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(57) ABSTRACT

The present invention relates generally to systems and meth-
ods for improved electrochemical measurement of analytes.
The preferred embodiments employ electrode systems
including an analyte-measuring electrode for measuring the
analyte or the product of an enzyme reaction with the analyte
and an auxihary electrode configured to generate oxygen
and/or reduce electrochemical interferants. Oxygen genera-
tion by the auxiliary electrode advantageously improves oxy-
gen availability to the enzyme and/or counter electrode;
thereby enabling the electrochemical sensors of the preferred
embodiments to function even during 1schemic conditions.
Interferant modification by the auxiliary electrode advanta-
geously renders them substantially non-reactive at the ana-
lyte-measuring electrode, thereby reducing or eliminating
inaccuracies in the analyte signal due to electrochemical
interferants.
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ELECTRODE SYSTEMS FOR
ELECTROCHEMICAL SENSORS

Matter enclosed in heavy brackets [ ]| appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

RELATED APPLICATION

This application claims the benefit of priority under 35

U.S.C. § 119(e) to U.S. Provisional Application No. 60/490,
007, filed Jul. 25, 2003, the contents of which are hereby
incorporated by reference 1n their entirety.

FIELD OF THE INVENTION

The present invention relates generally to systems and
methods for improving electrochemical sensor performance.

BACKGROUND OF THE INVENTION

Electrochemical sensors are useful in chemistry and medi-
cine to determine the presence or concentration of a biologi-
cal analyte. Such sensors are usetul, for example, to monitor
glucose 1n diabetic patients and lactate during critical care
events.

Diabetes mellitus 1s a disorder in which the pancreas can-
not create sufficient insulin (Type 1 or isulin dependent)
and/or 1n which 1nsulin 1s not effective (1ype 2 or non-insulin
dependent). In the diabetic state, the victim suffers from high
blood sugar, which causes an array of physiological derange-
ments (kidney failure, skin ulcers, or bleeding into the vitre-
ous of the eye) associated with the deterioration of small

blood vessels. A hypoglycemic reaction (low blood sugar) 1s
induced by an inadvertent overdose of insulin, or after a
normal dose of mnsulin or glucose-lowering agent accompa-
nied by extraordinary exercise or insuilicient food intake.
Conventionally, a diabetic person carries a self-monitoring,
blood glucose (SMBG) monitor, which typically comprises

uncomiortable finger pricking methods. Due to the lack of

comiort and convenience, a diabetic will normally only mea-
sure his or her glucose level two to four times per day. Unfor-
tunately, these time intervals are spread apart so far that the
diabetic will likely find out too late, sometimes 1ncurring
dangerous side eflects, of a hyperglycemic or hypoglycemic
condition. It 1s not only unlikely that a diabetic will take a
timely SMBG value, but additionally the diabetic will not
know 11 their blood glucose value 1s going up (higher) or down
(lower) based on conventional methods.

Consequently, a variety of transdermal and implantable
clectrochemical sensors are being developed for continu-
ously detecting and/or quantifying blood glucose values.
Many implantable glucose sensors suiler from complications
within the body and provide only short-term or less-than-
accurate working of blood glucose. Similarly, transdermal
sensors have problems 1n accurately working and reporting
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back glucose values continuously over extended periods of 60

time. Some efforts have been made to obtain blood glucose
data from 1mplantable devices and retrospectively determine
blood glucose trends for analysis; however these efforts do
not aid the diabetic 1n determining real-time blood glucose
information. Some efforts have also been made to obtain
blood glucose data from transdermal devices for prospective
data analysis, however similar problems have occurred.
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SUMMARY OF THE PREFERRED
EMBODIMENTS

In contrast to the prior art, the sensors of preferred embodi-
ments advantageously generate oxygen to allow the sensor to
function at suificient oxygen levels independent of the oxy-
gen concentration in the surrounding environment. In another
aspect of the preferred embodiments, systems and methods
for moditying electrochemical interferants are provided.

Accordingly, 1 a first embodiment, an electrochemical
sensor for determiming a presence or a concentration of an
analyte 1n a fluid 1s provided, the sensor comprising a mem-
brane system comprising an enzyme, wherein the enzyme
reacts with the analyte; an electroactive surface comprising a
working electrode, the working electrode comprising a con-
ductive material and configured to measure a product of the
reaction ol the enzyme with the analyte; and an auxiliary
clectrode comprising a conductive material and configured to
generate oxygen, wherein the auxiliary electrode 1s situated
such that the oxygen generated diffuses to the enzyme or to
the electroactive surface.

In an aspect ol the first embodiment, the auxiliary electrode
comprises a conductive material selected from the group con-
sisting of a conductive metal, a conductive polymer, and a
blend of a conductive metal and a conductive polymer.

In an aspect of the first embodiment, the auxiliary electrode
comprises a form selected from the group consisting of a
mesh, a grid, and a plurality of spaced wires.

In an aspect of the first embodiment, the auxiliary electrode
comprises a polymer, wherein the polymer is situated on a
surface of the auxiliary electrode.

In an aspect of the first embodiment, the polymer com-
prises a material that 1s impermeable to glucose but 1s perme-
able to oxygen.

In an aspect of the first embodiment, the polymer com-
prises a material that 1s impermeable to glucose but 1s perme-
able to oxygen and permeable to interfering species.

In an aspect of the first embodiment, the polymer com-
prises a material having a molecular weight that blocks glu-
cose and allows transport therethrough of oxygen, urate,
ascorbate, and acetaminophen.

In an aspect of the first embodiment, the polymer com-
prises a material that 1s permeable to glucose and oxygen.

In an aspect of the first embodiment, the polymer com-
prises a material that 1s permeable to glucose, oxygen, and
interfering species.

In an aspect of the first embodiment, the polymer com-
prises a material having a molecular weight that allows trans-
port therethrough of oxygen, glucose, urate, ascorbate, and
acetaminophen.

In an aspect ol the first embodiment, the auxiliary electrode
1s configured to be set at a potential of at least about +0.6 V.

In an aspect ol the first embodiment, the auxiliary electrode
1s configured to electrochemically modily an electrochemical
interferant to render the electrochemical interferent substan-
tially electrochemically non-reactive at the working elec-
trode.

In an aspect of the first embodiment, the auxiliary electrode
1s configured to be set at a potential of at least about +0.1 V.

In a second embodiment, an electrochemical sensor for
determining a presence or a concentration of an analyte 1n a
fluid 1s provided, the sensor comprising a membrane system
comprising an enzyme, wherein the enzyme reacts with the
analyte; an electroactive surface comprising a working elec-
trode, the working electrode comprising a conductive mate-
rial and configured to measure a product of the reaction of the
enzyme with the analyte; and an auxiliary electrode compris-
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ing a conductive material and configured to modily an elec-
trochemical interferant such that the electrochemical interfer-
ent 1s rendered substantially electrochemically non-reactive
at the working electrode.

In an aspect of the second embodiment, the auxiliary elec-
trode comprises a conductive material selected from the
group consisting of a conductive metal, a conductive poly-
mer, and a blend of a conductive metal and a conductive
polymer.

In an aspect of the second embodiment, the auxiliary elec-
trode comprises a form selected from the group consisting of
a mesh, a grid, and a plurality of spaced wires.

In an aspect of the second embodiment, the auxiliary elec-
trode comprises a polymer, wherein the polymer 1s situated on
a surface of the auxiliary electrode.

In an aspect of the second embodiment, the polymer com-
prises a material that 1s permeable to an electrochemical
interferant.

In an aspect of the second embodiment, the polymer com-
prises a maternal that 1s impermeable to glucose but 1s perme-
able to oxygen.

In an aspect of the second embodiment, the polymer com-
prises a matenal that 1s impermeable to glucose but 1s perme-
able to oxygen and 1nterferants.

In an aspect of the second embodiment, the polymer com-
prises a material having a molecular weight that blocks glu-
cose and allows transport therethrough of oxygen, urate,
ascorbate, and acetaminophen.

In an aspect of the second embodiment, the polymer com-
prises a material that 1s permeable to glucose and oxygen.

In an aspect of the second embodiment, the polymer com-
prises a maternal that 1s permeable to glucose, oxygen, and
interferants.

In an aspect of the second embodiment, the polymer com-
prises a material having a molecular weight that allows trans-
port therethrough of oxygen, glucose, urate, ascorbate, and
acetaminophen.

In an aspect of the second embodiment, the auxiliary elec-
trode 1s configured to be set at a potential of at least about

+0.1V.

In an aspect of the second embodiment, the auxiliary elec-
trode 1s configured to generate oxygen.

In an aspect of the second embodiment, the auxiliary elec-
trode 1s configured to be set at a potential of atleast about +0.6
V.

In a third embodiment, an electrochemical sensor 1s pro-
vided comprising an electroactive surface configured to mea-
sure an analyte; and an auxiliary interferant-modifying elec-
trode configured to modily an electrochemical interferant
such that the electrochemical interferant 1s rendered substan-
tially non-reactive at the electroactive surface.

In an aspect of the third embodiment, the auxiliary inter-
terant-modifying electrode comprises a conductive material
selected from the group consisting of a conductive metal, a
conductive polymer, and a blend of a conductive metal and a
conductive polymer.

In an aspect of the third embodiment, the auxiliary inter-
ferant-moditying electrode comprises a form selected from
the group consisting of a mesh, a grid, and a plurality of
spaced wires.

In an aspect of the third embodiment, the auxiliary inter-
terant-moditying electrode comprises a polymer, wherein the
polymer 1s situated on a surface of the auxiliary interferant-
moditying electrode.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s an exploded perspective view of one exemplary
embodiment of a implantable glucose sensor.
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FIG. 2 1s a block diagram that 1llustrates sensor electronics
in one exemplary embodiment.

FIG. 3 1s a graph that shows a raw data stream obtained
from a glucose sensor without an auxiliary electrode of the
preferred embodiments.

FIG. 4 1s a side schematic illustration of a portion of an
clectrochemical sensor of the preferred embodiments, show-
ing an auxiliary electrode placed proximal to the enzyme
domain within a membrane system.

PR.

(L]
=T

ERRED

DETAILED DESCRIPTION OF THE
EMBODIMENT

The following description and examples illustrate some
exemplary embodiments of the disclosed invention 1n detail.
Those of skill in the art will recognize that there are numerous
variations and modifications of this invention that are encom-
passed by 1ts scope. Accordingly, the description of a certain
exemplary embodiment should not be deemed to limit the
scope of the present invention.

Definitions

In order to facilitate an understanding of the preferred
embodiments, a number of terms are defined below.

The term “analyte” as used herein 1s a broad term and 1s
used 1n its ordinary sense, including, without limitation, to
refer to a substance or chemical constituent 1n a biological
flmd ({or example, blood, interstitial fluid, cerebral spinal
fluid, Ivmph fluid or urine) that can be analyzed. Analytes can
include naturally occurring substances, artificial substances,
metabolites, and/or reaction products. In some embodiments,
the analyte for measurement by the sensing regions, devices,
and methods 1s glucose. However, other analytes are contem-
plated as well, including but not limited to acarboxypro-
thrombin; acylcarnitine; adenine phosphoribosyl transferase;
adenosine deaminase; albumin; alpha-fetoprotein; amino
acid profiles (arginine (Krebs cycle), histidine/urocanic acid,
homocysteine, phenylalanine/tyrosine, tryptophan);
andrenostenedione; antipyrine; arabinitol enantiomers; argi-
nase; benzoylecgonine (cocaine); biotinidase; biopterin;
c-reactive protein; carnitine; carnosinase; CD4; ceruloplas-
min; chenodeoxycholic acid; chloroquine; cholesterol; cho-
linesterase; conjugated 1-f hydroxy-cholic acid; cortisol;
creatine kinase; creatine kinase MM 1soenzyme; cyclosporin
A; d-penicillamine; de-ethylchloroquine; dehydroepiandros-
terone sulfate; DNA (acetylator polymorphism, alcohol
dehydrogenase, alpha 1-antitrypsin, cystic fibrosis, Duch-
enne/Becker muscular dystrophy, glucose-6-phosphate dehy-
drogenase, hemoglobin A, hemoglobin S, hemoglobin C,
hemoglobin D, hemoglobin E, hemoglobin F, D-Punjab,
beta-thalassemia, hepatitis B virus, HCMYV, HIV-1, HTLV-1,
Leber hereditary optic neuropathy, MCAD, RNA, PKU, Plas-
modium vivax, sexual differentiation, 21-deoxycortisol);
desbutylhalofantrine; dihydropteridine reductase; diptheria/
tetanus antitoxin; erythrocyte arginase; erythrocyte protopor-
phyrin; esterase D; fatty acids/acylglycines; free 3-human
chorionic gonadotropin; free erythrocyte porphyrin; free thy-
roxine (FT4); free tri-iodothyronine (F'13); fumarylacetoac-
ctase; galactose/gal-1-phosphate; galactose-1-phosphate
unidyltransferase; gentamicin; glucose-6-phosphate dehy-
drogenase; glutathione; glutathione perioxidase; glycocholic
acid; glycosylated hemoglobin; halofantrine; hemoglobin
variants; hexosaminidase A; human erythrocyte carbonic
anhydrase I; 17-alpha-hydroxyprogesterone; hypoxanthine
phosphoribosyl transferase; immunoreactive trypsin; lactate;
lead; lipoproteins ((a), B/A-1, 3); lysozyme; metloquine;
netilmicin; phenobarbitone; phenytoin; phytanic/pristanic
acid; progesterone; prolactin; prolidase; purine nucleoside
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phosphorylase; quinine; reverse tri-iodothyronine (r13);
selenium; serum pancreatic lipase; sissomicin; somatomedin
C; specific antibodies (adenovirus, anti-nuclear antibody,
anti-zeta antibody, arbovirus, Aujeszky’s disease virus, den-
gue virus, Dracunculus medinensis, Echinococcus granulo-
sus, Entamoeba histolytica, enterovirus, Giardia duodenalisa,

Hehcobacter pylori, hepatitis B virus, herpes virus, HIV-1,

IgE (atopic disease), influenza virus, Leishmania donovam,,
leptospira, measles/mumps/rubella, Mycobacterium leprae,
Mycoplasma pneumoniae, Myoglobin, Onchocerca volvu-
lus, parainfluenza virus, Plasmodium falciparum, poliovirus,
Pseudomonas aeruginosa, respiratory syncytial virus, rickett-
s1a (scrub typhus), Schistosoma mansoni, Toxoplasma gon-
di, Trepenoma pallidium, Trypanosoma cruzi/rangeli,
vesicular stomatis virus, Wuchereria bancrofti, yellow fever
virus); specific antigens (hepatitis B virus, HIV-1); succiny-
lacetone; sulfadoxine; theophylline; thyrotropin (IT'SH); thy-
roxine (14); thyroxine-binding globulin; trace eclements;
transierrin; UDP-galactose-4-epimerase; urea; uroporphy-
rinogen I synthase; vitamin A; white blood cells; and zinc
protoporphyrin. Salts, sugar, protein, fat, vitamins and hor-
mones naturally occurring 1n blood or interstitial fluids can
also constitute analytes 1n certain embodiments. The analyte
can be naturally present in the biological fluid or endogenous,
for example, a metabolic product, a hormone, an antigen, an
antibody, and the like. Alternatively, the analyte can be 1intro-
duced into the body or exogenous, for example, a contrast
agent for imaging, a radioisotope, a chemical agent, a fluo-
rocarbon-based synthetic blood, or a drug or pharmaceutical
composition, including but not limited to insulin; ethanol;
cannabis (marijuana, tetrahydrocannabinol, hashish); inhal-
ants (nitrous oxide, amyl nitrite, butyl nitrite, chlorohydro-
carbons, hydrocarbons); cocaine (crack cocaine); stimulants
(amphetamines, methamphetamines, Ritalin, Cylert, Prelu-
din, Didrex, PreState, Voranil, Sandrex, Plegine); depressants
(barbituates, methaqualone, tranquilizers such as Valium,
Librium, Miltown, Serax, Equanil, Tranxene); hallucinogens
(phencyclidine, lysergic acid, mescaline, peyote, psilocybin);
narcotics (heroin, codeine, morphine, opium, meperidine,
Percocet, Percodan, Tussionex, Fentanyl, Darvon, Talwin,
Lomotil); designer drugs (analogs of fentanyl, meperidine,
amphetamines, methamphetamines, and phencyclidine, for
example, Ecstasy); anabolic steroids; and nicotine. The meta-
bolic products of drugs and pharmaceutical compositions are
also contemplated analytes. Analytes such as neurochemaicals
and other chemicals generated within the body can also be
analyzed, such as, for example, ascorbic acid, uric acid,
dopamine, noradrenaline, 3-methoxytyramine (3MT), 3,4-
dihydroxyphenylacetic acid (DOPAC), homovanillic acid
(HVA), 5-hydroxytryptamine (5HT), and 5-hydroxyin-
doleacetic acid (FHIAA).

The terms “operable connection,” “operably connected,”
and “operably linked” as used herein are broad terms and are
used 1n their ordinary sense, including, without limitation,
one or more components linked to another component(s) in a
manner that allows transmission of signals between the com-
ponents. For example, one or more electrodes can be used to
detect the amount of analyte in a sample and convert that
information into a signal; the signal can then be transmitted to
a circuit. In this case, the electrode 1s “operably linked” to the
clectronic circuitry.

The term “host” as used herein 1s a broad term and 1s used
in 1ts ordinary sense, including, without limitation, mammals,
particularly humans.

The term “‘sensor,” as used herein, 1s a broad term and 1s
used 1n 1ts ordinary sense, including, without limitation, the
portion or portions of an analyte-monitoring device that
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detects an analyte. In one embodiment, the sensor includes an
clectrochemical cell that has a working electrode, a reference
clectrode, and optionally a counter electrode passing through
and secured within the sensor body forming an electrochemi-
cally reactive surface at one location on the body, an elec-
tronic connection at another location on the body, and a
membrane system aill

1xed to the body and covering the elec-
trochemically reactive surtace. During general operation of
the sensor, a biological sample (for example, blood or inter-
stitial fluid), or a portion thereof, contacts (directly or after
passage through one or more membranes or domains) an
enzyme (for example, glucose oxidase); the reaction of the
biological sample (or portion thereot) results 1n the formation
of reaction products that allow a determination of the analyte
level 1n the biological sample.

The term ““signal output,” as used herein, 1s a broad term
and 1s used 1n 1ts ordinary sense, including, without limita-
tion, an analog or digital signal directly related to the mea-
sured analyte from the analyte-measuring device. The term
broadly encompasses a single point, or alternatively, a plural-
ity of time spaced data points from a substantially continuous
glucose sensor, which comprises individual measurements
taken at time 1ntervals ranging from fractions of a second up
to, for example, 1, 2, or 5 minutes or longer.

The term “electrochemical cell,” as used herein, 1s a broad
term and 1s used 1in 1ts ordinary sense, including, without
limitation, a device 1n which chemical energy 1s converted to
clectrical energy. Such a cell typically consists of two or more
clectrodes held apart from each other and in contact with an
clectrolyte solution. Connection of the electrodes to a source
of direct electric current renders one of them negatively
charged and the other positively charged. Positive 1ons 1n the
clectrolyte migrate to the negative electrode (cathode) and
there combine with one or more electrons, losing part or all of
their charge and becoming new 1ons having lower charge or
neutral atoms or molecules; at the same time, negative 1ons
migrate to the positive electrode (anode) and transter one or
more electrons to 1t, also becoming new 1ons or neutral par-
ticles. The overall effect of the two processes 1s the transier of
clectrons from the negative 1ons to the positive 1ons, a chemi-
cal reaction.

The term “potentiostat,” as used herein, 1s a broad term and
1s used 1n 1ts ordinary sense, including, without limitation, an
clectrical system that controls the potential between the
working and reference electrodes of a three-electrode cell ata
preset value independent of resistance changes between the
clectrodes. It forces whatever current 1s necessary to flow
between the working and counter electrodes to keep the
desired potential, as long as the cell voltage and current do not
exceed the compliance limits of the potentiostat.

The terms “electrochemically reactive surface™ and “elec-
troactive surface” as used herein are broad terms and are used
in their ordinary sense, including, without limitation, the
surface of an electrode where an electrochemical reaction
takes place. In one example, a working electrode measures
hydrogen peroxide produced by the enzyme catalyzed reac-
tion of the analyte being detected reacts creating an electric
current (for example, detection of glucose analyte utilizing
glucose oxidase produces H,O, as a by product, H,O, reacts
with the surface of the working electrode producing two
protons (2H™), two electrons (2¢7) and one molecule of oxy-
gen (0O,) which produces the electronic current being
detected). In the case of the counter electrode, a reducible
species, for example, O, 1s reduced at the electrode surface 1n
order to balance the current being generated by the working
clectrode.
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The term “sensing region’ as used herein 1s a broad term
and 1s used 1n 1ts ordinary sense, including, without limita-
tion, the region of a monitoring device responsible for the
detection of a particular analyte. The sensing region generally
comprises a non-conductive body, a working electrode, a
reference electrode, and optionally a counter electrode pass-
ing through and secured within the body forming electro-
chemically reactive surfaces on the body and an electronic
connective means at another location on the body, and a
multi-domain membrane system aifixed to the body and cov-
ering the electrochemically reactive surface.

The terms “raw data stream” and ‘““‘data stream,” as used
herein, are broad terms and are used 1n their ordinary sense,
including, without limitation, an analog or digital signal
directly related to the measured an analyte from an analyte
sensor. In one example, the raw data stream 1s digital data 1n
“counts” converted by an A/D converter from an analog sig-
nal (for example, voltage or amps) representative of a analyte
concentration. The terms broadly encompass a plurality of
time spaced data points from a substantially continuous ana-
lyte sensor, which comprises individual measurements taken
at time 1ntervals ranging from fractions of a second up to, for
example, 1, 2, or 5 minutes or longer.

The term “‘counts,” as used herein, 1s a broad term and 1s
used 1n its ordinary sense, including, without limitation, a unit
ol measurement of a digital signal. In one example, a raw data
stream measured 1n counts 1s directly related to a voltage (for
example, converted by an A/D converter), which 1s directly
related to current from the working electrode. In another
example, counter electrode voltage measured 1n counts 1s
directly related to a voltage.

The terms “electrical potential” and “potential” as used
herein, are broad terms and are used in their ordinary sense,
including, without limitation, the electrical potential differ-
ence between two points 1n a circuit which 1s the cause of the
flow of a current.

The term “1schemia,” as used herein, 1s a broad term and 1s
used 1n 1ts ordinary sense, including, without limitation, local
and temporary deficiency of blood supply due to obstruction
of circulation to a part (for example, a sensor). Ischemia can
be caused by mechanical obstruction (for example, arterial
narrowing or disruption) of the blood supply, for example.

The term “system noise,” as used herein, 1s a broad term
and 1s used 1n 1ts ordinary sense, including, without limita-
tion, unwanted electronic or diffusion-related noise which
can include Gaussian, motion-related, flicker, kinetic, or
other white noise, for example.

The terms “signal artifacts” and “transient non-glucose
related signal artifacts that have a higher amplitude than sys-
tem noise,” as used herein, are broad terms and are used 1n
their ordinary sense, including, without limitation, signal
noise that 1s caused by substantially non-glucose reaction
rate-limiting phenomena, such as 1schemia, pH changes, tem-
perature changes, pressure, and stress, for example. Signal
artifacts, as described herein, are typically transient and char-
acterized by a higher amplitude than system noise.

The term “low noise,” as used herein, 1s a broad term and 1s
used 1n 1ts ordinary sense, including, without limitation, noise
that substantially decreases signal amplitude.

The terms “high noise” and “high spikes,” as used herein,
are broad terms and are used 1n their ordinary sense, includ-
ing, without limitation, noise that substantially increases sig-
nal amplitude.

The phrase “distal to”” as used herein 1s a broad term and 1s
used 1n 1ts ordinary sense, including, without limitation, the
spatial relationship between various elements 1n comparison
to a particular point of reference. For example, some embodi-
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ments of a device include a membrane system having a cell
disruptive domain and a cell impermeable domain. If the
sensor 1s deemed to be the point of reference and the cell
disruptive domain 1s positioned farther from the sensor, then
that domain 1s distal to the sensor.

The phrase “proximal to” as used herein 1s a broad term and
1s used 1n 1ts ordinary sense, including, without limitation, the
spatial relationship between various elements 1n comparison
to a particular point of reference. For example, some embodi-
ments of a device include a membrane system having a cell
disruptive domain and a cell impermeable domain. I the
sensor 1s deemed to be the point of reference and the cell
impermeable domain 1s positioned nearer to the sensor, then
that domain 1s proximal to the sensor.

The terms “interferants” and “interfering species,” as used
herein, are broad terms and are used 1n their ordinary sense,
including, but not limited to, effects and/or species that inter-
tere with the measurement of an analyte of interest in a sensor
to produce a signal that does not accurately represent the
analyte measurement. In one example of an electrochemical
sensor, mterfering species are compounds with an oxidation
potential that overlaps with the analyte to be measured.

As employed herein, the following abbreviations apply: Eq
and Egs (equivalents); mEq (milliequivalents); M (molar);
mM (millimolar) uM (micromolar); N (Normal); mol
(moles); mmol (millimoles); umol (micromoles); nmol (na-
nomoles); g (grams); mg (milligrams); ug (micrograms); Kg
(kilograms); L (liters); mL (mulliliters); dL. (deciliters); uL
(microliters); cm (centimeters); mm (millimeters); um (mi-
crometers); nm (nanometers); h and hr (hours); min. (min-
utes); s and sec. (seconds); © C. (degrees Centigrade).
Overview

The preferred embodiments relate to the use of an electro-
chemical sensor that measures a concentration of an analyte
of interest or a substance indicative of the concentration or
presence of the analyte 1n fluid. In some embodiments, the
sensor 1s a continuous device, for example a subcutaneous,
transdermal, or intravascular device. In some embodiments,
the device can analyze a plurality of intermittent blood
samples.

The sensor uses any known method, including invasive,
minimally 1nvasive, and non-invasive sensing techniques, to
provide an output signal indicative of the concentration of the
analyte of interest. The sensor 1s of the type that senses a
product or reactant of an enzymatic reaction between an
analyte and an enzyme 1n the presence of oxygen as a measure
of the analyte 1n vivo or 1n vitro. Such a sensor typically
comprises a membrane surrounding the enzyme through
which a bodily fluid passes and in which an analyte within the
bodily fluid reacts with an enzyme 1n the presence of oxygen
to generate a product. The product 1s then measured using
clectrochemical methods and thus the output of an electrode
system functions as a measure of the analyte. In some
embodiments, the sensor can use an amperometric, couloms-
etric, conductimetric, and/or potentiometric technique for
measuring the analyte. In some embodiments, the electrode
system can be used with any of a variety of known 1n vitro or
in vivo analyte sensors or monitors.

FIG. 1 1s an exploded perspective view of one exemplary
embodiment of an implantable glucose sensor 10 that utilizes
an electrode system 16. In this exemplary embodiment, a
body with a sensing region 14 includes an electrode system
(16a to 16c¢), also referred to as the electroactive sensing
surface, and sensor electronics, which are described 1n more
detail with reference to FIG. 2.

In this embodiment, the electrode system 16 i1s operably
connected to the sensor electronics (FIG. 2) and includes
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clectroactive surfaces (including two-, three- or more elec-
trode systems), which are covered by a membrane system 18.
The membrane system 18 15 disposed over the electroactive
surfaces of the electrode system 16 and provides one or more
of the following functions: 1) protection of the exposed elec-
trode surface from the biological environment (cell imperme-
able domain); 2) diffusion resistance (limitation) of the ana-
lyte (resistance domain); 3) a catalyst for enabling an
enzymatic reaction (enzyme domain); 4) limitation or block-
ing of mterfering species (interference domain); and/or 5)
hydrophilicity at the electrochemically reactive surfaces of
the sensor interface (electrolyte domain), for example, such

as described 1 co-pending U.S. patent application Ser. No.
10/838,912, filed May 3, 2004 and entitled “IMPLANT-

ABLE ANALYTE SENSOR.” the contents of which are
incorporated herein by reference 1n their entirety. The mem-
brane system can be attached to the sensor body by mechani-

cal or chemical methods such as described 1in co-pending U.S.
patent application Ser. No. 10/885,476, filed Jul. 6, 2004 and

entitled, “SYSTEMS AND METHODS FOR MANUFAC-
TURE OF AN ANALYTE-MEASURING DEVICE
INCLUDING A MEMBRANE SYSTEM” and U.S. patent
application Ser. No. 10/838,912 filed May 3, 2004 and
entitled, “IMPLANTABLE ANALYTE SENSOR”, which
are incorporated herein by reference in their entirety.

In the embodiment of FIG. 1, the electrode system 16
includes three electrodes (working electrode 16a, counter
clectrode 16b, and reference electrode 16¢), wherein the
counter electrode 1s provided to balance the current generated
by the species being measured at the working electrode. In the
case of a glucose oxidase based glucose sensor, the species
measured at the working electrode 1s H,O,,. Glucose oxidase,
GOX, catalyzes the conversion of oxygen and glucose to

hydrogen peroxide and gluconate according to the following,
reaction:

GOX+Glucose+O,—Gluconate+H,O5+reduced GOX

The change in H,O, can be monitored to determine glucose
concentration because for each glucose molecule metabo-
lized, there 1s a proportional change 1in the product H,O.,.
Oxidation of H,O, by the working electrode 1s balanced by
reduction of ambient oxygen, enzyme generated H,O,, or
other reducible species at the counter electrode. The H,O,
produced from the glucose oxidase reaction further reacts at
the surface of working electrode and produces two protons
(2H+), two electrons (2e-), and one oxygen molecule (O,). In
such embodiments, because the counter electrode utilizes
oxygen as an electron acceptor, the most likely reducible
species for this system are oxygen or enzyme generated per-
oxide. There are two main pathways by which oxygen can be
consumed at the counter electrode. These pathways include a
four-electron pathway to produce hydroxide and a two-elec-
tron pathway to produce hydrogen peroxide. In addition to the
counter electrode, oxygen 1s further consumed by the reduced
glucose oxidase within the enzyme domain. Theretfore, due to
the oxygen consumption by both the enzyme and the counter
clectrode, there 1s a net consumption of oxygen within the
clectrode system. Theoretically, 1n the domain of the working
clectrode there 1s significantly less net loss of oxygen than 1n
the region of the counter electrode. In some embodiments,
there 1s a close correlation between the ability of the counter
clectrode to maintain current balance and sensor function.

In general, in electrochemical sensors wherein an enzy-
matic reaction depends on oxygen as a co-reactant, depressed
function or inaccuracy can be experienced n low oxygen
environments, for example 1n vivo. Subcutaneously
implanted devices are especially susceptible to transient
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1schemia that can compromise device function; for example,
because of the enzymatic reaction required for an implantable
amperometric glucose sensor, oxygen must be 1n excess over
glucose 1n order for the sensor to effectively function as a
glucose sensor. If glucose becomes 1n excess, the sensor turns
into an oxygen sensitive device. In vivo, glucose concentra-
tion can vary from about one hundred times or more that of the
oxygen concentration. Consequently, one limitation of prior
art enzymatic-based electrochemical analyte sensors can be
caused by oxygen deficiencies, which 1s described in more
detail with reference to FIG. 3.

FIG. 2 1s a block diagram that 1llustrates sensor electronics
in one exemplary embodiment; one skilled in the art appre-
ciates however that a variety of sensor electronics configura-
tions can be implemented with the preferred embodiments. In
this embodiment, a potentiostat 20 1s shown, which 1s opera-
tively connected to electrode system 16 (FIG. 1) to obtain a
current value, and 1ncludes a resistor (not shown) that trans-
lates the current into Voltage The A/D converter 21 digitizes
the analog signal 1into “counts”™ for processmg Accordingly,
the resulting raw data signal in counts 1s directly related to the
current measured by the potentiostat.

A microprocessor 22 1s the central control unit that houses
EEPROM 23 and SRAM 24, and controls the processing of
the sensor electronics. The alternative embodiments can uti-
lize a computer system other than a microprocessor to process
data as described herein. In some alternative embodiments, an
application-specific integrated circuit (ASIC) can be used for
some or all the sensor’s central processing. EEPROM 23
provides semi-permanent storage of data, storing data such as
sensor ID and necessary programming to process data signals
(for example, programming for data smoothing such as
described elsewhere herein). SRAM 24 is used for the sys-

tem’s cache memory, for example for temporarily storing
recent sensor data.

The battery 25 15 operatively connected to the micropro-
cessor 22 and provides the necessary power for the sensor. In
one embodiment, the battery 1s a Lithium Manganese Dioxide
battery, however any appropriately sized and powered battery
can be used. In some embodiments, a plurality of batteries can
be used to power the system. Quartz crystal 26 1s operatively
connected to the microprocessor 22 and maintains system
time for the computer system.

The RF Transceiver 27 1s operably connected to the micro-
processor 22 and transmits the sensor data from the sensor to
a recerwver. Although a RF transceiver 1s shown here, some
other embodiments can include a wired rather than wireless
connection to the receiver. In yet other embodiments, the
sensor can be transcutaneously connected via an inductive
coupling, for example. The quartz crystal 28 provides the
system time for synchronizing the data transmissions from
the RF transceiver. The transceiver 27 can be substituted with
a transmitter 1n one embodiment.

Although FIGS. 1 and 2 and associated text illustrate and
describe an exemplary embodiment of an implantable glu-
cose sensor, the electrode systems of the preferred embodi-
ments described below can be implemented with any known
clectrochemical sensor, including U.S. Pat. No. 6,001,067 to
Shults et al.; U.S. Pat. No. 6,702,857 to Brauker et al.; U.S.
Pat. No. 6,212,416 to Ward et al.; U.S. Pat. No. 6,119,028 to
Schulman et al; U.S. Pat. No. 6,400,974 to Lesho; U.S. Pat.
No. 6,595,919 to Berner et al.; U.S. Pat. No. 6,141,573 to
Kurnik et al.; U.S. Pat. No. 6,122,536 to Sun et al.; European
Patent Application EP 1153571 to Varall et al.; U.S. Pat. No.
6,512,939 to Colvin et al.; U.S. Pat. No. 5,605,152 to Slate et
al ; U.S. Pat. No. 4,431 004 to Bessman et al.; U.S. Pat. No.
4,,703,756 to Gough et al.; U.S. Pat. No. 65514,,718 to Heller
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et al; to U.S. Pat. No. 5,985,129 to Gough et al.; WO Patent
Application Publication No. 2004/021877 to Caduit; U.S.
Pat. No. 5,494,562 to Maley et al.; U.S. Pat. No. 6,120,676 to
Heller et al.; and U.S. Pat. No. 6,542,765 to Guy et al.,
co-pending U S. patent application Ser. No. 10/838,912 ﬁled
May 3, 2004 and entitled, “IMPLANTABLE ANALYTE
S;NSOR” U.S. patent application Ser. No. 10/789,359 filed
Feb. 26, 2004 and entitled, “INTEGRATED DELIVERY
DJVICE FOR A CONTINUOUS GLUCOSE SENSOR”;
“OPTIMIZED SENSOR GEOMETRY FOR AN IMPLANT-
ABLE GLUCOSE SENSOR”; U.S. application Ser. No.
10/633,367 filed Aug. 1, 2003 enfitled, “SYSTEM AND
METHODS FOR PROCESSING ANALYTE SENSOR
DATA,” the contents of each of which are incorporated herein
by reference in their entirety.

FIG. 3 1s a graph that depicts a raw data stream obtained
from a prior art glucose sensor such as described with refer-
ence to FIG. 1. The x-axis represents time in minutes. The
y-axi1s represents sensor data in counts. In this example, sen-
sor output 1n counts 1s transmitted every 30-seconds. The raw
data stream 30 includes substantially smooth sensor output 1n
some portions, however other portions exhibit erroneous or
transient non-glucose related signal artifacts 32. Particularly,
referring to the signal artifacts 32, 1t 1s believed that el

ects of
local 1schemia on prior art electrochemical sensors creates
erroneous (non-glucose) signal values due to oxygen defi-
ciencies etther at the enzyme within the membrane system
and/or at the counter electrode on the electrode surface.

In one situation, when oxygen 1s deficient relative to the
amount of glucose, then the enzymatic reaction 1s limited by
oxygen rather than glucose. Thus, the output signal 1s 1ndica-
tive of the oxygen concentration rather than the glucose con-
centration, producing erroneous signals. Additionally, when
an enzymatic reaction 1s rate-limited by oxygen, glucose 1s
expected to build up in the membrane because 1t 1s not com-
pletely catabolized during the oxygen deficit. When oxygen 1s
again 1n excess, there 1s also excess glucose due to the tran-
sient oxygen deficit. The enzyme rate then speeds up for a
short period until the excess glucose 1s catabolized, resulting
in spikes of non-glucose related increased sensor output.
Accordingly, because excess oxygen (relative to glucose) 1s
necessary for proper sensor function, transient 1schemia can
result 1n a loss of signal gain 1n the sensor data.

In another situation, oxygen deficiency can be seen at the
counter electrode when 1nsuificient oxygen 1s available for
reduction, which thereby affects the counter electrode 1n that
it 1s unable to balance the current coming from the working
clectrode. When 1nsuflicient oxygen 1s available for the
counter electrode, the counter electrode can be driven 1n its
clectrochemical search for electrons all the way to 1ts most
negative value, which could be ground or 0.0V, which causes
the reference to shift, reducing the bias voltage, such 1s as
described 1n more detail below. In other words, a common
result of 1schemia a drop off 1n sensor current as a function of
glucose concentration (for example, lower sensitivity). This
happens because the working electrode no longer oxidizes all
of the H,O, arriving at 1ts surface because of the reduced bias.
In some extreme circumstances, an increase in glucose can
produce no increase in current or even a decrease 1n current.

In some situations, transient 1schemia can occur at high
glucose levels, wherein oxygen can become limiting to the
enzymatic reaction, resulting in a non-glucose dependent
downward trend 1n the data. In some situations, certain move-
ments or postures taken by the patient can cause transient
signal artifacts as blood 1s squeezed out of the capillaries
resulting 1n local 1schemia and causing non-glucose depen-
dent signal artifacts. In some situations, oxygen can also
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become transiently limited due to contracture of tissues
around the sensor interface. This 1s similar to the blanching of
skin that can be observed when one puts pressure on 1t. Under
such pressure, transient 1schemia can occur in both the epi-
dermis and subcutaneous tissue. Transient 1schemia 1s com-
mon and well tolerated by subcutaneous tissue. However,
such 1schemic periods can cause an oxygen deficit 1n
implanted devices that can last for many minutes or even an
hour or longer.

Although some examples of the effects of transient
ischemia on a prior art glucose sensor are described above,
similar effects can be seen with analyte sensors that use
alternative catalysts to detect other analytes, for example,
amino acids (amino acid oxidase), alcohol (alcohol oxidase),
galactose (galactose oxidase), lactate (lactate oxidase), cho-
lesterol (cholesterol oxidase), or the like.

Another problem with conventional electrochemical sen-
sors 15 that they can electrochemically react not only with the
analyte to be measured (or by-product of the enzymatic reac-
tion with the analyte), but additionally can react with other
clectroactive species that are not intentionally being mea-
sured (for example, interfering species), which causes an
increase 1n signal strength due to these “interfering species”.
In other words, interfering species are compounds with an
oxidation or reduction potential that overlaps with the analyte
to be measured (or the by-product of the enzymatic reaction
with the analyte). For example, 1n a conventional amperomet-
ric glucose oxidase-based glucose sensor wherein the sensor
measures hydrogen peroxide, interfering species such as
acetaminophen, ascorbate, and urate are known to produce
inaccurate signal strength when they are not properly con-
trolled.

Some conventional glucose sensors utilize a membrane
system that blocks at least some interfering species, such as
ascorbate and urate. In some such systems, at least one layer
of the membrane system 1ncludes a porous structure that has
a relatively impermeable matrix with a plurality of “micro
holes” or pores of molecular dimensions, such that transier
through these materials 1s primarily due to passage of species
through the pores (for example, the layer acts as a
microporous barrier or sieve blocking interfering species of a
particular size). In other such systems, at least one layer of the
membrane system defines a permeability that allows selective
dissolution and diffusion of species as solutes through the
layer. Unfortunately, it 1s difficult to find membranes that are
satisfactory or reliable 1in use, especially 1n vivo, which effec-
tively block all interferants and/or interfering species 1n some
embodiments.

Electrochemical Sensors of the Preferred Embodiments

In one aspect of the preferred embodiments, an electro-
chemical sensor 1s provided with an auxiliary electrode con-
figured to generate oxygen in order to overcome the effects of
transient 1schemia. In another aspect of the preferred embodi-
ments, an electrochemical sensor 1s provided with an auxil-
1ary electrode configured to electrochemically modify (for
example, oxidize or reduce) electrochemical interferants to
render them substantially non-electroactively reactive at the
clectroactive sensing surface(s) in order to overcome the
elfects of interferants on the working electrode.

It 1s known that oxygen can be generated as a product of
clectrochemical reactions occurring at a positively charged
clectrode (for example, set at about +0.6 to about +1.2 V or
more). One example of an oxygen producing reaction 1s the
clectrolysis of water, which creates oxygen at the anode (for
example, the working electrode). In the exemplary electro-
chemical glucose sensor, glucose 1s converted to hydrogen
peroxide by reacting with glucose oxidase and oxygen, after
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which the hydrogen peroxide 1s oxidized at the working elec-
trode and oxygen 1s generated therefrom. It 1s noted that one
challenge to generating oxygen electrochemically 1n this way
1s that while an auxiliary electrode does produce excess oxy-
gen, the placement of the auxiliary electrode 1n proximity to
the analyte-measuring working electrode can cause oxidation
of hydrogen peroxide at the auxiliary electrode, resulting 1n
reduced signals at the working electrode. It 1s also known that
many electrochemical interferants can be reduced at a poten-
tial of from about +0.1V to +1.2V or more; for example,
acetaminophen 1s reduced at a potential of about +0.4 V.

Accordingly, the sensors of preferred embodiments place
an auxiliary electrode above the electrode system 16, or other
clectroactive sensing surface, thereby reducing or eliminating
the problem of 1naccurate signals as described above.

FIG. 4 1s a side schematic illustration of a portion of the
sensing region ol an electrochemical sensor of the preferred
embodiments, showing an auxiliary electrode between the
enzyme and the outside solution while the working (sensing)
clectrode 1s located below the enzyme and further from the
outside solution. Particularly, FIG. 4 shows an external solu-
tion 12, which represents the bodily or other fluid to which the
sensor 1s exposed 1n vivo or 1n vitro.

The membrane system 18 includes a plurality of domains
(for example, cell impermeable domain, resistance domain,
enzyme domain, and/or other domains such as are described
in U.S. Published Patent Application 2003/0032874 to
Rhodes et al. and copending U.S. patent application Ser. No.
10/885,476, filed Jul. 6, 2004 and entitled, “SYSTEMS AND
METHODS FOR MANUFACTURE OF AN ANALYTE-
MEASURING DEVICE INCLUDING A MEMBRANE

SYSTEM?”, the contents of which are incorporated herein by
reference 1n their entireties) 1s located proximal to the exter-
nal solution and finctions to transport fluids necessary for the
enzymatic reaction, while protecting inner components of the
sensor from harsh biohazards, for example. Although each
domain 1s not independently shown, the enzyme 38 1s shown
disposed between an auxiliary electrode 36 and the working
clectrode 16a 1n the illustrated embodiment.

Preferably, the auxiliary electrode 36 1s located within or

adjacent to the membrane system 18, for example, between
the enzyme and other domains, although the auxiliary elec-
trode can be placed anywhere between the electroactive sens-
ing surface and the outside fluid. The auxiliary electrode 36 1s
formed from known working electrode materials (for
example, platinum, palladium, graphite, gold, carbon, con-
ductive polymer, or the like) and has a voltage setting that
produces oxygen (for example, from about +0.6 Vto +1.2V
or more) and/or that electrochemically modifies ({or example,
reduces) electrochemical interferants to render them substan-
tially non-reactive at the electroactive sensing surface(s) (for
example, from about +0.1 V to +1.2 V or more). The auxihary
clectrode can be a mesh, grid, plurality of spaced wires or
conductive polymers, or other configurations designed to
allow analytes to penetrate therethrough.

In the aspect of the preferred embodiments wherein the
auxiliary electrode 36 1s configured to generate oxygen, the
oxygen generated from the auxiliary electrode 36 diffuses
upward and/or downward to be utilized by the enzyme 38
and/or the counter electrode (depending on the placement of
the auxiliary electrode). Additionally, the analyte (for
example, glucose) from the outside solution (diffuses through
the auxiliary electrode 36) reacts with the enzyme 38 and
produces a measurable product (for example, hydrogen per-
oxide). Theretfore, the product of the enzymatic reaction dii-
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fuses down to the working electrode 16a for accurate mea-
surement without being eliminated by the auxihiary electrode
36.

In one alternative embodiment, the auxiliary electrode 36
can be coated with a polymeric material, which 1s imperme-
able to glucose but permeable to oxygen. By this coating,
glucose will not electroactively react at the auxiliary elec-
trode 36, which can otherwise cause at least some of the
glucose to pre-oxidize as 1t passes through the auxiliary elec-
trode 36 (when placed above the enzyme), which can prevent
accurate glucose concentration measurements at the working
clectrode 1n some sensor configurations. In one embodiment,
the polymer coating comprises silicone, however any poly-
mer that 1s selectively permeable to oxygen, but not glucose,
can be used. The auxiliary electrode 16 can be coated by any
known process, such as dip coating or spray coating, after
which 1s can be blown, blotted, or the like to maintain spaces
within the electrode for glucose transport.

In another alternative embodiment, the auxiliary electrode
36 can be coated with a polymeric matenal that 1s permeable
to glucose and oxygen and can be placed between the enzyme
and the outside fluid. Consequently, the polymeric coating
will cause glucose from the outside fluid to electroactively
react at the auxihiary electrode 36, thereby limiting the
amount of glucose that passes into the enzyme 38, and thus
reducing the amount of oxygen necessary to successiully
react with all available glucose 1n the enzyme. The polymeric
material can function 1n place of or in combination with the
resistance domain in order to limit the amount of glucose that
passes through the membrane system. This embodiment
assumes a stoichiometric relationship between glucose oxi-
dation and decreased sensor signal output, which can be
compensated for by calibration 1n some sensor configura-
tions. Additionally, the auxiliary electrode generates oxygen,
turther reducing the likelihood of oxygen becoming a rate-
limiting factor in the enzymatic reaction and/or at the counter
clectrode, for example.

In another aspect of the preferred embodiments, the auxil-
1ary electrode 36 1s configured to electrochemically modity
(for example, oxidize or reduce) electrochemical interferants
to render them substantially non-reactive at the electroactive
sensing surface(s). In these embodiments, which can be 1n
addition to or alternative to the above-described oxygen-
generating embodiments, a polymer coating 1s chosen to
selectively allow interferants (for example, urate, ascorbate,
and/or acetaminophen such as described in U.S. Pat. No.
6,579,690 to Bonnecaze, et al.) to pass through the coating
and electrochemically react with the auxiliary electrode,
which effectively pre-oxidizes the interferants, rendering
them substantially non-reactive at the working electrode 16a.
In one exemplary embodiment, silicone materials can be syn-
thesized to allow the transport of oxygen, acetaminophen and
other interferants, but not allow the transport of glucose. In
some embodiments, the polymer coating material can be
chosen with a molecular weight that blocks glucose and
allows the transport of oxygen, urate, ascorbate, and acetami-
nophen. In another exemplary embodiment, silicone materi-
als can be synthesized to allow the transport of oxygen, glu-
cose, acetaminophen, and other interferants. In some
embodiments, the polymer coating material 1s chosen with a
molecular weight that allows the transport of oxygen, glu-
cose, urate, ascorbate, and acetaminophen. The voltage set-
ting necessary to react with interfering species depends on the
target electrochemical interferants, for example, from about
+0.1 V to about +1.2 V. In some embodiments, wherein the
auxiliary electrode 1s set at a potential of from about +0.6 to
about +1.2 V, both oxygen-generation and electrochemical
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interferant modification can be achieved. In some embodi-
ments, wherein the auxiliary electrode 1s set at a potential
below about +0.6 V, the auxiliary electrode will function
mainly to electrochemically modily interferants, for
example.

Therefore, the sensors of preferred embodiments reduce or
climinate oxygen deficiency problems within electrochemi-
cal sensors by producing oxygen at an auxiliary electrode
located above the enzyme within an enzyme-based electro-
chemical sensor. Additionally or alternatively, the sensors of
preferred embodiments reduce or eliminate interfering spe-
cies problems by electrochemically reacting with interferants
at the auxiliary electrode rendering them substantially non-
reactive at the working electrode.

Methods and devices that are suitable for use 1n conjunc-
tion with aspects of the preferred embodiments are disclosed
in co-pending U.S. patent application Ser. No. 10/842,716,
filed May 10, 2004 and entitled, “MEMBRANE SYSTEMS
INCORPORATING BIOACT. 'V' AGENTS”; co-pending
U.S. patent application Ser. No. 10/838,912 ﬁled May 3, 2004
and entitled, “IMPLANTABLE ANALYT_* SENSOR™; U.S.
patent application Ser. No. 10/789,359 filed Feb. 26, 2004 and
entitled, “INTEGRATED DELIVERY DEVICE FOR A
CONTINUOUS GLUCOSE SENSOR”; U.S. application
Ser. No. 10/685,636 filed Oct. 28, 2003 and entitled, “SILI-
CONE COMPOSITION FOR MEMBRANE SYSTEM”;
U.S. application Ser. No. 10/648,849 filed Aug. 22, 2003 and
entitled, “SYSTEMS AND METHODS FOR REPLACING
SIGNAL ARTIFACTS IN A GLUCOSE SENSOR DATA
STREAM”; U.S. application Ser. No. 10/646,333 filed Aug.
22, 2003 entitled, “OPTIMIZED SENSOR GEOMETRY
FOR AN IMPLANTABLE GLUCOSE SENSOR”; U.S.
application Ser. No. 10/647,065 filed Aug. 22, 2003 entitled,
“POROUS MEMBRANES FOR USE WITH IMPLANT-
ABLE DEVICES”; U.S. application Ser. No. 10/633,367
filed Aug. 1, 2003 entitled, “SYSTEM AND METHODS
FOR PROCESSINGANALYT 5 SENSOR DATA™; U.S. Pat.
No. 6,702,857 entitled “MEMBRANE FOR USE WITH
IMPLANTABLE DEVICES”; U.S. application Ser. No.
09/916,711 filed Jul. 27, 2001 and entitled “SENSOR HEAD
FOR USE WITH IMPLANTABLE DEVICE”; U.S. applica-
tion Ser. No. 09/447.227 filed Nov. 22, 1999 and entitled
“DEVICE AND METHOD FOR DETERMINING ANA-
LYTE LEVELS”; U.S. application Ser. No. 10/153,356 filed
May 22, 2002 and entitled “TECHNIQUES TO IMPROVE
POLYURETHANE MEMBRANES FOR IMPLANTABLE
GLUCOSE SENSORS”; U.S. application Ser. No. 09/489,
588 filed Jan. 21, 2000 and entitled “DEVICE AND
METHOD FOR DETERMINING ANALYTE LEVELS”;
U.S. application Ser. No. 09/636,369 filed Aug. 11, 2000 and
entitled “SYSTEMS AND METHODS FOR RJMOTj,
MONITORING AND MODULATION OF MEDICAL
DEVICES”; and U.S. application Ser. No. 09/916,858 filed
Jul. 27, 2001 and entitled “DEVICE AND METHOD FOR
DETERMINING ANALYTE LEVELS,” as well as 1ssued
patents including U.S. Pat. No. 6,001,067 1ssued Dec. 14,
1999 and entitled “DEVICE AND METHOD FOR DETER -
MINING ANALYTE LEVELS”; U.S. Pat. No. 4,994,167
issued Feb. 19, 1991 and entltled “BIOLOGICAL FLUID
MEASURING DEVICE”; and U.S. Pat. No. 4,757,022 filed
Jul. 12, 1988 and entitled “BIOLOGICAL FLUID MEA .-
SURING DEVICE”; U.S. application Ser. No. 60/489,615
filed Jul. 23, 2003 and entitled “ROLLED ELECTRODE
ARRAY AND ITS METHOD FOR MANUFACTURE”;
U.S. application Ser. No. 60/490,010 filed Jul. 25, 2003 and
entitled “INCREASING BIAS FOR OXYGEN PRODUC-

TION IN AN ELECTRODE ASSEMBLY™; U.S. application

[T]

[T}

10

15

20

25

30

35

40

45

50

55

60

65

16

Ser. No. 60/490,009 filed Jul. 25, 2003 and entitled “OXY-
GEN ENHANCING ENZYME MEM BRANE FOR ELEC-
TROCHEMICAL SENSORS”; U.S. application Ser. No.
60/490,007 filed Jul. 25, 2003 and entitled “OXY GEN-GEN-
ERATING ELECTRODE FOR USE IN ELECTROCHEMI-
CAL SENSORS”; U.S. application Ser. No. 10/896,637 filed
Jul. 21, 2004 and entltled “ROLLED ELECTRODE ARRAY
AND ITS METHOD FOR MANUFACTURE”; U.S. appli-
cation Ser. No. 10/896,772 filed Jul. 21, 2004 and entitled
“INCREASING BIAS FOR OXYGEN PRODUCTION IN
AN ELECTRODE SYSTEM”; U.S. application Ser. No.
10/896,639 filed Jul. 21, 2004 and entitled “OXYGEN
ENHANCING MEMBRANE SYSTEMS FOR IMPLANT-
ABLE DEVICES”; U.S. application Ser. No. 10/897,377
filed Jul. 21, 2004 and entitled “ELECTROCHEMICAL
SENSORS INCLUDING HLECTRODE SYSTEMS WITH
INCREASED OXYGEN GENERATION”. The foregoing
patent applications and patents are incorporated herein by
reference 1n their entireties.

All references cited herein are incorporated herein by ret-
erence 1n their entireties. To the extent publications and pat-
ents or patent applications incorporated by reference contra-
dict the disclosure contamned in the specification, the
specification 1s intended to supersede and/or take precedence
over any such contradictory material.

The term “comprising” as used herein 1s synonymous with
“including,” “containing,” or “characterized by,” and 1s inclu-
stve or open-ended and does not exclude additional, unrecited
clements or method steps.

All numbers expressing quantities of ingredients, reaction
conditions, and so forth used 1n the specification and claims
are to be understood as being modified in all instances by the
term “about.” Accordingly, unless indicated to the contrary,
the numerical parameters set forth 1n the specification and
attached claims are approximations that can vary depending
upon the desired properties sought to be obtained by the
present invention. At the very least, and not as an attempt to
limait the application of the doctrine of equivalents to the scope
of the claims, each numerical parameter should be construed
in light of the number of significant digits and ordinary round-
ing approaches.

The above description discloses several methods and mate-
rials of the present invention. This invention 1s susceptible to
modifications 1n the methods and materials, as well as alter-
ations 1n the fabrication methods and equipment. Such modi-
fications will become apparent to those skilled 1n the art from
a consideration of this disclosure or practice of the invention
disclosed herein. Consequently, 1t 1s not intended that this
invention be limited to the specific embodiments disclosed
herein, but that 1t cover all modifications and alternatives
coming within the true scope and spirit of the invention as
embodied 1n the attached claims.

What 1s claimed 1s:

1. An electrochemical sensor for determining a presence or
a concentration of an analyte 1n a fluid, the sensor comprising:

a membrane system comprising an enzyme, wherein the

enzyme reacts with the analyte;

an electroactive surface comprising a working electrode,

the working electrode comprising a conductive material
and configured to measure a product of the reaction of
the enzyme with the analyte; and

an auxiliary electrode comprising a conductive material

and configured to generate oxygen, wherein the auxil-
1ary electrode 1s situated such that the oxygen generated
diffuses to the enzyme or to the electroactive surface,
wherein the auxiliary electrode comprises a polymer,
wherein the polymer is situated on a surface of the aux-
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iliary electrode, and wherein the polymer comprises a
material that 1s directly impermeable to glucose but 1s
permeable to oxygen.

2. The electrochemical sensor of claim 1, wherein the
auxiliary electrode comprises a conductive material selected
from the group consisting of a conductive metal, a conductive
polymer, and a blend of a conductive metal and a conductive
polymer.

3. The electrochemical sensor of claim 1, wherein the

auxiliary electrode comprises a form selected from the group
consisting of a mesh, a grid, and a plurality of spaced wires.

4. The electrochemical sensor of claim 1, wherein the
polymer comprises a material that 1s permeable to interfering,
species.

5. The electrochemical sensor of claim 4, wherein the
polymer comprises a material having a molecular weight that
allows transport therethrough of oxygen, urate, ascorbate,
and acetaminophen.

6. The electrochemical sensor of claim 1, wherein the
auxiliary electrode 1s configured to be set at a potential of at
least about +0.6 V.

7. The electrochemical sensor of claim 1, wherein the
auxiliary electrode 1s configured to electrochemically modity
an electrochemical [interferant] interferent to render the elec-
trochemical interferent substantially electrochemically non-
reactive at the working electrode.

8. The electrochemical sensor of claim 7, wherein the
auxiliary electrode 1s configured to be set at a potential of at
least about +0.1 V.

9. The electrochemical sensor of claim 1, configured for
measuring a concentration of glucose 1n a tluid.

10. The electrochemical sensor of claim 1, configured for
insertion 1nto a subcutaneous tissue of a host.

11. The electrochemical sensor of claim 1, configured for
implantation 1nto a subcutaneous tissue of a host.

12. The electrochemical sensor of claim 1, configured for
measuring a concentration of glucose substantially without
an oxygen deficit.

13. An electrochemical sensor for determining a presence
or a concentration of an analyte 1n a fluid, the sensor com-
prising;:

a membrane system comprising an enzyme, wherein the

enzyme reacts with the analyte;

an electroactive surface comprising a working electrode,

the working electrode comprising a conductive material
and configured to measure a product of the reaction of
the enzyme with the analyte; and

an auxiliary electrode comprising a conductive material

and configured to generate oxygen, wherein the auxil-
1ary electrode 1s situated such that the oxygen generated
diffuses to the enzyme or to the electroactive surface,

wherein the auxiliary electrode comprises a polymer,

wherein the polymer 1s directly situated on a surface of
the auxiliary electrode, and wherein the polymer com-
prises a material that 1s impermeable to glucose but 1s
permeable to oxygen and permeable to interfering spe-
CIEs.

14. The electrochemical sensor of claim 13, wherein the
polymer comprises a material having a molecular weight that
blocks glucose and allows transport therethrough of oxygen,
urate, ascorbate, and acetaminophen.

15. The electrochemical sensor of claim 13, wherein the
auxiliary electrode comprises a conductive material selected
from the group consisting of a conductive metal, a conductive
polymer, and a blend of a conductive metal and a conductive
polymer.
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16. The electrochemical sensor of claim 13, wherein the
auxiliary electrode comprises a form selected from the group
consisting of a mesh, a grid, and a plurality of spaced wires.

17. The electrochemical sensor of claim 13, wherein the
polymer comprises a material having a molecular weight that
allows transport therethrough of urate, ascorbate, and
acetaminophen.

18. The electrochemical sensor of claim 13, wherein the
auxiliary electrode 1s configured to be set at a potential of at
least about +0.6 V.,

19. The electrochemical sensor of claim 13, wherein the
auxiliary electrode 1s configured to electrochemically modity
an electrochemical [interferant] interferent to render the elec-
trochemical interferent substantially electrochemically non-
reactive at the working electrode.

20. The electrochemical sensor of claim 19, wherein the
auxiliary electrode 1s configured to be set at a potential of at
least about +0.1 V.

21. The electrochemical sensor of claim 13, configured for
measuring a concentration of glucose 1n a tluid.

22. The electrochemical sensor of claim 13, configured for
insertion into a subcutaneous tissue of a host.

23. The electrochemical sensor of claim 13, configured for
implantation into a subcutaneous tissue of a host.

24. The electrochemical sensor of claim 13, configured for
measuring a concentration of glucose substantially without
an oxygen deficit.

25. An electrochemical sensor for determining a presence
or a concentration of an analyte 1n a fluid, the sensor com-
prising:

a membrane system comprising an enzyme, wherein the

enzyme reacts with the analyte;

an electroactive surface comprising a working electrode,

the working electrode comprising a conductive material
and configured to measure a product of the reaction of
the enzyme with the analyte; and

an auxiliary electrode comprising a conductive material

and configured to modify an electrochemical [interfer-
ant] interferent such that the electrochemical interferent
1s rendered substantially electrochemically non-reactive
at the working electrode, wherein the auxiliary electrode
comprises a polymer, wherein the polymer 1s situated on
a surtace of the auxiliary electrode, and wherein the
polymer comprises a material that i1s impermeable to
glucose but 1s permeable to oxygen.

26. The electrochemical sensor of claim 25, wherein the
auxiliary electrode comprises a conductive matenal selected
from the group consisting of a conductive metal, a conductive
polymer, and a blend of a conductive metal and a conductive
polymer.

27. The electrochemical sensor of claim 25, wherein the
auxiliary electrode comprises a form selected from the group
consisting of a mesh, a grid, and a plurality of spaced wires.

28. The electrochemical sensor of claim 25, wherein the
polymer comprises a material that 1s permeable to an electro-
chemical [interferant] interferent.

29. The electrochemical sensor of claim 25, wherein the
polymer comprises a material that 1s impermeable to glucose
but is permeable to oxygen and [interferants] interferents.

30. The electrochemical sensor of claim 25, wherein the
auxiliary electrode 1s configured to be set at a potential of at
least about +0.1V.

31. The electrochemical sensor of claim 25, wherein the
auxiliary electrode 1s configured to generate oxygen.

32. The electrochemical sensor of claim 31, wherein the
auxiliary electrode 1s configured to be set at a potential of at
least about +0.6 V.
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33. The electrochemical sensor of claim 25, configured for
measuring a concentration of glucose 1n a fluid.

34. The electrochemical sensor of claim 25, configured for
insertion 1nto a subcutaneous tissue of a host.

35. The electrochemical sensor of claim 25, configured for
implantation 1nto a subcutaneous tissue of a host.

36. The electrochemical sensor of claim 25, configured for
measuring a concentration of glucose substantially without
an oxygen deficit.

37. The electrochemical sensor of claim 25, wherein the
auxiliary electrode 1s configured to generate oxygen.

38. The electrochemical sensor of claim 37, wherein the
auxiliary electrode 1s configured to be set at a potential of at
least about +0.6 V.

39. An electrochemical sensor for determining a presence
or a concentration of an analyte 1n a fluid, the sensor com-
prising:

a membrane system comprising an enzyme, wherein the

enzyme reacts with the analyte;

an electroactive surface comprising a working electrode,

the working electrode comprising a conductive material
and configured to measure a product of the reaction of
the enzyme with the analyte; and

an auxiliary electrode comprising a conductive material

and configured to modify an electrochemical [interfer-
ant] interferent such that the electrochemical interferent
1s rendered substantially electrochemically non-reactive
at the working electrode, wherein the auxiliary electrode
comprises a polymer, wherein the polymer 1s situated on
a surface of the auxiliary electrode, and wherein the
polymer comprises a material having a molecular
weight that blocks glucose and allows transport there-
through of oxygen, urate, ascorbate, and acetami-
nophen.

40. The electrochemical sensor of claim 39, wherein the
auxiliary electrode comprises a conductive material selected
from the group consisting of a conductive metal, a conductive
polymer, and a blend of a conductive metal and a conductive
polymer.

41. The electrochemical sensor of claim 39, wherein the
auxiliary electrode comprises a form selected from the group
consisting of a mesh, a grid, and a plurality of spaced wires.

42. The electrochemical sensor of claim 39, wherein the
polymer comprises a material that 1s permeable to an electro-
chemical [interferant] interferent.

43. The electrochemical sensor of claim 39, wherein the
polymer comprises a material that is permeable to [interfer-
ants] interferents.

44. The electrochemical sensor of claim 39, wherein the
auxiliary electrode 1s configured to be set at a potential of at
least about +0.1V.

45. The electrochemical sensor of claim 39, wherein the
auxiliary electrode 1s configured to generate oxygen.

46. The electrochemical sensor of claim 45, wherein the
auxiliary electrode 1s configured to be set at a potential of at
least about +0.6 V.

4'7. The electrochemical sensor of claim 39, configured for
measuring a concentration of glucose 1n a fluid.

48. The electrochemical sensor of claim 39, configured for
insertion 1nto a subcutaneous tissue of a host.

49. The electrochemical sensor of claim 39, configured for
implantation mto a subcutaneous tissue of a host.

50. The electrochemical sensor of claim 39, configured for
measuring a concentration of glucose substantially without
an oxygen deficit.

51. An electrochemical sensor for measuring a concentra-
tion of an analyte in a biological fluid, the sensor comprising:
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a membrane system comprising an enzyme configured to
react with the analyte;

an electroactive surface comprising a working electrode,
the working electrode comprising a conductive material
and configured to measure a product of the veaction of
the enzyme with the analyte; and

an auxiliary electrode comprising a conductive material
and configured to generate oxygen, wherein the auxil-
iary electrode is situated such that the oxygen generated
diffuses to the enzyme or to the electroactive surface,
wherein the auxiliary electrode comprises a polymer,
wherein the polymer is situated on a surface of the
auxiliary electrode, and wherein the polymer comprises
a material that is permeable ov impermeable to glucose
but is permeable to oxygen, and wherein the sensor is
configured such that the auxiliary electrode is located
between the electroactive surface of the working elec-
trode and the biological fluid being measured.

52. The electrochemical sensor of claim 51, wherein the

auxiliary electrode comprises a conductive material selected

from the group consisting of a conductive metal, a conductive

polymer, and a blend of a conductive metal and a conductive
polymer.

53. The electrochemical sensor of claim 51, wherein the
auxiliary electrode comprises a form selected from the group
consisting of a mesh, a grid, and a plurality of spaced wires.

54. The electrochemical sensor of claim 51, wherein the
polvmer comprises a material having a molecular weight that
allows transport therethrvough of oxvgen, urate, ascorbate,
and acetaminophen.

55. The electrochemical sensor of claim 51, wherein the
auxiliary electrode is configured to be set at a potential of at
least about +0.6 V.

56. The electrochemical sensor of claim 51, wherein the
auxiliary electrode is configured to electrochemically modify
an electrochemical interferent to vender the electrochemical
interferent substantially electrochemically non-reactive at
the working electrode.

57. The electrochemical sensor of claim 56, wherein the
auxiliary electrode is configured to be set at a potential of at
least about +0.1 V.

58. The electrochemical sensor of claim 51, configured for
measuring a concentration of glucose in a fluid.

59. The electrochemical sensor of claim 51, configured for
measuring a concentration of glucose substantially without
an oxygen deficit.

60. An electrochemical sensor for measuring a concentra-
tion of an analyte in a biological fluid, the sensor comprising:

a membrane system comprising an enzyme configured to

react with the analyte;

an electroactive surface comprising a working electrode,

the working electrode comprising a conductive material
and configured to measure a product of the veaction of
the enzvime with the analyte; and

an auxiliary electrode comprising a conductive material

and configured to generate oxygen, wherein the auxil-
iary electrode is situated at a location directly between
the electroactive surface and the biological fluid being
measured such that the oxygen genervated diffuses to the
enzyme or to the electroactive surface, wherein the aux-
iliary electrode comprises a polymer, wherein the poly-
mer is dirvectly situated on a surface of the auxiliary
electrode, and wherein the polymer comprises a mate-
rial that is permeable or impermeable to glucose but is
permeable to oxygen and permeable to one or more
interfering species.
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61. The electrochemical sensor of claim 60, wherein the
polymer comprises a material having a molecular weight that
blocks glucose and allows transport thevethrough of oxygen,
urate, ascorbate, and acetaminophen.

62. The electrochemical sensor of claim 60, wherein the
auxiliary electrode comprises a conductive material selected
from the group consisting of a conductive metal, a conductive
polymer, and a blend of a conductive metal and a conductive
polymer.

63. The electrochemical sensor of claim 60, wherein the
auxiliary electrode comprises a form selected from the group
consisting of a mesh, a grid, and a plurality of spaced wires.

64. The electrochemical sensor of claim 60, wherein the
polymer comprises a material having a molecular weight that
allows transport therethrough of urate, ascorbate, and
acetaminophen.

65. The electrochemical sensor of claim 60, wherein the
auxiliary electrode is configured to be set at a potential of at
least about +0.6 V.

66. The electrochemical sensor of claim 60, wherein the
auxiliary electrode is configured to electrochemically modify
an electrochemical interferent to vender the electrochemical
interferent substantially electrochemically non-reactive at
the working electrode.

67. The electrochemical sensor of claim 66, wherein the
auxiliary electrode is configured to be set at a potential of at
least about +0.1 V.

68. The electrochemical sensor of claim 60, configured for
measuring a concentration of glucose in a fluid.

69. The electrochemical sensor of claim 60, configured for
insertion into a subcutaneous tissue of a host.

70. The electrochemical sensor of claim 60, configured for
implantation into a subcutaneous tissue of a host.

71. The electrochemical sensor of claim 60, configured for
measuring a concentration of glucose substantially without
an oxygen deficit.

72. An electrochemical sensor for determining a presence
or a concentration of an analyte in a fluid, the sensov com-
prising:

a membrane system comprising an enzyme configured to

react with the analyte;
an electroactive surface comprising a working electrode,
the working electrode comprising a conductive material

and configured to measure a product of the reaction of

the enzyme with the analyte; and
an auxiliary electrode comprising a conductive material
and configured to modify an electrochemical interferent
such that the electrochemical interfevent is vendeved
substantially electrochemically non-reactive at the
working electrode, wherein the auxiliary electrode com-
prises a polymer, wherein the polymer is situated on a
surface of the auxiliary electrode such that at least a
portion of the polymer is located more distal to the
electroactive surface than the auxiliary electrode, and
wherein the polymer comprises a material that is per-
meable or impermeable to glucose but is permeable to
oxvgen.
73. The electrochemical sensor of claim 72, wherein the
auxiliary electrode comprises a conductive material selected
from the group consisting of a conductive metal, a conductive
polymer, and a blend of a conductive metal and a conductive
polymer.
74. The electrochemical sensor of claim 72, wherein the
auxiliary electrode comprises a form selected from the group
consisting of a mesh, a grid, and a plurality of spaced wires.
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75. The electrochemical sensor of claim 72, wherein the
polymer comprises a material that is permeable to an elec-
trochemical interferent.

76. The electrochemical sensor of claim 72, wherein the
polvmer comprises a material that is impermeable to glucose
but is permeable to oxygen and interferents.

77. The electrochemical sensor of claim 72, wherein the
auxiliary electrode is configured to be set at a potential of at
least about +0.1 V.

78. The electrochemical sensor of claim 72, wherein the
auxiliary electrode is configured to generate oxygen.

79. The electrochemical sensor of claim 78, wherein the
auxiliary electrode is configured to be set at a potential of at
least about +0.6 V.

80. The electrochemical sensor of claim 72, configured for
measuring a concentration of glucose in a fluid.

81. The electrochemical sensor of claim 72, configured for
insertion into a subcutaneous tissue of a host.

82. The electrochemical sensor of claim 72, configured for
implantation into a subcutaneous tissue of a host.

83. The electrochemical sensor of claim 72, configured for
measuring a concentration of glucose substantially without
an oxygen deficit.

84. The electrochemical sensor of claim 72, wherein the
auxiliary electrode is configured to generate oxygen.

85. The electrochemical sensor of claim 84, wherein the
auxiliary electrode is configured to be set at a potential of at
least about +0.6 V.

86. An electrochemical sensor for determining a presence
or a concentration of an analyte in a fluid, the sensor com-
prising:

a membrane system comprising an enzyme configured to

react with the analyte;

an electroactive surface comprising a working electrode,
the working electrode comprising a conductive material
and configured to measure a product of the reaction of
the enzyme with the analyte; and

an auxiliary electrode comprising a conductive material

and configured to modify an electrochemical interferent
such that the electrochemical interferent is rendered
substantially electrochemically nomn-reactive at the
working electrode, wherein the auxiliary electrode
located within or adjacent to a membrane system such
that at least a portion of the membrane system is located
morve distal to the electroactive surface than the auxil-
iary electrode, and wherein the membrane system com-
prises a polyvmer comprising a material having a
molecular weight that allows transport thevethrough of
oxygen, urate, ascorbate, and acetaminophen.

87. The electrochemical sensor of claim 86, wherein the
auxiliary electrode comprises a conductive material selected
from the group consisting of a conductive metal, a conductive
polvmer, and a blend of a conductive metal and a conductive
polymer.

88. The electrochemical sensor of claim 86, wherein the
auxiliary electrode comprises a form selected from the group
consisting of a mesh, a grid, and a plurality of spaced wires.

89. The electrochemical sensor of claim 86, wherein the
polyvmer comprises a material that is permeable to an elec-
trochemical interferent.

90. The electrochemical sensor of claim 86, wherein the
polymer comprises a material that is permeable to interfer-
ents.

91. The electrochemical sensor of claim 86, wherein the
auxiliary electrode is configured to be set at a potential of at
least about +0.1 V.
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92. The electrochemical sensor of claim 86, wherein the
auxiliary electrode is configured to generate oxygen.

93. The electrochemical sensor of claim 92, wherein the
auxiliary electrode is configured to be set at a potential of at
least about +0.6 V.

94. The electrochemical sensor of claim 86, configured for
measuring a concentration of glucose in a fluid

95. The electrochemical sensor of claim 86, configured for
insertion into a subcutaneous tissue of a host.

96. The electrochemical sensor of claim §6, configured for
implantation into a subcutaneous tissue of a host.

97. The electrochemical sensor of claim 86, configured for
measuring a concentration of glucose substantially without
an oxygen deficit.

98. An electrochemical sensor for measuring a concentra-
tion of an analyte in a biological fluid in a host, the sensor
COMprising:

a membrane system comprising: a cell impermeable
domain configured to contact a biological fluid in a host
and an enzyme domain comprising enzyme, wherein the
enzyme reacts with the analyte;

a working electrode comprising a conductive material and
configured to measure a product of the veaction of the
enzyme with the analyte; and

an auxiliary electrode located within or adjacent to the
membrane system and comprising a conductive material
and configured to modify an electrochemical interferent
such that the electrochemical interferent is rendered
substantially electrochemically nomn-reactive at the
working electrode.

99. The sensor of claim 98, configured for measuring a

concentration of glucose in a host.

100. The sensor of claim 98, configured for insertion into
contact with a subcutaneous tissue of a host.

101. The sensor of claim 98, configured for communication
with the intravascular system of a host.

102. The sensor of claim 98, configured for continuous
measurement of the analyte in a host.

103. The sensor of claim 98, further comprising a poten-
tiostat operably connected to the working electrode.

104. The sensor of claim 103, wherein the potentiostat
enables continuous measurvement of the analyte in a host.

105. The sensor of claim 98, further comprising sensor
electronics operably comnnected to the working electrode,
wherein the sensor electronics arve configured to transmit data
o a recelver.

106. The sensor of claim 105, wherein the sensor electron-
ics comprise an RF transceiver configured to wirelessly
transmit the data to a receiver.

107. The sensor of claim 98, wherein the membrane system
is configured to limit diffusion of the analyte theve through.

108. The sensor of claim 107, wherein the membrane sys-
tem further comprises a vesistance domain configured to limit
diffusion of the analyte theve through.

109. The sensor of claim 98, wherein the membrane system
is configured to limit or block one or more interfering species
there through.

110. The sensor of claim 109, wherein the membrane sys-
tem further comprises an interference domain configured to
limit or block the one orv more interfering species there
through.

111. The sensor of claim 109, wherein the membrane sys-
tem further comprises an electrolyte domain configured to
provide the hydrophilicity at the working electrode.

112. The sensor of claim 98, wherein the membrane system
is configured to provide a hyvdrophilicity at the working elec-
trode.
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113. The sensor of claim 98, wherein the cell impermeable
domain is located movre distal from the working electrode than
any other domain of the membrane system such that the cell
impermeable domain dirvectly contacts the host when placed
into contact with the host’s dermis, subcutaneous tissue and/
or intravascular system.

114. The sensor of claim 98, wherein the auxiliary elec-
trode is located within the cell impermeable domain.

115. The sensor of claim 98, wherein the auxiliary elec-
trode is located between the cell impermeable domain and the
enzyme domain.

116. An electrochemical sensor for continuous measure-
ment of a concentration of an analyte in an in vivo biological
environment, the sensor comprising:

a membrane comprising an outermost layer configured for
protection of the sensor from the biological envivonment,
wherein the membrane further comprises an enzyme
configured to rveact with the analyte;

a working electrode comprising a conductive material and
configured to measure a product of the veaction of the
enzyme with the analyte; and

an auxiliary electrode located within ov adjacent to the
membrane and comprising a conductive material,
whevrein the auxiliary electrode is configured to modify
an electrochemical interferent such that the electro-
chemical interferent is venderved substantially electro-
chemically non-reactive at the working electrode.

117. The sensor of claim 116, configured for measuring a

concentration of glucose in a host.

118. The sensor of claim 116, configured for insertion into
contact with a subcutaneous tissue of a host.

119. The sensor of claim 116, configured for communica-
tion with the intravascular system of a host.

120. The sensor of claim 116, further comprising a poten-
tiostat operably connected to the working electrode.

[21. The sensor of claim 120, wherein the potentiostat
enables continuous measurement of the analyte in a host.

122. The sensor of claim 116, further comprising sensor
electronics operably connected to the working electrode,
wherein the sensor electronics ave configured to transmit data
fo a receiver.

123. The sensor of claim 122, wherein the sensor electron-
ics comprise an RF transceiver configured to wirelessly
transmit the data to a receiver.

124. The sensor of claim 116, wherein the membrane is
configured to limit diffusion of the analyte theve through.

125. The sensor of claim 124, wherein the membrane fur-
ther comprises a resistance domain configured to limit diffu-
sion of the analyte there through.

126. The sensor of claim 116, wherein the membrane is
configured to limit or block one or movre interfering species
there through.

127. The sensor of claim 126, wherein the membrane fur-
ther comprises an interference domain configured to limit or
block the one or more interfering species theve through.

128. The sensor of claim 116, wherein the membrane is
configured to provide a hvdrophilicity at the working elec-
trode.

[129. The sensor of claim 128, wherein the membrane fur-
ther comprises an electrolyte domain configured to provide
the hyvdrophilicity at the working electrode.

130. The sensor of claim 116, wherein the cell imperme-
able domainis located move distal from the working electrode
than any other domain of the membrane such that the cell
impermeable domain directly contacts the host when placed
into contact with the host’s dermis, subcutaneous tissue and/
or intravascular system.
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[31. The sensor of claim 116, wherein the auxiliary elec-
trode is located within the outermost layer.
132. The sensor of claim 116, wherein the auxiliary elec-
trode is located between the outermost layer and the enzyme.
133. An electrochemical sensor for measuring a concen-
tration of an analyte in a biological fluid, the sensor compris-
Ing.:
a membrane system comprising an enzyme configured to
react with an analyte;
an electroactive surface comprising a working electrode,
the working electrode comprising a conductive material
and configured to measure a product of a veaction of the
enzyme with the analyte; and
an auxiliary electrode comprising a conductive material
and configured to generate oxygen, wherein the auxil-
iary electrode is situated such that the oxygen genervated
diffuses to the enzyme or to the electroactive surface,
wherein the auxiliary electrode comprises a polymer,
wherein the polymer is situated on a surface of the
auxiliary electrode, wherein the polymer comprises a
material that is permeable ov impermeable to glucose
but is permeable to oxyvgen, and wherein the sensor is
configured such that the auxiliary electrode is located
between the electroactive surface of the working elec-

trode and a biological fluid in which a concentration of

the analyte is being measured;

wherein the sensor is configured for insertion or implan-

tation into a subcutaneous tissue of a host.

134. The electrochemical sensor of claim 133, wherein the
auxiliary electrode comprises a conductive material selected

from the group consisting of a conductive metal, a conductive
polymer, and a blend of a conductive metal and a conductive
polymer.

135. The electrochemical sensor of claim 133, wherein the
auxiliary electrode comprises a form selected from the group
consisting of a mesh, a grid, and a plurality of spaced wires.

136. The electrochemical sensor of claim 133, wherein the
polymer comprises a material that is permeable to interfering
species.

137. The electrochemical sensor of claim 136, wherein the
polymer comprises a material having a molecular weight that
allows transport thervethrough of oxvgen, urate, ascorbate,
and acetaminophen.

138. The electrochemical sensor of claim 133, wherein the
auxiliary electrode is configured to be set at a potential of at
least about +0.6 V.

139. The electrochemical sensor of claim 133, wherein the
auxiliary electrode is configured to electrochemically modify
an electrochemical interferent to render the electrochemical
interferent substantially electrochemically non-reactive at
the working electrode.

140. The electrochemical sensor of claim 139, wherein the
auxiliary electrode is configured to be set at a potential of at
least about +0.1 V.

141. The electrochemical sensor of claim 133, configured

for measuring a concentration of glucose in a fluid.

26

142. The electrochemical sensor of claim 133, configured
Jor measuring a concentration of glucose substantially with-
out an oxygen deficit.

143. An electrochemical sensor for measuring a concen-

5 tration of an analyte in a biological fluid, the sensor compris-
ing:

a membrane system comprising an enzyme configured to

react with an analyte;

an electroactive surface comprising a working electrode,

the working electrode comprising a conductive material

and configured to measure a product of a reaction of the
enzyme with the analyte; and

an auxiliary electrode comprising a conductive material

and configured to generate oxygen, wherein the auxil-

iary electrode is situated such that the oxygen generated
diffuses to the enzyme or to the electroactive surface,
wherein the auxiliary electrode comprises a polymer,
wherein the polymer is situated on a surface of the
auxiliary electrode, wherein the polymer comprises a
material that is permeable ov impermeable to glucose
but is permeable to oxygen, wherein the polymer com-
prises a material that is permeable to interfering spe-
cies, and wherein the sensor is configured such that the
auxiliary electrvode is located between the electroactive
surface of the working electrode and a biological fluid in
which a concentration of the analyte is being measured.

144. The electrochemical sensor of claim 143, wherein the
auxiliary electrode comprises a conductive material selected
from the group consisting of a conductive metal, a conductive
polvmer, and a blend of a conductive metal and a conductive
30 polymer.

145. The electrochemical sensor of claim 143, wherein the
auxiliary electrode comprises a form selected from the group
consisting of a mesh, a grid, and a plurality of spaced wires.

146. The electrochemical sensor of claim 143, wherein the

35 polymer comprises a material that is permeable to interfering
species.

147. The electrochemical sensor of claim 146, wherein the
polymer comprises a material having a molecular weight that
allows transport thervethrough of oxvgen, urate, ascorbate,
and acetaminophen.

148. The electrochemical sensor of claim 143, wherein the
auxiliary electrode is configured to be set at a potential of at
least about +0.6 V.

149. The electrochemical sensor of claim 143, wherein the
auxiliary electrode is configured to electrochemically modify
an electrochemical interferent to vender the electrochemical
interferent substantially electrochemically non-reactive at
the working electrode.

150. The electrochemical sensor of claim 149, wherein the
auxiliary electrode is configured to be set at a potential of at
least about +0.1 V.

151. The electrochemical sensor of claim 143, configured
for measuring a concentration of glucose in a fluid.

152. The electrochemical sensor of claim 143, configured
55 for measuring a concentration of glucose substantially with-

out an oxygen deficit.
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