USOORE43378E
(19) United States
a2y Reissued Patent (10) Patent Number: US RE43,378 E
Sharma 45) Date of Reissued Patent: May 8, 2012
(54) MAPPING OF PROGRAMMABLE LOGIC OTHER PUBLICATIONS

DEVICES

(75) Inventor: Sunil Kumar Sharma, Noida (IN)

(73) Sicronic Remote KG, LLC,

Wilmington, DE (US)

Assignee:

(21) 12/288,359

(22)

Appl. No.:

Filed: Oct. 17, 2008

Related U.S. Patent Documents

Reissue of:

(64) Patent No.:
Issued:
Appl. No.:
Filed:

7,124,392
Oct. 17, 2006
10/675,908
Sep. 29, 2003

(30) Foreign Application Priority Data

.. 993/02

Sep. 27, 2002

(1)

(IN)

Int. CI.

GO6F 17/50
GO6F 7/38 (2006.01)
HO3K 19/173 (2006.01)

US.CL 716/116; 326/37;326/38; 716/104;
716/117

Field of Classification Search 716/16-18,
716/104, 116-117; 326/37-39

See application file for complete search history.

(2006.01)

(52)

(58)

(56) References Cited

U.S. PATENT DOCUMENTS

5,946,219 A 8/1999 Mason et al.

0,212,670
0,216,257
0,336,208
0,470,485
6,490,717
6,725,442
7,124,392

WEETPEw

4/2001
4/2001
1/2002
10/2002
12/2002
4/2004
10/2006

Kaviani

Agrawal et al.
Mohan et al.
Cote et al.

Pedersen

et al.

Cote et al.

Sharma

Stant
10

|

Design Entry

Chen, et al., “DAG Map: Graph Based FPGA Technology Mapping
For Delay Optimization:”, IEEFE Design and test of computers, (Sep.
1992),pp. 7-20.

Cong, Jason et al., “An Optimal Tchnology Mapping Algorithm for
delay optimization in lookup-table based FPGA Designs”, IEEE
Trans. on Computer aided design of Inergrated circuits and systems
CAD, vol. 13, (Jan. 1994),pp. 1-7.

Cong, Jason at al., “On Area/Depth Trade-off in LUT-Based FPGA
Technology Mapping”, 30th ACM/IEEE design Automation Confer-
ence (DAC), (1993),pp. 213-218.

Cong, Jason et al., “Beyond the Combinatorial Limit Depth Minimi-
zation for LUT-Based FPGA Designs™, IEEE/ ACM International
Conference on Computer Aided Design (ICCAD), (Nov. 1993),pp.
110-114.

Notice of Allowance 1ssued 1n U.S. Appl. No. 10/675,908 and mailed
May 15, 2006.

(Continued)

Primary Examiner — Stacy Whitmore

(57) ABSTRACT

A method for mapping an electronic digital circuit to a Look
Up table (LUT) based Programmable Logic Deviceoperates

by selecting an unmapped or partially mapped LUT, and
identifying a group of circuit elements for mapping on the
selected LUT based on the available capacity of the selected
LUT and the mapping constraints. The 1dentified circuit ele-
ments are mapped onto the selected LUT. The identification
of circuit elements and mapping 1s carried out while taking
into consideration the Cascade Logic associated with the
selected LUT. The process continues until all circuit elements
have been mapped. The group of circuit elements 1s mapped
to the cascade logic prior to mapping on the LUTs. Con-
versely, the cascade logic 1s incorporated only after all circuit
clements have initially been mapped onto LUTs or some
clements remain unmapped after all LUT's have been utilized.
The mapping constraints include timing, placement, and size
constraints.

75 Claims, 8 Drawing Sheets

100

[I I I

11

FPGA
170

B I D B

US RE43,378 E
Page 2

OTHER PUBLICATIONS

Non-final Office Action 1ssued in U.S. Appl. No. 10/675,908 and
mailed Oct. 18, 2005.

Kuang-Chien Chen, Jason Cong, Yuzheng Ding, Andrew Kahng,
Peter Traymar;, DAG-Map. Graph Based FPGA Technology Mapping

For Delay Optimization; IEEE Design and test of computers, pp.
7-20, Sep. 1992.

Jason Cong and Yuzheng Ding; An Optimal Technology Mapping
Algorithm for Delay Optimization in Lookup-1lable Based FPGA

Designs; 1IEEE Trans. On Computer Aided Design of Integrated
Circuits and Systems CAD, vol. 13, pp. 1-12 Jan. 1994.

Jason Cong and Yuzheng Ding; Or Area/Depth ITrade-off in LUI-
Based FP GA Technology Mapping, 30" ACM/IEEE design Automa-
tion Conference (DAC), pp. 213-218, 1993.

Jason Cong and Yuzheng Ding; Beyvond the Combinatorial Limit in
Depth Minimization for LUI-Based FPGA Designs, IEEE/ACM

International Conference on Computer Aided Design (ICCAD), pp.
110-114, Nov. 1993.

U.S. Patent May 8, 2012 Sheet 1 of 8 US RE43.378 E

0 O L
I |

I

Logic
Block

Routing Channel

o] /L IN L L

3 t 2

o U i
UL Ugd g

FIG. 1
(Background Art)

U.S. Patent May 8, 2012 Sheet 2 of 8 US RE43.378 E

Start
110

Design Entry
120

100

o

Synthesis
130

Technology

Mapping*
140

Place & Route
150

CBG
160

FPGA
170

U.S. Patent May 8, 2012 Sheet 3 of 8 US RE43.378 E

/ 200

Technology Mapping
140

LUT Mapping®
141

PLB Packing
142

FIG. 3

U.S. Patent May 8, 2012 Sheet 4 of 8 US RE43.378 E

Algonthm flow

/ 300

Gate Netlist 310

Start From Pl 320

Get fanout (untill POs) check whether we can
push to LUT allocated to it's fan in

330

Feasible?

340

No

Yes

Cascade
Elements?
360

Push to LUT 350

No

Yes

o Push to new Push o
LUT 370 Cascadgalzlements

+1G. 4

US RE43,378 E

Sheet 5 of 8

May 8, 2012

U.S. Patent

OtV
Ob

o

(pasa)sibasun)
d/O 81d

YAy

ajeo
apeose)

14

Eip

Ol

1N ol

—
00y

uiey" apeoase)

U.S. Patent May 8, 2012 Sheet 6 of 8 US RE43.378 E

6500 \

Input Input
E 603 604

Logic Cone

Logic Function

U.S. Patent May 8, 2012 Sheet 7 of 8 US RE43,378 E

702

700\ /7(5/\ T
.

T

\

/
.

720

LUT

710 I

Depth: 2
Area: 3

Logic Elements to be
Packed Into LUTs/
Cascade Elements

FIG. 7

U.S. Patent May 8, 2012 Sheet 8 of 8 US RE43.378 E

800

801

T

d05
Y
TN
ey
@

N,
@

890

LUT

Logic Elements to be
Packed Into LUTs/

Cascade Elements

Cascade Element

FIG. 8

US RE43,378 E

1

MAPPING OF PROGRAMMABLE LOGIC
DEVICES

Matter enclosed in heavy brackets []| appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

PRIORITY CLAIM

This application claims priority from Indian patent appli-
cation No. 993/Del/2002, filed Sep. 27, 2002, which 1s incor-
porated herein by reference.

TECHNICAL FIELD

This mvention relates to an improved method and system
for mapping an electronic circuit to a programmable logic
device (PLD). In particular, the invention relates to the utili-
zation of cascade logic elements while mapping.

BACKGROUND

Programmable Logic Devices (PLDs) provide the capabil-
ity of implementing a wide range of electronic circuits using
the same physical device. This capability 1s exploited by
configuring the device appropnately for each desired appli-
cation. The configuring process involves the mapping of the
target circuit onto the available resources of the PLD. Pro-
grammable Gate Arrays (PGAs) and Field Programmable
Gate Arrays (FPGAS) are the most widely used PLDs. The
architecture of these devices incorporates Look Up Tables
(LUTS) that are configured for desired functionality. The
eificiency of mapping algorithms 1s critical to the effective
utilization of PGAs and FPGAs. In LUT-based FPGAs the
mapping 1s implemented on the LUTsSs.

The conventional LUT-based FPGA mapping algorithms
can be divided into two classes. The algorithms in the first
class emphasize the minimization of the number of LUTs 1n
the solution. This class includes “Chortle” and “Chortle-crt™
algorithms by Francis, based on tree decomposition and bin
packing techniques. The algorithms in the second class
emphasize the minimization of the delay of the solution. This
class mcludes “Flowmap” by Cong and Y. Ding, which use
flow based techniques in mapping with node duplication to
reduce the logical depth of the mapped netlist. See Jason
Cong and Yuzheng Ding; An Optimal Technology Mapping
Algorithm for Delay Optimization 1 Lookup-Table Based
FPGA Designs; IEEE Trans. On Computer Aided Design of
Integrated Circuits and Systems CAD, Vol. 13, pp 1-12 Jan.
1994,

A DAG-map (Direct Analysis Graph) method for FPGA
technology mapping for delay optimization has been pro-

posed by J. Cong et.al. See Kuang-Chien Chen, Jason Cong,
Yuzheng Ding, Andrew Kahng, Peter Trajmar; DAG-Map:

Graph Based FPGA Technology Mapping For Delay Optimi-
zation; IEEE Design and test of computers, pp 7-20, Septem-
ber 1992. This method utilizes a graph based technology
mapping algorithm “DAG-Map”, for delay optimization in
lookup-table based FPGA designs. The algorithm carries out
technology mapping and delay optimization on the entire
Boolean network. As a preprocessing step in “DAG-Map™, a
general algorithm transforms an arbitrary n-input network
into a two-mput network with a corresponding increase 1n the
network depth; Finally, a graph matching based technique
which performs area optimization without increasing the net-

10

15

20

25

30

35

40

45

50

55

60

65

2

work delay 1s used as a post processing step for “DAG-Map”™.

This method does not however utilize the cascade elements

available with each LUT 1n the FPGA.

Another optimal technology mapping algorithm for delay
optimization in Lookup -Table based FPGA Designs has been
proposed by Jason Cong et. al. See Jason Cong and Yuzheng
Ding; An Optimal Technology Mapping Algorithm for Delay
Optimization 1n Lookup-Table Based FPGA Designs; IEEE
Trans. On Computer Aided Design of Integrated Circuits and
Systems CAD, Vol. 13, pp 1-12 January 1994. This method
proposes a polynomial time technology-mapping algorithm,
called “Flow-Map”, that optimally solves the LUT-based
FPGA technology-mapping problem for depth minimization
for general Boolean networks. A key step 1n “Flow-Map™ 1s
the computation of a minimum height K-feasible cut 1n a
network, by network flow computation. This algorithm does
clifectively minimize the number of LUTs by maximizing the
volume of each cut and by several post processing operations
but 1t does not utilize the cascade elements with the LUT to
turther reduce the size of the logic.

A method for On Area/Depth Trade-off 1n LUT-Based
FPGA Technology mapping has been disclosed 1n reference
by Jason Cong and Yuzheng Ding. Jason Cong and Yuzheng
Ding; On Area/Depth Trade-off in LUT-Based FPGA Tech-
nology Mapping; 30th ACM/IEEE design Automation Con-
terence (DAC), pp. 213-218, 1993, In this method the area
and depth trade off in LUT based FPGA technology mapping
1s proposed by performing a number of depth relaxation
operations to obtain a new network with bounded increase 1n
depth and advantageous for subsequent re-mapping for area
minimization. The resulting network 1s then re-mapped to
obtain an area-minimized mapping solution. By gradually
increasing the depth bound for each design a set of mapping
solutions with smooth area and depth trade-oif 1s achieved.
For the area minimization step, an optimal algorithm {for
computing an area-minimum mapping solution without node
duplication 1s developed. However this method also does not
talk about the area minimization by utilizing the cascade
clements with each LUT.

Another method proposed by Jason Cong and Yuzheng
Ding proposes an integrated approach to synthesis and map-
ping that extends the combinatorial limit set up by the depth-
optimal “Flow Map™ algorithm. See Jason Cong and Yuzheng
Ding; Beyond the Combinatorial Limit in Depth Minimiza-
tion for LUT-Based FPGA Designs; IEEE/ACM Interna-
tional Conference on Computer Aided Design (IC-CAD), pp.
110-114, November 1993. The new algorithm, “FlowSYN”,
uses global combinatorial optimization techniques to guide
the Boolean synthesis process during depth minimization.
The combinatorial optimization 1s achieved by computing a
series of minimum cuts of fixed heights 1n a network based on
fast network flow computation, and the Boolean optimization
1s achieved by efficient OBDD-based implementation of
functional decomposition. This method also does not utilize
cascade elements.

SUMMARY

One aspect of this mnvention 1s to provide an algorithm for
cificiently synthesizing electronic circuits by utilizing cas-
cade elements 1n LUT-based FPGAs.

Another aspect of the invention 1s to provide a method and
mechanism for maximum utilization of on-chip resources in
LUT-based FPGAs hence reducing the area 1n logic device.

Yet another aspect of the invention 1s to provide a method
for synthesizing a logic circuit with minimum depth in LUT-

based FPGAs.

US RE43,378 E

3

It 1s yet another aspect of the invention to provide a method
tor realizing faster LUT-based FPGA implementation.
The described embodiments of this invention provide an

improved method for mapping an electronic digital circuit to

a Look Up table (LUT) based Programmable Logic Device °
(PLD). The method operates by selecting an unmapped or
partially mapped LUT, and identifving a group of circuit
clements for mapping on the selected LUT based on the
available capacity of the selected LUT and the mapping con-
straints. The identified circuit elements are then mapped onto 19
the selected LUT. The 1dentification of circuit elements and
mapping 1s carried out while taking into consideration the
Cascade Logic associated with the selected LUT. The process

1s continued until all the circuit elements have been mapped.
The group of circuit elements is mapped to the cascade logic 15
prior to mapping on the LUTs. Conversely, the cascade logic

1s 1ncorporated only after either all circuit elements have
initially been mapped onto LUTs or some circuit elements
remain unmapped even aiter all LUTs have been utilized. The
mapping constraints include timing constraints, placement 2Y
constraints, and size constraints.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a schematic diagram of a conventional Field 25
Programmable Gate Array. (FPGA)

FIG. 2 shows a FPGA circuit implementation process
according to one embodiment of this invention.

FI1G. 3 shows the tlow diagram of the technology-mapping
step 1n the FPGA circuit implementation process of FIG. 2 30
according to an embodiment of this mvention.

FIG. 4 shows a process tlow diagram for LUT mapping
step of FIG. 3 1in the technology-mapping step 1n the FPGA
circuit implementation process according to an embodiment
of this invention. 35

FIG. 5 shows a schematic diagram of a cascade element
coupled with a LUT according to one embodiment of the
present invention.

FIG. 6 shows a functional block diagram of a typical four
input logic cone. 40
FI1G. 7 shows a conventional net list mapped logic circuit
without using the cascade feature of a programmable logic

device.

FI1G. 8 shows a netlist mapping using the cascade feature of
the programmable logic device 1n accordance with an 45
embodiment of the present invention.

DETAILED DESCRIPTION

The following discussion 1s presented to enable a person 50
skilled 1n the art to make and use the mmvention. Various
modifications to the embodiments will be readily apparent to
those skilled 1n the art, and the generic principles herein may
be applied to other embodiments and applications without
departing from the spirit and scope of the present invention. 55
Thus, the present invention 1s not intended to be limited to the
embodiments shown, but 1s to be accorded the widest scope
consistent with the principles and features disclosed herein.

The following description 1s based on the definition of
technical terms given below: 60

Electronic design includes the logical structure of an elec-
tronic device such as an integrated circuit. This may be speci-
fied erther as a behavioral description, as high-level Boolean
equations, a circuit schematic or 1n any other form represent-
ing the logical arrangements of a device. It may include 65
different constraints such as timing constraints, placement
constraints, or mapping constraints, etc.

4

A Target hardware device includes the hardware device on
which an electronic design 1s implemented. In context of this
ivention, a target hardware device typically includes the
symmetric array of uncommitted logic elements. The uncom-
mitted elements consist of the LUT, cascade gate, MUXes
and flip-flops. These elements are grouped to form another
hierarchy called programmable logic blocks, which are again
grouped to form a programmable logic device.

A Compiler includes software and hardware on which the
soltware operates for compiling the electronics design. The
function of the compiler 1s to synthesize the netlist and map
the netlist (design) to the target device.

Mapping refers to the process of grouping gates from a gate
netlist or other hardware independent representation of logic
into a logic block. In other words, the logic design may be
divided into clusters representing the various logic functions
within the design. These clusters are mapped onto the uncom-
mitted logic elements in the programmable logic device dur-
ing the compilation of the electronic design. The conditions
for grouping (mapping) the gates mto logic cells 1s that 1t
should be possible to implement the grouped gates 1n the logic
cell, For example, 11 a four input LUT 1s taken as a logic cell
then the grouped gates must have less than or equal to four
inputs for successiul mapping.

Embodiments of the present invention utilize cascade ele-
ments during the hardware description language (HDL) com-
pilation and maps the design for programmable integrated
circuits during technology mapping.

In the accompanying diagrams (FIG. 6, FIG. 7, FIG. 8) a
hexagon represents a LUT, a circle represents a logic node, an
arrow represents a connection, and a rectangle represents a
cascade element.

FIG. 11s afunctional block diagram of a typical LUT-based
Field Programmable Gate Array. A typical FPGA has verti-
cal/horizontal routing lines 1, an array of logic blocks 2 and
interfacing I/0O pads 3. The routing resources 1 connect the
logic block elements 2 and I/O pads. The FPGA can also have
switch boxes at the intersection of routing lines for connect-
ing to the logic block arrays.

FIG. 2 shows the flow chart 100 of an electronic design
compilation process. The process of compilation 1s started
110 by either clicking 1cons or by passing the command to
start the compilation. Once the compilation 1s started the
design entries 120 are entered by the user according to which
the circuit 1s synthesized 130. The LUTs and the PLBs are
then mapped 140 over the synthesized circuit. After proper
placement of the elements and routing lines 150 the configu-
ration bit 1s generated 160 and the logic 1s then configured on
the FPGA 160. The compiler operates 1n accordance with
user specifications. The user specifications can be in terms of
timing requirements, area constraints or any other desired
constraints., The compiler synthesizes the design to produce
a net list, which describes the functionality of design for
implementation on the programmable logic device. The net
list can be the collection of gates, state machines & macros
etc. The nodes of the net list are connected via nets and each
net has a signal associated with 1t. The net list 1s synthesized
to remove the redundant logic, and to meet specified con-
straints.

FIG. 3 shows a simplified block representation 200 of the
technology mapping step 140 of the electronic design com-
pilation. The technology mapping 140 can broadly be divided
in two parts, LUT mapping 141 and PLB packing 142.

FIG. 4 shows a tlow chart of a LUT mapping process 300
according to one embodiment of the present invention. In this
process the first step 1s to decompose the GATE netlist 310
into simple gates. The second step 320 establishes the feasi-

US RE43,378 E

S

bility of pushing additional logic without violating the speci-
fied constraints including the fan-out constraints 330, 340 1n
an LUT. If 1t 1s feasible to incorporate more logic onto the
LUT then the logic 1s mapped accordingly 350, and the con-
trol returns to block 330. If 1t 1s not feasible to incorporate any
additional logic onto the LUT then the feasibility of incorpo-
rating the cascade elements 1s established. I1 this 1s possible
then appropriate logic elements are mapped onto the cascade
clements 1n block 380 and control then returns to block 330.

I1 the possibility does not exist then another LUT 1s selected
in block 370 and the control are returns to block 330. The
logic clusters are formed by grouping nodes. Whenever the
cluster 1s k-infeasible, no more nodes are added to the cluster.
Belore starting a fresh cluster, the feasibility of incorporating
the cascade element 1n the device architecture 1s determined.

I1 the feasibility 1s established the next node 1s mapped to the
cascade element. This decreases the block count for the logic.
As the cascade elements are hard wired they do not use the

routing resources and the resultant delay 1s less than that of a
LUT

FIG. 5 shows a structure of a Programmable Logic Block
(PLB) 400 1n a LUT-based FPGA. LUT 410 having nputs
401, and cascade logic gate 420, 1s connected to multiplexer
430 having tlip-flop 440 at 1ts output. One of the inputs 413 to
the cascade logic 1s from the cascade out of the previous stage
and the output 431 of the cascade gate 1s the cascade 1n for the
next stage.

FIG. 6 1s a functional diagram of a typical four mput logic
cone 600. The nodes 601, 602, 603, 604 arc inputs from other
logic cones or logic gates. Nodes 610, 620, 640 arc logic
gates, and the arrow represents the connection between the
logic gates.

FIG. 7 1s a functional diagram 700 of a mapped netlist
without using the cascade feature of the programmable logic
device. Nodes 701, 702, 703, 704 etc. are the iputs from the
other logic cones or logic gates, nodes 710, 720, etc. are the
logic gates, and the arrow represents the connection between
the logic gates.

FIG. 8 shows a mapping of a netlist 800 using the cascade
logic of the programmable logic device according to an
embodiment of the current invention. The mapping 1s imple-
mented according to predefined criteria. The criteria may be
logic density, speed etc. In each case forming ol cones 1s
started from nodes e.g. 810, 820, 860 etc. whose fanins are
already mapped or from the nodes which are primary inputs
c.g. 801, 802, 811 ctc. The maximum possible number of
nodes 1s mapped onto each available LUT to increase the
density of logic. Each node required to be mapped to an LUT
1s selected according to the speed criteria. If 1t 1s not possible
to map any more nodes to an LUT, the feasibility of mapping,
the node to the cascade element 890 of the LUT 1s established.
I1 the feasibility exists then the density of the logic imple-
mented 1s increased as more logic of the same logic block 1s
utilized. At the same time the speed of the implemented
circuit also increases as the cascade elements 890 use hard-
wired connecting lines instead of the general routing
resources of the FPGA.

Another method that can be applied for extracting the
cascade chains 1s:

1. Prior to forming the LUTSs the nodes (logic gates) to be

mapped to the cascade elements are 1dentified.

2. The entire netlist 1s then mapped to the LUTs without

considering the cascade logic elements.

3. The identified nodes are then extracted from the mapped

list as a post operation and mapped onto the cascade
logic elements.

5

10

15

20

25

30

35

40

45

50

55

60

65

6

Since the cascade element 1s a single universal gate
(NAND or NOR) certain constraints have to be observed
while mapping gates onto the cascade element. These con-
straints can be divided into two groups.

1. Conditions that are to be verified when starting a new

chain.

2. Constraints to be verified while the cascade chain 1s

being formed.

The first group of conditions that need to be verified when
starting a new cascade chain are:

1. The number of common 1nputs to the fan in LUTs of the

cascade element should be more than four.

2. The gate implemented 1n cascade element should not be

of type XOR, XNOR or NOT.

3. Either one of the fan 1n gates should be 1n the Cascade
Element or none should be 1n cascade element.

4. Fither the gate implemented 1n the Cascade Element or
its input LUTs should be multi fan out, but not both.
5. If the output of the cascade element 1s a primary output

then the gate implemented inside the cascade element
should not be of type ‘AND’ or ‘NOR’ gate.

The second set of conditions that are needed to be verified
while the cascade chain 1s being formed are:

1. The gate implemented in cascade element should not be

of type XOR, XNOR or NOT.

2. Either one of the fan in gates should be 1n Cascade
Element or none should be 1n the Cascade Logic.

3. Only one of either the gate implemented 1n the Cascade

Logic or its mput LUTs should be multi fan out.

4. I1 the output of the cascade element 1s a primary output
then the gate implemented 1n the cascade element should
not be of type ‘AND’ or ‘NOR’.

5. It the cascade element 1s multi fan out then there should
not be more than one cascade element in the fan out list.

6. ITthe LUT 1s mult1 fan out then there should not be more
than one cascade element 1n the fan out list.

This process of utilizing the cascade elements while map-
ping a logic circuit onto target architecture 1s independent of
the algorithm used for LUT synthesis. This method provides
an optimal solution superior to existing methods without any
extra traversal of the gate level netlist.

A programmable logic device programmed 1n accordance
with the described embodiments of the present invention can
be included 1n a variety of electronic systems, such as a
computer system or an embedded system.

It will be apparent to those with ordinary skill in the art that
the foregoing 1s merely illustrative and not intended to be
exhaustive or limiting, having been presented by way of
example only and that various modifications can be made
within the scope of the present mnvention.

Accordingly, this invention 1s not to be considered limited
to the specific examples chosen for purposes of disclosure,
but rather to cover all changes and modifications, which do
not constitute departures from the permissible scope of the
present invention. The invention 1s therefore not limited by
the description contained herein or by the drawings, but only
by the claims.

I claim:

1. An improved method for mapping an electronic digital
circuit to a Look Up table (LUT) based Programmable Logic
Device (PLD) comprising the steps of:

selecting an unmapped or partially mapped LUT,

identifying a group of circuit elements for mapping based
on an available capacity of the selected LUT and a plu-
rality of mapping constraints,

mapping the group of circuit elements onto the selected

LUT,

US RE43,378 E

7

continuing the process of selecting an LUT, forming a
group of circuit elements and mapping until all the cir-
cuit elements have been mapped,

wherein the cascade logic associated with each LUT 1s also
incorporated 1n the steps of forming the group of circuit
clements and the mapping of the group; and

wherein the cascade logic 1s incorporated only after either
all circuit elements have initially been mapped onto
LUTSs or some circuit elements remain unmapped even
aiter all LUTs have been utilized.

2. An improved method as claimed in claim 1 wherein said
group of circuit elements are mapped to the cascade logic
prior to mapping on the LUTs.

3. An improved method as claimed 1n claim 1 wherein the
mapping constraints include timing constraints, placement
constraints, and size constraints.

4. An improved method as claimed in claim 1 wherein the
mapping on the Cascade logic incorporates one or more of the
tollowing constraints depending upon the connectivity of the
architecture:

XOR, XNOR and NOT functions are not mapped on the

cascade logic,

only one of either the gate mapped onto the cascade logic or
its input LUTs have multiple fan-outs,

if the output of the cascade logic 1s a primary output, then
the gate mapped onto 1t 1s not an ‘AND’ or ‘NOR’ gate,

if the mapped gate has multiple fan outs then the outputs
are not connected to more than one other gate mapped
into a cascade logic element, and

if the mapped gate connects to the output of a multi-fan out
LUT then the output of the LUT 1s not, connected to
more than one cascade logic element.

5. An improved method as claimed 1n claim 1 including the
verification of one or more of the following conditions at the
initial mapping of the cascade logic chain depending upon the
connections of the architecture:

the number of common 1nputs to the fan-1n LUTs of the
cascade logic 1s not greater than the number of inputs of
the LUT,

the gate mapped onto the cascade logic 1s not of the type
XOR, XNOR or NOT, and

only one of either the gates mapped on top the cascade
logic or its input LUTs 1s mult1 fan.

6. An improved system for mapping an electronic digital
circuit to a Look up table (LUT) based Programmable Logic
Device (PLD) comprising:

selecting means for selecting an unmapped or partially
mapped LUT,

grouping means for clustering circuit elements for map-
ping based on an available capacity of the selected LUT
and at least one mapping constraint,

mapping means for mapping the group of circuit elements
onto the selected LUT, and

wherein the grouping means and mapping means include
the mapping of cascade logic associated with the
selected LUT after mapping of the group of circuit ele-
ments onto the LUT.

7. A method for mapping circuit elements mto a program-
mable logic device including look-up tables and cascade ele-
ments, the method comprising:

selecting a look-up table;

identifying a group of circuit elements to be mapped 1nto
the selected look-up table;

mapping the 1dentified group of circuit elements nto the
selected look-up table; determining whether additional
circuit elements can be i1dentified and mapped into the
look-up table;

10

15

20

25

30

35

40

45

50

55

60

65

8

11 the determination 1s that additional circuit elements can
be mapped into the look-up table, mapping the addi-
tional circuit elements into the look-up table;

11 the determination 1s that additional circuit elements can-
not be mapped imto the look-up table, determiming
whether the additional circuit elements can be mapped
into a cascade element or elements:

11 the determination 1s that the additional circuit elements
can be mapped 1nto a cascade element or elements, then
mapping the additional circuit elements 1nto the cascade
element or elements;

11 the determination 1s that the additional circuit elements
cannot be mapped 1nto the cascade element or elements,
then selecting a new look-up table and mapping the
circuit elements into the new look-up table; and

repeating the operations of mapping the 1dentified group of
circuit elements 1nto the selected look-up table through
if the determination 1s that additional logic cannot be
mapped 1nto the cascade element or elements until all
circuit elements have been mapped.

8. The method of claim 7 wherein circuit elements are
mapped to the cascade logic prior to being mapped 1nto the
look-up tables.

9. The method of claim 7 further comprising;:

identifying the circuit elements to be mapped to the cas-
cade element or elements prior to mapping elements into
the look-up tables;

mapping all circuit elements 1nto the look-up tables with-
out consideration of the cascade element or elements to
generate a mapped list;

extracting from the mapped list the circuit elements to be
mapped to the cascade element or elements; and

mapping the identified circuit elements to the cascade ele-
ment or elements.

10. The method of claim 7 wherein the operations of map-
ping the circuit elements are done 1n accordance with certain
mapping constraints such as timing constraints, placement
constraints, and size constraints.

11. The method of claim 7 wherein circuit elements com-
prise NAND or NOR gates that are mapped to the cascade
clements.

12. A method for programming a programmable logic
device including look-up tables and cascade elements, the
method comprising:

mapping logic ito the look-up tables;

mapping logic mto the cascade elements;

repeating the operations of mapping logic into the look-up
tables and mapping logic into the cascade elements until
all logic has been mapped 1nto the programmable logic
device;

identitying logic to be mapped to the cascade elements
prior to mapping logic mto the look-up tables;

mapping all logic into the look-up tables to generate a
mapped list; and

extracting from the mapped list the logic to be mapped 1nto
the cascade elements; and

mapping the identified logic to the cascade elements.

13. The method of claim 12 wherein the mapping of logic
1s done 1n accordance with certain mapping constraints such
as timing constraints, placement constraints, and size con-
straints.

14. An eclectronic system for programming a program-
mable logic device, the programmable logic device including
look-up tables and including cascade elements, and the elec-
tronic system comprising:

a selection circuit operable to select look-up tables within

the programmable logic device;

US RE43,378 E

9

a logic grouping circuit coupled to the selection circuit and
operable to select and group logic as a function of the
available capacity of a selected look-up table; and

a mapping circuit coupled to the selection and logic group-
ing circuits and operable to map grouped logic into the >
selected look-up table and 1nto the cascade elements as a
function of the available capacity of the selected look-up
table, the cascade logic being mapped after the grouped
logic 1s mapped into the selected look-up table.

15. The electronic system of claim 14, wherein the pro- 10
grammable logic device comprises a field programmable gate
array.

16. The electronic system of claim 14, wherein the elec-
tronic system comprises a computer system. 5

17. The electronic system of claim 14, wherein the map-
ping circuit operates to map grouped logic mto cascade ele-
ments only when a selected look-up table 1s full and further
operates to select a new look-up table when grouped logic
cannot be mapped 1nto the currently selected look-up table or 3¢
the cascade elements.

18. The electronic system of claim 14 wherein each pro-
grammable logic device comprises logic block circuitry,
input/output circuitry, and routing channel circuitry.

19. A method implemented by a compiler that includes 25
software and havdware on which the software operates, the
method comprising:

identifving a circuit based on a mapping constraint and an

available capacity of a look up table (LUT) of a device;

mapping the identified civcuit onto the LUT: and 30

mapping cascade logic associated with the LUT after the

mapping of the circuit onto the LUT.

20. The method as recited in claim 19, wherein the cascade
logic is incorporated after each said circuit has been initially
been mapped onto one or move said LUTs or one or more said 35
circuits vemain unmapped even after each of the LUTs of the
device have been utilized.

21. Themethod as recited in claim 19, wherein the mapping
constraint includes a timing constraint, a placement con-
straint, or a size constraint. 40

22. The method as vecited in claim 19, wherein the mapping
of the cascade logic incorporates one or more of the following
constraints that arve dependent upon connectivity of an archi-
lecture:

XOR, XNOR and NOT functions are not mapped on the 45

cascade logic;

either the gate mapped onto the cascade logic or its input

said LUTs have multiple fan-outs, not both;,
if the output of the cascade logic is a primary output, then
the gate mapped onto it is not an ‘AND’ or ‘NOR gate; 50

if a mapped gate has multiple fan outs then respective
outputs arve not connected to more than one other gate
mapped into a cascade logic element; and

if a mapped gate connects to the output of a multi-fan out

LUT then an output of the LUT is not connected to more 55
than one cascade logic element.

23. Themethod as vecited in claim 19, wherein the mapping
of the cascade logic includes verifving one or more of the
Jollowing conditions that ave dependent upon connections of
an architecture: 60

a number of common inputs to a fan-in said LUTs of the

cascade logic is not greater than a number of inputs of
the LUT:

a gate mapped onto the cascade logic is not of type XOR,

XNOR or NOT: and 65
either the gates mapped on top the cascade logic or its
input LUTs is multi fan, not both.

10

24. The method as rvecited in claim 19, further comprising
clustering elements to form the circuit based on the available
capacity of the LUT.

25. The method as rvecited in claim 19, further comprising:

determining whether an additional circuit is able to be
mapped into the LUT: and

if determination is that the additional circuit is able to be
mapped into the LUI, mapping the additional circuit
into the LUT.

26. The method as vecited in claim 25, further comprising
if the determination is that the additional circuit is not able to
be mapped into the LUT, determining whether the additional
circuits ave able to be mapped into cascade logic.

27. The method as rvecited in claim 26, further comprising
if the determination is that the additional circuit is able to
mapped into cascade logic, then mapping the additional ciy-
cuit into the cascade logic.

28. The method as vecited in claim 27, further comprising
if the determination is that the additional circuit is not able to
be mapped into the cascade logic, then selecting a new LUT
and mapping the additional circuit into the new LUT.

29. The method as recited in claim 27, wherein the addi-
tional circuit is mapped to the cascade logic prior to being
mapped into the LUT.

30. The method as recited in claim 27, wherein the addi-
tional circuit comprises NAND and NOR gates that are
mapped to the cascade logic.

31. A method implemented by a compiler that includes
software and harvdware on which the software operates, the
method comprising:

selecting at least one look up table (LUT) of a device;

identifving a circuit based on a mapping constraint and an
available capacity of the selected LUT: and

mapping the identified circuit onto the selected LUT such
that cascade logic associated with the selected LUT is
incorvporated in mapping the circuit,

wherein the compiler maps the cascade logic after each of
said circuits has been initially been mapped onto the
LUT or one or more of said circuits vemain unmapped
even after each of the LUTs of the device have been
utilized.

32. The method as recitedin claim 31, wherein the mapping
constraint includes a timing comnstraint, a placement con-
straint, or a size constraint.

33. The method as recited in claim 31, wherein the cascade
logic is mapped to follow one or more constraints that are
dependent upon connectivity of an architecture as follows:

XOR, XNOR and NOT functions are not mapped on the
cascade logic;

either the gate mapped onto the cascade logic ov its input
said LUTs have multiple fan-outs, not both;,

if the output of the cascade logic is a primary output, then
the gate mapped onto it is not an ‘AND’ or ‘NOR gate;

if a mapped gate has multiple fan outs then respective
outputs are not connected to more than one other gate
mapped into a cascade logic element; and

if a mapped gate connects to the output of a multi-fan out
LUT then an output of the LUT is not connected to more
than one cascade logic element.

34. The method as recited in claim 31, wherein the cascade
logic is mapped to follow one or more conditions that are
dependent upon connections of an architecture as follows:

a number of common inputs to a fan-in said LUTs of the
cascade logic is not greater than a number of inputs of
the LUT:

a gate mapped onto the cascade logic is not of type XOR,

XNOR or NOT: and

US RE43,378 E

11

either the gates mapped on top the cascade logic or its

input LUTs is multi fan, not both.

35. The method as vecited in claim 31, further comprising
clustering elements to form the circuit based on the available
capacity of the selected LUT.

36. The method as vecited in claim 31, further comprising:

determining whether an additional civcuit is able to be

mapped into the selected LUT: and

if the determination is that the additional circuit is able to

be mapped into the selected LUI, mapping the addi-
tional circuit into the selected LUT.

37. The method as recited in claim 36, further comprising
if the determination is that the additional circuit is not able to
be mapped into the selected LUI determining whether the
additional circuit is able to be mapped into cascade logic.

38. The method as recited in claim 37, further comprising
if the determination is that the additional circuit is able to
mapped into the cascade logic, then mapping the additional
circuit into the cascade logic.

39. The method as recited in claim 38, further comprising
if the determination is that the additional circuit is not able to
be mapped into the cascade logic, then selecting a new said
LUT and mapping the additional circuit into the new said
LUT.

40. A method implemented by a compiler that includes
software and hardware on which the software operates, the
method comprising:

selecting, by the compiler, a look up table (LUT) from one

or more LUTs of a programmable logic device (PLD);
identifving a circuit based on a mapping constraint and an
available capacity of the selected LUT;

mapping the identified civcuit onto the selected LUT, and

mapping cascade logic associated with the selected LUT

when at least one circuit remains unmapped after each
of the one or move LUTs of the PLD have been utilized.

41. The method as recited in claim 40, wherein the mapping
constraint includes a timing constraint, a placement con-
straint, or a size constraint.

42. The method as recited in claim 40, wherein the mapping
of the cascade logic incorporates one or move of the following

constraints that arve dependent upon connectivity of an archi-
lecture:
XOR, XNOR and NOT functions are not mapped on the
cascade logic;
either the gate mapped onto the cascade logic or its input
said LUTs have multiple fan-outs, not both;,
if the output of the cascade logic is a primary output, then
the gate mapped onto it is not an ‘AND’ or ‘NOR gate;
if a mapped gate has multiple fan outs then respective
outputs arve not connected to more than one other gate
mapped into a cascade logic element; and
if a mapped gate connects to the output of a multi-fan out
LUT then an output of the LUT is not connected to more
than one cascade logic element.
43. The method as vecited in claim 40, wherein the mapping
of the cascade logic includes verifving one or more of the

Jollowing conditions that ave dependent upon connections of

an architecture:
a number of common inputs to a fan-in said LUTs of the

cascade logic is not greater than a number of inputs of

the LUT;
a gate mapped onto the cascade logic is not of type XOR,
XNOR or NOT: and

either the gates mapped on top the cascade logic or its
input LUTs is multi fan, not both.

5

10

15

20

25

30

35

40

45

50

55

60

65

12

44. The method as rvecited in claim 40, further comprising
clustering one or more elements to form the circuit based on
the available capacity of the selected LUT.

45. The method as recited in claim 40, further comprising:

determining whether an additional circuit is able to be
mapped into the selected LUT;: and

if the determination is that the additional circuit is able to
be mapped into the selected LUI, mapping the addi-
tional circuit into the selected LUT.

46. The method as vecited in claim 45, further comprising
if the determination is that the additional circuit is not able to
be mapped into the selected LUI determining whether the
additional civcuit is able to be mapped into cascade logic.

47. The method as vecited in claim 46, further comprising
if the determination is that the additional circuit is able to
mapped into the cascade logic, then mapping the additional
circuit into the cascade logic.

48. The method as vecited in claim 47, further comprising
if the determination is that the additional circuit is not able to
be mapped into the cascade logic, then selecting a new said
LUT and mapping the additional circuit into the new said
LUT.

49. An apparatus comprising a compiler that includes soft-
ware and havdware on which the software operates to cause
the apparatus to:

identify a circuit based on a mapping constraint and an
available capacity of a look up table (LUT) of a device;

map the identified civcuit onto the LUT such that cascade
logic of the LUT is incorporated in mapping the circuit,

wherein the compiler maps the cascade logic after each of
said circuits has been initially been mapped onto the
LUT or one or more of said circuits vemain unmapped
even after each of the LUTs of the device have been
utilized.

50. The apparatus as recited in claim 49, whervein the
mapping constraint includes a timing constraint, a placement
constraint, or a size constraint.

51. The apparatus as recited in claim 49, whervein the
compiler is operable to incovporate one or movre of the fol-
lowing constraints that are dependent upon connectivity of an
architecture:

XOR, XNOR and NOT functions are not mapped on the

cascade logic;

either the gate mapped onto the cascade logic or its input
said LUTs have multiple fan-outs, not both;,

if the output of the cascade logic is a primary output, then
the gate mapped onto it is not an ‘AND’ or ‘NOR gate;

il a mapped gate has multiple fan outs then rvespective
outputs are not connected to movre than one other gate
mapped into a cascade logic element; and

il a mapped gate connects to the output of a multi-fan out
LUT then an output of the LUT is not connected to more
than one cascade logic element.

52. The apparatus as recited in claim 49, wherein the
compiler is operable to verify one or more of the following
conditions that are dependent upon connections of an archi-
lecture:

a number of common inputs to a fan-in said LUTs of the
cascade logic is not greater than a number of inputs of
the LUT:

a gate mapped onto the cascade logic is not of type XOR,
XNOR or NOT: and

either the gates mapped on top the cascade logic or its
input LUTs is multi fan, not both.

53. The apparatus as recited in claim 49, whervein the

compiler is further configured to cluster elements to form the
circuit based on the available capacity of the LUT.

US RE43,378 E

13

54. The apparatus as recited in claim 49, wherein the
compiler is further configured to:
determine whether an additional circuit is able to be

mapped into the LUT: and
if the determination is that the additional circuit is able to

be mapped into the LUI map the additional circuit into
the LUT.

55. The apparatus as recited in claim 54, wherein the
compiler is further configured such that if the determination

is that the additional civcuit is not able to be mapped into the
LUT, determine whether the additional circuit is able to be
mapped into cascade logic.

56. The apparatus as recited in claim 55, wherein the
compiler is further configured such that if the determination
is that the additional circuit is able to be mapped into the
cascade logic, the additional civcuit is mapped into the cas-
cade logic.

57. The apparatus as recited in claim 56, wherein the
compiler is further configured such that if the determination
is that the additional circuit is not able to be mapped into the
cascade logic, then a new LUT is selected and the additional
circuit is mapped into the new LUT.

58. The apparatus as recited in claim 56, wherein the
additional circuit is mapped to the cascade logic prior to
being mapped into the LUT.

59. The apparatus as recited in claim 56, wherein the
additional circuit includes NAND or NOR gates that are
mapped to the cascade logic.

60. The apparatus as vecited in claim 49, wherein the
compiler includes software and hardware on which the soft-
ware operaies.

61. One or more computer-readable storage devices com-
prising software that is executable on hardware to:

select an unmapped or partially mapped look up table

(LUT) from one or move LUTs of a programmable logic
device (PLD);

more LUTs of a programmable logic device (PLD);

identify a circuit based on a mapping constraint and an

available capacity of the selected LUT;
cause the identified circuit to be mapped onto the selected
LUT and

cause cascade logic associated with the selected LUT to be
mapped after each said civcuit has been mapped onto the
LUTs or when at least one circuit remains unmapped
after each of the one or move LUTs of the PLD has been
utilized.

62. One or more computer-readable storage devices as
recited in claim 61, wherein the mapping constraint includes
a timing constraint, a placement constraint, or a size con-
straint.

63. One or more computer-readable storage devices as
recited in claim 61, whevein the mapping of the cascade logic
incorporates one ov morve of the following constraints that are
dependent upon connectivity of an architecture;

XOR, XNOR and NOT functions are not mapped on the

cascade logic;

either the gate mapped onto the cascade logic or its input

said LUTs have multiple fan-outs, not both;,
if the output of the cascade logic is a primary output, then
the gate mapped onto it is not an ‘AND’ or ‘NOR gate;

if a mapped gate has multiple fan outs then rvespective
outputs are not connected to more than one other gate
mapped into a cascade logic element; and

if a mapped gate connects to the output of a multi-fan out

LUT then an output of the LUT is not connected to more
than one cascade logic element.

5

10

15

20

25

30

35

40

45

14

64. One or more computer-readable storage devices as
recited in claim 61, wherein the mapping of the cascade logic
includes verifving one or more of the following conditions
that are dependent upon connections of an architecture:

a number of common inputs to a fan-in said LUT of the

cascade logic is not greater than a number of inputs of

the LUT:

a gate mapped onto the cascade logic is not of type XOR,
XNOR or NOT: and

either the gates mapped on top the cascade logic or its

input LUTs is multi fan, not both.

65. One or more computer-readable storvage devices as
recited in claim 61, wherein the software is further configured
to cluster elements to form the cirvcuit based on the available
capacity of the LUT.

66. One or more computer-readable storage devices as
recited in claim 61, wherein the software is further configured
o

determine whether an additional circuit is able to be

mapped into the LUT: and

if the determination is that the additional circuit is able to

be mapped into the LUIT map the additional circuit into
the LUT.

67. One or more computer-readable storvage devices as
recited in claim 66, wherein the software is further configured
such that if the determination is that the additional circuit is
not able to be mapped into the LUT, a determination is made
as to whether the additional circuit is able to be mapped into
a cascade logic.

68. One or more computer-readable storvage devices as
recited in claim 67, wherein the software is further configured
such that if the determination is that the additional circuit is
able to mapped into cascade logic, the additional circuit is
mapped into cascade logic.

69. One or more computer-readable storvage devices as
recited in claim 68, wherein the software is further configured
such that if the determination is that the additional circuit is
not able to be mapped into cascade logic, then a new LUT is
selected and the additional circuit is mapped into the new
LUT.

70. One or more computer-readable storage devices as
recited in claim 69, wherein the additional circuit is mapped
to the cascade logic prior to being mapped into the LUT.

71. One or more computer-readable storage devices as
recited in claim 70, wherein the additional civcuit includes
NAND or NOR gates that are mapped to the cascade logic.

72. One or more computer-readable storage devices as
recited in claim 61, whevein the software is a compiler.

73. One or more computer-readable storage devices com-

50 prising software that is executable on havdware to:

55

60

65

decompose a cluster of logic representing a logic function

into logic gates;

identify, among the logic gates, one or more logic gates to

be mapped to one or more cascade elements;

map the logic gates to one ov movre look up tables;

extract the identified one or more logic gates; and

map the identified one or move logic gates onto the one or

movre cascade elements.

74. The one or more computer-readable storage devices as
recited in claim 73, wherein the mapping the logic gates to
one or move look up tables causes a mapped list to be gener-
ated.

75. The one or more computer-readable storage devices as
recited in claim 74, wherein the mapped list comprises the
identified one or more logic gates configured to be extracted.

¥ ¥ H ¥ H

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : RE43,378 E Page 1 of 5
APPLICATION NO. : 12/288359

DATED : May 8, 2012

INVENTOR(S) : Sharma

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page, in Field (56), under “OTHER PUBLICATIONS”, in Column 2, Line 4,
delete “Tchnology” and insert -- Technology --, therefor.

On the Title Page, in Field (56), under “OTHER PUBLICATIONS”, in Column 2, Line 6,
delete “Inergrated™ and insert -- Integrated --, therefor.

130 :1
Techneiog
Mapping®
140
On the Title Page, 1n the Figure, delete — ” and
LynEREaIs
, 18
Hardware : YT
Computer- g .
eadable Medrm i o _I___,__,_‘
! Eﬂﬁ‘."l{:qfﬂ I Tmmy _
_ = Wagpaing”
145
Insert -- arerer e __ therefor as shown on the attached Title page.

Signed and Sealed this
Sixth Day of November, 2012

David J. Kappos
Director of the United States Patent and Trademark Office

CERTIFICATE OF CORRECTION (continued) Page 2 of 5
U.S. Pat. No. RE43,378 E

Synthesis

Technolbgy
Mapping*

In Fig. 2, Sheet 2 of 8, delete “ = B V1 [0

~ Compsgr R
Hargware | |

Compuier-
readeote Medwm

- [
Smiwade l

Insert -- --, therefor.

In Fi1g. 4, Sheet 4 of §, in Box “3307, in Line 1, delete “untill” and insert -- until --, therefor.
In Column 1, Line 32, delete “(FPGAS)” and insert -- (FPGAS) --, therefor.

In Column 1, Line 34, delete “(LUTS)™ and insert -- (LUTS) --, therefor.

In Column 2, Line 46, delete “(IC-CAD),” and 1nsert -- (ICCAD), --, therefor.

In Column 3, Line 26, delete “Array. (FPGA)” and insert -- Array (FPGA). --, therefor.

In Column 4, Line 52, delete “constraints.,” and msert -- constraints. --, therefor.

In Column 9, Line 22, 1n Claim 18, delete “claim 14” and insert -- claim 14, --, therefor.

CERTIFICATE OF CORRECTION (continued)

(15) United States
(12) Reissued Patent

(107 Patent Number:

US RE43,378 E

Sharma 45) Date of Reissued Patent: May 8, 2012
(54) MAPPING OF PROGRAMMARBLE LOGIC OTHER PUBLICATIONS
DEVICES Chen, et al,, "DAG Map: Graph Based FPGA Technology Mapping
(75} oventor: Sundl Kumar Sharma, Noida (IN) Lor Delay Optimization:”, I£EL Design and 1est of computers, {Sep.
1992),pp. 7-20.
(T3} Assjgne;a: Sicronic Remote KG, LLC, Cong, Jason et al., “An Optimal Tchaology Mapping Algorithm for
Wilmington, DE (UJS) delay opumizahion in lookup-iahle based FPGA Designs”, [EFF
Trans. on Computer aided design of Inerprated circuils and systemy
(21) Appl. No.: 12/288,359 CA4f, vol 13, (Jan. 1994),pp. 1-7.
Cong, Tason at al., “On Area/lIJepth Trade-off in [.UT-Based FPGA
(22) Filed: Oct. 17, 2008 Technology Mapping”, 10th ACMAFREE design Auiomaiion Confer-
ence (J2ACH, (1993, pp. 213-218.
Related U.S. Patent Documents Cong, Jason et al., “Bevond the Combinatorial Limit Depth Minimi-
Reissue of: zation for LUT-Based FPGA Designs”, [EEE/ ACM Mternational
(64) PPatent No.: 7,124,392 Conference on Compuler Aided Design {1CCAD), (Nov. 1993),pp.
[ssued: Oct. 17, 20006 110-114.
Appl. No.: 10/675,908 NWotice of Allowance issued in 17§, Appl. No. 10/675,908 and matled
Filed: Sep. 29, 2003 May 15, 2006
(30) Foreign Application Priority Data (Continved)
Sep. 27,2002 {INY oo, .. 90302 1 rimary Examiner — Stacy Wintmore
(51} Int. CI. (57) ABSTRACT
Gaor 17/5¢ (2006.01) A method for mapping an electronic digital ¢irenit 1o a Look
o6l 7738 (2006.01) [Jp table (1.UIT) based Programmable [.ogic Deviceoperates
HO3K 19/173 (2006.01} by selecting an wnmapped or parially mapped LUT, and
(52) US.CL ..., T16/116;326/37;,326/38; 716/104; identifying a group of circuit elements for mapping on the
116/117 selected LLUT based on the available capacity of the selected
(538) Tleld of Classification Search 716/16-18, LUT and the mapping constraints. The identified circuit ele-
716/104, 116-117; 326/37-39 ments are mapped onto the selected [LUT. The identification
See application hle for complete search history. of circuit elements and mapping is carried out while taking
into consideration the Cascade Logic associated with the
(56) References Cited selected LUT. The process continues until all circuit elements
have been mapped. The groop of circint elements 1s mapped
U.S. PATENT DOCUMENTS 10 the cascade logic prior th mapping cn the LUTs. Con-
5,946,219 A 8/1099 Mason et al. versely, the cascade logic 1s incorporated only after all circuit
6,212,670 Bl 4/2001 Kaviani elements have initially been mapped onto LUTs or some
2%%2%3; gi ‘fﬁgg é fi%r]?;’n"’i :’;I"’L clements remain unmapped after all LU T's have been utilized.
6.470.485 Bl 10/2002 Cote et al The mapping constraints include timing, placement, and size
6,490,717 Bl 12/2002 Pedersen et al. constraints.
0,725,442 Bl 472004 Coate et al.
7,124.392 B2 10/2006 Sharma 75 Claims, 8 Drawlng Sheeis
I
- — 106
| [o
| _TE
_ Comglar T I
Hardwara - -
raaciatia Masken 1| f
|| Sofeere 401 | | Tarheplogs -
— ey

|\>= EPGA,
- L
A v

1 1 1 | | 11

T T 7 VT T 1

Page 3 of 5

CERTIFICATE OF CORRECTION (continued) Page 4 of 5

U.S. Patent May 8, 2012 Sheet 2 of 8 RE43,3 78 E

—T —/} 00
I B o
Design Entry
12D
Synthesis |
Compiler 130 |
Hardware
computer-
readable Medjum
Technology
Mapping®
140
Placa & Route
120

.
- F

FIG. 2

CERTIFICATE OF CORRECTION (continued) Page 5 of 5

U.S. Patent May 8, 2012 Sheet 4 of 8 RE43.378 E

Algonthm fiow

’/300

Start From Pl 320

Gate Netiist 310

Get fanoul (until POs) check whether we can
push to LUT allocated to it's fan in

330

Feasible?
240

Yes 'No

Push to LUT 350
No
o et 1 Push to
ush o new Cascade Elements

LUT 370 180

FIG. 4

Yes

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

