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ADAPTIVE WEINER FILTERING USING
LINE SPECTRAL FREQUENCIES

Matter enclosed in heavy brackets [ ]| appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

CROSS-REFERENCE TO RELATED
APPLICATIONS

Cofiled patent applications with Ser. Nos. 08/424,928,
08/425,125, 08/426,746, and 08/426,427 are copending and

disclose related subject matter. These applications all have a
common assignee.

BACKGROUND OF THE INVENTION

The invention relates to electronic devices, and, more par-
ticularly, to speech analysis and synthesis devices and sys-
tems.

Human speech consists of a stream of acoustic signals with
frequencies ranging up to roughly 20 KHz; but the band of
100 Hz to 5 KHz contains the bulk of the acoustic energy.
Telephone transmission of human speech originally consisted
ol conversion of the analog acoustic signal stream into an
analog electrical voltage signal stream (e.g., microphone) for
transmission and reconversion to an acoustic signal stream
(e.g., loudspeaker) for reception.

The advantages of digital electrical signal transmission led
to a conversion from analog to digital telephone transmission
beginning in the 1960s. Typically, digital telephone signals
arise from sampling analog signals at 8 KHz and nonlinearly
quantizing the samples with 8-bit codes according to the
u-law (pulse code modulation, or PCM). A clocked digital-
to-analog converter and companding amplifier reconstruct an
analog electrical signal stream from the stream of 8-bit
samples. Such signals require transmission rates of 64 Kbps
(kilobits per second). Many communications applications,
such as digital cellular telehone, cannot handle such a high
transmission rate, and this has mspired various speech com-
pression methods.

The storage of speech information 1n analog format (e.g.,
on magnetic tape 1 a telephone answering machine) can
likewise be replaced with digital storage. However, the
memory demands can become overwhelming: 10 minutes of
8-bit PCM sampled at 8 KHz would require about 5 MB
(megabytes) of storage. This demands speech compression
analogous to digital transmission compression.

One approach to speech compression models the physi-
ological generation of speech and thereby reduces the neces-
sary information transmitted or stored. In particular, the linear
speech production model presumes excitation of a variable
filter (which roughly represents the vocal tract) by either a
pulse train for voiced sounds or white noise for unvoiced
sounds followed by amplification or gain to adjust the loud-
ness. The model produces a stream of sounds simply by
periodically making a voiced/unvoiced decision plus adjust-
ing the filter coetlicients and the gain. Generally, see Markel
and Gray, Linear Prediction of Speech (Springer-Verlag
1976).

More particularly, the linear prediction method partitions a
stream of speech samples s(n) into “frames™ of, for example,
180 successive samples (22.5 msec intervals for a 8 KHz
sampling rate); and the samples 1n a frame then provide the
data for computing the filter coetficients for use 1n coding and
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2

synthesis of the sound associated with the frame. Each frame
generates coded bits for the linear prediction filter coetficients
(LPC), the pitch, the voiced/unvoiced decision, and the gain.

This approach of encoding only the model parameters repre-
sents far fewer bits than encoding the entire frame of speech

samples directly, so the transmission rate may be only 2.4
Kbps rather than the 64 Kbps of PCM. In practice, the LPC
coellicients must be quantized for transmission, and the sen-
sitivity of the filter behavior to the quantization error has led
to quantization based on the Line Spectral Frequencies (LSE)
representation.

To improve the sound quality, further information may be
extracted from the speech, compressed and transmitted or
stored along with the LPC coeflicients, pitch, voicing, and

gain. For example, the codebook excitation linear prediction

(CELP) method first analyzes a speech frame to find the LPC
filter coeflicients, and then filters the frame with the LPC
filter. Next, CELP determines a pitch period from the filtered
frame and removes this periodicity with a comb filter to yield
a noise-looking excitation signal. Lastly, CELP encodes the
excitation signals using a codebook. Thus CELP transmits the
LPC filter coellicients, pitch, gain, and the codebook index of
the excitation signal.

The advent of digital cellular telephones has emphasized
the role of noise suppression in speech processing, both cod-
ing and recognition. Customer expectation of high perfor-
mance even in extreme car noise situations plus the demand to
move to progressively lower data rate speech coding 1n order
to accommodate the ever-increasing number of cellular tele-
phone customers have contributed to the importance of noise
suppression. While higher data rate speech coding methods
tend to maintain robust performance even in high noise envi-
ronments, that typically 1s not the case with lower data rate
speech coding methods. The speech quality of low data rate
methods tends to degrade drastically with high additive noise.
Noise supression to prevent such speech quality losses 1s
important, but 1t must be achieved without introducing any
undesirable artifacts or speech distortions or any significant
loss of speech mtelligibility. These performance goals for
noise suppression have existed for many years, and they have
recently come to the forefront due to digital cellular telephone
application.

FIG. 1a schematically 1llustrates an overall system 100 of
modules for speech acquisition, noise suppression, analysis,
transmission/storage, synthesis, and playback. A microphone
converts sound waves 1nto electrical signals, and sampling
analog-to-digital converter 102 typically samples at 8 KHz to
cover the speech spectrum up to 4 KHz. System 100 may
partition the stream of samples into frames with smooth win-
dowing to avoid discontinuities. Noise suppression 104 filters
a frame to suppress noise, and analyzer 106 extracts LPC
coellicients, pitch, voicing, and gain from the noise-sup-
pressed frame for transmission and/or storage 108. The trans-
mission may be any type used for digital information trans-
mission, and the storage may likewise be any type used to
store digital information. Of course, types of encoding analy-
s1s other than LPC could be used. Synthesizer 110 combines
the LPC coeflicients, pitch, voicing, and gain information to
synthesize frames of sampled speech which digital-to-analog
convertor (DAC) 112 converts to analog signals to drive a
loudspeaker or other playback device to regenerate sound
waves.

FIG. 1b shows an analogous system 150 for voice recog-
nition with noise suppression. The recognition analyzer may
simply compare input frames with frames from a database or
may analyze the mput frames and compare parameters with
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known sets of parameters. Matches found between input
frames and stored information provides recognition output.

One approach to noise suppression 1n speech employs
spectral subtraction and appears in Boll, Suppression of
Acoustic Noise 1 Speech Using Spectral Subtraction, 27
IEEE Tr. ASSP 113 (1979), and Lim and Oppenheim,
Enhancement and Bandwidth Compression of Noisy Speech,
67 Proc.IEEE 1586 (1979). Spectral subtraction proceeds
roughly as follows. Presume a sampled speech signal s(j) with
uncorrelated additive noise n(3) to yield an observed win-
dowed noisy speech y(j)=s(1)+n(3). These are random pro-
cesses over time. Noise 1s assumed to be a stationary process
in that the process’s autocorrelation depends only on the
difference of the variables; that 1s, there 1s a function r,J(.)
such that:

E{n()n) j=1y(i-j)

where E 1s the expectation. The Fournier transform of the
autocorrelation 1s called the power spectral density, P {w). If
speech were also a stationary process with autocorrelation
r (1) and power spectral density P(w), then the power spectral
densities would add due to the lack of correlation:

P {@)=Ps{0)+Pp{m)

Hence, an estimate for P (m), and thus s(3), could be obtained
from the observed noisy speech y(3) and the noise observed
during intervals of (presumed) silence 1n the observed noisy
speech. In particular, take P,{w) as the squared magmtude of
the Fourier transform of y(3) and P,{w) as the squared mag-
nitude of the Fourier transform of the observed noise.

Of course, speech 1s not a stationary process, so Lim and
Oppenheim modified the approach as follows. Take s(j) not to
represent a random process but rather to represent a win-
dowed speech signal (that 1s, a speech signal which has been
multiplied by a window function), n(3) a windowed noise
signal, and vy(j) the resultant windowed observed noisy
speech signal. Then Fourier transforming and multiplying by
complex conjugates yields:

Y () *=1S(0)P+N(0)*+2Re{S(0)N{w)*}

For ensemble averages the last term on the righthand side of
the equation equals zero due to the lack of correlation of noise
with the speech signal. This equation thus yields an estimate,
S"(w), for the speech signal Fourier transform as:

S (@) IP=1Y () *-E{IN(w)°}

This resembles the preceding equation for the addition of
power spectral densities.

An autocorrelation approach for the windowed speech and
noise signals simplifies the mathematics. In particular, the
autocorrelation for the speech signal 1s given by

rs()=2S(1)S(1+]),

with similar expressions for the autocorrelation for the noisy
speech and the noise. Thus the noisy speech autocorrelation
1S:

1] )= (N ) HC o] ) sl =)

where c..A.) 1s the cross correlation of s(j) and n(j). But the
speech and noise signals should be uncorrelated, so the cross
correlations can be approximated as 0. Hence, r{{(1)=r(])+rx/
(1). And the Fourier transforms of the autocorrelations are just
the power spectral densities, so

P {0)=Ps(0)+P{w)

Of course, P{w) equals 1Y(w)I* with Y(w) the Fourier
transform of y(3) due to the autocorrelation being just a con-
volution with a time-reversed variable.
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4

The power spectral density P,{w) of the noise signal can be
estimated by detection during noise-only periods, so the
speech power spectral estimate becomes

IS () 12=1Y () 1P IN(0)I°=P {)-Pp{®)

which 1s the spectral subtraction.

The spectral subtraction method can be interpreted as a
time-varying linear filter H(w) so that S"(w)=H(w)Y(w)
which the foregoing estimate then defines as:

H(w)*=[P{0)~P,(0)]/Px{®)

The ultimate estimate for the frame of windowed speech,
s (7), then equals the inverse Fourier transform of S™(w), and
then combining the estimates from successive frames (“over-
lap add”) yields the estimated speech stream.

This spectral subtraction can attenuate noise substantially,
but 1t has problems including the introduction of fluctuating
tonal noises commonly referred to as musical noises.

The Lim and Oppenheim article also describes an alterna-
tive noise suppression approach using noncausal Wiener {il-

tering which minimizes the mean-square error. That 1s, again
S (w)=H(w)Y(w) but with H(w) now given by:

H(w)=Ps(w)/[P(0)+Pp{(®)]

This Wiener filter generalizes to:

H(w)=[Ps(0)/[Ps(w)+aPp{m)]]¥

where constants o and 3 are called the noise suppression
factor and the filter power, respectively. Indeed, a=1 and =4
leads to the spectral subtraction method 1n the following.

A noncausal Wiener filter cannot be directly applied to
provide an estimate for s(j) because speech 1s not stationary
and the power spectral density Po(w) 1s not known. Thus
approximate the noncausal Wiener filter by an adaptive gen-
cralized Wiener filter which uses the squared magnitude of
the estimate S™(w) 1n place of P(w):

H{(w)=(1S" (@) I>/[I1S" (@) P+aE{IN(0) ?}])P

Recalling S™(w)=H(w)Y(w) and then solving for IS™(w)! in
the =4 case yields:

S () I=[[Y () IP—aE{IN(m)*}]'?

which just replicates the spectral subtraction method when
a=1.

However, this generalized Wiener filtering has problems
including how to estimate S”, and estimators usually apply an
iterative approach with perhaps a half dozen iterations which
increases computational complexity.

Ephraim, A Minimum Mean Square Error Approach for
Speech Enhancement, Conf.Proc. ICASSP 829 (1990),
derived a Wiener filter by first analyzing noisy speech to find
linear prediction coetlicients (LPC) and then resynthesizing
an estimate of the speech to use in the Wiener filter.

In contrast, O’Shaughnessy, Speech Enhancement Using
Vector Quantization and a Formant Distance Measure, Con-
f.Proc. ICASSP 549 (1988), computed noisy speech formants
and selected quantized speech codewords to represent the
speech based on formant distance; the speech was resynthe-
s1zed from the codewords. This has problems including deg-
radation for high signal-to-noise signals because of the
speech quality limitations of the LPC synthesis.

The Fourier transforms of the windowed sampled speech
signals 1n systems 100 and 150 can be computed 1n either
fixed point or floating point format. Fixed point 1s cheaper to
implement 1n hardware but has less dynamic range for a
comparable number of bits. Automatic gain control limits the
dynamic range of the speech samples by adjusting magni-
tudes according to a moving average of the preceding sample
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magnitudes, but this also destroys the distinction between
loud and quiet speech. Further, the acoustic energy may be
concentrated in a narrow frequency band and the Fourier
transform will have large dynamic range even for speech
samples with relatively constant magnitude. To compensate
for such overtlow potential 1n fixed point format, a few bits

may he reserved for large Fourier transform dynamic range;
but this implies a loss of resolution for small magmtude

samples and consequent degradation of quiet speech. This 1s
especially true for systems which follow a Fourier transform
with an mnverse Fourier transform.

SUMMARY OF THE INVENTION

The present invention provides speech noise suppression
by spectral subtraction filtering improved with filter clamp-
ing, limiting, and/or smoothing, plus generalized Wiener {il-
tering with a signal-to-noise ratio dependent noise suppres-
s1on factor, and plus a generalized Wiener filter based on a
speech estimate derived from codebook noisy speech analysis
and resynthesis. And each frame of samples has a frame-
energy-based scaling applied prior to and after Fourier analy-
s1s 1o preserve quiet speech resolution.

The invention has advantages including simple speech
noise suppression.

BRIEF DESCRIPTION OF THE DRAWINGS

The drawings are schematic for clanty.

FIGS. 1a—b show speech systems with noise suppression.

FI1G. 2 illustrates a preferred embodiment noise suppres-
s10n subsystem.

FIGS. 3-5 are flow diagrams for preferred embodiment
noise suppression.

FIG. 6 1s a tlow diagram for a framewise scaling preferred
embodiment.

FIGS. 7-8 illustrate spectral subtraction preferred embodi-
ment aspects.

FIGS. 9a—b shows spectral subtraction preferred embodi-
ment systems.

FIGS. 10a—b 1illustrates spectral subtraction preferred
embodiments with adaptive minimum gain clamping.

FIG. 11 1s a block diagram of a modified Wiener filter
preferred embodiment system.

FI1G. 12 shows a codebook based generalized Wiener filter
preferred embodiment system.

FI1G. 13 1llustrates a preferred embodiment internal preci-
s1on control system.

DESCRIPTION OF THE PR
EMBODIMENTS

L1
=y

ERRED

Overview

FIG. 2 shows a preferred embodiment noise suppression
filter system 200. In particular, frame buffer 202 partitions an
incoming stream of speech samples into overlapping frames
ol 256-sample size and windows the frames; FF'T module 204
converts the frames to the frequency domain by fast Fourier
transform; multiplier 206 pointwise multiplies the frame by
the filter coellicients generated in noise filter block 208; and
IFFT module 210 converts back to the time domain by inverse
fast Fourier transform. Noise suppressed frame buffer 212
holds the filtered output for speech analysis, such as LPC
coding, recognition, or direct transmission. The filter coelli-
cients 1 block 208 derive from estimates for the noise spec-
trum and the noisy speech spectrum of the frame, and thus
adapt to the changing nput. All of the noise suppression
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6

computations may be performed with a standard digital signal
processor such as a TMS320C25, which can also perform the
subsequent speech analysis, 1f any. Also, general purpose
microprocessors or specialized hardware could be used.

The preferred embodiment noise suppression {ilters may
also be realized without Fourier transforms; however, the
multiplication of Fourier transforms then corresponds to con-
volution of functions.

The preferred embodiment noise suppression filters may
cach be used as the noise suppression blocks 1n the generic
systems of FIGS. 1a—b to yield preferred embodiment sys-
tems.

The smoothed spectral subtraction preferred embodiments
have a spectral subtraction filter which (1) clamps attenuation
to limit suppression for mputs with small signal-to-noise
ratios, (2) increases noise estimate to avoid filter fluctuations,
(3) smoothes noisy speech and noise spectra used for filter
definition, and (4) updates a noise spectrum estimate from the
preceding frame using the noisy speech spectrum. The attenu-
ation clamp may depend upon speech and noise estimates 1n
order to lessen the attenuation (and distortion) for speech; this
strategy may depend upon estimates only 1n a relatively
noise-iree frequency band. FIG. 3 1s a flow diagram showing
all four aspects for the generation of the noise suppression
filter of block 208.

The signal-to-noise ratio adaptive generalized Wiener filter
preferred embodiments use H(w)=[P¢ (w)/[P (w)+0P,,
(0)]]P where the noise suppression factor a.depends onE ,/E,,
with E ., the noise energy and E;-the noisy speech energy for
the frame. These preferred embodiments also use a scaled
LPC spectral approximation of the noisy speech for a
smoothed speech power spectrum estimate as illustrated 1n
the tlow diagram FIG. 4. FIG. 4 also illustrates an optional
filtered a..

The codebook-based generalized Wiener filter noise sup-
pression preferred embodiments use H(w)=[P< (w)/[Ps (w)+
aP()]]? with P.(w) estimated from LSFs as weighted
sums of LSFs 1n a codebook of LSFs with the weights deter-
mined by the LSFs of the input no1sy speech. Then iterate: use
this H{(w) to form H(w)Y (w), next redetermine the input LSFs
from H(®)Y (w), and then redetermine H(w) with these LSFs
as weights for the codebook LSFs. A half dozen iterations
may be used. FIG. 5 illustrates the flow.

The power estimates used in the preferred embodiment
filter definmitions may also be used for adaptive scaling of low
power signals to avoid loss of precision during FFT or other
operations. The scaling factor adapts to each frame so that
with fixed-point digital computations the scale expands or
contracts the samples to provide a constant overflow head-
room, and after the computations the inverse scale restores the
frame power level. FI1G. 6 illustrates the flow. This scaling
applies without regard to automatic gain control and could
even be used 1n conjunction with an automatic gain controlled
input.

Smoothed spectral subtraction preferred embodiments

FIG. 3 illustrates as a flow diagram the various aspects of
the spectral subtraction preferred embodiments as used to
generate the filter. A preliminary consideration of the stan-
dard spectral subtraction noise suppression simplifies expla-
nation of the preferred embodiments. Thus first consider the
standard spectral subtraction filter:

H(o0)?=[1Y () *= IN() I*]/[Y (@) *=1=IN(0)*/ Y ()]

A graph of this function with logarithmic scales appears 1n
FIG. 7 labelled “standard spectral subtraction”. Indeed, spec-
tral subtraction consists of applying a frequency-dependent
attenuation to each frequency in the noisy speech power spec-
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trum with the attenuation tracking the input signal-to-noise
power ratio at each frequency. That 1s, H(w) represents a
linear time-varying filter. Consequently, as shown in FI1G. 7,
the amount of attenuation varies rapidly with input signal-to-
noise power ratio, especially when the mput signal and noise
are nearly equal in power. When the input signal contains only
noise, the filtering produces musical noise because the esti-
mated nput signal-to-noise power ratio at each frequency
fluctuates due to measurement error, producing attenuation
with random variation across frequencies and over time. FIG.
8 shows the probability distribution of the FFT power spectral
estimate at a given frequency of white noise with unity power
(labelled “no smoothing™), and illustrates the amount of
variation which can be expected.

The preferred embodiments modity this standard spectral
subtraction 1n four independent but synergistic approaches as
detailed 1n the following.

Preliminarily, partition an mput stream ol noisy speech
sampled at 8 KHz into 256-sample frames with a 50% overlap
between successive frames; that 1s, each frame shares its first
128 samples with the preceding frame and shares its last 128
samples with the succeeding frame. This yields an input
stream of frames with each frame having 32 msec of samples
and a new frame beginning every 16 msec.

Next, multiply each frame with a Hann window of width
256. (A Hann window has the form w(k)=(1+cos(2mk/K))/2

with K+1 the window width.) Thus each frame has 256
samples y(1), and the frames add to reconstruct the input
speech stream.

Fourier transform the windowed speech to find Y (w) for the
frame; the noise spectrum estimation differs from the tradi-
tional methods and appears 1n modification (4).

(1) Clamp the H(w) attenuation curve so that the attenua-
tion cannot go below a mimimum value; FIG. 7 has this
labelled as “clamped” and illustrates a 10 dB clamp. The
clamping prevents the noise suppression filter H(w) from
fluctuating around very small gain values, and also reduces
potential speech signal distortion. The corresponding filter
would be:

H(w)*=max[1072, 1-IN(o)*/IY ()]

Of course, the 10 dB clamp could be replaced with any
other desirable clamp level, such as 5 dB or 20 dB. Also, the
clamping could include a sloped clamp or stepped clamping
or other more general clamping curves, but a simple clamp
lessens computational complexity. The following “Adaptive
filter clamp™ section describes a clamp which adapts to the
input signal energy level.

(2) Increase the noise power spectrum estimate by a factor
such as 2 so that small errors in the spectral estimates for input
(no1sy) signals do not result 1n fluctuating attenuation filters.
The corresponding filter for this factor alone would be:

H(w)*=1-4N(®)I*/1Y (0)I?

For small mput signal-to-noise power ratios this becomes
negative, but a clamp as 1n (1) eliminates the problem. This
noise increase factor appears as a shitt in the logarithmic input
signal-to-noise power ratio independent variable of FIG. 7.
Of course, the 2 factor could be replaced by other factors such
as 1.5 or 3; indeed, FIG. 7 shows a 5 dB noise increase factor
with the resulting attenuation curve labelled “noise
increased’”. Further, the factor could vary with frequency such
as more noise increase (1.€., more attenuation) at low frequen-
CIECS.

(3) Reduce the vanance of spectral estimates used 1n the
noise suppression filter H(w) by smoothing over neighboring,
frequencies. That 1s, for an input windowed noisy speech
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signal y(1) with Fournier transform Y(w), apply a running
average over frequency so that IY(w)I* is replaced by
(W¥1Y1%)(w) in H(w) where W(®) is a window about 0 and
% is the convolution operator. FIG. 8 shows that the spectral
estimates for white noise converge more closely to the correct
answer with increasing smoothing window size. That 1s, the
curves labelled 5 element smoothing”, “33 element smooth-
ing”, and “128 element smoothing” show the decreasing
probabilities for large variations with increasing smoothing
window sizes. More spectral smoothing reduces noise fluc-
tuations 1n the filtered speech signal because 1t reduces the
variance of spectral estimation for noisy frames; however,
spectral smoothing decreases the spectral resolution so that
the noise suppression attenuation filter cannot track sharp
spectral characteristics. The preferred embodiment operates
with sampling at 8 KHz and windows the input into {frames of
s1ze 256 samples (32 milliseconds); thus an FFT on the frame
generates the Fourier transform as a function on a domain of
256 frequency values. Take the smoothing window W(w) to
have a width of 32 frequencies, so convolution with W(w)
averages over 32 adjacent frequencies. W(w) may be a simple
rectangular window or any other window. The filter transier
function with such smoothing 1s:

H(n)*=1-IN(0)I>/W kY |%(®)

Thus a filter with all three of the foregoing features has
transfer function:

H(w)*=max[107%, 1-4/N(0)|?/W % Y |*(0)]

Extend the definition of H(w) by symmetry to m<w<2mw or
—t<m<0

(4) Any noise suppression by spectral subtraction requires
an estimate of the noise power spectrum. Typical methods
update an average noise spectrum during periods ol non-
speech activity, but the performance of this approach depends
upon accurate estimation of speech intervals which 1s a diifi-
cult technical problem. Some kinds of acoustic noise may
have speech-like characteristics, and i1 they are incorrectly
classified as speech, then the noise estimated will not be
updated frequently enough to track changes 1n the noise envi-
ronment.

Consequently, the preferred embodiment takes noise as
any signal which 1s always present. At each frequency recur-
stvely estimate the noise power spectrum P,{m) for use in the
filter H(w) by updating the estimate from the previous frame,
P'.{m), using the current frame smoothed estimate for the
noisy speech power spectrum, P (m)=W¥IY|*(w), as fol-
lows:

Py(w)=0.978 Py (w) if Py <0.978 P} (w)

= Py (w) if 0.978 P (w) < Py (w) = 1.006 Pl (w)

= 1.006 Py (w) if 1.006 Py (w) < Py (w)

For the first frame, just take P, (w) equal to P{(m).

Thus, the noise power spectrum estimate can increase up to
3 dB per second or decrease up to 12 dB per second. As a
result, the noise estimates will only slightly 1increase during
short speech segments, and will rapidly return to the correct
value during pauses between words. The 1nitial estimate can
simply be taken as the first input frame which typically will be
silence; of course, other initial estimates could he used such
as a simple constant. This approach 1s simple to implement,
and 1s robust 1n actual performance since 1t makes no asump-
tions about the characteristics of either the speech or the noise
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signals. Of course, multiplicative factors other than 0.978 and
1.006 could be used provided that the decrease limit exceeds

the increase limit. That 1s, the product of the multiplicative
factors 1s less than 1; e.g., (0.978) (1.006) 1s less than 1.

A preferred embodiment filter may include one or more of 5

the four modifications, and a preferred embodiment filter
combining all four of the foregoing modifications will have a
transfer function:

H{(w)?*=max[1072, 1-4P,, (0)/ Wk Y *(®)]

with P,, () the noise power estimate as in the preceding.

FIG. 9a shows 1n block form preferred embodiment noise
suppressor 900 which implements a preferred embodiment
spectral subtraction with all four of the preferred embodiment
modifications. In particular, FFT module 902 performs a fast
Fourier transform of an input frame to give Y(w), magnitude
squarer 904 generates [Y(w)I*, convolver 906 yields Py(m)=
W Y 1*(w), noise buffer (memory) 908 holds P,'(w), ALU
(arithmetic logic unit plus memory) 910 compares Py-and P,/
and computes P,, and updates buffer 908, ALU 912 com-
putes 1-4P,, (w)/P;, clamper 914 computes H(w), multiplier
920 applies H(w) to Y(w), and IFFT module 922 does an
inverse Fourler transform to yield the noise-suppression {il-
tered frame. Controller 930 provides the timing and enable-
ment signals to the various components. Noise suppressor
900 inserted into the systems of FIGS. 1a—b as the noise
suppression blocks provides preferred embodiment systems
in which noise suppressor 900 1n part controls the output.

Adaptive Filter Clamp

The filter attenuation clamp of the preceding section can be
replaced with an adaptive filter attenuation clamp. For
example, take

H(w)*=max[M?, 1-N(o)*/[Y(®)I*]

and let the minimum filter gain M depend upon the signal and
noise power of the current frame (or, for computational sim-
plicity, of the preceding frame). Indeed, when speech 1s
present, 1t serves to mask low-level noise; therefore, M can be
increased 1n the presence of speech without the listener hear-
ing increased noise. This has the benefit of lessening the
attentuation of the speech and thus causing less speech dis-
tortion. Because a common response to having difficulty
communicating over the phone 1s to speak louder, this
decreasing the filter attenuation with increased speech power
will lessen distortion and improve speech quality. Simply put,
the system will transmit clearer speech the louder a person
talks.

In particular, let YP be the sum of the signal power spec-
trum over the frequency range 1.8 KHz to 4.0 KHz: with a
256-sample frame sampling at 8 KHz and 256-point FF'T, this
corresponds to frequencies 517/128 to . That 1s,

YP=>_ Py{w) for 31m/129=w=n

Similarly, let NP be the corresponding sum of the noise
power:

NP=2 P, (0) for 51n/128=w=mn

with P, () the noise estimate from the preceding section.
The frequency range 1.8 KHz to 4.0 KHz lies 1n a band with
small road noise for an automobile but still with significant
speech power, thus detect the presence of speech by consid-
ering Y P-NP. Then take M equal to A+B(YP—NP) where A 1s
the minimum filter gain with an . all noise mput (analogous to
the clamp of the preceding section), and B 1s the dependence
of the minimum {ilter gain on speech power. For example, A
could be -8 dB or -10 dB as 1n the preceding section, and B
could be in the range of V4 to 1. Further, YP-NP may become
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negative for near silent frames, so preserve the minimum
clamp at A by 1ignoring the B(YP-NP) factor when YP-NP 1s
negative. Also, an upper limit of =4 dB for very loud frames
could be imposed by replacing. B(YP-NP) with min[-4 dB,
B(YP-NP)].

More explicitly, presume a 16-bit fixed-point format of
two’s complement numbers, and presume that the noisy
speech samples have been scaled so that numbers X arising in
the computations will fall into the range —1=X<+1, which in
hexadecimal notation will be the range 8000 to 7FFF Then
the filter gain clamp could vary between A taken equal to 1000
(0.125), which 1s roughly -9 dB, and an upper limit for
A+B(YP-NP) taken equal to 3000 (0.3775), which 1s roughly
—-4.4 dB. More conservatively, the clamp could be constrained
to the range of 1800 to 2800.

Furthermore, a simpler implementation of the adaptive
clamp which still provides 1ts advantages uses the M from the
previous frame (called M ;) and takes M for the current
frame simply equal to (17/16)M,; , when M,  1s less than
A+B(YP-NP) and (15/16)M,; , when M ; -, 1s greater than
A+B(YP-NP).

The preceding adaptive clamp depends linearly on the
speech power; however, other dependencies such as quadratic
could also be used provided that the functional dependence 1s
monotonic. Indeed, memory in system and slow adaptation
rates for M make the clamp nonlinear.

The frequency range used to measure the signal and noise
powers could be vaned, such as 1.2 KHz to 4.0 KHz or
another band (or bands) depending upon the noise environ-
ment. FIG. 10a heurnistically 1llustrates an adaptive clamp 1n a
form analogous to FIG. 7; of course, the adaptive clamp
depends upon the magnitude of the difference of the sums
(over a band) of mput and noise powers, whereas the inde-
pendent variable i FIG. 10a 1s the power ratio at a single
frequency. However, as the power ratio increases for “aver-
age’” frequencies, the magnitude of the difference of the sums
of input and noise powers over the band also increases, so the
clamp ramps up as indicated in FIG. 10a for “average™ fre-
quencies. FIG. 10b more accurately shows the varying adap-
tive clamp levels for a single frequency: the clamp varies with
the difference of the sums of the input and noise powers as
illustrated by the wvertical arrow. Of course, the clamp,
whether adaptive or constant, could be used without the
increased noise, and the lefthand portions of the clamp curves
together with the standard spectral curve of FIGS. 10a-b
would apply.

Note that the adaptive clamp could be taken as dependent
upon the ratio YP/NP 1nstead of just the difference or on some
combination. Also, the positive slope of the adaptive clamp
(see FIG. 10a) could be used to have a greater attenuation
(e.g., =15 dB) for the independent variable equal to O and
ramp up to an attenuation less than the constant clamp (which
1s —10 dB) for the independent variable greater than 3 dB. The
adaptive clamp achieves both better speech quality and better
noise attenuation than the constant clamp.

Note that the estimates YP and NP could be defined by the
previous frame in order to make an implementation on a DSP
more memory efficient. For most frames the YP and NP will
be close to those of the preceding frame.

FIG. 9b illustrates 1n block form preferred embodiment
noise suppressor 950 which includes the components of sys-
tem 900 but with an adaptive damper 934 which has the
additional inputs o Y P from filter 956 and NP from filter 960.
Insertion of noise suppressor 950 1nto the systems of FIGS.
la—b as the noise suppression blocks provides preferred
embodiment systems 1n which noise suppressor 950 1n part
controls the output.
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Modified generalized Wiener filter preferred embodiments

FI1G. 4 1s a flow diagram for a modified generalized Wiener
filter preferred embodiment. Recall that a generalized Wiener
filter with power 3 equal %2 has a transfer function:

H(w)*=Ps (w)/[Ps (w)+0oPy ()]

with P, (w) an estimate for the speech power spectrum, P,,
() an estimate for the noise power spectrum, and ¢ a noise
suppression factor. The preferred embodiments modify the
generalized Wiener filter by using an ¢ which tracks the
signal-to-noise power ratio of the input rather than just a
constant.

Heuristically, the preferred embodiment may be under-
stood 1n terms of the following intuitive analysis. First, take
P. (w) to be cP (w) for a constant ¢ with P, (w) the power
spectrum of the input noisy speech modelled by LPC. That 1s,
the LPC model for y(1) 1n some sense removes the noise. Then
solve for ¢ by substituting this presumption into the statement
that the speech and the noise are uncorrelated (P {(m)=P (w)+
P.{®)) and integrating (summing) over all frequencies to
yield:

Py, dw=1cP y (0)dw+Pp{w)dw

where P, estimated P..

Thus by Parseval’s theorem, E,=cE,+E., where E 1s the
energy ol the noisy speech LPC model and also an estimate
for the energy of y(j), and E.,,1s the energy of the noise 1n the
frame. Thus, c=(E,~E.,,)J/E - and so P. (0)=[(E;~E\)/E 4P
(). Then serting this into the definition of the generalized
Wiener filter transfer function gives:

H(w)*=P {0)/(PH{@)+[Ef/ (Er-Ep) Py (@)

Now take the factor multiplying P, (w)(i.e., [E/(E;~E,)]
a.) as mversely dependent upon signal-to-noise ratio (i.e.,
|E,/(E,~E.)]Jo=KE./E. for a constant k) so that the noise
suppression varies from frame to frame and is greater for
frames with small signal-to-noise ratios. Thus the modified
generalized Wiener filter insures stronger suppression for
noise-only frames and weaker suppression for voiced-speech
frames which are not noise corrupted as much. In short, take
a=KE./E;, so the noise suppression factor has been made
inversely dependent on the signal-to-noise ratio, and the filter
transfer function becomes:

H(w)*=P H(0)/(P {0)+[Ex/(Ey~Ex) JKPy (@)

Optionally, average a by weighting with the o from the
preceding frame to limit discontinuities. Further, the value of
the constant K can be increased to obtain higher noise sup-
pression, which does not result 1n fluctuations 1n the speech as
much as 1t does for standard spectral subtraction because
H(w) 1s always nonnegative.

In more detail, the modified generalized Wiener filter per-
terred embodiment proceeds through the following steps as
illustrated in FIG. 4:

(1) Partition an input stream of noisy speech sampled at 8

KHz mto 256-sample frames with a 50% overlap
between successive frames; that 1s, each frame shares its
first 128 samples with the preceding frame and shares its
last 128 samples with the succeeding frame. This yields

an input stream of frames with each frame having 32

msec of samples and a new frame beginning every 16

msec.

(2) Multiply each frame with a Hann window of width 256.
(A Hann window has the form w(j)=(1+cos(2mj/N))/2
with N+1 the window width.) Thus each frame has 256
samples y(j) and the frames add to reconstruct the input
speech stream.
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(3) For each windowed frame, find the 8th order LPC filter
coetlicientsa, (=1),a,,a,, ...a, bysolving the following
cight equations for eight unknowns:

2, opr(j+k)=0 for 1=1,2, .. . &8

where r(.) 1s the autocorrelation function of y(.).

(4) Form the discrete Fourier transform A(w)=2,a,e™"*®,
and then estimate P,{w) for use in the generalized
Wiener filter as E ,/IA(w)I* with E =2, a,r(k) the energy
of the LPC model. This just uses the LPC synthesis filter
spectrum as a smoothed version of the noisy speech
spectrum and prevents erratic spectral fluctuations from
affecting the generalized Wiener filter.

(5) Estimate the noise power spectrum P,(w) for use 1n the
generalized Wiener filter by updating the estimate from
the previous frame, P',{w), using the current frame
smoothed estimate for the noisy speech power spectrum,

P (), as follows:

Py(w)=10.978 Py(w) if Py <0.978 P}y (w)

= Py (w) if 0.978 Pl (w) < Py (w) < 1.006 Pl (w)

= 1.006 Py (w) if 1.006 Py (w) < Py(w)

Thus the noise spectrum estimate can increase at 3 dB per
second and decrease at 12 dB per second. For the first frame,
just take P {w) equal to P{w). And E,; 1s the integration
(sum) of P,, over all frequencies.

Also, optionally, to handle abrupt increases 1n noise level,
use a counter to keep track of the number of successive frames
in which the condition P,>1.006 P',(w) occurs. IT 75 succes-
stve frames have this condition, then change the mutliplier
from 1.006 to (1.006)* and restart the counter at 0. And if the
next successive 75 frames have the condition P,>(1.006)
P' (w), then change the multiplier from (1.006)" to (1.006)".
Continue 1n this fashion provided 75 successive frames all
have satisty the condition. Once a frame violates the condi-
tion, return to the 1mmitial multiplier of 1.006.

Of course, other multipliers and count limits could be used.

(6) Compute ao=xE,/E+ to use in the generalized Wiener

filter. Typically, K will be about 6—7 with larger values
for increased noise suppression and smaller values for
less. Optionally, a may be filtered by averaging with the
preceding frame by:

¢ =max(1, 0.8a+0.2a')

where o' 1s the o of the preceding frame. That 1s, for the
current frame with E,, the energy of the noise estimate P, {m),
E . the energy of the noisy speech LPC model, and ' 1s the
same expression but for the previous frame. FIG. 4 shows this
optional filtering with a broken line.
(7) Compute the first approximation modified generalized
Wiener filter for each frequency as:

H(@)*=P {0)/[Py(@)+[E/(E~Ex)]aP ()]

with P,(w) and E ;- from step (4), P.{w) and E,, from step (5),
and . from step (6).

(8) Clamp H,(w) to avoid excess noise suppression by
defining a second approximation: H,(w)=max(-10 dB,
H,(w)). Alternatively, an adaptive clamp could be used.

(9) Optionally, smooth the second approximation by con-

volution with a window W(w) having weights such as
0.1, 0.2, 0.4, 0.2, 0.1] to define a third approximation
H,(0)=W¥H,(w). FIG. 4 indicates this optional

smoothing 1n brackets.
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(10) Extend H,(w) (or Hy(w) 11 used) to the range m<m<2m
or —<w<0 by symmetry to define H(w). The periodicity
of H(w) makes these extensions equivalent.

(11) Compute the 256-point discrete Fourier transform of
y(1) to obtain Y(w).

(12) Take S"(w)=H(w)Y(w) as an estimate for the spectrum
of the frame of speech with noise removed.

(13) Compute the 256-point inverse discrete Fourier trans-
form of S"(w) and take the inverse transform to be the
estimate s (j) of speech with noise removed for the
frame.

(14) Add the s"(j) of the overlapping portions of successive
frames to get s(7) as the final noise suppressed estimate.

FIG. 11 shows 1n block form preferred embodiment noise

suppressor 1100 which implements the nonoptional func-
tions of a modified generalized Wiener filter preferred
embodiment. In particular, FF'T module 1102 performs a fast

Fourier transform of an input frame to give Y(.) and auto-
correlator 1104 performs autocorrelation on the input frame
to yield r(.). LPC coetlicient analyzer 1106 derives the LPC
coefficients a,, and ALU 1108 then forms the power estimate
P.{(.) plus the frame energy estimate E. ALU 1110 uses P{(.)
to update the noise power estimate P',, held in noise buffer
1112 to give P,, which 1s stored 1n noise buifer 1112. ALU
1110 also generates E., which together with E,- from ALU
1108, for ALU 1114 to find o.. ALU 1116 takes the outputs of
ALUs 1108,1110, and 1114 to derive the first approximation
H, and clamper 1118 then yields H, to be used in multiplier
1120 to perform the filtering. IFFT module 1122 performs the
inverse FFT to yield the output filtered frame. Each compo-
nent has associated buifer memory, and controller 1130 pro-
vides the timing and enablement signals to the various com-
ponents. The adaptive clamp could be used for clamper 1118.

Insertion of noise suppressor 1100 into the systems of
FIGS. 1a—b as the noise suppression block provides preferred
embodiment systems 1n which noise suppressor 1100 1n part
controls the output.
Codebook based generalized Wiener filter preferred embodi-
ment

FI1G. 5 1llustrates the flow for codebook-based generalized
Wiener filter noise suppression preferred embodiments hav-

ing filter transfer functions:

H(0)>=Py (@)/[Ps (0)+0Py ()]

with o the noise suppression constant. Heuristically, the pre-
ferred embodiments estimate the noise P,, (w) in the same
manner as step (5) of the previously described generalized
Wiener filter preferred embodiments, and estimate P, (w) by
the use of the line spectral frequencies (LSF) of the input
noisy speech as weightings for LSFs from a codebook of
noise-iree speech samples. In particular, codebook preferred
embodiments proceed as follows.

(1) Partition an input stream of speech sampled at 8 KHz
into 256-sample frames with a 50% overlap between
successive frames; that 1s, follow the first step of the
modified generalized Wiener filter preferred embodi-
ments.

(2) Multiply each frame with a Hann window of width 256;
again following the modified generalized Wiener filter
preferred embodiment.

(3) For each windowed frame with samples v(1), 1ind the
Mth (typically 8th) order LPC filter coellicients a, (=1),
a,, a,, . . . a,, by solving the M linear equations for M
unknowns:

2.or(j+1)=0 for j=1,2,.. . M
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where r(.) 1s the autocorrelation of y(.). This again follows the
modified generalized Wiener filter preferred embodiments.
The gain of the LPC spectrum 1s 2 a,1r(1).

(4) Compute the line spectral frequencies (LSF) from the
LPC coefficients. That is, set P(z)=A(z)+A(1/2)z* and
Q(z)=A(z)-A(1/2)/z" where A(z)=1+a,/z+a,/z°+ . . . +
a, /z™ is the analysis LPC filter, and solve for the roots of
the polynomials P(z) and QQ(z). These roots all lie on the
unit circle |zI=1 and so have the form ¢® with the ws
being the LSFs for the noisy speech frame. Recall that
the use of LSFs instead of LPC coelficients for speech
coding provides better quantization error properties.

(5) Compute the distance of the noisy speech frame LSFs
from each of the entries of a codebook of M-tuples of
LLSFs. That 1s, each codebook entry 1s a set of M LSFs 1n
s1ize order. The codebook has 256 of such entries which
have been determined by conventional vector quantiz-
tion training (e.g., LBG algorithm) on sets of M LSFs
from noise-iree speech samples.

In more detail, let (LSF, |, LSF, ,, LSF, 5, ..., LSF,,,) be
M LSFs of the jth entry of the codebook then take the dis-
tance of the noisy speech frame LSFs, (LSF, ;, LSE, ,,

LSE, 5, ..., LSFE, /), from the jth entry to be:

d~3,(LSF, ~LSF, )J/(LSF, ~LSF, )

where LSE, ., 1s the noisy speech frame LSF which 1s the
closest to LSF, ; (so c(1) will be either1-1 or 1+1 if the LSF,, |
are 1n s1ze order). Thus, this distance measure 1s dominated by
the LSF,, ; which are close to each other, and this provides
good results because such LSFs have ahigher chance ol being
formants 1n the noisy speech frame.
(6) Estimate the M LSFs (LSF_,, LSP_,, ... LSF_, /) for
the noise-free speech of the frame by a probability
weilghting of the codebook LSFs:

LLsF LSE;

s _,Fp_f

where the probabilities p; derive from the distance mea-
sures ol the noisy speech frame LSFs from the codebook
entries:

p~exp(-yd,;)/Z; exp (—yd;)

where the constant v controls the dynamic range for the
probabilities and can be taken equal 0.002. Larger values
of v imply increased emphasis on the weights of the
higher probability codewords.

(7) Convert the estimated noise-free speech LSFs to LPC
coefficients, a,’, and compute the estimated noise-free

speech power spectrum as

P (0)=2.ar(i)IZa, exp(—jkm)?

where 2 a r(1) 1s the gain of the LPC spectrum from step
(3)

(8) Estimate the noise power spectrum P,(m) as before: see
step (5) of the modified generalized Wiener filter sec-
tion.

(9) Take a equal to 10, and form the filter transfer function

H, (0)>=Py (0)/[Ps (0)}+0P ()]

where P, (w) comes from step (7) and P,{(w) from step
(8).

(10) Clamp H,(w) as 1n the other preferred embodiments to
avoid filter fluctuations to obtain the final generalized
Wiener filter transfer function: H(w)=max(-10 dB,
H,(m)). Alternatively, an adaptive clamp could be used.

(11) Compute the 256-point discrete Fourier transform of
y(1) to obtain Y(m).

(12) Take S"(w)=H(w)Y (w) as an estimate for the spectrum
of the frame of speech with noise removed.
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(13) Compute the 256-point inverse fast Fourier transform
of S"(w) to be the estimate s"(j) of speech with noise
removed for the frame.

(14) Iterate steps (3)(13) si1x or seven times using the
estimate s (j) from step (13) for y(3) in step (3). FIG. §

shows the iteration path
(15) Add the s™(j) of the overlapping portions of successive
frames to get s(j) as the final noise suppressed estimate.
FI1G. 12 shows 1n block form preferred embodiment noise
suppressor 1200 which implements the codebook modified
generalized Wiener filter preferred embodiment. In particu-
lar, FF'T 1202 performs a fast Fourier transform of an input
frame to give Y(.) and autocorrelator 1204 performs autocor-
relation on the mput frame to yield r(.). LPC coelficient
analyzer 1206 derives the LPC coefficients a,, and LPC-to-
LSF converter 1208 gives the LSF coetlicients to ALU 1210.
Codebook 1212 provides codebook LSF coetficients to ALU

1210 which then forms the noise-free signal LSF coetlicient
estimates to LSF-to-LPC converter 1214 for conversion to
LPC estimates and then to ALU 1216 to form power estimate
P.{(.). Noise buffer 1220 and ALU 1222 update the noise
estimate P,, (.) as with the preceding preferred embodiments,
and ALU 1224 uses P{.) and P,, (.) to form the first approxi-
mation unclamped H, and clamper 1226 then yields clamped
H, to be used 1n multiplier 1230 to perform the filtering. IFFT
1232 performs the mverse FET to vield the first approxima-
tion filtered frame. Iteration counter send the first approxima-
tion filtered frame back to autocorrelator 1204 to start gen-
eration of a second approximation ilter H,. This second
approximation filter applied to Y (.) yields the second approxi-
mation filtered frame which iteration counter 1234 again
sends back to autocorrelator 1204 to start generation of a third
approximation H,. Iteration counter repeats this six times to
finally yield a seventh approximation filter and filtered frame
which then becomes the output filtered frame. Each compo-
nent has associated butier memory, and controller 1240 pro-
vides the timing and enablement signals to the various com-
ponents. The adaptive clamp could be used for damper 1226.

Insertion of noise suppressor 1200 into the systems of
FIGS. 1a-b as the noise suppression blocks provides pre-
terred embodiment systems 1n which noise suppressor 1200
in part controls the output.

Internal precision control

The preferred embodiments employ various operations
such as FFT, and with low power frames the signal samples
are small and precision may be lost in multiplications. For
example, squaring a 16-bit fixed-point sample will yield a
32-bit result, but memory limitations may demand that only
16 bits be stored and so only the upper 16 bits will be chosen
to avoid overtlow. Thus an mnput sample with only the lowest
9 bits nonzero will have an 18-bit answer which implies only
the two most significant bits will be retained and thus a loss of
precision.

An automatic gain control to bring input samples up to a
higher level avoids such a loss of precision but destroys the
power level information: both loud and quiet input speech
will have the same power output levels. Also, such automatic
gain control typically relies on the sample stream and does not
consider a frame at a time.

A preferred embodiment precision control method pro-
ceeds as follows.

(1) Presume that an (N+1)-bit two’s complement integer
format for the noisy speech samples u(y) and other vari-
ables, and presume that the variables have been scaled to
the range —1=X<+1. Thus for 16-b1it format with hexa-
decimal notation, variables lie 1n the range from 8000 to
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7FFFE. First, estimate the power for an input frame of 256
samples by 2u(j)* with the sum over the corresponding
256 is.

(2) Count the number of significant bits, S, 1n the power
estimate sum. Note that with lu(3)| having an average
size of K significant bits, S will be about 2K+8. So the
number of bits 1n the sum reflects the average sample
magnitude with the maximum possible S equal 2N+8.

(3) Pick the frame scaling factor so as to set the average
sample size to have (ZN+8-S)/2-H significant bits
where H 1s an integer, such as 3, of additional headroom
bits. That is, the frame scaling factor is 2"~ , .. In
terms of the K of step (2), the scaling factor equals
2V=5~% For example, with 16-bit format and 3 overhead
bits, if the average sample magnitude is 2™~ (7 significant
bits), then the scaling factor will be 2° so the average
scaled sampled magnitude is 2~* which leaves 3 bits (2°)
before overflow occurs at 2°.

(4) Apply the Hann window (see steps (1)—(2) of the modi-
fied generalized Wiener filter section) to the frame by
point wise multiplication. Thus with y(j) denoting the
windowed samples,

y(1 =u())(1+cos(2m)/256))/2

for the varniable ;1 presumed translated into the range
—-128 to +127. Do this windowing before the scaling to
help avoid overtlow on the much larger than average
samples as they could fail at the edges of the window. Of
course, this windowing could follow the scaling of the
next step.

(5) Scale the windowed 1nput samples simply by left shiit-
ing (2N+8-S)/2—H bats (if the number of bits 1s negative,
then this 1s a right shaft). If a sample has magnitude more
than 2” times the average, then overflow will occur and
in this case just replace the scaled sample with the cor-
responding maximum magnitude (e.g., 8000 or 7FFF).
Indeed, if the sign bit changes, then overflow has
occurred and the scaled sample 1s taken as the corre-
sponding maximum magnitude. Thus with y(j) denot-
ing the scaled windowed samples and no overtlow:

y(j)y (2N S92t

(6) Compute the FFT using y (1) to find Y (®) . The use of
v(1) avoids the loss of precision which otherwise would
have occurred with the FFT due to undertlow avoidance.

(7) Apply a local smoothing window toY ((w) as in step (3)
of the spectral substraction preferred embodiments.

(8) Scale down by shifting Y (w) (2N+8-S)/2-H bits to the
right (with the new sign bit repeating the original sign
bit) to have Y (w) for noise estimation and filter applica-
tion 1n the preferred embodiments previously described.

An alternative precision control scaling uses the sum of the

absolute values of the samples 1n a frame rather than the
power estimate (sum of the squares of the samples). As with
the power estimate scaling, count the number S of significant
bits 1s the sum of absolute values and scale the input samples
by a factor of 2°**~>~* where again N+1 is the number bits in
the sample representation, the 8 comes from the 256 (2°)
sample frame size, and H provides headroom bits. Heuristi-
cally, with samples of K significant bits on the average, the
sum of absolute values should be about K+8 bits, and so S will
be about K+8 and the factor will be 2™~*~** which is the same
as the power estimate sum scaling.

Further, even using the power estimate sum with S signifi-

cant bits, scaling factors such as 2%~ have yielded
good results. That 1s, variations of the method of scaling up
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according to a frame characteristic, processing, and then scal-
ing down will also be viable provided the scaling does not
lead to excessive overtlow.

FIG. 13 1illustrates 1n block format a internal precision
controller preferred embodiment which could be used with
any ol the foregoing noise suppression filter preferred
embodiments. In particular, frame energy measurer 1302
determines the scaling factor to be used, and scaler 1304
applies the scaling factor to the input frame. Filter 1306 filters
the scaled frame, and i1nverse scaler 1308 then undoes the
scaling to return to the original input signal levels. Filter 1306
could be any of the foregoing preferred embodiment filters.
Parameters from filter 1306 may be part of the scale factor
determination by measurer 1302. And insertion of noise sup-
pressors 1300 into the systems of FIGS. 1a—b provides pre-
terred embodiment systems 1n which noise suppressor 1300
in part controls the output.

Modifications

The preferred embodiments may be varied in many ways
while retaining one or more of the features of clamping, noise
enhancing, smoothed power estimating, recursive noise esti-
mating, adaptive clamping, adaptive noise suppression fac-
toring, codebook based estimating, and internal precision
controlling.

For example, the various generalized Wiener filters of the
preferred embodiments had power 3 equal to 2, but other
powers such as 1, ¥4, /4, and so forth also apply; higher filter
powers 1mply stronger filtering. The frame size of 256
samples could be increased or decreased, although powers of
2 are convenient for FFT's. The particular choice of 3 bits of
additional headroom could be varied, especially with differ-
ent size frames and different number of bits 1n the sample
representation. The adaptive clamp could have a negative
dependence upon frame noise and signal estimates (B<0).
Also, the adaptive clamp could mvoke a near-end speech
detection method to adjust the clamp level. The a and
coellicients could be varied and could enter the transier func-
tions as simple analytic functions of the ratios, and the num-
ber 1terations 1n the codebook based generalized Wiener filter
could be varied.

What 1s claimed 1s:

1. A method of filtering a stream of sampled acoustic
signals, comprising the steps of:

[(2)] partitioning [a] #4e stream of sampled acoustic signals

into a sequence of frames;

[(b)] Fourier transforming [said flames] the frames using
processing circuitry 10 yield a sequence of transformed
frames:;

[(c)] applying a generalized Wiener filter to [said] #ze trans-
formed frames to yield a sequence of filtered trans-
formed frames, wherein [said] #e filter uses power spec-
trum estimates from [LSFs] lire spectral frequencies
(LSF’s) defined as weighted sums of LSFs of a codebook
of LSFs with the weights determined by the LSFs of
[said] t/e transformed frames; and

[(d)] inverse Fourier transforming said sequence of filtered
transformed frames to vyield a sequence of filtered
frames.

2. The method of claim 1, further comprising the [steps]

step of:

[(2)] repeating the step [(¢)] of [claim 1 but] applying with
the LSF's of [said] #4e transformed frame replaced with
the LSFs of the filtered transformed frame of a preceding
iteration of [said] #ze step [(¢)] of [claim 1] applying.

3. The method of claim 2, wherein:

[(2) said] the step [(c)] of [claim 1] applving is repeated a
number of times with the number in the range of 6 to 7.
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4. A method of noise suppression filtering for a sequence of
frames of noisy speech, comprising:
filtering a frame of noisy speech that includes the sub-steps
of :

5 estimating a noise power spectrum, P ;-(®), of the
frame of noisy speech, wherein the variable o is the
discrete frequency,

computing a noisy speech power spectrum for the frame
of noisy speech using processing civcuitry;

smoothing noisy speech power spectrum with respect to
the variable o to yvield a smoothed noisy speech power
spectrum, P sy oornepnorsyspeeca(®), for the frame
of noisy speech;,

defining a noise-suppression filter using the noisy
speech power spectrum, and the smoothed noisy
speech power spectrum;

filtering the frame of noisy speech with the noise sup-
pression filter; and

repeating the step of filtering for each frame of noisy

speech for a plurality of frames of noisy speech.

5. The method of claim 4, wherein the sub-step of smooth-
ing is a convolution with respect to the variable w of the noisy
speech power spectrum and a window function, W(m).

6. The method of claim 4, wherein the noise suppression

filter includes the term.
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cPnoise(w)

1 - )
PsyooTHEDNOISYSPEECH ()

30 wherein c is a positive constant.

7. The method of claim 6, wherein c is equal to 1.

8. The method of claim 6, wherein c is equal to 4.

9. The method of claim 4, wherein the noise suppression
filter includes the term.:

35
P
maX{Mz, [ cPnoise(w) },
PsyrootHEDNOISYSPEECH (W)
wherein ¢ and M ave a positive constant.
10. The method of claim 4, wherein the sub-step of estimat-
4

U ing further comprises the sub-steps of:

equating the noise power spectrum of the frame to a prod-
uct of a first constant and a noise power spectrvum esti-
mate of a prior frame when the smoothed noisy speech
power spectrum of the frame is less than the product of
the noise power spectrum estimate of the prior frame
and the first constant;

equating the noise power spectrum of the frame to the
smoothed noisy speech power spectrum of the frame
when the smoothed noisy speech power spectrum of the
frame is greater than or equal to the product of the noise
power spectrum estimate of the prior frame and the first
constant and when the smoothed noisy speech power
spectrum of the frame is less than or equal to the product
of the noise power spectrum estimate of the prior frame
and a second constant, wherein the first and second
constants are positive, and wherein the product of the
first and second constants is less than one; and

equating the noise power spectrum of the frame to the
product of the noise power spectrum estimate of the
prior frame and the second constant, when the smoothed
noisy speech power spectrum of the frame is greater than
the product of the noise power spectrum estimate of the
prior frame and the second constant.

11. The method of claim 10, whevein the first constant is

0.978 and the second constant is 1.006.
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