at the user’s
computer. Once the operation has been completed, the image
files can be unmounted, 1f desired, or remain mounted on the
user’s computer, depending upon the user’s preferences.

In this regard, the disk image driver can mark a mounted
image as being “owned” by an application or process, such as
the disk copy utility. If an imaged volume 1s owned, the driver
checks at regular intervals whether the owning process 1s still
executing. If the process 1s no longer executing, the volume 1s
marked as unowned and the driver then unmounts 1t. If no
application program 1s specified 1n the script file, the 1dent-
fied disk images are simply mounted 1n response to launching
of the script file and marked as unowned. In this case the user
must manually unmount the volumes.

The foregoing aspect of the imnvention can be employed to
create a “onebutton’ installer that 1s not limited in the number
and/or size of files that can be 1nstalled. Retferring to FI1G. 9,
disk 1mages 92 are created for one or more volumes contain-
ing the files to be installed. These 1mages are then concat-

10

15

20

25

30

35

40

45

50

55

60

65

10

cnated 1nto a single file 94, which constitutes an 1mage file
tome. Each image 1n the tome might have an associated index
resource. Since all of the files remain intact and separately
defined within the respective images 92, and the images are
unmodified in the image-file tome 94, the original integrity of
the files 1s unaltered. As such, there 1s no need to requalify any
of the files within the tome 94 to ensure their integrity for
subsequent nstallation.

An 1nstallation package 96 comprises three elements,
namely a conventional installer program 98, the image file
tome 94, and a script file 100. The script file 1dentifies the
images to be mounted for the installation process, and
launches the installer program once the 1mages have been
mounted. The program then operates 1n the normal manner to
install the appropnate files from the mounted 1mages onto a
computer system. By means of this approach, prior limita-
tions that were placed on 1nstallation processes, regarding the
number and size of files that can be handled, are overcome,
since each 1mage only constitutes a single 1image file even
though 1t may contain a large number of individual data files.
Furthermore, since the user i1s only required to perform a
single action, namely launch the script file, the nstallation
takes place 1n a true “one-button” manner.

From the foregoing, therefore, 1t can be seen that the
present mnvention provides an efficient procedure for the dis-
semination and replication of files in an electronic format
which 1s not limited by the sizes of the files themselves.
Through the creation of disk 1mages and mounting of the
images at remote computers, ready access 1s provided to the
files 1n a speedy manner, through the use of low level network
communication protocols. Through the availability of differ-
ent types of formats, backing storage can be used in a manner
which 1s most efficient, taking into account the needs of the
user. Furthermore, the mounting and transfer of files 1s carried
out independently of file systems themselves, thereby allow-
ing files to be shared among users of diflerent types of com-
puter system.

It will be appreciated by those of ordinary skill 1n the art
that the present invention can be embodied 1n other specific
forms without departing from the spirit or essential charac-
teristics thereof. The presently disclosed embodiments are
therefore considered 1n all respects to be 1llustrative and not
restrictive. The scope of the mvention 1s indicated by the
appended claims rather than the foregoing description, and all
changes that come within the meaning and range of equiva-
lence thereotf are intended to be embraced therein.

What 1s claimed:

1. A system for accessing computer-readable files stored on
a source device, by a plurality of target computers compris-
ng:

[means] a controller for creating a disk image of the source
device, wherein said source device 1s a physical storage
volume on which said computer-readable files to be
accessed by said plurality of target computers are
located, and for storing said disk image on a storage
device that 1s accessible to said plurality of target com-
puters, wherein said disk 1image 1s a virtual representa-
tion of said physical storage volume such that 1t includes
volume format information that reflects the format of
said physical storage volume, and which enables said
disk 1image to be mounted at each of said plurality of
target computers; and

a disk 1image driver at each of said plurality of target com-
puters, having access to file format information which
enables said target computers to read files, which exhibat
different file formats, contained on said disk image, and
whevrein the image driver includes an index that identi-

US RE43,437 E

11

fies correspondence between address locations in the
storage volume and address locations in the disk image.

[2. The system of claim 1 wherein said disk image driver
includes an index which identifies correspondence between
address location 1n said storage volume and address locations
in said disk image.]

3. The system of claim [2] / wherein said disk image
contains a compressed version of data i said files, and
wherein said index further includes information pertaining to
the manner 1n which the data was compressed.

4. The system of claim 3 wherein the data 1n said disk
image 1s divided into 1individual chunks which are separately
compressed and said index contains, for each chunk, the
address of the chunk of data 1n the file, the address for the
corresponding compressed data 1n the disk image, and an
identification of a compression algorithm via which the data
of that chunk was compressed.

5. The system of claim 4 wherein different chunks of data
are compressed via different respective algorithms.

6. The system of claim 4 wherein different chunks of data
have different respective sizes.

7. The system of claim 1 wherein said disk image driver
includes data pertaining to different types of file systems, to
thereby enable said disk image driver to access disk 1images
stored 1n different disk image file formats respectively related
to said different types of file systems.

8. [The system of claim 1,] 4 system for accessing com-
puter-readable files stored on a source device, by a plurality
of target compuiters comprising.

a controller for creating a disk image of the source device,
wherein said source device is a physical storage volume
on which said computer-readable files to be accessed by
said plurality of target computers are located, and for
storing said disk image on a storvage device that is acces-
sible to said plurality of target computers, wherein said
disk image is a virtual representation of said physical
storage volume such that it includes volume format
information that rveflects the format of said physical stor-
age volume, and which enables said disk image to be
mounted at each of said plurality of target computers;
and

a disk image driver at each of said plurality of target
comptuters having access to file format information
which enables said target computers to vead files, which
exhibit different file formats, contained on said disk
image, wherein said disk image 1s stored on the storage
device 1 a compressed read/only format comprising a
file which contains compressed versions of chunks of
data stored 1n said physical storage volume, and an index
which provides a mapping between logical address
blocks 1n said physical storage volume and addresses of
corresponding compressed data 1n said file.

9. The system of claim 8, wherein said index contains
information pertaining to the manner in which the chunks of
data were compressed.

10. The system of claim 9, wherein the data 1n said volume
1s divided into individual chunks which are separately com-
pressed and said index contains, for each chunk, the address
of the chunk of data in said physical storage volume, the
address for the corresponding compressed data 1n said disk
image, and an 1dentification of a compression algorithm via
which the data of that chunk was compressed.

11. The system of claim 10, wherein different chunks of
data are compressed via different respective algorithms.

12. The system of claim 10, wherein different chunks of
data have different respective sizes.

.

10

15

20

25

30

35

40

45

50

55

60

65

12

13. The system of claim 10, wherein said uncompressed
read/only format also has an associated index which provides
a mapping between logical address blocks 1n said physical
storage volume and addresses of corresponding data 1n the
file.

14. The system of claim 1, wherein said disk image 1s
stored on the storage device 1n a read/write format comprising
a file which contains a copy of every logical address block 1n
said physical storage volume, regardless of whether the
blocks contain data.

15. The system of claim 1, wheremn said disk image 1s
stored on the storage device 1 an uncompressed read/only
format comprising a file which contains volume imnformation
and a copy of only those logical address blocks of the physical
storage volume which contain data.

16. A method for providing a remote computer access 1o
files stored on a source device, comprising the steps of:

creating a disk image of said source device, wherein said

source device 1s a physical storage volume which con-
tains said files to be accessed by said remote computer,
and wherein said disk 1image 1s a virtual representation of
said physical storage volume 1n that said disk image
includes volume format information that retlects the
format of said physical storage volume;

generating a script file which includes an 1dentification of

said disk 1mage;

launching said script file at said remote computer; and

mounting, at said remote computer, the disk 1image 1denti-

fied 1n said script file using a disk image driver that has
access to volume format information which 1s needed to
mount files, exhibiting different file formats, on the disk
image, and wherein the image drviver includes an index
that identifies correspondence between address loca-
tions in the storage volume and address locations in the
disk image.

17. The method of claim 16 wherein said script file also
includes an identification of an executable program, and fur-
ther including the step of running said program at the remote
computer aifter mounting said disk image.

18. The method of claim 17 wherein said program 1s an
installer program which 1installs files from the mounted disk
image onto the remote computer.

19. The method of claim 16 wherein a plurality of disk
images are created and identified i1n said script file, and
wherein all of the disk images 1dentified 1n said script file are
mounted at said remote computer.

20. The method of claim 16 further comprising the step of:

selectively storing said disk image in a storage medium

device 1 any one of the following disk image file for-
mats:

a read/write format comprising a file which contains a
copy of every logical address block 1n said physic al
storage volume, regardless of whether the blocks con-
tain data:

an uncompressed read/only format comprising a file
which contains volume information and a copy of
only those logical address blocks of said physical
storage volume which contain data; and

a compressed read/only format comprising a file which
contains compressed versions of chunks of data
stored 1n said physical storage volume, and an index
which provides a mapping between logical address
blocks 1n said physical storage volume and addresses
of corresponding compressed data in said {ile.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

