USOORE43301E
(19) United States
12 Relissued Patent (10) Patent Number: US RE43.301 E
Claassen 45) Date of Reissued Patent: Apr. 3, 2012
(54) METHOD AND APPARATUS FOR AN 5,043,870 A 8/1991 Ditzel et al.
IMPROVED STACK ARRANGEMENT AND 2323223 i i(l)/{ iggi g’ﬁmamoto et ?1‘1
367, arangpani et al.
OPERATONS THEREON 5,408,542 A 4/1995 Callahan
5,450,562 A 9/1995 Rosenberg et al.
(75) Inventor: Stuart L. Claassen, Santa Clara, CA 5.493.667 A 7/1996 Huck
(US) 5,530,883 A 6/1996 Baum et al.
5,592,297 A 1/1997 Van Dorsselaer
: . : 5,594.914 A 1/1997 Coomes et al.
(73) Assignee: Apple Inc., Cupertino, CA (US) 5014906 A 611000 Tadanra of al
(21) Appl. No.: 10/270,157 OTHER PUBLICATIONS
(22) Filed: Oct. 10, 2002 McDaniel, G. “IBM Dictionary of Computing”, pp. 547 and 643
1994).
Related U.S. Patent Documents ()
Reissue of: (Continued)
(64) Patent No.: 6,148,376
Issued: Nov. 14, 2000 Primary Examiner — Hiep Nguyen
Appl. No.: 08/720,545 (74) Attorney, Agent, or Firm — Fenwick & West LLP
Filed: Sep. 30, 1996
U.S. Applications: (57) ABSTRACT
(63) Continuation-in-part of application No. 08/644,354, An apparatus and method for an improved stack comprises an
filed on May 10, 1996, now Pat. No. 6,028,962. advantageous indexing scheme and stack arrangement allow-
ing more eificient performance of stack operations. The most-
(51) Inmt. CI. recently-used stack item appears at the top of the stack and the
GOt 12/00 (2006.01) least-recently-used item is at the bottom of the stack. Values
(52) US.CL ..., 711/132;°711/110; 711/136 in between the top and bottom items are ordered from top to
(58) Field of Classification Search 711/132, bottom with succeedingly less recently used items. An index-
711/110, 136, 202 ing scheme 1s used to indirectly reference locations of the
See application file for complete search history. stack 1items 1n the stack. A set of registers 1s used to reference
the locations of the stack items in an embedded memory
(56) References Cited array. The registers function as pointers to the memory array
locations. To promote an 1tem to the top of the stack, the 1tem
U.S. PATENT DOCUMENTS is identified as the most-recently-used and the contents of the
3.810,112 A 5/1974 Aho et al. other registers are changed to specily the new locations, e.g.
4,245,302 A 1/1981 Amdahl these pointers are shifted down one. Similarly, to insert a new
4,546,385 A 1071985 Anastassiou item on to the top of the stack, the pointers are shifted and a
j’ggg’ggg i g;ggg Eﬁ:lllde(t ol new 1tem 1s written 1nto the memory array location that con-
4757.440 A 7/1088 Scheuneman tains the least-recently-used item.
4,882,709 A 11/1989 Wyland
5,023,828 A 6/1991 Grundmann et al. 65 Claims, 12 Drawing Sheets
?02\ :
200\ INIT. FOJ_{ \ li " e l l i "o e ADODRESS
‘T‘K Pze mux
204 202
\ | 206 \f
MRU b Registers 70 Vit
INIT’F’—I S | Stack Dota In
. l 1
$ > R op2 ?i-#
206 1
p Registers T1 I . Eggf;]
't * - Module
INIT. 2 : L
= Y, 20
s
Registers T2
INITIS — | & = .
el
LRU D Registers T15
T
106~
STACK DATA OUT
Cﬂﬂ?fﬂﬂﬂ_ﬂ_’“ﬂ Stack Control Module
Input - L STACK FUNCTION

QUTPUT

US RE43,301 E
Page 2

Of

OTHER PUBLICATIONS

1ce Action for U.S. Appl. No. 11/175,957, Jul. 22, 2010, 4 Pages.

Of

1ce Action for U.S. Appl. No. 11/175,957, Dec. 29, 2009, 7 Pages.

Of
Of
Of

ice Action for U.S. Appl. No. 11/175,957, Jun. 24, 2009, 4 Pages.
1ce Action for U.S. Appl. No. 11/175,957, Oct. 30, 2008, 6 Pages.
1ce Action for U.S. Appl. No. 11/175,957, Apr. 17, 2008, 7 Pages.

Of

1ce Action for U.S. Appl. No. 11/175,957, Aug. 7, 2007, 8 Pages.

U.S. Patent Apr. 3, 2012 Sheet 1 of 12 US RE43,301 E

100
\ Stack Data In
108b
102 Stack 104
\ ~ Address i 108¢
Stack Stack
Fointer Data
Module }108a Module
Pointer RAM Stack
Contro!f Control Data
Out
06| 196° 108d
Command
Input Stock Control Module " Soarch Information
Output
FIG. 1
102 104
\ 144 \ 7/60
(MRU) o 152 167
f! 157 162
7 - _._ ._ 1527 162
150
Stack Pointer List stack Data Array

. FIG. 2————

U.S. Patent Apr. 3, 2012 Sheet 2 of 12 US RE43,301 E

S
N
&

\ .
200 ’n? — -
\ INIT. O oo ®oo e ADDRESS
__ 200 mux
204
‘ \ 1_[205 .
MRU Reqisters
— . Stack Data In
INIT. T
;L _/{202 104
206
y Reqisters [T %t: f ;
N — Module
INIT. 2 - S '
2027
£206

) Registers 12

LRU E R’egfsters 775 I

106

STACK DATA OUT

Commond | Stack Control Module

Input STACK FUNCTION
OUTPUT
FIG. 3A
DATA IN
oo [T T [oo
REGISTER
DATA OUT

FIG. 3B

U.S. Patent Apr. 3, 2012 Sheet 3 of 12 US RE43.301 E

| BEGIN ,

Search for Item In
Stack Data

Promote Itern
to MRU

308

Insert | tém
Into Stock

FlG.
JOZ
l BEGIN ,
- - —y/~ 407
Current_pointer =
MRU Stack Pointer
- 412 —
Compare Item To Stacklr— 404 Current_pointer =
Data Value Referenced Next Stack Pointer In
By Current_pointer List
410

Stack Data~_TES

to Check?

NO

406
408 414
YES
N

Return Location Of -
Matching Stack Dato Return Indication That

Match Was Not Found
Value
302

END FlG. 5

US RE43,301 E

Sheet 4 of 12

Apr. 3, 2012

U.S. Patent

909

140X

c09Y

Z Ol

ONF

508

E
Of 43]UI0d X2D1S§ NN
Ag pai10sds uonpooy

iy 2NIDA DD XODIS 138§

481UI0H XoDIS NY7
ybnoay) 1sjuiod 4o0)¢ (| +
NSW) 0f 48)UI04 300G
(1—N&7) ybnoiyy s)urod
$ODIS NN A pailj1o8ds
SONIDA 43]UI04 4ODIS IHIYS

43]UI0H
$OD1S NY7T Ag pairo9ds
SNIDA 18)UIOH XODIS 0O
18)Ul0d %oD)S NYW 18S

NIDFEG
508

9 9

ONS
90¢

Y ybnosyy
[+NYW S42)UI0H Of
=Yy o) ssjUI0g 4oD}S
New woly buibupy
S8NJOA 43U LiYS

¥0G
Yl 3y peyoads
aniop 48)Uio4 ¥o0)S 0O/
J8JUIO 3ODIS NYA 18S
20§

NIOFE

90¢

U.S. Patent Apr. 3, 2012 Sheet 5 of 12 US RE43.301 E

(Item Does Not Match
102 104 Any Stack Data Value In

_; * Before Insertion Stack Data Array)
data value 1 (0)
data value 2 | (1)
data value 3 (2)
dato value 4 (3)
dota value 5 | (4)
data value 6 (5)
data value 7 (6)
data value 8 (7)
data value 9 (8)
dota value 10 | (9)
data valve 11 | (10)
data value 12 | (11)
data value 13 | (12)

. ‘ data value 14 | (13)
714 10 data vaolue 15 | (14)
dato value 16 | (15)
102 Stack Pointer List Stack Data Array 104

After Insertion

data value 1 (0)
data value 2 (1)
data value 3 | (2)
dato value 4 (3)
data volue 5 (4)
data value 6 (5)
data volue 7 (6)
data volue 8 (7)
doto value 9 (8)

Ttern (2)
data value 11 | (10)
data volue 12

Stack Dato Array

U.S. Patent Apr. 3, 2012 Sheet 6 of 12 US RE43.301 E
102 Before Promotion 104 (ftem Matches Dato
- | \' Value 10)
(MRU)Tg | 0 - - data value 1 | (0)
' B dato value 2| (1)
, 7 data value 3 | (2)
/3 3 dato value 4 | (3)
' 4 4 data value 5 (4)
5 5 - data value 6 | (5)
' 6 - data value 7 (6)
l'7 7 dota volue 8 (7)
/8 8 — data value 2 | (8)
''9 9 data value 10 | (9)
"10 /0 _ data value 11 | (10)
Tin data value 12 | (11)
12 12 — data value 13 | (12)
'13 13 data volue 14 | (13)
714 14 - data value 15 | (14)
(LRU) 715 15 - data value 16 | (15)
Stack Pointer List Stack Data Array
04 After Promotion '
(MRU) T 9 \‘ ~ data value] (0)
/1 k‘— data value 2 | (1)
r2 | “ 3 | (2
I3 “ 4 | (3)
T4 —‘ 5 | (4)
['5 —‘ 6 | (5)
I'6 —‘ data value 7 | (6)
I'7 —‘ data value 8 | (7)
¥:; "‘ data value 9 (8)
''9 Item (3)
710 10 data value 11 | (10)
Pl 1T data value 12 | (11)
12 1Z data value 13 | (12)
13 13 data value 14 | (13)
I'14 14 data value 15 | (14)
(LRU) T15 5 data value 16 | (15)

Stack Pomter List

FIG. 9

Stack Data Array

]
y—
—
" :
i Ol ‘B
’p
| m
g |
- 1o/ 9101
S 0414
5 1NaLN0
7>

#00! | |
. -
= Z10]
)
M._ |
-«

IVRAUNT
Mg 041
9001 1NANI

0i0!

U.S. Patent

FINGON LN1dLN0O

5 INGONW
INIGOINT @ INIHOL VYA

FINGONW
Gvo'1 MOONIM

c00!

U.S. Patent Apr. 3, 2012 Sheet 8 of 12 US RE43.301 E

wWindow Definitions

1026
| - —T T - Band
Strip Current windowd ___
1020 ENEERNEEEEN
1022 1024 J
FiG. 11
Step rate=6

Previous window Current window

e
w " FIG. 12A

Compare

Step rate=8
Previous window Current window

Step rate=10
Previous window Current window

. A

U.S. Patent Apr. 3, 2012 Sheet 9 of 12 US RE43.301 E

Current Match New
Step ratei CV* 10 8 61 Encoding | Step rate
6 0O 0 0 0 No change 6
O 0 O 1| No chonge 6
0 0 1 X [ower o]
O 1 X X\| Higher 10
1 X X X | No change 6

o} O O 0 01| No change 8
0 0 0 1 Lower 6
0 0 1 X|No change &
0 1 X X| Higher 10
! X X X | No change o]

10 0 0 O 0] No change 10
0 0 0 1 Lower 6
0 0 1 X Higher o)
0 1 X X|No change 10
I X X X | No change 10

FlGg. 13
Pre w'ous Window Current Window

U.S. Patent Apr. 3, 2012 Sheet 10 of 12 US RE43.301 E

— 1030
Divide window
into quads
n=1
D 1032 o J‘7054
Current On matches \\ Y Set Quad Match
previous Qn? bit = T
N
1036
Set Quad Match
bit = 0
1038 —_—— 1040
Current Qn matches \| Y Code On by
\ reference to entry
entry in stack? .
in stack.
N
1042 1044
n—p+1 Current On consists \| Y Code Gn as
of bilevel text? [1100] [Qn(msb)]
1046
Current (n consists Code On as
of bilevel image? [1101] [Qn(msb)]
N 1052
1050 _ Code (@n as
Current On includes \| Y [[7770] [On(msb)]
One Gray pixel? loc. of gray pixel]
N [gray value (2 bits Isb)]
1054 TC - 1056
ode @s
inan one. g1y valses)”) [1171] (On(msb)]
Ty ' [gray values (2 bits Isb)]
Y .
1058
Y More quads to
process?
N

FlG. 14

US RE43,301 E

Sheet 11 of 12

Apr. 3, 2012

U.S. Patent

91 Ol

11uod g 4

T o pob o i eun

e o T
é Ct £l

Zl enipA ponb /] 71/
| uemorponb 01 n

0] 8NibA ponb

£ SNIDA ponb

g anjor ponb .

9 8njoA ponb ‘

s err port P

) arion port S
AT ¢ anpa ponb ' “

g 9nipa ponb

_ Q
| anipA ponb /]
_ 0 @njpoA ponb ' ol]

ADIlYy DIDP %oD)S S19JUI0H XOD)G

6
/
£ 8nioh pons “I L1 fOSH

US RE43,301 E

Sheet 12 of 12

Apr. 3, 2012

U.S. Patent

9v il 247

Ap19 ninw 1| Abio sibuic

ZI Ol
cvil 0v il
abo L 1X8]
IEYEY e 1Y EN e
9!
/ 0
X¥OD)S Uf
ANus pie
0 oy
YOD)S Uf /
ANQUS U
/ s,
/ 0

89.4] buipoous s)1g pony

vl

¥OD1S U

Aue puz

AYY

XOD)S Uf
ANUS 18/

US RE43,301 E

1

METHOD AND APPARATUS FOR AN
IMPROVED STACK ARRANGEMENT AND
OPERATIONS THEREON

Matter enclosed in heavy brackets |] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

This 1s a continuation-in-part of application Ser. No.
08/644,354, filed May 10, 1996 now U.S. Pat. No. 6,028,962.

FIELD OF THE INVENTION

The present mnvention relates generally to computer-imple-
mented manipulation of a stack storage model and, more
particularly, to an improved computer-implemented stack
storage model and operations thereon.

BACKGROUND OF THE INVENTION

Basic stacks and arrays are data structure and data storage
concepts that are commonly known i1n the computer arts.
Among other things, stacks are commonly used as an area in
storage that stores temporary register information

In a gate array Application Specific Integrated Circuit
(herein referred to as an “ASIC”), stacks can be implemented
as either banks of registers or an embedded memory array to
store the stack values. Each of these approaches i1s problem-
atic.

If a stack 1s implemented using banks of registers 1n a gate
array ASIC, each register comprised of a given number of
tlip-tlop storage elements typically contains one stack value.
The registers are generally connected together 1n such a way
as to allow their data to be shifted down to the register below
them or moved to the top register location, as directed by the
associated control logic. With this approach, an insertion of a
new value or a promotion of an existing value to the top of the
stack 1s generally accomplished 1n one clock cycle, with all
registers taking on their new values following the clock edge.
However, as the size of the register values grows and/or as the
number of registers increases, the efficiency of the ASIC real
estate, e.g. s1ze of the gate array, used decreases.

Although using a typical memory array, rather than regis-
ters, avoids the real estate problems posed by register use, the
memory array provides access to only one value at a time per
data port, wherein a typical memory array has approximately
one or two access ports. Depending on the number of values
in the array, a considerable number of memory accesses may
be required to move each value to the next location in order to
insert a new value at the top location.

For example, to 1nsert a fourth 1tem D 1nto an array where
location 1 1s the top of the stack and the array contains three
items, namely, A, B and C, at locations 1, 2 and 3 respectively,
the following actions occur. Item A 1s read and rewritten to
location 2 Item B 1s read and rewritten to location 3. Item C 1s
read and rewritten to location 4. Item D 1s written to location
1. Thus, implementing a stack as an array produces significant
overhead when performing stack operations such as inserting
and removing items from the stack.

SUMMARY OF THE INVENTION

Brietly, the present invention i1s an apparatus and method
for an improved stack, said apparatus and method comprising

5

10

15

20

25

30

35

40

45

50

55

60

65

2

an advantageous indexing scheme and stack arrangement
allowing more efficient performance of stack operations.

According to an aspect of the invention, a most recently
used stack arrangement 1s used, wherein the most-recently-
used stack item appears at the top of the stack and the least-
recently-used item 1s at the bottom of the stack. Values in
between the top and bottom items are ordered from top to
bottom with succeedingly less recently used 1tems.

According to another aspect of the invention, a novel com-
bination of array and register storage, 1s provided. An index-
ing scheme 1s used to indirectly reference locations of the
stack 1tems 1n the stack. In an embodiment of the invention, a
set of registers 1s used to reference the locations of the stack
items 1n an embedded memory array. To promote an 1tem to
the top of the stack, the contents of the registers are changed
to specily the new locations. In other words, the registers
function as pointers to the memory array locations and these
pointers are shufted to promote an 1tem to the top of the stack.
Similarly, to mnsert a new item on to the top of the stack, the
pointers are shifted and a new 1tem 1s written into the memory
array location that contains the least-recently-used item.

According to another aspect of the mvention, an MRU
register specifies the most-recently-used stack data value and
an LRU register specifies the least-recently-used stack data
value. When a stack data value 1s promoted to the top of the
stack, the MRU register 1s set to specily the stack data value
and the values of other registers that lie between the MRU
register and the register specilying the stack data value that
was promoted are shifted down one. When a stack data value
1s 1nserted onto the top of the stack, the MRU register 1s set to
the value of the LRU register and the stack data value refer-
enced formerly by the LRU register and newly by the MRU
register 1s set to the new stack data value being inserted. The
values of the other registers are shifted down one. Preferably,
the changes 1n register values, including that of the MRU
register, occur simultaneously.

The invention provides the following advantages, among,
others. Stack operations such as insertion, promotion and
other rearrangement of the stack 1tems does not require mul-
tiple accesses to the memory array. This reduces the overhead
incurred during these stack operations and typically increases
the speed of such operations. Since the registers typically
need only be large enough to uniquely address each memory
location, the register size 1s typically less than that which
would be used in stacks which are purely register-based.
Thus, the imnvention can substantially reduce the “real estate™
used on a given gate array ASIC.

These and other features of the present inventions, and the
advantages offered thereby, are explained in detail hereinafter
with reference to specific embodiments illustrated in the
accompanying drawings.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 1s a general block diagram of a stack incorporating
the invention;

FIG. 2 1s a more detailed block diagram of a stack incor-
porating the invention;

FIG. 3A 1s a more detailed diagram of a stack pointer
module of FIG. 2;

FIG. 3B schematically illustrates transier of data into and
out of the set of registers of FIG. 3A;

FIG. 4 1s a flowchart generally depicting the steps per-
formed during processing of item with respect to the stack of
FIG. 2;

FIG. 5 1s atflowchart generally depicting steps performed at
block 302 of FIG. 4;

US RE43,301 E

3

FIG. 6 1s a flowchart more specifically depicting steps
performed at block 306 of FIG. 4;

FIG. 7 1s a flowchart more specifically depicting steps
performed at block 308 of FIG. 4;

FI1G. 8 illustrates contents of an example of a stack during
an 1nsertion operation performed on a stack according to the
imnvention;

FIG. 9 illustrates contents of an example of a stack during,
a promotion operation performed on a stack according to the
imnvention;

FIG. 10 1s a general top level block diagram of an image
compression unit employing an embodiment of the present
imnvention;

FI1G. 11 illustrates various data unit definitions used in the
specification;

FIGS. 12(a), 12(b) and 12(c) 1llustrate the basis for com-
parison between blocks of data using step rates of 6, 8 and 10
pixels per step, respectively;

FIG. 13 provides a truth table outlining the manner of
changing a step rate in response to comparison ol 1mage
blocks at step rates of 6, 8 and 10 pixels per step;

FIG. 14 1s a flow chart indicating the principal steps 1n the
algorithm performed by the matching and encoding module
(12);

FI1G. 15 1llustrates the division of a window 1nto quadrants;

FI1G. 16 shows the organization of the information 1n one of
the four sections of the stack RAM (14); and

FI1G. 17 shows a tree level representation of different quad-
rant bit matching possibilities.

DETAILED DESCRIPTION

To facilitate an understanding of the invention, 1ts features
are described hereinafter with reference to a particular imple-
mentation, namely an image encoding application. It will be
appreciated, however, that the practical applications of the
invention are not limited to this particular environment.
Rather, 1t will be found to have utility in any situation in which
arrays of reasonably repetitious data need to be ordered 1n a
way to provide elflicient access of the most-recently-used
values.

According to the IBM Dictionary of Computing, McGraw-
Hill, Inc., 1994, pages 547 and 643, a stack 1s, among other
things, a pushdown list or pushdown storage such that “data 1s
ordered 1n such a way that the next item to be retrieved 1s the
most recently stored item. This procedure 1s usually referred
to as ‘last-in-first-out’ (LIFO).”

The use of the term stack 1n this application is intended to
encompass other methods of organizing and accessing 1tems,
as described herein.

FIG. 1 1s block diagram generally depicting a stack 100
incorporating the mvention. Stack 100 1s preferably imple-
mented as part of ASIC, but may also be implemented 1n other
hardware environments. Stack 100 comprises a stack pointer
module 102, a stack data module 104 and a stack control
module 106, interconnected by a set of connections 108 as
shown. Stack 100 preferably arranged and coupled to an input
source (not shown) to receive a command 1nput. Moreover,
stack 100 1s preferably arranged and coupled to an output
destination (not shown) to transfer data to such output desti-
nation.

In general, the stack data module 104 contains the stack
data, while the stack pointer module 1s a mechanism for
indirectly referencing the stack data in the stack data module.
More specifically, the stack data module 104 1s a data storage
unit, containing one or more stack data values. Stack data
module 104 can be, for example, an embedded memory array.

10

15

20

25

30

35

40

45

50

55

60

65

4

The stack pointer module 102 1s a data storage unit containing
one or more references to locations within the stack data
module. For example, stack pointer module 102 can be a set
ol registers

The stack control module 106 generally includes logic for
controlling the operations of the stack pointer module and the
stack data module 1n accordance with the invention. The stack
control module 106 1s also preferably coupled to receive an
input such as a command mput from a source (not shown) and
to transier an output such as a stack function output to a
destination (not shown). Such mput may include, but 1s not
limited to, commands like start a search and initialize the
stack. Such output may include, but 1s not limited to, stack
function output indicating situations like search finished,
‘data found’ flag and a position 1index indicating where the
data was found.

The set of connections 108 may be a system bus or other
data transfer mechanism. Likewise, the set of connections

108 may be a set of wires arranged and connected to provide
the data transfer shown in FIG. 1.

Specifically, an embodiment of the set of connections 108
as shown 1n FIG. 1 includes a first connection 108a for com-
municating a stack address from the stack pointer module to
the stack data module, a second connection 108b for trans-
ferring a stack data value as input to the stack data module and
the stack control module, a third connection 108c¢ for trans-
ferring stack data from the stack data module to the stack
control module, a fourth connection 108d for transferring
control instructions regarding the stack memory to the stack
data module and a fifth connection 108¢ for transferring
pointer control information to the stack pointer module.

The mmvention can also be implemented using a memory
device, e.g. external SRAM, that 1s external to an ASIC. For
example, an address line can be coupled to the external
memory (not shown) and the data can be transferred back into
the ASIC.

Preferably stack 100 1s organized such that the data values
are arranged 1n order from the most-recently-used item down
to the least-recently-used item. This allows the most often
used items to be available at the top of the stack, while lesser
used items might drop oif the bottom of the stack. Herein, the
term “MRU stack™ 1s used to denote this type of stack.

FIG. 2 1s a general block diagram more specifically depict-
ing the stack pointer module and the stack data module of
FIG. 1 according to an embodiment of the mvention. As
shown herein, the stack pointer module 102 includes a stack
pointer list 144 containing one or more stack pointers, each
pointer referencing a location in the stack data storage in the
stack data module. The term “stack pointer value” 1s used to
denote the values of the stack pointers themselves. For
example, if the first stack pointer 1n the stack pointer list 144
specifies the address of stack data in the stack data module,
then the stack pointer value for the first stack pointer 1s the
specified address.

Preferably, the stack pointer list 144 1s implemented as a set
of registers 150, including one or more registers 152, each
register functioning as a stack pointer. For descriptive ease,
the registers 152 are referenced herein by the labels T,
through T, , the number of registers being equal to m+1. The
number of registers 1s dependent and constrained, 11 at all, by
the hardware, the surrounding environment and the overall
goals of a particular implementation. Examples of the pos-
sible total number of registers include, but are not limited to,
16, 32, or 64.

The stack data module 104 1includes stack data stored 1n a
stack data array 160 having one or more array cells 162, each

US RE43,301 E

S

cell 162 specifying eirther directly or indirectly a stack data
value. Stack data array 160 can be, for example, an embedded
memory array.

Each register 152 references, either directly or indirectly,
an array cell 162 1n stack data array 160. Herein, the terms
“MRU register”, “MRU stack poimnter” and “MRU stack
pointer location” are used 1nterchangeably to denote the reg-
ister which references the array cell containing the most
recently used stack data value and the term “LRU register”,
“LRU stack pointer” and “LRU stack pointer location inter-
changeably to denote the register which references the array
cell containing the least recently used stack data value.
According to an aspect of the invention, register T0 1s the
MRU register and register Tm 1s the LRU register. Preferably,
for each array cell 162 1n stack data array 160 there 1s a
corresponding register 152 1n the set of registers 150.

Preferably, the stack pointer module 102 and the stack data
module 104 are in1tialized prior to use to ensure the consistent
initial conditions that may be required by the intended appli-
cation and also by the ASIC test environment. With reference
to FIG. 2, the registers 152 1n the set of registers 150 are
preferably mitialized so that each references a unique array
cell 162 1n stack data array 160 and such that each array cell
162 1n stack data array 160 1s referenced by a corresponding
register 152 1n the set of registers 150. Preferably, each array
cell 162 1n stack data array 160 1s 1nitialized to a zero or null
value.

Depending on the particular use of the stack, there may be
situations in which a stack 1s reset/remnitialized to the initial
conditions. For example, with reference to the encoding
scheme discussed with FIGS. 10-17, the stack is preferably
iitialized at the start of a data encoding function.

Although 1n the embodiment of FIG. 2 the stack pointer
module 1s a set of registers and the stack data module 1s a
memory array within an ASIC, the invention 1s not necessar-
1]y limited to this particular implementation. Other data struc-
tures and storage configurations, including, but not limited to,
those 1implemented 1n other technologies, such as standard
cell or custom logic, can be used.

FIG. 3A more specifically 1llustrates an embodiment of a
hardware 1implementation of the stack pointer module 102
implemented as set of registers as 1n FIG. 2. The illustration in
FIG. 3 1s an example of a possible hardware implementation
of the stack pointer module 102. Vanations and other imple-
mentations are certainly possible and fall within the spirit and
scope of the invention.

Referring to FI1G. 3, stack pointer module 102 includes a set
of data multiplexers 200, including one or more data multi-
plexers 202 (each data multiplexer 202 herein referred to as a
“MUX”), a set of registers 204, including one or more regis-
ters 206 and an address multiplexer 208. The set of registers
204 1s the same as the set of registers 150 1n FIG. 2.

Preferably, for each register 206 1n the set of registers 204,
there 1s a corresponding MUX 202 1n the set of data multi-
plexers 200. A MUX 202 1s arranged and coupled to its
corresponding register 206 such that the MUX recerves one or
more inputs and provides an output to the corresponding
register.

As shown 1 FIG. 3, MUX 202a 1s coupled to provide
output to register 1T, and arranged to receive as mputs an
initialization value and an iput from each register 1n the set
of registers 204, including itself. MUX 202b 1s coupled to
provide output to register T, and to receive as imnput an initial-
1zation value, data from register T, and data from register T, .
Similarly MUX 202c is coupled to provide output to register
T, and to recetve as input an 1mtialization value, data from
register T, and data from register T,. Likewise, the other

10

15

20

25

30

35

40

45

50

55

60

65

6

MUX’s (not shown, except for MUX 202 for Register 15) 1n
the set of data multiplexers 200 are connected to their corre-
sponding registers to provide output and are coupled to
receive as mput an mnitialization value, data from the preced-
ing register and data from 1tself.

The address multiplexer 208 routes the address from the
selected stack pointer register to the stack data memory,
thereby accessing the desired stack data value. Address mul-
tiplexer 208 1s coupled to provide data to the stack data
module and to recerve as input data from each of the registers
in the set of registers.

FIG. 3B illustrates schematically that the transier of data
into and out of the set of registers, preferably occurs within a
single clock cycle. These registers can be implemented with,
but are not limited to, standard edge-triggered D-type flip-
flops.

FIG. 4 1s a flowchart generally depicting the processing of
an 1tem according to the mvention. This 1tem, e.g. data, 1s
typically recerved as mput from an mput source. At step 302,
the stack data i1s searched for the item. I at step 304, 1t 1s
determined that the 1tem 1s found in the stack data, then at step
306 the item 1s promoted to the MRU stack pointer location.
However, 11 at step 304 it 1s determined that the 1tem was not
found 1n the stack data, then at step 308, the item 1s inserted
into the stack as the most recently used item.

FIG. 5 1s a flowchart more specifically illustrating steps
performed during a search at step 302 of FIG. 4. For ease of
illustration, a temporary variable named “current_pointer’ 1s
being used to denote the current stack pointer location being
examined. At step 402, the current_pointer 1s setto specity the
MRU slack pointer.

At step 404, the stack data referenced by the stack pointer
at the stack pointer location specified by current_pointer 1s
compared to the item. If at step 406 1t 1s determined that there
1s a match, then at step 408 a reference to the current_pointer
1s returned. For descriptive purposes, such a reference is
denoted as T, .

IT at step 406 1t 1s determined that 1s not a match, then at step
410 1t 1s determined whether there 1s more data to check.
Preferably, this 1s accomplished by determining whether the
current_pointer specifies the LRU stack pointer location.
Alternatively, the stack data module can be checked to deter-
mine whether there 1s more stack data to check.

If at step 410 1t 1s determined that there 1s more data to
check, then at step 412, the current_pointer 1s updated to
reference the next slack pointer location in the stack pointer
list. For example, 1f the current_pointer references T, at step
410, then at step 412 1t 1s updated to reference T, _ ;. Alter step
412, processing continues at step 404.

IT at step 410 1t 1s determined that there 1s no more data to
check, then at step 414, an indication that a match was not
found 1s returned. Such an indication may be achieved by
setting the current_pointer to a NIL pointer value or 1t may be
achieved by an indication means separate from the current_
pointer If a separate indication means 1s used, then at step 408,
such separate indication means 1s preferably set to indicate
that a match was found.

FIG. 6 more specifically 1llustrates steps performed during,
a promotion operation at step 306 of FIG. 4. At step 502, the
stack pointer value at stack pointer location T, 1s moved to the
MRU stack pointer location. At step 504, while maintaining
orderings of the stack pointer values relative to each other, the
stack pointer values at the stack pointer locations MRU stack
pomnter location through T, , stack pointer location are
shifted clown one to occupy the MRU+1 stack pointer loca-
tion through T, stack pointer locations. Note that this opera-
tion does not access the stack data itself.

US RE43,301 E

7

Preferably, blocks 502 and 504 occur simultaneously. This
1s preferably achieved using the combination of edge-trig-
gered D-type thptlops and the corresponding multiplexers as
shown 1n FIG. 3A. By providing the new stack pointer values
as inputs to the D-tlipflop, the values can typically be changed
within a single clock cycle. Whether the transfer of stack
pointer values can occur within a single clock cycle generally
depends on the number of stack pointers and the constraints of
the technology being used.

If steps 302 and 504 are not executed simultaneously, then
a temporary variable can be used in the following manner to
avold the loss of a data 1tem. In this situation, the temporary
variable 1s set to the stack pointer value at stack pointer
location T, . Then step 504 1s executed Then, the MRU stack
pointer location 1s set to the value of the temporary variable.

FIG. 7 more specifically illustrates steps performed during,
an 1sertion operation at step 308 of FIG. 4. At step 602, the
MRU stack pointer location 1s set to the stack pointer Value
stored at LRU stack pointer location. At step 604, while
maintaining orderings of the stack pointer values relative to
cach other, the stack pointer values at stack pointer locations
MRU through LRU-1 are shifted down to stack pointer loca-
tions MRU+1 through LRU. Note that this operation does not
access the stack data itself. At step 606, the stack data 1s
updated to include the 1tem. Step 606 can be performed at
some time belore or after step 602. It step 606 1s performed
before step 602, then the stack data value at the location
specified by the LRU stack pointer location 1s set to the item.
IT step 606 1s performed after step 602, then the stack data
value at the location specified by the MRU stack pointer
location 1s set to the item.

Preferably, steps 602 and 604 occur simultaneously. This 1s
preferably achieved using a D-fliptlop. By providing the new
stack pointer values as inputs to the D-tliptlop, the values can
typically be changed within a single clock cycle. Whether the
transier ol stack pointer values can occur within a single clock
cycle generally depends on the number of stack pointers and
the constraints of the technology being used.

If steps 602 and 604 are not executed simultaneously, then
a temporary variable can be used in the following manner to
avoid the loss of a data item. In this situation, the temporary
variable 1s set to the stack pointer value at stack pointer
location T, . Then step 604 1s executed. Then, the MRU stack
pointer location 1s set to the value of the temporary variable.

Any new 1tem inserted into the stack causes the least-
recently-used item (LRU) to conceptually fall off the bottom
of the stack and all other items to shiit down one position.

Advantageously, the msertion and promotion operations
shown 1n FIGS. 6 and 7 are achieved without directly access-
ing or manipulating the stack data itself. Rather, the stack
pointers are accessed and manipulated to perform the nser-
tion and promotion operations. Thus, performance of nser-
tion and promotion operations 1s not directly atfected by the
s1ze of the individual stack data values. Stack data value size
can be easily increased, since 1t 1s implemented 1n an area
eificient memory array and 1s decoupled from the pointer
operation. Moreover, since the pointer values represent the
address of the stack data values, only n bits of pointer are
required to address 2” stack data values. This allows the size
of the pointers to typically be much smaller than the size of
the stack data value. Therefore, manipulating the pointers
rather than the stack data itself, typically increases the speed
and area efficiency of the insertion and promotion operations.
This elliciency generally increases as the size or number of
stack data values increases.

FI1G. 8 1llustrates schematically an example of an insertion

operation performed on a stack according to the invention. In

5

10

15

20

25

30

35

40

45

50

55

60

65

8

this example, 1t 1s assumed that it has already been determined
that the item does not match any data value 1n the data stack.

Theretore, the 1tem 1s being inserted 1nto the stack. The MRU
stack pointer location 1s set to the LRU stack pointer location
and the other stack pointers in the list are shifted down. The
item 1s then inserted into the stack data at the location speci-
fied by the new MRU stack pointer location. Note that since
the stack data 1s tull, the least recently used data value at the
beginning of the insertion operation, here data value 10, 1s
dropped from the stack data as a result of the insertion of the
item. In a data encoding application, this allows the data
values that are not currently being discovered 1n the input data
stream to “fall off”” the stack and be replaced with current data
values.

FIG. 9 1llustrates schematically an example of a promotion
operation performed on a stack according to the invention. In
this example, 1t 1s assumed that 1t has already been determined
that the item matches data value 10 at location 9 1n the stack
data. The MRU stack pointer location 1s set to the stack
pointer at the stack pointer location which references data
value 10 atlocation 9, herein T,. Thus, the MRU stack pointer
location 1s updated to reference stack data location 9. The
other stack pointers in the list are then shifted down one. Note
that the stack data values were not accessed or directly
mamipulated 1n order to promote the item to the top of the
stack. Again, 1n a data encoding application, this allows the
most recent data (and therefore most likely to re-occur) to be
available at the top of the stack, reducing the stack search time
as well as providing the opportunity to further enhance the
encoding of the top several pointer values with a form of
Huflman encoding.

The invention can be employed in a variety of applications.
An example of such a use 1s an encoding system and method
as shown i FIGS. 10-17. FIGS. 10-17 1llustrate an encoding
system and method that may generally be employed to efli-
ciently code images for transmission or storage. By way of
example, the encoding scheme may be used to code images
for efficient transmission to or within a printer, facsimile, or
simply for database file storage. However, to facilitate dis-
cussion, the encoding system will be explained within the
context of printer data compression.

FIG. 10 illustrates an overall block diagram of a compres-
sion unit (1002) incorporating an embodiment of the present
invention. The compression unit (1002) may preferably be
implemented on a single itegrated circuit chip for enhanced
performance and marketability. Yet, as those having skill in
the art will readily appreciate, the functions described herein
may be implemented using any combination of distinct units,
or by one software-driven general purpose unit.

The functions performed by the compression unit (1002)
may be divided into the four following principal tasks: 1)
image loading; 2) step rate selection; 3) matching and encod-
ing; and 4) output and formatting. Broadly speaking, the
image loading function 1s performed by the mput FIFO
(1008) and window load module (1010), and serves to down-
load windows of image data from system DRAM (not shown)
for processing by the matching and encoding module (1012).
The step rate selection function examines the size of the
windows downloaded by the window load module (1010),
and changes the window length to coincide with any detected
repetition of 1image data from one window to the next. The
matching and encoding function performs the actual task of
encoding the windows. And last, the output function converts
the coded windows 1nto a format suitable for output. These
functions will become clear from the ensuing detailed discus-
S1011.

US RE43,301 E

9

As shown 1n FIG. 10, the compression unit (1002) 1s con-
nected to a system bus (1004) via bus interface (1006). In an
exemplary embodiment, the compression unit functions as a
slave processor, and compresses data when so commanded by
the host system.

When so instructed, the compression unit (1002) down-
loads a strip of 1mage data from system DRAM (not shown)
for storage in the mput FIFO (1008). Particularly, the input
FIFO (1008) includes two memory sections. The first section
of the FIFO (1008) 1s filled first, upon which a FIFO Valid bit
1s set. The compression unit (1002) then attempts to fill the
second section of the FIFO (1008), depending on the avail-
ability of the bus.

Upon detecting a FIFO Valid bit, the window loading mod-
ule (1010) loads a block of data, referred to as a window, from
the input FIFO (1008). A window of image data may be best
understood with reference to FIG. 11. As shown therein, a
page ol image data stored in system DRAM comprises a
plurality of bands (1026), which may be broken down into
strips (1020) having four raster lines each 1n width. A window
(e.g. 1024) 15 a portion of the strip (1020), typically having a
length of 6, 8 or 10 pixels in an exemplary embodiment.
Furthermore, although not shown i FIG. 11, each pixel
within the window 1s coded using three bits. These three bits
can be used to 1dentity eight different values for each pixel.
Five of these values are allocated to describing five gray levels
of image. One value 1s used to 1dentity a bilevel (solid black)
text pixel. Another value identifies a bilevel image pixel. The
remaining value describes a white pixel. Accordingly, each
window may be viewed as three-dimensional. The window
width consists of four raster lines of information, the length
consists of either 6, 8 or 10 pixels, and the depth consists of
the three bit value used to code the value of the pixel.

Windows are moved across the 4-row strip (1020) of pixels
at a step rate of 6, 8 or 10 pixels. The window load module
(1010) continues to sequence through the strip (1020) until 1t
has read all of the image data stored 1n the first section of the
input FIFO (1008). The window load module (1010) then
resets the FIFO valid bit to instruct the FIFO (1008) to provide
more data. If the second half of the FIFO (1008) has been
loaded, as described above, the FIFO switches in ping-pong
fashion to that data and once again sets the FIFO Valid bit. The
window load module (1010) then proceeds to read from the
second half of the input FIFO (1008).

Finally, at the end of each strip within a band, the input
FIFO (1008) 1s flushed and reloaded from the start of a new
strip.

Once the windows are loaded, the matching and encoding
module (1012) comes into play by first checking for an exact
match between pixels 1n a current window (1024) and pixels
in the window which immediately preceded the current win-
dow—referred to as the previous window (1022). Often,
printed data will exhibit a repetitious nature depending on the
nature of the font used to generate the text or the hali-tone
matrix that was used to render the 1image. Accordingly, the
current and previous windows are compared using the differ-
ent step rates (6, 8 and 10 pixels) 1n an attempt to identify this
natural repetition. FIGS. 12(a),(b) and (c) 1llustrate the spe-
cific basis for comparison using step rates of 6, 8 and 10,
respectively

The step rate of the window loading logic may mitially be
set at 8 pixels per step. If the above comparison step indicates
that this step rate 1s out of sync with the natural cycle of data
in the strip, the step rate 1s changed. FI1G. 13 provides a truth
table indicating the specific manner 1n which the step rate 1s
changed. For instance, in the case where the step rate is
initially set at 8, a match at window length of 8 will require no

10

15

20

25

30

35

40

45

50

55

60

65

10

change 1n the step rate. However, 1 a match occurs at a
window length of 6 pixels, then the table instructs the com-
pression unit (1002) to switch to a lower step rate of 6.
Similarly, 1f a match occurs at a window length of 10 pixels,
then the table mstructs the system to switch to a higher step
rate o1 10. IT none of the step rates produces a match, then the
table 1nstructs the system to maintain the current step rate.
Furthermore, 11 there 1s a match for a specific window which
comprises all white or all black pixels (denoted 1n the table as
CV* for “Constant Value”), the table 1nstructs the system to
maintain the current step rate. More specifically, in the event
ol a constant value window, a change in step rate 1s inhibited
to allow a more consistent lock on the halif-tone frequency.

Having chosen the step rate, the matching and encoding
module (1012) begins the task of actually coding the windows
for transmuission. It begins by dividing the window 1nto quad-
rants, as denoted as step 1030 1n FIG. 14, and as 1llustrated
schematically 1n FIG. 15 (showing quadrant divisions using a
step rate of 6 pixels per step).

In general, the matching and encoding module (1012)
employs three principal hierarchical phases in coding the
quadrants. First, the module (1012) compares a current quad-
rant from the current window with the immediately proceed-
ing quadrant from the previous window. If a match 1s found,
pixel values comprising the current quadrant do not have to be
included 1n the output data stream.

If a match 1s unavailing, however, the encoding module
(1012) enters the second phase of its examination. In the
second phase, the unmatched current quadrant 1s compared
with a stored list of previously encountered image quadrants,
starting from the second-to-last recently encountered image
quadrant (the immediately proceeding image quadrant hav-
ing already been checked, as described above). If a match 1s
found between the current quadrant, and an entry on the list,
then the quadrant 1s coded by making reference to the entry on
the list.

If a match 1s still unavailing, the encoding module (1012)
enters the third phase of 1ts examination. In the third phase,
the unmatched current quadrant 1s examined to determine if 1t
falls into one of the following categories: bilevel text, bilevel
image, one-gray value image, and multiple gray value image
(to be described 1n more detail below). If so, the 1image 1s
assigned a code corresponding to 1ts ascertained classifica-
tion. For istance, 11 the text consists only of bilevel text, only
the most significant bits of the 3-bit pixels are transmitted,
thereby significantly reducing the quantity of information
included in the output data stream.

The overall goal of the matching and encoding module
(1012)1s to assign the shortest code possible to each quadrant.
This 1s accomplished using a form of Huffman encoding, as
illustrated in FIG. 17. All of the different situations that might
be encountered within a window quadrant are classified into
a predetermined number of categories, or possibilities (1132-
1146), which form the terminal parts of an encoding tree.
Each quadrant possibility (1132-1146) 1s assigned a code,
which may be determined by tracing the encoding tree from
its root to one of the quadrant possibilities (1132-1146). The
code 1s assembled from the individual bits assigned to each
branch of the tree. According to a particularly beneficial
feature of the present invention, the shortest codes are allo-
cated to the most frequently occurring quadrant possibilities.
For instance, the current window has the highest probabaility
of matching the immediately proceeding window. In this
circumstance, the encoding module (1012) simply informs
the decoding module (not shown) of this fact, and does not
transmit any of the pixel values in the matching quadrant. The
next highest probability corresponds to the second-to-last

US RE43,301 E

11

encountered 1mage quadrant, represented as (1132) in FIG.
17, and coded as [00]. The next highest probabaility of match

correspond to the third-to-last encountered image quadrant
(1134), and then the fourth-to-last 1mage quadrant (1136),
which are coded as [010] and [011], respectively. If the
matching and encoding module fails to find a match 1n a
previous quadrant, 1t will then classify the quadrant as bilevel
text (1140), bilevel image (1142), single gray image (1144) or
a multiple gray image (1146), assigned the codes [1100],
[1101], [1110] and [1111], respectively. Note that the possi-
bilities corresponding to the highest probabilities are
assigned the shortest codes.

Having presented an overview of the functions performed
by the encoding module (1012), each of the three above-
identified principal phases will be discussed 1n detail.

As part of the first phase, the matching and encoding mod-
ule ((1012 in FIG. 10)) compares a quadrant taken from the
current window with 1ts respective counterpart quadrant
taken from the previous window (step 1032 1n FIG. 14). IT
they match, a Quad Match bit corresponding to that quadrant
1s set to 1 (Step 1032). Otherwise, this bit 1s set to 0 (Step
1036). This procedure 1s repeated for the quadrants to pro-
duce a series of Quad Match bits. Only the image data within
the quadrants assigned a Quad Match bit of 0 need to be
transmitted 1n the output data stream. Furthermore, 11 the
series ol Quad Match bits duplicates a previous series of Quad
Match baits, these bits do not have to be transmaitted.

Specific exemplary coding for these two situations follows:

(1) Encoding in the case of unmatching Quad Match Bits:

[1][Quad Match bits][Q1][Q2][Q3][Q4]
(2) Encoding 1n the case of matching QQuad Match Bits:
[0][Q1][Q2][Q3][Q4]

Here, Q1-Q4 represents the pixel data contained within
quadrants 1-4, respectively. As noted above, 11 one of the
Quad Match bits indicates that one of the quadrants matches
its counterpart from the previous window, that quadrant does
not have to be transmitted with the output data stream. For
example, 11 the Quad Match bits are [1010], the image data for
the quadrants Q1 and Q3 are not included 1n the output data
stream.

In the case (1) of encoding for the case of unmatched Quad
Match bits, the current set of Quad Match bits does not match
the previous set of Quad Match bits. Therefore, the new series
of Quad Match bits has to be transmitted. In the case (2) of
encoding for the case of matched (Quad Match bits, the current
set ol Quad Match bits matches the previous set of Quad
Match bits. Therefore, the new series of Quad Match bits does
not have to be transmaitted. Cases (1) and (2) are distinguished
by using the prefix codes [1] and [0].

In attempt to further compress the current window, the
unmatched quadrants are compared with a stack (1014) con-
taining a list ol most recently used image data (step 1038 of
FIG. 14). The stack (1014) 1s specifically comprised of four
different stacks, each holding data corresponding to quad-
rants 1-4, respectively and each being implemented accord-
ing to the mvention.

Asillustrated in F1G. 16, each stack consists o1’ 16 elements
storing data (1128) corresponding to the last 16 image quad-
rants encountered. Any 1tem 1n the stack can be promoted to
the most recently used position—or top—ofi the stack. Any
new item 1nserted into the stack causes the least recently used
item (LRU) to conceptually fall off the bottom of the stack
and all other 1tems to shiit down one position. In this manner,
cach quadrant stack eventually contains the 16 most recently
used quad bit values for that specific quadrant 1n order from
most recently used (MRU) to least recently used (LRU).

As readily understood by those skilled 1n the art, the stack
data 1s not actually shifted in response to promotion or demo-
tion of entries 1n the stack. Rather, pointers (1130) to the stack

10

15

20

25

30

35

40

45

50

55

60

65

12

entries are manipulated to indicate the ordering of the stack.
For instance, an item may be promoted from any level within
the stack to the MRU by loading the pointer from that level,
Tn, 1into the TO slot, and shifting all the pointers from T0 to
Tn—-1 down one level. Inserting a new 1tem into the stack 1s
essentially the same as promoting the pointer 1n 115 to the top
and storing the new 1tem’s data at that pointer’s location.

The matching and encoding module searches the selected
stack from the most recently used data to the least recently
used data. For istance, FIG. 16 indicates that a quadrant from
one recently encountered window matched the entry stored 1n
“quad value 4”. At the time of the match, a pointer to quad
value 4 was stored 1n position T0 of the pointer table (1130).
In a subsequent window, however, the stack did not contain a
match for the current quadrant. This resulted 1n storing the
nonmatched quadrant at location 13, promoting location 15 to
the top of the pointer list, and shifting the match for quadrant
value 4 down one level to location T1 1n the pointer table
(1130).

If 1n fact a quadrant from the current window matches a
quadrant stored 1n the stack, the current quadrant 1s coded
(Step 12) according to the following rules:

(3) Encoding of quad 11 matching 1st entry in stack: [00]

(4) Encoding of quad if matching 2nd entry 1n stack: [010]

(5) Encoding of quad if matching 3rd entry in stack: [011]

(6) Encoding of quad 1f matching 4th-16th entry 1n stack:

[10][4-bit stack index]
The specific codes assigned to each match derive from the
Hufilman tree encoding of the different permutations of quad-
rant bits, as illustrated in FIG. 17, and as discussed above.

Finally, 1 the quadrant data does not match a previous
window and 1s further not found in the stack, the actual bit
data must be sent. However, if all of the data in the quad 1s
bilevel, only the most significant bit of each pixel need to be
sent to define the quadrant (steps S1042 and 1044 in FI1G. 14).
If the bilevel data 1s all text then the coding is as follows:

(7) Encoding for bilevel text quad: [1100][bilevel quad bit

values]
Again, the specific code [1100] 1s derived from the Huflman
tree encoding as outlined 1in FIG. 17. The quad bit values
consist of only the most significant bit of each pixel, to 1indi-
cate whether the respective pixels are black or white.

If the bilevel quadrant contains at least one bilevel 1mage
pixel, then the entire quadrant 1s coded as a bilevel 1image
(steps 1046 and 1048). Any bilevel text contained with this
quadrant 1s coded as bilevel image data. From the standpoint
of pixel values, bilevel image data 1s the same as bilevel text
data. For example, each pixel 1in both cases 1s coded as either
black or white. It 1s possible, therefore, to encode all bilevel
image data together. However, 1n some situations image data
undergoes processing that 1s not carried out on text data, and
vice versa. For example, image enhancement techniques,
such as anti-aliasing, might be performed on text data after it
1s decoded, but are typically not carried out with respect to
image data. For this reason, 1t 1s preferable to encode bilevel
image data separately from the text. Bilevel image data may
be discriminated from bilevel text by assigning a tag to the
data at the time of creation (according to one example). Again
it 1s emphasized that the term “bilevel text” encompasses not
only text data, but also text-like data (such as graphical art).
Generally speaking, “bilevel text” data 1s everything that 1s
not “bilevel image™ data.

The specific coding for bilevel imaging 1s a follows:

(8) Encoding for bilevel image quad: [1101][bilevel quad

b1t values]
Again, the quad bits values consist of only the most signifi-
cant bit of the 3-bit pixel values.

US RE43,301 E

13

If the quadrant contains only one gray pixel value among
the black and white pixels (step 1050), the coding for the
quadrant includes a location 1index providing the location of
the gray value within the quadrant, as well as the gray pixel’s
least two significant bits (step 1052). Also, the values of the
bilevel data must be transmitted. The complete coding 1s as
follows:

(9) Encoding for one gray value quad: [1110][bilevel quad

bit values][location 1ndex]|gray value]

Finally, 11 the quadrant contains more than one gray value,
it 1s more effective to simply transmit the complete quadrant,
rather than specitying the location of the gray values within
the quadrant (steps 1054 and 1056). Specifically:

(10) Encoding for multiple gray quad: [1111][bilevel quad

bit values][2-bit least s1g. bit values].

In addition to the above basic codes, the matching and
encoding module produces two additional special codes. The
first 1s to signal to the decoder (not shown) that a step change

1s required. This code 1s indicated as follows:

(11) Encoding for change 1n step rate: [1][0011 or 1100]

[1][Q1][Q2][Q3][Q4]

The code [0011] 1s used to inform the decoder of a higher step
rate, while the code [1100] 1s used to inform the decoder of a
lower step rate. Again, Q1-Q4 refers to the quadrant bits for
quadrants 1-4, respectively. In this mode, all Quad Match bits
are forced to [0000] and not 1included 1n the data stream.

A second special situation occurs when the Quad Match
bits resemble the encode lower or encode higher bits 1denti-
fied above—[1100] or [0011], respectively. To distinguish
this situation from the preceding case, the Quad Match bits
are followed by a 0-bit to indicate that this really 1s a normal
new tree encoding and not a step rate change. The code 1s thus

as follows:
(12) Encoding for special situation: [1][Quad Match bits]
[0][Q1][Q2][Q3][Q4].

Once the matching and encoding module has completed its
task, 1t looks to see 11 the output module has set a barrel_ready
signal, indicating that the barrel shifter (not shown) of the
output module (1016) 1s ready to recerve the coded data
stream. I1 so, the coded data stream 1s forwarded to the output
module (1016) which packs the data into 32-bit words to be
loaded 1nto the output FIFO (1018) using the barrel shitter.

The output module (1016) forwards the expanded codes to
the output FIFO (1018), which like the mput FIFO, contains
two memory sections. While one section 1s being loaded by
the barrel shitfter, the other section, 1f full, 1s written out to the
system DRAM. The output FIFO sets an output FIFO full bat
to inform the interface logic to write the output bit stream to
the system DRAM.

The order of steps given in FIG. 14 is not crucial to the
inventive premise, nor are the particular choice of coding
prefixes or window lengths.

The encoding system described with reference to FIGS.
10-17 1s an example of a system that can employ a stack
implemented according to the invention. Other systems and
methods not described herein can also advantageously
employ the invention. The description of the encoding system
herein 1s not intended to limit the spirit or scope of the present
invention 1n any mannetr.

Further, various changes and modifications will be appar-
ent to those skilled 1 art. Unless these modifications and
changes depart from the scope and spirit of the present mnven-
tion, they are considered encompassed by the present mnven-
tion. Therefore, 1t1s the object of the appended claims to cover
all such variations and modifications as come within the true
spirit and scope of the invention.

10

15

20

25

30

35

40

45

50

55

60

65

14

I claim:

1. An apparatus for [an] a most recently used (MRU) stack,
said apparatus directly or indirectly connected to a stack
search requesting unit, stack search requesting unit specify-
ing a command and a data value to said MRU stack, said
apparatus comprising:

means for receiving a command;

means for receiving a data value;

a stack data module for storing one or more stack data
values, said stack data module being coupled to said data
value recerving means for receiving a data value as
input;

a stack pointer module for referencing stack data values
stored 1n said stack data module, said stack pointer mod-
ule being coupled to said stack data module to provide as
input a reference to one or more stack data values, said
stack pointer module including a set of data multiplex-
ers, including one or more multiplexers, a set of regis-
ters, mcluding one or more registers wherein an MRU
register specifies, either directly or indirectly, a location
of a most-recently-used stack data value and [an] a least
recently used (LRU) register specifies, either directly or
indirectly, a location of a least-recently-used stack data
value, and an address multiplexer, said data multiplexers
and registers configured such that for each register in the
set of registers, there 1s a corresponding multiplexer in
the set of data multiplexers, said corresponding multi-
plexer arranged and coupled to 1ts corresponding regis-
ter to recerve one or more 1inputs and provide an output to
the corresponding register, the registers in said set of
registers arranged and interconnected by the multiplex-
ers such that data values are specified from a most-
recently-used data value down to a least-recently-used
data value; and

a stack control module for the MRU stack, said stack con-
trol module being coupled to said command recerving
means for recerving a command as mput and further
being arranged to transmit an output to the stack search
requesting unit, said stack control module further being
coupled to said stack pointer module to provide opera-
tional control of the stack pointer module functions, said
stack control module further being coupled to said stack
data module to provide control of the accessing of data to
and from the stack data module and to recerve as mnput a
stack data value, said stack control module further being
coupled to said data value recerving means for receiving
a data value as 1nput.

2. An apparatus as defined 1n claim 1 wherein said multi-
plexers are further arranged such that said multiplexer corre-
sponding to said MRU register receives as iput an initializa-
tion value and an mput from each register in the set of
registers, including itself, and other multiplexers 1n said set of
data multiplexers recerve as input an initialization value, data
from the preceding register and data from itself.

3. An apparatus for [an] a most recently used (MRU) stack,
said apparatus comprising:

means for speciiying a command;

means for specitying a data value;

a stack data module for storing one or more stack data
values, said stack data module being coupled to said data
value specilying means for receiving a data value as
input;

a stack pointer module for referencing stack data values
stored 1n said stack data module, said stack pointer mod-
ule being coupled to said stack data module to provide as
input a reference to one or more stack data values, said
stack pointer module including a set of data multiplex-

US RE43,301 E

15

ers, including one or more multiplexers, a set of regis-
ters, including one or more registers wherein an MRU
register specifies, either directly or indirectly, a location
of a most-recently-used stack data value and [an] a /east
recently used (LRU) register specifies, either directly or
indirectly, a location of a least-recently-used stack data
value, and an address multiplexer, said data multiplexers
and registers configured such that for each register in the
set of registers, there 1s a corresponding multiplexer 1n
the set of data multiplexers, said corresponding multi-
plexer arranged and coupled to 1ts corresponding regis-
ter to receive one or more inputs and provide an output to
the corresponding register, said multiplexers further
arranged such that the multiplexer corresponding to said
MRU register recerves as input an initialization value
and an input from each register in the set of registers,
including 1tself, and the other multiplexers 1n said set of
data multiplexers receive as input an mnitialization value,
data from the preceding register and data from itself; and

a stack control module for the MRU stack, said stack con-
trol module being coupled to said command specifying
means for recerving a command as input and further
being arranged to transmit an output to a stack search
requesting unit, said stack control module further being
coupled to said stack pointer module to provide opera-
tional control of the stack pointer module functions, said
stack control module further being coupled to said stack
data module to provide control of the accessing of data to
and from the stack data module and to receive as input a
stack data value, said stack control module further being
coupled to said data value specitying means for receiv-
ing a data value as mput.

4. An apparatus for [an] a most recently used (MRU) stack,
said apparatus directly or indirectly connected to a stack
search requesting unit, stack search requesting unit specify-
ing a command and a data value to said MRU stack, said
apparatus comprising;

means for recerving a command;

means for recerving a data value;

a stack data module for storing one or more stack data
values, said stack data module being coupled to said data
value receiving means for receiving a data value as
input;

a stack pointer module for referencing stack data values
stored 1n said stack data module, said stack pointer mod-
ule being coupled to said stack data module to provide as
input a reference to one or more stack data values, said
stack pointer module including a set of data multiplex-
ers, mcluding one or more multiplexers, a set of regis-
ters, mncluding one or more registers wherein an MRU
register specifies, either directly or indirectly, a location
of a most-recently-used stack data value and [an] a /east
recently used (LRU) register specifies, either directly or
indirectly, a location of a least-recently-used stack data
value, and an address multiplexer, said data multiplexers
and registers configured such that for each register in the
set of registers, there 1s a corresponding multiplexer in
the set of data multiplexers, said corresponding multi-
plexer arranged and coupled to 1ts corresponding regis-
ter to rece1ve one or more iputs and provide an output to
the corresponding register, the registers in said set of
registers arranged and interconnected by the multiplex-
ers such that data values are specified from a most-
recently-used data value down to a least-recently-used
data value and such that a data value can be inserted into
the stack or promoted to the top of the stack within two
or less clock cycles; and

10

15

20

25

30

35

40

45

50

55

60

65

16

a stack control module for the MRU stack, said stack con-
trol module being coupled to said command receiving
means for recerving a command as mput and further
being arranged to transmit an output to the stack search
requesting unit, said stack control module further being
coupled to said stack pointer module to provide opera-
tional control of the stack pointer module functions, said
stack control module further being coupled to said stack
data module to provide control of the accessing of datato
and from the stack data module and to receive as input a
stack data value, said stack control module further being,
coupled to said data value recerving means for receiving
a data value as input.

5. An apparatus as defined 1n claim 4 wherein said multi-
plexers are further arranged such that said multiplexer corre-
sponding to said MRU register receives as input an initializa-
tion value and an mput from each register in the set of
registers, including itself, and other multiplexers 1n said set of
data multiplexers recerve as input an initialization value, data
from the preceding register and data from 1tself.

6. A method for manipulating data 1n a stack, said stack
including a stack data module for storing one or more stack
data values, said stack further including a stack pointer mod-
ule, said stack pointer module being coupled to said stack data
module to provide as mput a reference to one or more stack
data values, said method comprising the steps of:

searching for an item 1n the stack data module using the
stack pointer module, the stack pointer module includ-
ing a set ol data multiplexers, including one or more
multiplexers, a set of registers, including one or more
registers wherein [an] a most recently used (MRU) reg-
1ster specifies, either directly or indirectly, a location of
a most-recently-used stack data value and [an] a least
recently used (LRU) register specifies, either directly or
indirectly, a location of a least-recently-used stack data
value, and an address multiplexer, said data multiplexers
and registers configured such that for each register in the
set of registers, there 1s a corresponding multiplexer 1n
the set of data multiplexers, said corresponding multi-
plexer arranged and coupled to 1ts corresponding regis-
ter to recerve one or more inputs and provide an output to
the corresponding register, the registers 1n said set of
registers arranged and 1nterconnected by the multiplex-
ers such that data values arespecified from a most-re-
cently-used data value down to a least-recently-used
data value;

i1 the 1tem 1s found 1n the stack data, then promoting the
item such that the item 1s i1dentified as being the most-
recently-used; and

11 the 1tem 1s not found 1n the stack data, then inserting the
item 1nto the stack such that the item i1s identified as
being the most-recently-used.

7. A method for manipulating data in a stack, said stack
including a stack data module for storing one or more stack
data values, said stack further including a stack pointer mod-
ule, said stack pointer module being coupled to said stack data
module to provide as input a reference to one or more stack
data values, said method comprising the steps of:

searching for an 1tem in the stack data module using the
stack pointer module said stack pointer module 1includ-
ing a set of data multiplexers, including one or more
multiplexers, a set of registers, including one or more
registers wherein [an] a most recently used (MRU) reg-
1ster speciiies, either directly or indirectly, a location of
a most-recently-used stack data value and [an] a least
recently used (LRU) register specifies, either directly or
indirectly, a location of a least-recently-used stack data

US RE43,301 E

17

value, and an address multiplexer, said data multiplexers
and registers configured such that for each register in the
set of registers, there 1s a corresponding multiplexer 1n
the set of data multiplexers, said corresponding multi-
plexer arranged and coupled to 1ts corresponding regis-
ter to receive one or more inputs and provide an output to
the corresponding register, said multiplexers further
arranged such that the multiplexer corresponding to said
MRU register receives as mput an initialization value
and an mput from each register in the set of registers,
including 1tself, and the other multiplexers 1n said set of
data multiplexers receive as input an initialization value,
data from the preceding register and data from 1tself;

if the 1tem 1s found in the stack data, then promoting the
item such that the item 1s 1dentified as being the most-

recently-used; and
if the 1tem 1s not found in the stack data, then inserting the

item 1nto the stack such that the item 1s i1dentified as

being the most-recently-used.

8. A method for manipulating data in a stack, said stack
including a stack data module for storing one or more stack
data values, said stack turther including a stack pointer mod-
ule, said stack pointer module being coupled to said stack data
module to provide as mput a reference to one or more stack
data values, said method comprising the steps of:

searching for an 1item 1n the stack data module using the

stack pointer module, the stack pointer module 1nclud-
ing a set of data multiplexers, including one or more
multiplexers, a set of registers, including one or more
registers wherein [an] a most recently used (MRU) reg-
1ster specifics, either directly or indirectly, a location of
a most-recently-used stack data value and [an] a /east
recently used (LRU) register specifies, either directly or
indirectly, a location of a least-recently-used stack data
value, and an address multiplexer, said data multiplexers
and registers configured such that for each register in the
set of registers, there 1s a corresponding multiplexer 1n
the set of data multiplexers, said corresponding multi-
plexer arranged and coupled to 1ts corresponding regis-
ter to recerve one or more mputs and provide an outputto

the corresponding register, the registers 1n said set of

registers arranged and interconnected by the multiplex-
ers such that data values are specified from a most-
recently-used data value down to a least-recently-used
data value and such that a data value can be 1nserted 1nto
the stack or promoted to the top of the stack within two
or less clock cycles;
if the 1tem 1s found in the stack data, then promoting the
item such that the i1tem 1s 1dentified as being the most-
recently-used; and
if the 1tem 1s not found in the stack data, then inserting the
item 1nto the stack such that the item 1s identified as
being the most-recently-used.
9. A method as defined 1n claim 8, wherein said promoting,
ol the item occurs during a single clock cycle.
10. A method as defined 1n claim 8, wherein said 1nserting
ol the item occurs during a single clock cycle.
11. A method as defined in claim 8, wherein promoting the
item or 1serting the item occurs i two or less clock cycles.
12. A method as defined 1n claim 8 wherein said multiplex-
ers are lurther arranged such that said multiplexer corre-
sponding to said MRU register receives as input an initializa-

tion value and an mput from each register in the set of

5

10

15

20

25

30

35

40

45

50

55

60

registers, including itself, and other multiplexers 1n said set of 65

data multiplexers recerve as iput an initialization value, data
from the preceding register and data from 1tself.

18

13. A method as defined 1n claim 8, wherein said step of
promoting the item comprises the steps of:

setting the MRU stack pointer to the value of the stack

pointer speciiying the stack data value matching the
item; and

shifting down one the values of the stack pointers 1n the

stack pointer list between the MRU stack pointer and
stack pointer specitying the stack data value matching
the 1tem, noninclusive, wherein said steps of setting the
MRU stack pointer and shifting are executed simulta-
neously.

14. A method as defined 1n claim 8, wherein said step of
inserting the 1item comprises the steps of:

setting the MRU stack pointer to the value specified by the

LRU stack pointer;

shifting down one the values of the other stack pointers in

the stack pointer list; and

setting the stack data value referenced by the MRU stack

pointer equal to the 1tem, wherein said steps of setting
the MRU stack pointer and shifting are performed simul-
taneously.

15. A method for manipulating data in a stack, said stack
including stack data having one or more stack data values,
said stack further including a stack pointer list having a set of
references, the set of references including one or more stack
pointers, each stack pointer stored in a clocked register and
unmquely specifving a stack data value 1n the stack data, the
one or more stack pointers including [an] a most recently used
(MRU) stack pointer specifying the most-recently-used stack
data value in the stack data and [an] a least recently used
(LRU) stack pointer specifying the least-recently-used stack
data value 1n the stack data, the stack pointers 1n said set of
references such that stack data values are specified from a
most-recently-used data value down to a least-recently-used
data value, said method comprising the steps of:

searching for an 1tem 1n the stack data;

i1 the 1tem 1s found 1n the stack data, then promoting the

item such that the item 1s i1dentified as being the most-
recently-used, the promoting of the 1tem occurring dur-
ing a single clock cycle; and

11 the 1item 1s not found in the stack data, then inserting the

item 1nto the stack such that the item 1s identified as
being the most-recently-used, the inserting of the item
occurring during a single clock cycle.

16. A method as defined 1n claim 15, wherein said step of
promoting the 1item comprises the steps of:

setting the MRU stack pointer to the value of the stack

pointer specilying the stack data value matching the
item; and

shifting down one the values of the stack pointers 1n the

stack pointer list between the MRU stack pointer and
stack pointer specitying the stack data value matching,
the 1tem, noninclusive, wherein said steps of setting the
MRU stack pointer and shifting are executed simulta-
neously.

17. A method for manipulating data 1n a stack, said stack
including stack data having one or more stack data values,
said stack further including a stack pointer list having a set of
references, the set of references including one or more stack
pointers, each stack pointer stored in a clocked vegister and
umquely specitying a stack data value in the stack data, the
one or more stack pointers including [an] a most recently used
(MRU) stack pointer specifying the most-recently-used stack
data value in the stack data and [an] a least recently used
(LRU) stack pointer specifying the least-recently-used stack
data value 1n the stack data, the stack pointers 1n said set of
references such that stack data values are specified from a

US RE43,301 E

19

most-recently-used data value down to a least-recently-used
data value, said method comprising the steps of:

searching for an item 1n the stack data;

if the 1tem 1s found 1n the stack data, then promoting the

item such that the 1tem 1s 1dentified as being the most- 5
recently-used, the promoting of the 1tem occurring dur-
ing a single clock cycle; and

if the 1tem 1s not found in the stack data, then inserting the

item 1nto the stack such that the item 1s identified as
being the most-recently-used. 10
18. A method as defined 1n claim 17, wherein said step of
promoting the 1item comprises the steps of:
setting the MRU stack pointer to the value of the stack
pointer speciiying the stack data value matching the
item; and 15

shifting down one the values of the stack pointers in the
stack pointer list between the MRU stack pointer and
stack pointer specitying the stack data value matching
the 1tem, noninclusive, wherein said steps of setting the
MRU stack pointer and shifting are executed simulta- 20
neously.

19. A method for mampulating data 1n a stack, said stack
including stack data having one or more stack data values,
said stack further including a stack pointer list having a set of
references, the set of references including one or more stack 25
pointers, each stack pointer stored in a clocked register and
uniquely specitying a stack data value 1n the stack data, the
one or more stack pointers including [an] a most recently used
(MRU) stack pointer specitying the most-recently-used stack
data value in the stack data and [an] a least recently used 30
(LRU) stack pointer specifying the least-recently-used stack
data value 1n the stack data, the stack pointers 1n said set of
references such that stack data values are specified from a
most-recently-used data value down to a least-recently-used
data value, said method comprising the steps of: 35

searching for an item 1n the stack data;

if the 1tem 1s found in the stack data, then promoting the

item such that the 1tem 1s 1dentified as being the most-
recently-used; and

if the 1tem 1s not found 1n the stack data, then inserting the 40

item 1nto the stack such that the item 1s identified as
being the most-recently-used, the inserting of the item
occurring during two or less clock cycles.

20. A method as defined 1n claim 19, wherein said step of
inserting the item comprises the steps of: 45
setting the MRU stack pointer to the value specified by the

LRU stack pointer;

shifting down one the values of the other stack pointers 1n

the stack pointer list; and

setting the stack data value referenced by the MRU stack 50

pointer equal to the 1tem, wherein said steps of setting
the MRU stack pointer and shifting are performed simul-
taneously.

21. A method for mampulating data 1n a stack, said stack
including a stack data module for storing one or more stack 55
data values, said stack further including a stack pointer mod-
ule, said stack pointer module being coupled to said stack data
module to provide as input a reference to one or more stack
data values, said method comprising the steps of:

searching for an 1tem 1n the stack data module using the 60

stack pointer module, the stack pointer module 1nclud-
ing a set of data multiplexers, including one or more
multiplexers, a set of registers, including one or more
registers wherein [an] a most recently used (MRU) reg-
ister specifies, either directly or indirectly, a location of 65
a most-recently-used stack data value and [an] a /east
recently used (LRU) register specifies, either directly or

20

indirectly, a location of a least-recently-used stack data
value, and an address multiplexer, said data multiplexers
and registers configured such that for each register in the
set of registers, there 1s a corresponding multiplexer in
the set of data multiplexers, said corresponding multi-
plexer arranged and coupled to 1ts corresponding regis-
ter to receive one or more mputs and provide an output to
the corresponding register, the registers in said set of
registers arranged and interconnected by the multiplex-
ers such that data values are specified from a most-
recently-used data value down to a least-recently-used
data;

11 the 1tem 1s found 1n the stack data, then promoting the
item such that the item 1s 1dentified as being the most-
recently-used, the pointer manipulation associated with
the promoting of the item occurring during a single
clock cycle; and

11 the 1tem 1s not found 1n the stack data, then mserting the
item 1nto the stack such that the item 1s 1dentified as
being the most-recently-used, the pointer manipulation
associated with the mserting of the 1tem occurring dur-
ing a single clock cycle.

22. A method as defined 1n claim 21, wherein said step of

promoting the 1item comprises the steps of:

setting the MRU stack pointer to the value of the stack
pointer speciiying the stack data value matching the
item; and

shifting down one the values of the stack pointers in the
stack pointer list between the MRU stack pointer and
stack pointer specitying the stack data value matching
the 1tem, noninclusive, wherein said steps of setting the
MRU stack pointer and shifting are executed simulta-
neously.

23. A method for manipulating data 1n a stack, said stack
including a stack data module for storing one or more stack
data values, said stack further including a stack pointer mod-
ule, said stack pointer module being coupled to said stack data
module to provide as mput a reference to one or more stack
data values, said method comprising the steps of:

searching for an item 1n the stack data module using the
stack pointer module, the stack pointer module 1includ-
ing a set ol data multiplexers, including one or more
multiplexers, a set of registers, including one or more
registers wherein [an] a most recently used (MRU) reg-
1ster specifies, either directly or indirectly, a location of
a most-recently-used stack data value and [an] a least
recently used (LRU) register specifies, either directly or
indirectly, a location of a least-recently-used stack data
value, and an address multiplexer, said data multiplexers
and registers configured such that for each register in the
set of registers, there 1s a corresponding multiplexer 1n
the set of data multiplexers, said corresponding multi-
plexer arranged and coupled to 1ts corresponding regis-
ter to recerve one or more inputs and provide an output to
the corresponding register, the registers 1n said set of
registers arranged and 1nterconnected by the multiplex-
ers such that data values are specified from a most-
recently-used data value down to a least-recently-used
data;

i1 the 1tem 1s found 1n the stack data, then promoting the
item such that the item 1s i1dentified as being the most-
recently-used, pointer manipulation associated with the
promoting of the item occurring during a single clock
cycle; and

11 the 1tem 1s not found 1n the stack data, then inserting the
item 1nto the stack such that the item 1s identified as
being the most-recently-used.

US RE43,301 E

21

24. A method as defined 1n claim 23, wherein said step of
promoting the item comprises the steps of:

setting the MRU stack pointer to the value of the stack
pointer speciiying the stack data value matching the
item; and

shifting down one the values of the stack pointers 1n the
stack pointer list between the MRU stack pointer and
stack pointer specitying the stack data value matching
the 1tem, noninclusive, wherein said steps of setting the
MRU stack pointer and shifting are executed simulta-
neously.

25. A method for manipulating data in a stack, said stack
including a stack data module for storing one or more stack
data values, said stack further including a stack pointer mod-
ule, said stack pointer module being coupled to said stack data
module to provide as input a reference to one or more stack
data values, said method comprising the steps of:

searching for an 1tem 1n the stack data module using the
stack pointer module, the stack pointer module 1nclud-
ing a set of data multiplexers, including one or more
multiplexers, a set of registers, including one or more
registers wherein [an] a most recently used (MRU) reg-
ister specifies, either directly or indirectly, a location of
a most-recently-used stack data value and [an] a /east
recently used (LRU) register specifies, either directly or
indirectly, a location of a least-recently-used stack data
value, and an address multiplexer, said data multiplexers
and registers configured such that for each register in the
set of registers, there 1s a corresponding multiplexer in
the set of data multiplexers, said corresponding multi-
plexer arranged and coupled to 1ts corresponding regis-
ter to rece1ve one or more iputs and provide an output to
the corresponding register, the registers in said set of
registers arranged and interconnected by the multiplex-
ers such that data values are specified from a most-
recently-used data value down to a least-recently-used
data;

if the 1tem 1s found in the stack data, then promoting the
item such that the 1tem 1s 1dentified as being the most-
recently-used; and

if the 1tem 1s not found 1n the stack data, then 1nserting the
item 1nto the stack such that the item 1s identified as
being the most-recently-used, the pointer mampulation
associated with the inserting of the 1tem occurring dur-
ing a single clock cycle.

26. An apparatus for [an] a most recently used (MRU)

stack, said apparatus comprising:

means for recerving a command;

means for recerving a data value;

a stack data module for storing one or more stack data
values, said stack data module being coupled to said data
value recerving means for receiving a data value as
input;

a stack pointer module for referencing stack data values
stored 1n said stack data module, said stack pointer mod-
ule being coupled to said stack data module to provide as
input a reference to one or more stack data values, said
stack pointer module including a stack pointer list [hav-
ing a set of references, the set of references ncluding
one or more stack pointers, each stack pointer uniquely
specifying a stack data value in the stack data] that
includes a set of one or more clocked registers, each
clocked register specifying a stack pointer that uniquely
references a stack data value in the stack data module,
the one or more stack pointers including an MRU stack
pomnter specilying the most-recently-used stack data
value in the stack data and [an] a least recently used

10

15

20

25

30

35

40

45

50

55

60

65

22

(LRU) stack pointer specifying the least-recently-used
stack data value 1n the stack data, the stack pointers in
said set of references such that stack data values are
specified from a most-recently-used data value down to
a least-recently-used data value, said stack pointer mod-
ule and said stack data module interconnected to allow
pointer mampulation associated with the promotion of
an 1tem to the top of the stack to occur during a single
clock cycle and to allow pointer mamipulation associated
with the insertion of an item into the stack to occur
during a single clock cycle; and

a stack control module for the MRU stack, said stack con-
trol module being coupled to said command receiving
means for receiving a command as imnput and further
being arranged to transmit an output to a stack search
requesting unit, said stack control module further being
coupled to said stack pointer module to provide opera-
tional control of the stack pointer module functions, said
stack control module further being coupled to said stack
data module to provide control of the accessing of data to
and from the stack data module and to receive as input a
stack data value, said stack control module further being,
coupled to said data value recerving means for receiving
a data value as 1nput.

[27. An apparatus as defined in claim 26, wherein said stack
pointer list includes a set of registers, each register specifying,
a stack pointer that references a unique stack data value in the
stack data module.]

28. An apparatus as defined 1n claim 26, wherein said stack
datamodule 1s amemory array having one or more array cells,
cach cell specilying a stack data value.

29. An apparatus for [an] a most recently used (MRU)
stack, said apparatus comprising:

means for receiving a command;

means for receiving a data value;

a stack data module for storing one or more stack data
values, said stack data module being coupled to said data
value recerving means for receiving a data value as
input;

a stack pointer module for referencing stack data values
stored 1n said stack data module, said stack pointer mod-
ule being coupled to said stack data module to provide as
input a reference to one or more stack data values, said
stack pointer module including a stack pointer list [hav-
ing a set of references, the set of references including
one or more stack pointers, each stack pointer uniquely
specifying a stack data value in the stack data] that
includes a set of one or more clocked registers, each
clocked register specifyving a stack pointer that uniquely
references a stack data value in the stack data module,
the one or more stack pointers including an MRU stack
pointer specilying the most-recently-used stack data
value in the stack data and [an] a least recently used
(LRU) stack pointer specifying the least-recently-used
stack data value 1n the stack data, the stack pointers in
said set of references such that stack data values are
specified from a most-recently-used data value down to
a least-recently-used data value, said stack pointer mod-
ule and said stack data module interconnected to allow
pointer mampulation associated with the promotion of
an 1tem to the top of the stack to occur during a single
clock; and

a stack control module for the MRU stack, said stack con-
trol module being coupled to said command recerving
means for recerving a command as mput and further
being arranged to transmit an output to a stack search
requesting unit, said stack control module further being

US RE43,301 E

23

coupled to said stack pointer module to provide opera-
tional control of the stack pointer module functions, said
stack control module further being coupled to said stack
data module to provide control of the accessing of data to
and from the stack data module and to receive as input a
stack data value, said stack control module further being
coupled to said data value recerving means for receiving
a data value as input.

[30. An apparatus as defined in claim 29, wherein said stack
pointer list includes a set of registers, each register specilying,
a stack pointer that references a unique stack data value 1n the
stack data module.]

31. An apparatus as defined 1n claim 29, wherein said stack
data module 1s amemory array having one or more array cells,
cach cell specitying a stack data value.

32. An apparatus for [an] a most recently used (MRU)
stack, said apparatus comprising:

means for recerving a command;

means for receiving a data value;

a stack data module for storing one or more stack data
values, said stack data module being coupled to said data
value recerving means for receiving a data value as
input;

a stack pointer module for referencing stack data values
stored 1n said stack data module, said stack pointer mod-
ule being coupled to said stack data module to provide as
input a reference to one or more stack data values, said
stack pointer module including a stack pointer list [hav-
ing a set of references, the set of references ncluding
one or more stack pointers, each stack pointer uniquely
specifying a stack data value in the stack data] that
includes a set of one or more clocked registers, each
clocked register specifying a stack pointer that uniquely
references a stack data value in the stack data module,
the one or more stack pointers including an MRU stack
pointer specilying the most-recently-used stack data
value in the stack data and [an] a least recently used
(LRU) stack pointer specifying the least-recently-used
stack data value 1n the stack data, the stack pointers in
said set of references such that stack data values are
specified from a most-recently-used data value down to
a least-recently-used data value, said stack pointer mod-
ule and said stack data module interconnected to allow a
data value to be mserted 1nto the stack 1n a single clock
cycle; and

a stack control module for the MRU stack, said stack con-
trol module being coupled to said command recerving
means for recerving a command as input and further
being arranged to transmit an output to a stack search
requesting unit, said stack control module further being
coupled to said stack pointer module to provide opera-
tional control of the stack pointer module functions, said
stack control module further being coupled to said stack
data module to provide control of the accessing of data to
and from the stack data module and to receive as input a
stack data value, said stack control module further being
coupled to said data value recerving means for receiving
a data value as put.

[33. An apparatus as defined in claim 32, wherein said stack
pointer list includes a set of registers, each register specilying,
a stack pointer that references a unique stack data value 1n the
stack data module.]

34. An apparatus as defined 1n claim 32, wherein said stack
datamodule 1s amemory array having one or more array cells,
cach cell specitying a stack data value.

10

15

20

25

30

35

40

45

50

55

60

65

24

35. A computer readable medium having stored thereon
instructions for causing a computer to implement the follow-
ing steps:
searching for an 1tem 1n a stack, the stack including stack
data having one or more stack data values, the stack
further including a stack pointer list [having a set of
references, the set of references including one or more
stack pointers, each stack pointer uniquely specifying a
stack data value in the stack data] that includes a set of
one orv movre clocked rvegisters, each clocked rvegister
specifving a stack pointer that uniquely references a
stack data value in the stack data module, the one or
more stack pointers including [an] a most recently used
(MRU) stack pointer specitying the most-recently-used
stack data value in the stack data and [an] a least recently
used (LRU) stack pointer specitying the least-recently-
used stack data value 1n the stack data, the stack pointers
in the set of references such that stack data values are
specified from a most-recently-used data value down to
a least-recently-used data value;

i1 the 1tem 1s found 1n the stack data, then promoting the
item such that the item 1s identified as being the most-
recently-used, the promoting of the 1tem occurring dur-
ing a single clock cycle; and

11 the 1tem 1s not found 1n the stack data, then inserting the

item 1nto the stack such that the item 1s identified as
being the most-recently-used, the inserting of the item
occurring during a single clock cycle.

36. A computer readable medium as defined 1n claim 35,
wherein said step of promoting the 1tem comprises the steps
of:

setting the MRU stack pointer to the value of the stack

pointer specilying the stack data value matching the
item; and
shifting down one the values of the stack pointers 1n the
stack pointer list between the MRU stack pointer and
stack pointer specitying the stack data value matching
the 1tem, noninclusive, wherein said steps of setting the
MRU stack pointer and shifting are executed simulta-
neously.
37. A computer readable medium having stored thereon
instructions for causing a computer to implement the follow-
Ing steps:
searching for an 1tem 1n a stack, the stack including stack
data having one or more stack data values, the stack
further including a stack pointer list [having a set of
references, the set of references including one or more
stack pointers, each stack pointer uniquely specifying a
stack data value in the stack data] tiat includes a sets of
one orv movre clocked rvegisters, each clocked rvegister
specifving a stack pointer that uniquely references a
stack data value in the stack data module, the one or
more stack pointers including [an] a most recently used
(MRU) stack pointer specitying the most-recently-used
stack data value in the stack data and [an] a least recently
used (LRU) stack pointer specitying the least-recently-
used stack data value 1n the stack data, the stack pointers
in the set of references such that stack data values are
specified from a most-recently-used data value down to
a least-recently-used data value;

i1 the 1tem 1s found 1n the stack data, then promoting the
item such that the item 1s i1dentified as being the most-
recently-used, pointer manipulation associated with the
promoting of the item occurring during a single clock
cycle; and

11 the 1tem 1s not found 1n the stack data, then inserting the

item 1nto the stack such that the item 1s identified as

US RE43,301 E

25

being the most-recently-used, pointer mampulation
associated with the inserting of the 1tem occurring dur-
ing a single clock cycle.

38. A computer readable medium having stored thereon
instructions for causing a computer to implement the follow-
ing steps:

searching for an 1tem 1n a stack, the stack including stack

data having one or more stack data values, the stack
further including a stack pointer list [having a set of
references, the set of references including one or more
stack pointers, each stack pointer uniquely specifying a

stack data value in the stack data] that includes a set of

one orv more clocked rvegisters, each clocked rvegister
specifving a stack pointer that uniquely references a
stack data value in the stack data module, the one or
more stack pointers including [an] a most recently used
(MRU) slack pointer specitying the most-recently-used
stack data value in the stack data and [an] a least recently
used (LRU) stack pointer specitying the least-recently-
used stack data value 1n the stack data, the stack pointers
in the set of references such that stack data values are
specified from a most-recently-used data value down to
a least-recently-used data value;

if the 1tem 1s found in the stack data, then promoting the
item such that the item 1s 1dentified as being the most-
recently-used, pointer manipulation associated with the
promoting of the 1tem occurring during a single clock
cycle; and

if the 1tem 1s not found in the stack data, then inserting the

item 1nto the stack such that the item 1s identified as
being the most-recently-used.

39. A method for manipulating data in a stack, said stack
including stack data having one or more stack data values,
said stack further including a stack pointer list [having a set of
references, the set of references including one or more stack
pointers, each stack pointer uniquely specilying a stack data
value in the stack data] that includes a set of one or more
clocked registers, each clocked register specifving a stack
pointer that uniquely references a stackdatavalue in the stack
data module, the one or more stack pointers including [an] a
most recently used (MRU) stack pointer specitying the most-
recently-used stack data value in the stack data and [an] a
least recently used (LRU) stack pointer speciiying the least-
recently-used stack data value in the stack data, the stack
pointers 1n said set of references being such that stack data
values are specified from a most-recently-used data value
down to a least-recently-used data value, said method com-
prising the steps of:

searching for an item 1n the stack data;

if the 1tem 1s found in the stack data, then promoting the

item such that the 1tem 1s 1dentified as being the most-
recently-used; and

if the 1tem 1s not found 1n the stack data, then 1nserting the

item 1nto the stack such that the item 1s identified as
being the most-recently-used.

40. A method as defined 1n claim 39, wherein said step of
promoting the item comprises the steps of:

setting the MRU stack pointer to the value of the stack

pointer specilying the stack data value matching the
item; and

shifting down one the values of the stack pointers 1n the

stack pointer list between the MRU stack pointer and
stack pointer specitying the stack data value matching
the 1tem, noninclusive, wherein said steps of setting the
MRU stack pointer and shifting are executed simulta-
neously.

5

10

15

20

25

30

35

40

45

50

55

60

65

26

41. An apparatus for [an] a most recently used (MRU)

stack, said apparatus comprising:

means for receiving a command;

means for recerving a data value;

a stack data module for storing one or more stack data
values, said stack data module being coupled to said data
value recerving means for receiving a data value as
input;

a stack pointer module for referencing stack data values
stored 1n said stack data module, said stack pointer mod-
ule being coupled to said stack data module to provide as
input a reference to one or more stack data values, said
stack pointer module including a stack pointer list [hav-
ing a set of references, the set of references including
one or more stack pointers, each stack pointer uniquely
specifying a stack data value in the stack data] that
includes a set of one or more clocked registers, each
clocked register specifving a stack pointer that uniquely
references a stack data value in the stack data module,
the one or more stack pointers including an MRU stack
pointer specilying the most-recently-used stack data
value in the stack data and [an] a least recently used
(LRU) stack pointer specifying the least-recently-used
stack data value 1n the stack data, the stack pointers 1n
said set of references being listed such that stack data
values are specified from a most-recently-used data
value down to a least-recently-used data value; and

a stack control module for the MRU stack, said stack con-
trol module being coupled to said command recerving
means for recerving a command as input and further
being arranged to transmit an output to a stack search
requesting unit, said stack control module further being
coupled to said stack pointer module to provide opera-
tional control of the stack pointer module functions, said
stack control module further being coupled to said stack
data module to provide control of the accessing of data to
and from the stack data module and to receive as input a
stack data value, said stack control module further being,
coupled to said data value recerving means for receiving
a data value as 1nput.

[42. An apparatus as defined in claim 41, wherein said stack
pointer list includes a set of registers, each register speciiying
a stack pointer that references a unique stack data value in the
stack data module.]

43. An apparatus as defined 1n claim 41, wherein said stack
datamodule 1s amemory array having one or more array cells,
cach cell specilying a stack data value.

44. A memory apparatus, Comprising.

a data memory including a plurality of individually addres-

sable cells;

a pointer memory including a plurality of clocked registers,
each clocked register configured to store a pointer to one
of the cells, in one-to-one corrvespondence with the cells;
and

a control module, coupled to the pointer memory and the
data memory, and configured to change the order in
which data values ave retrieved from the cells by reor-
dering the pointers in at least some of the clocked reg-
isters without shifting the data values in all of the cells,
wherein the pointers ave reovdered in a single clock
cycle.

45. The apparatus of claim 44, further comprising an
address multiplexer with a plurality of inputs and one output,
wherein the plurality of address multiplexer inputs are
coupled to the outputs of the plurality of clocked registers in

US RE43,301 E

27

one-to-one correspondence with the clocked registers, and
wherein the addvess multiplexer output is coupled to an input
of the data memory.

46. The apparatus of claim 44, further comprising a plu-
rality of data multiplexers, each data multiplexer having an
output coupled to an input of one of the plurality of clocked
registers in one-to-one correspondence with the clocked reg-
Isters.

47. The apparatus of claim 46, wherein each data multi-
plexer has a plurality of inputs coupled to the outputs of the
plurality of clocked registers in one-to-one correspondence
with the clocked registers.

48. The apparatus of claim 44, wherein the control module
is further comfigurved to insert a data value into the data
memory by storing the data value in one of the cells and by

reordering the pointers in at least some of the clocked regis-
ters without shifting the data values in all of the cells.

49. The apparatus of claim 44, wherein the clocked regis-
ters include a most vecently used (MRU) clocked register for
storing a pointer to a cell storing a most vecently used (MRU)
data value.

50. The apparatus of claim 49, wherein the contrvol module
is further comfigurved to insert a data value into the data
memory by storing the data value in one of the cells and by
updating the pointer in the MRU clocked register to point to
the cell in which the data value was stored.

51. The apparatus of claim 49, wherein the contrvol module
is further comfigured to promote a data value stored in a
currvent cell in the data memory by storing a pointer to the
curvent cell in the MRU clocked vegister and by reovdering the
pointers in at least some of the clocked rvegisters without
shifting the data values in all of the cells.

52. The apparatus of claim 44, wherein the clocked regis-
ters include a least vecently used (LRU) clocked vegister for
storing a pointer to a cell storing a least vecently used (LRU)
data value.

53. The apparatus of claim 52, wherein the control module
is further comfigured to insert a data value into the data
memory by storing the data value in the cell pointed at by the
LRU clocked register and by reordering the pointers in at
least some of the clocked registers without shifting the data
values in all of the cells.

54. The apparatus of claim 44, wherein a T, clocked reg-
ister is stoving a pointer to a curvent cell, and whevein a T,
clocked register is stoving a pointer to a cell storving a most
recently used (MRU) data value, and wherein the control
module is further configured to reorder the pointers by shift-
ing the pointers in the T, clocked register through a T _,
clocked register to a T, clocked register to the T, clocked
register, vespectively.

55. The apparatus of claim 54, wherein the contrvol module
is further configured to store the pointer to the current cell in
the T, clocked register

56. The apparatus of claim 44, wherein the control module
is further configured to change the ovder in which data values
are rvetrieved from the cells by reovdering the pointers in at
least three of the clocked registers without shifting the data
values in all of the cells, whervein the pointers ave reordered in
a single clock cycle.

57. A method of operating a memory apparatus, the method
COmprising:

5

10

15

20

25

30

35

40

45

50

55

storing data in a data memory including a plurality of 60

individually addressable cells;
stoving pointers in a pointer memory including a plurality
of clocked registers, each pointer stored in one of the
clocked registers and pointing at one of the cells; and
changing an ovder in which data values are vetrieved from
the cells by reovdering the pointers in at least some of the

28

clocked rvegisters without shifting the data values in all of
the cells, wherein the pointers are reordered in a single

clock cycle.
58. The method of claim 57, further comprising outputting
a pointer from one of the clocked registers and inputting the
pointer into the data memory.
59. The method of claim 57, further comprising outputting
a pointer from a data multiplexer and inputting the pointer
into one of the clocked registers.

60. The method of claim 59, further comprising outputting
a pointer from each clocked register and inputting the point-
ers into the data multiplexer.

61. The method of claim 57, further comprising inserting a
data value into the data memory by storing the data value in
one of the cells and by reovdering the pointers in at least some
of the clocked registers without shifting the data values in all
of the cells.

62. The method of claim 57, wherein the clocked registers
include a most vecently used (MRU) clocked register for stor-
ing a pointer to a cell storving a most vecently used (MRU) data
value.

63. The method of claim 62, further comprising inserting a
data value into the data memory by storing the data value in
one of the cells and by updating the pointer in the MRU
clocked rvegister to point to the cell in which the data value
was stored.

64. The method of claim 62, further comprising promoting
a data value stored in a currvent cell in the data memory by
storing a pointer to the current cell in the MRU clocked
register and by reovdering the pointers in at least some of the
clocked registers without shifting the data values in all of the
cells.

65. The method of claim 57, wherein the clocked registers
include a least vecently used (LRU) clocked register for stor-
ing a pointer to a cell storing a least recently used (LRU) data
value.

66. The method of claim 65, further comprising inserting a
data value into the data memory by stoving the data value in
the cell pointed at by the LRU clocked register and by reor-
derving the pointers in at least some of the clocked registers
without shifting the data values in all of the cells.

67. The method of claim 57, wherein a T, clocked register
is storing a pointer to a current cell, and wherein a T, clocked
register is storing a pointer to a cell storving a most vecently
used (MRU) data value, and further comprising reordering
the pointers by shifting the pointers in the T, clocked vegister
through a T _, clocked register to a T', clocked register to the
T’ clocked register, respectively.

68. The method of claim 67, further comprising stoving the
pointer to the current cell in the T, clocked register.

69. A memory apparatus, COmprising:

a data memory including a plurality of individually addres-

sable cells;

a pointer memory including a plurality of clocked registers,
each clocked register configured to store a pointer to one
of the cells, in one-to-one corrvespondence with the cells;
and

a control module, coupled to the pointer memory and the
data memory, and configured to:
change the order in which data values ave vetrieved from

the cells by veordering the pointers in at least some of
the clocked registers; and
insert a data value into the data memory by storing the
data value in one of the cells and by reovdering the
pointers in at least some of the clocked vegisters;
wherein the pointers are reovdered without shifting the
data values in all of the cells, and wherein the pointers
are reovdered in a single clock cycle.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

