(19) United States

12 Reissued Patent
Master

(10) Patent Number:
45) Date of Reissued Patent:

USOORE43393E

US RE43.393 E
*May 15, 2012

(54) METHOD AND SYSTEM FOR CREATING
AND PROGRAMMING AN ADAPTIVE
COMPUTING ENGINE

(75) Inventor: Paul L. Master, Sunnyvale, CA (US)

(73) Assignee: QST Holdings, LLC, Sunnyvale, CA
(US)

(*) Notice: This patent 1s subject to a terminal dis-

claimer.

(21) Appl. No.: 12/504,093

(22) Filed: Jul. 16, 2009
Related U.S. Patent Documents
Reissue of:
(64) Patent No.: 7,328,414
Issued: Feb. 5, 2008
Appl. No.: 10/437,800
Filed: May 13, 2003

U.S. Applications:
(60) Provisional application No. 60/378,088, filed on May

13, 2002.
(51) Imt. CL.
GO6F 17/50 (2006.01)
(52) US.CL ... 716/104; 716/106; 716/116; 716/117;
716/128;716/132
(58) Field of Classification Search 716/103-104,

716/106-107,116-117, 128, 132, 136, 138;
712/15,17,19, 29, 220, 227, 703/13-15;
709/106—-107, 223; 711/145, 147, 149, 218;
717/114, 119, 149, 150, 160

See application file for complete search history.

PROVIDE A PLURALITY OF
ALGORITHMIC ELEMENTS

_Y

(56) References Cited

U.S. PATENT DOCUMENTS

5,603,043 A 2/1997 Taylor et al.

5,960,534 A 10/1999 Cooke et al.

7,246,333 B2* 7/2007 Bingham 716/4

7,596,775 B2* 9/2009 Tsienetal. 716/17
2003/0200538 Al* 10/2003 Ebelingetal. 717/160
2004/0006584 Al* 1/2004 Vandeweerd 709/107

* cited by examiner

Primary Examiner — Paul Dinh
(74) Attorney, Agent, or Firm — Nixon Peabody LLP

(57) ABSTRACT

A system for creating an adaptive computing engine (ACE)
includes algorithmic elements adaptable for use 1n the ACE
and configured to provide algorithmic operations, and pro-
vides mapping of the algorithmic operations to heteroge-
neous nodes. The mapping 1s for mitially configuring the
heterogeneous nodes to provide appropriate hardware circuit
functions that perform algorithmic operations. A reconfig-
urable interconnection network interconnects the heteroge-
neous nodes. The mapping includes selecting a combination
of ACE building blocks from the ACE building block types
for the appropriate hardware circuit functions. The system
and corresponding method also includes utilizing the algo-
rithmic operations for optimally configuring the heteroge-
neous nodes to provide the appropriate hardware circuit func-
tion. The utilizing includes the simulating of the performance
of the ACE with the combination of ACE building blocks and
altering the combination until predetermined performance
standards that determine the efliciency of the ACE are met
while simulating performance of the ACE.

10 Claims, 3 Drawing Sheets

202

204

MAP ELEMENTS ONTO
NON-HOMOGENQUS NODES

206
/

UTILIZE MAPPED ELEMENTS
TO PROVIDE APPROPRIATE
HARDWARE FUNCTIONS

US RE43,393 E

Sheet 1 of 3

May 15, 2012

U.S. Patent

AHONWIIN

Ov

I "OId
001 oLl
NHOMLIN NOILIINNOOHILN! XIH1VIN
XId1lVviA o XdlvwW | | XIgLVIN | | XIdLVIN | XIH1lVIN d/
N | NN \ 0G1
NOG| aosi 0051 d0og] Y0OS1
0fL " A om«i _
G2l UV
H3T10HINOD
) |||||_
!

U.S. Patent

May 15, 2012 Sheet 2 of 3

202

PROVIDE A PLURALITY OF
ALGORITHMIC ELEMENTS

204

MAP ELEMENTS ONTO
NON-HOMOGENQUS NODES

UTILIZE MAPPED ELEMENTS
TO PROVIDE APPROPRIATE
HARDWARE FUNCTIONS

302

PROVIDE CODE TO
SIMULATE DEVICE

I_ IDENTIFY HOT SPOTS
OF HIGH POWER AND
HIGH DATA MOVEMENT

FIG. 3

US RE43,393 E

U.S. Patent May 15, 2012 Sheet 3 of 3 US RE43.393 E

402
/
CHOOSE MIXTURE OF COMPOSITE BLOCKS
4/04
INVOKE SIMULATOR TO PROVIDE PERFORMANCE METRICS
ioe
REVIEW PERFORMANCE METRICS AND COMPARE T'HE)"S'EN METRICS
408
ADJUST MIXTURE UNTIL CHOSEN PERFORMANCE METRICS ARE MET
410
. o /
SAVE MIXTURE DATA |

FIG. 4

B R e — e

[— Leo2 D—EH] 504
E 5

J 606

600

FIG. 5

US RE43,393 E

1

METHOD AND SYSTEM FOR CREATING
AND PROGRAMMING AN ADAPTIVE
COMPUTING ENGINE

Matter enclosed in heavy brackets |] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

CROSS REFERENCE 10 RELATED
APPLICATIONS

This application claims the benefit of priority to U.S. Pro-
visional Application No. 60/378,088, filed May 13, 2002.

FIELD OF INVENTION

The present invention relates to adaptive computing
machines, and more particularly to creating and program-
ming an adaptive computing engine.

BACKGROUND OF THE INVENTION

The electronics industry has become increasingly driven to
meet the demands of high-volume consumer applications,
which comprise a majority of the embedded systems market.
Examples of consumer applications where embedded sys-
tems are employed include handheld devices, such as cell
phones, personal digital assistants (PDAs), global positioning
system (GPS) recervers, digital cameras, etc. By their nature,
these devices are required to be small, low-power, light-
weight, and feature-rich. Thus, embedded systems face chal-
lenges 1n producing performance with minimal delay, mini-
mal power consumption, and at minimal cost. As the numbers
and types of consumer applications where embedded systems
are employed increases, these challenges become even more
pressing.

Each of these applications typically comprises a plurality
of algorithms which perform the specific function for a par-
ticular application. An algorithm typically includes multiple
smaller elements called algorithmic elements which when
performed produce a work product. An example of an algo-
rithm 1s the QCELP (QUALCOMM code excited linear pre-
diction) voice compression/decompression algorithm which
1s used 1n cell phones to compress and decompress voice 1n
order to save wireless spectrum.

Conventional systems 1n hardware architectures provide a
specific hardware accelerator typically for one or two algo-
rithmic elements. This has typically suificed in the past since
most hardware acceleration has been performed 1n the realm
of infrastructure base stations. There, many channels are pro-
cessed (typically 64 or more) and having one or two hardware
accelerations, which help accelerate the two algorithmic ele-
ments, can be justified. Best current practices are to place a
Digital Signal Processing 1C alongside the specific hardware
acceleration circuitry and then arraying many of these
together 1n order to process the workload. Since any gain in
performance or power dissipation 1s multiplied by the number
of channels (64) this approach 1s currently favored.

For example, 1n a base station implementation of the
QCELP algorithm acceleration the pitch computation will
result in a 20% performance/power savings per channel. 20%
of the processing which 1s done across 64 channels results 1n
a significantly large performance/power savings.

The shortcomings with this approach are revealed when
attempts are made to accelerate an algorithmic element 1n a

10

15

20

25

30

35

40

45

50

55

60

65

2

mobile terminal. There typically 1s only a single channel 1s
processed and for significant performance and power saving

to be realized then many algorithmic elements must be accel-
erated. The problem, however, 1s that the size of the silicon 1s
bounded by cost constraints and a designer can not justify
added specific acceleration circuitry for every algorithm ele-
ment. However, the QCELP algorithm itself consists of many
individual algorithm elements (17 of the most frequently used
algorithmic elements):

1. Pitch Search Recursive Convolution
. Pitch Search Autocorrelation of Exx
. Pitch Search Correlation of Exy
. Pitch Search Autocorrelation of Eyy
. Pitch Search Pitch Lag and Minimum Error
. Pitch Search Sinc Interpolation of Exy
. Pitch Search Interpolation of Eyy
. Codebook Search Recursive convolution

9. Codebook Search Autocorrelation of Eyy
10. Codebook Search Correlation of Exy

11. Codebook Search Codebook index and Minimum
Error

12. Pole Filter

13. Zero Filter

14. Pole 1 Tap Filter

15. Cosine

16. Line Spectral Pair Zero search

17. Divider

For example, 1n a mobile terminal implementation of the
QCELP algorithm, if the pitch computation 1s accelerated, the
performance/power dissipation 1s reduced by 20% for an
increased cost of silicon area. By itself, the gain for the cost 1s
not economically justifiable. However, 11 for the cost 1n sili-
con area of a single accelerator there was an IC that can adapt
itself 1n time to be able to become the accelerator for each of
the 17 algorithmic elements, 1t would cost 80% of the cost for
a single adaptable accelerator.

Normal design approaches for embedded systems tend to
fall 1n one of three categories: an ASIC (application specific
integrated circuit) approach; a microprocessor/DSP (digital
signal processor) approach; and an FPGA (field program-
mable gate array) approach. Unfortunately, each of these
approaches has drawbacks. In the ASIC approach, the design
tools have limited ability to describe the algorithm of the
system. Also, the hardware 1s fixed, and the algorithms are
frozen 1n hardware. For the microprocessor/DSP approach,
the general-purpose hardware 1s fixed and inefficient. The
algorithms may be changed, but they have to be artificially
partitioned and constrained to match the hardware. With the
FPGA approach, use of the same design tools as for the ASIC
approach result in the same problem of limited ability to
describe the algorithm. Further, FPGAs consume significant
power and are too difficult to reconfigure to meet the changes
of product requirements as future generations are produced.

An alternative 1s to attempt to overcome the disadvantages
of each of these approaches while utilizing their advantages.
Accordingly, what 1s desired 1s a system 1n which more effi-
cient consumer applications can be created and programmed
than when utilizing conventional approaches.

O ~1 N h = WD

SUMMARY OF THE INVENTION

A system for creating an adaptive computing engine (ACE)
1s disclosed. The system comprises a plurality of algorithmic
clements capable of being configured 1nto an adaptive com-
puting engine, and means for mapping the operations of the
plurality of algorithmic elements to non-homogenous nodes
by using computational and data analysis. The system and

US RE43,393 E

3

method also includes means for utilizing the mapped algo-
rithmic elements to provide the appropriate hardware func-
tion. A system and method in accordance with the present
invention provides the ability to bring into existence efficient
hardware accelerators for a particular algorithmic element
and then to reuse the same silicon area to bring into existence
a new hardware accelerator for the next algorithmic element.

With the ability to optimize operations of an ACE 1n accor-
dance with the present invention, an algorithm 1s allowed to
run on the most efficient hardware for the minimum amount
of time required. Further, more adaptability 1s achieved for a
wireless system to perform the task at hand during run time.
Thus, algorithms are no longer required to be altered to {it
predetermined hardware existing on a processor, and the opti-
mum hardware required by an algorithm comes 1nto existence
for the mimmimum time that the algorithm needs to run.

BRIEF DESCRIPTION OF THE DRAWINGS

FI1G. 1 1s a block diagram 1llustrating a preferred apparatus
in accordance with the present invention.

FIG. 2 1llustrates a simple flow chart of providing an AC.
in accordance with the present invention.

FIG. 3 1s a flow chart which 1llustrates the operation of the
profiler 1n accordance with the present invention.

FIG. 4 1s a flow chart which illustrates optimizing the
mixture ol composite blocks.

FI1G. 5 1llustrates an integrated environment 1n accordance
with the present invention.

[T]

DETAILED DESCRIPTION OF THE INVENTION

The present mvention provides a method and system for
optimizing operations of an ACE. The following description
1s presented to enable one of ordinary skill 1n the art to make
and use the invention and 1s provided in the context of a patent
application and its requirements. Various modifications to the
preferred embodiment will be readily apparent to those
skilled 1n the art and the generic principles herein may be
applied to other embodiments. Thus, the present invention 1s
not intended to be limited to the embodiments shown but 1s to
be accorded the widest scope consistent with the principles
and features described herein.

An approach that 1s dynamic both in terms of the hardware
resources and algorithms 1s emerging and is referred to as an
adaptive computing engine (ACE) approach. ACEs can be
reconiigured upwards of hundreds of thousands of times a
second while consuming very little power. The ability to
reconiigure the logical functions inside the ACE at high speed
and “on-the-fly”, 1.e., while the device remains 1n operation,
describes the dynamic hardware resource teature of the ACE.
Similarly, the ACE operates with dynamic algorithms, which
refers to algorithms with constituent parts that have temporal
clements and thus are only resident 1n hardware for short
portions of time as required.

While the advantages of on-the-fly adaptation in ACE
approaches are easily demonstrated, a need exists for a tool
that supports optimizing of the ACE architecture for a par-
ticular problem space. FI1G. 1 1s a block diagram 1llustrating a
preferred apparatus 100 1n accordance with the present inven-
tion. The apparatus 100, referred to herein as an adaptive
computing machine (“ACE”) 100, 1s preferably embodied as
an 1ntegrated circuit, or as a portion of an integrated circuit
having other, additional components. In the preferred
embodiment, and as discussed 1n greater detail below, the
ACE 100 includes a controller 120, one or more reconfig-

urable matrices 150, such as matrices 150A through 150N as

10

15

20

25

30

35

40

45

50

55

60

65

4

illustrated, a matrix interconnection network 110, and pret-
erably also includes a memory 140.

A sigmificant departure from the prior art, the ACE 100
does not utilize traditional (and typically separate) data and
istruction busses for signaling and other transmission
between and among the reconfigurable matrices 150, the con-
troller 120, and the memory 140, or for other input/output
(“1/O”") functionality. Rather, data, control and configuration
information are transmitted between and among these ele-
ments, utilizing the matrix interconnection network 110,
which may be configured and reconfigured, 1n real-time, to
provide any given connection between and among the recon-
figurable matrices 150, the controller 120 and the memory
140, as discussed 1n greater detail below.

The memory 140 may be implemented 1n any desired or
preferred way as known 1n the art, and may be included within
the ACE 100 or incorporated within another IC or portion of
an IC. In the preferred embodiment, the memory 140 1is
included within the ACE 100, and preferably i1s a low power

consumption random access memory (RAM), but also may
be any other form of memory, such as flash, DRAM, SRAM,

MRAM, ROM, EPROM or EEPROM. In the preferred
embodiment, the memory 140 preferably includes direct
memory access (DMA) engines, not separately 1llustrated.

The controller 120 1s preferably implemented as a reduced
istruction set (“RISC”) processor, controller or other device
or IC capable of performing the two types of functionality
discussed below. The first control functionality, referred to as
“kernal” control, 1s 1llustrated as kernal controller (“KARC”)
125, and the second control functionality, referred to as
“matrix” control, 1s 1llustrated as matrix controller
(“MARC”) 130. The control functions of the KARC 125 and
MARC 130 are explained 1n greater detail below, with refer-
ence to the configurability and reconfigurability of the various
matrices 150, and with reference to the preferred form of
combined data, configuration and control information
referred to herein as a “silverware” module.

The matrix interconnection network 110 of FIG. 1, and its
subset interconnection networks collectively and generally
referred to as “interconnect”, “interconnection(s)” or “inter-
connection network(s)”, may be implemented as known 1n
the art, such as utilizing the interconnection networks or
switching fabrics of FPGAs, albeit 1n a considerably more
limited, less “rich” fashion, to reduce capacitance and
increase speed of operation. In the preferred embodiment, the

various 1nterconnection networks are implemented as
described, for example, in U.S. Pat. Nos. 5,218,240, 5,336,

950, 5,245,277, and 5,144,166. These various interconnec-
tion networks provide selectable (or switchable) connections
between and among the controller 120, the memory 140, the
various matrices 150, providing the physical basis for the
configuration and reconfiguration referred to herein, 1n
response to and under the control of configuration signaling
generally referred to herein as “configuration information”.
In addition, the various interconnection networks including
110 and the interconnection networks within each of the
matrices (not shown) provide selectable or switchable data,
input, output, control and configuration paths, between and
among the controller 120, the memory 140, the various matri-
ces 150, and the computational units (not shown) and com-
putational elements (not shown) within the matrices 150 in
lieu of any form of traditional or separate input/output busses,
data busses, and instruction busses.

The various matrices 150 are reconfigurable and heteroge-
neous, namely, 1n general, and depending upon the desired
configuration: reconfigurable matrix 150A 1s generally dii-
ferent from reconfigurable matrices 150B through 150N;

US RE43,393 E

S

reconfigurable matrix 150B 1s generally different from recon-
figurable matrices 150A and 150C through 150N; reconfig-
urable matrix 150C 1s generally different from reconfigurable
matrices 150A, 150B and 150D through 150D, and so on. The
various reconfigurable matrices 150 each generally contain a
different or varied mix of computation units, which 1n turn
generally contain a different or varied mix of fixed, applica-
tion specific computational elements, which may be con-

nected, configured and reconfigured 1n various ways to per-
form varied functions, through the interconnection networks.
In addition to varied internal configurations and reconfigura-
tions, the various matrices 150 may be connected, configured
and reconfigured at a higher level, with respect to each of the
other matrices 150, through the matrix interconnection net-
work 110.

FI1G. 2 illustrates a simple flow chart of providing an ACE
in accordance with the present invention. First, a plurality of
algorithmic elements are provided, via step 202. Next, the
algorithmic elements are mapped onto non-homogeneous,
1.€., heterogeneous, nodes by using data and computational
analyses, via step 204. Finally, the mapped algorithmic ele-
ments within the node are utilized to provide the appropniate
hardware function, via step 206. In a preferred embodiment,
the algorithmic elements within a node are segmented to over
optimize performance. The segmentation can either be spa-
cial, that 1s, ensuring elements are close to each other, or the
segmentation can be temporary, that 1s, the elements come
into existence at different points 1n time.

The data and computational and analysis of the algorithmic
mapping step 204 1s provided through the use of a profiler.
The operation of the profiler 1s described in more detail herein
below 1n conjunction with the accompanying figure. FIG. 3 1s
a flow chart which 1illustrates the operation of the profiler 1n
accordance with the present invention.

First code 1s provided to simulate the device, via step 302.
From the design code hot spots are identified, via step 304.
Hot spots are those operations which utilize high power and/
or require a high amount of movement of data (data move-
ment). The 1dentification of hot spots, in particular the 1den-
tification of data movement 1s 1important in optimizing the
performance of the implemented hardware device. A simple
example of the operation of the profiler 1s described below.

A code that 1s to be profiled 1s shown below:

line 1: for (i=0to 1023) { // do this loop 1024 times

line 2: x[1] = get data from producer A // fill up an array of 1024

line 3: }

line 4:

line 3: for(;;) // do this loop forever

line 6: sum = 0 // 1nmitialize variable sum

line 7: temp = get data from producer B // get a new value

line 8: for (j =to 1023) { // do this loop 1024 times

line 9: sum = sum + X[1] * temp // perform multiply
accumulate

line 10: }

line 11: send sum to consumer C // send sum

line 12: }

This 1llustrates three streams of data, producer A on line 2,
producer B on line 6 and a consumer of data on line 10. The
producers or consumers may be variables, may be pointers,
may be arrays, or may be physical devices such as Analog to
Data Converters (ADC) or Data to Analog Converters (DAC).
Traditional profilers would 1dentily line 8 as a computational
hot spot an area of the code which consumes large amounts of
computations. Line 8 consists of a multiply followed by an
accumulation which, on some hardware architecture, may

10

15

20

25

30

35

40

45

50

55

60

65

6

take many clock cycles to perform. What this mnvention will
identify which 1s not performed 1n existing profiles 1s identity
not only the computation hot spots, but also memory hot spots
as well as data movement hotspots. Line 7 and line 11 are
identified as data movement hot spots since the data will be
input from the producer B on line 7 and the sum will be sent
to consumer C 1n line 11. Also i1dentified by the profiler as a
secondary datamovement hot spot1s line 2 where 1024 values
from Producer A will be moved 1nto the array X. Finally, line
9 15 1dentified as a data movement hot spot since an element of
the array x and the temp value are summed with the variable
sum and the result placed back into the variable sum. The
profile will also 1dentify on line 9 the array X as a memory
hotspot followed, secondarily, by line 2 array X as a memory
hotspot.

With this information from the profiler, the ACE can
instantiate the following hardware circuitry to accelerate the
performance as well as lower the power dissipation of this
algorithmic fragment (algorithmic element) by putting the
building block elements together. Data movements will be
accelerated by constructing from the low level ACE building
blocks DMA (Direct Memory Address) hardware to perform
the data movement on lines 2, 9, 7, 11. A specific hardware
accelerator to perform the computation on line 9 will be
constructed from the lower level ACE building blocks to
construct a Multiply Accumulate hardware accelerator.
Finally, the information from the profiler on the memory hot
spot on line 2 and line 9 will allow the ACE to either build a
memory array ol exactly 1024 elements from the low level
ACE building blocks or ensure that the smallest possible
memory which can it 1024 elements 1s used. Optimal s1zing
of memory 1s mandatory to ensure low power dissipation. In
addition, the profiling information on the memory hot spot on
line 9 1s used to ensure that the ACE will keep the circuitry for
the multiply accumulate physically local to the array x to
ensure the minimum physical distance which 1s directly pro-
portional to the effective capacitance.—the greater the dis-
tance between where data 1s kept and where data 1s processed
means greater capacitance, which 1s one of the prime ele-
ments which dictates power consumption.

The resources needed for implementing the algorithmic
clements specily the types of composite blocks needed for a
given problem, the number of each of the types that are
needed, and the number of composite blocks per minimatrix.
The composite blocks and their types are preferably stored 1in
a database. By way of example, one type of composite block
may be labeled linear composite blocks and include multipli-
ers, adders, double adders, multiply double accumulators,
radix 2, DCT, FIR, IIR, FFT, square root, divides. A second
type may include Taylor Series approximation, CORDIC,
sines, cosines, polynomial evaluations. A third type may be
labeled FSM (finite status machine) blocks, while a fourth
type may be termed FPGA blocks. Bit processing blocks may
form a fitth type, and memory blocks may form a sixth type of
composite block.

FIG. 4 1s a flow chart which illustrates optimizing the
mixture ol composite blocks. First, a mixture of composite
blocks are chosen, via step 402. Given a certain mixture of
composite blocks, composite block types, and interconnect
density, a simulator/resource estimator/scheduler 1s invoked
to provide performance metrics, via step 404. In essence, the
performance metrics determine the efficiency of the architec-
ture to meet the desired goal. Thus, the operations by the
designated hardware resources are simulated to 1dentify the
metrics of the combination of composite blocks. The metrics
produced by the simulation are then reviewed to determine
whether they meet the chosen performance metrics, via step

US RE43,393 E

7

406. When the chosen performance metrics are not met, the
combination of resources provided by the composite blocks 1s
adjusted until the resulting metrics are deemed good enough,
via step 408. By way of example, computation power eifi-
ciency (CPE)refers to the ratio of the number of gates actively
working 1n a clock cycle to the total number of gates 1n the
device. A particular percentage for CPE can be chosen as a
performance metric that needs to be met by the combination
of composite blocks.

Once the chosen performance metrics are met, the infor-
mation about which composite blocks were combined to
achieve the particular design code 1s stored 1n a database, via
step 410. In this manner, subsequent utilization of that design
code to optimize an ACE 1s realized by accessing the saved
data. For purposes of this discussion, these combinations are
referred to as dataflow graphs.

To implement the flow chart of FIG. 4 an integrated envi-
ronment 1s provided to allow a user to make the appropnate
tradeolls between power performance and data movement.
FIG. 5 illustrates an integrated environment 600 in accor-
dance with the present invention. A legacy code of a typical
design on one chart 602 1s provided alongside the correspond-
ing ACE architecture on the other chart 604. Power, perfor-
mance and data movement readings are provided at the bot-
tom of each of the charts 606 and 608. In a preferred
embodiment, 1t would be possible to drag and drop code from
the legacy chart 602 onto one of the mini-matrices of the ACE
chart 604. In a preferred embodiment there would be 1imme-
diate feedback, that 1s, as a piece of code was dropped on the
ACE chart 604, the power energy and data movement reading
would change to reflect the change. Accordingly, through this
process an ACE which 1s optimized for a particular perfor-
mance can be provided.

As mentioned before, the ACE can be segmented spatially
and temporally to ensure that a particular task is performed 1n
the optimum manner. By adapting the architecture over and
over, a slice of ACE material builds and dismantles the
equivalent of hundreds or thousands of ASIC chips, each
optimized to a specific task. Since each of these ACE ““archi-
tectures’ 1s optimized so explicitly, conventional silicon can-
not attempt 1ts recreation, conventional ASIC chips would be
far too large, and microprocessors/DSPs far too customized.
Further, the ACE allows software algorithms to build and then
embed themselves into the most efficient hardware possible
for their application. This constant conversion of “software”
into “hardware” allows algorithms to operate faster and more
ciliciently than with conventional chip technology. ACE tech-
nology also extends conventional DSP functionality by add-
ing a greater degree of freedom to such applications as wire-
less designs that so far have been attempted by changing
soltware.

Adapting the ACE chip architecture as necessary intro-
duces many new system features within reach of a single
ACE-based platform. For example, with an ACE approach, a
wireless handset can be adapted to become a handwriting or
volice recognition system or to do on-the-fly cryptography.
The performance of these and many other functions at hard-
ware speeds may be readily recognized as a user benefit while
greatly lowering power consumption within battery-driven
products.

In a preferred embodiment, the hardware resources of an
ACE are optimized to provide the necessary resources for
those parts of the design that most need those resources to
achieve eflicient and eil

ective performance. By way of

example, the operations of a vocoder, such as a QCELP
(QUALCOMM’s Code Excited Linear Predictive), provide a
design portion of a cellular communication device that ben-

10

15

20

25

30

35

40

45

50

55

60

65

8

efits from the optimizing of an ACE. As a vector quantizer-
based speed codec, a QCELP coding speech compression
engine has e1ght inner loops/algorithms that consume most of
the power. These eight algorithms include code book search,

pitch search, line spectral pairs (LSP) computation, recursive
convolution and four different filters. The QCELP engine
thus provides an analyzer/compressor and synthesizer/de-
compressor with variable compression ranging from 13 to 4
kilobits/second (kbit/s).

With the analyzer operating on a typical DSP requiring
about 26 MHz of computational power, 90 percent of the
power and performance 1s dissipated by 10 percent of the
code, since the synthesizer needs only about half that perfor-
mance. For purposes of this disclosure, a small portion of
code that requires a large portion of the power and perfor-
mance dissipated 1s referred to as a hot spot in the code. The
optimization of an ACE in accordance with the present inven-
tion preferably occurs such that it appears that a small piece of
s1licon 1s time-sliced to make it appear as an ASIC solution 1n
handling the hot spots of coding. Thus, for the example
QCELP vocoder, when data comes mto the QCELP speech
codec every 20 milliseconds, each inner loop 1s applied 50
times a second. By optimizing the ACE, the hardware
required to run each nner loop algorithm 400 times a second
1s brought 1nto existence.

With the ability to optimize operations of an ACE 1n accor-
dance with the present invention, an algorithm 1s allowed to
run on the most etficient hardware for the minimum amount
of time required. Further, more adaptability 1s achieved for a
wireless system to perform the task at hand during run time.
Thus, algorithms are no longer required to be altered to it
predetermined hardware existing on a processor, and the opti-
mum hardware required by an algorithm comes into existence
for the mimmimum time that the algorithm needs to run.

Although the present invention has been described 1n
accordance with the embodiments shown, one of ordinary
skill 1n the art will readily recognize that there could be
variations to the embodiments and those variations would be
within the spirit and scope of the present invention. Accord-
ingly, many modifications may be made by one of ordinary
skill 1n the art without departing from the spirit and scope of
the appended claims.

What 1s claimed 1s:
1. A system for creating an adaptive computing engine
(ACE), the system comprising:
algorithmic elements adaptable for use 1n the ACE and
configured to provide algorithmic operations;
means for mapping the algorithmic operations to hetero-
geneous nodes such that the heterogeneous nodes are
initially configured to provide appropriate hardware cir-
cuit functions that perform the algorithmic operations,
the heterogeneous nodes being coupled with each other
by a reconfigurable iterconnection network, the map-
ping by the mapping means including selecting a com-
bination of ACE building blocks from ACE building
block types for the appropriate hardware circuit func-
tions; and
means for utilizing the algorithmic operations such that the
heterogeneous nodes are optimally configured to pro-
vide the appropriate hardware circuit functions, the uti-
lizing by the utilizing means including simulating per-
formance of the ACE with the combination of ACE
building blocks and altering the combination of ACE
building blocks until predetermined performance stan-
dards that determine an efficiency of the ACE are met
while simulating performance of the ACE.

US RE43,393 E

9

2. The system of claim 1 wherein the ACE building blocks
types include linear computation block types, finite state
machine block types, field programmable gate array block
types, bit processor block types, and memory block types.

3. The system of claim 1 wherein the mapping means
turther includes a profiler that comprises:

means for providing code to simulate a hardware design

that performs the algorithmic operations; and

means for identifying one or more hot spots 1n the code,

wherein the 1dentified hot spots are those areas of code
requiring high power and/or high data movement and the
mapping means selects the combination of ACE build-
ing blocks based on the identified hot spots.

4. The system of claim 3 wherein each hot spot comprises
a computational hot spot or a data movement hot spot.

5. The system of claim 4 wherein the mapping means uses
cach data movement hot spot to restrict high data movements
to a minimum physical distance in the ACE.

6. A method for creating an adaptive computing engine
(ACE), the method comprising:

providing algorithmic elements adaptable for use 1n the

ACE and configured to provide algorithmic operations;
mapping, using a processor, the algorithmic operations to
heterogeneous nodes such that the heterogeneous nodes
are iitially configured to provide appropriate hardware
circuit functions that perform the algorithmic opera-
tions, the heterogeneous nodes being coupled with each
other by a reconfigurable interconnection network, the

[1

mapping including selecting a combination of ACE
building blocks from ACE building block types for the
appropriate hardware circuit functions; and

10

15

20

25

10

utilizing the algorithmic operations such that the heteroge-
neous nodes are optimally configured to provide the
appropriate hardware circuit functions, the utilizing
comprising simulating performance of the ACE with the
combination of ACE building blocks and altering the
combination of ACE building blocks until predeter-
mined performance standards that determine an effi-

ciency of the ACE are met while simulating performance
of the ACE.

7. The method of claim 6 wherein the ACE building blocks
types include linear computation block types, finite state
machine block types, field programmable gate array block
types, bit processor block types, and memory block types.

8. The method of claim 6 wherein the mapping turther
includes profiling using a profiler, wherein the profiling com-
Prises:

providing code to stmulate a hardware design that performs

the algorithmic operations; and

identifying one or more hot spots in the code, wherein the

identified hot spots are those areas of code requiring
high power and/or high data movement and the mapping
selects the combination of ACE building blocks based
on the identified hot spots.

9. The method of claim 8 wherein each hot spot comprises
a computational hot spot or a data movement hot spot.

10. The method of claim 9 wherein the mapping uses each
data movement hot spot to restrict high data movements to a
minimum physical distance 1n the ACE.

	Front Page
	Drawings
	Specification
	Claims

