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(57) ABSTRACT

A method for segmenting a small feature 1n a multidimen-
sional digital array of intensity values 1 a data processor
computes an edge metric along each ray of a plurality of
multidimensional rays originating at a local intensity extreme
(local maximum or minimum). A multidimensional point
corresponding to a maximum edge metric on each said ray 1s
identified as a ray edge point. Every point on each ray from
the local extreme to the ray edge point 1s labeled as part of the
small object. Further points on the feature are grown by
labeling an unlabeled point 11 the unlabeled point 1s adjacent
to a labeled point, and the unlabeled point has a more extreme
intensity than the labeled point, and the unlabeled point 1s
closer than the labeled point to the local extreme. The result-
ing segmentation 1s quick, and i1dentifies boundaries of small
features analogous to boundaries 1dentified by human ana-
lysts, and does not require statistical parameterizations or
thresholds manually determined by a user.
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METHOD AND APPARATUS FOR
SEGMENTING SMALL STRUCTURES IN
IMAGES

Matter enclosed in heavy brackets | ] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

Notice: More than one reissue application has been filed
for the veissue of U.S. Pat. No. 7,106,893. The reissue appli-
cations are application Ser. No. 12/210,107, which was filed

on Sep. 12, 2008 (the present application), and application
Ser. No. 13/314,021, which was filed on Dec. 7, 2011 and is a

continuation of the present application.

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a broadening reissue of U.S. Pat. No.

7,106,893, issued Sep. 12, 20006, from U.S. patent application
Ser. No. 10/716,797, filed Nov. 18, 2003, which 1s a continu-
ation of U.S. patent application Ser. No. 09/305,018, filed
May 4, 1999, now abandoned, which claims the benefit of
provisional patent application Ser. No. 60/084,125 filed on
May 4, 1998, [the entire disclosure of which is incorporated
herein by reference] all of which are incorporated herein by
refervence in their entireties.

FIELD OF THE INVENTION

The present invention relates to data processing of intensity
data arranged 1n a multidimensional array. More particularly,
the mnvention relates to a method, an apparatus, and computer
program products for rapidly segmenting multidimensional
intensity data by which points 1n one or more small structures
contained 1n the data are labeled.

BACKGROUND OF THE INVENTION

Digital imagery and other multidimensional digital arrays
ol intensity are routinely collected using digital sensors and
arrays ol charge coupled devices (CCDs). The resulting data
arrays are analyzed to determine patterns and detect features
in the data. For example, color images of a battle scene are
analyzed to detect targets, and radiographs and sonograms of
human and animal bodies are examined to detect tumors and
other indications of 1mjury or disease. As the number and
complexity of these digital data arrays to be analyzed increase
or the time required to perform the analyses decreases, auto-
mated and machine assisted analysis becomes more critical.
Some statistically based automated procedures for detecting
features 1n a multidimensional array are adequate when the
feature encompasses many points 1n the array, 1.e. when the
teature 1s large, but fail to perform well as the feature to be
detected becomes small. Some procedures perform well
when tuned to a particular problem through experimental
adjustment of many parameters, but such tuning may place an
undue burden on time limited or experience limited person-
nel. Typical problems encountered with such automated
analysis of small structures 1n multidimensional arrays are
illustrated for the case of automatic detection of microcalci-
fication candidates 1n mammograms.

Breast cancer has the highest incidence among all cancer
types 1n American women, causing 1 woman 1n 8 to develop
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the disease 1n her lifetime. Every vyear, about 182,000 new
cases are diagnosed with breast cancer and about 46,000
women die of this disease. The 5-year survival for women
with breast cancer improves significantly with early diagno-
s1s and treatment. To enable early detection, the American
Cancer Society (ACS) recommends a baseline mammogram
for all women by the age o1 40, a mammogram approximately
every other year between the ages of 40 and 50, and a mam-
mogram every year after the age of 50. It 1s possible that the
volume of mammography will become one of the highest
among clinical X-ray procedures since more than 30 million
women 1n the U.S. are above the age of 50 and 41% are known
to follow the ACS guidelines.

Besides the volume problem, an additional difficulty of
carly detection of breast cancer in mammograms 1s the
subtlety of the early signal. A microcalcification cluster, an
carly sign of breast cancer that may warrant biopsy, 1s com-
monly defined as three or more microcalcifications present in
1 cm? on a mammogram. These clusters are often difficult to
detect due to their small size and their similarity to other
tissue structures. The width of an individual microcalcifica-
tion 1s less than 2 mm. The etiology of microcalcifications
includes lobular, ductal or epithelial hyperplasia, secretion of
calcium salts by epithelial cells, adenosis, as well as calcifi-
cation of necrotic debris due to carcinoma. Up to 50% of
breast cancer cases exhibit microcalcification clusters, and
20-35% of clusters 1n the absence of a mass are related to
malignant growth. In many cases a cluster 1s the first and only
sign that allows timely intervention.

The increasing pressure to interpret large numbers of mam-
mograms and the subtlety of many early signs increase the
likelihood of missing breast cancer. A reliable automated
system that indicates suspicious structures 1n mammograms
can allow the radiologist to focus rapidly on the relevant parts
of the mammogram and it can increase the effectiveness and
elficiency of radiology clinics. In the detection of breast can-
cer, Talse negatives may cause a delay 1n the diagnosis and
treatment of the disease while false positives cause unwar-
ranted biopsy examinations. Therefore, both sensitivity and
specificity need to be maximized, with a relatively higher
priority on sensitivity, which has a more vital role.

A common approach used for detecting microcalcifica-
tions 1n mammograms starts by segmenting candidate struc-
tures and subsequently applying feature extraction and pat-
tern recognition to distinguish microcalcifications from
background tissue among the candidates. In this process,
segmentation plays an essential role since the quantitative
teatures that represent each candidate structure, such as size,
contrast, and sharpness, depend on the region indicated by
segmentation. Furthermore, to process all possible candidate
structures, a considerably large number of background struc-
tures need to be segmented, making fast segmentation desir-
able.

Several techniques for segmentation have been applied to
microcalcifications. One segmentation technique 1s based on
local thresholding for individual pixels using the mean pixel
value and root mean square (rms) noise fluctuation 1n a
selected region around the thresholded pixel. The threshold
for a pixel 1s set as the mean value plus the rms noise value
multiplied by a selected coellicient. A structure 1s segmented
by connecting pixels that exceed the threshold. Both param-
cters that have to be selected, size of region and threshold
coelficient, are critical to this method. If a microcalcification
1s close to another microcalcification or bright structure, the
window used to compute the rms noise value around the first
microcalcification will include the other bright structures,
and the noise rms may be overestimated, thus setting the
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threshold too high. On the other hand, if the selected region 1s
too small, 1t will not contain sufficient background pixels
when placed on large microcalcifications.

Such a window size needs to be selected 1n a second seg-
mentation algorithm as well, where local thresholding 1s used
by setting a threshold for small square sub 1mages. The
threshold 1s based on an expected bimodal intensity distribu-
tion 1n a window of selected size that contains the sub-image
to be segmented. If the distribution 1s not bimodal, then the
threshold 1s set by using 5 different positions of the window
cach containing the sub-image to be segmented. The exist-
ence ol a bimodal distribution 1n at least one window 1s
essential for this algorithm.

Other segmentation methods start with seed pixels and
grow aregion by adding pixels. They also require selection of
a window si1ze and threshold parameters. The localized imple-
mentation of region growing depends on the selected window
s1ize and the threshold for absolute difference in gray level
between the seed pixel and a pixel to be added to the region.

One segmentation algorithm uses several steps that include
high-pass filtering, difference of Gaussinan {filtering, four
computations of the standard deviation of the image, a
smoothing, an opening, as well as an iterative thickening
process with two erosions, two 1ntersections and a union
operation 1n each iteration. More than ten parameters have to
be selected, including widths of Gaussian distributions,
threshold coellicients, and diameters of morphological filter-
ing elements.

A segmentation algorithm that operates without parametric
distribution models, local statistics windows, or manually
adjustable thresholds 1s desirable.

A segmentation method that 1s fast 1s also important. Up to
400 films per day are routinely screened in busy radiology
climics. The automated analysis does not have to be applied
on-line; however, 1t may be difficult to process large numbers
of mammograms overnight if algorithms are not fast enough.
Because the segmentation algorithm has to segment all can-
didate structures that may potentially be microcalcifications,
its speed 1s especially relevant. Each film may have several
thousand candidate structures that must be segmented.

The multi-tolerance segmentation algorithm of Shen et al.
(L. Shen, et al. “Detection and Classifications of Mammo-
graphic Calcifications,” International Journal of Pattern Rec-
ogmtion and Artificial Intelligence, vol. 7, pp. 1403-1416,
1993), does not use statistical models for local statistics, and
its threshold 1s set automatically. This multi-tolerance, region
growing approach uses a growth tolerance parameter that
changes 1n a small range with a step size that depends on the
seed pixel. The structure of interest 1s segmented multiple
times with varying tolerance parameters, and in each segmen-
tation, a set of three features 1s computed. The normalized
vector differences in the feature set between successive seg-
mentations are calculated and the segmentation with minimal
difference 1s selected as the final one.

The active contours model of Kass et al. (Kass, M. et al.
“Snakes: Active Contour Models,” International Journal on
Computer Vision, pp. 321-331, 1988), also provides segmen-
tation without parametric statistical data models or windows
for local statistics, but does rely on several user selected
parameters that place some burden on the user. It has been
used successiully to determine the boundaries of tissue struc-
tures 1n data such as ultrasound and MRI images of the heart,
and MRI images of the brain, but it has not been applied to the
segmentation of microcalcifications. The active contours
model starts with an initial contour placed near the expected
boundary and moves the contour iteratively toward the
boundary by minimizing an energy function. The contour 1s
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modeled as a physical flexible object with elasticity and rnigid-
ity properties. Its dynamics, dictated by the balance between

these 1nternal properties and external forces that depend on
the 1mage data, satisty the Fuler equations and mimimize the
corresponding energy function. An active contour that 1s 1ni-
tiated as a closed curve remains so during iterations and its
smoothness can be adjusted by the choice of parameters.

What 1s needed 1s a segmentation method and apparatus
without statistical models, local statistics, or thresholds to be
selected manually, and with significantly lower computa-
tional complexity compared to the multi-tolerance and active
contours methods, for enhanced speed.

In particular, what 1s needed 1s a method and apparatus to
segment pixels 1n an 1image, such as a mammogram, contain-
ing a plurality of extra dark or extra bright objects just a few
pixels i extent, that gives edges similar to those selected by
an expert, but does so with fewer computations and with
tewer manually adjustable parameters than conventional seg-
mentation methods and equipment.

SUMMARY OF THE INVENTION

Therefore 1t 1s an object of the present invention to provide
segmentation for small features in multidimensional data
which defines small feature edges that correspond closely to
those selected by an analyst but does so with less complexity
than the above known methods.

It1s another object of the present invention to provide a data
processing apparatus that more rapidly provides small feature
edges that correspond closely to those selected by an analyst.

It 1s another object of the present invention to provide
computer program products that more rapidly provide small
feature edges that correspond closely to those selected by an
analyst.

It 1s another object of the invention to 1dentity microcalci-
fications 1n a mammogram.

These and other objects and advantages of the present
invention are provided by a method for segmenting a small
feature 1n a multidimensional digital array of intensity values
in a data processor. Each small feature includes a local inten-
sity extreme, such as an intensity maximum. An edge metric
1s computed along each ray of a plurality of multidimensional
rays originating at the local intensity extreme. A multidimen-
sional edge point 1s 1dentified corresponding to a maximum
edge metric on each ray. Every point on each ray from the
local extreme to the ray edge point 1s labeled as part of the
small feature. The labeling 1s then spread to an unlabeled
point following a hill climbing procedure requiring that the
unlabeled point be adjacent to a labeled point, have a similar
or more extreme 1ntensity than the labeled point, and be closer
than the labeled point to the local extreme.

In another embodiment, the multidimensional array 1s a
digital 1image, and each point 1s a pixel. In another embodi-
ment, the digital image 1s a digitized mammogram and the
small feature 1s a microcalcification candidate. In the latter
embodiment, microcalcification candidates are satisfactory
segmented 1n fewer operations than with conventional seg-
mentation methods.

In another aspect of the invention, a data processing appa-
ratus segments a small feature 1in a multidimensional digital
array ol intensity values. The apparatus includes an input for
inputting a plurality of intensity values arranged along regular
increments in each of a plurality of dimensions and a memory
medium for storing the plurality of intensity values as a mul-
tidimensional digital array. The apparatus includes a proces-
sor configured to detect a local intensity extreme 1n the mul-
tidimensional digital array, to identily points along a plurality
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of rays originating at the local intensity extreme, and to 1den-
tify one ray edge point on each ray. The ray edge point 1s

associated with a maximum edge metric along the ray. The
processor 1s also configured to label the points 1n the array that
are part ol the small features. Each point on each ray from the
local intensity extreme to the edge point 1s labeled, as 1s an
unlabeled point adjacent to a labeled point if the unlabeled
point has a more extreme intensity than the labeled point and
the unlabeled point 1s closer than the labeled point to the local
extreme. Labeling continues until no more unlabeled points
can be labeled. The apparatus also includes an output for
providing the labeled points for subsequent processing.

In another aspect of the invention, a computer program
product 1s provided for segmenting a small feature 1n a mul-
tidimensional array of intensities using a computer. The com-
puter program product includes computer controlling mnstruc-
tions for configuring a computer to compute an edge metric
along each ray of a plurality of multidimensional rays origi-
nating at a local intensity extreme. The mstructions also 1den-
tily a ray edge multidimensional point corresponding to a
maximum edge metric on each ray. The program also labels
every point on each ray from the local extreme to the ray edge
point, and then labels an unlabeled point 1f the unlabeled point
1s adjacent to a labeled point and the unlabeled point has a
more extreme intensity than the labeled point, and the unla-
beled pomnt 1s closer than the labeled point to the local
extreme. In one embodiment, the instructions are stored 1n a
computer readable memory device. In another embodiment,
the instructions are transmitted as electronic signals on a
communications line.

The foregoing and other features, aspects and advantages
of the present invention will become more apparent from the
tollowing detailed description of the present invention when
taken 1n conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The preferred and example embodiments of the present
invention are described with reference to the Drawings 1n
which:

FIG. 1A 1s a perspective view of the external features of a
computer apparatus suitable for one embodiment of the
present invention.

FIG. 1B 1s a block diagram of a computer apparatus that
can be configured according to one embodiment of the
present invention.

FI1G. 1C 1s a perspective view of a sample memory medium
for storing instructions to configure a computer according to
another embodiment of the present invention.

FIG. 1D 1s a block diagram of a network that can transmait
clectronic signals that configure a computer according to still
another embodiment of the present invention.

FIG. 2A 1s a flow diagram for a method according to yet
another embodiment of the present invention.

FIG. 2B 1s a tlow diagram following step 270 of FIG. 2A
according to a further embodiment of the present invention.

FI1G. 2C 1s a flow diagram for details of step 260 of FIG. 2A
according to still another embodiment of the present imven-
tion.

FI1G. 2D 1s a flow diagram for an alternative detail for step
260 of FIG. 2A according to yet another embodiment of the
present invention.

FIG. 3 1s a schematic diagram of a local maximum, rays
and edges that results from steps 210 through 250 of FIG. 2.

FIG. 4 1s a schematic diagram of a local maximum, a
labeled pixel, adjacent pixels, and a reference line according
to one criteria for one embodiment of step 260 of FIG. 2.
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FIG. 5 1s a schematic diagram of a local maximum, a
labeled pixel, and an adjacent pixel according to a criteria for
another embodiment of step 260 of FIG. 2.

FIGS. 6A-6D are gray scale photographs showing an
actual intensity maximum as originally provided and then
superposed with labeled pixels after three stages of the
method of FIG. 2 according to the present invention.

FIGS. TA-7D are gray scale photographs showing three
actual intensity maxima as originally provided and then
superposed with labeled edge pixels after segmentation based
on two conventional methods and the preferred embodiment
of the present invention.

(L]
By

ERRED

DETAILED DESCRIPTION OF THE PR.
EMBODIMENT

The principles of the present imnvention will be described
next, detailed 1in terms of preferred and example embodi-
ments with reference to the accompanying drawings. When-
ever possible, the same reference numbers will be used
throughout the drawings to refer to the same or like parts.

The explanations of the detailed embodiments are by way
of example only and are not meant to limit the scope of the
invention. The ivention applies to identifying small struc-
tures 1n any multidimensional array of regularly spaced inten-
sity values. Here intensity 1s used 1n a generic sense repre-
sentative ol measured data values 1n general, and i1s not
coniined to density of optical energy. Examples of such mul-
tidimensional arrays include gray-scale digital images in
which intensity values are regularly spaced in two dimen-
s1ons, often called rows and columns or y and X, such as the
mammogram described in the preferred embodiment. In this
kind of arrangement, each digital image element 1s a picture
clement called a pixel. Elevation maps are two dimensional
arrays ol height data, where height 1s the “intensity.” Other
examples ol multidimensional arrays include color images
which can be represented as three-dimensional arrays of
intensity where the third dimension is color. Typically, the
array would have intensity at only three points in the color
dimension, for example, a red intensity, a blue intensity and a
green intensity. Gray-scale video clips can also be considered
three-dimensional arrays, where each video 1mage frame 1s
two-dimensional and the third dimension 1s time. By the same
token, color video clips can be considered four-dimensional
where the four dimensions are row, column, color and time.
Other examples include medical imagery where two-dimen-
sional cross sections of a human body are assembled at sev-
eral positions from head to toe. In this case the third dimen-
s10n 1s height through the subject. By extension, such three-
dimensional looks can be repeated at uniform intervals of
time, making time the fourth dimension. Thus the descrip-
tions that follow apply not only to gray scale images of the
preferred embodiment, but to multidimensional arrays of
digital data.

A multidimensional point 1n a multidimensional digital
array 1s located by the index of the point in each of the
dimensions. Letting D represent the number of dimensions,
the location of a multidimensional point P 1n a multidimen-
sional array can be specified uniquely by a set containing D
indexes as coordinates, {1,, I, I3, . .. I,}. Where there are
only two dimensions, 1t 1s common to refer to I, as the x
coordinate and to refer to I, as the y coordinate. There 1s an
implied limit to the number of allowed positions 1 each
dimension of a fimite array. Letting L, represent the maximum
number of locations in the 1-th dimension of the digital data
array, each index can vary from one to L, inclusive. That 1s:

1<L<L, (1)

I— 1"
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The distance, d, between any two multidimensional points, P
and P,, with different indices {a,, a,,a,,...a,} and {b,, b,,

b, ...b,}, can be defined as the square root of the sum of the
squares of the differences 1n their indices. That 1s,

d(Pﬁr, Pb) = d(P(Eil, Az, ... . Eiﬂ), P(bl, bz, cee s bﬂ)) (2)

= ‘\K[(bl _al)Z -I—(bz —32)2 + ... +(bg —EIDJZ]

The intensity, 1, varies with position in the multidimen-
sional array and may be represented by the symbol 1(P). The
intensity 1 at each multidimensional point can be a single
value, also called a scalar quantity. Alternatively, the intensity
can be a vector of several values, e.g., f(P)={{1(P), £2(P),
f3(P)}. For example, the three-color image can be treated as a
three-dimensional array or can be treated as a two dimen-
sional 1mage with a three element vector intensity. In this
terminology, the vector elements of the intensity are not used
in the calculation of distance using Equation 2. Instead, the
magnitude of intensity at point P could be any vector magni-
tude convention such as the square root of the sum of the
squares of the vector components or the sum of the absolute
values of the vector components. Sumilarly, the difference in
intensity between two points P_ and P, would be given by the
magnitude of the difference in the components using any
conventional method.

Thus, though the preferred embodiment 1s described in
which the digital data array 1s an 1mage having two dimen-
sional pixels, each pixel having a scalar image intensity, the
method can readily be extended to multiple dimensions using,
the above relationships. In the following, each pixel P has a
first coordinate represented by x and a second coordinate
represented by y and an intensity represented by 1(P) or 1{(x,y).
Separate pixels are designated by separate subscripts.

Though the invention applies to any 1imagery, the preferred
embodiments segment two-dimensional 1images with a gray-
scale intensity representative of a mam|[n}mogram. Other two
dimensional 1magery which the present invention can seg-
ment include imagery of military scenes 1n which the inten-
sity 1s responsive to the presence of targets of a firing system,
such as vehicles to be fired upon by a missile.

The 1nvention 1s related to finding small objects 1n a mul-
tidimensional array. In this context small means objects
alfecting the intensity 1n several points in one dimension of
the array but not many thousands of points 1n each dimension.
Other, statistical and textural segmentation procedures, for
example, are expected to be more useful as the number of
points 1n a feature increases. It 1s characteristic of microcal-
cifications 1n mammograms and distant targets in military
scenarios that only several pixels are contained 1n the object to
be segmented. It 1s also anticipated that many other features to
be detected 1n radiographs and sonograms of biological bod-
ies also 1nvolve only several pixels. The present invention 1s
expected to perform especially well for these applications.

The methods and procedures discussed herein are intended
to be performed by data processing systems or other
machines. Though described 1n terms that can be interpreted
to be performed by a human operator, such performance 1s
neither required nor likely to be desirable. Multiple tedious
computations with high accuracy are required that are unsuit-
able for practical implementation by human beings. Also, the
invention can be implemented in computer or other hardware,
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the structure of which 1s evident from the following descrip-
tions.

Also herein, the procedures will be described as the
mampulation of values, symbols, characters, numbers, or
other such terms. Though such terms can refer to mental
abstractions, herein they are used as convenient expressions
tor physical signals such as controllable chemaical, biological,
and electronic and other physical states that can be used to
represent the values, symbols, characters, numbers, or other
such terms.

FIG. 1A illustrates a computer of a type suitable for carry-
ing out the invention. Viewed externally in FIG. 1A, a com-
puter system has a central processing unit 100 having disk
drives 110A and 110B. Disk drive indications 110A and 110B
are merely symbolic of a number of disk drives that might be
accommodated by the computer system. Typically these
would 1nclude a floppy disk drive such as 110A, a hard disk
drive (not shown externally) and a CD-ROM drive indicated
by slot 110B. The number and type of drives vary, typically,
with different computer configurations. The computer has a
display 120 upon which information 1s displayed. A keyboard
130 and mouse 140 are typically also available as input
devices.

FIG. 1B illustrates a block diagram of the internal hard-
ware o the computer of FIG. 1A. A bus 150 serves as the main
information highway interconnecting the other components
to the computer. CPU 155 1s the central processing unit of the
system, performing calculations and logic operations
required to execute programs. Read-Only-Memory 160 and
Random-Access-Memory 165 constitute the main memory
of the computer. Disk controller 170 interfaces one or more
disk drives to the system bus 150. These disk drives may be
floppy disks drives, such as 173, internal or external hard
drives, such as 172, or CD-ROM or DVD (digital video disk)
drives such as 171. A display interface 125 interfaces a dis-
play 120 and permits information from the bus to be viewed
on the display 120. Commumnications with external devices
can occur over communications port 1735.

FIG. 1C 1illustrates an exemplary memory medium which
can be used with drives such as 173 1n FIG. 1B or 110A 1n
FIG. 1A. Typically, memory media such as a floppy disk, or
CD-ROM, or DVD, will contain the program information for
controlling the computer to enable the computer to perform
its functions 1n accordance with the invention.

FIG. 1D 1s a block diagram of a network architecture suit-
able for carrying data and programs over communication
lines 1n accordance with some aspects of the mventions. A
network 190 serves to connect a user computer or client
computer 110 with one or more servers such as server 195 for
the download of program and data information. A second user
on a second client computer 100' can also connect to the
network via a network service provider, such as ISP 180.

In general, small objects 1n 1images may have an intensity
level that 1s either lower or higher than a surrounding back-
ground. An intensity maximum with levels higher than the
background 1s called a local maximum, and an intensity mini-
mum with intensity levels below the background 1s called a
local minimum. Both maximum and minimum are encom-
passed by the term intensity extreme. Thus, 1n general, the
target objects 1n an 1mage or multi-dimensional array encom-
pass intensity extremes. Both are capable of being segmented
according to the present invention. For the sake of serving as
an example, the following description generally considers the
preferred embodiment 1n which microcalcifications are evi-
dent as local maxima 1n intensity, and the method will be
called a hill climbing method; however, segmenting a local
minimum 1s also anticipated using the hill climbing method.
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In the following discussion, when a first point has an intensity
equaling the intensity of the local extreme or between the
intensity of the local extreme and the intensity of a second
point, the first point 1s said to have a more extreme 1ntensity
than the second point.

FIG. 2A shows the method according to one embodiment
of the present invention. A local brightness maximum, char-
acteristic of a microcalcification, 1s identified at pixel P, in an
image at step 210. Next, a plurality of rays i1s defined that
emanate from that local maximum pixel P, as illustrated 1n
step 220. FIG. 3 illustrates five sample rays 320 emanating
from a local maximum 310. Referring again to FIG. 2A, an
edge metric 1s computed for each pixel along each ray in step
230. Then in step 240, a ray edge pixel on the ray 1s identified
based on a maximum edge metric. Then the pixels on the ray
from the local maximum to the ray edge pixel, inclusive, are
labeled as belonging to the object or feature n step 250.
Additional pixels belonging to the feature are labeled if they
are adjacent to a labeled pixel and if the unlabeled pixel
satisfies intensity and distance criteria described later. These
criteria implement the umique hill climbing procedure of the
present invention. This growth of labeled pixels 1s indicated
by step [216] 260. In step 270, every unlabeled pixel next to
a labeled point 1s examined using the criterion 1n step 260
until no further points can be labeled.

FIG. 2B shows steps that follow step 270 in another
embodiment of the present invention. Here each of the labeled
pixels 1s checked 1n step 275 and those labeled pixels adjacent
to an unlabeled pixel are relabeled as an edge pixel of the
small feature. This completes the labeling associated with one
of the small features 1n the 1image; and, in step 280, control 1s
returned to step 210 until no local maximum remains unla-
beled or unsegmented 1n the 1mage. In yet another embodi-
ment of the invention, small features 1dentified in the 1image
can be joined 1n step 285 1t those pixels are within a joint

distance. Additional detail regarding the steps shown in FIGS.
2A and 2B are provided with reference to FIGS. 2C through

5.

According to the present invention, the segmentation 1s
based on the experience that, in a given array, the edge of a
small feature to be segmented 1s a closed contour around a
local intensity extreme pixel P,. Inthe preferred embodiment,
the local intensity extreme 1s selected as the pixel with an
extreme intensity (maximum or minimum) in a region the size
ol the expected size of the small feature or object. The region
should have the same number of dimensions as the data array,
just fewer pixels. In other words, the region i1s defined as a
sub-array of the multidimensional size equal to the expected
s1ze of the feature. In the case of mammograms, this sub-array
1s a square that 1s about 100 pixels in x and 100 pixels in y
when the resolution of the image 1s about 25 microns per
pixel. To avoid selecting local extremes that are insignificant,
the extreme 1s also required to achieve a certain absolute
value—above a pre-set bright threshold in the case of a local
maximum, or below a pre-set dark threshold 1n the case of a
local mimimum.

A pixel P on aray 1s considered to be on the edge of a small
object 11 1t provides a maximum edge metric 1 a line search
on a ray originating from the local extreme pixel and moving
in a direction k. The edge metric may be defined as the change

in intensity with each succeeding pixel in the direction k or by
a Sobel operator centered on the pixel, or by any known edge
metric. However, 1n the preferred embodiment with a local
maximum, a ray edge pixel 1s found that more closely corre

10

15

20

25

30

35

40

45

50

55

60

65

10

sponds to that selected by expert analysis when the edge
metric 1s a slope defined according to equation 3.

t(Pg) —1(P)
d(Py, P)

S(P) = (3)

For each pixel P around this local maximum P, the slope has
a value S(P) where 1(P,) 1s the intensity, e.g., the gray scale
value, at the local maximum pixel P, and 1(P) 1s the intensity
at pixel P, and d(P,, P) i1s the distance between the local
maximum pixel P, and the pixel P. In general, to extend to the
case where P, 1s a local minimum, the absolute value of the
numerator 1s used. The notation d(P,,P,) here indicates the
absolute value of the distance between two points P, and P.,.
Let P, represent the nth pixel along a ray 1n a direction k. The
n varies from 0 at the local maximum to N-1 at the Nth
consecutive pixel along the ray. The number N 1s not a critical
choice as long as it i1s larger than the number of pixels
expected to lie between the local maximum and the edge of
the largest structures of interest. Referring to FIG. 3, N should
be the number of pixels extending half the length of the arrow
330 indicating the maximum expected size of a small feature,
for example. Among the pixels P, , the pixel at which S(P, ) 1s
maximal 1s considered to be an edge point in that direction
and 1s denoted by e(k). In the preferred embodiment, the ray
search 1s applied in many equally spaced directions originat-
ing from the local maximum pixel, resulting 1n a set of ray
edge pixels e(k) where k varies from 1 to K, the number of
directions for which rays are computed. In the preferred
embodiment, as shown 1 FIG. 3, K equals 16. For each
direction k, the edge pixel and all pixels between the local
maximum and the edge pixel e(k) are labeled as belonging to
the object associated with the local maximum pixel P,. This
results in K radial lines of labeled pixels 350, as shown 1n FIG.
3. These labeled pixels are used as seeds or reference pixels
for growing a region to 1dentily all the pixels of the object.

To 1dentity all pixels lying within a contour including the
edge points e(k), the region should grow essentially on pixels
with more extreme intensity (e.g., increasing intensity) and
toward the local extreme (e.g., local maximum). From any
labeled pixel taken as a reference point, the region can grow
to an adjacent unlabeled pixel 1f this new pixel satisfies some
particular conditions. In the case of data arrays with more
than two dimensions, adjacent points to a labeled point are
those whose indices are all within one of the corresponding
indices of the labeled point. Referring to F1G. 4, the reference
pixel 1s the labeled pixel 420 and the eight adjacent pixels are
numbered clockwise from the diagonally upper left pixel as
pixel 1 through 8. These eight pixels are considered eight-
connected with the labeled pixel 420. A subset of these adja-
cent pixels 1s the fTour-connected set of pixels to which pixels
labeled 2, 4, 6 and 8 belong. With respect to the reference or
labeled pixel 420, an eight-connected adjacent or neighbor
pixel 1s checked. It the neighbor pixel 1s already labeled, 1t has
already been determined that the neighbor pixel 1s on the
object. I the neighbor pixel P 1s not labeled, then it has to
satisly the following conditions to be labeled.

[F {(P)21(P,) then P must be 1n a position that constitutes

a step from P, toward P,
[F 1{(P)<(P,), then P should be closer to P, than P, 1s to P,

by more than a minimum distance called an 1nclusion toler-
ance distance.

All pixels labeled during the process are used as reference
pixels. The method stops when no pixel can be appended as
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shown in step 270 of F1G. 2A. The step for labeling unlabeled
pixels 1s 1llustrated 1n FIG. 2A as step 260.

The intensity and distance criterion referred to 1n step 260
are now described with reference to FIGS. 2C and 2D, which
cach show one of the two alternative criteria used in the
present hill climbing method and apparatus. In both these
figures, the first condition checked 1s the intensity 1(P) of the
unlabeled point P compared to the intensity 1(P,) at the ref-
erence pixel P, as shown 1n step 262.

Most microcalcifications have an intensity that decreases
monotonically from the local maximum toward the edges.
However, in some cases, this may not be true, and the growth
toward the local maximum may need to include new pixels
that have lower values or less extreme values than their
labeled referenced pixels. As long as this 1s done strictly
toward the local extreme, growth 1n an unwanted direction 1s
avoided. That 1s, 1f the unlabeled pixel P 1s much closer to the
local maximum (or minimum) than 1s the labeled referenced
pixel P, then the unlabeled pixel P 1s considered engulied by
the object and 1s labeled even if its intensity 1(P) 1s less
extreme than {(P ). The distance by which the unlabeled point
must be closer than the labeled point to be engulfed by the
object 1s called the inclusion tolerance distance. In this and
the following discussions, the difference in distances between
the labeled and unlabeled points to the local maximum P, 1s
represented by G given 1n Equation 4.

G=d(P,, P)-d(P,, P,) (4)

When the unlabeled pixel P 1s closer to the local maximum P,
than the unlabeled pixel P, then G 1s negative. Therefore, the
negative ol G 1s compared to the inclusion tolerance to deter-
mine 1f the unlabeled pixel 1s close enough to the local
extreme to be engulied, as shown 1n step 263 of FIGS. 2C and
2D. In the preferred embodiment, the inclusion tolerance 1s
one pixel. Thus, lower intensity pixels closer to the local
maximum than the already labeled point P, by more than one
pixel are close enough to be labeled. That 1s, a new pixel P
with mtensity 1(P) less extreme than the intensity 1(P,) of the
referenced pixel P, 1s appended to the region if 1ts distance to
the local extreme 1s such that -G 1s = the inclusion tolerance
distance, as shown 1n step 2635 of FIGS. 2C and 2D. It the
unlabeled pixel with less extreme value 1s less than the inclu-
s10n tolerance closer to the local extreme or 1s farther from the

local extreme, then the unlabeled pixel 1s not labeled, as
shown 1n step 265 of FIGS. 2C and 2D.

The other branch from step 262 1n FIGS. 2C and 2D 1s
tollowed when the adjacent pixel P that 1s unlabeled has an
intensity that 1s greater than or equal to the intensity of the
labeled pixel P,. This corresponds to the condition 1n the case
of a local minimum that the unlabeled pixel has a lower
intensity than the labeled pixel P,. That 1s, the “yes™ branch 1s
followed from box 267, 1n general, i1 the unlabeled pixel P has
an 1ntensity that 1s no less extreme than the intensity at the
labeled pixel P,. Each of two different criteria can be used to
determine whether the unlabeled pixel P 1s 1n a position that
constitutes a step from the labeled pixel P, toward the extreme
pixel P,

The first criterion, Criterion 1, 1s indicated 1n FIG. 2C and
step 264a and 1s based on the angle of the line perpendicular
to the line segment connecting the local extreme P, with the
reference pixel P,. The line perpendicular to the segment
connecting the local extreme to the labeled pixel 1s called the
reference line 430 and 1s shown 1n FI1G. 4. For arrays of more
than two dimensions, the reference would be a surface with a
number of dimensions at least one dimension less than the
multidimensional array. The numbered pixels of FIG. 4 are
approved for appending to the small feature 11 they fall within
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the list of approved pixels listed 1n Table 1 for the quadrant in
which the angle 0 varies from 0-90°. The angle 0

TABL.

1

(1]

Criterion 1 for First Quadrant.

Xr VI 0 Approved Pixels
X, =X, V, <V, 0° 1,2,3,4, 8
X, > X, ! 0<tan O = 14 1,2,3,4, 8
" h<tan O <1 ,2,3,8
tan 0 =1 1,2,3,7,8
1 <tan 0 = 3 1,2,7,8
3<tan O < 1,2,6,7, 8
V.=V, 90° 1,2,6,7, 8

between the reference line 430 and the x-axis 1s also shown in
FIG. 4. The first two columns of Table 1 show the relationship
between the coordinates of the reference pixel x, and y, of P,
and their relationship to the coordinates x, and vy, of the local
maximum P,. For different values of the angle 0 or its tangent,
tan 0, different of the numbered pixels 1n FIG. 4 are approved.
Table 1 captures the condition that the unlabeled pixel P and
the local maximum P, must lie on the same side of the refer-
ence line 430. Among the eight pixels that surround a refer-
ence pixel, only some will meet the spatial criterion of Crite-
rion 1, depending on the angel 0 of the reference line. The
angle 0 1s measured positive counterclockwise from the
x-axis. The allowable pixels for values of 0 1n the other three
quadrants are obtained 1n a symmetrical manner. An extended
table would have to be drafted for data arrays of greater than
two dimensions.

[As] Referring to FIG. 5, as an alternative for the constraint
C1 described above and summarized 1n Table 1, Constraint 2
can be used to determine whether a neighboring pixel should
be labeled. Constraint 2 1s more readily extensible to more
than two dimensions. Referring to Equation 4 defining the
distance difference G, most allowable pixels described by
Criterion 1 yield a negative G value. However, some pixels
generate a positive G value. These positive G pixels are the
pixels that provide a step, from the reference pixel P,
approximately parallel to the reference line. This type of
growth through pixels 1s especially desirable around the edge
of the small structure. The largest values of G are associated
with diagonal pixels and occur at the edge of the smallest
features to be segmented. Furthermore, among all possible
pixel configurations, the value of G 1s maximal when the
reference line angle 0 1s 45° or 135° and the new pixel P 1s
diagonally connected to the referenced pixel P,. This maxi-
mal value 1s also obtained for other homologous arrange-
ments of the three pixels. A positive threshold G, for G can be
used instead of Criterion 1. Consider an approximately cir-
cular object 2N pixels wide. On the edge of such an object, the
highest value for G, called G, will equal (V(N*+2))-N. The
smaller N, the larger G, _ will be. An appropriate threshold
for G can be set by using the width of the smallest object of
interest. Therefore, an alternative way of constraining the
expansion of pixels away from the local extreme 1s to allow
only new pixels which provide a value of G of at most G, ..
That1s, set G, =G, .. This threshold, G,, can be considered an
expansive tolerance distance. Criterion 2 can be stated as: G
must be less than or equal to the expansive tolerance distance,
(.. For example, mammograms with pixels o1 25 microns and
microcalcification candidates having structures as small as
0.25 mm across, vield N=5; so, G=G,_ _ =0.196.

The preferred embodiment determines 16 ray edge pixels
around the object, and segments with the hill climbing pro-

cedure described. As indicated 1n step 270 of FIG. 2A, each
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appended pixel 1s labeled and 1s used as areference pixel itself
during growth. The growth stops when no pixel can be
appended. Once no more new pixels can be labeled, each

labeled pixel 1s examined to identily edge pixels of the small
teature 1n step 275 1n FIG. 2B. The edge pixels of the small
teature are determined to be all labeled pixels that are four-
connected to an unlabeled pixel after no further pixels can be
added.

After every object has been segmented and 1ts outer edge
pixels defined, larger features may be discernable. The larger
features can be constructed where the small features abut or
overlap slightly. The step of joiming small features together
into a larger feature 1s depicted in step 2835 of FIG. 2B.
Depending on the larger feature being assembled, the crite-
rion for joining small features can be that the small features
share edge pixels, or that the edges overlap so that the edge of
one small feature 1s an interior labeled pixel of another small
teature. It 1s also possible that features be joined that do not
touch or overlap, provided they are sufliciently close together.
A tolerance called a join distance can be used to determine
how close the edges should be to each other 1in order to
combine the small features into one or more larger features. In
this case, all small features are joined where the edge pixels of
two different small features are within a join distance. Over-
lapping pixels are covered by this criterion as are features
whose edge pixels coincide. By setting the jomned distance to
0 the edge comncidence i1s required; and by setting the join
distance negative, overlapping can be required.

EXAMPLES

To determine whether the results of the present invention
provide edges of small features that are useful 1n interpreting,
mammograms and in doing so with fewer computations than
other methods, several experiments were performed with
actual mammograms. The correctness of the edge determined
by the present invention 1s measured by 1ts similarity to the
edges determined by an analyst, and its ability to discriminate
among the candidate microcalcifications 1n subsequent pro-
cessing. Other advantages of the preferred embodiment are
measured using the complexity or number of computations
involved 1n the procedure, and the time required to execute the
procedure on a computer.

Example 1

Five mammograms containing subtle microcalcification
clusters were used to evaluate the algorithms for data that
would warrant the use of an automated system. Mammo-
grams without magnification were used; and the breast
images covered an area that ranged between 12 cmx6 cm and
21 cmx11 cm. The location of individual microcalcifications
was indicated by an experienced mammographer. These 3
mammograms contained 15 clusters with a total of 124
microcalcifications, yielding about 8 microcalcification per
cluster. The number of microcalcifications per cluster ranged
between 3 and 18. The size of microcalcifications ranged
between 0.25 mm and 1 mm wide, with more than 90% being
smaller than 0.5 mm. Mammograms were digitized with a
Howtek D4000 drum scanner using a spatial resolution of 25
microns per pixel and 12-bit A/D conversion, with an optical
dynamic range of 0-3.5 optical depths (O.D.).

The multi-tolerance region growing procedure grows a
region around a seed pixel by appending 4-connected pixels P
that satisiy:

(1+7)(F,, 0V 2=P=(1-TUE,, ot Fo i V2 (5)

FHAEX
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and F

where T 1s the tolerance parameter, and F,___ _.—are the
current maximum and minimum values 1n the region grown
that far. The value of T 1s not manually selected by the user; the
best value 1s automatically determined for each segmented
structure by repeating the growth with multiple values of T
between 0.01 and 0.4 with steps of s=1/v, where v 1s the 8-bit
value of the seed pixel. Three features are extracted from each
region grown with a different tolerance level: shape compact-
ness, center of gravity, and size. The algorithm determines the
value of T that results in the minimal change 1n the vector of
these three features with respect to the previous t value 1n the
sequence by computing a normalized difference between
consecutive vectors. The vector with minimal difference indi-
cates the best choice of T.

The segmentation outcome of the multi-tolerance region
growing procedure on S subtle microcalcification candidates
depended partly on the intensity structure of the microcalci-
fication. When the intensity transition from the edge to the
background was relatively abrupt, the segmented region coin-
cided closely to the visually percerved edge. When the inten-
sity at the edge decreased gradually toward the background
level, this algorithm generally produced a relatively large
region. Nevertheless, the growth was consistently contained,
1.e. 1it did not grow to an unacceptable size and 1t generated
boundaries that can be used as an estimate of the immediate
background around the microcalcification.

The active contours model represents the contour points as
v(s)=(Xx(s),y(s)) The contour 1s obtained by minimizing the
energy functional:

E[v(s)]=loEint[v(s)]+PE[v(s)]+Eext[v(s)]ds

(6)
where E, . 1s the internal energy due to the elasticity and the

rigidity, PE 1s the potential energy obtained from the image
data, E__,1s the energy of external forces that can be applied to
the contour. The integration 1s performed over the entire con-
tour £2. The internal energy 1s expressed by:

E, =W IV'(s)I*+w, v (s)|°

irit

(7)
where w, and w, are coetlicients that control the elasticity and
rigidity, respectively, and primes denote differentiation. The
choice of potential energy depends on the application; it 1s
typically the negative squared gradient magnitude, and 1s so
used for mammograms.

The active contour that minimizes E(v) satisfies the Euler-
Lagrange equation:

—(W V) +(wav")"=F(v)

(8)

where F(v) represents the force due to the combined effects of
the potential energy and external energy. In this study we
implemented the balloon forces and the 1mage force normal-
1zation suggested, resulting 1n

VPE
IV PE]

F(v) = kyn(s) — k, )

where n(s) 1s the unit vector normal to the contour at point
v(s), oriented toward the outside of the contour, k, 1s the
magnitude of the balloon inflation force, and k, 1s the coetii-
cient of the normalized 1image force. The value of k, 1s
selected to be slightly larger than k, to allow edge points to
stop the inflation force.

The numerical solution was implemented using finite dif-
terences and the iterative evolution as suggested:

(I+TA )V ~(v,  #TEF(v, ) (10)
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where I 1s the 1dentity matrix, T 1s the time step, A 1s the
pentadiagonal matrix obtained with the finite difference for-
mulation of E, , v, 1s the active contour vector at time t, and
F(v,) 1s the external force vector at time t. We used the nega-
tive squared magnitude of the 1image gradient as the potential
energy. Pixels detected with an edge detector were notused 1n
this study. The gradient of the 1image was computed with the
Sobel operator.

The mitial position of the contour was set automatically for
cach structure to be segmented. Since each structure of inter-
est 15 a local intensity extreme, pixels were selected that were
local maxima across the entire image. Each local maximum
was used to segment a region around 1t. The width of the
smallest microcalcifications considered in this study was
about 0.25 mm and the majority of the microcalcifications 1n
our database had widths 1n the range 0.3 to 0.5 mm. A circle
o1 0.2 mm diameter around the local maximum pixel was used
as the mitial position of the active contour. The initial contour
points were 248-connected pixels forming this circle.

The selection of parameters for the active contour segmen-
tation required some trial and error to obtain good segmenta-
tion. The segmentation of the same 5 subtle microcalcifica-
tion candidates was performed using different active contours
parameters. First, following the recommendations of Cohen
(Cohen, L. D. “On Active Contour Models and Balloons,” CV
GIP: Image Understanding, vol. 53, pp. 211-218, 1991), we
selected the values of w,; and w, as a function of the spatial
discretization step size h, such that w, was of the order of h*
and w., was of the order of h*(w,=6, w,=40). Then T was also
set to 0.1. When k, and k, were relatively small (2 and 4), the
image force and the balloon force did not act sufficiently on
the active contour, producing contours that were only slightly
different than the initial position. When these two parameters
were mcreased (14 and 16), the resulting segmentation was
very close to that expected visually. Increasing these param-
cters further (24 and 26) increased the combined effect of
image gradient and balloon forces, producing contours that
extended beyond the expected edges. Within this range, seg-
mentation with the active contour model was not very sensi-
tive to the values of the other parameters. The eil

ect of dou-
bling w, to 12, 1s that contours became slightly smaller due to
the increased stifiness of the active contour model. Sensitivity
to w, was also low. When w, was doubled to 80, the contours
became slightly smoother due to the increased rigidity of the
model.

The segmentation steps of the hill climbing approach of the
present invention are illustrated 1n FIG. 6. FIG. 6A shows a
microcalcification candidate that has a width of about 0.3
mm. The 16 ray edge points 624 determined by the radial line
search of the hill climbing algorithm are shown 1n FIG. 6B.
Theregion grown using spatial Constraint 1 1s in FIG. 6C. The
region grown with spatial Constraint 2 was 1dentical for this
microcalcification candidate. The edge pixels 642 of the
entire microcalcification candidate are shown in FIG. 6D. The
segmentation of microcalcifications by the hill climbing
method produces outcomes using the spatial Constraints 1
and 2 that were almost 1dentical. In this study, about a quarter
of microcalcifications were segmented 1dentically by the two
spatial constraints and the rest differed by a few pixels, result-
ing in a negligible change over the entire microcalcification.
Both spatial constraints directed the growth of the regions
successiully, resulting in regions that were compatible with
visual iterpretation.

The differences between the three methods are 1llustrated
in FIG. 7. Three subtle microcalcifications candidates are
shown 1n FIG. 7A. When the contrast of a microcalcification
candidate was relatively low, or parts of it exhibited a very
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gradual decrease in intensity toward the background, the
multi-tolerance algorithm (FIG. 7B) segmented a larger
region than those of the other two algorithms. Good segmen-
tation with active contours (FIG. 7C) was obtained using
w, =0, w,=40, t=0.1, k,=14 and k,=16, for all microcalcifi-
cations candidates of this study. Using these parameters, seg-
mentation with active contours provided edges 733 that were
smoother than edges 7235 and 745 produced by segmentation
with the other two methods. The selection of w; and w,
provided the flexibility needed to adapt relatively well to the
shape of diverse microcalcifications candidates. The elastic-
ity level allowed the contour to grow to the highest gradient
locations when the segmented structures were relatively
large, and the nigidity level allowed the contour to develop
sharp bends dictated by the data 1n some microcalcifications.
The edges 745 of regions grown by the hill climbing algo-
rithm shown in FIG. 7D were not as smooth as those 735 of
the active contours, but the convolutions were consistent with
visually perceived edges around microcalcifications candi-
dates.

Example 2

Segmentation of microcalcification candidates serves as an
initial step for discriminating between the population of
microcalcifications and that of background structures. The
discrimination potential of each segmentation algorithm was
quantified using features extracted from structures segmented
around all the local maxima 1n the 5 mammograms. These
structures consisted of the 124 microcalcifications mentioned
above and 2,212 background structures segmented in the
same mammograms. Four characteristics were used to assess
the discrimination potential 1n this study.

1. Contrast was measured as the gray level difference
between the local maximum pixel P, 1n the structure, and the
mean of pixels around 1ts edge.

2. Relative contrast was computed as the ratio of the con-
trast to the value at the local maximum.

3. Areawas computed as the number of labeled pixels in the
grown region.

4. Edge sharpness was the mean of the gradient computed
with a Sobel operator across all edge pixels. The Sobel opera-
tor 15 a mask which weights the eight neighbors of a pixel to
compute a sum proportional to the gradient x, or the y gradi-
ent, or total gradient.

The discrimination ability of each feature was determined
separately using the area under a recerver operating charac-
teristic (ROC) curve obtained with that feature. The ROC
curve pots the percentage of correctly detected microcalcifi-
cations against the percentage of detected background struc-
tures as a detection threshold 1s changed. The ROC curve area
1s higher when the feature has distributions that are more
separable for a given property. When both populations over-
lap completely, the ROC curve area 1s 0.5. In general, etiec-
tive discrimination power 1s 1ndicated by a value above 0.8.
Table 2 summarizes the results for all three procedures. The
area feature had very low discrimination power for all three
algorithms, indicating that the two types of structures cannot
be discriminated well on the basis of their area segmented.
However, the other

TABLE 2
Multi-tolerance Active Hill
Region Growing Contours Climbing
Contrast 0.80 0.82 0.83
Relative Contrast 0.83 0.90 0.90
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TABLE 2-continued

Multi-tolerance Active Hill

Region Growing Contours Climbing
Area 0.63 0.60 0.54
Sharpness 0.80 0.85 0.85

three features suggested good discrimination potential for all
three algorithms. A comparison among algorithms shows that
both the hill climbing method of the present invention and the
active contours algorithm provide segmentation with the
same discrimination power, and they both perform slightly
better than the multi-tolerance segmentation. Thus, the hill
climbing method produces edges as good as the best pro-
duced by the conventional approaches tested.

The significant advantage of the hill climbing algorithm 1s
its speed. While the multi-tolerance algorithm provides a
good solution to avoid the use of statistical models, local
statistics estimators and the manual selection of threshold, 1its
cost 1s multiple segmentations of the same structure and com-
putation of features during the segmentation of each struc-
ture. Furthermore, in some cases, this algorithm segments
regions that are somewhat larger than expected. Conse-
quently, the time required for segmentation of a mammogram
with this algorithm 1s high. The segmented regions were
comparable to those of the other two algorithms 1n many
cases. The differences were caused by the fact that the growth
mechanism of this algorithm 1s constrained only by an inten-
sity range criterion applied to a new pixel. In contrast, active
contours are constrained by internal forces that regulate the
growth away from the local maximum, and hill climbing has
an inward growth mechanism based on edge points.

The active contours also circumvent the statistical and
manual threshold selection 1ssues for each mammogram, but
the selection of the operational parameters for a set of mam-
mograms requires some trial and error. However, when an
appropriate set of parameters 1s determined, 1t appears to be
valid for a wide range of microcalcifications so 1t need not be
modified with each mammogram. The choice of negative
squared gradient magnitude as the image energy function

seems to be an appropriate one to segment microcalcifica-
tions.

Example 3

The computational complexity ¢ of the multi-tolerance
region growing algorithm 1s of the order O(4smo) where s 1s
the number of steps 1n the tolerance search, m 1s the number
of pixels 1n the region, and o 1s the number of operations per
pixel. The factor 4 1s included because the algorithm visits the
4-connected neighbors for each pixel 1n the region. Consid-
ering 125 to be an average intensity value for the local maxi-
mum, the average step size 1s 0.008 resulting on the average in
about s=50 steps to cover the range 0.01 to 0.4. The average
s1ze of segmented structures 1s about 200 pixels. At each pixel
the computations performed include intensity comparisons,
update of F___and F__. . and calculation of the center of
gravity. Considering about 12 operations per pixel on the
average, the numerical estimate for the average number of
operations per segmentations 1s ¢, =480,000.

The computational complexity ¢ of the active contour
model is O[2(n+n*)t] where n is the number of contour points,
and t 1s the number of 1terations. The factor of 2 1s included
due to the fact that the x and y coordinates of each contour
point are computed separately, with identical operations. At

cach 1teration, order n computations are needed to determine

10

15

20

25

30

35

40

45

50

55

60

65

18

the normal vectors, and order 2n” operations are needed to
perform a matrix multiplication. In this study 24 contour
points were used, and the number of 1terations depended on
the size of the structure. On the average however, the active
contour model converged 1n about 20 iterations. This resulted
in an average value of ¢ _=4"7,040, a factor of ten improvement
over the multi-tolerance method.

The complexity ¢, of the hill climbing method 1s O(KN+8
m) where K 1s the number of radial directions from the local
maximum, N 1s the number of pixels searched in each direc-
tion, and m 1s the number of pixels in the grown region. A
factor of 8 1s included since all 8 neighbors of each pixel are
visited. In this study K was 16 and N was 40, and considering
an average structure size of m=200, the average estimate of
the number of operations 1s ¢,=2,240, a factor of 20 improve-
ment over the active contour methods, and 200 over the multi-
tolerance method. The proportions of ¢, , ¢, and ¢, are
approximately 214:21:1 respectively, with hill climbing far
less complex than the other two methods.

Example 4

The speed of the different methods was compared using a
section of a mammogram containing 456 local maxima, 35 of
which were 1n microcalcifications. The sizes of microcalcifi-
cations ranged between 0.25 mm and 0.5 mm. The times to
complete the segmentation of this section of mammogram
using the three algorithms implemented 1n C on a 10 million
floating point operations per second (MFLOPS), IBM 6000
computer were 17 minutes 47 seconds for the multi-tolerance
algorithm, 1 minute 47 seconds for the active contours, 7
seconds for hill climbing with spatial Constraint 1, and 5.4
seconds for hill climbing with spatial constraint 2.

Hill climbing with spatial Constraints 1 and 2 yielded
practically identical segmentations; but the method was about
20% faster using spatial constraint 2, resulting in 11.8 ms on
average for segmenting a structure, as opposed to 15.3 ms
obtained with spatial Constraint 1.

A common techmque to determine the edges of an object
uses an edge enhancement algorithm such as the Sobel opera-
tor, thresholding to separate the pixels on edges, and pixel
linking to string edge pixels that belong to the same object.
Selection of the threshold is critical, and linking poses prob-
lems 1n segmenting microcalcifications because there are
many closely spaced small structures 1n a background that are
likely to produce considerable numbers of edge pixels. The
hill climbing method of the preferred embodiment deter-
mines edge points that are on the edge of the same object by
virtue of the radial line search emanating from the same local
maximum. It does not require a threshold to separate edge
pixels because the slope i Equation 3 1s referred to the local
maximum and 1s greatest at pixels that are on, or very near, the
visually perceirved edges. Finally, the hill climbing method
avolds some pitialls of the region growing mechanism by
growing a region inward, toward the local maximum.

There has been disclosed a segmentation method and appa-
ratus for data arranged in a multidimensional array which
overcomes the problems of the prior art. Although the present
invention has been described above by way of detailed
embodiments thereol, 1t 1s clearly understood that variations
and modifications may be made by one of ordinary skill in the
art and still lie within the spirit and scope of the invention as
defined by the appended claims and their equivalents.
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What 1s claimed 1s:

1. A method for segmenting a small feature 1n a multidi-
mensional digital array of intensity values in a data processor,
the method comprising:

computing an edge metric along each ray of a plurality of

multidimensional rays originating at a local intensity
extreme;

identifying a multidimensional edge point corresponding,

to a maximum edge metric on each said ray;

labeling every point on each said ray from said local intern-

sity extreme to said edge point; and

labeling an unlabeled point 1f the unlabeled point 1s adja-

cent to a labeled point and the unlabeled [paint] poirnt has
a more extreme 1ntensity than the labeled point and the
unlabeled point 1s closer than the labeled point to the
local intensity extreme.

2. The method of claim 1 wherein intensity 1s a vector of
values and an edge metric 1s a magmtude of a vector differ-
ence 1n intensities between two points along each said ray
divided by a multidimensional distance between the same two
points.

3. The method of claim 1 further comprising additionally
labeling an unlabeled point if the unlabeled point 1s adjacent
to a labeled point and has a more extreme intensity than the
labeled point and 1s no farther from the local intensity extreme
than the sum of a distance from the labeled point to the local
intensity extreme plus an expansive tolerance distance less
than the spacing between adjacent points.

4. The method of claim 1 further comprising also labeling
an unlabeled point if the unlabeled point 1s adjacent to a
labeled point and the unlabeled point has a less extreme
intensity than the labeled point and the unlabeled point i1s
closer than the labeled point to the local intensity extreme by
an inclusion tolerance distance.

5. The method of claim 4, wherein the inclusion tolerance
distance 1s about a spacing distance between adjacent points
in the array or more.

6. The method of claim 1, wherein the edge metric at a ray
point along each ray 1s computed as the quotient of the abso-
lute value of an intensity difference between the local inten-
sity extreme and the ray point divided by the absolute value of

a distance between the ray point and the local irtensity
extreme.
7. The method of claim 1, wherein a ray length of each said
ray 1s scaled by an expected size of a small feature.
8. The method of claim 1, wherein
the local intensity extreme 1s a point with the maximum
intensity among a subarray ol the multidimensional
digital array of intensity values, the subarray having a
certain multidimensional size, and
the intensity of the local intensity extreme exceeds a bright
threshold intensity.
9. The method of claim 8, wherein the certain multidimen-
sional size 1s an expected size of a small feature.
10. The method of claim 1, wherein
the local intensity extreme 1s a point with the minimum
intensity among a subarray ol the multidimensional
digital array of intensity values, the subarray having a
certain multidimensional size, and
the intensity of the local intensity extreme 1s less than a
dark threshold intensity.
11. The method of claim 10, wherein the certain multidi-
mensional size 1s an expected size of a small feature.
12. The method of claim 1, wherein the multidimensional
array 1s a digital image, and each point 1s a pixel.
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13. The method of claim 12, wherein the digital image 1s a
digitized mammogram and the small feature 1s a microcalci-
fication candidate.

14. The method of claim 12, wherein the digital image 1s a
video frame of a military scene and the small feature 1s a
candidate target of a [tiring] firirng system.

15. The method of claim 1, wherein said labeling continues
until no further unlabeled point can be labeled.

16. The method of claim 15, further comprising relabeling
a labeled point as a feature edge point1f an adjacent point s an
unlabeled point.

17. The method of claim 16, further comprising joining a
plurality of small features into a composite feature when a
feature edge point from one small feature of the plurality of
small features 1s within a join distance of a feature edge point
ol another small feature of the plurality of small features.

18. A method for segmenting a small feature 1n a multidi-
mensional digital array of intensity values 1n a dataprocessor,
the method comprising;:

computing an edge metric along each ray of plurality of

multidimensional rays originating at a local intensity
extreme|:];

identifying a multidimensional edge point corresponding,

to a maximum edge metric on each said ray[:],
labeling every point on each said ray from said local inten-
sity extreme to said edge point;

labeling an unlabeled point 1f the unlabeled point 1s adja-

cent to a [Labeled] labeled point and the unlabeled point
has a more extreme intensity than the labeled point and
the unlabeled point 1s closer than the labeled point to the
local intensity extreme|:]; and

additionally labeling an unlabeled point 11 the unlabeled

point 1s adjacent to a labeled point and has a more
extreme intensity than the labeled point and 1s no farther
from the local intensity extreme than the sum of a dis-
tance irom the labeled point to the local intensity
extreme plus an expansive tolerance distance less than
the spacing between adjacent points; wherein

an expected size of a small feature 1s twice an integral

number N times a spacing distance between adjacent
points in the array,

N 1s greater than 1,

the maximum value of the difference in distances between

the labeled point and the unlabeled point to the local

intensity extreme (Gmax):—N+\/N2+2), and
the expansive tolerance distance is less than about Gmax.
19. A data processing apparatus for segmenting a small
feature 1n a multidimensional digital array of intensity values
comprising:

an mput for a plurality of intensity values arranged along
regular increments 1n each of a plurality of dimensions;

a memory medium for storing the plurality of intensity
values as a multidimensional digital array;

a processor configured to detect a local intensity extreme 1n
the multidimensional digital array, to identily points
along a plurality of rays originating at the [total] local
intensity extreme, to identify one edge point on each ray
of said plurality of rays, said edge point associated with
a maximum edge metric along said ray, to label each
point on each ray from the local intensity extreme to the
edge point, and to label an unlabeled point adjacent to a
labeled point it the unlabeled point has a more extreme
intensity than the labeled point and the unlabeled point1s
closer than the labeled point to the local intensity
extreme until no more unlabeled points can be labeled;
and
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an output for providing the labeled points for subsequent
processing.

20. The apparatus of claim 19, wherein the plurality of
intensity values arranged along regular increments in each of
a plurality of dimensions is at least one digital image, and °
cach point 1s a pixel.

21. The apparatus of claim 20, wherein the digital image 1s
a digitized mammogram and the small feature 1s a microcal-
cification candidate.

22. A computer program embodied in a nron-transitory
computer readable medium for performing the steps of:

computing an edge metric along each ray of a plurality of

multidimensional rays originating at a local intensity
extreme, 1dentitying a multidimensional edge point cor-
responding to a maximum edge metric on each said ray,
labeling every point on each said ray from said local
intensity extreme to said edge point, and labeling an
unlabeled point if the unlabeled point 1s adjacent to a
labeled point and the unlabeled point has a more extreme
intensity than the labeled point and the unlabeled pointis
closer than the labeled point to the local intensity
extreme.

23. A method of labeling pixels of an image so as to desig-
nate portions of the image that arve associated with an object,
the method comprising:

identifving a first pixel as belonging to an object due to the

first pixel having an intensity that is a local intensity
extreme, wherein the first pixel is at an interior of the
object;

determining that a second pixel that lies on a ray that

emanates fromthe first pixel has a maximum edge metvic
on the ray, wherein the second pixel has an intensity that
is smaller in magnitude than the intensity of the first
pixel;

labeling the second pixel as an edge pixel that lies on an

edge of the object;

determining that a thivd pixel that is adjacent to the second

pixel satisfies a predetermined criterion relative to one
or move of the first and second pixels; and

labeling the thivd pixel as belonging to the object.

24. The method of claim 23, wherein the intensity of the first
pixel is greater than the intensities of all pixels immediately
adjacent to the first pixel.

25. The method of claim 23, wherein the intensity of the first
pixel is less than the intensities of all pixels immediately
adjacent to the first pixel.

26. The method of claim 23, wherein the edge metric com-
prises a slope quotient that compares a difference between
intensities of the first pixel and a pixel that is being evaluated
to a distance between the first pixel and the pixel that is being
evaluated.

27. The method of claim 23, wherein the predetermined
criterion comprises the thivd pixel being disposed along a
substantially straight line between the first and second pixels.

28. The method of claim 23, wherein the predetermined
criterion comprises.

an intensity of the thivd pixel being less than an intensity of

the second pixel; and

a distance between the first and thivd pixels being smaller 60

than a distance between the first and second pixels by no
less than an inclusion tolerance distance.

29. The method of claim 23 whevrein the predetermined
criterion comprises an intensity of the third pixel being
greater than an intensity of the second pixel.

30. The method of claim 23 wherein the predetermined
criterion comprises:
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an intensity of the thivd pixel being no less than an intensity
of the second pixel; and
the thivd pixel being closer to the first pixel than the second
pixel is to the first pixel.
31. The method of claim 23 wherein the predetermined
criterion comprises:

an intensity of the third pixel being no greater than an

intensity of the second pixel; and

the thivd pixel being closer to the first pixel than the second

pixel is to the first pixel.

32. The method of claim 23 wherein the predetermined
criterion comprises.

an intensity of the third pixel being no less than an intensity

of the second pixel; and

a distance between the first and thivd pixels being no more

than an expansive tolerance distance greater than a
distance between the first and second pixels.

33. The method of claim 23 wherein the predetermined
criterion comprises.

an intensity of the third pixel being no greater than an

intensity of the second pixel; and

a distance between the first and third pixels being no more

than an expansive tolerance distance greater than a
distance between the first and second pixels.

34. The method of claim 23 wherein the predetermined
criterion comprises.

an intensity of the thirvd pixel being no less than an intensity

of the second pixel; and

no less than an inclusion portion of the thivd pixel being on

a side of a substantially straight inclusion line closest to
the first pixel, the inclusion line intersecting the second
pixel and being substantially pervpendicular to a sub-
stantially straight line that intersects the first and second
pixels.

35. The method of claim 23 wherein the predetermined
criterion comprises:

an intensity of the third pixel being no greater than an

intensity of the second pixel; and

no less than an inclusion portion of the third pixel being on

a side of a substantially straight inclusion line closest to
the first pixel, the inclusion line intersecting the second
pixel and being substantially perpendicular to a sub-
stantially straight line that intevsects the first and second
pixels.

36. The method of claim 23, further comprising identifving
as part of the edge of the object a fourth pixel that is imme-
diately adjacent to at least one pixel that is identified as part
of the object and that is immediately adjacent to at least four
other pixels that are outside of the object.

37. A method of labeling a subset of pixels of an image, the
method comprising:

labeling pixels of an image as belonging to a first object

that is encompassed by a first edge;

labeling pixels of the image as belonging to a second object

that is encompassed by a second edge; and

assembling the first and second objects into a thivd object

that is larger than either of the first and second objects if
a distance between the first and second edges is no more
than a join distance.

38. The method of claim 37 whevein assembling the first
and second objects into the thivd object comprises identifyving
as part of the third object a pixel that is disposed between the

first and second edges.

39. The method of claim 37 whevein assembling the first
and second objects into the thivd object comprises identifying
as part of the third object a pixel that is disposed between the
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first and second edges and that is no farther than the join
distance from the first edge and from the second edge.
40. A non-transitory computer-readable medium having
instructions stoved thereon, the instructions comprising:
instructions for labeling pixels of an image as belonging to
a first object that is encompassed by a first edge;

instructions for labeling pixels of the image as belonging to
a second object that is encompassed by a second edge;
and

instructions for assembling the first and second objects

into a thivd object that is larger than either of the first
and second objects if a distance between the first and
second edges is no more than a join distance.

41. A method of labeling pixels of an image so as to desig-
nate portions of the image that arve associated with an object,
the method comprising:

identifving a first pixel as belonging to an object due to the

first pixel having an intensity that is a local intensity
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extreme, wherein the first pixel is spaced from an edge of -

the object;

identifving as belonging to the object a second pixel that
lies on a first substantially straight line on which the first
pixel also lies;

identifving a third pixel as belonging to the object after

having identified the second pixel as belonging to the
object, wherein the thivd pixel lies on the line at a posi-
tion that is closer to the first pixel than is the second
pixel; and

labeling each of the first, second, and thivd pixels as

belonging to the object.

42. The method of claim 41, wherein the intensity of the first
pixel is greater than the intensities of all pixels immediately
adjacent to the first pixel.

43. The method of claim 41, wherein the intensity of the first
pixel is less than the intensities of all pixels immediately
adjacent to the first pixel.

44. The method of claim 41, wherein identifying the second
pixel as belonging to the object comprises:

calculating respective slope quotients of rvespective differ-

ences between intensities of the first pixel and other
pixels that ave intersected by the line and rvespective
distances between the first pixel and the other pixels,
wherein the second pixel is one of the other pixels; and
determining that a magnitude of the slope quotient of the
second pixel is larger than the magnitudes of the slope
quotients for the vemainder of the other pixels.

45. The method of claim 41, further comprising identifving
as belonging to the object at least a fourth pixel that intersects
a second line that also intersects the first pixel but that does
not intersect the second and third pixels, the fourth pixel
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being identified beforve any pixel other than one ov more of the
first, second, and third pixels is identified as belonging to the
object.

46. The method of claim 41, wherein the object comprises
an edge and the second pixel forms at least a portion of the
edge.

47. The method of claim 41, wherein the second and third
pixels arve identified before any pixel other than the first pixel
is identified as belonging to the object.

48. The method of claim 41, whervein one or both of the
second and third pixels have vespective intensities that are
smaller in magnitude than the intensity of the first pixel.

49. The method of claim 48, wherein the intensity of the
thivd pixel is less than the intensity of the second pixel.

50. A non-transitory computer-readable medium having
instructions stoved thereon, the instructions comprising:

instructions for identifving a first pixel as belonging to an

object due to the first pixel having an intensity that is a
local intensity extreme, whevein the first pixel is spaced
from an edge of the object,

instructions for identifving as belonging to the object a

second pixel that lies on a fivst substantially straight line
on which the first pixel also lies;

instructions for identifving a thivd pixel as belonging to the

object after having identified the second pixel as belong-
ing to the object, whevein the third pixel lies on the line
at a position that is closer to the first pixel than is the
second pixel; and

instructions for labeling each of the first, second, and thivd

pixels as belonging to the object.

51. A non-transitory computer-readable medium having
instructions stored theveon, the instructions comprising:

instructions for identifving a first pixel as belonging to an

object due to the first pixel having an intensity that is a
local intensity extreme, wherein the first pixel is at an
interior of the object;

instructions for determining that a second pixel that lies on

a ray that emanates from the first pixel has a maximum
edge metric on the ray, wherein the second pixel has an
intensity that is smaller in magnitude than the intensity
of the first pixel;

instructions for labeling the second pixel as an edge pixel

that lies on an edge of the object;

instructions for determining that a thivd pixel that is adja-

cent to the second pixel satisfies a predetermined crite-
rion relative to one or move of the first and second pixels;
and

instructions for labeling the thivd pixel as belonging to the

object.
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