USOORE43218E
(19) United States
12 Relissued Patent (10) Patent Number: US RE43.218 E
Annadurai et al. 45) Date of Reissued Patent: Feb. 28, 2012
(54) CIRCUIT AND METHOD FOR PROCESSING (56) References Cited
COMMUNICATION PACKETS AND VALID
DATA BYTES U.S. PATENT DOCUMENTS
5,594,927 A * 1/1997 Leeetal.cooovivvriinnn... 710/66
(75) Inventors: Andy P. Annadurai, Fremont, CA (US); 5,862,206 A 1/1999 Thomas et al.
Feng Han, Pleasanton, CA (US)j 7,366,208 B2* 4/2008 Bowesccociviivininn, 370/535

Mohammed Rahman, Pleasanton, CA
(US); Chris Tsu, Saratoga, CA (US)

(73) Assignee: Sartre Satire LLC, Las Vegas, NV (US)

(21) Appl. No.: 12/215,662

(22) Filed: Jun. 27, 2008
Related U.S. Patent Documents

Reissue of:
(64) Patent No.: 7,068,673

Issued: Jun. 27, 2006

Appl. No.: 10/087,228

Filed: Feb. 27, 2002
(51) Int.CL.

HO4L 12/56 (2006.01)

HO04J 1/16 (2006.01)
(52) US.CL ... 370/419: 370/476; 370/535; 710/54
(58) Field of Classification Search 3°70/419,

370/4776, 535; 710/54
See application file for complete search history.

* cited by examiner

Primary Examiner — John Pezzlo

(57) ABSTRACT

Method and apparatus for processing data packets within a
communication system such as a synchronous optical net-
work (SONET) detect an mnvalid byte and drop and shiit bytes
of data to address an invalid byte. A method according to one
embodiment of the present invention, includes receiving a
first data packet in the communication system. Thereafter, 1t 1s
determined whether this packet ends with both a valid byte
and an mvalid byte of data. If both the valid and invalid bytes
are present, the invalid byte 1s dropped and a valid byte from
a succeeding data packet 1s concatenated with the valid byte
of the first data packet, and byte shifting occurs in the suc-
ceeding data packet. Byte shifting continues until a second
packet ending with an invalid byte 1s encountered. Skipping a
clock cycle at the end of the second packet with the invalid
byte results 1n packets with only valid data.

46 Claims, 8 Drawing Sheets

| Valid Byte | Vahd Byte
205 Valid Byte | Invalid Byte 211 End
J 719 ©of Packet 1
o _ Beginnin
219 Valid Byle <]_ValidByte |1—220 of Backet 2
221 Valid Byte <1—Valid Byte | 292
8
- Valid Byte <} Valid Byte 216
214 Valid Byte <1y Valid Byte 213 End
18 9 of Packet 2
224 Valid Byte -1 Valid Byte | 226
Valid Byte -:L—*- Valid Byte | 27
Valid Byte <7 Valid Byte T
Valid Byte <]— Valid Byte 218
217 213 End

Valid Byte [nvalid Byte

N of Packet N

VI DI

US RE43,218 E

Jsuel|
b-IdS 9Ald03Y
" "
) |
0 _ |
o | |
° | |
2 10853901 E111A 6 PR
YI0MION Siqur 71 SA(EE d]
m m\QE 8 “ m\QE Ol " m\ﬁ—a 91 L 0€1
S 3¢ _ 9¢ | “ b |
! | |
& \-751 9piS m m b1
NIRRT PIS JIOMIAN
Th— 0p1—
=
2
S
- 001—"
4
-

U.S. Patent

Time

120

105

106
108

109

Feb. 28, 2012 Sheet 2 of 8

122 124

Valid Byte Valid Byte
[15:8] [7:0]
Valid Byte Valid Byte
Valid Byte | Invalid Byte

l Valid Byte Valid Byte .

. Valid Byte <1— Valid Byte
Valid Byte Valid Byte

Valid Byte <4— Valid Byte
Valid Byte <+— Valid Byte .

I Valid Byte [nvalid Byte l

FIG.1B

101

103

107

102

110
104

US RE43,218 E

End
of Packet |

Beginning
of Packet 2

End
of Packet 2

U.S. Patent

Time

205

219
221

214

224

217

Feb. 28, 2012 Sheet 3 of 8
Valid Byte Valid Byte

{Valdye [walidye |-

VR Byte l

L = vaigmye |-

[Vet byt - VaiBye |

Ve By = ol B

FI1G.2

211
210

220
292

216
2135

212

226
222

218
213

N

US RE43,218 E

End
of Packet |

Beginning
of Packet 2

End
of Packet 2

End
of Packet N

U.S. Patent Feb. 28, 2012 Sheet 4 of 8 US RE43.218 E

TDAT[I5:8] [8bit| DataReg(I5:8] |8bit| DataOut[15:8]
reg reg

300 301 302
306 307

TDAT[7:0] |8bit| DataReg[T:0] 8bit | DataOut{7.0]
reg reg

303 304 305
308 309

FIG.3

U.S. Patent Feb. 28, 2012 Sheet 5 of 8

TDAT[15:8] DataReg{15:8] 8 bit
reg
400 401
407
TDAT[7:0] |8 bit | DataReg[7:0] 8 bit
reg
403 404
409

F1G.4

US RE43,218 E

DataQut{15:8]

4032

DataOut{7:0]

405

U.S. Patent Feb. 28, 2012 Sheet 6 of 8 US RE43.218 E

TDAT[15:8} | 8 bit | DataReg[15:3] 8 bit DataOut{15:8]
reg
500 501 502
507
8 bit | DataReg|7.0] DataQut[7.0]
504 505

F1G.5

U.S. Patent Feb. 28, 2012 Sheet 7 of 8 US RE43,218 E

8 bit | tdat[15:8] 8 bit | dataReg([15:8]
Teg reg

601 603
636 607
8 bit | 1dat[7:0] 8 bit | dataReg[7:0]
reg (Y reg

602 604
658 608

654

652

FI1G.6

U.S. Patent

Feb. 28, 2012

i @

Sheet 8 of 8

TCTL 718

& TDAT[14]
§& TDAT[13]

even2
odd

712

ot @

TCTL
& TDATJ[14]
& TDATJ[13]

odd?2
even

716

F1G.7

122

US RE43,218 E

US RE43,218 E

1

CIRCUIT AND METHOD FOR PROCESSING
COMMUNICATION PACKETS AND VALID
DATA BYTES

Matter enclosed in heavy brackets |] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

BACKGROUND OF THE INVENTION

The present invention relates generally to the field of com-
munication systems and more specifically to a method and
circuit for processing data packets and valid data bytes.

The coming of the modern information age has brought
about phenomenal growth 1n demand for telecommunica-
tions-based products and services, driven primarily by the
Internet. As the burgeoning expansion of the Internet contin-
ues along an unprecedented and unpredictable path, many
new applications are foreseen and expected. These applica-
tions are placing increasing demands for ultra-high speed
circuit solutions. In parallel, driven by the explosive growth 1n
bandwidth requirements of multimedia applications, various
ultra-high bit rate transmission techniques have been devel-
oped. Fiberoptic communications system speeds have

increased from asynchronous-transfer-mode (ATM) rates of
155 Mb/s and synchronous optical network (SONET) rates of

622 Mb/s to the optical carrier (OC) standard of OC-192 at 10
Gb/s and OC-768 at 40 Gb/s. Over time a body of interface
standards have developed to facilitate the interconnection of
the various communication networks. In certain instances,
however, the varying standards have presented unique chal-
lenges for system and integrated circuit designers. An
example can be found 1n the data packet processing standards
developed for SONETsS.

SONET 1s a transport mechanism for multiplexing data
from multiple networks onto fiber optic cabling. For example,
IP (Internet protocol), ATM, and T1 are among the various
types of networks that are interconnected via SONET rings.
Since SONET interconnects different network types, it
employs routers for converting protocols from one network
type to another. In the case of IP protocols, for example,
routers are used for converting IP packets for transmission on
the SONET ring.

A typical router contains a line card for receiving data
packets on one end, performing necessary conversions and
sending out the packets at the other end. Among other com-
ponents, line cards include a framer for framing/deframing,
data packets, and a processor for performing protocol conver-
s1ion and for controlling packet traific. The framer communi-
cates with the processor through an interface known as the
SPI-4 (system packet interface). The SPI-4 interface 1s a
standard defined by a consortium of communication compa-
nies. This standard defines packet and cell transfer standards
between a physical layer device (1.e., the framer) and a link
layer device (1.e., the processor). The SPI-4 mterface requires
16-bit data processing. That 1s, data 1s processed 1 16 bit
words, containing two bytes of data. Each packet contains an
even number of bytes, each of which must be valid. However,
many functional blocks employed 1n telecommunication sys-
tems including, for example, most network processors pro-
cess data on byte (8 bit) boundaries as opposed to word (16
bit) boundaries. In such systems, a packet need only contain
byte multiples for proper processing. For instance, 1t may
contain odd multiples such as three bytes, seven bytes etc. Or,
it may contain even multiples such as two bytes, eight bytes,

10

15

20

25

30

35

40

45

50

55

60

65

2

etc. So long as the packet contains multiple bytes, 1t 1s prop-
erly processed. Upon arriving at the SPI-4 interface, however,

data bytes contained in a packet must be processed as 16 bit
words. The data bytes are first grouped into 16 bit words (two
bytes) for processing. This presents no problems so long the
packet contains an even number of bytes. If, however, the
number of bytes 1s odd, a single byte will remain after group-
ing. For example, for a three byte packet, the first two bytes
are grouped nto a 16 bit word. The last byte can only be
grouped with an empty byte. This empty byte 1s of course
invalid and should be processed as such.

Identifying such invalid bytes and processing them 1n a
manner that does not compromise the integrity of the data and
speed of transmission 1s a challenging task. There are other
similar incompatibilities between the varying interface stan-
dards and established infrastructure that give rise to such
challenges.

There 1s, therefore, a need for methods and systems that can
resolve such incompatibilities and the problems that may
arise from erroneous processing of data packets 1n commu-
nication networks such as SONETS.

BRIEF SUMMARY OF THE INVENTION

The present mvention provides methods and systems for
improved processing of data packets 1n communication sys-
tems such as a synchronous optical network (SONET). Data
packets recetved by communication systems oiten contain
invalid data bytes. The present invention provides, 1n one
embodiment, a method for processing data that drops these
invalid bytes, and concatenates valid bytes for further pro-
cessing. Concatenation refers to linking of data bytes across
packet boundanies for further packaging into high speed
packets.

According to a first aspect of the present mvention, a
method for processing data 1n a communication system,
wherein the method includes the step of recerving a first data
packet that comprises a plurality of pairs of bytes of data.
Thereaftter, the first data packet 1s examined to determine 1f
the final pair of bytes comprises a valid byte and an mvalid
byte. I an 1mvalid byte 1s present, the valid byte 1s concat-
enated with a byte from a subsequent packet. Concatenation
1s initiated by dropping the invalid byte. This leaves the valid
byte 1n the first data packet. Thereaiter, the method 1includes
the steps of receiving a second data packet, and determining
whether the second packet begins with a valid byte. If so, this
valid byte 1s concatenated with the valid byte of the first data
packet byte. In this manner, the first packet 1s completed with
valid bytes, and may be sent out or packaged into a super
packet. In one embodiment, data bytes within the second
packet are shifted to occupy empty byte locations created by
the preceding bytes.

According to another aspect of the present invention, a
concatenation circuitry for processing data packets 1s dis-
closed. The concatenation circuitry features logic circuits for
determining that a first packet ends with a valid byte and an
invalid byte of data, and logic circuitry for dropping the
invalid byte of data. Further, the concatenation circuitry
includes logic circuitry for determining that a second data
packet begins with a valid byte of data, and logic circuitry for
concatenating the valid byte of the first data packet with the
valid byte of the second data packet.

A Turther understanding of the nature and advantages of the
present invention may be realized by reference to the remain-
ing portions of the specification and the attached drawings.
References to “steps”™ of the present mnvention should not be
construed as limited to “step plus function” means, and 1s not

US RE43,218 E

3

intended to refer to a specific order for implementing the
invention. In the drawings, the same reference numbers indi-
cate 1dentical or functionally similar elements.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A 1s an exemplary communication system in which
the present invention 1s 1mplemented.

FIG. 1B 1illustrates concatenating data bytes from two
packets both packets ending with invalid bytes, in accordance
with an exemplary embodiment of the present invention.

FIG. 2 1illustrates concatenating data bytes from three or
more packets in accordance with an exemplary embodiment
of the present invention.

FI1G. 3 1llustrates an exemplary circuitry for outputting 16
bit words when no byte shifting 1s required in accordance with
an embodiment of the present invention.

FI1G. 4 1llustrates a circuitry for shifting data bytes to pro-
duce exemplary 16 bit data 1n accordance with an embodi-
ment of the present invention.

FI1G. 5 illustrates exemplary circuitry for outputting 16 bait
data when prior packets end with even valid bytes and the
current packets ends with a single valid byte.

FIG. 6 1llustrates exemplary circuitry for dropping invalid
bytes, concatenating and shifting data bytes in accordance
with an exemplary embodiment of the present invention.

FIG. 7 1s an exemplary state diagram for implementing
control logic of the byte multiplexing of FIG. 6.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 1A 1s an exemplary communication system 100 in
which the present invention i1s implemented.

Communication system 100 may be a transport mechanism
for delivering high-speed data to a destination 132 via fiber
optic cabling 130. An example of such a network 1s SONET.
Various specific embodiments of the present invention are
described herein 1n the context of a SONET implemented
using 128 bit wide bus. It 1s to be understood, however, that
the invention 1s applicable to other types of communication
systems and networks, that specific bus width or other imple-
mentation-specific values and numbers provided herein are
tor 1llustrative purposes only, and that the invention applies to
telecommunication systems with other implementations.

Among other components, communication system 100
includes fiber optic cabling 130 for recerving (and transmit-
ting) high speed data such as IP packets. System 100 further
includes a senalizer-deserializer (or SERDES) 134 for seri-
alizing and deserializing data packets, and a framer 136 for
decoding data packets, and for forwarding the payload to
destination 132. In addition, a network processor 138 receives
the deserialized data and outputs the payload along a byte
boundary (8 bit) to destination 132.

For the receive direction, at interface 140 between SER-
DES 134 and framer 136, data bytes are processed along 16
bit boundaries at interface 140, and thereafter, grouped into
128 bit packets in framer 136. Following this, at interface 142
between framer 136 and processor 138, which 1s the SPI-4
interface, data bytes are processed again along 16 bit bound-
aries. These bytes are then output along eight byte boundaries
by processor 138. Similarly, for the transmit direction, a
reverse process may occur from destination 132 to network
side 144. Thus, at the SPI-4 interface, packets containing
cight bit bytes (or multiples thereot) are recerved from pro-
cessor 138. These are processed and supplied to framer 136 as
16 bit words. At framer 136, eight groups of 16 bit words are
grouped as 128 bit packets, etc. The words are packed into a

10

15

20

25

30

35

40

45

50

55

60

65

4

128 bit wide data bus and sent to a transmuit first-1n first-out
(FIFO) structure (not shown) to be processed further by
framer 136.

As previously noted, there 1s a chance that the last 16 bat
word of packets recerved by framer 136 may contain mvalid
data bytes. This may happen when such packets contain odd
number of bytes. In accordance with the present mvention,
exemplary 16 bit words received by framer 136 are processed
to identily invalid bytes. Once 1dentified, the invalid bytes are
dropped, so that valid bytes are grouped 1nto 128 bit packets.

Although the process occurs at the SPI-4 interface, one of
ordinary skill 1n the art will realize that this 1s for i1llustrative
purposes only, and that the process according to the invention
may be applied to other instances where an invalid byte has
been detected. It 1s advantageous to drop the mvalid byte at
the SPI-4 interface, before such a byte becomes further pro-
cessed along the data path. After the invalid byte 1s dropped.,
a valid byte from one data packet 1s concatenated with a valid
byte from the subsequent data packet. As used herein “con-
catenation” refers to the linking of data bytes from different
packets 1into a high rate envelope.

FIG. 1B illustrates concatenating data bytes from two
exemplary packets 101 and 102 both packets ending with
invalid bytes 103 and 104, 1n accordance with an exemplary
embodiment of the present invention.

More specifically, according to this exemplary embodi-
ment of the invention, invalid byte 103 1s dropped in order to
concatenate valid data byte 105 from packet 101 with valid
data byte 106 from packet 102. As shown, all bytes of packet
101 are valid except for invalid byte 103.

The concatenation process 1s mitiated by first dropping
invalid byte 103. In this fashion, an empty byte is created for
valid byte 106 of packet 102. Next, valid byte 106 1s concat-
enated with valid byte 105 to provide the last word of packet
101. This concatenation completes packet 101. At this point,
packet 101 may be transmitted or packed into a high speed
super packet. In one embodiment, this super packet contains
five 16 bit packets for a total of 128 bits.

While the concatenation process as described thus far com-
pletes packet 101, 1t includes a byte shifting process to com-
plete succeeding packet 102. This 1s because valid byte 106 1s
now empty, its content having been transferred to packet 101.
To fill byte 106, byte 107 1s shifted to byte 106. Similarly, byte
108 1s shifted to byte 107 This shifting continues until byte
109 15 shifted to byte 110. At this point, no further shifting
occurs since the last remaining word contains only one byte
104 that 1s invalid. The byte shifting process 1s thus termi-
nated. In this manner, only valid bytes are contained within
packet 102 1n accordance with this embodiment of the present
invention. It should be noted that after byte 109 is shifted, the
entire last word of packet 102 becomes empty. For this rea-
son, when packet 102 1s transmitted, the receving system 1s
informed that the last word 1s empty and can be 1gnored.

FIG. 2 illustrates concatenating data bytes from three or
more packets 210, 212, N, 1n accordance with another exem-
plary embodiment of the present invention.

In this specific embodiment, concatenation 1s illustrated
where second packet 212 ends with a valid data byte 215 so
that concatenation continues until a packet N ending with an
invalid byte 213 1s received. In FIG. 2, the concatenation
process lirst drops invalid byte 211 of packet 210. Next, valid
byte 219 1s concatenated with valid byte 205 to complete the
last word of packet 210. Next, byte shifting starts for the
second packet 212. Byte shifting occurs in a similar manner
as described with reference to FIG. 1B, except that because
packet 212 ends with valid data 215, byte shifting continues
after packet 212. That 1s, after byte 214 1s shifted to byte 216,

US RE43,218 E

S

byte 215 1s shifted to byte 214. Thus byte 214 has valid data
while byte 215 becomes empty. Packet 212 awaits the arrival
ol a subsequent packet having a valid byte. The first valid byte
of this subsequent packet 1s shifted to byte 215 to complete
the last word of packet 212. Thereafter, packet 212 1s sent out.

Byte shifting continues for subsequent (N—1) packets all of
which end with two valid bytes. Byte shifting ends when
packet N 1s reached which ends with one valid byte 217 and
one invalid byte 213. At this point, valid byte 217 1s shifted to

byte 218, and mvalid byte 213 1s dropped. Byte shifting then
comes to an end.

FIGS. 1B and 2 show two different conditions for byte
treatment according to the present invention.

There are, however, a number of other conditions that are
also addressed by the method of the present invention. Every
possible condition for different byte treatment inside packets
and at packet boundaries can be defined by any combination
of the following;

There are two possible conditions (1) and (2), below, for
byte treatment inside a packet. Note that these two conditions
do not address packet boundary conditions (i.e., end or start of
a packet). There are four possible packet boundary condi-
tions, (3) through (6), below:

(1) all prior packets carry even number of valid bytes of
data, and therefore no byte shifting occurs inside a
packet;

(2) one prior packet ends with a single valid byte, and
therefore byte shifting occurs inside the subsequent
packets until a packet ending with a single valid byte
arrives;

(3) all previous packets end with an even number of valid
bytes, and the current packet ends with two valid bytes;

(4) all previous packets end with an even number of valid
bytes, and the current packet ends with only one valid
byte;

(5) aprevious packet ends with a single valid byte, and byte
shifting 1s occurring in the current packet, and the cur-
rent packet ends with two valid bytes; and

(6) a previous packet ended with a single valid byte, byte
shifting 1s occurring in the current packet, and the cur-
rent packet ends with one valid byte.

Various exemplary circuits for implementing the function-
ality required by the above six different conditions for byte
treatment will be presented herematter. Referring to FIG. 3,
there 1s shown an exemplary circuitry 300 for generating
16-bit words when no byte shifting 1s required in accordance
with an embodiment of the present mvention. Specifically,
circuitry 300 implements the functionality associated with
conditions (1) and (3) above, where neither byte dropping nor
byte shifting 1s required. For these situations, no packet ends
with a valid byte.

In this exemplary implementation, among other compo-
nents, circuitry 300 1ncludes two levels of registers. A first
level includes register 306 and register 308, both of which are
8-bit registers. Register 306 has an input 300 for recerving bits
8 through 13 of an incoming data word. This 1s represented as
TDAT[15:8]. Register 308 has an input 303 for recerving bits
0 through 7 of the incoming data word. This input 1s repre-
sented as TDAT[7:0]. The second level of registers also
includes two 8-bit registers 307 and 309. The input of register
307 1s coupled to output 301 of register 306. Output 302 of
register 307 provides data output for the 16-bit word. This 1s
shown as DataOut[15:8]. The mput of register 309 1s con-
nected to output 304 of register 308. This 1s represented as
DataReg|[7:0]. The output 305 of data register 309 1s repre-
sented as DataOut|7:0].

5

10

15

20

25

30

35

40

45

50

55

60

65

6

In operation, output 302 1s a copy of input 300 that 1s two
clock cycles delayed. Similarly, output 303 1s a copy of input
303 but two clock cycles delayed. When recerved, the mput
data 1s sent through circuitry 300 with no shifts. Specifically,
bit locations for mput data are maintained from 1nput to
output. For example, referring to FIG. 1B, byte 122 with bits
15:8 1s passed through registers 306 and 307 without chang-
ing bit locations. On the same cycle, byte 124 1s passed
through registers 308 and 309 without bit location changes.
On the next clock cycle, the next word 1s passed through
without changes, and so forth. In this manner, an exemplary
circuit 1s provided for passing recerved data bytes without
changes, when such bytes are valid.

FIG. 4 1llustrates a circuitry 400 for shifting data bytes to
generate exemplary 16-bit data words 1n accordance with
another embodiment of the present invention. Specifically,
circuitry 400 provides data paths for conditions (2) and (5)
above, where a prior packet has ended with a single valid byte,
and subsequent packets, including the current packet, end
with two valid bytes. Thus, this condition performs essen-
tially a continuous byte shifting operation. Among other com-
ponents, circuitry 400 includes two levels of registers as in
FIG. 3. These registers are registers 406, 408, 407 and 409. As
shown, register 406 comprises an input 400 for TDAT[15:8],
and an output 401 for DataReg[135:8]. Output 401 1s coupled
to the input of register 407. Further, output 401 1s coupled to
output 405, DataOut[7:0]. Register 408 has an 1input 403 for
TDAT][7:0] and an output 404 for DataReg[7:0]. Output 404
1s coupled to the input of register 409 having an output 402 for
DataOut|[15:8].

The operation of circuitry 400 will be described with ret-
erence to FI1G. 2. Packet 210 can be considered as the prior
packet ending with one valid byte (205), while packet 212 1s
the first one of several succeeding packets each ending with
two valid bytes (214 and 215 1n the case of packet 212).
Accordingly, circuit 400 operates to continuously shift data,
one byte at a time, within a word, e.g., 215 to 214, between
words 1n the same packet, e.g., 214 t0 216, and between words
falling on the boundary between two packets ending with
valid bytes, e.g., 224 to 215.

Retferring to FIG. 4 and considering, for example, the
boundary condition between packets 212 and 222, during a
first clock cycle, nput 400 TDAT[15:8] carries values for byte
214 (FIG. 2), and input 403 TDAT][7:0] carries invalid byte
215. These 16 bits arrive and are stored in registers 406 and
408, 1n one clock cycle. On the next clock cycle, bytes 214 and
215 are clocked 1nto the next level of registers 407 and 409,
respectively, and bytes 224 [15:8] and 226 [7:0] arrive at input
terminals 400 and 403, respectively, and are clocked nto
registers 406 and 408, respectively.

Note that the data in registers 407 and 409 are one clock
period delayed with respect to data 1n registers 406 and 408.
As shown m FIG. 4, the 16-bit output DataOut[15:0] 1s
formed by using byte 215 at the output of register 409 for bits
DataOut[15:8], and using byte 224 at the output of register
406 for bits DataOut[7:0]. Thas results in shifting byte 215 as
shown by arrow 228 1n FIG. 2, and shifting byte 224 as shown
by arrow 230 1n FIG. 2,. Circuit 400 thus implements the
continuous byte shifting 1n the same manner as shown by the
arrows 1n FIG. 2

FIG. 5 1illustrates exemplary circuitry 500 for generating
16-bit data for the condition where prior packets end with
even valid bytes and the current packet ends with a single
valid bytes. Specifically, circuitry 500 1s designed to address
boundary condition (4) listed above. Among other compo-
nents, circuitry 500 includes two levels of registers 506 and
508 that process byte [15:8] of each word, and registers 507

US RE43,218 E

7

and 509 that process byte [7:0] of each word. As shown,
register 506 comprises an input 500 for TDAT[15:8], and an
output 501 for DataReg[15:8]. Output 501 1s coupled to the

input of register 507, and 1s coupled to output 505, DataOut
[7:0]. Register 507 has an output 502 for DataOut[15:8].
Register 508 has an input 503 for TDAT[7:0] and an output
504 for DataReg[7:0]. Output 504 1s coupled to the input of
register 509.

The operation of circuit 300 can be described with refer-
ence to the exemplary packets shown in FIG. 1B, where
packet 101 1s considered the current packet ending with one
invalid byte. In a similar manner as described 1n connection
with the operation of circuit 400 above, at the packet bound-
ary, two consecutive clock cycles cause registers 307 and 509
to store bytes 105 and 103, respectively, and registers 506 and
508 to store bytes 106 and 107, respectively. To form the
output data DataOut[15:0], circuit 500 taps output 502 of
register 507, or byte 105, for DataOut [15:8], and taps output
501 of register 506, or byte 106, for DataOut[7:0], as shown.
As shown 1n FIG. 5, the output of register 509, which 1n this
condition stores mvalid byte 103 1s not used. This results 1n
invalid byte 103 being dropped, and bits [15:8] of byte 105
begin concatenated with bits [15:8] o byte 106, although they
are one clock cycle apart.

The final condition described 1n (6) above addresses the
situation where a prior packet ends with a single valid byte,
and byte shifting 1s occurring 1n a current packet that also ends
with a single valid byte. An example of this condition 1s
illustrated 1n FIG. 1B when considering packet 102 as the
current packet. Due to the byte shifting that 1s initiated when
a first packet 1s encountered that ends with one valid byte, the
result of a second packet ending with one valid byte 1s that,
alter byte shifting in the second packet, 1t ends with a single
invalid byte in its last word. This last invalid word can thus be
dropped by skipping one clock cycle.

FIG. 6 1illustrates an exemplary circuitry 600 for imple-
menting the packet treatment as described above under con-
dition (6), according to one embodiment of the invention. In
this specific example, since packet condition (6) 1s essentially
a combination of the other conditions, circuitry 600 1s also a
combination of circuitry 400 of FIG. 4 and circuitry 500 of
FIG. 5. Among other components, circuitry 600 includes a
register 607 having an input port 601 for receiving input data
TDAT[15:8] and having an output port 603 coupled to the
input port of an 8-bit 2:1 multiplexer (MUX) 609. A register
608 has an input port 602 for receiving input data TDAT[7:0],
and an output port 604 that couples to another input of MUX
609 as well as an mput of another 8-bit 2:1 MUX 610. The
other input of MUX 610 receives iput data TDAT[15:8].

MUX 609 recerves a control signal on line 642 and MUX
610 recerves 1ts control signal on line 656. Further, circuitry
600 includes a register 611 having an input port coupled to
output port 640 of MUX 609, and a register 612 having an
input port coupled to output port 650 of MUX 610. Register
611 generates output data dout[135:8], and register 612 gen-
erates output data dout[7:0]. Further, TDAT[15:8] 1s recerved
from an output of register 656 while TDAT[0:7] 1s recerved
from an output of register 658.

In operation, for packet conditions (1) and (3) outlined
above, the control signal on line 642 for MUX 609 selects the
output of register 607, dataReg[15:0] on line 603, to pass to
register 611, and the control signal on line 656 for MUX 610
selects the output of register 608, dataReg[7:0] on line 604, to
pass to register 612. This selection results 1n a circuit equiva-
lent to that of FIG. 3, which handles the condition where there
1s no need for dropping or shifting any bytes.

10

15

20

25

30

35

40

45

50

55

60

65

8

For packet conditions (2) and (5), the control signal on line
642 for MUX 640 selects the output of register 608, dataReg
[7:0] on line 604, to pass to register 611, and the control signal
on line 656 for MUX 610 selects input data TDAT[15:8] to
pass to register 612. This selection results 1n a circuit equiva-
lent to that of FIG. 4, which implements the required continu-
ous byte shifting.

For packet condition (4), the MUX control signals cause
MUX 609 to select dataReg[15:8] on line 603 to pass to
register 611, and cause MUX 636 to select TDAT[15:8] to
pass to register 612. This selection results 1n a circuit equiva-
lent to that of FIG. § implementing the required functionality
for packet condition (4). In this manner, MUXes 609 and 610
allow circuit 600 to be reconfigured the data path to address
all of the different combinations of byte treatment.

FIG. 7 1s an exemplary embodiment of a state machine 700
for providing control signals to selection line 642 of MUX
609 and selection line 656 ot MUX 610. It 1s to be understood
that various logic circuit implementations for the state dia-
gram of FIG. 7 are possible based on known logic design
techniques. As shown, four states represent combinations of
the six conditions discussed with reference to FIGS. 1B and 2.
For example, EVEN state 710 represents a combination of
conditions (1) and (3). In EVEN state 710, no odd numbered
packet 1s received. Thus, there 1s no need to do any byte
shifting. The transition from EVEN state 710 to EVEN20DD
state 712 takes place when the control word shows that the
current packet ends with a single valid byte (TCTL & TDAT
[14] & TDAT[13] 718). EVEN2ODD state 712 lasts for only
one clock cycle, during which time, the last valid byte of the
current packet 1s concatenated with the first byte of the fol-
lowing packet.

Thereatter, state machine 700 enters the ODD state 714, in
which all bytes are left shifted by 1 byte position. State
machine 700 comes out of ODD state 714 when the control
word shows that a second packet ending with a single valid
bytehas arrived (TCTL & TDAT[14] & TDAT[13],722). This
1s when ODD2EVEN state 716 1s entered. ODD2EVEN state
716 lasts for only 1 clock cycle. In this state, a control signal
1s sent out to the transmit FIFO, informing the FIFO to drop
one whole word from the mmcoming transmit data. After
ODD2EVEN state 716, state machine 700 returns to EVEN
state 710.

In this fashion, the present invention provides a circuit and
method for processing communication packets and valid data
bytes 1n a communication system. While the above 1s a com-
plete description of exemplary specific embodiments of the
invention, additional embodiments are also possible.

Therefore, the above description should not be taken as
limiting the scope of the invention, which 1s defined by the
appended claims along with their full scope of equivalents.

What 1s claimed 1s:

1. A method for processing data packets within a commu-
nication system comprising:

recerving a first data packet having a plurality of bytes of

data;

determiming whether the first data packet ends with an

invalid byte of data;

11 an 1nvalid byte of data 1s detected 1n the first data packet,

dropping the invalid byte of data;

recerving a second data packet having a plurality of bytes of

data;

shifting a byte of data from the second data packet in place

of the dropped invalid byte of data in the first data
packet; and

[continue] continuing shifting data one byte at a time in the

second data packet.

US RE43,218 E

9

2. The method of claim 1 wherein each byte of data in a data
packet forms one half of a data word.

3. The method of claim 2 wherein each data word com-
prises a first 16-bit byte and a second 16-bit byte[, and the
communication system 1s a synchronous optical network
(SONET)]

4. A method for processing data packets within a commu-
nication system, the method comprising:

receiving a first data packet 1in the communication system,
the first data packet ending with a valid byte and an
invalid byte of data;

dropping the imnvalid byte of data;

receiving a second data packet that begins with a first valid
byte of data; and

concatenating the valid byte of the first data packet with the
first valid byte of the second data packet.

5. The method of claim 4 wherein the second data packet
turther comprises a second valid byte, a third valid byte and a
fourth 1invalid byte.

6. The method of claim 5 further comprising shifting the
second valid byte into a location previously occupied by the
first valid byte.

7. The method of claim 6 further comprising shifting the
third valid byte into a location previously occupied by the
second valid byte.

8. The method of claim S further comprising flagging the
fourth mvalid byte as invalid.

9. The method of claim 4 wherein the act of concatenating,
further [comprising] comprises concatenating the valid byte
of the first data packet and the first valid byte of the second
data packet into a 128 bit envelope.

10. The method of claim 4 wherein the second data packet
1s 16 bits.

11. The method of claim 4 wherein the communication
system 1s a synchronous optical network (SONET).

12. The method of claim 4 wherein the act of concatenating
turther comprises linking the valid byte of the first data packet
and the first valid byte of the second data packet into a high
speed [packed] packet.

13. The method of claim 12 wherein the high speed packet
1s 128 bits.

14. The method of claim 11 wherein concatenating occurs
at an interface between a framing chip and a system chip.

15. A concatenation circuitry, comprising;:

a first multiplexing logic circuitry having a data output
port, a data select port, and first and second data input
ports, the data select port for selectively coupling any
one of the first[,] or second data input ports to the data
output port;

a first register, having a data input port for recerving input
data and a data output port for coupling to the first data
input port of the first multiplexing logic circuitry;

a second register having a data input port for recerving
input data, and [for coupling to the data input port of the
first register, the second register having] a data output
port for coupling to the second data input port of the first
multiplexing logic circuitry;

a third register having a data input port for coupling to the
data output port of the first multiplexing logic circuitry,
and a data output port for outputting data;

a fourth register having a data input port, and a data output
port for outputting data; and

a second multiplexing logic circuitry having a first data
input port for coupling to the data output port of the
second register, the second multiplexing logic circuitry
having a second data input port for coupling to the data
input port of the [second] first register, the second mul-

10

tiplexing logic circuitry having a data output port for
coupling to the data input port of the fourth register, and
the second multiplexing logic circuitry having a data
select port for selectively coupling either the first data
5 input port or the second data mput port with the data
output port of the second multiplexing logic circuitry.

16. The circuitry of claim 15 wherein the data output port of
the fourth register 1s for bits 0 through 7.

17. The circuitry of claim 15 wherein the data output ort of

10 the third register 1s for bits 8 through 15.

18. A logic circuitry for processing data packets within a
communication system such that data packets contain valid
bytes of data, the circuitry comprising:

logic circuitry for determining that a first data packet ends

15 with a valid byte and an 1nvalid byte of data;

logic circuitry for dropping the invalid byte of data;

logic circuitry for determining that a second data packet
that begins with a valid byte of data; and

logic circuitry for concatenating the valid byte of the first

20 data packet with the valid byte ol the second data packet.

19. The logic circuitry of claim 18 further comprising logic
circuitry for linking the valid byte of the first data packet and
the valid byte of the second data packet into a high speed
[packed] packet.

25 20. The logic circuitry of claim 18 wherein the high speed
packet 1s 128 bits.

21. The logic circuitry of claim 18 wherein the first data
packet 1s 16 bits wide.

22. The logic circuitry of claim 18 wherein concatenating,

30 occurs at an interface between a framing chip and a system
chup.

23. A circuit for processing packets of data wherein a
packet includes one or more words each having a first byte
and a second byte, the circuit comprising:

35 afirst register coupled to receive and store the first byte of
each word:;

a second register coupled to recerve and store the second
byte of each word,;

a third register coupled to the first register and configured

40 to receive and store contents of the first register in
response to a clock signal;

a Tourth register coupled to the second register and config-
ured to receive and store contents of the second register
in response to the clock signal; and

45 a multiplexing circuit coupled to the third and fourth reg-
isters and configured to selectively rearrange pairing of
bytes.

24. The circuit of claim 23 wherein the multiplexing circuit
comprises a first multiplexer having a first input coupled to an

50 output of the third register, and having a second input coupled
to an output of the fourth register.

235. The circuit of claim 24 wherein the multiplexing circuit
comprises a second multiplexer having a first input coupled to
[an] #2¢ output of the fourth register, and having a second

55 1nput coupled to an input of the third register.

26. The circuit of claim 25 further comprising control logic
circuitry coupled to a select port of the first multiplexer and a
select port of the second multiplexer.

27. The method of claim I wherein the communication

60 system transmits digital bit streams via repeating fixed
frames.

28. The method of claim 4 wherein the communication
system transmits digital bit streams via repeating fixed
frames.

65 29. The logic circuitry of claim 18 whevein the communi-
cation system transmits digital bit streams via repeating fixed
frames.

US RE43,218 E

11
30. The method of claim 1, wherein the first data packet is

received at a framer.

31. The method of claim 1, further comprising:

sending the first data packet from a network processor.

32. A system, comprising: d

a transmitting communication device configured to trans-

mit a plurality of data packets at a multiple-byte-wide
interface, wherein at least one packet in the plurality of
data packets comprises one or morve invalid bytes; and

a receiving communication device comprising.

a receiver configured to receive the plurality of data
packets, and

a shifter utilizing byte shifting to remove the one or more
invalid bytes from the at least one packet.

33. The system of claim 32, wherein the transmitting com-
munication device is a network processor.

34. The system of claim 32, wherein the receiving commui-
nication device is a framer.

35. The system of claim 32, wherein the shifter comprises: 20

one or more registers; and

one or more multiplexers.

36. The system of claim 35, wherein the one or morve mul-
tiplexers provides an output based on a presence of the one or
morve invalid bytes. 25

37. The system of claim 36, wherein a first multiplexer of
the one ov more multiplexers provides an output from a first
register of the one or more registers, and provides an output
from a second register of the one ov more registers upon
detection of an invalid byte. 30

38. The system of claim 32, wherein the shifter storves bytes
received from the multiple-byte-wide interface in a plurality
of registers, and genervates an output by (i) selecting vegisters

to provide the output, and (ii) removing invalid bytes by
altering the selection of registers. 35

39. The system of claim 32, further comprising:

a serializer-deserializer configured to accept an output of

the receiving communication device.

40. The system of claim 39, wherein the output of the
receiving communication device comprises an output of a 40
first multiplexer.

10

15

12

41. The system of claim 39, wherein the output of the
receiving communication device is null in a presence of two
or movre invalid bytes.

42. The system of claim 41, wherein the receiving commu-
nication device further comprises a clock and wherein the
output of the receiving communication device is null for at
least one cycle of the clock in the presence of two or more
invalid bytes.

43. A framer, configured for use in a communication sys-
tem, comprising.:

a receiver configured to receive a plurality of packets,
wherein at least one packet in the plurality of packets
comprises one or movre invalid bytes; and

a shifter utilizing byte shifting to remove the one or more
invalid bytes from the at least one packet in the plurality
of packets; and

a transmitter configured to send one ov movre packets in the
plurality of packets in a fixed frame, wherein each of the
sent one or more packets has the one or more invalid
bytes removed.

44. The logic circuitry of claim 42, wherein the communi-

cation system transmits digital bit streams via repeating fixed
frames.

45. A method for processing data packets comprising:

receiving a first data packet having a plurality of bytes of
data;

determining whether the first data packet ends with an
invalid byte of data;

if an invalid byte of data is detected in the first data packet,
dropping the invalid byte of data;

receiving a second data packet having a plurality of bytes
of data;

shifting a byte of data from the second data packet in place
of the dropped invalid byte of data in the first packet; and

continuing to shift data one byte at a time from the second
data packet.

46. The method of claim 45, wherein the data packets are

processed within a communication system, and the commu-
nication system transmits digital bit streams via repeating

fixed frames.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : RE43,218 E Page 1 of 1
APPLICATION NO. : 12/215662

DATED . February 28, 2012

INVENTOR(S) . Annadurai et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 10, line 9, 1n Claim 17, delete “ort” and insert -- [ort] port --.
Column 11, line 13, in Claim 32, delete “packets, and” and insert -- packets; and --.

Column 12, line 20, m Claim 44, delete “The logic circuitry of claim 42,” and
insert -- The framer of claim 43, --.

Signed and Sealed this
Twenty-third Day of October, 2012

......

David J. Kappos
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

