USOORE43375E
(19) United States
12 Relissued Patent (10) Patent Number: US RE43.375 E
Glass 45) Date of Reissued Patent: May 8, 2012
(54) SYSTEM AND METHOD FOR 5,634,010 A 5/1997 Ciscon et al.
5,655,101 A 8/1997 O’Farrell et al.
COMMUNICATIONS IN A DISTRIBUTED 5724503 A 31008 Kleinman e al
COMPUTING ENVIRONMENT 5,737,607 A * 4/1998 Hamilton etal. 719/316
5,745,703 A 4/1998 Cejtin et al.
(75) Inventor: Graham W. Glass, San Francisco, CA 5,778,227 A 7/1998 Jordan
(US) (Continued)
(73) Assignee: Reware Asset Group, L.L.C., FOREIGN PATENT DOCUMENTS
Wilmington, DE (US) EP 0727739 Al 8/1996
(Continued)
(21) Appl. No.: 11/858,878
OTHER PUBLICATIONS

(22) Filed: Sep. 20, 2007
“Life Cycle Service Specification”, CORBA Object Services Speci-

Related U.S. Patent Documents fication, Chp. 6, OMG, http://c9i.omg.org/docs/formal/97-02-11.
e1ssue of: pdf,, (Feb. 11, 1997),pp. 6-1 through 6-62.
Rei f
(64) Patent No.: 6,947,965 .
Issued: Sep. 20, 2005 (Continued)
A‘ppl. No.. 09/451,497 Primary Examiner — Alina N. Boutah
Filed: Nov. 30, 1999
(57) ABSTRACT
(51) Int. ClL. o _ o |
GO6F 15/16 (2006.01) A system for communications in a distributed computing
GO6F 7/00 (2006.01) environment 1s provided that includes an application layer
(52) US.CL ... 709/203; 719/313; 719/314; 719/315; (132). a proxy layer (134), a reference layer (136), and an

719/316: 719/317: 719/330: 709/201; 709/202: object layer (138). The application layer (132) provides com-
707/999 106 munications between an application (108) and an operating

(58) Field of Classification Search 709/201-203; entity. The proxy layer (134) provides communications
719/315-3 17’ between the application (108) and a remote proxy (154). The
remote proxy (154) 1s a local representative for a requested

S lication file let h history. . el .
-+ appHibdtofl TE Tot COTDIETe stdltf ALy object (110) residing 1n an address space different from an

(56) References Cited address space in which the application (108) resides. The
reference layer (136) provides communications between the
US PATENT DOCUMENTS remote proxy (154) and the requested object (110). The ret-
5207490 A 4/1994 Davidson of al erence layer (136) includes communication protocol details
5325524 A 6/1994 Black et al. to support transmission of messages across a network (106)
5,341,478 A 8/1994 Travis, Jr. et al. linking the remote proxy (154) and the requested object
3,396,630 A 3/1995 Banda et al. (110). The object layer (138) includes the requested object
5,452,924 A 771995 D’Souza et al. (110). The object layer (138) maintains the separation of
5,481,721 A 1/1996 Serlet et al. C : g .
S 511197 A 4/1996 Till of al communication protocol details within the reference layer
5,577,251 A 11/1996 Hamilton et al. (136).
5,603,031 A 2/1997 White et al.
5,619,710 A 4/1997 Travis et al. 26 Claims, 7 Drawing Sheets
S
PROXY LAYER {pRg | 134

SERVER
sipe 104

US RE43,375 E

Page 2
U.S. PATENT DOCUMENTS 6,505,231 B1* 1/2003 Maruyama 709/202
. 6,513,157 Bl 1/2003 Glass

g;g%ﬁg i %ggg gﬁg‘? et al. 6,549,955 B2 4/2003 Guthrie et al.

’ : 1 =
5,793,965 A * 8/1998 Vanderbiltetal. 709/203 0,553,584 BI™ 472003 Frey etal. oo L1
5917781 A 0/1998 Fahl . 6,567,818 Bl 5/2003 Freyetal. 707/694
2915703 A 0/190% Sh akI?]lj“ etl * 6,567,861 Bl 5/2003 Kasichainula et al.
Do e A 10/100% Noblg eftj * 6,594,671 B1* 7/2003 Amanetal.ccccoe.... 1/1
a0 A 121008 Nopmeretal o no SO BL 7000 Lo T
5,862,325 A 1/1999 Reed et al. a1 1 %
S Q67 665 A /1999 Butman of al 6,629,112 Bl 9/2003 Shanketal. 1/1

; : . ' 1 =k
5,881,230 A * 3/1999 Christensen et al. 709/203 0,020,128 BL™ 9/2005 Glasscocovvviiinn 7097203
S'907 634 A 41990 Attalyrs 1 6,629,153 Bl 9/2003 Guptactal. 719/316
T00s s A % $11000 Cglygl et al. 001203 6,637,020 B1* 10/2003 Hammond 717/107

" I . e e R 1 * y
5,923,833 A * 7/1999 Freund et al.c......... 714/19 0,701,582 BI™ 312004 Quurt et al. oooooooocvvvee. 7197316
5978335 A 71999 Mori 6,708,171 Bl 3/2004 Waldoetal.coooviinnn 1/1
2056137 A 5/1990 K.Oma | 6,714,976 B1 3/2004 Wilson et al.
2083933 A 11/1000 P”Eg et al. 6,813,629 Bl * 11/2004 Kocherlakota et al. 709/203
2087506 A 11/1000 C‘;r‘;’;“;le 6,851,118 B1 2/2005 Ismael et al.

b 1 + ; 1 %
50999088 A 12/1999 Pelegri-Ilopart et al. 6,931,455 BL™ 82005 Gilass ooveresseivnereen 197316
6006018 A 15/1999 R of al 6,951,021 Bl 9/2005 Bodwell etal. 719/316
6015067 A 112000 S“Iife cldl 6,973,656 B1* 12/2005 Huynhetal. 719/315
£015081 A 15000 Dar al | 6,981,265 B1* 12/2005 Reesetal. 719/313
C 016303 A /2000 W‘ﬁ et ta i 6,993,774 B1* 12006 Glasscccccocvn.... 719/330
0076415 A 55000 G ltej ?i * 7,347,342 B2 3/2008 Grandy
603100 A 000 BMS © at | 2001/0003824 Al 6/2001 Schnier
e 041 166 A 25000 Hitmif‘fi al. 2001/0054065 Al* 12/2001 Gargcccoevevevenn.n.. 709/203
6 044400 A 25000 11 et ﬁl' 2002/0032803 Al* 3/2002 Marcosetal. 709/315
6040871 A 15000 Tﬁff&uﬂit*et . 00/703 2003/0105735 Al* 6/2003 Kukuraetal. 707/1
6,061,740 A 5/2000 Ferguson et al. FOREIGN PATENT DOCUMENTS
6,070,197 A 5/2000 Cobbetal. 719/315
6,085,030 A 7/2000 Whitehead et al. GB 2326255 12/1998
6,085,086 A 7/2000 La Porta et al.
6.092.196 A 7/2000 Reiche OIHER PUBLICATIONS
6,134,591 A 10/2000 Nickles “ . . .
6.138.235 A 10/2000 Lipkin et al. Bowers, Som.e Principles for the Encapsulation of The Behavior of
6,138,251 A 10/2000 Murphy et al. Aggregate Objects”, IEEE, (1993),6/1-6/4.
6,141,759 A 10/2000 Braddy Henderson, Sellers et al., “What 1s This Thing Called Aggregation?”,
0,151,639 A 11/2000 Tucker et al. [EEE, (Jun. 1999),236-250.
6,157,960 A 12/2000 Kaminsky et al. [zatt, Matthew et al., “Ajents: Towards an Environment for Parallel,
g*;g’sgg g iggg Elzliﬂ:égezfg?l‘ Distributed and Mobile Java Applications”, (Jun. 1999),1-10.
6:82:5 4 BI 1/2001 Campa ggnoni ét a1 “The Component Object Model (Draft) Specification”, Microsoft
6,182,155 Bl 1/2001 Cheng et al. Corporation, (Mar. 6, 1995), 1-4, 39-46.
6,195,794 Bl 2/2001 Buxton “Non Final Office Action”, U.S. Appl. No. 11/331,418, (May 11,
6,205,491 Bl 3/2001 Callsenetal. 719/315 2009), 12 pages.
6,212,574 Bl ~ 4/2001 O’Rourke et al. “Advisory Action”, U.S. Appl. No. 11/158,734, (Oct. 21, 2009), 3
6,226,690 Bl 5/2001 Bandaetal. 719/315 pages.
6,230,160 Bl 5/2001 Chan et al. o Y
6.237.135 Bl 57001 Timbol Final Office Action”, U.S. Appl. No. 11/331,418, (Dec. 8, 2009), 5
6,253,253 Bl 6/2001 Mason et al. pages. |
6,253,256 Bl 6/2001 Wollrath et al. “Non-Final Office Action”, U.S. Appl. No. 11/158,734, (Feb. 19,
6,260,021 B1* 7/2001 Wongetal.cc.coovvvenr... 705/2 2010), 21 pages.
6,260,078 Bl 7/2001 Fowlow “Final Office Action”, U.S. Appl. No. 11/158,734, (Aug. 20, 2009),
6,269,373 Bl 7/2001 Sato et al. 18 pages.
6,272,559 Bl 8/2001 Jonesetal. 719/330 McKie, S. “Software Agents: Application Intelligence Goes Under-
6,279,030 Bl 8//“200; Bﬂﬁon etal. 709/203 cover”, DBMS, (Apr. 1995),8.
6,252,580 Bl 8/2001 Chang Bent, Thomsen et al., “Mobile Agents”, External Report ECRC-92-
6,304.918 Bl 10?2007 Fraley et al. . 21, European Computer-Industry Research Center, (1995).
6,521,275 BL 1172001 McQuistan et al. Brando, Thom “Comparing COBRA and DCE”, (Mar. 1996).
6,324,543 B 11/2001 Cohen et al . .
6332 020 BRI 1/2002 Quinlan ’ Roy, Mark et al., “Interworking COM with Cobra”, (May 1996).
63343j332 R1 1/2002 Ueda Roy, Mark et al., “Choosing between Cobra and DCOM”, (Oct.
6345382 Bl 2/2002 Hughes 1996).
6,347,341 Bl /2002 Glagsl;en et al. Cappelo, Robert “Overview of RMI Architecture { Computer Science
6,347,342 Bl 2/2002 Marcos et al. Online Course Notes)”, University of Calfornia Santa Barbara
6,356,930 B2 3/2002 Garg Department of computer Science, htlp://www.cs.ucsb.edu/-cappello/
6,374,308 Bl 4/2002 Kempf et al. 290v/1ectures/rmi/architecture/sld00 1. htm, (Sep. 7, 1988).
0,385,001 Bl 5/2002 Guthrie et al. HOP;OMG'’s Internet Inter—ORG Protocol, A Brief discription ,
6,401,125 Bl 6/2002 Makarios etal. 709/229 printed from http:/www.omg.org, (1994).
gﬂj?gﬂgilg E 2//3883 g}lt‘:hlson McManis, Chuck “Take an in-depthlook at the java reflection API”,
634343595 n1 /7007 S asskj (o1 retrieved from JavaWorld.com, (Sep. 1997),1-10.
65 43 8’ 616 Bi‘ /2002 Cljﬂ enee ta al Petrie, C. J., “Agent-based Engineering, the Web, and Intelligence™,
6.442.564 B1* 82002 Frey etal. ..o 1/1 IEEE Expert, (Dec. 1996),12.
6,442,620 Bl 2/7002 Thatte et al. Wayner, P. “Free Agents”, :BYTE, (Mar. 1995),7. |
6,446,084 Bl 9/2002 Shaylor et al. WESCOM, et al., “The object/agent approach: A computing model
6,453,333 B1* 9/2002 Glyniasetal. 709/202 for the tuture”, Object Magazine, (Mar.- Apr. 1995),31-33.
6,453,362 Bl 9/2002 Bittinger etal. 719/316 Hayton, Richard et al., “Mobile Java Objects™, (1998).
6,473,791 B1* 10/2002 Al-Ghosemnetal. 700/217 Hayton, Richard et al., “FlexiNet Architecutre”, (Feb 1999),171-178.

US RE43,375 E
Page 3

Bieszczad, A. “Towards Plug-and-Play Networks wilh Mobile
Code”, SCE Technical Report, (Mar. 1997),17.

Henry, E. et al., “Fine-Grained Mobility in the Emerald Syslem”,
ACM, (Feb. 1988),22.

“SOMobjects Developer’s Toolkit Programmer’s Guide™, vol. I:
SOM and DSOM, (Dec. 1996),275-276.

Moons, H. et al., “Object Migration In a Heterogeneous World—A
Multi-Dimensional Affawr”, IEEE, (1993),62-72.

“Improved Process for Visual Development of Client/Server Pro-
grams”, IBM Technical Disclosure Bulletin, vol. 41(1),
XP-000772108,(Jan. 1998),281-283.

“Passing Proxies as Parameters to Methods and Return Values from
Methods”, IBM 1lechnical Disclosure Bulletin, vol. 41(1),
XP-000772037,(Jan. 1998),89-92.

“Distributed Object Activation and Communication Protocols™, IBM
Technical Disclosure Bulletin, US, IBM Corp. New York, vol. 37(7),
(Jul. 1, 1994),539-542.

“Java RMI Tutonal”, Revision 1.3, JDK 1.1 FCS, Sun Microsystems,
(Feb. 10, 1997),1-14.

“The Component Object Model (Draft) Specification”, Microsoft
Corporation, (Mar. 6, 1995),1-4, 39-46.

Spruit, Sandor “Reflections on Java, Beans, and Relational data-
bases”, retrieved from JavaWorld.com, (Sep. 1997),1-8.

Chuck, McManis “Take an in-depth look at the Java Reflection API”,
retrieved from JavaWorld.com,(Sep. 1997),1-8.

“Java Core Reflection, API and Specification”, JavaSoft, (Jan.
1997),40-47.

Glen, McCluskey “Using Java Reflection”, article retrieved from
www.java.sun.com website., (Jan. 1998).

“PCT/US99/24510”, International Search Report for Appl. No. PCT/
US99/24510,(Apr. 19, 2000)4.

Robert, Gray et al., “Mobile agents for mobile computing™, Technical
Report PCS-TR96-285, Dept. of Computer Science, Dartmouth Col-
lege,(May 1996).

Hof, Markus “Just-in-Time Stub Generation”, Proceedings of the
Joint Modular Languages Conference (JMLC) 97, Linz,
Austria,(Mar. 19-21, 1997),197-206.

Johansen, Dag et al., “An Introduction to the TACOMA Distributed
System Version 1.07”, Technical Report 95-23, Department of Com-
puter Science, Unmiversity of Troms, Norway, (Jun. 1995).

Orfali, et al., “The Essential Distributed Objects Survival Guide”,
Chapter 4, Published by John Wiley & Suns, Inc., (1996),67-90.
“Non Final Office Action”, U.S. Appl. No. 11/331,418, (Feb. 10,
2009),21 pages.

“Notice of Allowance™, U.S. Appl. No. 11/331,418, (Apr. 5, 2010), 4
pages.

“Final Office Action”, U.S. Appl. 11/158,734, (Aug. 4, 10), 23 pages.
“Non Final Office Action™”, U.S. Appl. No. 11/158,734, (Oct. 26,
2010), 23 pages.

Cappelo, Robert. “Overview of RMI Architecture (Computer Sci-
ence Online Course Notes)”. University of California Santa Barbara
Department of Computer Science. Sep. 7, 1998. http://www.cs.ucsb.

edu/~cappello/2901/lectures/rmi/architecture/sld001 . htm.*
HOP: OMG’s Internet Inter—ORB Protocol: A Brief Description,

printed from http://www.omg.org, published 1994.*

* cited by examiner

U.S. Patent May 8, 2012 Sheet 1 of 7 US RE43,375 E

14

@ CLIENT

DISTRIBUTED OBJECT
MANAGEMENT SYSTEM

6 FICG. T
START
24 REQUEST OBJECT
26~ LOCATE REQUESTED OBJECT

DOES A
PROXY CLASS EXIST FOR

OBJECT ON CLIENT
FIG. < SYSTEM?
30
GENERATE REMOTE PROXY
32-| CLASS FOR REQUESTED OBJECT

END

REMOTE PROXY GENERATION
CONTROL MODULE

COMMUNIGATION | | BvtE cooe | | cuass
hABLIN GENERATOR | | LOADER

REFLECTION
ENGINE

JCLASS INFORMATION 40 REMOTE
e L e it
GENERATOR
METHOD 1...n
387 T e =T 23

COMMUNICATIONS COODt

250 FIG. 3

U.S. Patent May 8, 2012 Sheet 2 of 7 US RE43,375 E

START

48 GET SUPERCLASS

S0

WAS
A SUPERCLASS
FOUND?

NO

DOES A
REMOTE PROXY
CLASS EXIST FOR
SUPERCLASS?

NO 54

RECURSIVELY CALL THIS
ROUTINE TO GENERATE

REMOTE PROXY CLASS
FOR EACH SUPERCLASS

YES

ob GET NAME AND INTERFACE

o7

29 AN INTERFACE
GENERATE
AN INTERFACE

FOR EVERY METHOD 1...n:
GET NAME, RETURN
TYPE, PARAMETERS,

AND EXCEPTIONS

28

GENERATE BYTE CODES
CREATE JCLASS OBJECT [NTO REMOTE

60 UTILIZING INFORMATION PROXY CLASS b4
FROM REFLECTION
LOAD REMOTE
6 INSERT C%L:}h[il)léNICATIONS PROXY CLASS 66
CREATE NEW INSTANCE
F IG. 4 OF REMOTE PROXY CLASS 68

U.S. Patent May 8, 2012 Sheet 3 of 7 US RE43,375 E

100

CLIENT ¥ SERvER
108 FIG. 5 110

COMMUNICATION LAYERS
APPLICATION LAYER {192

PROXY LAYER 134

REFERENCE LAYER 130

FIG. 6
292 INTERFACE GENERATOR | ~250
CLASS OR CLASS 256
OBJECT READER
REFLECTION | 258
MODULE

NAMING 260
MODULE

INTERFACE
GENERATION @
F[G. 1 7 MODULE 262

254

U.S. Patent May 8, 2012 Sheet 4 of 7 US RE43,375 E

100
COMMUNICATION LAYERS

APP&Y%EION APPLICATION 108 132
OBJECT

PROXY
LAYER

U.S. Patent May 8, 2012 Sheet 5 of 7 US RE43,375 E

~ FIG. 8

APPLICATION 5
LATER APPLICATION }108

D

i
-y
N

CLIENT ';
sipe 1027

o
% FUNCTION FUNCTION™S\A
‘\\ METHOD 2 METHOD 3" A

-7 wn

ORB 114

WYER SERVER OBJECT INTERFACE >~ 111 138
SioE 104 e 21 N\ e

e
hh-
b Sy o P ame il

SERVER DBUECT

U.S. Patent May 8, 2012 Sheet 6 of 7 US RE43,375 E

100
N FIG. 9
APPLICATION 132
o LAYER APPLICATION)~ 108
CLIEN
sip 102
PROXY LAYER
REFERENCE
LAYER

REFERENCE OBJECT
|

LOCAL REFERENCE

206 207 TYPE OBJECT

&ﬂ_—- I I W e E—— e e E—— Eamly Sl S Sasl Seas _*.-

SERVER 104 EJB FUNCTION £J8 FUNCTION £JB FUNCTION
SIDE | OBJECT METHOD 1§ OBJECT METHOD 2 OBJECT METHOD 3 /

S————4
OL%JYE%‘ SERVER OBJECT INTERFACE 111 156
192 ‘ﬁ. 196
T L b i et

T e e Gan =

SERVER OBJECT

U.S. Patent May 8, 2012 Sheet 7 of 7 US RE43,375 E

FIG. 10

REMOTE 300 .

S S—
GENERATOR
INTERFACE 250 SERVER-SIDE ORB
GENERATOR 114
CLIENT SIoE 302 120

WPE p-———————— TYPE OBJECT
GENERATOR

174 1

CLIENT SO |~304

78
FUNCTION |- - — — = CFUNCTION) CFUNCTION : 3172

GENERATOR
CLIENT SIDE |906 158
REFERENCE |————~————
GENERATOR
182 184 186
CLIENT SIDE |908 _ eofm——=—" (T oxsLl
STREAMER [— = == CSTREAVERD CSTREAMER D CSTREAMER D3\ 450
GENERATOR S T — = =7
SERVER SIDE 200
REFERENCE f————————— REFERENCE OBJECT
GENERATOR 309
SERVER SIDE 202
LOCAL REFERENCE|————~———————=——— LOCAL REFERENCE
GENERATOR 310

SERVER SIDE 204
WPE bt—-—=—cce = TYPE OBJECT
GENERATOR

312 EJB FUNCTION EJB FUNCTION EJB FUNCTION
\ OBJECT METHOD | OBJECT METHOD Z OBJECT ME[HOD 3 .r
12 213

SERVER SIOE

FUNCTION
GENERATOR

"" FUNCTION FUNCTION FUNCTION
314 210~" OBJECT METHOD 1 0BJECT METHOD 2 OBJECT METHOD 3 ,.

——n-—-_————-————————————_-—-'

IR
f%\
|

My

US RE43,375 E

1

SYSTEM AND METHOD FOR
COMMUNICATIONS IN A DISTRIBUTED
COMPUTING ENVIRONMENT

Matter enclosed in heavy brackets |] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

TECHNICAL FIELD OF THE INVENTION

This invention relates 1n general to the field of software
systems, and more particularly to an improved system and
method for communications 1n a distributed computing envi-
ronment.

BACKGROUND OF THE INVENTION

Object oriented programming 1s a method of programming
that abstracts a computer program 1nto manageable sections.
The basis of object oriented programming 1s the concept of
encapsulation. Encapsulation 1s a methodology that com-
bines the subroutines, or methods, that mampulate data with
the declaration and storage of that data. This encapsulation
prevents the data from arbitrarily being accessed by other
program subroutines, or objects. When an object 1s invoked,
the associated data 1s available and can be manipulated by any
of the methods that are defined within the object to act upon
the data. The basic component of encapsulation 1s a class. A
class 1s an abstraction for a set of objects that share the same
structure and behavior. An object 1s a single instance of a class
that retains the structure and behavior of the class. Objects
also contain methods that are the processes that mstruct an
object to perform some procedure or manipulation of data
that the object controls. Classes may also be characterized by
their interface which defines the elements necessary for
proper communication between objects.

Distributed computing allows an object 1n a first computer
system to seamlessly communicate with and manipulate an
object contained 1n a second computer system when the com-
puters are connected by a computer network. The second
computer system may also be referred to as another address
space. Sophisticated distributed computing systems have
removed the communications burden from the computer pro-
grams, Or objects in an object oriented programming environ-
ment, and placed 1t in a mid-level operating system that man-
ages communications across a computer network to facilitate
a client system’s (first computer system) access to and
manipulation of data contained on a server system (second
computer system). The server system could be a computer 1n
a different address space and remote to a user on the client
system.

Distributed computing and object oriented programming,
have led to the development of distributed object manage-
ment systems. These distributed object management systems
are generally referred to as object request brokers (ORBs).
When an object on a client computer system requests access
to an object that exists on a server computer system, the
distributed object management system provides the commu-
nication link between the two computer systems and, thus,
between the two objects. The distributed object management
system removes the requirement of the client object commu-
nicating directly with the server object. Instead, current dis-
tributed object management systems utilize a remote proxy
object on the client system which models the interface of the
server object. The client computer system that requested

10

15

20

25

30

35

40

45

50

55

60

65

2

access to the server object communicates with the remote
proxy object that exists on the client computer system. There-
fore, the client computer system can operate as 11 1t 1s com-
municating directly with a local object. The remote proxy
object contains the necessary communications information to
allow the client computer system to access and manipulate an
object that actually exists on the server computer system.
Remote proxies allow the client system to disregard the loca-
tion of the requested object and the communication details.

A proxy 1s an object that has an interface and method list
identical to another object. However, it does not contain the
same detailled computer code. Instead 1t contains communi-
cations requirements that allow the proxy to communicate
directly with another object without knowledge of the
requesting object. Proxies can be used to control access to
certain objects. They may also be used to remove the labor of
distributed processing communications from local objects.
For example, 1f object A residing on a first computer system
needs to communicate with object B residing on a second
computer system, object A must know the location of object
B and have the necessary computer code to initiate commu-
nications with object B. A proxy for object B located on the
first computer system allows object A to simply communicate
with the proxy of object B as 1f object B resided on the same
computer. The proxy for Object B has all the necessary infor-
mation and computer code to communicate with the real
object B on the second computer system. This type of proxy
1s known as a remote proxy since it exists on a computer
system remote from the computer system that contains the
requested object.

Systems heretofore known have required all possible
remote proxies to be built when the software system 1s 1ni-
tially compiled and loaded onto a computer. This process can
be very time consuming and the resultant remote proxies can
require large amounts ol computer storage. In addition, soft-
ware system designers must predict every possible remote
proxy that may be needed in the future so that it can be built
when the software system 1s loaded. This process does not
allow a system to adapt to 1ts usage and environment.

With the rise of distributed computing systems, client/
server computing, and internet/intranet interactions, intern-
ode communications between applications and objects has
become a necessity. Early operating systems lacked support
for inter-application communications, forcing software
developers to write custom code to perform a remote proce-
dure call for each and every application that needed remote
communications.

Distributed computing systems oiten use a client/server
architecture. Typically, a client 1s an application that runs on
a personal computer and relies on a server to perform some
operations. The server 1s a computer on a network that man-
ages network resources such as storage devices, printers, or
network tratfic. Client-side operations are those occurring on
the client-side of a client/server system. For example, on the
World Wide Web, applets may be downloaded and executed
on a client and are client-side operations. Server-side opera-
tions occur on the server of a client/server system. For
example, management services performed by the server
occur on the server machine and are server-side operations.
Client/server systems require communications and opera-
tions to take place across a network. ORBs facilitate these
communications and operations across the network.

Maicrosoit has developed DCOM (Distributed Component
Object Model) to support inter-application communications
across networked computer systems. Another technology
standard for inter-object communications 1s CORBA (Com-
mon Object Request Broker Architecture) established by the

US RE43,375 E

3

Object Management Group (OMG) which 1s a consortium
sponsored by many companies, including Digital Equipment
Corporation, Hewlett Packard, IBM and Sun Microsystems,
Inc. CORBA defines how messages from one object to
another are to be formatted and how to guarantee delivery.
The messaging in CORBA 1s performed by Object Request
Brokers (ORBs). ORBs receive messages, determine the
location of the receirving object, route the message to the
receiving object, and perform all necessary platform and lan-
guage translations. In object oriented technology, a message
1s typically a request sent to an object to change 1ts state or to
return a value. The object has encapsulated methods to imple-
ment the response to the received message. Another system
for inter-object communications 1s Voyager developed by
ObjectSpace, Inc. Through technology such as DCOM,
CORBA, and Voyager, objects can communicate with remote
objects residing 1n other computer platforms connected by a
network.

The existence of different ORBs from different developers
has resulted 1n several different communication protocols for
transmission and reception of messages across a network. For
example, CORBA uses a communication protocol called
Internet Inter-ORB Protocol (I1IOP). DCOM uses a commu-
nication protocol called object Remote Procedure Call
(ORPC), and Voyager uses a communication protocol called
Vovager Remote Messaging Protocol (VRMP). The commu-
nication protocol used by a particular ORB may be referred to
as 1ts native protocol or native format. Conventional remote
proxies generally have the communication protocol hard
coded within the proxy.

CORBA compliant ORBs utilize stubs and skeletons to
provide inter-object communications across a network. The
stub 1s on the requestor side and sends messages across the
network to a skeleton on the remote object side. The stub and
skeleton take care of certain communication details for the
proxy on the requestor side and the object on the remote
object side. CORBA compliant ORBs generally use a utility
to generate a stub and skeleton for each class using informa-
tion provided 1n an Interface Description Language (IDL) file
for each object.

Enterprise Java Beans (EJB) 1s an object oriented program-
ming specification developed by Sun Microsystems for use
with its Java computer programming language. When using
EJB, certain mechanisms are interposed as an intermediate
layer between a client object and a server object.

This 1s
generally accomplished by creating a wrapper class having
the same methods as the object being wrapped and adding,
wrapping code 1 each method of the wrapper class. An
example of the wrapping code would be adding security to the
wrapped object such as limiting access to client objects with
the proper password or key. Wrapper classes are generally
generated at run time and add additional complexity to the
distributed processing system 1n addition to negatively
impacting system performance.

In certain situations, existing software needs to be used
with distributing computing systems. Many conventional
ORBs require an interface for each class for proper commu-
nications across a network. A user may not have access to the
source code or may be restricted by license as to modifying
the source code. Thus, the user may not be able to add inter-
faces to class files within the existing software. Adding inter-
faces allows classes to be used remotely 1n the distributed
computing system.

SUMMARY OF THE INVENTION

Accordingly, aneed has arisen for a system and method for
communications in a distributed computing environment that

10

15

20

25

30

35

40

45

50

55

60

65

4

provides communications between both compatible and non-
compatible object request brokers.

According to an embodiment of the present invention, a
system for communications in a distributed computing envi-
ronment 1s provided that includes an application layer, a
proxy layer, a reference layer, and an object layer. The appli-
cation layer provides communications between an applica-
tion and an operating entity. The proxy layer provides com-
munications between the application and a remote proxy. The
remote proxy 1s a local representative for a requested object
where the requested object resides 1n an address space difier-
ent from an address space where the application resides. The
reference layer provides communications between the remote
proxy and the requested object. The reference layer includes
communication protocol details to support transmission of
messages across a network linking the remote proxy and the
requested object. The object layer includes the requested
object and maintains a separation of communication protocol
details within the reference layer.

The present invention provides various technical advan-
tages over conventional systems for communication in a dis-
tributed computing environment. For example, one technical
advantage 1s providing communications between object
request brokers that use different communication protocols.
In addition, the present invention 1solates the communication
protocol details 1nside a reference layer so that application
programs and objects do not require information regarding
the location of a requested object or the communication pro-
tocol used to access the object. Other technical advantages
may be readily apparent to one skilled in the art from the
tollowing figures, description and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present inven-
tion and the advantages thereol, reference 1s now made to the
following description taken 1n conjunction with the accom-
panying drawings in which like reference numbers indicate
like features and wherein:

FIG. 1 1llustrates a block diagram of a distributed object
management system;

FIG. 2 1llustrates a flow diagram of a method for determin-
ing when to dynamically generate remote proxy classes;

FIG. 3 illustrates a block diagram of a system for dynami-
cally generating remote proxy classes;

FI1G. 4 1llustrates a flow diagram of a method for dynami-
cally generating remote proxy classes;

FIG. § illustrates a block diagram of a distributed comput-
Ing system;

FIG. 6 illustrates different commumnication layers within
the distributed computing system;

FIG. 7 1llustrates a block diagram of the communication
layers of the distributed computing system where a client-
side object request broker provides a proxy layer and part of
a reference layer;

FIG. 8 illustrates additional details of the reference layer
provided by the client-side object request broker;

FIG. 9 1llustrates a block diagram of additional details of
the reference layer provided by a server-side object request
broker:;

FIG. 10 illustrates a block diagram of a system for dynami-
cally generating remote proxy classes and other objects for
the distributed computing system; and

FIG. 11 1llustrates a block diagram of an interface genera-

for.

DETAILED DESCRIPTION OF THE INVENTION

Referring to FIG. 1, a distributed processing computer
system generally indicated at 10 1s illustrated that comprises

US RE43,375 E

S

one or more server systems 12 and one or more client systems
14. The client/server computer systems allow for decentral-
ized computing including the ability to manipulate data
which 1s resident on a remote system. The server system 12
and client system 14 may comprise a personal computer, mini
computer, main frame computer, or any other suitable com-
puter type device. In a computer network environment, each
computer 1s assigned a unique address. Therefore, 11 data,
code or objects exist on a different computer, 1t exists 1n a
different address space.

The client system 14 requests access to data or services that
may be contained on server system 12. Server system 12 may
then process the request and approve access as requested by
client system 14. Client system 14 1s connected to server
system 12 via a distributed object management system 16
operating across a computer network. The distributed object
management system 16 handles the communications
between client system 14 and server system 12. Without
distributed object management system 16, distributed pro-
cessing could not take place since client system 14 would not
be able to determine the location of or obtain access to the
requested data or services. The distributed object manage-
ment system 16 may comprise Voyager, a distributed network
communications system developed by ObjectSpace, Inc.,
CORBA (Common Object Request Broker Architecture), a
technology for inter-object communications developed by a
consortium of companies, DCOM, an inter-application com-
munications system for networked computers developed by
Microsoit, RMI, an inter-object communications system for
networked computers developed by Sun Microsystems, Inc.,
or any other suitable distributed object management system.

An object 1s an mstance of a class within the programming
methodology of object oriented programming. The present
invention may be implemented using the Java language,
developed by Sun MicroSystems, Inc., or any other suitable
computer language.

When an object class source code description is created in
the Java language, it 1s stored on a storage device as a .java
file. Upon compilation, the object class executable code 1s
represented as a .class file on the storage device. When an
object 1s needed, a new 1nstance, as prescribed by the .class
file 1s created, and 1t 1s then referred to as an object. Server
system 12 may contain one or more subject objects 18 for
which client system 14 may 1ssue arequest for access. In such
a case, subject object 18 1s the subject of client system’s 14
request. Client system 14 may contain one or more local
objects 20. Local object 20 can 1tself be a subject object, and
subject object 18 can 1tself be a local object depending on
what computer, or address space, 1s making the request for
access. For purposes of illustrating the present invention,
local object 20 and subject object 18 exist in different address
spaces. However, both local object 20 and subject object 18
could reside on the same computer and still invoke the system
and method of the present invention.

Local object 20 may request access to subject object 18.
This request 1nvokes the distributed object management sys-
tem 16. In order to 1solate the distributed processing commu-
nication requirements from local object 20, a remote proxy
object 22 may be created on server system 12 and loaded onto
client system 14. Remote proxy object 22 has an interface and
list of methods 1dentical to subject object 18. Remote proxy
object 22 1s so named since 1t 1s remote from subject object 18,
and 1t provides a local representative for an object which may
reside 1n a different address space. Remote proxies in general
are responsible for encoding a request and its arguments and
sending the encoded request to the subject object that may
exist 1n a different address space. Remote proxies also hide

10

15

20

25

30

35

40

45

50

55

60

65

6

the location of the subject object from the requesting local
object. Therefore, any local object can assume, from an
access point of view, that any object it needs 1s local. Local
object 20 communicates with remote proxy object 22 which
then communicates with subject object 18 via distributed
object management system 16. By doing this, local object 20
1s unconcerned with the location of subject object 18.

Currently, a system developer must anticipate all necessary
remote proxies and create the remote proxy classes. Some
distributed object management systems have a utility which
augments the build process by allowing remote proxy classes
to be built when the system 1s compiled. Although this pro-
cess minimizes the system developer’s effort, 1t still involves
system developer intervention, computer resources and time.
Another disadvantage with current distributed object man-
agement systems 1s that these remote proxy classes must be
kept in sync with the subject classes as the subject classes and
interfaces are modified. Another disadvantage with current
distributed object management systems 1s that all remote
proxy classes must be stored on the computer and available
for use when needed. This creates high overhead 1n developer
elfort, computer storage and processing requirements.

In contrast, a system constructed using the principles out-
lined 1n this patent application dynamically generates remote
proxy classes as needed at run-time. There are several advan-
tages of this method. The primary advantage 1s reduced sys-
tem development time since the system developer does not
have to manually generate remote proxy classes when the
system 1s 1nitially compiled or manually regenerate remote
proxy classes each time a subject object class 1s modified. The
system also reduces computer program storage requirements
since remote proxy classes are not a permanent part of the
operating environment. It also minimizes compile and load
time for the computer program since remote proxy classes do
not have to be generated at compile and load time. In order to
optimize system performance, generated remote proxy
classes remain in memory until the distributed object man-
agement system 1s shut down.

Dynamic Generation of Remote Proxies

Referring again to FIG. 1, the dynamic generation of
remote proxies may be accomplished by parsing the .class or
Java file for subject object 18 and creating a .java file for
remote proxy object 22 which contains the interfaces and
methods of the subject object 18. The Java compiler may then
be mvoked to compile the .java file 1nto a .class file for remote
proxy object 22. The compiled .class file can then be loaded
into the computer system via a class loader which 1s a stan-
dard element 1n a Java environment. A .class file must be
loaded before 1t 15 available for use by distributed processing
computer system 10. Once the .class file 1s loaded, a new
instance of the compiled .class file may be created which will
be remote proxy object 22.

The process of parsing the subject object 18 class (subject
class 19) or .java file, creating a source code file for remote
proxy class 23, compiling, loading, and creating a new
instance may be excessively slow at run-time. In order to
address this 1ssue, a reflection process may be used on subject
object 18 to determine 1ts name, intertaces and list of methods
and then to directly generate the byte codes that define the
class of subject object 18. The generated byte codes represent
subject class 19. The byte codes are equivalent to the execut-
able code stored 1n a .class file. The byte codes can then be
loaded into the computer system memory with the class
loader. This embodiment eliminates the need to parse the
.class file, create a .java source code file, and shell out the .java
file to a compiler since the byte code generation process
occurs as part of the dynamic generation of remote proxies.

US RE43,375 E

7

This entire process of dynamic generation of remote proxies
will be discussed 1n detail with reference to FIGS. 2, 3 and 4.

Referring to FIG. 2, the process of determining whether a
remote proxy 1s necessary 1s mvoked via a request from local
object 20 for access to subject object 18. The method begins
at step 24 where local object 20 on client system 14 requests
access to subject object 18 on server system 12. This request
could be for any object whether 1t 1s local or remote and 1n a
different address space. The system generates and utilizes
remote proxy objects in all inter-object communication to
provide additional processing support. Thus, any communi-
cation between objects, regardless of their location, utilizes
remote proxy objects. These remote proxy objects act as a
middle man between the requested object and the requesting,
object to provide additional processing functionality such as
increased security.

Referring again to FI1G. 2, the method then proceeds to step
26 where the requested object 1s located on either client
system 14 or server system 12. The method proceeds to step
30 where a determination 1s made regarding the need for a
remote proxy class. If remote proxy class 23 already exists on
client system 14, then the method terminates since remote
proxy classes are not removed from client system 14 until the
distributed object management system 16 1s shut down. How-
ever, 11 remote proxy class 23 does not exist on client system
14, the method then proceeds to step 32 where the byte codes
representing remote proxy class 23 are generated on server
system 12 and loaded 1into client system 14 memory based on
the name, interfaces and methods of subject object 18. A
method for generating remote proxies 1s described 1n detail
with reference to FIGS. 3 and 4.

FI1G. 3 1s a functional diagram of the portions of distributed
object management system 16 that are used to create remote
proxy classes as necessary. Remote proxy generation control
module 34 1s invoked at step 32 1n FIG. 2. When the distrib-
uted object management system 16 invokes the remote proxy
generation control module 34, the method previously
described has already determined that the remote proxy class
23 does not yet exist on client system 14. Remote proxy
generation control module 34 generates remote proxy 22 on
client system 14 so local object 20 can communicate with
subject object 18 via distributed object management system
16.

As previously discussed, 1n object oriented programming,
an object 1s an mstance of a class. Classes may be defined 1n
a class hierarchy where each class inherits the attributes of all
of its ancestors. Inheritance 1s a concept that maps related
classes onto each other 1n a hierarchical way. This allows a
descendant of a class to inherit all of 1ts variables and methods
from its ancestors as well as create 1ts own. The immediate
ancestor of a class 1s known as the class’ superclass. There-
fore, 1n order to determine all of a class’s attributes, all of the
class’s ancestors, or superclasses, should be determined.

To fully define a remote proxy for a subject object, remote
proxies should be generated for each of the subject object’s
superclasses. By generating these superclass remote proxies,
the remote proxy for the subject object will inherit all of the
variables and methods of its ancestors, or superclasses. An
alternative to generating superclass remote proxies includes
adding all of the superclass methods and interface require-
ments to the remote proxy class. By adding the superclass
information to the remote proxy class, the need for generating
superclass remote proxies 1s eliminated.

Referring again to FIG. 3, remote proxy generation control
module 34 first ivokes reflection engine 36 to determine
information regarding subject class 19. The process of retlec-
tion operates on subject class 19 which 1s the Java .class file

10

15

20

25

30

35

40

45

50

55

60

65

8

for subject object 18. Although for 1llustrative purposes, sub-
ject object 18 and 1ts Java .class file, subject class 19, exist on
server system 12, subject class 19 could exist on either client
system 14 or server system 12. Therelfore, the dynamic gen-
eration of remote proxy classes as described 1n the present
invention could take place on either client system 14 or server
system 12.

Reflection 1s a process that determines what an object can
do, how 1t 1s defined, and how 1t communicates with other
objects. Reflection mirrors the public view of an object to
collect information to facilitate the creation of proxies that
resemble objects on the public view, but are very different
internally, or privately. The public view of an object repre-
sents the information external objects must know in order to
communicate with the first object. Proxies need to be retlec-
tions, or duplicates on the surface, of objects since proxies
perform specific tasks such as controlling access to or com-
munications with the objects they represent. Thus, proxies
need to look like the object on the outside, but on the 1nside,
proxies contain unique computer code to accomplish their
assigned function. The reflection process 1s only concerned
with determining the public view of an object. Therefore, the
information determined by the retlection process includes the
following: name; list of implemented interfaces; list of meth
ods; and superclass information.

Continuing with FIG. 3, retlection engine 36 1ssues queries
against subject class 19, which 1s the .class file for subject
object 18, to determine each of subject class 19 superclasses,
1ts name, 1ts interfaces, and each of 1ts methods. The results of
these queries are temporarily stored within remote proxy
generation control module 34 as JClass information 38.
JClass information 38 1s a temporary storage area for the
name, superclasses, iterfaces, and methods of subject class
19. JClass information 38 could also include the name, inter-
faces, and methods of each of subject class 19 superclasses.

I1 the queries of reflection engine 36 determine that subject
class 19 has no associated interfaces, reflection engine 36
invokes 1nterface generator 250 to generate an interface for
subject class 19. The generated interface 1s associated with
subject class 19 and added to JClass information 38. Interface
generator 250 will be discussed 1n detail with reference to
FIG. 11.

If subject class 19 has superclasses, a remote proxy may be
first generated for each superclass using the system and
method described with reference to the present invention.
After the superclass remote proxies are generated, JClass
information 38 contains the name, interface, and list of meth-
ods for subject class 19. An alternate methodology for pro-
viding superclass methods and interfaces for the remote
proxy class 1s to add all superclass method and interface
information to the remote proxy class. By doing this, the need
for separate superclass remote proxies 1s eliminated.

Once the name, interface, methods, and superclass infor-
mation are determined for subject class 19, a communication
enabling module 40 adds to JClass information 38 the com-
puter code necessary for remote proxy object 22 to commu-
nicate with subject object 18 via distributed object manage-
ment system 16. The communication enabling module 40
inserts the computer code into JClass information 38 which 1s
the definition of all the information that remote proxy object
22 needs to function within distributed object management
system 16.

Since a remote proxy’s purpose 1s to communicate with a
subject object that may exist either in a different address
space or in the same address space, the remote proxy contains
essentially the following information: interfaces identical to
the subject object; a list of methods identical to the subject

US RE43,375 E

9

object; and computer code necessary for the remote proxy to
communicate with the subject object. In an alternate embodi-
ment of the present invention, the remote proxy would con-
tain all of the information mentioned above and the interfaces
and methods of all of the subject object’s superclasses.

At this point, JClass information 38 contains subject
object’s 18 name, interfaces, methods, and the computer code
necessary for communications within distributed object man-
agement system 16. JClass information 38 could also contain
the superclass mformation for subject object 18. The next
function invoked by remote proxy generation control module
34 1s byte code generator 42. The purpose of byte code gen-
crator 42 1s to directly generate the executable code corre-
sponding to JClass information 38. JClass information 38 1s
the definition of the Java class of which remote proxy object
22 1s an instance. That 1s, JClass information 38 1s the defi-
nition of remote proxy class 23. Byte code generator 42
reviews JClass information 38 and generates the correspond-
ing byte codes, or executable code, into remote proxy class 23
which 1s equivalent to a Java .class file except that 1t 1s not
stored on a permanent storage device.

Byte code generator 42 1s a collection of Java classes that
are capable of taking the description of the needed proxy class
in JClass information 38 and directly generating the execut-
able Java code 1n memory. The function of byte code genera-
tor 42 1s similar to that of a Java compiler. Like a Java com-
piler, byte code generator 42 generates executable Java code.
However, the inputs are different. A compiler requires a
source code file containing a string ol bytes that 1s the
sequence of statements for a Java object definition. The string
of bytes 1s parsed by the Java compiler and translated into
executable Java code. In contrast, byte code generator 42
takes general information regarding the needed Java object
and directly generates executable Java code without the need
for the intermediate step of creating a Java source file. This
technique yvields considerable time savings since several steps
are omitted. For example, like a Java compiler, byte code
generator 42 generates a hexadecimal “CAFEBABE™ to indi-
cate to the Java virtual machine that a Java .class file begins at
that point in memory. Byte code generator 42 1s constructed in
such a way that the byte codes are generated in the sequence
required by the Java virtual machine.

For each Java construct, byte code generator 42 writes the
appropriate header information and byte codes representing
the Java construct mto computer memory. Thus, there 1s a
block of code, or bytes, for each Java construct. As described
above, JClass information 38 contains the computer code
necessary for communications within distributed object man-
agement system 16. Byte code generator 42 translates this
communications information into byte codes recognizable to
the Java virtual machine. When byte code generator 42 ter-
minates, the string of hexadecimal bytes necessary to define
the proxy class has been stored 1n memory as remote proxy
class 23 which 1s equivalent to an executable Java .class file.
The generated remote proxy class 23 1s stored in memory and
does not go through the system file procedure. Remote proxy
class 23 has a unique name which 1s derived from subject
class 19 name. For example, 1 subject class 19 1s named
“Foo.class™, its remote proxy class 23 name would be
“Foo_Proxy.class”.

Before remote proxy class 23 canbe used, itmust be loaded
onto client system 14 utilizing a class loader 46. Class loader
46 may comprise any number of suitable programs which
exist 1 typical object oriented programming environments.
The class loader 46 takes the generated bytes of remote proxy

10

15

20

25

30

35

40

45

50

55

60

65

10

class 23 stored in memory and loads them 1nto a class struc-
ture which then can be nstantiated to create remote proxy
object 22.

FIG. 4 1s a flow diagram that illustrates the process of
generating a remote proxy when invoked by step 32 1n FI1G. 2
and as represented 1n general by the block diagram in FIG. 3.
The method begins at step 48 where the retlection engine 38
queries subject class 19 to determine 1ts superclass. The
method then proceeds to step 50 where a determination 1s
made regarding the existence of a superclass for subject class
19. If a superclass 1s found for subject class 19, then the
method proceeds to step 52 where a determination 1s made
regarding the existence of the remote proxy class on client
system 14 representing subject class™ 19 superclass. I a
remote proxy class does not exist for subject class’ 19 super-
class, the method proceeds to step 54 where the remote proxy
class 1s generated for subject class’ 19 superclass by recur-
stvely invoking the remote proxy generation control module
34. Thus, step 54 recursively invokes the method 1llustrated 1n
FIG. 4.

Referring to step 32, 11 the remote proxy class does exist on
client system 14 for subject class’ 19 superclass, then the
method proceeds to step 56 (described below) since remote
proxy classes already exist for all of subject object’s 18 super-
classes.

In an alternate embodiment of the present invention,
instead of recursively generating remote proxy classes for
cach of subject class 19 superclasses, the interfaces and meth-
ods of each of subject class 19 superclasses are stored 1n
JClass information 38 and are later used 1n the generation of
remote proxy class 23. In the alternate embodiment, steps
48-54 would not exist in their current form. Instead, these
steps would consist of determining the names, interfaces, and
methods of all of subject class 19 superclasses and storing the
information in JClass information 38.

Referring to step 30 11 a superclass does not exist for
subject object 18, then the method proceeds to step 56 where
reflection engine 36 queries subject class 19 to determine
subject class’ 19 name and interface. The method proceeds to
decisional step 57 where a decision 1s made regarding the
existence of an imterface for subject class 19. I an interface
does not exist for subject class 19, the NO branch of deci-
sional step 37 proceeds to step 59 where 1nterface generator
250 generates an interface for subject class 19. The method
then proceeds to step 38 (described below).

If an interface does exist for subject class 19, the YES
branch of decisional step 57 proceeds to step 38 where reflec-
tion engine 36 queries subject class 19 regarding 1ts methods.
Reflection engine 36 1ssues queries for each of subject class’
19 methods until all methods are determined. For each of
subject class’ 19 methods, the software system determines the
method name, return type, parameters, and exceptions and
stores the mnformation 1 JClass information 38.

The method then proceeds to step 60 where reflection
engine 36 creates JClass information 38 from the name, inter-
face, and methods information determined 1n steps 56 and 58.
The method then proceeds to step 62 where communication
enabling module 40 1serts 1n JClass information 38 the com-
puter code, in the form of an expression tree, necessary for
remote proxy object 22 to commumnicate with subject object
18 via distributed object management system 16.

The method then proceeds to step 64 where byte code
generator 42 generates the executable code representing
JClass information 38 into remote proxy class 23. The
method then proceeds to step 66 where class loader 46 loads
remote proxy class 23 onto client system 14 where it 1s now
available for use. The method then proceeds to step 68 where

US RE43,375 E

11

remote proxy object 22 1s generated as a new instance of
remote proxy class 23 which was loaded 1n step 66.
Communication Layers

Referring to FIG. 5, a distributed computing system 1s
generally indicated at 100. Distributed computing system 100
may comprise a typical client/server system. Distributed
computing system 100 includes a client system 102 and a
server system 104 linked by a network 106. Distributed com-
puting system 100 may be any suitable distributed processing,
system including the previously described distributed pro-
cessing computing system 10. Client system 102 and server
system 104 may be any suitable computing device such as a
mainframe computer, personal computer, or portable com-
puter. Network 106 may comprise an Internet or other suit-
able network connecting client system 102 with server system
104. Distributed computing system 100 also includes a client-
side object request broker (ORB) 112 and a server-side object
request broker (ORB) 114. Client-side ORB 112 executes on
client system 102 and provides client-side communication
support for distributed computing system 100. Similarly,
server-side ORB 114 executes on server system 104 and
provides server-side communication support for distributed
computing system 100.

Client system 102 includes a client application 108 that
accesses a server object 110 on server system 104. Server
object 110 may also be referred to as a target object or
requested object since server object 110 1s the target of a
request for access initiated by client application 108. Client
application 108 may be an application resident on client sys-
tem 102, an application uploaded from server system 104, an
applet uploaded from server system 104, or any other suitable
application or procedure. Client-side ORB 112 and server-
side ORB 114 commumnicate across network 106 to provide a
communication link between client application 108 on client
system 102 and server object 110 on server system 104.
Client-side ORB 112 and server-side ORB 114 are respon-
sible for encoding messages nto an on-the-wire format and
decoding the message upon receipt. An example of this type
of distributed computing system would be the World Wide
Web operating across the Internet. “On-the-wire format™ as
used here refers to the format required for the communication
protocol used by the receiving device or the recerving ORB.
Client system 102 would typically be a personal computer
connected to the Internet. Server system 104 would typically
be a web server hosting web pages and other network
resources. Client-side ORB 112 may be resident on client
system 102, or 1t may be uploaded from either server system
104 or any other computing device connected to network 106.

Referring to FIG. 6, communication layers of distributed
computing system 100 are generally indicated at 130. Com-
munication layers 130 are the layers through which a request,
or message, from client application 108 passes as 1t proceeds
to server object 110. The messages sent between client appli-
cation 108 and server object 110 may include a method mnvo-
cation. The method 1mnvocation 1s a request from client appli-
cation 108 to invoke a particular method on server object 110
and may include the server object name, the method name or
number to be mvoked, and any other arguments or data
needed by the mvoked method. Communication layers 130
include an application layer 132, a proxy layer 134, a refer-
ence layer 136 and an object layer 138.

Application layer 132 includes the primary application or
procedure being executed by client system 102 and any inter-
actions with an application controller such as a human opera-
tor at a computer terminal. An operating entity such as a
human operator at a computer terminal interacts with the
primary application or procedure being executed 1n applica-

10

15

20

25

30

35

40

45

50

55

60

65

12

tion layer 132 on client system 102. Application layer 132
communications with the proxy layer 134.

Proxy layer 134 provides a local object on client system
102 for a referenced server object 110 on server system 104.
The local reference 1s a remote proxy that allows application
layer 132 to ignore both the location of the server object 110
and the communication details involved 1n communicating
across network 106. The local object 1n proxy layer 134 is
referred to as a remote proxy as previously described. Proxy
layer 134 communicates with reference layer 136.

Reference layer 136 allows client-side ORB 112 to com-
municate with server-side ORB 114 using the communica-
tion requirements of server-side ORB 114. The communica-
tion requirements, or communication protocol, for server-
side ORB 114 may not be i1dentical to the communication
requirements, or communication protocol, for client-side
ORB 112. Thus, the communication details for distributed
computing system 100 are kept in reference layer 136. Com-
munication details include formulating the proper argument
l1st using commands and syntax that may be unique to client-
side ORB 112 and encoding the resulting message nto an
on-the-wire format acceptable to server-side ORB 114.
Server-side ORB 114 receives and decodes the message from
client-side ORB 112. Reference layer 136 communicates the
message to the object layer 138.

Object layer 138 receives the message and forwards 1t to
server object 110. Server object 110 performs the procedure
or method requested by the message and forwards the result
through communication layers 130 back to client application
108.

Reference Layer Abstraction

Referring to FIG. 7, the commumnication layers 130 of dis-
tributed computing system 100 are 1llustrated. Many object-
oriented environments utilize an iterface as an intermediary
for a requested object. The interface defines the public view of
the requested object. The public view includes the arguments
passed to and from the requested object 1n addition to the
methods available for invocation. Interfaces are used to pro-
vide inheritance from multiple sources in the Java program-
ming language. Although the present embodiment uses inter-
faces, other embodiments may not use interfaces.

When client application 108 requests access to server
object 110, aremote proxy 154 1s generated for a server object
110 as previously described. Remote proxy 154 has an inter-
face, IProxy 152. In one embodiment, remote proxy 154 is
generated from a standard base proxy class. Since Java allows
inheritance from only one class, interfaces are used to allow
remote proxy 154 to inherit methods and functionality from
server object 110. Server object 110 has a server object inter-
face 111. Remote proxy 154 may communicate with server
object 110 through server object interface 111. Traditional
ORB mmplementations hardcode information about the com-
munication protocol used to access server object 110 1nto the
remote proxy. This requires different proxy implementations
for each communication protocol used 1n distributed comput-
ing system 100. The present invention removes the hardcoded
communication protocol information from remote proxy 154
and places 1t 1n reference layer 136 where a reference object
158 handles the communication protocol details. Reference
object 158 1s bound to remote proxy 154 as remote proxy 154
1s generated. Since reference object 158 resides in reference
layer 136, application layer 132 and proxy layer 134 do not
need to know the particular communication protocol used to
communicate with server object 110 or the specific location
of server object 110. The communication protocol used by a
particular ORB may be referred to as the ORB’s native pro-
tocol or native format. In a particular embodiment, commu-

US RE43,375 E

13

nication enabling module 40, referred to 1n FIG. 3, generates
reference object 158 and places a link 1n remote proxy 154 to
reference object 158.

Reference object 158 has a separate implementation for
cach communication protocol used in distributed computing
system 100. The different communication protocols may be
any suitable communication protocol including I10OP, ORPC,
and VRMP as previously discussed. An instance of reference
object 158 for the communication protocol associated with
server object 110 1s bound to remote proxy 154 when remote
proxy 154 1s generated.

In operation, client application 108 requests access to
server object 110. The request for access may include 1nvo-
cation of a method of server object 110. This request causes
server-side ORB 114 to generate a remote proxy 154 for
server object 110 as previously described except that 1n this
embodiment, the computer code necessary for communica-
tions 1s replaced by a link to an i1nstance of reference object
158 for the communication protocol associated with server
object 110. Remote proxy 154 i1s loaded onto client system
102 where 1t 1s available for use by client application 108.
Communications between client application 108 and server
object 110 proceed by client application 108 communicating
with remote proxy 154 through 1ts itertface IProxy 152.

The method of remote proxy 154 invoked by client appli-
cation 108 packages the arguments for the requested method
and passes them to reference object 158 using its interface,
IReference 156. Reference object 158 forwards the argu-
ments to a streamer object (to be discussed in the following
section) corresponding to the mvoked method for encoding
the arguments mnto a format corresponding to Reference
object 158 1dentifies the communication protocol associated
with server object 110. The arguments are passed through
network 106 to server-side ORB 114. Server-side ORB 114
receives and decodes the arguments and then passes the argu-
ments to server object 110 where the requested method 1s
processed. Server object 110 passes a result through server-
side ORB 114 across network 106 to reference object 158.
Retference object 158 decodes the result and passes 1t to
remote proxy 154. Remote proxy 154 then makes the result
available to client application 108.

Function Objects and Streaming Architecture

Referring to FIG. 8, additional details of the client-side
ORB 112 implementation and communication details are
illustrated. In addition to generating reference object 158,
communication enabling module 40, discussed with refer-
ence to FIG. 3, may also generate a type object 170 linked to
proxy object 154 and inserted between proxy object 154 and
reference object 158. Type object 170 represents the class of
server object 110. Type object 170 defines the methods on
server object 110 to which remote proxy 134 has access. Type
object 170 includes a set of function objects 172 linked to type
object 170. Set of function objects 172 corresponds in number
to a set of methods 190 associated with server object 110.
There 1s one function object 1n set of function objects 172 for
cach method 1n set of methods 190. The function objects 1n set
of function objects 172 are sorted 1n ascending order based on
a position of the corresponding method 1n set of methods 190.
By placing methods 1n function objects, each method can be
invoked using a consistent interface. Set of function objects
172 represents the methods 1n set of methods 190 that client
application 108 may invoke.

In operation, when remote proxy 134 receives a method
invocation Irom client application 108, proxy object 154
scans 1ts associated type object 170 and 1invokes the function
object 1n set of function objects 172 corresponding to the
invoked method. Fach function object 1mn set of function

10

15

20

25

30

35

40

45

50

55

60

65

14

objects 172 communicates the method 1nvocation to refer-
ence object 158 through 1its interface, IReference 156. In one
embodiment, reference object 158 utilizes a set of streamers
180 to format the method invocation into format consistent
with the communication protocol used by server object 110.
In that embodiment, there i1s one streamer per method per
class. Thus, all instances of a class (all objects with the same
class) use the same streamer. Set of streamers 180 handles the
encoding and transmission of arguments and results accord-
ing to the communication protocol used by the receiving
object or ORB.

The streamers 1n set of streamers 180 correspond 1n num-
ber to the function objects 1n set of functions 172. In one
embodiment, communication enabling module 40, discussed
with reference to FIG. 3, links a streamer corresponding to
cach function object in set of function objects 172 to reference
object 158. The streamer in set of streamers 180 receives
method arguments and a method number from reference
object 158 and formats the method 1mvocation for communi-
cation across network 106. Passing method or function num-
ber instead of method name reduces the amount of data trans-
mitted across network 106 thereby reducing the amount of
time used for data transmission. Although some ORBs may
receive and process a method number, other ORBs may
require a method name. Set of streamers 180 creates and
sends serially a group of bytes corresponding to the method
invocation mitiated by client application 108.

Communication enabling module 40 links streamers 1n set
of streamers 180 to reference object 158. In one embodiment,
communication enabling module 40 verifies that an instance
of a corresponding streamer exists on client system 102 prior
to linking reference object 158 to the streamer. For example,
if a method one streamer 182 has already been instantiated for
method one of the class associated with server object 110,
communication enabling module 40 links reference object
158 to the method one streamer 182. If method one streamer
182 has not been previously instantiated, communication
enabling module 40 instantiates a method one streamer 182
and links 1t to reference object 158. Method 1 streamer 182
may include the non-variable communications specific pro-
gram code to provide communications between client-side
ORB 112 and server-side ORB 114. Each streamer 1n set of
streamers 180 1s connected to network 106 so that data may be
transmitted to server-side ORB 114. Upon receipt, server-
side ORB 114 decodes the communication and forwards the
method 1vocation to the appropriate method 1n set of meth-
ods 190.

Wrapping Mechanism

Referring to F1G. 9, details of server-side ORB 114 imple-
mentation and communication support for distributed com-
puting system 100 are illustrated. Some object oriented envi-
ronments use a wrapping approach to interpose an
intermediate layer between client objects and server objects.
One such approach 1s Enterprise Java Bean Containers. In the
present invention, the generated classes associated with cer-
tain wrapping approaches such as Enterprise Java Beans are
climinated and the generated class functionality placed 1n
specialized function objects referred to as EJB function
objects. The generated class functionality may include secu-
rity checking, error handling, transaction management, or any
other suitable common functionality.

Server-side ORB 114 includes a reference object 200, a
local reference 202, a type object 204, and one or more EJB
function objects 206. Upon receipt of a message from client-
side ORB 112, server-side ORB 114 obtains a reference
object 200 based on communication protocol information
included 1n the message. Reference object 200 1s analogous

US RE43,375 E

15

to, and functions as, reference object 158. Thus, server-side
ORB 114 locates a reference object 200 for the communica-
tion protocol used by server object 110. The message received
by server-side ORB 114 1s formatted and streamed by a
streamer 1n set of streamers 180 specifically for receipt and
processing by server-side ORB 114. Reference object 200
decodes the message from the on-the-wire format and recon-
stitutes the message for processing by server-side ORB 114.
Retference object 200 then forwards the message to local
reference 202. Local reference 202 includes address and type
information for server object 110. Using that information,
local reference 202 locates the appropriate type object 204 for
server object 110. Type object 204 represents the class of
server object 110 and includes a function object 210 for each
method 190 accessible by client application 108.

Type object 204 1s generated by server-side ORB 114 at the
same time server-side ORB 114 dynamically generates
remote proxy 154. An EJB function object 206 1s interposed
as a specialization of function object 210. EJB function
objects 206 are used since creating an mstance of a common
class, EJB function, 1s less time-consuming and utilizes fewer
system resources than generating a wrapping class for certain
wrapping approaches used in object-oriented environments
such as Enterprise Java Beans. EJB function objects 206 may
also be considered specialized function objects or wrapping
objects. Type object 204 forwards the message to the appro-
priate EJB function object 206 for preliminary processing.
Preliminary common processing may include security check-
ing, error handling, transaction management, or any other
suitable common functionality. After the preliminary com-
mon processing 1s complete, EJB function object 206 invokes
the requested method 190 1n server object 110.

After server object 110 processes the method invocation,
the result 1s sent back to client application 108 through essen-
tially the same communication path except that reference
object 200 uses an appropriate streamer from set of streamers
220 to encode the result into the appropriate on-the-wire
communication protocol format, and the streamers 1n set of
streamers 180 1n client-side ORB 112 are bypassed. Client-
side ORB 112 locates the appropriate reference object 158
utilizing communication protocol information received with
the result message. Set of streamers 220 operates 1n the same
way as set of streamers 180.

CORBA Helperless Communications

A particular implementation of an object request broker 1s
Common Object Request Broker Architecture (CORBA).
CORBA classes and structures are derived from Interface
Description Language (IDL) definitions, and CORBA-com-
pliant ORBs provide a utility to generate code to represent
these classes and structures 1n a format native to the specific
CORBA-compliant ORB 1mplementation. Conventional
CORBA ORBs also use the IDL definitions to generate sup-
port classes including a client-side stub and server-side skel-
cton. The client-side stub accepts local requests for access to
a server-side target object and encodes the request for trans-
mission across a network to the server-side skeleton. The
server-side skeleton decodes incoming requests and forwards
the decoded requests to the target object that resides on the
Server system.

The present invention eliminates the need for stubs and
skeletons as used in conventional CORBA-compliant ORBs
by using the classes and structures generated from the IDL to
provide an ORB-specific implementation of the IDL classes
and structures that includes the information needed to com-
municate with other ORBs. Thus, CORBA stubs and skel-
ctons are not generated. The code generation utility mserts a
type code and communication protocol information into each

10

15

20

25

30

35

40

45

50

55

60

65

16

generated class. The type code 1dentifies a structure corre-
sponding to the original IDL definition and provides commu-
nications support for communications between CORBA and
non-CORBA ORBs.

When a remote invocation 1s made from a remote proxy
154 1n a client-side ORB 112 of the present invention, the
reference layer 136 queries the generated class and deter-
mines the associated type code and communication protocol
information. The type code 1s used to 1dentity the type object
170 and the communication protocol information is used to
determine an appropriate reference object 158 to be used to
format the request for transmission to a CORBA-compliant
server-side ORB 114. The appropriate reference object 158
formats the request into IIOP format. IIOP 1s the communi-
cation protocol used by CORBA ORBs. The reference object
158 uses a streamer from set of streamers 180 to transmit the
request across network 106 to server-side ORB 114.

When a remote invocation 1s received 1n a server-side ORB
114 of the present invention from a CORBA-compliant cli-
ent-side ORB 112, the server-side ORB 114 queries the target
object 110 to determine the expected format of the request.
Remote mvocations are transmitted from the CORBA-com-
plhiant client-side ORB 112 in IIOP format. The reference
object 158 1n the server-side ORB 114 then decodes the
request 1nto the expected format and forwards the request to
the target object 110.

Server-side ORB Object Generation

Retferring to FIG. 10, server-side ORB 114 1s illustrated
summarizing the various object generation processes of
server-side ORB 114 discussed with reference to FIGS. 1-9.
Server-side ORB 114 includes a remote proxy generator 300,
a client-side type generator 302, a client-side function gen-
erator 304, a client-side reference generator 306, a client-side
streamer generator 308, a server-side reference generator
309, a server-side local reference generator 310, a server-side
type generator 312, and a server-side function generator 314.
Upon receiving a request for access to server object 110,
server-side ORB 114 generates a set of objects to be uploaded
to client-side ORB 112. This set of objects 1s generated by
remote proxy generator 300, client-side type generator 302,
client-side function generator 304, client-side reference gen-
crator 306, and client-side streamer generator 308. The
uploaded set of objects 1s used by client-side ORB 112 for
communications with server-side ORB 114 and access to
server object 110. The uploaded set of objects includes proxy
object 154, type object 170, set of function objects 172,
reference object 158, and set of streamers 180. In another
embodiment, the atorementioned uploaded set of objects 1s
generated by the client-side ORB 112 using processes equiva-
lent to those used by server-side ORB 114 1n response to
transierring a remote proxy instance generated by remote
proxy generator 300 to the client-side ORB 112.

Remote proxy generator 300 1s similar in structure and
operation to remote proxy generation control module 34. In
this embodiment, communication enabling module 40 inserts
information into the remote proxy class identifying the com-
munication protocol utilized by server-side ORB 114 so that
reference object 158 may be located to encode and send a
message from client-side ORB 112 to server-side ORB 114.
Remote proxy generator 300 generates proxy object 154.
Remote proxy generator 300 may also mnvoke interface gen-
erator 250 to remote enable classes without interfaces. Inter-
face generator 250 and remote enabling classes without inter-
faces are discussed in the following section.

Client-side type generator 302 generates type object 170
using class information obtained from server object 110. Type
object 170 represents the class of server object 110 and

US RE43,375 E

17

includes an array of function objects 172 that provide access
to the methods of server object 110.

Client-side function generator 304 generates a set of func-
tion objects 172 corresponding in number to the methods of
server object 110. Each method of server object 110 has a
corresponding function object 1n set of function objects 172.
By placing the methods within function objects, a standard
object communication statement may be used which does not
require knowledge of the location of server object 110 or the
communication protocol used to communicate with server
object 110.

Client-side reference generator 306 generates reference
object 158. Reference object 158 represents the communica-
tion protocol used by server-side ORB 114. Client-side ref-
erence generator 306 instantiates a standard reference class
for the communication protocol utilized by server-side ORB
114.

Client-side streamer generator 308 generates a set of
streamers 180. Set of streamers 180 corresponds in number to
the methods of server object 110. Each method of server
object 110 has an associated streamer object 1n set of stream-
ers 180. Each streamer object formats and streams an appro-
priate method invocation request for the associated method of
server object 110. Each method on server object 110 may
require a different argument list. Thus, separate streamer
objects are used to accommodate the different argument lists.

After server-side ORB 114 generates proxy object 154,
type object 170, set of function objects 172, reference object
158 and set of streamers 180, server-side ORB 114 uploads
the packet of objects to client-side ORB 112 where they are
stored for use in communicating with server object 110
through server-side ORB 114. In another embodiment, after
server-side ORB 114 generates proxy object 154, proxy
object 154 1s uploaded to client-side ORB 112 where client-
side ORB 112 generates type object 170, set of function
objects 172, reference object 158 and set of streamers 180 and
stores the generated 1tems for use 1n communicating with the

server object 110 through server-side ORB 114.

Server-side reference generator 309 generates reference
object 200. Reference object 200 manages the decoding of

messages and method 1nvocations received by server-side
ORB 114. Reference object 200 also forwards the messages
and method 1mnvocations to the corresponding type object 204
associated with a server object referenced 1n the messages and
method nvocations.

Server-side local reference generator 310 generates local
reference 202 based on the name and type of server object
110. Local reference 202 allows an incoming message des-
tined for server object 110 to communicate with a local ref-
erence 202 within server-side object request broker 114
betore proceeding to mvoking a method on server object 110.

Server-side type generator 312 generates type object 204
representing the class of server object 110. Type object 204 1s
similar 1n structure and operation to type object 170.

Server-side function generator 314 generates function
objects 210 or specialized tunction objects such as EJBiunc-
tion objects 206. Function objects 210 or EJB function
objects 206 correspond in number to the methods of server
object 110. Each function object 210 or EJB function object
206 directly invokes a corresponding method on server object
110. Each EJBfunction object 206 1s instantiated from a stan-
dard EJBfunction class that provides common functionality
in addition to the functionality of function object 210. Unique
functionality may be added to each EJBfunction object 206
after 1t has been nstantiated to provide for unique processing

5

10

15

20

25

30

35

40

45

50

55

60

65

18

needs included 1n function object 210. Server-side function
generator 314 generates function objects 210 or EJBiunction

objects 206.

Remote Enabling Classes Without Interfaces

Retferring to FIG. 11, an interface generator 2350 1s 1llus-
trated for use 1n remote enabling classes without interfaces. A
typical remote proxy 154 resides in client system 102 and
communicates through network 106 with server object 110
using server object interface 111. Existing class files on server
system 104 may need to be used remotely by client applica-
tion 108 on client system 102. Belore the existing class file
may be used remotely, 1t should have an interface 1n order to
comply with the communication standards of typical ORBs.
Interface generator 250 generates an interface 254 for a class
file 252. Interfaces provide for inheritance from multiple
sources and ease of method invocation. Without interfaces, a
complex procedure using retlection 1s used to invoke methods
directly on objects.

In one embodiment, interface generator 250 1s a command
line predevelopment utility used to generate interfaces for
classes on server system 104 that will be used remotely 1n
distributed computing system 100. In that embodiment, the
software developer knows that certain class files 252 will be
used remotely. The software developer provides interface
generator 250 with a list of class files 252 for which interfaces
254 are to be generated.

Interface generator 250 includes a class reader 256, a
reflection module 258, a naming module 260 and an interface
generation module 262. Class reader 256 retrieves the first
class file name from an input list and reads the associated

class 252 from a class repository.

Reflection module 258 uses retlection on class 252 to deter-
mine a name of the class, public methods of the class, and a
signature for each of the public methods of the class. The
reflection process may be any suitable reflection process
including Java retlection as previously described. The signa-
ture of each public method includes a name of the method,
arguments used by the method, a result value for the method,
and exceptions of the method.

Naming module 260 creates a name for interface 254 using
any suitable naming convention. In one embodiment, the
name for interface 254 1s created by prepending the letter “I”
with the name of class 252. The interface Ixxx 1s generated for
a class named xxx, where xxx 1s any class name.

Interface generation module 262 generates an interface for
class 252 using the name of class 252, the public methods of
class 252, and the signature of each public method of class
252. Interface 254 1s then added to the class file repository
where 1t 1s available for use within distributed computing
system 100.

In another embodiment, interface generator 250 1s used
during the previously described dynamic generation of
remote proxies. In that embodiment, remote proxy generation
control module 34 searches for interfaces implemented by
class 252 for which a remote proxy class 23 1s being gener-
ated. The interfaces may include a standard interface such as
java.rmi.Remote or com.objectspace.voyager.IRemote. In
addition, the interface may include a default interface with an
“I” name as previously described. If none of the interfaces 1s
found, remote proxy generation control module 34 1nvokes
interface generator 2350 through reflection engine 36 to gen-
crate an interface 254 for a specified class 252. After the
interface 254 1s generated, it 1s added to the class file reposi-
tory where it 1s available for use with an object having a class
of class 252 and when instantiating the remote proxy class 23
to give remote proxy object 22.

US RE43,375 E

19

Thus, 1t 1s apparent that there has been provided 1n accor-

dance with the present invention a system and method for
remote enabling classes without interfaces that satisfies the
advantages set forth above. Although the present invention
and 1ts advantages have been described in detail, it should be
understood that various changes, substitutions, and alter-
ations may be readily apparent to those skilled 1n the art and
may be made herein without departing from the spirit and the
scope of the present invention as defined by the following
claims.

What 1s claimed 1s:
1. A system for communication in a distributed computing

environment, comprising:

a client system having a client application;

a server system having a server object;

a network connecting the client system to the server sys-
tem,;

a client-side object request broker, embodied on a com-
puter memory, executing on the client system and oper-
able to provide client-side communication support for
communications between the client application and the
server object, the client-side object request broker
divided 1nto a plurality of communication layers includ-
ing an application layer, a proxy layer, a reference layer,
and an object layer, the reference layer operable to
remove communication protocol details for accessing
the server object from the proxy layer and place into the
proxy layver a link to a reference object configured to
manage the communication protocol details, the refer-
ence layer shielding the other layers from communica-
tion messaging protocol details used to communicate
with the server object;

a server-side object request broker, embodied on the com-
puter memory, executing on the server system and oper-
able to provide server-side communication support for
communications between the client application and the
server object, the server-side object request broker hav-
ing a different communication messaging protocol than
the client-side object request broker.

2. A distributed communications system, comprising;:

an application layer, embodied on a computer memory, on
a client system for executing applications and applets
and for mteracting with one or more users or operating
entities, the application layer providing communica-
tions between applications or applets and users or other
operating entities;

a proxy layer, embodied on the computer memory, on the
client system for providing communications between
the application or applet and a remote proxy, the remote
proxy residing 1n the client system and representing a
server object 1n a server system;

a reference layer, embodied on the computer memory, 1or
providing communication messaging protocol specific
links with server objects existing on other computers,
the reference layer providing communications between
the proxy layer and an object layer, the reference layer
operable to remove communication protocol details for
accessing server objects from the proxy layer, wherein
the application layer and the proxy layer are not aware of
communication details 1n the reference layer, the refer-
ence layer including a client-side object request broker
executing on the client system and a server-side object
request broker executing on the server system, the client-
side object request broker having a different communi-
cation messaging protocol than the server-side object
request broker; and

20

[an] #%¢ object layer, embodied on the computer memory,
for providing communications between the server object
and the reference layer.

3. A method for communications 1n a distributed comput-

5 1ng environment, comprising;

10

15

20

25

30

35

40

45

50

55

60

65

requesting a method mvocation on a server object residing
on a second computer from an application 1n an appli-
cation layer residing on a first computer, the first com-
puter and the second computer each including an object
request broker having different communication messag-
ing protocols;

generating a remote proxy on the first computer;

removing communication messaging protocol details for
accessing the server object from the remote proxy;

placing the communication messaging protocol details
into [the] a reference object;

forwarding the method 1vocation to the remote proxy i a
proxy layer, the remote proxy locally representing the
server object;

forwarding the method invocation to a reference layer
where [a] the reference object encodes the method invo-
cation 1nto a communication messaging protocol used
for communications with the server object, wherein the
application and the remote proxy are not aware of the
communication messaging protocol the reference layer;

transmitting the encoded method vocation through the
reference layer where a second reference object residing
on the server object’s computer decodes the method
invocation into a format recognizable by the server
object;

forwarding the decoded method invocation to the server
object 1n an object layer; and

invoking an associated method on the server object.

4. The method of claim 3, further comprising:

forwarding a result of the method invocation on the server
object to the application.

5. A system for communications in a distributed computing,

environment, comprising:

an application layer, embodied on a computer memory, for
providing communications between an application and
an operating entity;

a proxy layer for providing communications between the
application in the application layer and a remote proxy
in the proxy layer, the remote proxy being generated for
locally representing a requested object for interactions
with the application, the requested object residing 1n an
address space different from an address space of the
application;

a reference layer, embodied on the computer memory, for
providing communications between the remote proxy
and the requested object, the reference layer including a
reference object having communication protocol details
to support transmission of messages across a network
linking the remote proxy and the requested object, the
reference layer operable to remove the communication
protocol details placed into the remote proxy for access-
ing the requested object and 1nsert into the remote proxy
a link to the reference object, wherein the application
layer and the proxy layer are not aware of the commu-
nication protocol details 1n the reference layer, wherein
the reference layer includes a client-side object request
broker executing on a client system and a server-side
object request broker executing on a server system and a
network connecting the client system to the server sys-
tem, the client-side object request broker and the server-
side object request broker having non-compatible com-
munication messaging protocols;

US RE43,375 E

21

an objectlayer, embodied on the computer memory, includ-
ing the requested object, the object layer providing a
separation of communication messaging protocol
details 1n the reference layer.

6. The system of claim 1, wherein the application resides 1n
the application layer.

7. The system of claam 1, wherein the operating entity
interacts with the application 1n the application layer.

8. The system of claim 1, wherein the proxy layer shields
the application layer from a location of the requested object
and a communication messaging protocol used to communi-
cate with the requested object.

9. The system of claim 1, wherein the reference layer
shields the application layer, the proxy layer, and the object
layer from communication messaging protocol details used to
send messages between the application and the requested
object.

10. The system of claim 1, wherein the requested object
resides 1n the object layer.

11. The system of claim 1, further comprising a reference
object residing in the reference layer, the reference object
operable to provide the communication messaging protocol
details used for communications with the requested object.

12. The system of claim 1, wherein
the application layer exists on a client system;
the proxy layer exists on the client system:;
the reference layer exists on the client system and a server

system; and

the object layer exists on the server system.

13. The system of claim 1, wherein the reference layer uses
the communications messaging protocol of the server-side
object request broker.

14. A computer-implemented method for communications
in a distributed computing environment, comprising:

requesting a method invocation for a method of a server

object on a server computer at a server system by an
application on a client computer at a client system, the
server system including a server-side object request bro-
ker having a different communication messaging proto-
col than a client-side object request broker on the client
system;

generating a remote proxy on the client system to locally

represent the server object;

torwarding the method 1nvocation to the remote proxy on
the client system;

torwarding the method invocation to a first reference object
from the remote proxy, the first reference object residing
on the client system;

removing communication messaging protocol details for
accessing the server object from the remote proxy;

placing the communication messaging protocol details
into the first reference object;

encoding the method vocation into a communication
messaging protocol used for communications with the
server object, the communication messaging protocol
being identified by the first reference object, wherein the
application and the remote proxy are not aware of the
communication messaging protocol in the first reference
object;

transmitting the encoded method mnvocation across a net-
work;

receiving the encoded method invocation 1n a second ref-
erence object on the server system;

decoding the encoded method mvocation into a format
recognizable by the server system;

forwarding the decoded method invocation to the server
object;

invoking the method on the server object.

10

15

20

25

30

35

40

45

50

55

60

65

22

15. The method of claim 14, further comprising forwarding
a result on the method 1nvocation on the server object to the
application.

16. The method of claim 14, further comprising generating
a remote proxy for the server object and placing the remote
proxy on the client system.

17. The method of claim 14, wherein transmitting the

encoded method 1nvocation includes serially sending each
byte of the encoded method invocation from the client system
to the server system.

18. The method of claim 17, wherein recerving the encoded
method 1nvocation includes reconstituting the encoded
method invocation from the serially recerved bytes.

19. A client system comprising:

a client application, embodied on a computer memory, that
is executable by the client system in an application
layer; and

a client-side object vequest broker, embodied on the com-
puter memory, that is operable to support communica-
tions between the client application and a server object
via a network, the client-side object request broker hav-
ing a plurality of communication layers including a
proxy layer and a reference layer, the reference layer
operable to remove communication protocol details for
accessing the server object from the proxy layver and
insert into the proxy laver a link to a reference object
configured to manage the communication protocol
details such that the application layer and the proxy
laver are not aware of the communication protocol
details used to communicate with the server object,
whevrein the client-side object request broker uses a dif-
Jerent communication protocol than a server-side object
request broker that supports the server object.

20. The client system of claim 19 wherein the client-side
object request broker resides in an address space that is
different than an address space of the server-side object
request broker.

21. The client system of claim 19 wherein the rveference
laver is operable to provide a link to the server object.

22. The client system of claim 19 wherein a location of the
server object is hidden from one or movre of the other layers
Using a vemote proxy.

23. The client system of claim 19 wherein the proxy layer
includes a remote proxy that is dynamically generated during
run time.

24. A server comprising a sevver-side object request broker
that:

is embodied on a computer memory;

resides in a different address space from a client system
having client-side object vequest broker; and

is operable to provide access to a server object requested
by the client-side object request broker to the client-side
object request broker, the client-side object request bro-
ker configured to remove communication protocol
details for accessing the server object from a proxy layer
at the client system and rveplace the communication pro-
tocol details with a link to a reference layer at the client
system to cause a client application and a remote proxy
at the client system to be unaware that the server object
was obtained from the differvent address space.

25. The server of claim 24 wherein the server-side object
request broker is configured to communicate with the client-
side object request broker via a network.

26. The server of claim 24 wherein the server-side object
request broker uses a messaging protocol that is diffevent than
a messaging protocol used by the client-side object request

broker.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : RE43,375 E Page 1 of 1
APPLICATION NO. : 11/858878

DATED : May g, 2012

INVENTOR(S) . Glass

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Claims
In Column 19, Line 59, in Claim 2, delete “accessing’” and insert -- accessing the --, therefor.

In Column 19, Line 59, m Claim 2, delete “layer,” and insert -- layer and replace the communication
protocol details with the communication messaging protocol specific links, --, theretor.

In Column 20, Line 5, in Claim 3, delete “comprising;” and insert -- comprising: --, theretor.
In Column 20, Line 25, in Claim 3, delete “protocol” and insert -- protocol in --, therefor.

In Column 21, Lime 5, 1n Claim 6, delete “1,” and insert -- 5, --, therefor.

In Column 21, Lme 7, 1n Claim 7, delete “1,” and insert -- 5, --, therefor.

In Column 21, Line 9, 1n Claim &, delete ““1,” and 1nsert -- 5, --, therefor.

In Column 21, Line 13, in Claim 9, delete “1,” and insert -- 5, --, therefor.

In Column 21, Line 18, in Claim 10, delete “1,” and insert -- 5, --, therefor.

In Column 21, Line 20, n Claim 11, delete ““1,” and 1nsert -- 5, --, therefor.

In Column 21, Lime 24, m Claim 12, delete “1,” and insert -- 5, --, therefor.

In Column 21, Line 30, in Claim 13, delete “1,” and 1nsert -- 5, --, therefor.

Signed and Sealed this
Twenty-ninth Day of October, 2013

Teresa Stanek Rea
Deputy Director of the United States Patent and Trademark Olffice

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

