USOORE43248E
(19) United States
12 Relissued Patent (10) Patent Number: US RE43,248 E
Nevill 45) Date of Reissued Patent: Mar. 13, 2012
(54) INTEROPERABILITY WITH MULTIPLE jjgi%é i g iggi Eoilliﬂel‘(giel‘ etlal*
1 ’ olland et al.
INSTRUCTION SETS 4,434,461 A 2/1984 Puhl
_ | 4,459,657 A 7/1984 Murao
(75) Inventor: Edward Colles Nevill, Huntingdon (GB) 4,511,966 A 4/1985 Hamadaccoccovnne.... 364/200
4,514,803 A 4/1985 Agnewetal. ...ooo......... 364/200
(73) Assignee: ARM Limited, Cambridge (GB) 4,554,627 A 11/1985 Holland et al.
(Continued)

(21) Appl. No.: 10/066,475

(22) Filed: Feb. 1, 2002
Related U.S. Patent Documents

Reissue of:

(64) Patent No.: 6,021,265
Issued: Feb. 1, 2000
Appl. No.: 08/840,557
Filed: Apr. 14, 1997

U.S. Applications:
(62) Davision of application No.08/477,781, filedon Jun. 7,

1995, now Pat. No. 5,758,113.
(30) Foreign Application Priority Data

Jun. 10, 1994 (GB) .o 9411670

(51) Int.CL.
GOGF 9/30 (2006.01)

(52) US.CL ., 712/209; 712/210

(58) Field of Classification Search 712/209,

712/210
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

4,217,638 A 8/1980 Namimoto et al.

4,236,204 A 11/1980 Groves

4,274,138 A 6/1981 Shimokawa

4,338,663 A 7/1982 Streckeretal. 712/228
4,346,437 A 8/1982 Blahut et al.

FOREIGN PATENT DOCUMENTS

EP 109567 10/1983
(Continued)

OTHER PUBLICATIONS

Order Construing Disputed Claims and Terms, ARM Limited v.
picolurbo, Inc., Case No. C-00-00957 (N.D. Calif., Jun. 15,
2001)(Wilken, I.).

(Continued)

Primary Examiner — Kenneth R Coulter
(74) Attorney, Agent, or Firm — White & Case LLP

(57) ABSTRACT

Data processing apparatus comprising: a processor core hav-
ing means lfor executing successive program instruction
words of a predetermined plurality of instruction sets; a data
memory for storing program instruction words to be
executed; a program counter register for indicating the
address of a next program instruction word in the data
memory; means for moditying the contents of the program
counter register in response to a current program instruction
word; and control means, responsive to one or more prede-
termined 1ndicator bits of the program counter register, for
controlling the processor core to execute program instruction
words of a current instruction set selected from the predeter-
mined plurality of mnstruction sets and specified by the state of
the one or more 1indicator bits of the program counter register.

69 Claims, 3 Drawing Sheets

10 160 150 100 110
\ P 0 7
__SPSR CPSH - (- /
- | Instruction j Instruction
_] Register Bank Decoder H Decoder
B e PP 4 |1 & Logic & Logic 140
y) - Control #1 || Control # 2
30| N) —s
- 1. H Conirolier
40 || ﬂ ﬂ ‘_“J___r/wo
‘[Booths . T f TL__PC - 20
Multiplier 90 i ~ (
50 ||
| Barrel
“ r\\ao Memory
60 \ 32-bit ALU /L_m__ System
,\“ﬁ Il 1
[Write Data Register [4 = -z
“ 120
nt

US RE43,248 E

EP
EP
EP
EP
EP
EP
EP
EP
EP
EP
GB
GB
GB
JP

Page 2
U.S. PATENT DOCUMENTS JP 58-3040 6/1981
4,685,080 A 8/1987 Rhodes, Jr. et al. E 52;;22;3 gﬁgzg
4,695,943 A 9/1987 Keeleyetal. 364/200 T
. JP 62-151938 7/1987
4,849,922 A 7/1989 Riolfoocovivvivininnin, 364/725 t"P 63111533 5/1088
4,870,614 A 0/1989 Quatsecoooevvvvinnennnn, 364/900 T
JP 1007129 1/1989
4,876,639 A 10/1989 Mensch, Jr. T
. JP A-03-150633 6/1991
4,905,196 A 2/1990 Kirrmannoo...... 365/200 T
JP 4-76626 3/1992
4,930,068 A 5/1990 Katayose et al. .
JP 5-265751 10/1993
4,931,989 A 6/1990 Rhodes, Jr. et al. .
JP 6-83615 3/1994
5,077,659 A 12/1991 Nagata T
| JP 6083615 3/1994
5,115,500 A * 5/1992 Larsencoovvvvvun.n. 712/209 TP 7981890 10/1995
5,148,536 A 9/1992 Witeketal. 395/425 T
_ JP 52-68340 7/1997
5,193,158 A 3/1993 Kinney et al.
5,276,824 A 1/1994 Skruhak et al. OTHER PUBIICATIONS
5,303,378 A 4/1994 Cohen
g%%gagg? i ;j ggj E/‘ETSYth 1 ********************* 710/260 Defendant picoTurbo’s Civil L.R. 16-9(b)(1)-(4) Response Chart
: : urao ¢t al. : .. .
5353.420 A 10/1994 7aid; Concerning U.S. Patent No. 6,021,26.5, ARM Limited v. picolurbo,
5363322 A 11/1994 Gergen et al. Inc., Case No. C-00-00957 (N.D. Calit., Dec. 22, 2000).
5,386,563 A 1/1995 Thomas Initial Disclosure by Defendant picoTurbo, Inc. of Prior Art Under
5,392,408 A 2/1995 Fitch ...oooooiviiiiiniiinnns, 711/202 Local Rule 16-7, Case C00-00957CW, Aug. 14, 2000,
5,404,472 A 4/1995 Kurosawa et al. Defendant picoTurbo’s Civil L.R. 16-9(b)(1)-(4) Supplemental
2A410,739 A S/1995 WONE Lo 365/189.01 Responses U.S. Patent Nos. 5,740,461, 5,568,646, 5,758,115,
5420992 A 5/1995 Killian et al 6,021,265, and 5,583,804, May 17, 2001
5,475,824 A 12/1995 Grochowskietal. 712/206 T 202,007, My ’ .
5481.684 A 1/1996 Richteretal 712/212 Second Supplement to Defendant picoTurbo’s Civil L.R. 16-9(b)(1)
5,481,693 A 1/1996 Blomgrenet al. 712/225 Response Charts, Jun. 6, 2001.
5524211 A 6/1996 Woodsetal. 709/220 picoTurbo’s Third Supplemental Response Charts, Aug. 31, 2001.
5,542,059 A 7/1996 Blomgren Joint Designation of Disputed Terms for Claim Construction, Feb. 5,
5,561,810 A 10/1996 Ohtomo 2001.
5,568,646 A 10/1996 Jagger Plaintiff ARM’s Opening Briefon Claim Construction, Mar. 1, 2001.
5,574,928 A 11/1996 White et al. Defendant picoTurbo’s Response Brief on Claim Construction, Mar.
2,598,546 A L1997 Bl_omgren Plaintiff ARM’s Reply Brief on Claim Construction, Mar. 22, 2001.
5,600,845 A 2/1997 Gilsonoovivviiiiininnin, 395/800 .
5606714 A 2/1907 TIntrater et al. 205/200 Expert Report: Professor Alan Jay Smith, Aug. 31, 2001.
5363Oﬂ083 A 5/1997 Carbine ot al. Rebuttal Expert Report of Dr. Earl E. Swartzlander, Jr., Sep. 20, 2001.
5:630: 153 A 5/1997 Intrater et al. ... 395/%00 Plaintiff ARM’s Response to picoTurbo, Inc.’s First Set of Interroga-
5,638,525 A 6/1997 Hammond et al. tories to ARM, Limited, Aug. 14, 2000 (Interrogatories 1 and 2 only).
5,642,516 A 6/1997 Hedayat et al. Defendant picoTurbo, Inc.’s Response to Plamtiff ARM’s Second
5,664,147 A 9/1997 Maytield 711/137 Set of Interrogatories, Aug. 18, 2000.
5,666,355 A 9/1997 Huahetal. 370/311 Defendant picoTurbo’s Motion for Summary Judgment on Issues of
5,671,422 A 9/1997 Datta Patent Invalidity, Oct. 23, 2001.
5,689,672 A 1171997 Witt et al. Memorandum of Points and Authorities in Support of Plaintiff
2,692,152 A [I/1997 Cohenetal. 395/467 ARM’s Opposition and Cross Motion for Summary Judgment that
5,701,493 A 12/1997 Jaggar h - - -
e Patents-in-Suit are not Invalid, Nov. 2, 2001.
5,740,461 A 4/1998 Jaggar Do ?
5758115 A 5/1998 Novill Plaintiff ARM’s Reply in Support of its Oppo 31.t1011 and Cross Motlon
5,781,750 A * 7/1998 Blomgren et al. 712/209 for Summary Judgment that the Patents-in-Suit are not Invalid.
5:7 84:58 5 A 7/1998 Denman picoTurbo’s Reply in Support of Motion for Summary Judgment on
5,784,636 A 7/1998 RUPP woovoveeeeeen, 305/800.37 Invalidity and Opposition to ARM’s Cross-Motion, Nov. 9, 2001.
5,796,973 A 8/1998 Witt et al. Declaration of Professor Alan Jay Smith, Oct. 17, 2001.
5,968,161 A 10/1999 Southgate 712/37 Supplemental Declaration of Professor Alan Jay Smith, Nov. 8, 2001.
5,970,254 A 10/1999 Cookeetal. 395/800.37 Declaration of Dr. Earl E. Swartzlander, Jr., Nov. 1, 2001.
6,496,922 B1* 12/2002 Borrillo0. 712/209

FOREIGN PATENT DOCUMENTS

0109567
169565
0169565
0199173
199173
306920
0306920
324308
0324308
758464
2016755
20167550
2284492
52-40826

A

A2

A2

10/1983
7/1985
7/1985

10/1986

10/1986
3/1989
3/1989
7/1989
7/1989
4/1998
9/1979
9/1979
6/1995

10/1977

“Instruction-Processing Optimization Techniques for VSLI Micro-
processors”, by John David Bunda, Ph.D. Dissertation, University of
Texas at Austin, May 1993.

Clark et al., IEEE Transactions on Computers, vol. 30, (10) 1981,

“Memory System of a High-Performance Personal Computer”, 715-
722,

IBM Technical Disclosure Bulletin by PF Smith, enftitled:
“Extended Control for Microprocessors™ vol. 17 No. 11 published
Apr. 1975, pp. 3438-3441.

IBM Technical Disclosure Bulletin entitled: “Oncode Remap and
Compression in Hard-Wired Risc Microprocessor” vol. 32 No. 10A
published Mar. 1990, p. 349.

IBM Technical Disclosure Bulletin by J.C. Kemp, entitled: “Instruc-
tion Translator” vol. 15, No. 3 published Aug. 1972, p. 920.

* cited by examiner

US RE43,248 E

{ ‘D14

0Cl

NION

Qm_mmm el SIUAA

o \/)8

| -ii\ NV 1q-g¢

e,
=
.m _m__a:_:_zl_
7 — _i. syjoog | ,

t i B A
m 18(10U09) o e
S " 0d _ |
— 4 2 #10quod || 14 josuod "
~ Ovi 01007 o1b607 @ ~J11 et O
> 18poo8(18p028Q] | yueg _Em_mmm %

uonoNJSu| UonoNsu| | |
ort 001 051 09}

U.S. Patent

U.S. Patent Mar. 13, 2012 Sheet 2 of 3 US RE43.248 E

130°

1 1 0000000000000000X0000000000Xxx0

______,_______/

T bit Memory address

Fig. 2

130"

/
§

:
00000000000000000XCROCOOONKXX | 1
ey

Memory address T bit

Fig. 3

U.S. Patent Mar. 13, 2012 Sheet 3 of 3 US RE43.248 E

16 bit
Instruction Set

32 bit
Instruction Set

_ 200 |

T 5 143 J & 11

210
Data
Processing
—220 |
Branch to
Badd(1) + 1
230
Data
Processing
é 1 Y /240
.~ Branch to
- Badd(2) + O
Data {
. Processing |

- 260
End

Fig. 4

US RE43,248 E

1

INTEROPERABILITY WITH MULITTPLE
INSTRUCTION SETS

Matter enclosed in heavy brackets []| appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

RELATED APPLICATIONS

This 1s a divisional of application Ser. No. 08/47°7,781 filed
on Jun. 7, 1995 now U.S. Pat. No. 5,758,115.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to the field of data processing, and in
particular to data processing using multiple sets of program
instruction words.

2. Description of the Prior Art

Data processing systems operate with a processor core
acting under control of program nstruction words which
when decoded serve to generate core control signals to con-
trol the different elements 1n the processor to perform the
necessary operations to achieve the processing specified in
the program 1nstruction word.

It 1s known to provide systems that execute program
istruction words from two or more instruction sets, with
means being provided to switch between use of the different
instruction sets. The VAX11 computers of Digital Equipment
Corporation have a VAX 1nstruction mode and a compatibil-
ity mode that enables them to decode the 1nstructions for the
carlier PDP11 computers.

In order to switch between the different instruction sets, an
instruction set switch may be hard-wired 1nto the processor
core necessitating a physical rewiring of the processor to
switch instruction sets. Alternatively, a processor register
may be used to specily the current mstruction set to be used.
In this case, the current instruction set can be selected by the
operating software, by writing an instruction set-specitying
value to that processor register. However, as described below,
this technique requires additional program instruction words,
which 1n turn require extra time during preparation of the
software and extra memory space to store the program
instruction words.

In order to execute a piece of code, a processor capable of
using two or more istruction sets must have two pieces of
information:

1) The address of the code 1n memory; and

2) The mstruction set to use (1.e. the instruction set 1n which
the code 1s written)

Typically, in the previously proposed processors, acall to a
routine 1 a different instruction must be performed as
described below.

1) The subroutine call 1s diverted from 1ts original destina-
tion to an automatically generated instruction set selection
sequence or veneer.

2) The veneer must then accomplish the following

Save the context of the caller

Select the correct instruction set

Call the original routine

On return from the original routine, select the original

instruction set

Restore the callers context.

This process can be made relatively transparent to the
programmer by use of a conventional software tool called a

10

15

20

25

30

35

40

45

50

55

60

65

2

Linker. However, the process has a five istruction overhead
per routine which 1s called from a different instruction set, and
it also mtroduces a significant processing overhead.

SUMMARY OF THE INVENTION

It 1s an object of the invention to improve the capabilities of
data processing apparatus to switch between multiple imstruc-
tion sets.

This mvention provides a data processing apparatus com-
prising:

a processor core having means for executing successive

program 1nstruction words of a predetermined plurality
ol 1nstruction sets;

a data memory for storing program instruction words to be

executed;
a program counter register for indicating the address of a
next program instruction word in the data memory;

means for moditying the contents of the program counter
register 1n response to a current program instruction
word; and

control means, responsive to one or more predetermined

indicator bits of the program counter register, for con-
trolling the processor core to execute program instruc-
tion words of a current instruction set selected from the
predetermined plurality of instruction sets and specified
by the state of the one or more indicator bits of the
program counter register.

With the invention, a control flag or flags to select a current
istruction set 1s provided in the program counter register.
This allows the current instruction set to be changed when a
new value 1s written into the program counter register, for
example as part of the execution of a branch 1nstruction.

The mvention recognises that 11 the required instruction set
and the next mstruction address are encoded 1n separate pro-
cessor registers as 1n the previously proposed processors
described above (an 1nstruction set register and a program
counter register), 1t becomes difficult to change between
istruction sets as the two separate registers have to be
updated to accomplish a call to a section of code written 1n a
different 1nstruction set.

As an example, consider a program which 1s to perform a
sorting or collation function. Typically this will call a generic
sort routine to perform the sort. As this sort routine 1s generic,
it must be capable of sorting 1n any given sequence. For
example, 1t may be called to sort items 1n numerical order,
alphabetical order, case insensitive alphabetical order, or any
other order specified by the programmer. The means by which
the programmer specifies the sorting order 1s to pass the
address of a routine (called a compare routine) to the sort
routine. This compare routine will then be called by the sort
routine and will return a value to indicate whether, given two
items of data, the first should be placed before or after the
second 1n the sorted sequence.

IT just the address of the compare routine 1s passed to the
sort routine then the sort routine has no way of knowing which
instruction set should be selected when the routine 1s to be
called. If the wrong 1nstruction set 1s current when an attempt
1s made to execute the compare routine, the results can be
dramatically unsuccessiul. Extra information must be passed
to the sort routine to tell 1t what nstruction set should be n
force when the compare routine 1s called. However, many
ex1isting programs written in high level languages such as C &
C++ make assumptions that all the information necessary to
unmiquely identily a target routine (in this case the address and
the instruction set information) can be represented 1n a single
machine word.

US RE43,248 E

3

The mvention addresses these problems by defining a pre-
determined bit or bits of the program counter register (PC) to
indicate the nstruction set to be used. In the specific example
given above, the address of the compare routine passed to the
sort routine can have the required instruction set encoded 1n
the predetermined bit or bits of that address. The address,
including the indicator bit or bits, 1s then simply moved to the
program counter register when the compare routine 1s called.

Although certain bits of the program counter register can
be reserved for use as the indicator bits, an alternative
approach 1s to store portions of code to be executed using the
various nstruction sets 1n corresponding memory areas, So
that while those memory areas are being accessed the pro-
gram counter will contain a particular range of values speci-
tying the appropriate instruction set to be used.

In order to decode structions from the different instruc-
tion sets, 1t 1s preferred that the apparatus comprises a first
instruction decoder for decoding program instruction words
of the first instruction set; and a second instruction decoder
for decoding program instruction words of the second
instruction set; and that the control means 1s operable to
control either the first instruction decoder or the second
instruction decoder to decode a current program 1nstruction
word.

Preferably, program instruction words of the first instruc-
tion set are X-bit program instruction words; and program
instruction words of the second 1nstruction set are Y-bit pro-
gram 1nstruction words; whereY 1s different to X. In this way,
a common processor core can be programmed with either an
instruction set having longer program instruction words and
allowing potentially more powerful and involved instruc-
tions, or an istruction set having shorter program instruction
words, thus saving memory space where a potentially more
limited 1nstruction set can be tolerated.

In one preferred embodiment, the one or more bits of the
program counter register are one or more most significant bits
of the program counter register. In a program counter register
ol say, 32 bits, the highest order bits are seldom required since
the maximum memory space that can be addressed by such a
large program counter register 1s much more than the memory
space normally used.

Alternatively, 1n another preferred embodiment, the one or
more bits of the program counter register are one or more least
significant bits of the program counter register. In this case,
these bits are often not used where the minimum length of
program instruction words or data words 1s at least two bytes.

In order to avoid mvalid addresses 1n the data memory
being accessed, it 1s preferred that means are provided for
accessing a program instruction word stored in the data

memory, the accessing means not being responsive to the one
or more bits of the program counter register.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other objects, features and advantages of the
invention will be apparent from the following detailed
description of 1llustrative embodiments which 1s to beread 1n
connection with the accompanying drawings, in which:

FIG. 1 1s a schematic diagram of a data processing appa-
ratus having a processor core and a memory system;

FIGS. 2 and 3 are schematic diagrams of program counter
registers; and

FI1G. 4 1s a schematic flow diagram 1llustrating transitions
between two instruction sets using the program counter reg-

ister of FIG. 3.

5

10

15

20

25

30

35

40

45

50

55

60

65

4

DESCRIPTION OF THE PR.
EMBODIMENTS

L]
Y

ERRED

FIG. 1 1s a schematic diagram of a data processing appa-
ratus having a processor core 10 coupled to a memory system
20.

The processor core 10 includes aregister bank 30, a Booths
multiplier 40, a barrel shifter 50, a 32-bit arithmetic logic unit
(ALU) 60 and a write data register 70. Between the processor
core 10 and the memory system 20 are: an instruction pipeline
80, a multiplexer 90, a first instruction decoder 100, a second
instruction decoder 110, and a read data register 120.

A program counter (PC) register 130, which 1s part of the
processor core 10, 1s shown addressing the memory system
20. A program counter controller 140 serves to increment the
program counter value within the program counter register
130 as each mstruction 1s executed and a new 1nstruction must
be fetched for the instruction pipeline 80. Also, when a branch
istruction 1s executed, the target address of the branch
instruction 1s loaded into the program counter 130 by the
program counter controller 140.

The processor core 10 incorporates 32-bit data pathways
between the various functional units. In operation, mstruc-
tions within the mstruction pipeline 80 are decoded by either
the first instruction decoder 100 or the second instruction
decoder 110 (under the control of the multiplexer 90) to
produce various core control signals that are passed to the
different functional elements of the processor core 10. In
response to these core control signals, the different portions
of the processor core conduct 32-bit processing operations,
such as 32-bit multiplication, 32-bit addition and 32-bit logi-
cal operations.

The register bank 30 includes a current programming sta-
tus register (CPSR) 150 and a saved programming status
register (SPSR) 160. The current programming status register
150 holds various condition and status tlags for the processor
core 10. These flags may include processing mode tlags (e.g.
system mode, user mode, memory abort mode, etc.)as well as
flags 1indicating the occurrence of zero results 1n arithmetic
operations, carries and the like. The saved programming sta-
tus register 160 (which may be one of a banked plurality of
such saved programming status registers) 1s used to store
temporarily the contents of the current programming status
register 150 1f an exception occurs that triggers a processing
mode switch.

The program counter register 130 includes an nstruction
set tlag, T. This instruction set flag 1s used to control the

operation of the multiplexer 90, and therefore to control
whether the first instruction decoder 100 or the second
instruction decoder 110 1s used to decode a current data
processing instruction. In the present embodiment, two
instruction sets are used: a first instruction set comprises
32-bit program instruction words and 1s decoded by the first
mstruction decoder 100, and a second instruction set com-
prises 16-bit program instruction words and 1s decoded by the
second 1nstruction decoder 110. The core control signals gen-
erated by the first instruction decoder 100 and the second
instruction decoder 110 are compatible with the various func-
tional units of the core 10.

The use of two instruction sets of different program
instruction word length allows a common processing core 10
to be programmed with either the first instruction set having
longer words and allowing potentially more powertiul and
involved 1nstructions, or the second instruction set having
shorter program instruction words, thus saving memory space
where a potentially more limited instruction set can be toler-
ated.

US RE43,248 E

S

The provision of an istruction set tlag T enables the sec-
ond 1nstruction set to be non-orthogonal to the first instruction
set. This 1s particularly useful 1n circumstances where the first
instruction set 1s an existing instruction set without any iree
bits that could be used to enable an orthogonal further instruc-
tion set to be detected and decoded.

The nstruction set flag T 1s “hidden™ in normally unused
bits of the program counter register. This means that the T flag
can be set or reset by the program counter controller 140, but
the state of the T flag need have no direct effect on the
operation of the memory system 20 and the instruction pipe-
line 80.

FIGS. 2 and 3 are schematic diagrams of program counter
registers 1llustrating two possible methods 1n which the T bait
can be encoded into the program counter register. These two
methods 1nvolve encoding the T bit either as a normally
unused high order (most significant) bit of the program
counter register or as a normally unused low order (least
significant) bit of the program counter register.

FI1G. 2 1s a schematic diagram of a program counter register
130" 1n which the T bit 1s encoded as the highest order bit of
the program counter register.

The program counter register 1s a 32-bit register, which
allows 2 bytes to be addressed in the memory system 20.
However, since this equates to 4 gigabytes of addressable
memory space, it 1s extremely unlikely that the tull address
range made possible by the 21-bit program counter register
will be required.

Accordingly, the T bit 1n FIG. 2 1s encoded as the highest
order bit of the program counter register 130'. This still allows
2 gigabytes of memory to be addressed, although 1n practice
much less than this amount of memory will normally be
addressed, and other high order bits of the program counter
register may well be zeros (as shown 1 FIG. 2).

A problem which must be overcome 1s that when the T bat
1s set, the program counter register 130" may well point to a
memory address which 1s far in excess of the address range of
the memory system 20. In other words, the memory address
pointed to by the 32-bits of the program counter register 130
1s an invalid address as far as the memory system 20 1is
concerned.

This problem can be overcome in two straightforward
ways. In one technique, the highest order bit (the T bit) of the
program counter register 130' 1s simply not supplied as an
address bit o the memory system 20. Alternatively, the
address decoding within the memory system 20 may detect
only a certain number of lowest order bits (e.g. the lowest
order 24 bits to address a 16 megabyte address space), with
the state of the remaining higher order bits being 1rrelevant to
the decoded address. This 1s a standard technique 1n memory
address decoding when 1t 1s known 1n advance that only a
certain number of address bits will be required.

As described above, the T bit 1s passed from the program
counter register 130' to the multiplexer 90, and determines the
routing of instructions to either the first instruction decoder
100 or the second instruction decoder 110.

FIG. 3 1s a schematic diagram of a second program counter
register 130", in which the instruction set switching T bit 1s
encoded as the lowest order bit of the program counter reg-
ister.

The lowest order bit of the program counter register 1s
normally unused 1n a processor mm which the minimum
instruction or data word size 1s at least two bytes (16 bits 1n
this case). Accordingly, in the present embodiment the
instruction program words may be either 32 bits long (4
bytes) or 16 bits long (2 bytes) so the addresses supplied from
the program counter 130 to the memory system 20 will

10

15

20

25

30

35

40

45

50

55

60

65

6

always be a multiple of two and will therefore have a zero as
the least significant bit of the address.

The least significant bit of the program counter register
130" 1s used to store the T bit, which 1s supplied to the
multiplexer 90 as described above. Also as described above,
the lowest order bit of the program counter register 130" 1s not
supplied to the memory system, in order that invalid
addresses are not accessed by the memory system 20.

The fact that the program counter 130 1s controlled by the
program counter controller 140 means that the T bit can be set
as part ol a branch 1nstruction carried out by the core 10. For
example, if the T bit 1s currently set to indicate the use of the
first (32-bit) mnstruction set and it 1s desired to branch to a
portion of a code employing the second (16-bit) mstruction
set, then a branch instruction can be executed to jump to the
address of the 16-bit code to be executed and simultaneously
to change the T bit 1n the program counter register, in particu-
lar, 1n the arrangement shown in FIG. 2 1n which the T bit 1s
encoded as the highest order bit of the program counter reg-
ister 130", a branch instruction could set the T bit to 1 by
branching to (target address plus
10000000000000000000000000000000). Alternatively, 1n
order to set the T bit to 1 1n the program counter register 130"
of FIG. 3, a branch instruction could take the form of branch
to (target address plus 1). A similar arrangement could be
used to change the T bit back to a zero.

This process 1s illustrated schematically in FIG. 4, which 1s
a flow diagram illustrating transitions between the 32-bit
instruction set and the 16-bit instruction set using the program
counter register 130" of FIG. 3. In FIG. 4, when the T bit 1s set
to 1, this signifies that the 16-bit instruction set 1s to be used.

Referring to FIG. 4, the processing begins 200 1n the 32-bit
instruction set. After various data processing operations 210,
a branch 1nstruction 220 1s executed to branch to an address
Badd(1)+1. The address Badd(1) 1s the start address of a
portion of code using the 16-bit instruction set, and the extra
“+1” 1s used to switch the T bit to indicate that 16-bit code 1s
to be used. At the target address Badd(1), various data pro-
cessing operations 230 are carried out using the 16-bit
instruction set. A branch instruction 240 1s then performed to
return to the 32-bit mstruction set. In particular, the branch
instruction 240 has a target address Badd(2), referring to a
portion of 32-bit code, to which zero 1s added 1n order to
return the T bit to a zero state. At the target address Badd(2)
various data processing operations 250 are performed and the
processing ends 260.

When a switch 1s made between the two 1nstruction sets by
changing the T bit in the program counter 130, the actual
switch-over by the multiplexer 90 may be delayed to allow for
ex1isting instructions currently stored in the pipeline 80.

In summary, the switch between different processing
modes (1n particular, the use of different instruction sets) can
be made by writing a target address and a mode tlag (1) to the
program counter as part of the execution of a branch 1nstruc-
tion.

In an alternative case where the first instruction set 1s pre-
defined and used 1n existing processors, there may be logical
restrictions within the existing first instruction set preventing
the normally unused bits of the program counter register 130
from being changed by the instruction set. For backwards
compatibility of processors incorporating the second alterna-
tive, 1mstruction set, 1t may be necessary to employ a short
istruction set selection sequence of code to switch 1n one
direction from the first (existing) instruction set to the second
instruction set. Since the second 1instruction set would gener-
ally be added at the same time that the switching mechanism
1s being added, the second instruction set can be defined

US RE43,248 E

7

without the restrictions on accessing normally unused bits of
the program counter register 130. This means that the branch-
ing mechanism described above can be used to switch back
from the second 1nstruction set to the first instruction set.

An example of an mstruction set selection sequence
(known as a “veneer”) 1s as follows:

Label Veneer
XOR
Branch

(PC,1)
Label

In this routine, the current contents of the program counter
register 130" of FIG. 3 are exclusive-ORed with 1 to set the T
bit to 1. (Alternatively, with the program counter 130' of FIG.
2, the current contents could be exclusive-ORed with
10000000000000000000000000000000 to set the T bait).

In an alternative veneer routine, a subtract operation could
be used 1nstead of an exclusive-OR operation to change the
T-bit of the program counter register 130". This has the advan-
tage that 1n some processors, the subtract operation also
flushes or clears the nstruction pipeline 80.

The following example assumes that the program counter
130" points 8 bytes beyond the current instruction, and that
the current instruction 1s a 32 bit (4 byte) instruction. Accord-
ingly, to change the least significant bit of the program
counter register 130" to 1, it 1s necessary to add or subtract the
following amounts to the current program counter register
contents:

add 1 (to change the T bit to 1)

subtract 8 (to compensate for the program counter
pointing ahead of the current instruction)

add 4 (to compensate for the length of the current

—————————— instruction)

subtract 3 (total change)

The struction sequence used 1s therefore:

Label Veneer

SUB
Branch

(PC,PC,3)
Label

(replace PC with PC-3)

In summary, the use of the program counter to store the
instruction-set-specitying bit or bits has at least the following
advantages:

1. It provides a single, uniform method of 1dentifying a
target routine by representing both the target address and the
corresponding nstruction set in a single machine word.

2. The code size 1s reduced as fewer veneers are required.

3. The processor performance can be improved as there 1s
no longer a need to execute a veneer on each inter-instruction
set routine call.

Although 1llustrative embodiments of the invention have
been described 1n detail herein with reference to the accom-
panying drawings, it 1s to be understood that the invention 1s
not limited to those precise embodiments, and that various
changes and modifications can be effected therein by one
skilled in the art without departing from the scope and spirit of
the invention as defined by the appended claims.

5

10

15

20

25

30

35

40

45

50

55

60

65

8

I claim:
1. Data processing apparatus comprising:
(1) aprocessor core operable to execute successive program
instruction words of a predetermined plurality of
instruction sets stored 1n a data memory;
(1) a program counter register for indicating an address of
a next program instruction word 1n said data memory;
(111) logic operable to modity the contents of said program
counter register in response to a current program instruc-
tion word:;
(1v) a processor core controller, responsive to one or more
predetermined indicator bits of said program counter
register, operable to control said processor core to
execute program instruction words of a current instruc-
tion set selected from said predetermined plurality of
instruction sets and specified by the state of said one or
more indicator bits of said program counter register; and
(v) amemory access controller operable to access program
instruction words stored 1 said data memory, said
access controller not being responsive to said one or
more indicator bits of said program counter register.
2. Apparatus according to claim 1, comprising:
a first instruction decoder for decoding program 1nstruction
words of a first instruction set; and
a second instruction decoder for decoding program
instruction words of a second instruction set;

and 1n which said processor core controller 1s operable to
control either said first instruction decoder or said
second 1nstruction decoder to decode a current pro-
gram 1nstruction word.

3. Apparatus according to claim 2, 1n which:

program instruction words of said first instruction set are
X-bit program instruction words; and

program 1nstruction words of said second instruction set
are Y-bit program 1nstruction words;

Y being different to X.

4. Apparatus according to claim 1, 1n which:

program instruction words of a first instruction set are X-bit
program 1nstruction words; and

program 1nstruction words of a second instruction set are
Y-bit program instruction words;

Y being different to X.

5. Apparatus according to claim 3, in which Y 1s 16 and X

1s 32.

6. Apparatus according to claim 4, in which'Y 1s 16 and X
1s 32.

7. Apparatus according to claim 1, 1n which said one or
more indicator bits of said program counter register are one or
more most significant bits of said program counter register.

8. Apparatus according to claim 1, 1n which said one or
more indicator bits of said program counter register are one or
more least significant bits of said program counter register.

9. Apparatus according to claim 2, 1n which said one or
more indicator bits of said program counter register are one or
more least significant bits of said program counter register.

10. Apparatus according to claim 3, in which said one or
more indicator bits of said program counter register are one or
more least significant bits of said program counter register.

11. Apparatus according to claim 4, 1n which said one or
more indicator bits of said program counter register are one or
more least significant bits of said program counter register.

12. Apparatus according to claim 35, 1n which said one or
more indicator bits of said program counter register are one or
more least significant bits of said program counter register.

13. Apparatus according to claim 6, 1n which said one or
more indicator bits of said program counter register are one or
more least significant bits of said program counter register.

US RE43,248 E

9

14. Apparatus according to claim 1, comprising a data
memory for storing program instruction words to be
executed.

13. A method of switching between a predetermined plu-
rality of instruction sets used by a data processing apparatus, >
the method comprising:

in response to a first instruction.

(i) accessing a sequence of bits, the sequence of bits
having an address portion that identifies the location
of a second instruction in a memory and an instruc-
tion set indicator portion;

(ii) identifving an instruction set selected from the pre-
determined plurality of instruction sets based on the
instruction set indicator portion of the sequence of
bits;

(ii1) setting one or more control flags to indicate that a
current instruction set for the data processing appa-
ratus is the instruction set identified based on the

instruction set indicator portion of the sequence of 20
bits; and
retrieving the second instruction from the location speci-
fied by the addvess portion of the sequence of bits,

whevrein the instruction set identified by the instruction set
indicator portion of the sequence of bits is identifiable
without vegavd to the address specified by the address
portion of the sequence of bits.

16. The method of claim 15, further comprising executing
the second instruction as an instruction of the curvent instruc-
tion set.

17. The method of claim 15 in which the predetermined
plurality of instruction sets comprises a first instruction set
and a second instruction set, and wherein instructions of the
fivst instruction set are X-bit instructions and instructions of
the second instruction set are Y-bit instructions, where Y is 35

different from X

18. The method of claim 17 wherein Xis 32 and Y is 16.

19. The method of claim 15 wherein the instruction set
indicator portion of the sequence of bits comprises one or
move least significant bits of the sequence of bits.

20. The method of claim 15 wherein the instruction set
indicator portion of the sequence of bits comprises one or
movre most significant bits of the sequence of bits.

21. A method of switching between a predetermined plu-
rality of instruction sets used by a data processing apparatus,
the method comprising:

in response to a first instruction.

(i) accessing a sequence of bits, the sequence of bits
having an address portion that identifies the location
of a second instruction in a memory and an instruc-
tion set indicator portion, the instruction set indicator
portion having at least one bit that is not part of the
address portion of the sequence of bits;

(ii) identifving an instruction set selected from the pre-
determined plurality of instruction sets based on the 55
instruction set indicator portion of the sequence of
bits;

(ii) setting one ov more control flags to indicate that a
current instruction set for the data processing appa-
ratus is the instruction set identified based on the 60
instruction set indicator portion of the sequence of
bits; and

retrieving the second instruction from the location speci-

fied by the addvess portion of the sequence of bits.

22. The method of claim 21, further comprising executing 65
the second instruction as an instruction of the current instruc-
tion set.

10

25

30

40

45

50

10
23. The method of claim 21 in which the predetermined

plurality of instruction sets comprises a first instruction set
and a second instruction set, and wherein instructions of the
first instruction set arve X-bit instructions and instructions of
the second instruction set are Y-bit instructions, where Y is

different from X.
24. The method of claim 23 whervein Xis 32 and Y is 16.
25. The method of claim 21 wherein the instruction set
indicator portion of the sequence of bits comprises one or

morve least significant bits of the sequence of bits.

26. The method of claim 21 wherein the instruction set
indicator portion of the sequence of bits comprises one or
movre most significant bits of the sequence of bits.

27. A data processing apparatus capable of operating
using instructions from a predetermined plurality of instruc-
tion sets, the data processing apparatus comprising.

(i) a processor corve vesponsive to a first instruction to
access a sequence of bits, the sequence of bits having an
address portion that specifies the location of a second
instruction in a memory and an instruction set indicator
portion, the processov cove using the instruction set
indicator portion of the sequence of bits to set one or
movre control flags; and

(ii) a controller responsive to the one or more control flags,
the state of the one or more control flags specifyving a
current instruction set selected from the predetermined
plurality of instruction sets, to cause the processor core
to execute the second instruction as an instruction from
the current instruction set,

wherein the one or move control flags arve set without regard
to the location of the second instruction.

28. The apparatus of claim 27 whervein the one or more
control flags comprise one or movre predetermined bits in a
program counter.

29. The apparatus of claim 27, further comprising a
memory system, whevein the memory system is not responsive
to the one or more control flags.

30. The apparatus of claim 27, further comprising a
memory system wherein the one or more control flags are not
provided to the memory system.

31. The apparatus of claim 27 in which the predetermined
plurality of instruction sets comprises a first instruction set
and a second instruction set, and wherein instructions of the
fivst instruction set are X-bit instructions and instructions of
the second instruction set are Y-bit instructions, where Y is

different from X.
32. The apparatus of claim 31 wherein Xis 32 andY is 16.
33. A data processing apparatus capable of operating

using instructions from a predetermined plurality of instric-
tion sets, the data processing apparatus comprising.

(i) a processor corve vesponsive to a first instruction to
access a sequence of bits, the sequence of bits having an
address portion that specifies the location of a second
instruction in a memory and an instruction set indicator
portion and the instruction set indicator portion having
at least one bit that is not part of the address portion of
the sequence of bits;

(ii) the processor core using the instruction set indicator
portion of the sequence of bits to set one ov more control
flags, the state of the one or more control flags specifving
a current instruction set selected from the predetermined
plurality of instruction sets; and

(iii) a controller vesponsive to the one or more control flags
to cause the processor cove to execute the second
instruction as an instruction from the current instruction
setl.

US RE43,248 E

11

34. The apparatus of claim 33 wherein the one or more
control flags comprise one or more predetermined bits in a
program counter.

35. The apparatus of claim 33, further comprising a
memory system, whervein the memory system is not responsive
to the one ov more control flags.

36. The apparatus of claim 33, further comprising a
memory system wherein the one or more control flags are not
provided to the memory system.

37. The apparatus of claim 33 in which the predetermined
plurality of instruction sets comprises a first instruction set
and a second instruction set, and wherein instructions of the

fivst instruction set are X-bit instructions and instructions of

the second instruction set are Y-bit instructions, wherve Y is

different from X
38. The apparatus of claim 37 wherein Xis 32 and Y is 16.

39. A data processing architecture capable of operating
using instructions from a predetermined plurality of instruc-
tion sets, the data processing architecture comprising:

(i) a processor core responsive to a first instruction to
access a sequence of bits, the sequence of bits having an
address portion that specifies the location of a second
instruction in a memory and an instruction set indicator
portion, the processov corve using the instruction set
indicator portion of the sequence of bits to set one or
more control flags; and

(ii) a controller responsive to the one or more control flags,
the state of the one or more control flags specifving a
current instruction set selected from the predetermined
plurality of instruction sets, to cause the processor core
to execute the second instruction as an instruction from
the current instruction set,

whevrein the one or morve control flags are set without regard
to location of the second instruction.

40. The data processing architecture of claim 39 wherein
the one ov movre control flags comprise one ov more predeter-
mined bits in a program counter.

41. The data processing architecture of claim 39, further
comprising a memory system, wherein the memory system is
not responsive to the one or movre control flags.

42. The data processing architecture of claim 39, further
comprising a memory system wherein the one or more control
flags are not provided to the memory system.

43. The data processing architecture of claim 39 in which
the predetermined plurality of instruction sets comprises a
fivst instruction set and a second instruction set, and wherein
instructions of the first instruction set are X-bit instructions
and instructions of the second instruction set are Y-bit
instructions, wheve Y is different from X.

44. The data processing architecture of claim 43 wherein X

is 32 and Y is 16.

45. A data processing architecture capable of operating
using instructions from a predetermined plurality of instruc-
tion sets, the data processing architecture comprising:

(i) a processor core responsive to a first instruction to
access a sequence of bits, the sequence of bits having an
address portion that specifies the location of a second
instruction in a memory and an instruction set indicator
portion and the instruction set indicator portion having

at least one bit that is not part of the address portion of

the sequence of bits;

(ii) the processor cove using the instruction set indicator
portion of the sequence of bits to set one or more control
flags, the state of the one or more control flags specifving
a currvent instruction set selected from the predetermined
plurality of instruction sets; and

10

15

20

25

30

35

40

45

50

60

65

12

(iii) a controller responsive to the one or more control flags
to cause the processor cove to execute the second

instruction as an instruction from the current instruction
setl.

46. The data processing architecture of claim 45 wherein
the one or more control flags comprise one or movre predeter-
mined bits in a program counter.

47. The data processing architectuve of claim 45, further
comprising a memory system, whevein the memory system is
not responsive to the one ov more control flags.

48. The data processing architecturve of claim 45, further
comprising a memory system wherein the one or more control
flags arve not provided to the memory system.

49. The data processing architecture of claim 45 in which
the predetermined plurality of instruction sets comprises a
fivst instruction set and a second instruction set, and wherein
instructions of the first instruction set are X-bit instructions
and instructions of the second instruction set are Y-bit
instructions, where Y is different from X.

50. The data processing architecture of claim 49 wherein X
is 32 and Y is 16.

51. A data processing apparatus capable of switching
between a predetermined plurality of instruction sets, the
data processing apparatus cCOomprising:

(i) means for accessing a sequence of bits in response to a
first instruction, the sequence of bits having an address
portion that specifies the location of a second instruction
in a memory and an instruction set indicator portion;

(i) means for identifying an instruction set selected from
the predetermined plurality of instruction sets based on
the instruction set indicator portion of the sequence of
bits in response to the first instruction;

(iii) means for setting one or more control flags to indicate
that a curvent instruction set for the data processing
apparatus is the instruction set identified based on the
instruction set indicator portion of the sequence of bits
in response to the first instruction; and

(iv) means for retrieving the second instruction from the
location specified by the address portion of the sequence
of bits in rvesponse to the first instruction,

wherein the instruction set identified by the instruction set
portion of the sequence of bits is identifiable without
regard to the location of the second instruction.

52. The data processing architecture of claim 51 wherein
the one ov more control flags comprise one ov more predeter-
mined bits in a program counter.

53. The data processing architecturve of claim 51, further
comprising a memory system, wherein the memory system is
not responsive to the one or more control flags.

54. The data processing architectuve of claim 51, further
comprising a memory system wherein the one or more control
flags are not provided to the memory system.

55. The data processing architecture of claim 51 in which
the predetermined plurality of instruction sets comprises a
fivst instruction set and a second instruction set, and wherein
instructions of the first instruction set ave X-bit instructions
and instructions of the second instruction set are Y-bit
instructions, wheve Y is different from X.

56. The apparatus of claim 55 wherein X is 32 and Y is 16.

57. A method of operating a data processing apparatus, the
method comprising:

(i) receiving a first instruction from a first instruction set
selected from a predetermined plurality of instruction
sets;

(ii) translating the first instruction to generate a first set of
one ov movre control signals;

(iii) accessing a sequence of bits comprising an address
portion that specifies the location of a second instruction
in a memory and an instruction set indicator portion in

response to the first set of one or more control signals,

US RE43,248 E

13

the instruction set indicator portion having at least one
bit that is not part of the address portion of the sequence
of bits;

(iv) setting one or more control flags based upon the value

of the instruction set indicator portion of the sequence of >

bits to specify that a current instruction set is a second
instruction set selected from a predetermined plurality
of instruction sets;

(v) retrieving the second instruction from the location
specified by the address portion of the sequence of bits;
and

(vi) translating the second instruction as an instruction
from the current instruction set to generate a second set
of one or more control signals.

58. The method of claim 57 wherein the predetermined

plurality of instruction sets consists of two instruction sets.

59. The method of claim 58 wherein the first instruction set

consists of X-bit instructions and the second instruction set
consists of Y-bit instructions, Y being different from X.

60. The method of claim 59 wherein Xis 32 and Y is 16.

61. The method of claim 59 whervein Xis 16 and Y is 32.

62. The method of claim 57 wherein the first instruction set

consists of X-bit instructions and the second instruction set
consists of Y-bit instructions, Y being different from X

63. The method of claim 62 wherein Xis 32 and Y is 16.
64. The method of claim 62 wherein Xis 16 and Y is 32.

65. A method of selecting an instruction set comprising the
steps of.
receiving a branching instruction written in a first instruc-
tion set of a plurality of instruction sets;

10

15

20

25

30

14

in vesponse to the branching instruction, inserting an
address of a second instruction, which specifies the loca-
tion of the second instruction in a memory, into a vegister
and setting the value of a flag, where the value of the flag
is not dependent upon the address of the location of the
second instruction in the memory;

selecting an instruction set based upon the value of the

flag; and
acquiving the second instruction.
66. The apparatus of claim 63, wherein:
the first instruction set is different from the second instruc-
tion set.
67. The apparatus of claim 65, wherein:
the pointer and the flag are located in a single register.
68. The apparatus of claim 65, wherein:
the pointer and the flag are not located in a single register,
vet are written to as if portions of a single vegister.
69. A processing apparatus comprising:
a pointer for identifving an address, which specifies the
location in a memory of a next instruction that is written
in a first instruction set of a plurality of instruction sets;
and
a flag for identifving the first instruction set;
wherein.:
the pointer and the flag are both written in response to an
instruction from a second instruction set of the plu-
rality of instruction sets, and

the value of the flag is not dependent upon the address
that specifies the location in the memory of the next
instruction.

	Front Page
	Drawings
	Specification
	Claims

