US00RE43382E ### (19) United States ### (12) Reissued Patent Wood, Jr. ### (10) Patent Number: US RE43,382 E #### (45) Date of Reissued Patent: *May 15, 2012 ### (54) METHOD OF ADDRESSING MESSAGES AND COMMUNICATIONS SYSTEMS (75) Inventor: Clifton W. Wood, Jr., Tulsa, OK (US) (73) Assignee: Round Rock Research, LLC, Mount Kisco, NY (US) (*) Notice: This patent is subject to a terminal dis- claimer. (21) Appl. No.: 12/701,563 (22) Filed: Feb. 7, 2010 (Under 37 CFR 1.47) #### Related U.S. Patent Documents #### Reissue of: (64) Patent No.: 6,307,847 Issued: Oct. 23, 2001 Appl. No.: 09/617,390 Filed: Jul. 17, 2000 U.S. Applications: (63) Continuation of application No. 10/693,696, filed on Oct. 23, 2003, now Pat. No. Re. 41,530, which is a continuation of application No. 09/026,043, filed on Feb. 19, 1998, now Pat. No. 6,118,789. (51) **Int. Cl.** H04W4/00 (2009.01) 370/346, 347, 460, 408, 230, 437, 441, 442, 370/449, 458, 463, 342, 447, 445, 448, 432, 370/461, 475, 345, 348 See application file for complete search history. #### (56) References Cited #### U.S. PATENT DOCUMENTS 4,075,632 A 2/1978 Baldwin et al. (Continued) #### FOREIGN PATENT DOCUMENTS EP 779520 9/1997 (Continued) #### OTHER PUBLICATIONS Auto-ID Center, Massachusetts Institute of Technology, "13.56 MHz ISM Band Class 1 Radio Frequency Identification Tag Interface Specification: Recommended Standard," Technical Report, Feb. 1, 2003. (Continued) Primary Examiner — Brian Nguyen (74) Attorney, Agent, or Firm — Gazdzinski & Associates, PC #### (57) ABSTRACT A method [of] and apparatus for establishing wireless communications between an interrogator and individual ones of multiple wireless identification devices, the method comprising utilizing a tree search method to establish communications without collision between the interrogator and individual ones of the multiple wireless identification devices, a search tree being defined for the tree search method, the tree having multiple levels respectively representing subgroups of the multiple wireless identification devices, the method further comprising starting the tree search at a selectable level of the search tree. A communications system comprising an interrogator, and a plurality of wireless identification devices configured to communicate with the interrogator in a wireless fashion, the respective wireless identification devices having a unique identification number, the interrogator being configured to employ a tree search technique to determine the unique identification numbers of the different wireless identification devices so as to be able to establish communications between the interrogator and individual ones of the multiple wireless identification devices without collision by multiple wireless identification devices attempting to respond to the interrogator at the same time, wherein the interrogator is configured to start the tree search at a selectable level of the search tree]. In one embodiment, the interrogator transmits a first request indicating a subgroup of random numbers out of a total number of possible random numbers. The wireless identification devices each determine if the random number generated by each wireless identification device falls within the subgroup, and if so, the wireless identification device responds to the interrogator. If a collision between wireless identification device responses is detected by the interrogator, the interrogator transmits a second request indicating a subgroup of random numbers. #### 46 Claims, 3 Drawing Sheets # US RE43,382 E Page 2 | | DOCUMENTS | 6,297,727 B1* 10/2001 Nelson, Jr 340/10.1 | |--|--|---| | | | 6,307,847 B1 10/2001 Wood, Jr. | | 4,761,778 A 8/1988
4,796,023 A 1/1989 | | 6,307,848 B1 10/2001 Wood, Jr. et al. | | | Grindahl et al. | 6,324,211 B1 11/2001 Ovard et al. | | | Roberts et al. | 6,356,535 B1 * 3/2002 Smith | | | West et al. | 6,459,726 B1 10/2002 Ovard et al. | | | Ohta et al. | 6,483,427 B1 11/2002 Werb | | | Twitty et al. Twitty et al. | 6,566,997 B1 5/2003 Bradin | | 5,019,813 A 5/1991 | | 6,570,487 B1 5/2003 Steeves | | 5,025,486 A 6/1991 | | 6,707,376 B1 3/2004 Patterson et al.
6,714,559 B1 3/2004 Meier | | | Messenger | 6,771,634 B1 8/2004 Wright | | | Nishi et al. | 6,778,096 B1* 8/2004 Ward et al | | | Partyka et al.
Moore | 6,784,787 B1 8/2004 Atkins | | | Jackson et al. | 6,850,510 B2 2/2005 Kubler et al. | | | Kirknes | 6,919,793 B2 7/2005 Heinrich et al.
7,026,935 B2 4/2006 Diorio et al. | | | Malek et al. | 7,315,522 B2 1/2008 Wood, Jr. | | | Johansson
Greenspun et al | 7,385,477 B2 6/2008 O'Toole et al. | | | Greenspun et al.
Nysen et al. | RE40,686 E 3/2009 Wood, Jr. et al. | | 5,168,510 A 12/1992 | | 7,639,638 B2 12/2009 Wood, Jr.
7,672,260 B2 3/2010 Wood, Jr. | | | Jones et al. | 2003/0235184 A1 12/2003 Dorenbosch | | | Heath et al. | 2005/0060069 A1 3/2005 Breed et al. | | 5,266,925 A 11/1993
5,307,463 A 4/1994 | Vercellotti et al. | 2005/0207364 A1 9/2005 Wood, Jr. | | 5,365,551 A 11/1994 | | 2006/0022800 A1 2/2006 Krishna et al. | | 5,373,503 A 12/1994 | | 2006/0022801 A1 2/2006 Husak et al. | | 5,449,296 A 9/1995 | Jacobsen et al. | 2006/0022815 A1 2/2006 Fischer
2006/0056325 A1 3/2006 Wood, Jr. | | | Rypinski | 2007/0139164 A1 6/2007 O'Toole et al. | | | Snodgrass et al. | 2007/0176751 A1 8/2007 Cesar et al. | | | Snodgrass et al.
Palmer et al. | 2008/0007412 A1 1/2008 Wood, Jr. | | | Chan et al. | 2008/0042806 A1 2/2008 Wood, Jr. | | | Snodgrass et al. | 2008/0048832 A1 2/2008 O'Toole et al.
2008/0048835 A1 2/2008 O'Toole et al. | | | Snodgrass et al. | 2008/0129485 A1 6/2008 Tuttle | | | Canale et al.
Sharpe et al. | 2008/0180221 A1 7/2008 Tuttle | | 5,625,628 A 4/1997 | * | 2008/0297324 A1 12/2008 Tuttle | | , , | Snodgrass et al. | 2009/0322491 A1 12/2009 Wood, Jr. | | | Reis et al. | FOREIGN PATENT DOCUMENTS | | | MacLellan et al. | EP 1072128 5/2008 | | 5,686,902 A 11/1997
5,790,946 A 8/1998 | Reis et al. | JP 9054213 2/1997 | | 5,750,540 A 6/1550 | 1887178711 | 20 1210 2/1/2/ | | 5,805,586 A 9/1998 | Perreault et al. | JP 2002228809 8/2002 | | · · · · · · · · · · · · · · · · · · · | | JP 2002228809 8/2002
WO 9748216 12/1997 | | 5,841,770 A 11/1998
5,914,671 A 6/1999 | Perreault et al.
Snodgrass et al.
Tuttle | JP 2002228809 8/2002
WO 9748216 12/1997
WO WO 97/48216 12/1997 | | 5,841,770 A 11/1998
5,914,671 A 6/1999
5,936,560 A 8/1999 | Perreault et al.
Snodgrass et al.
Tuttle
Higuchi | JP 2002228809 8/2002
WO 9748216 12/1997
WO WO 97/48216 12/1997
WO 9943127 8/1999 | | 5,841,770 A 11/1998
5,914,671 A 6/1999
5,936,560 A 8/1999
5,940,006 A 8/1999 | Perreault et al. Snodgrass et al. Tuttle Higuchi MacLellan et al. | JP 2002228809 8/2002
WO 9748216 12/1997
WO WO 97/48216 12/1997
WO 9943127 8/1999
WO 2008094728 8/2008 | | 5,841,770 A 11/1998
5,914,671 A 6/1999
5,936,560 A 8/1999
5,940,006 A 8/1999 | Perreault et al. Snodgrass et al. Tuttle Higuchi MacLellan et al. Heinrich et al. | JP 2002228809 8/2002
WO 9748216 12/1997
WO WO 97/48216 12/1997
WO 9943127 8/1999 | | 5,841,770 A 11/1998
5,914,671 A 6/1999
5,936,560 A 8/1999
5,940,006 A 8/1999
5,942,987 A 8/1999
5,952,922 A 9/1999 | Perreault et al. Snodgrass et al. Tuttle Higuchi MacLellan et al. Heinrich et al. | JP 2002228809 8/2002
WO
9748216 12/1997
WO WO 97/48216 12/1997
WO 9943127 8/1999
WO 2008094728 8/2008
OTHER PUBLICATIONS | | 5,841,770 A 11/1998
5,914,671 A 6/1999
5,936,560 A 8/1999
5,940,006 A 8/1999
5,942,987 A 8/1999
5,952,922 A 9/1999
5,966,471 A 10/1999
5,974,078 A 10/1999 | Perreault et al. Snodgrass et al. Tuttle Higuchi MacLellan et al. Heinrich et al. Shober Fisher et al. Tuttle et al. | JP 2002228809 8/2002 WO 9748216 12/1997 WO WO 97/48216 12/1997 WO 9943127 8/1999 WO 2008094728 8/2008 OTHER PUBLICATIONS Capetanakis, John I., "Generalized TDMA: The Multi-Accessing | | 5,841,770 A 11/1998
5,914,671 A 6/1999
5,936,560 A 8/1999
5,940,006 A 8/1999
5,942,987 A 8/1999
5,952,922 A 9/1999
5,966,471 A 10/1999
5,974,078 A 10/1999
5,988,510 A 11/1999 | Perreault et al. Snodgrass et al. Tuttle Higuchi MacLellan et al. Heinrich et al. Shober Fisher et al. Tuttle et al. Tuttle et al. | JP 2002228809 8/2002 WO 9748216 12/1997 WO WO 97/48216 12/1997 WO 9943127 8/1999 WO 2008094728 8/2008 OTHER PUBLICATIONS Capetanakis, John I., "Generalized TDMA: The Multi-Accessing Tree Protocol," IEEE Transactions on Information Theory, vol. Com. | | 5,841,770 A 11/1998
5,914,671 A 6/1999
5,936,560 A 8/1999
5,940,006 A 8/1999
5,942,987 A 8/1999
5,952,922 A 9/1999
5,966,471 A 10/1999
5,974,078 A 10/1999
5,988,510 A 11/1999
6,038,455 A 3/2000 | Perreault et al. Snodgrass et al. Tuttle Higuchi MacLellan et al. Heinrich et al. Shober Fisher et al. Tuttle et al. Tuttle et al. Gardner et al. | JP 2002228809 8/2002 WO 9748216 12/1997 WO WO 97/48216 12/1997 WO 9943127 8/1999 WO 2008094728 8/2008 OTHER PUBLICATIONS Capetanakis, John I., "Generalized TDMA: The Multi-Accessing Tree Protocol," IEEE Transactions on Information Theory, vol. Com. 27, No. 10, pp. 1476-1484, Oct. 1979. | | 5,841,770 A 11/1998
5,914,671 A 6/1999
5,936,560 A 8/1999
5,940,006 A 8/1999
5,942,987 A 8/1999
5,952,922 A 9/1999
5,966,471 A 10/1999
5,974,078 A 10/1999
5,988,510 A 11/1999
6,038,455 A 3/2000
6,061,344 A 5/2000 | Perreault et al. Snodgrass et al. Tuttle Higuchi MacLellan et al. Heinrich et al. Shober Fisher et al. Tuttle et al. Tuttle et al. | JP 2002228809 8/2002 WO 9748216 12/1997 WO WO 97/48216 12/1997 WO 9943127 8/1999 WO 2008094728 8/2008 OTHER PUBLICATIONS Capetanakis, John I., "Generalized TDMA: The Multi-Accessing Tree Protocol," IEEE Transactions on Information Theory, vol. Com. 27, No. 10, pp. 1476-1484, Oct. 1979. Capetanakis, John I., "Tree Algorithms for Packet Broadcast Chan- | | 5,841,770 A 11/1998
5,914,671 A 6/1999
5,936,560 A 8/1999
5,940,006 A 8/1999
5,942,987 A 8/1999
5,952,922 A 9/1999
5,966,471 A 10/1999
5,974,078 A 10/1999
5,988,510 A 11/1999
6,038,455 A 3/2000
6,061,344 A 5/2000
6,072,801 A 6/2000
6,075,973 A 6/2000 | Perreault et al. Snodgrass et al. Tuttle Higuchi MacLellan et al. Heinrich et al. Shober Fisher et al. Tuttle et al. Tuttle et al. Gardner et al. Wood, Jr. Wood, Jr. et al. Greeff et al. | JP 2002228809 8/2002 WO 9748216 12/1997 WO WO 97/48216 12/1997 WO 9943127 8/1999 WO 2008094728 8/2008 OTHER PUBLICATIONS Capetanakis, John I., "Generalized TDMA: The Multi-Accessing Tree Protocol," IEEE Transactions on Information Theory, vol. Com. 27, No. 10, pp. 1476-1484, Oct. 1979. Capetanakis, John I., "Tree Algorithms for Packet Broadcast Channels," IEEE Transactions on Information Theory, vol. IT-25, No. 5, | | 5,841,770 A 11/1998
5,914,671 A 6/1999
5,936,560 A 8/1999
5,942,987 A 8/1999
5,952,922 A 9/1999
5,966,471 A 10/1999
5,974,078 A 10/1999
5,988,510 A 11/1999
6,038,455 A 3/2000
6,061,344 A 5/2000
6,072,801 A 6/2000
6,075,973 A 6/2000
6,097,292 A 8/2000 | Perreault et al. Snodgrass et al. Tuttle Higuchi MacLellan et al. Heinrich et al. Shober Fisher et al. Tuttle et al. Tuttle et al. Gardner et al. Wood, Jr. Wood, Jr. et al. Greeff et al. Kelly et al. | JP 2002228809 8/2002 WO 9748216 12/1997 WO WO 97/48216 12/1997 WO 9943127 8/1999 WO 2008094728 8/2008 OTHER PUBLICATIONS Capetanakis, John I., "Generalized TDMA: The Multi-Accessing Tree Protocol," IEEE Transactions on Information Theory, vol. Com. 27, No. 10, pp. 1476-1484, Oct. 1979. Capetanakis, John I., "Tree Algorithms for Packet Broadcast Chan- | | 5,841,770 A 11/1998
5,914,671 A 6/1999
5,936,560 A 8/1999
5,942,987 A 8/1999
5,952,922 A 9/1999
5,966,471 A 10/1999
5,974,078 A 10/1999
5,988,510 A 11/1999
6,038,455 A 3/2000
6,061,344 A 5/2000
6,072,801 A 6/2000
6,075,973 A 6/2000
6,097,292 A 8/2000
6,104,333 A 8/2000 | Perreault et al. Snodgrass et al. Tuttle Higuchi MacLellan et al. Heinrich et al. Shober Fisher et al. Tuttle et al. Tuttle et al. Gardner et al. Wood, Jr. Wood, Jr. et al. Greeff et al. Kelly et al. Wood, Jr. | JP 2002228809 8/2002 WO 9748216 12/1997 WO WO 97/48216 12/1997 WO 9943127 8/1999 WO 2008094728 8/2008 OTHER PUBLICATIONS Capetanakis, John I., "Generalized TDMA: The Multi-Accessing Tree Protocol," IEEE Transactions on Information Theory, vol. Com. 27, No. 10, pp. 1476-1484, Oct. 1979. Capetanakis, John I., "Tree Algorithms for Packet Broadcast Channels," IEEE Transactions on Information Theory, vol. IT-25, No. 5, pp. 505-515, Sep. 1979. | | 5,841,770 A 11/1998
5,914,671 A 6/1999
5,936,560 A 8/1999
5,940,006 A 8/1999
5,942,987 A 8/1999
5,952,922 A 9/1999
5,966,471 A 10/1999
5,974,078 A 10/1999
5,988,510 A 11/1999
6,038,455 A 3/2000
6,061,344 A 5/2000
6,072,801 A 6/2000
6,075,973 A 6/2000
6,075,973 A 6/2000
6,097,292 A 8/2000
6,104,333 A 8/2000
6,118,789 A 9/2000 | Perreault et al. Snodgrass et al. Tuttle Higuchi MacLellan et al. Heinrich et al. Shober Fisher et al. Tuttle et al. Tuttle et al. Gardner et al. Wood, Jr. Wood, Jr. et al. Greeff et al. Kelly et al. | WO 9748216 12/1997 WO WO 97/48216 12/1997 WO 9943127 8/1999 WO 2008094728 8/2008 OTHER PUBLICATIONS Capetanakis, John I., "Generalized TDMA: The Multi-Accessing Tree Protocol," IEEE Transactions on Information Theory, vol. Com. 27, No. 10, pp. 1476-1484, Oct. 1979. Capetanakis, John I., "Tree Algorithms for Packet Broadcast Channels," IEEE Transactions on Information Theory, vol. IT-25, No. 5, pp. 505-515, Sep. 1979. CNN Money, "Manhattan Associates Announces Next-Generation Microsoft-Based RFID Solutions," located at http://money.cnn.com/services/tickerheadlines/prn/cltu045.PI.09162003122727.24911. | | 5,841,770 A 11/1998
5,914,671 A 6/1999
5,936,560 A 8/1999
5,940,006 A 8/1999
5,942,987 A 8/1999
5,952,922 A 9/1999
5,966,471 A 10/1999
5,974,078 A 10/1999
5,988,510 A 11/1999
6,038,455 A 3/2000
6,061,344 A 5/2000
6,072,801 A 6/2000
6,075,973 A 6/2000
6,097,292 A 8/2000
6,104,333 A 8/2000
6,118,789 A 9/2000
6,130,602 A 10/2000 | Perreault et al. Snodgrass et al. Tuttle Higuchi MacLellan et al. Heinrich et al. Shober Fisher et al. Tuttle et al. Tuttle et al. Gardner et al. Wood, Jr. Wood, Jr. et al. Kelly et al. Wood, Jr. Wood, Jr. Wood, Jr. Wood, Jr. Wood, Jr. | JP 2002228809 8/2002 WO 9748216 12/1997 WO WO 97/48216 12/1997 WO 9943127 8/1999 WO 2008094728 8/2008 OTHER PUBLICATIONS Capetanakis, John I., "Generalized TDMA: The Multi-Accessing Tree Protocol," IEEE Transactions on Information Theory, vol. Com. 27, No. 10, pp. 1476-1484, Oct. 1979. Capetanakis, John I., "Tree Algorithms for Packet Broadcast Channels," IEEE Transactions on Information Theory, vol. IT-25, No. 5, pp. 505-515, Sep. 1979. CNN Money, "Manhattan Associates Announces Next-Generation Microsoft-Based RFID Solutions," located at http://money.cnn.com/services/tickerheadlines/prn/cltu045.PI.09162003122727.24911. htm, Sep. 16, 2003. | | 5,841,770 A 11/1998
5,914,671 A 6/1999
5,936,560 A 8/1999
5,940,006 A 8/1999
5,942,987 A 8/1999
5,952,922 A 9/1999
5,966,471 A 10/1999
5,974,078 A 10/1999
5,988,510 A 11/1999
6,038,455 A 3/2000
6,061,344 A 5/2000
6,072,801 A 6/2000
6,075,973 A 6/2000
6,075,973 A 6/2000
6,097,292 A 8/2000
6,104,333 A 8/2000
6,118,789 A 9/2000
6,130,602 A 10/2000
6,130,623 A * 10/2000
6,150,921 A 11/2000 | Perreault et al. Snodgrass et al. Tuttle Higuchi MacLellan et al. Heinrich et al. Shober Fisher et al. Tuttle et al. Tuttle et al. Gardner et al. Wood, Jr. Wood, Jr. et al. Greeff et al. Kelly et al. Wood, Jr. Wood, Jr. O'Toole et al. MacLellan et al | JP 2002228809 8/2002 WO 9748216 12/1997 WO WO 97/48216 12/1997 WO 9943127 8/1999 WO 2008094728 8/2008 OTHER PUBLICATIONS Capetanakis, John I., "Generalized TDMA: The Multi-Accessing Tree Protocol," IEEE Transactions on Information Theory, vol. Com. 27, No. 10, pp. 1476-1484, Oct. 1979. Capetanakis, John I., "Tree Algorithms for Packet Broadcast Channels," IEEE Transactions on Information Theory, vol. IT-25, No. 5, pp. 505-515, Sep. 1979. CNN Money, "Manhattan Associates Announces Next-Generation Microsoft-Based RFID Solutions," located at http://money.cnn.com/services/tickerheadlines/prn/cltu045.PI.09162003122727.24911. htm, Sep. 16, 2003. Engels, Daniel, "The Use of the Electronic Product Code," Auto-ID | | 5,841,770 A 11/1998
5,914,671 A 6/1999
5,936,560 A 8/1999
5,940,006 A 8/1999
5,942,987 A 8/1999
5,952,922 A 9/1999
5,966,471 A 10/1999
5,974,078 A 10/1999
5,988,510 A 11/1999
6,038,455 A 3/2000
6,061,344 A 5/2000
6,072,801 A 6/2000
6,075,973 A 6/2000
6,075,973 A 6/2000
6,097,292 A 8/2000
6,104,333 A 8/2000
6,104,333 A 8/2000
6,118,789 A 9/2000
6,130,602 A 10/2000
6,130,602 A 10/2000
6,130,623 A * 10/2000
6,150,921 A 11/2000
6,157,633 A 12/2000 | Perreault et al. Snodgrass et al. Tuttle Higuchi MacLellan et al. Heinrich et al. Shober Fisher et al. Tuttle et al. Tuttle et al. Gardner et al. Wood, Jr. Wood, Jr. et al. Greeff et al. Kelly et al. Wood, Jr. O'Toole et al. MacLellan et al 340/5.1 Werb et al. Wright | JP 2002228809 8/2002 WO 9748216 12/1997
WO WO 97/48216 12/1997 WO 9943127 8/1999 WO 2008094728 8/2008 OTHER PUBLICATIONS Capetanakis, John I., "Generalized TDMA: The Multi-Accessing Tree Protocol," IEEE Transactions on Information Theory, vol. Com. 27, No. 10, pp. 1476-1484, Oct. 1979. Capetanakis, John I., "Tree Algorithms for Packet Broadcast Channels," IEEE Transactions on Information Theory, vol. IT-25, No. 5, pp. 505-515, Sep. 1979. CNN Money, "Manhattan Associates Announces Next-Generation Microsoft-Based RFID Solutions," located at http://money.cnn.com/services/tickerheadlines/prn/cltu045.PI.09162003122727.24911. htm, Sep. 16, 2003. Engels, Daniel, "The Use of the Electronic Product Code," Auto-ID Center, Massachusetts Institute of Technology, Technical Report, | | 5,841,770 A 11/1998
5,914,671 A 6/1999
5,936,560 A 8/1999
5,940,006 A 8/1999
5,942,987 A 8/1999
5,952,922 A 9/1999
5,966,471 A 10/1999
5,974,078 A 10/1999
5,988,510 A 11/1999
6,038,455 A 3/2000
6,061,344 A 5/2000
6,072,801 A 6/2000
6,075,973 A 6/2000
6,075,973 A 6/2000
6,097,292 A 8/2000
6,104,333 A 8/2000
6,118,789 A 9/2000
6,130,602 A 10/2000
6,130,623 A 10/2000
6,150,921 A 11/2000
6,157,633 A 12/2000
6,169,474 B1 1/2001 | Perreault et al. Snodgrass et al. Tuttle Higuchi MacLellan et al. Heinrich et al. Shober Fisher et al. Tuttle et al. Tuttle et al. Gardner et al. Wood, Jr. Wood, Jr. et al. Greeff et al. Kelly et al. Wood, Jr. O'Toole et al. MacLellan et al. MacLellan et al. Wright Greeff et al. | JP 2002228809 8/2002 WO 9748216 12/1997 WO WO 97/48216 12/1997 WO 9943127 8/1999 WO 2008094728 8/2008 OTHER PUBLICATIONS Capetanakis, John I., "Generalized TDMA: The Multi-Accessing Tree Protocol," IEEE Transactions on Information Theory, vol. Com. 27, No. 10, pp. 1476-1484, Oct. 1979. Capetanakis, John I., "Tree Algorithms for Packet Broadcast Channels," IEEE Transactions on Information Theory, vol. IT-25, No. 5, pp. 505-515, Sep. 1979. CNN Money, "Manhattan Associates Announces Next-Generation Microsoft-Based RFID Solutions," located at http://money.cnn.com/services/tickerheadlines/prn/cltu045.PI.09162003122727.24911. htm, Sep. 16, 2003. Engels, Daniel, "The Use of the Electronic Product Code," Auto-ID Center, Massachusetts Institute of Technology, Technical Report, Feb. 1, 2003. | | 5,841,770 A 11/1998
5,914,671 A 6/1999
5,936,560 A 8/1999
5,940,006 A 8/1999
5,942,987 A 8/1999
5,952,922 A 9/1999
5,966,471 A 10/1999
5,974,078 A 10/1999
5,988,510 A 11/1999
6,038,455 A 3/2000
6,061,344 A 5/2000
6,072,801 A 6/2000
6,072,801 A 6/2000
6,075,973 A 6/2000
6,097,292 A 8/2000
6,104,333 A 8/2000
6,118,789 A 9/2000
6,130,602 A 10/2000
6,130,602 A 10/2000
6,130,623 A 10/2000
6,150,921 A 11/2000
6,157,633 A 12/2000
6,169,474 B1 1/2001
6,177,858 B1 1/2001 | Perreault et al. Snodgrass et al. Tuttle Higuchi MacLellan et al. Heinrich et al. Shober Fisher et al. Tuttle et al. Tuttle et al. Gardner et al. Wood, Jr. Wood, Jr. et al. Greeff et al. Kelly et al. Wood, Jr. O'Toole et al. MacLellan et al 340/5.1 Werb et al. Wright | JP 2002228809 8/2002 WO 9748216 12/1997 WO WO 97/48216 12/1997 WO 9943127 8/1999 WO 2008094728 8/2008 OTHER PUBLICATIONS Capetanakis, John I., "Generalized TDMA: The Multi-Accessing Tree Protocol," IEEE Transactions on Information Theory, vol. Com. 27, No. 10, pp. 1476-1484, Oct. 1979. Capetanakis, John I., "Tree Algorithms for Packet Broadcast Channels," IEEE Transactions on Information Theory, vol. IT-25, No. 5, pp. 505-515, Sep. 1979. CNN Money, "Manhattan Associates Announces Next-Generation Microsoft-Based RFID Solutions," located at http://money.cnn.com/services/tickerheadlines/prn/cltu045.PI.09162003122727.24911. htm, Sep. 16, 2003. Engels, Daniel, "The Use of the Electronic Product Code," Auto-ID Center, Massachusetts Institute of Technology, Technical Report, Feb. 1, 2003. EPC Global, Inc. "EPC Radio Frequency Identity Protocols— | | 5,841,770 A 11/1998
5,914,671 A 6/1999
5,936,560 A 8/1999
5,940,006 A 8/1999
5,942,987 A 8/1999
5,952,922 A 9/1999
5,966,471 A 10/1999
5,974,078 A 10/1999
5,988,510 A 11/1999
6,038,455 A 3/2000
6,061,344 A 5/2000
6,072,801 A 6/2000
6,075,973 A 6/2000
6,075,973 A 6/2000
6,097,292 A 8/2000
6,104,333 A 8/2000
6,118,789 A 9/2000
6,130,602 A 10/2000
6,130,623 A 10/2000
6,150,921 A 11/2000
6,157,633 A 12/2000
6,157,633 A 12/2000
6,157,633 A 12/2000
6,169,474 B1 1/2001
6,177,858 B1 1/2001
6,177,858 B1 1/2001
6,185,307 B1 2/2001
6,192,222 B1 2/2001 | Perreault et al. Snodgrass et al. Tuttle Higuchi MacLellan et al. Heinrich et al. Shober Fisher et al. Tuttle et al. Tuttle et al. Gardner et al. Wood, Jr. Wood, Jr. et al. Greeff et al. Kelly et al. Wood, Jr. O'Toole et al. MacLellan et al. Wright Greeff et al. Raimbault et al. Johnson, Jr. Greeff et al. | JP 2002228809 8/2002 WO 9748216 12/1997 WO WO 97/48216 12/1997 WO 9943127 8/1999 WO 2008094728 8/2008 OTHER PUBLICATIONS Capetanakis, John I., "Generalized TDMA: The Multi-Accessing Tree Protocol," IEEE Transactions on Information Theory, vol. Com. 27, No. 10, pp. 1476-1484, Oct. 1979. Capetanakis, John I., "Tree Algorithms for Packet Broadcast Channels," IEEE Transactions on Information Theory, vol. IT-25, No. 5, pp. 505-515, Sep. 1979. CNN Money, "Manhattan Associates Announces Next-Generation Microsoft-Based RFID Solutions," located at http://money.cnn.com/services/tickerheadlines/prn/cltu045.PI.09162003122727.24911. htm, Sep. 16, 2003. Engels, Daniel, "The Use of the Electronic Product Code," Auto-ID Center, Massachusetts Institute of Technology, Technical Report, Feb. 1, 2003. | | 5,841,770 A 6/1998
5,914,671 A 6/1999
5,936,560 A 8/1999
5,940,006 A 8/1999
5,942,987 A 8/1999
5,952,922 A 9/1999
5,966,471 A 10/1999
5,974,078 A 10/1999
5,988,510 A 11/1999
6,038,455 A 3/2000
6,061,344 A 5/2000
6,072,801 A 6/2000
6,072,801 A 6/2000
6,075,973 A 6/2000
6,097,292 A 8/2000
6,104,333 A 8/2000
6,118,789 A 9/2000
6,130,602 A 10/2000
6,130,623 A * 10/2000
6,130,623 A * 10/2000
6,150,921 A 11/2000
6,157,633 A 12/2000
6,157,633 A 12/2000
6,169,474 B1 1/2001
6,177,858 B1 1/2001
6,177,858 B1 1/2001
6,185,307 B1 2/2001
6,192,222 B1 2/2001
6,216,132 B1 4/2001 | Perreault et al. Snodgrass et al. Tuttle Higuchi MacLellan et al. Heinrich et al. Shober Fisher et al. Tuttle et al. Tuttle et al. Gardner et al. Wood, Jr. Wood, Jr. et al. Greeff et al. Kelly et al. Wood, Jr. O'Toole et al. MacLellan et al 340/5.1 Werb et al. Wright Greeff et al. Raimbault et al. Johnson, Jr. Greeff et al. Chandra et al. | JP 2002228809 8/2002 WO 9748216 12/1997 WO WO 97/48216 12/1997 WO 9943127 8/1999 WO 2008094728 8/2008 Capetanakis, John I., "Generalized TDMA: The Multi-Accessing Tree Protocol," IEEE Transactions on Information Theory, vol. Com. 27, No. 10, pp. 1476-1484, Oct. 1979. Capetanakis, John I., "Tree Algorithms for Packet Broadcast Channels," IEEE Transactions on Information Theory, vol. IT-25, No. 5, pp. 505-515, Sep. 1979. CNN Money, "Manhattan Associates Announces Next-Generation Microsoft-Based RFID Solutions," located at http://money.cnn.com/services/tickerheadlines/prn/cltu045.PI.09162003122727.24911. htm, Sep. 16, 2003. Engels, Daniel, "The Use of the Electronic Product Code," Auto-ID Center, Massachusetts Institute of Technology, Technical Report, Feb. 1, 2003. EPC Global, Inc. "EPC Radio Frequency Identity Protocols—Class-1 Generation-2 UHF RFID—Protocol for Communications at | | 5,841,770 A 6/1998
5,914,671 A 6/1999
5,936,560 A 8/1999
5,940,006 A 8/1999
5,942,987 A 8/1999
5,952,922 A 9/1999
5,966,471 A 10/1999
5,974,078 A 10/1999
5,988,510 A 11/1999
6,038,455 A 3/2000
6,061,344 A 5/2000
6,072,801 A 6/2000
6,075,973 A 6/2000
6,075,973 A 6/2000
6,097,292 A 8/2000
6,104,333 A 8/2000
6,118,789 A 9/2000
6,130,602 A 10/2000
6,130,623 A 10/2000
6,150,921 A 11/2000
6,157,633 A 12/2000
6,157,633 A 12/2000
6,157,633 A 12/2000
6,157,633 B1 1/2001
6,177,858 B1 1/2001
6,177,858 B1 1/2001
6,185,307 B1 2/2001
6,192,222 B1 2/2001
6,216,132 B1 4/2001
6,226,300 B1 5/2001 | Perreault et al. Snodgrass et al. Tuttle Higuchi MacLellan et al. Heinrich et al. Shober Fisher et al. Tuttle et al. Tuttle et al. Gardner et al. Wood, Jr. Wood, Jr. et al. Greeff et al. Kelly et al. Wood, Jr. O'Toole et al. MacLellan et al. Wright Greeff et al. Raimbault et al. Johnson, Jr. Greeff et al. Chandra et al. Hush et al. | JP 2002228809 8/2002 WO 9748216 12/1997 WO WO 97/48216 12/1997 WO 9943127 8/1999 WO 2008094728 8/2008 OTHER PUBLICATIONS Capetanakis, John I., "Generalized TDMA: The Multi-Accessing Tree Protocol," IEEE Transactions on Information Theory, vol. Com. 27, No. 10, pp. 1476-1484, Oct. 1979. Capetanakis, John I., "Tree Algorithms for Packet Broadcast Channels," IEEE Transactions on Information Theory, vol. IT-25, No. 5, pp. 505-515, Sep. 1979. CNN Money, "Manhattan Associates Announces Next-Generation Microsoft-Based RFID Solutions," located at http://money.cnn.com/services/tickerheadlines/prn/cltu045.P1.09162003122727.24911. htm, Sep. 16, 2003. Engels, Daniel, "The Use of the Electronic Product Code," Auto-ID Center, Massachusetts Institute of Technology, Technical Report, Feb. 1, 2003. EPC Global, Inc. "EPC Radio Frequency Identity Protocols—Class-1 Generation-2 UHF RFID—Protocol for Communications at 860 MHz-960MHz," version 1.0.9, cover sheet and pp. 37-38, Jan. 2005. eRetailNews, "The Electronic Product Code (EPC)—A Technology | | 5,841,770 A | Perreault et al. Snodgrass et al. Tuttle Higuchi MacLellan et al. Heinrich et al. Shober Fisher et al. Tuttle et al. Tuttle et al. Gardner et al. Wood, Jr. Wood, Jr. et al. Greeff et al. Kelly et al. Wood, Jr. O'Toole et al. MacLellan et al. Wright Greeff et al. Raimbault et al. Johnson, Jr. Greeff et al. Chandra et
al. Hush et al. Greeff et al. Greeff et al. Greeff et al. | JP 2002228809 8/2002 WO 9748216 12/1997 WO WO 97/48216 12/1997 WO 9943127 8/1999 WO 2008094728 8/2008 OTHER PUBLICATIONS Capetanakis, John I., "Generalized TDMA: The Multi-Accessing Tree Protocol," IEEE Transactions on Information Theory, vol. Com. 27, No. 10, pp. 1476-1484, Oct. 1979. Capetanakis, John I., "Tree Algorithms for Packet Broadcast Channels," IEEE Transactions on Information Theory, vol. IT-25, No. 5, pp. 505-515, Sep. 1979. CNN Money, "Manhattan Associates Announces Next-Generation Microsoft-Based RFID Solutions," located at http://money.cnn.com/services/tickerheadlines/prn/cltu045.P1.09162003122727.24911. htm, Sep. 16, 2003. Engels, Daniel, "The Use of the Electronic Product Code," Auto-ID Center, Massachusetts Institute of Technology, Technical Report, Feb. 1, 2003. EPC Global, Inc. "EPC Radio Frequency Identity Protocols—Class-1 Generation-2 UHF RFID—Protocol for Communications at 860 MHz-960MHz," version 1.0.9, cover sheet and pp. 37-38, Jan. 2005. eRetailNews, "The Electronic Product Code (EPC)—A Technology Revolution?" located at http://www.eretailnews.com/features/ | | 5,841,770 A | Perreault et al. Snodgrass et al. Tuttle Higuchi MacLellan et al. Heinrich et al. Shober Fisher et al. Tuttle et al. Tuttle et al. Gardner et al. Wood, Jr. Wood, Jr. et al. Greeff et al. Kelly et al. Wood, Jr. O'Toole et al. MacLellan et al. Wright Greeff et al. Raimbault et al. Johnson, Jr. Greeff et al. Chandra et al. Hush et al. | JP 2002228809 8/2002 WO 9748216 12/1997 WO WO 97/48216 12/1997 WO 9943127 8/1999 WO 2008094728 8/2008 OTHER PUBLICATIONS Capetanakis, John I., "Generalized TDMA: The Multi-Accessing Tree Protocol," IEEE Transactions on Information Theory, vol. Com. 27, No. 10, pp. 1476-1484, Oct. 1979. Capetanakis, John I., "Tree Algorithms for Packet Broadcast Channels," IEEE Transactions on Information Theory, vol. IT-25, No. 5, pp. 505-515, Sep. 1979. CNN Money, "Manhattan Associates Announces Next-Generation Microsoft-Based RFID Solutions," located at http://money.cnn.com/services/tickerheadlines/prn/cltu045.PI.09162003122727.24911. htm, Sep. 16, 2003. Engels, Daniel, "The Use of the Electronic Product Code," Auto-ID Center, Massachusetts Institute of Technology, Technical Report, Feb. 1, 2003. EPC Global, Inc. "EPC Radio Frequency Identity Protocols—Class-1 Generation-2 UHF RFID—Protocol for Communications at 860 MHz-960MHz," version 1.0.9, cover sheet and pp. 37-38, Jan. 2005. eRetailNews, "The Electronic Product Code (EPC)—A Technology Revolution?" located at http://www.eretailnews.com/features/0105epc1.htm, accessed Oct. 15, 2003. | | 5,841,770 A 11/1998 5,914,671 A 6/1999 5,936,560 A 8/1999 5,940,006 A 8/1999 5,942,987 A 8/1999 5,952,922 A 9/1999 5,966,471 A 10/1999 5,974,078 A 10/1999 5,988,510 A 11/1999 6,038,455 A 3/2000 6,061,344 A 5/2000 6,072,801 A 6/2000 6,075,973 A 6/2000 6,097,292 A 8/2000 6,104,333 A 8/2000 6,118,789 A 9/2000 6,130,602 A 10/2000 6,130,623 A * 10/2000 6,150,921 A 11/2000 6,157,633 A 12/2000 6,157,633 A 12/2000 6,157,633 A 12/2000 6,157,633 A 12/2001 6,157,858 B1 1/2001 6,177,858 B1 1/2001 6,177,858 B1 1/2001 6,185,307 B1 2/2001 6,192,222 B1 2/2001 6,216,132 B1 4/2001 6,229,987 B1 5/2001 6,229,987 B1 5/2001 6,243,012 B1 6/2001 6,265,962 B1 7/2001 6,265,963 B1 7/2001 | Perreault et al. Snodgrass et al. Tuttle Higuchi MacLellan et al. Heinrich et al. Shober Fisher et al. Tuttle et al. Tuttle et al. Gardner et al. Wood, Jr. Wood, Jr. et al. Greeff et al. Kelly et al. Wood, Jr. O'Toole et al. MacLellan et al | JP 2002228809 8/2002 WO 9748216 12/1997 WO WO 97/48216 12/1997 WO 9943127 8/1999 WO 2008094728 8/2008 OTHER PUBLICATIONS Capetanakis, John I., "Generalized TDMA: The Multi-Accessing Tree Protocol," IEEE Transactions on Information Theory, vol. Com. 27, No. 10, pp. 1476-1484, Oct. 1979. Capetanakis, John I., "Tree Algorithms for Packet Broadcast Channels," IEEE Transactions on Information Theory, vol. IT-25, No. 5, pp. 505-515, Sep. 1979. CNN Money, "Manhattan Associates Announces Next-Generation Microsoft-Based RFID Solutions," located at http://money.cnn.com/services/tickerheadlines/prn/cltu045.PI.09162003122727.24911. htm, Sep. 16, 2003. Engels, Daniel, "The Use of the Electronic Product Code," Auto-ID Center, Massachusetts Institute of Technology, Technical Report, Feb. 1, 2003. EPC Global, Inc. "EPC Radio Frequency Identity Protocols—Class-1 Generation-2 UHF RFID—Protocol for Communications at 860 MHz-960MHz," version 1.0.9, cover sheet and pp. 37-38, Jan. 2005. eRetailNews, "The Electronic Product Code (EPC)—A Technology Revolution?" located at http://wwww.eretailnews.com/features/0105epc1.htm, accessed Oct. 15, 2003. eRetailNews, "The Electronic Product Code (EPC),"located at http:// | | 5,841,770 A 11/1998 5,914,671 A 6/1999 5,936,560 A 8/1999 5,940,006 A 8/1999 5,942,987 A 8/1999 5,952,922 A 9/1999 5,966,471 A 10/1999 5,974,078 A 10/1999 5,988,510 A 11/1999 6,038,455 A 3/2000 6,061,344 A 5/2000 6,072,801 A 6/2000 6,075,973 A 6/2000 6,075,973 A 6/2000 6,104,333 A 8/2000 6,118,789 A 9/2000 6,130,602 A 10/2000 6,130,602 A 10/2000 6,150,921 A 11/2000 6,157,633 A 12/2000 6,157,633 A 12/2000 6,157,633 A 12/2000 6,157,633 A 12/2001 6,185,307 B1 2/2001 6,185,307 B1 2/2001 6,185,307 B1 2/2001 6,185,307 B1 2/2001 6,192,222 B1 2/2001 6,216,132 B1 4/2001 6,226,300 B1 5/2001 6,229,987 B1 5/2001 6,243,012 B1 6/2001 6,265,962 B1 7/2001 6,265,963 B1 7/2001 6,275,476 B1 8/2001 | Perreault et al. Snodgrass et al. Tuttle Higuchi MacLellan et al. Heinrich et al. Shober Fisher et al. Tuttle et al. Tuttle et al. Gardner et al. Wood, Jr. Wood, Jr. et al. Greeff et al. Kelly et al. Wood, Jr. O'Toole et al. MacLellan et al. Wright Greeff et al. Raimbault et al. Johnson, Jr. Greeff et al. Chandra et al. Hush et al. Greeff et al. Shober et al. Black et al. Wood, Jr. Wood, Jr. | JP 2002228809 8/2002 WO 9748216 12/1997 WO WO 97/48216 12/1997 WO 9943127 8/1999 WO 2008094728 8/2008 OTHER PUBLICATIONS Capetanakis, John I., "Generalized TDMA: The Multi-Accessing Tree Protocol," IEEE Transactions on Information Theory, vol. Com. 27, No. 10, pp. 1476-1484, Oct. 1979. Capetanakis, John I., "Tree Algorithms for Packet Broadcast Channels," IEEE Transactions on Information Theory, vol. IT-25, No. 5, pp. 505-515, Sep. 1979. CNN Money, "Manhattan Associates Announces Next-Generation Microsoft-Based RFID Solutions," located at http://money.cnn.com/services/tickerheadlines/prn/cltu045.PI.09162003122727.24911. htm, Sep. 16, 2003. Engels, Daniel, "The Use of the Electronic Product Code," Auto-ID Center, Massachusetts Institute of Technology, Technical Report, Feb. 1, 2003. EPC Global, Inc. "EPC Radio Frequency Identity Protocols—Class-1 Generation-2 UHF RFID—Protocol for Communications at 860 MHz-960MHz," version 1.0.9, cover sheet and pp. 37-38, Jan. 2005. eRetailNews, "The Electronic Product Code (EPC)—A Technology Revolution?" located at http://www.eretailnews.com/features/0105epc1.htm, accessed Oct. 15, 2003. eRetailNews, "The Electronic Product Code (EPC),"located at http://www.eretailnews.com/features/0105epc1.htm, accessed Oct. 15, 2003. | | 5,841,770 A 11/1998 5,914,671 A 6/1999 5,936,560 A 8/1999 5,940,006 A 8/1999 5,942,987 A 8/1999 5,952,922 A 9/1999 5,966,471 A 10/1999 5,974,078 A 10/1999 5,988,510 A 11/1999 6,038,455 A 3/2000 6,061,344 A 5/2000 6,072,801 A 6/2000 6,072,801 A 6/2000 6,075,973 A 6/2000 6,097,292 A 8/2000 6,104,333 A 8/2000 6,118,789 A 9/2000 6,130,602 A 10/2000 6,130,602 A 10/2000 6,150,921 A 11/2000 6,150,921 A 11/2000 6,157,633 A 12/2000 6,157,633 A 12/2000 6,157,633 A 12/2000 6,157,633 A 12/2000 6,157,633 B1 1/2001 6,177,858 B1 1/2001 6,169,474 B1 1/2001 6,177,858 B1 1/2001 6,169,474 B1 1/2001 6,265,963 B1 5/2001 6,265,962 B1 6/2001 6,265,962 B1 7/2001 6,265,963 B1 7/2001 6,265,963 B1 7/2001 6,265,963 B1 7/2001 6,275,476 B1 8/2001 6,282,186 B1 8/2001 | Perreault et al. Snodgrass et al. Tuttle Higuchi MacLellan et al. Heinrich et al. Shober Fisher et al. Tuttle et al. Tuttle et al. Gardner et al. Wood, Jr. Wood, Jr. Wood, Jr. Wood, Jr. O'Toole et al. MacLellan et al. Wright Greeff et al. Raimbault et al. Johnson, Jr. Greeff et al. Chandra et al. Hush et al. Greeff et al. Shober et al. Black et al. Wood, Jr. Wood, Jr. Wood, Jr. Wood, Jr. | JP 2002228809 8/2002 WO 9748216 12/1997 WO WO 97/48216 12/1997 WO 9943127 8/1999 WO 2008094728 8/2008 OTHER PUBLICATIONS Capetanakis, John I., "Generalized TDMA: The Multi-Accessing Tree Protocol," IEEE Transactions on Information Theory, vol. Com. 27, No. 10, pp. 1476-1484, Oct. 1979. Capetanakis, John I., "Tree Algorithms for Packet Broadcast Channels," IEEE Transactions on Information Theory, vol. IT-25, No. 5, pp. 505-515, Sep. 1979. CNN Money, "Manhattan Associates Announces Next-Generation Microsoft-Based RFID Solutions," located at http://money.cnn.com/services/tickerheadlines/prn/cltu045.PI.09162003122727.24911. htm, Sep. 16, 2003. Engels, Daniel, "The Use of the Electronic Product Code," Auto-ID Center, Massachusetts Institute of Technology, Technical Report, Feb. 1, 2003. EPC Global, Inc. "EPC Radio Frequency Identity Protocols—Class-1 Generation-2 UHF RFID—Protocol for Communications at 860 MHz-960MHz," version 1.0.9, cover sheet and pp. 37-38, Jan. 2005. eRetailNews, "The Electronic Product Code (EPC)—A Technology Revolution?" located at http://www.eretailnews.com/features/0105epc1.htm, accessed Oct. 15, 2003. eRetailNews, "The Electronic Product Code (EPC)," located at http://www.eretailnews.com/features/epc/htm, accessed Oct. 15, 2003. eRetailNews, "The Electronic Product Code (EPC)," located at http://www.eretailnews.com/features/epc/htm, accessed Oct. 15, 2003. | | 5,841,770 A 11/1998 5,914,671 A 6/1999 5,936,560 A 8/1999 5,940,006 A 8/1999 5,942,987 A 8/1999 5,952,922 A 9/1999 5,966,471 A 10/1999 5,974,078 A 10/1999 5,988,510 A 11/1999 6,038,455 A 3/2000 6,061,344 A 5/2000 6,072,801 A 6/2000 6,072,801 A 6/2000 6,075,973 A 6/2000 6,097,292 A 8/2000 6,104,333
A 8/2000 6,118,789 A 9/2000 6,130,602 A 10/2000 6,130,602 A 10/2000 6,150,921 A 11/2000 6,157,633 A 12/2000 6,157,633 A 12/2000 6,157,633 A 12/2000 6,157,633 A 12/2000 6,157,633 A 12/2001 6,169,474 B1 1/2001 6,177,858 B1 1/2001 6,177,858 B1 1/2001 6,185,307 B1 2/2001 6,192,222 B1 2/2001 6,216,132 B1 4/2001 6,226,300 B1 5/2001 6,229,987 B1 5/2001 6,229,987 B1 5/2001 6,243,012 B1 6/2001 6,265,963 B1 7/2001 6,265,963 B1 7/2001 6,275,476 B1 8/2001 6,282,186 B1 8/2001 6,288,629 B1 9/2001 | Perreault et al. Snodgrass et al. Tuttle Higuchi MacLellan et al. Heinrich et al. Shober Fisher et al. Tuttle et al. Tuttle et al. Gardner et al. Wood, Jr. Wood, Jr. et al. Greeff et al. Kelly et al. Wood, Jr. O'Toole et al. MacLellan et al. Wright Greeff et al. Raimbault et al. Johnson, Jr. Greeff et al. Chandra et al. Hush et al. Greeff et al. Shober et al. Black et al. Wood, Jr. Wood, Jr. | JP 2002228809 8/2002 WO 9748216 12/1997 WO WO 97/48216 12/1997 WO 9943127 8/1999 WO 2008094728 8/2008 OTHER PUBLICATIONS Capetanakis, John I., "Generalized TDMA: The Multi-Accessing Tree Protocol," IEEE Transactions on Information Theory, vol. Com. 27, No. 10, pp. 1476-1484, Oct. 1979. Capetanakis, John I., "Tree Algorithms for Packet Broadcast Channels," IEEE Transactions on Information Theory, vol. IT-25, No. 5, pp. 505-515, Sep. 1979. CNN Money, "Manhattan Associates Announces Next-Generation Microsoft-Based RFID Solutions," located at http://money.cnn.com/services/tickerheadlines/prn/cltu045.PI.09162003122727.24911. htm, Sep. 16, 2003. Engels, Daniel, "The Use of the Electronic Product Code," Auto-ID Center, Massachusetts Institute of Technology, Technical Report, Feb. 1, 2003. EPC Global, Inc. "EPC Radio Frequency Identity Protocols—Class-1 Generation-2 UHF RFID—Protocol for Communications at 860 MHz-960MHz," version 1.0.9, cover sheet and pp. 37-38, Jan. 2005. eRetailNews, "The Electronic Product Code (EPC)—A Technology Revolution?" located at http://www.eretailnews.com/features/0105epc1.htm, accessed Oct. 15, 2003. eRetailNews, "The Electronic Product Code (EPC),"located at http://www.eretailnews.com/features/0105epc1.htm, accessed Oct. 15, 2003. | Extended Search Report and Search Opinion for EP Patent Application No. 05016513.3, Jan. 22, 2007. Extended Search Report and Search Opinion for EP Patent Application No. 05016514.1, Jan. 26, 2007. Finkenzeller, Klaus, "Radio Frequency Idenitification—The Authors Homepage of the RFID Handbook," located at http://www.rfid-handbook.com, accessed Feb. 22, 2007. High Tech Aid, "ISO/IEC 18000—RFID Air Interface Standards," located at http://www.hightechaid.com/standards/18000.htm, Feb. 1, 2003. Humblet, Pierre A. et al., "Efficient Accessing of a Multiaccess Channel," Proceedings of the 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes, pp. 624-627, Dec. 1980. International Application No. PCT/US08/50630, International Search Report, Jun. 27, 2008. International Application No. PCT/US08/50630, Written Opinion, Jun. 27, 2008. International Application No. PCT/US99/02288, International Search Report, Aug. 3, 1999. International Application No. PCT/US99/02288, Written Opinion, Jan. 27, 2000. ISO/IEC, "Automatic Identification—Radio Frequency Identification for Item Management—Communications and Interfaces—Part 3: Physical Layer, Anti Collision System and Protocol Values at 13.56 MHz Mode 4," ISO/IEC 18000-3-4, Mar. 1, 2001. ISO/IEC, "Automatic Identification—Radio Frequency Identification for Item Management—Communications and Interfaces—Part 3: Physical Layer, Anti-Collision System and Protocol Values at 13.56 MHz Mode 1," ISO/IEC 18000-3-1, Mar. 1, 2001. ISO/IEC, "Identification Cards—Contactless Integrated Circuit(s) Cards—Proximity Cards—Part 1: Physical Characteristics," ISO/IEC FCD 14443-1, 1997. ISO/IEC, "Identification Cards—Contactless Integrated Circuit(s) Cards—Proximity Cards—Part 2: Radio Frequency Power and Signal Interface," ISO/IEC FCD 14443-2, Mar. 26, 1999. ISO/IEC, "Identification Cards—Contactless Integrated Circuit(s) Cards—Proximity Cards—Part 3: Initiation and Anticollision," ISO/IEC FDIS 14443-3:2000(E), Jul. 13, 2000. ISO/IEC, "Identification Cards—Contactless Integrated Circuit(s) Cards—Proximity Cards—Part 4: Transmission Protocol," ISO/IEC FDIS 14443-4:2000(E), Jul. 13, 2000. ISO/IEC, "Identification Cards—Contactless Integrated Circuit(s) Cards—Vicinity Cards—Part 1: Physical Characteristics," ISO/IEC FDIS 15693-1:2000(E), May 19, 2000. ISO/IEC, "Identification Cards—Contactless Integrated Circuit(s) Cards—Vicinity Cards—Part 2: Interface and Initialization," ISO/IEC FDIS 15693-2:2000(E), Feb. 3, 2000. ISO/IEC, "Identification Cards—Contactless Integrated Circuit(s) Cards—Vicinity Cards—Part 3: Anitcollision and Transmission Protocol," ISO/IEC CD 15693-3:1999(E), Nov. 17, 1999. ISO/IEC, "Information Technology AIDC Techniques—RFID for Item Management—Air Interface—Part 3: Parameters for Air Interface Communications at 13.56 MHz," ISO/IEC 18000-3 FCD, May 27, 2002. Mullin, Eileen, "Electronic Product Code," Baseline Magazine, located at www.baselinemag.com/article2/0,3959,655991,00.asp, Sep. 5, 2002. RFID Journal, "Second Source of Class 1 EPC Chips," located at http://www.rfidjournal.com/article/articleview/473/1/1/, Jun. 26, 2003. Smart Active Labels Consortium, organization homepage located at http://www.sal-c.org, accessed Feb. 22, 2007. Symbol Technologies, Inc., "Understanding Gen 2: What It Is, How You Will Benefit and Criteria for Vendor Assessment," white paper, Jan. 2006. Wolf, Jack Keil, "Principles of Group Testing and an Application to the Design and Analysis of Multi-Access Protocols," NATO ASI Series E, Applied Sciences, No. 91, pp. 237-257, 1985. Wood, Jr., Clifton W., Reissue U.S. Appl. No. 10/693,696, filed Oct. 23, 2003. Wood, Jr., Clifton W., Reissue U.S. Appl. No. 11/859,360, filed Sep. 21, 2007. Wood, Jr., Clifton W., Reissue U.S. Appl. No. 11/859,364, filed Sep. 21, 2007. Wood, Jr., Clifton W., Reissue U.S. Appl. No. 11/862,121, filed Sep. 26, 2007. Wood, Jr., Clifton W., Reissue U.S. Appl. No. 11/862,124, filed Sep. 26, 2007. Wood, Jr., Clifton W., Reissue U.S. Appl. No. 11/862,130, filed Sep. 21, 2007. Wood, Jr., Clifton W., Reissue U.S. Appl. No. 11/865,584, filed Oct. 1, 2007. Wood, Jr., Clifton W., Reissue U.S. Appl. No. 12/541,882, filed Aug. 14, 2009. Wright, Jim, "Trends and Innovations in RF Indentification," Sun Microsystems Inc. presentation, Mar. 2005. Zebra Technologies Corporation, "Electronic Product Code (EPC)," located at http://www.rfid.zebra.com/epc/htm, accessed Oct. 15, 2003. Wood, Jr., Clifton W., Reissue U.S. Appl. No. 10/693,697, filed Oct. 23, 2003. Wood, Jr., Clifton W., Reissue U.S. Appl. No. 12/493,542, filed Jun. 29, 2009. Wood, Jr., Clifton W., Reissue U.S. Appl. No. 11/865,580, filed Oct. 1, 2007. ^{*} cited by examiner May 15, 2012 May 15, 2012 # METHOD OF ADDRESSING MESSAGES AND COMMUNICATIONS SYSTEMS Matter enclosed in heavy brackets [] appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue. ## CROSS REFERENCE TO RELATED APPLICATION This is a Continuation of U.S. patent application Ser. No. 09/026,043, filed Feb. 19, 1998, and titled "Method of Addressing Messages and Communications System" now 15 U.S. Pat. No. 6,118,789.] More than one reissue application has been filed for the reissue of U.S. Pat. No. 6,307,847, which reissue applications are the initial reissue application Ser. No. 10/693,696, filed Oct. 23, 2003, now Re. 41,530, a continuation reissue application Ser. No. 11/859,360, filed Sep. 21, 2007, a continuation reissue application Ser. No. 11/859, 364, filed Sep. 21, 2007, a continuation reissue application Ser. No. 12/493,542, filed Jun. 29, 2009, and the present continuation reissue application which is a continuation application of U.S. patent application Ser. No. 10/693,696, filed Oct. 23, 2003, now Re. 41,530, which is a reissue application of U.S. Pat. No. 6,307,847 filed Jul. 12, 2000 and titled "Method of Addressing Messages and Communications Systems", which is a continuation application of U.S. patent 30 application Ser. No. 09/026,043, filed Feb. 19, 1998, and titled "Method of Addressing Messages and Communications System", now U.S. Pat. No. 6,118,789, each of which is incorporated herein by reference in its entirety. #### TECHNICAL FIELD This invention relates to communications protocols and to digital data communications. Still more particularly, the invention relates to data communications protocols in mediums such as radio communication or the like. The invention also relates to radio frequency identification devices for inventory control, object monitoring, determining the existence, location or movement of objects, or for remote automated payment. #### BACKGROUND OF THE INVENTION Communications protocols are used in various applications. For example, communications protocols can be used in 50 electronic identification systems. As large numbers of objects are moved in inventory, product manufacturing, and merchandising operations, there is a continuous challenge to accurately monitor the location and flow of objects. Additionally, there is a continuing goal to interrogate the location of 55 objects in an inexpensive and streamlined manner. One way of tracking objects is with an electronic identification system. One presently available electronic identification system utilizes a magnetic coupling system. In some cases, an identification device may be provided with a unique identification 60 code in order to distinguish between a number of different devices. Typically, the devices are entirely passive (have no power supply), which results in a small and portable package. However, such identification systems are only capable of operation over a relatively short range, limited by the size of 65 a magnetic field used to supply power to the devices and to
communicate with the devices. 2 Another wireless electronic identification system utilizes a large active transponder device affixed to an object to be monitored which receives a signal from an interrogator. The device receives the signal, then generates and transmits a responsive signal. The interrogation signal and the responsive signal are typically radio-frequency (RF) signals produced by an RF transmitter circuit. Because active devices have their own power sources, and do not need to be in close proximity to an interrogator or reader to receive power via magnetic coupling. Therefore, active transponder devices tend to be more suitable for applications requiring tracking of a tagged device that may not be in close proximity to an interrogator. For example, active transponder devices tend to be more suitable for inventory control or tracking. Electronic identification systems can also be used for remote payment. For example, when a radio frequency identification device passes an interrogator at a toll booth, the toll booth can determine the identity of the radio frequency identification device, and thus of the owner of the device, and debit an account held by the owner for payment of toll or can receive a credit card number against which the toll can be charged. Similarly, remote payment is possible for a variety of other goods or services. A communication system typically includes two transponders: a commander station or interrogator, and a responder station or transponder device which replies to the interrogator. If the interrogator has prior knowledge of the identification number of a device which the interrogator is looking for, it can specify that a response is requested only from the device with that identification number. Sometimes, such information is not available. For example, there are occasions where the interrogator is attempting to determine which of multiple devices are within communication range. When the interrogator sends a message to a transponder device requesting a reply, there is a possibility that multiple transponder devices will attempt to respond simultaneously, causing a collision, and thus causing an erroneous message to be received by the interrogator. For example, if the interrogator sends out a command requesting that all devices within a communications range identify themselves, and gets a large number of simultaneous replies, the interrogator may not be able to interpret any of these replies. Thus, arbitration schemes are employed to permit communications free of collisions. In one arbitration scheme or system, described in commonly assigned U.S. Pat. Nos. 5,627,544; 5,583,850; 5,500, 650; and 5,365,551, all to Snodgrass et al. and all incorporated herein by reference, the interrogator sends a command causing each device of a potentially large number of responding devices to select a random number from a known range and use it as that device's arbitration number. By transmitting requests for identification to various subsets of the full range of arbitration numbers, and checking for an error-free response, the interrogator determines the arbitration number of every responder station capable of communicating at the same time. Therefore, the interrogator is able to conduct subsequent uninterrupted communication with devices, one at a time, by addressing only one device. Another arbitration scheme is referred to as the Aloha or slotted Aloha scheme. This scheme is discussed in various references relating to communications, such as Digital Communications: Fundamentals and Applications, Bernard Sklar, published January 1988 by Prentice Hall. In this type of scheme, a device will respond to an interrogator using one of many time domain slots selected randomly by the device. A problem with the Aloha scheme is that if there are many devices, or potentially many devices in the field (i.e. in communications range, capable of responding) then there must be many available slots or many collisions will occur. Having many available slots slows down replies. If the magnitude of the number of devices in a field is unknown, then many slots 5 are needed. This results in the system slowing down significantly because the reply time equals the number of slots multiplied by the time period required for one reply. An electronic identification system which can be used as a radio frequency identification device, arbitration schemes, and various applications for such devices are described in detail in commonly assigned U.S. patent application Ser. No. 08/705,043, filed Aug. 29, 1996, [and] now U.S. Pat. No. 6,130,602, which is incorporated herein by reference. #### SUMMARY OF THE INVENTION The invention provides a wireless identification device configured to provide a signal to identify the device in 20 response to an interrogation signal. One aspect of the invention provides a method of establishing wireless communications between an interrogator and individual ones of multiple wireless identification devices. The method comprises utilizing a tree search method to estab- 25 lish communications without collision between the interrogator and individual ones of the multiple wireless identification devices. A search tree is defined for the tree search method. The tree has multiple levels respectively representing subgroups of the multiple wireless identification devices. ³⁰ The method further comprising starting the tree search at a selectable level of the search tree. In one aspect of the invention, the method further comprises determining the maximum possible number of wireless identification devices that could communicate with the interrogator, and selecting a level of the search tree based on the determined maximum possible number of wireless identification devices that could communicate with the interrogator. In another aspect of the invention, the method further comprises starting the tree search at 40 now U.S. Pat. No. 6,130,602. Other embodiments are posa level determined by taking the base two logarithm of the determined maximum possible number, wherein the level of the tree containing all subgroups is considered level zero, and lower levels are numbered consecutively. Another aspect of the invention provides a communica- 45 tions system comprising an interrogator, and a plurality of wireless identification devices configured to communicate with the interrogator in a wireless fashion. The respective wireless identification devices have a unique identification number. The interrogator is configured to employ a tree 50 search technique to determine the unique identification numbers of the different wireless identification devices so as to be able to establish communications between the interrogator and individual ones of the multiple wireless identification devices without collision by multiple wireless identification 55 devices attempting to respond to the interrogator at the same time. The interrogator is configured to start the tree search at a selectable level of the search tree. One aspect of the invention provides a radio frequency identification device comprising an integrated circuit includ- 60 ing a receiver, a transmitter, and a microprocessor. In one embodiment, the integrated circuit is a monolithic single die single metal layer integrated circuit including the receiver, the transmitter, and the microprocessor. The device of this embodiment includes an active transponder, instead of a tran- 65 sponder which relies on magnetic coupling for power, and therefore has a much greater range. #### BRIEF DESCRIPTION OF THE DRAWINGS Preferred embodiments of the invention are described below with reference to the following accompanying drawings. FIG. 1 is a high level circuit schematic showing an interrogator and a radio frequency identification device embodying the invention. FIG. 2 is a front view of a housing, in the form of a badge or card, supporting the circuit of FIG. 1 according to one embodiment the invention. FIG. 3 is a front view of a housing supporting the circuit of FIG. 1 according to another embodiment of the invention. FIG. 4 is a diagram illustrating a tree splitting sort method for establishing communication with a radio frequency identification device in a field of a plurality of such devices. FIG. 5. is a diagram illustrating a modified tree splitting sort method for establishing communication with a radio frequency identification device in a field of a plurality of such devices. #### DETAILED DESCRIPTION OF THE PREFERRED **EMBODIMENTS** This disclosure of the invention is submitted in furtherance of the constitutional purposes of the U.S. Patent Laws "to promote the progress of science and useful arts" (Article 1, Section 8). FIG. 1 illustrates a wireless identification device 12 in accordance with one embodiment of the invention. In the illustrated embodiment, the wireless identification device is a radio frequency data communication device 12, and includes RFID circuitry 16. The device 12 further includes at least one antenna 14 connected to the circuitry 16 for wireless or radio frequency transmission and reception by the circuitry 16. In the illustrated embodiment, the RFID circuitry is defined by an integrated circuit as described in the above-incorporated patent application Ser. No. 08/705,043, filed Aug. 29, 1996, sible. A power source or supply 18 is connected to the integrated circuit 16 to supply power to the integrated circuit 16. In one embodiment, the power source 18 comprises a battery. The device 12 transmits and receives radio frequency communications to and from an interrogator 26. An exemplary interrogator is described in commonly assigned U.S. patent application Ser. No. 08/907,689, filed Aug. 8, 1997 [and], now U.S. Pat. No. 6,289,209, which is incorporated herein by reference. Preferably, the interrogator **26** includes an antenna 28, as well as dedicated transmitting and receiving circuitry, similar to that implemented on the integrated circuit 16.
Generally, the interrogator 26 transmits an interrogation signal or command 27 via the antenna 28. The device 12 receives the incoming interrogation signal via its antenna 14. Upon receiving the signal 27, the device 12 responds by generating and transmitting a responsive signal or reply 29. The responsive signal 29 typically includes information that uniquely identifies, or labels the particular device 12 that is transmitting, so as to identify any object or person with which the device **12** is associated. Although only one device 12 is shown in FIG. 1, typically there will be multiple devices 12 that correspond with the interrogator 26, and the particular devices 12 that are in communication with the interrogator 26 will typically change over time. In the illustrated embodiment in FIG. 1, there is no communication between multiple devices 12. Instead, the devices 12 respectively communicate with the interrogator 26. Multiple devices 12 can be used in the same field of an interrogator 26 (i.e., within communications range of an interrogator 26). The radio frequency data communication device **12** can be included in any appropriate housing or packaging. Various methods of manufacturing housings are described in commonly assigned U.S. patent application Ser. No. 08/800,037, filed Feb. 13, 1997, [and] *now U.S. Pat. No. 5,988,510, which is* incorporated herein by reference. FIG. 2 shows but one embodiment in the form of a card or badge 19 including a housing 11 of plastic or other suitable material supporting the device 12 and the power supply 18. In one embodiment, the front face of the badge has visual identification features such as graphics, text, information found on identification or credit cards, etc. FIG. 3 illustrates but one alternative housing supporting the device 12. More particularly, FIG. 3 shows a miniature housing 20 encasing the device 12 and power supply 18 to define a tag which can be supported by an object (e.g., hung from an object, affixed to an object, etc.). Although two particular types of housings have been disclosed, the device 12 can be included in any appropriate housing. If the power supply 18 is a battery, the battery can take any suitable form. Preferably, the battery type will be selected 25 depending on weight, size, and life requirements for a particular application. In one embodiment, the battery 18 is a thin profile button-type cell forming a small, thin energy cell more commonly utilized in watches and small electronic devices requiring a thin profile. A conventional button-type cell has a pair of electrodes, an anode formed by one face and a cathode formed by an opposite face. In an alternative embodiment, the power source 18 comprises a series connected pair of button type cells. Instead of using a battery, any suitable power source can be employed. The circuitry **16** further includes a backscatter transmitter and is configured to provide a responsive signal to the interrogator **26** by radio frequency. More particularly, the circuitry **16** includes a transmitter, a receiver, and memory such as is described in U.S. patent application Ser. No. 08/705,043, *now* 40 *U.S. Pat. No.* 6,130,602. Radio frequency identification has emerged as a viable and affordable alternative to tagging or labeling small to large quantities of items. The interrogator 26 communicates with the devices 12 via an electromagnetic link, such as via an RF 45 link (e.g., at microwave frequencies, in one embodiment), so all transmissions by the interrogator 26 are heard simultaneously by all devices 12 within range. If the interrogator 26 sends out a command requesting that all devices 12 within range identify themselves, and gets a 50 large number of simultaneous replies, the interrogator 26 may not be able to interpret any of these replies. Therefore, arbitration schemes are provided. If the interrogator 26 has prior knowledge of the identification number of a device 12 which the interrogator 26 is 55 looking for, it can specify that a response is requested only from the device 12 with that identification number. To target a command at a specific device 12, (i.e., to initiate point-on-point communication), the interrogator 26 must send a number identifying a specific device 12 along with the command. At start-up, or in a new or changing environment, these identification numbers are not known by the interrogator 26. Therefore, the interrogator 26 must identify all devices 12 in the field (within communication range) such as by determining the identification numbers of the devices 12 in the field. After this is accomplished, point-to-point communication can proceed as desired by the interrogator 26. 6 Generally speaking, RFID systems are a type of multi-access communication system. The distance between the interrogator 26 and devices 12 within the field is typically fairly short (e.g., several meters), so packet transmission time is determined primarily by packet size and baud rate. Propagation delays are negligible. In such systems, there is a potential for a large number of transmitting devices 12 and there is a need for the interrogator 26 to work in a changing environment, where different devices 12 are swapped in and out frequently (e.g., as inventory is added or removed). In such systems, the inventors have determined that the use of random access methods work effectively for contention resolution (i.e., for dealing with collisions between devices 12 attempting to respond to the interrogator 26 at the same time). RFID systems have some characteristics that are different from other communications systems. For example, one characteristic of the illustrated RFID systems is that the devices 12 never communicate without being prompted by the interrogator 26. This is in contrast to typical multiaccess systems where the transmitting units operate more independently. In addition, contention for the communication medium is short lived as compared to the ongoing nature of the problem in other multiaccess systems. For example, in a RFID system, after the devices 12 have been identified, the interrogator can communicate with them in a point-to-point fashion. Thus, arbitration in a RFID system is a transient rather than steadystate phenomenon. Further, the capability of a device 12 is limited by practical restrictions on size, power, and cost. The lifetime of a device 12 can often be measured in terms of number of transmissions before battery power is lost. Therefore, one of the most important measures of system performance in RFID arbitration is total time required to arbitrate a set of devices 12. Another measure is power consumed by the devices 12 during the process. This is in contrast to the mea-35 sures of throughput and packet delay in other types of multiaccess systems. FIG. 4 illustrates one arbitration scheme that can be employed for communication between the interrogator and devices 12. Generally, the interrogator 26 sends a command causing each device 12 of a potentially large number of responding devices 12 to select a random number from a known range and use it as that device's arbitration number. By transmitting requests for identification to various subsets of the full range of arbitration numbers, and checking for an error-free response, the interrogator 26 determines the arbitration number of every responder station capable of communicating at the same time. Therefore, the interrogator 26 is able to conduct subsequent uninterrupted communication with devices 12, one at a time, by addressing only one device 12. Three variables are used: an arbitration value (AVALUE), an arbitration mask (AMASK), and a random value ID (RV). The interrogator sends an Identify command (IdentifyCmnd) causing each device of a potentially large number of responding devices to select a random number from a known range and use it as that device's arbitration number. The interrogator sends an arbitration value (AVALUE) and an arbitration mask (AMASK) to a set of devices 12. The receiving devices 12 evaluate the following equation: (AMASK & AVALUE)== (AMASK & RV) wherein "&" is a bitwise AND function, and wherein "==" is an equality function. If the equation evaluates to "1" (TRUE), then the device 12 will reply. If the equation evaluates to "0" (FALSE), then the device 12 will not reply. By performing this in a structured manner, with the number of bits in the arbitration mask being increased by one each time, eventually a device 12 will respond with no collisions. Thus, a binary search tree methodology is employed. An example using actual numbers will now be provided using only four bits, for simplicity, reference being made to FIG. 4. In one embodiment, sixteen bits are used for AVALUE and AMASK. Other numbers of bits can also be employed depending, for example, on the number of devices 12 5 expected to be encountered in a particular application, on desired cost points, etc. Assume, for this example, that there are two devices 12 in the field, one with a random value (RV) of 1100 (binary), and another with a random value (RV) of 1010 (binary). The 10 interrogator is trying to establish communications without collisions being caused by the two devices 12 attempting to communicate at the same time. The interrogator sets AVALUE to 0000 (or "don't care" for all bits, as indicated by the character "X" in FIG. 4) and 15 AMASK to 0000. The interrogator transmits a command to all devices 12 requesting that they identify themselves. Each of the devices 12 evaluate (AMASK & AVALUE)== (AMASK & RV) using the random value RV that the respec-(TRUE), then the device 12 will reply. If the equation evaluates to "0" (FALSE), then the device 12 will not reply. In the first level of the illustrated tree, AMASK is 0000 and anything bitwise ANDed with all zeros results in all zeros, so both the devices 12 in the field respond, and there is a collision. Next, the interrogator sets AMASK to 0001 and AVALUE to 0000 and transmits an
identify command. Both devices 12 in the field have a zero for their least significant bit, and (AMASK & AVALUE)==(AMASK & RV) will be true for both devices 12. For the device 12 with a random value of 30 1100, the left side of the equation is evaluated as follows (0001 & 0000)=0000. The right side is evaluated as (0001 & 1100)=0000. The left side equals the right side, so the equation is true for the device 12 with the random value of 1100. For the device 12 with a random value of 1010, the left side of 35 the equation is evaluated as (0001 & 0000)=0000. The right side is evaluated as (0001 & 1010)=0000. The left side equals the right side, so the equation is true for the device 12 with the random value of 1010. Because the equation is true for both devices 12 in the field, both devices 12 in the field respond, 40 and there is another collision. Recursively, the interrogator next sets AMASK to 0011 with AVALUE still at 0000 and transmits an Identify command. (AMASK & AVALUE)==(AMASK & RV) is evaluated for both devices 12. For the device 12 with a random 45 value of 1100, the left side of the equation is evaluated as follows (0011 & 0000)=0000. The right side is evaluated as (0011 & 1100)=0000. The left side equals the right side, so the equation is true for the device 12 with the random value of 1100, so this device 12 responds. For the device 12 with a 50 random value of 1010, the left side of the equation is evaluated as (0011 & 0000)=0000. The right side is evaluated as (0011 & 1010)=0010. The left side does not equal the right side, so the equation is false for the device 12 with the random value of 1010, and this device 12 does not respond. Therefore, there is no collision, and the interrogator can determine the identity (e.g., an identification number) for the device 12 that does respond. De-recursion takes place, and the devices 12 to the right for the same AMASK level are accessed when AVALUE is set at 60 bottom of the tree. 0010, and AMASK is set to 0011. The device 12 with the random value of 1010 receives a command and evaluates the equation (AMASK & AVALUE)==(AMASK & RV). The left side of the equation is evaluated as (0011 & 0010)=0010. The right side of the 65 equation is evaluated as (0011 & 1010)=0010. The right side equals the left side, so the equation is true for the device 12 with the random value of 1010. Because there are no other devices 12 in the subtree, a good reply is returned by the device 12 with the random value of 1010. There is no collision, and the interrogator 26 can determine the identity (e.g., an identification number) for the device 12 that does respond. By recursion, what is meant is that a function makes a call to itself. In other words, the function calls itself within the body of the function. After the called function returns, derecursion takes place and execution continues at the place just after the function call; i.e. at the beginning of the statement after the function call. For instance, consider a function that has four statements (numbered 1,2,3,4) in it, and the second statement is a recursive call. Assume that the fourth statement is a return statement. The first time through the loop (iteration 1) the function executes the statement 2 and (because it is a recursive call) calls itself causing iteration 2 to occur. When iteration 2 gets to statement 2, it calls itself making iteration 3. During execution in iteration 3 of statement 1, assume that the function tive devices 12 selected. If the equation evaluates to "1" 20 does a return. The information that was saved on the stack from iteration 2 is loaded and the function resumes execution at statement 3 (in iteration 2), followed by the execution of statement 4 which is also a return statement. Since there are no more statements in the function, the function de-recurses 25 to iteration 1. Iteration 1, had previously recursively called itself in statement 2. Therefore, it now executes statement 3 (in iteration 1). Following that it executes a return at statement 4. Recursion is known in the art. > Consider the following code which can be used to implement operation of the method shown in FIG. 4 and described above. ``` Arbitrate(AMASK, AVALUE) collision=IdentifyCmnd(AMASK, AVALUE) if (collision) then /* recursive call for left side */ Arbitrate((AMASK>>l)+l, AVALUE) /* recursive call for right side */ Arbitrate((AMASK>>l)+l, AVALUE+(AMASK+1)) }/* return */ ``` The symbol "<<" represents a bitwise left shift. "<<" means shift left by one place. Thus, 0001<<1 would be 0010. Note, however, that AMASK is originally called with a value of zero, and 0000<<1 is still 0000. Therefore, for the first recursive call, AMASK=(AMASK<<1)+1. So for the first recursive call, the value of AMASK is 0000+0001=0001. For the second call, AMASK=(0001 <<)+1=0010+1=0011. For the third recursive call, AMASK=(0011<<1)+1=0110+ 1=0111. The routine generates values for AMASK and AVALUE to be used by the interrogator in an identify command "IdentifyCmnd." Note that the routine calls itself if there is a collision. De-recursion occurs when there is no collision. AVALUE and AMASK would have values such as the following assuming collisions take place all the way down to the | AVALUE | AMASK | | |--------|-------|--| | 0000 | 0000 | | | 0000 | 0001 | | -continued | AVALUE | AMASK | | |--------|-------|---| | 0000 | 0011 | 5 | | 0000 | 0111 | | | 0000 | 1111* | | | 1000 | 1111* | | | 0100 | 0111 | 1 | | 0100 | 1111* | | | 1100 | 1111* | | | | | | This sequence of AMASK, AVALUE binary numbers assumes that there are collisions all the way down to the bottom of the tree, at which point the Identify command sent by the interrogator is finally successful so that no collision occurs. Rows in the table for which the interrogator is successful in receiving a reply without collision are marked with the symbol "*". Note that if the Identify command was successful at, for example, the third line in the table then the interrogator would stop going down that branch of the tree and start down another, so the sequence would be as shown in the following table. | AVALUE | AMASK | | |--------|-------|--| | 0000 | 0000 | | | 0000 | 0001 | | | 0000 | 0011* | | | 0010 | 0011 | | | | | | This method is referred to as a splitting method. It works by splitting groups of colliding devices 12 into subsets that are resolved in turn. The splitting method can also be viewed as a type of tree search. Each split moves the method one level 40 deeper in the tree. Either depth-first or breadth-first traversals of the tree can be employed Depth first traversals are performed by using recursion, as is employed in the code listed above. Breadth-first traversals are accomplished by using a queue instead of recursion. The following is an example of code for performing a breadth-first traversal. ``` Arbitrate(AMASK, AVALUE) { enqueue(0,0) while (queue !=empty) (AMASK,AVALUE) =0 dequeue() collision=IdentifyCmnd(AMASK, AVALUE) if (collision) then { TEMP = AMASK+1 NEW_AMASK = (AMASK>>1)+1 enqueue(NEW_AMASK, AVALUE) enqueue(NEW_AMASK, AVALUE)+TEMP) }/* endif */ endwhile }/* return */ ``` The symbol "!=" means not equal to. AVALUE and 65 AMASK would have values such as those indicated in the following table for such code. | | AVALUE | AMASK | | |----|--------|-------|--| | | 0000 | 0000 | | | 5 | 0000 | 0001 | | | | 0001 | 0001 | | | | 0000 | 0011 | | | | 0010 | 0011 | | | | 0001 | 0011 | | | | 0011 | 0011 | | | 10 | 0000 | 0111 | | | | 0100 | 0111 | | | | | | | | | | • • • | | Rows in the table for which the interrogator is successful in This sequence of AMASK, AVALUE binary numbers 15 receiving a reply without collision are marked with the symsumes that there are collisions all the way down to the bol "*". FIG. 5 illustrates an embodiment wherein the interrogator **26** starts the tree search at a selectable level of the search tree. The search tree has a plurality of nodes 51, 52, 53, 54 etc. at respective levels. The size of subgroups of random values decrease in size by half with each node descended. The upper bound of the number of devices 12 in the field (the maximum possible number of devices that could communicate with the interrogator) is determined, and the tree search method is started at a level 32, 34, 36, 38, or 40 in the tree depending on the determined upper bound. In one embodiment, the maximum number of devices 12 potentially capable of responding to the interrogator is determined manually and input into the interrogator 26 via an input device such as a keyboard, graphical user interface, mouse, or other interface. The level of the search tree on which to start the tree search is selected based on the determined maximum possible number of wireless identification devices that could communicate with the inter- The tree search is started at a level determined by taking the base two logarithm of the determined maximum possible number. More particularly, the tree search is started at a level determined by taking the base two logarithm of the power of two nearest the determined maximum possible number of devices 12. The level of the tree containing all subgroups of random values is considered level zero (see FIG. 5), and lower levels are numbered 1, 2, 3, 4, etc. consecutively. By determining the upper bound of the number of devices 12 in the field, and starting the tree search at an appropriate level, the number of collisions is reduced, the battery life of the devices 12 is increased, and arbitration time is reduced. For example, for the search tree shown in FIG. 5, if it is known that there are seven devices 12 in the field, starting at node 51 (level 0) results in a collision. Starting at level 1 (nodes 52 and 53) also results in a collision. The same is true for nodes 54, 55, 56, and 57 in level 2. If there are seven devices 12 in the field, the nearest power of two to seven is the level at which the tree search should be started. Log₂ 8=3, so the tree search should be
started at level 3 if there are seven devices 12 in the field. AVALUE and AMASK would have values such as the following assuming collisions take place from level 3 all the way down to the bottom of the tree. 60 | AVALUE | AMASK | | |----------------------|------------------------|--| | 0000
0000
1000 | 0111
1111*
1111* | | | 0100 | 0111 | | | AVALUE | AMASK | |--------|-------| | 0100 | 1111* | | 1100 | 1111* | Rows in the table for which the interrogator is successful in receiving a reply without collision are marked with the symbol "*". In operation, the interrogator transmits a command requesting devices 12 having random values RV within a specified group of random values to respond, the specified group being chosen in response to the determined maximum number. Devices 12 receiving the command respectively determine if their chosen random values fall within the specified group and, if so, send a reply to the interrogator. The interrogator determines if a collision occurred between devices that sent a reply and, if so, creates a new, smaller, specified group, descending in the tree, as described above in 20 connection with FIG. 4. Another arbitration method that can be employed is referred to as the "Aloha" method. In the Aloha method, every time a device 12 is involved in a collision, it waits a random period of time before retransmitting. This method can be 25 improved by dividing time into equally sized slots and forcing transmissions to be aligned with one of these slots. This is referred to as "slotted Aloha." In operation, the interrogator asks all devices 12 in the field to transmit their identification numbers in the next time slot. If the response is garbled, the 30 interrogator informs the devices 12 that a collision has occurred, and the slotted Aloha scheme is put into action. This means that each device 12 in the field responds within an arbitrary slot determined by a randomly selected value. In other words, in each successive time slot, the devices 12 35 decide to transmit their identification number with a certain probability. The Aloha method is based on a system operated by the University of Hawaii. In 1971, the University of Hawaii began operation of a system named Aloha. A communication 40 satellite was used to interconnect several university computers by use of a random access protocol. The system operates as follows. Users or devices transmit at any time they desire. After transmitting, a user listens for an acknowledgment from the receiver or interrogator. Transmissions from different 45 users will sometimes overlap in time (collide), causing reception errors in the data in each of the contending messages. The errors are detected by the receiver, and the receiver sends a negative acknowledgment to the users. When a negative acknowledgment is received, the messages are retransmitted 50 by the colliding users after a random delay. If the colliding users attempted to retransmit without the random delay, they would collide again. If the user does not receive either an acknowledgment or a negative acknowledgment within a certain amount of time, the user "times out" and retransmits the 55 message. There is a scheme known as slotted Aloha which improves the Aloha scheme by requiring a small amount of coordination among stations. In the slotted Aloha scheme, a sequence of coordination pulses is broadcast to all stations (devices). 60 As is the case with the pure Aloha scheme, packet lengths are constant. Messages are required to be sent in a slot time between synchronization pulses, and can be started only at the beginning of a time slot. This reduces the rate of collisions because only messages transmitted in the same slot can interfere with one another. The retransmission mode of the pure Aloha scheme is modified for slotted Aloha such that if a 12 negative acknowledgment occurs, the device retransmits after a random delay of an integer number of slot times. Aloha methods are described in [a] commonly assigned [patent application naming Clifton W. Wood, Jr. as an inventor,] U.S. patent application Ser. No. 09/026,248, filed Feb. 19, 1998, [titled "Method of Addressing Messages and Communications System," filed concurrently herewith, and] now U.S. Pat. No. 6,275,476, which is incorporated herein by reference. In one alternative embodiment, an Aloha method (such as the method described in the commonly assigned patent application mentioned above) is combined with determining the upper bound on a set of devices and starting at a level in the tree depending on the determined upper bound, such as by combining an Aloha method with the method shown and described in connection with FIG. 5. For example, in one embodiment, devices 12 sending a reply to the interrogator 26 do so within a randomly selected time slot of a number of slots. In another embodiment, levels of the search tree are skipped. Skipping levels in the tree, after a collision caused by multiple devices 12 responding, reduces the number of subsequent collisions without adding significantly to the number of no replies. In real-time systems, it is desirable to have quick arbitration sessions on a set of devices 12 whose unique identification numbers are unknown. Level skipping reduces the number of collisions, both reducing arbitration time and conserving battery life on a set of devices 12. In one embodiment, every other level is skipped. In alternative embodiments, more than one level is skipped each time. The trade off that must be considered in determining how many (if any) levels to skip with each decent down the tree is as follows. Skipping levels reduces the number of collisions, thus saving battery power in the devices 12. Skipping deeper (skipping more than one level) further reduces the number of collisions. The more levels that are skipped, the greater the reduction in collisions. However, skipping levels results in longer search times because the number of queries (Identify commands) increases. The more levels that are skipped, the longer the search times. Skipping just one level has an almost negligible effect on search time, but drastically reduces the number of collisions. If more than one level is skipped, search time increases substantially. Skipping every other level drastically reduces the number of collisions and saves battery power without significantly increasing the number of queries. Level skipping methods are described in a commonly assigned patent application 09/026,045 naming Clifton W. Wood, Jr. and Don Hush as inventors, titled "Method of Addressing Messages, Method of Establishing Wireless Communications, and Communications Systems," filed concurrently herewith, now U.S. Pat. No. 6,072,801, and incorporated herein by reference. In one alternative embodiment, a level skipping method is combined with determining the upper bound on a set of devices and starting at a level in the tree depending on the determined upper bound, such as by combining a level skipping method with the method shown and described in connection with FIG. 5. In yet another alternative embodiment, both a level skipping method and an Aloha method (as described in the commonly assigned applications described above) are combined with the method shown and described in connection with FIG. 5. In compliance with the statute, the invention has been described in language more or less specific as to structural and methodical features. It is to be understood, however, that the invention is not limited to the specific features shown and described, since the means herein disclosed comprise preferred forms of putting the invention into effect. The invention is, therefore, claimed in any of its forms or modifications within the proper scope of the appended claims appropriately interpreted in accordance with the doctrine of equivalents. What is claimed is: - 1. A method of establishing wireless communications between an interrogator and individual ones of multiple wireless identification devices, the wireless identification devices 10 having respective identification numbers and being addressable by specifying identification numbers with any one of multiple possible degrees of precision, the method comprising utilizing a tree search in an arbitration scheme to determine a degree of precision necessary to establish one-on-one 15 communications between the interrogator and individual ones of the multiple wireless identification devices, a search tree being defined for the tree search method, the tree having multiple selectable levels respectively representing subgroups of the multiple wireless identification devices, the 20 level at which a tree search starts being variable the method further comprising starting the tree search at any selectable level of the search tree. - [2. A method in accordance with claim 1 and further comprising determining the maximum possible number of wireless identification devices that could communicate with the interrogator, and selecting a level of the search tree based on the determined maximum possible number of wireless identification devices that could communicate with the interrogator.] - [3. A method in accordance with claim 2 and further comprising starting the tree search at a level determined by taking the base two logarithm of the determined maximum possible number, wherein the level of the tree containing all subgroups is considered level zero, and lower levels are numbered consecutively.] - [4. A method in accordance with claim 2 and further comprising starting the tree search at a level determined by taking the base two logarithm of the determined maximum possible number, wherein the level of the tree containing all subgroups 40 is considered level zero, and lower levels are numbered consecutively, and wherein the maximum number of devices in a subgroup in one level is half of the maximum number of devices in the next higher level.] - [5. A method in accordance with claim 2 and further comprising
starting the tree search at a level determined by taking the base two logarithm of the power of two nearest the determined maximum possible number, wherein the level of the tree containing all subgroups is considered level zero, and lower levels are numbered consecutively, and wherein the maximum number of devices in a subgroup in one level is half of the maximum number of devices in the next higher level.] - [6. A method in accordance with claim 1 wherein the wireless identification device comprises an integrated circuit including a receiver, a modulator, and a microprocessor in 55 communication with the receiver and modulator.] - [7. A method of addressing messages from an interrogator to a selected one or more of a number of communications devices, the method comprising: - establishing for respective devices unique identification 60 numbers respectively having a first predetermined number of bits; - establishing a second predetermined number of bits to be used for random values; - causing the devices to select random values, wherein 65 respective devices choose random values independently of random values selected by the other devices; 14 - determining the maximum number of devices potentially capable of responding to the interrogator; - transmitting a command from the interrogator requesting devices having random values within a specified group of random values to respond, by using a subset of the second predetermined number of bits, the specified group being chosen in response to the determined maximum number; - receiving the command at multiple devices, devices receiving the command respectively determining if the random value chosen by the device falls within the specified group and, if so, sending a reply to the interrogator; and determining using the interrogator if a collision occurred between devices that sent a reply and, if so, creating a new, smaller, specified group.] - [8. A method of addressing messages from an interrogator to a selected one or more of a number of communications devices in accordance with claim 7 wherein sending a reply to the interrogator comprises transmitting the unique identification number of the device sending the reply.] - [9. A method of addressing messages from an interrogator to a selected one or more of a number of communications devices in accordance with claim 7 wherein sending a reply to the interrogator comprises transmitting the random value of the device sending the reply.] - [10. A method of addressing messages from an interrogator to a selected one or more of a number of communications devices in accordance with claim 7 wherein sending a reply to the interrogator comprises transmitting both the random value of the device sending the reply and the unique identification number of the device sending the reply.] - [11. A method of addressing messages from an interrogator to a selected one or more of a number of communications devices in accordance with claim 7 wherein, after receiving a reply without collision from a device, the interrogator sends a command individually addressed to that device.] - [12. A method of addressing messages from an interrogator to a selected one or more of a number of communications devices, the method comprising: - causing the devices to select random values for use as arbitration numbers, wherein respective devices choose random values independently of random values selected by the other devices, the devices being addressable by specifying arbitration numbers with any one of multiple possible degrees of precision; - transmitting a command from the interrogator requesting devices having random values within a specified group of a plurality of possible groups of random values to respond, the specified group being less than the entire set of random values, the plurality of possible groups being organized in a binary tree defined by a plurality of nodes at respective levels, wherein the size of groups of random values decrease in size by half with each node descended, wherein the specified group is below a node on the tree selected based on the maximum number of devices capable of communicating with the interrogator; - receiving the command at multiple devices, devices receiving the command respectively determining if the random value chosen by the device falls within the specified group and, if so, sending a reply to the interrogator; and, if not, not sending a reply; and - determining using the interrogator if a collision occurred between devices that sent a reply and, if so, creating a new, smaller, specified group by descending in the tree.] - [13. A method of addressing messages from an interrogator to a selected one or more of a number of communications devices in accordance with claim 12 and further including establishing a predetermined number of bits to be used for the random values. 14. A method of addressing messages from an interrogator to a selected one or more of a number of communications 5 devices in accordance with claim 13 wherein the predetermined number of bits to be used for the random values comprises an integer multiple of eight. [15. A method of addressing messages from an interrogator to a selected one or more of a number of communications 10 devices in accordance with claim 13 wherein devices sending a reply to the interrogator do so within a randomly selected time slot of a number of slots. [16. A method of addressing messages from an interrogator to a selected one or more of a number of RFID devices, the 15 method comprising: establishing for respective devices a predetermined number of bits to be used for random values, the predetermined number being a multiple of sixteen; causing the devices to select random values, wherein 20 respective devices choose random values independently of random values selected by the other devices; transmitting a command from the interrogator requesting devices having random values within a specified group of a plurality of possible groups of random values to 25 respond, the specified group being equal to or less than the entire set of random values, the plurality of possible groups being organized in a binary tree defined by a plurality of nodes at respective levels, wherein the maximum size of groups of random values decrease in size by 30 half with each node descended, wherein the specified group is below a node on a level of the tree selected based on the maximum number of devices known to be capable of communicating with the interrogator; ing the command respectively determining if the random value chosen by the device falls within the specified group and, only if so, sending a reply to the interrogator, wherein sending a reply to the interrogator comprises transmitting both the random value of the device sending 40 the reply and the unique identification number of the device sending the reply; using the interrogator to determine if a collision occurred between devices that sent a reply and, if so, creating a new, smaller, specified group using a level of the tree 45 different from the level used in the interrogator transmitting, the interrogator transmitting a command requesting devices having random values within the new specified group of random values to respond; and if a reply without collision is received from a device, the 50 interrogator subsequently sending a command individually addressed to that device. 17. A method of addressing messages from an interrogator to a selected one or more of a number of RFID devices in accordance with claim 16 and further comprising determin- 55 ing the maximum possible number of wireless identification devices that could communicate with the interrogator. [18. A method of addressing messages from an interrogator to a selected one or more of a number of RFID devices in accordance with claim 16 wherein selecting the level of the 60 tree comprises taking the base two logarithm of the determined maximum possible number, wherein a level of the tree containing all subgroups is considered level zero, and lower levels are numbered consecutively. [19. A method of addressing messages from an interrogator 65 to a selected one or more of a number of RFID devices in accordance with claim 16 wherein selecting the level of the **16** tree comprises taking the base two logarithm of the determined maximum possible number, wherein a level of the tree containing all subgroups is considered level zero, and lower levels are numbered consecutively, and wherein the maximum number of devices in a subgroup in one level is half of the maximum number of devices in the next higher level. [20. A method of addressing messages from an interrogator to a selected one or more of a number of RFID devices in accordance with claim 16 wherein selecting the level of the tree comprises taking the base two logarithm of the power of two nearest the determined maximum possible number, wherein the level of the tree containing all subgroups is considered level zero, and lower levels are numbered consecutively, and wherein the maximum number of devices in a subgroup in one level is half of the maximum number of devices in the next higher level. [21. A method of addressing messages from an interrogator to a selected one or more of a number of RFID devices in accordance with claim 16 wherein the wireless identification device comprises an integrated circuit including a receiver, a modulator, and a microprocessor in communication with the receiver and modulator. [22. A method of addressing messages from an interrogator to a selected one or more of a number of RFID devices in accordance with claim 16 and further comprising, after the interrogator transmits a command requesting devices having random values within the new specified group of random values to respond, determining, using devices receiving the command, if their chosen random values fall within the new smaller specified group and, if so, sending a reply to the interrogator. [23. A method of addressing messages from an
interrogator to a selected one or more of a number of RFID devices in receiving the command at multiple devices, devices receiv- 35 accordance with claim 22 and further comprising, after the interrogator transmits a command requesting devices having random values within the new specified group of random values to respond, determining if a collision occurred between devices that sent a reply and, if so, creating a new specified group and repeating the transmitting of the command requesting devices having random values within a specified group of random values to respond using different specified groups until all of the devices within communications range are identified. > **24**. A communications system comprising an interrogator, and a plurality of wireless identification devices configured to communicate with the interrogator in a wireless fashion, the wireless identification devices having respective identification numbers, the interrogator being configured to employ a tree search in a search tree having multiple selectable levels, to determine the identification numbers of the different wireless identification devices with sufficient precision so as to be able to establish one-on-one communications between the interrogator and individual ones of the multiple wireless identification devices, wherein the interrogator is configured to start the tree search at any selectable level of the search tree. [25. A communications system in accordance with claim 24 wherein the tree search is a binary tree search.] [26. A communications system in accordance with claim 24 wherein the wireless identification device comprises an integrated circuit including a receiver, a modulator, and a microprocessor in communication with the receiver and modulator. [27. A system comprising: an interrogator; a number of communications devices capable of wireless communications with the interrogator; means for establishing a predetermined number of bits to be used as random numbers, and for causing respective devices to select random numbers respectively having the predetermined number of bits; means for inputting a predetermined number indicative of 5 the maximum number of devices possibly capable of communicating with the receiver; means for causing the interrogator to transmit a command requesting devices having random values within a specified group of random values to respond, the specified 10 group being chosen in response to the inputted predetermined number; means for causing devices receiving the command to determine if their chosen random values fall within the specified group and, if so, send a reply to the interrogator; and 15 means for causing the interrogator to determine if a collision occurred between devices that sent a reply and, if so, create a new, smaller, specified group.] [28. A system in accordance with claim 27 wherein sending a reply to the interrogator comprises transmitting the random 20 value of the device sending the reply.] [29. A system in accordance with claim 27 wherein the interrogator further includes means for, after receiving a reply without collision from a device, sending a command individually addressed to that device. [30. A system comprising: an interrogator configured to communicate to a selected one or more of a number of communications devices; a plurality of communications devices; the devices being configured to select random values, 30 wherein respective devices choose random values independently of random values selected by the other devices, different sized groups of devices being addressable by specifying random values with differing levels of precision; the interrogator being configured to transmit a command requesting devices having random values within a specified group of a plurality of possible groups of random values to respond, the specified group being less than the entire set of random values, the plurality of possible 40 groups being organized in a binary tree defined by a plurality of nodes at respective levels, wherein the size of groups of random values decrease in size by half with each node descended, wherein the specified group is below a node on the tree selected based on a predeter- 45 mined maximum number of devices capable of communicating with the interrogator; devices receiving the command being configured to respectively determine if their chosen random values fall within the specified group and, if so, send a reply to the 50 interrogator; and, if not, not send a reply; and the interrogator being configured to determine if a collision occurred between devices that sent a reply and, if so, create a new, smaller, specified group by descending in the tree. [31. A system in accordance with claim 30 wherein the random values respectively have a predetermined number of bits.] [32. A system in accordance with claim 30 wherein respective devices are configured to store unique identification num- 60 bers of a predetermined number of bits.] [33. A system in accordance with claim 30 wherein respective devices are configured to store unique identification numbers of sixteen bits. [34. A system comprising: an interrogator configured to communicate to a selected one or more of a number of RFID devices; **18** a plurality of RFID devices, respective devices being configured to store unique identification numbers respectively having a first predetermined number of bits, respective devices being further configured to store a second predetermined number of bits to be used for random values, respective devices being configured to select random values independently of random values selected by the other devices; the interrogator being configured to transmit an identify command requesting a response from devices having random values within a specified group of a plurality of possible groups or random values, the specified group being less than or equal to the entire set of random values, the plurality of possible groups being organized in a binary tree defined by a plurality of nodes at respective levels, wherein the maximum size of groups of random values decrease in size by half with each node descended, wherein the specified group is below a node on a level of the tree selected based on the maximum number of devices known to be capable of communicating with the interrogator; devices receiving the command respectively being configured to determine if their chosen random values fall within the specified group and, only if so, send a reply to the interrogator, wherein sending a reply to the interrogator comprises transmitting both the random value of the device sending the reply and the unique identification number of the device sending the reply; the interrogator being configured to determine if a collision occurred between devices that sent a reply and, if so, create a new, smaller, specified group using a level of the tree different from the level used in previously transmitting an identify command, the interrogator transmitting an identify command requesting devices having random values within the new specified group of random values to respond; and the interrogator being configured to send a command individually addressed to a device after communicating with a device without a collision. [35. A system in accordance with claim 34 wherein the interrogator is configured to input and store the predetermined number. [36. A system in accordance with claim 34 wherein the devices are configured to respectively determine if their chosen random values fall within a specified group and, if so, send a reply, upon receiving respective identify commands. [37. A system in accordance with claim 36 wherein the interrogator is configured to determine if a collision occurred between devices that sent a reply in response to respective identify commands and, if so, create further new specified groups and repeat the transmitting of the identify command requesting devices having random values within a specified group of random values to respond using different specified 55 groups until all responding devices are identified. 38. A method, comprising: transmitting, from a reader, an initial wireless command to start identification of a plurality of radio frequency identification (RFID) tags, the initial wireless command specifying at least two bits and requesting first RFID tags having the at least two bits to reply with at least random numbers generated on the first RFID tags as identifiers to be used by the reader in subsequent communications to individually address the first RFID tags; determining whether there is a collision in response to the initial wireless command; identifying, from a response to the initial command, a random number generated at an RFID tag, if there is no collision in response to the initial wireless command; and transmitting, from the reader, a subsequent wireless command to identify RFID tags, the subsequent command specifying at least the two bits to request replies. 39. The method of claim 38, wherein the first RFID tags are to select time slots, based on random numbers generated on the first RFID tags, to reply to the initial wireless command. 40. The method of claim 39, further comprising: transmitting, from the reader, at least one command to 10 indicate the time slots to the first RFID tags. - 41. The method of claim 38, wherein the random number is a sixteen-bit random number. - 42. The method of claim 38, wherein the subsequent wireless command includes one bit more than the at least two bits specified in the initial wireless command. - 43. The method of claim 38, further comprising: transmitting, from the reader, an acknowledge command in response to the random number being identified from the 20 response. - 44. The method of claim 38, wherein the RFID tag is to further communicate to the reader at least a portion of an identification code of the RFID tag. - 45. A radio frequency identification (RFID) interrogator, 25 comprising: one or more antennas; a controller; -
a transmitter coupled to the controller and the one or more antennas to send a first wireless radio frequency (RF) signal to start identification of individual tags of a population of RFID tags, the first RF signal requesting RFID tags having first bits specified in the first RF signal to reply, the first bits having at least two bits; and - a receiver coupled to the controller and the one or more 35 antennas to detect a collision in response to the first RF signal and, when there is no collision in response to the first RF signal, to determine an identifier of a first RFID tag from a reply to the first RF signal; wherein the transmitter is to subsequently use the identifier, 40 determined from the reply to the first RF signal, to address the first RFID tag, among the population of RFID tags, for a response from the first RFID tag. 46. The interrogator of claim 45, wherein the transmitter is to further send a second wireless RF signal to specify at least 45 the first bits and to request RFID tags having bits specified in the second RF signal to reply. - 47. The interrogator of claim 45, wherein the first RF signal requests the RFID tags having the first bits specified in the first RF signal to reply with at least random numbers gener- 50 ated on respective RFID tags; and the first RFID tag is identified via a random number provided by the first RFID tag in the reply to the first RF signal. - 48. The interrogator of claim 45, wherein a random number provided by the first RFID tag in the reply to the first RF signal has sixteen bits. - 49. The interrogator of claim 45, wherein the transmitter is to further send an acknowledge signal to the first RFID tag, in response to a random number being identified from the reply. - 50. A radio frequency identification (RFID) system, com- 60 prising: a plurality of RFID tags; and an interrogator having a range for wireless communications, the plurality of RFID tags disposed within the range for communications with the interrogator, the 65 identified from a response to the initial RF signal. interrogator comprising: at least one antenna, a transmitter coupled to the at least one antenna to transmit a first wireless radio frequency (RF) signal to initiate a search to identify the RFID tags, the first RF signal specifying at least two bits, wherein RFID tags having the at least two bits reply to the first RF signal with at least random numbers generated on respective RFID tags, and a receiver coupled to the at least one antenna to identify, from at least one reply to the first RF signal, a random number generated by a first RFID tag, if there is no response collision in replying to the first RF signal; wherein the transmitter is to subsequently use the random number, identified from the reply to the first RF signal, to request a response from the first RFID tag. - 51. The RFID system of claim 50, wherein each of the RFID tags having the at least two bits generates a random value to determine a time slot to reply. - 52. The RFID system of claim 51, wherein the transmitter is to further transmit a plurality of second signals to indicate a plurality of time slots to reply. - 53. The RFID system of claim 50, wherein the transmitter is to transmit a second signal to cause the first RFID tag to generate the random number as an identifier. - 54. The RFID system of claim 53, wherein the second signal is different from the first signal. - 55. The RFID system of claim 50, wherein the random number is a sixteen-bit number. - 56. The RFID system of claim 50, wherein the at least two bits are a portion of the random number. - 57. A radio frequency identification (RFID) system, comprising: an interrogator to transmit an initial wireless radio frequency (RF) signal to start a search to identify RFID tags, the initial wireless RF signal specifying at least two first bits and requesting replies; and a set of RFID tags, each tag of the set having: an antenna, a memory storing a plurality of bits; and a circuit coupled to the antenna to receive the initial RF signal, to compare the at least two first bits with corresponding bits stored in the memory, to independently generate a random number as an identifier, to generate a random value to select a time slot to reply, and to reply with the random number in accordance with the time slot, if there is a match between the at least two first bits specified in the initial RF signal and the corresponding bits stored in the memory; wherein the interrogator is to individually address a first RFID tag among the set of RFID tags, using the random number of the first RFID tag identified from a reply to the first wireless RF signal, to request a response from the first RFID tag. 58. The system of claim 57, wherein the interrogator is to 55 further transmit at least one signal to indicate subsequent time slots for RFID tags having the at least two first bits to reply. 59. The system of claim 57, wherein the interrogator is to transmit a separate signal to cause each tag of the set to generate the random number. 60. The system of claim 59, wherein the random number is a sixteen-bits number. - 61. The system of claim 59, wherein the interrogator is to further transmit an acknowledge signal if a first RFID tag is - 62. The system of claim 57, wherein each tag of the set is to transmit the random number via backscattering. 63. A radio frequency identification (RFID) method, comprising: transmitting, from a reader, a first wireless command to initiate identification of a population of RFID tags and a plurality of subsequent wireless commands to continue the identification of a population of RFID tags, the first command including first bits, the first command to request a set of RFID tags having the first bits to reply with identifiers of the set of RFID tags, the identifiers including random numbers individually generated by the set of RFID tags, the first bits including at least two bits; generating, by the set of RFID tags, the random numbers independent from each other; generating, by the set of RFID tags, random values; replying, by the set of RFID tags, to the first command and the subsequent command with at least the random numbers of the set of RFID tags, in an order in accordance with the random values; receiving, at the reader, a reply to the first command from a first RFID tag; determining whether there is a collision in replying to the first command; if there is no collision in replying to the first command, identifying from the reply a random number generated by the first RFID tag; and transmitting a second wireless command to address the first RFID tag using the random number, the second wireless command to request a response from the first RFID tag addressed by the random number. 64. The method of claim 63, further comprising: transmitting a third wireless command from the reader to continue identification of a population of RFID tags, the third command including at least the first bits included in the first command. 65. The method of claim 64, wherein the third command includes one more bit than the first bits to address RFID tags. 66. The method of claim 63, wherein the random number is a sixteen-bit random number. 67. The method of claim 63, wherein the first bits is a portion of the random number. 68. The method of claim 63, wherein the subsequent commands comprise coordination pulses to indicate time slots. 69. The method of claim 63, wherein the first RFID tag further transmits at least a portion of an identification code to the reader. 70. The method of claim 63, wherein each of the subsequent wireless commands continues the request of the first wireless command. 71. The method of claim 63, wherein each of the subsequent wireless commands indicates a time slot for replying in accordance with the request of the first wireless command. 72. The method of claim 63, further comprising: transmitting, from the reader, an acknowledge command in response to the random number being identified from the reply. 73. A radio frequency communications-based method of conducting a financial transaction, comprising: sending a first wireless radio frequency (RF) signal to start identification of one or more radio frequency devices of a population of radio frequency devices, the first RF signal requesting one or more radio frequency devices having at least two first bits specified in the first RF signal to reply; receiving a response via a receiver coupled to a controller and one or more antennas, said receiver, said controller and said one or more antennas configured to detect a collision in response to the first RF signal and, when there is no collision in response to the first RF signal, to determine an identifier of a first radio frequency device from a reply to the first RF signal; addressing the first radio frequency device using the identifier determined from the reply to the first RF signal so as to elicit a subsequent response from the first radio frequency device; and initiating a financial transaction based at least in part on said acts of sending, receiving and addressing, thereby resulting in the debiting of an account associated with said first radio frequency device. 74. The method of claim 73, wherein the financial transaction is associated with the payment of a toll. 75. The method of claim 74, wherein said receiver and said one or more antennas is disposed within a toll booth, and said method further comprises operating said receiver disposed within said toll booth at least when said first radio frequency device issuing said response to said first wireless RF signal is in proximity thereto. 76. The method of claim 74, wherein the financial transac-30 tion comprises receiving a credit card number against which the toll can be charged. 77. The method of claim 73, wherein the debiting of the account comprises charging a credit card number associated with an owner of the account. 78. The method of claim 73, wherein the financial transaction is for
payment for goods or services. 79. The method of claim 78, further comprising: transmitting a subsequent wireless command requesting one or more responses to continue the identification of one or more radio frequency devices within the population of radio frequency devices, the subsequent wireless command to identify a subset of the population of radio frequency devices and request the subset to reply with identification numbers. 80. The method of claim 73, wherein the response comprises further information about the first radio frequency communications device. 81. The method of claim 73, wherein the identifier comprises a unique identification code that uniquely identifies the first radio frequency device among the population of radio frequency devices. 82. The method of claim 73, wherein the identifier comprises a random number generated by the first radio frequency device. 83. The method of claim 73, wherein the first radio frequency device is configured to select a random value that determines a time slot in which the first radio frequency device provides the response. * * * *