(19) United States

12 Reissued Patent
Wall et al.

(10) Patent Number:
45) Date of Reissued Patent:

USOORE43146E

US RE43,146 E
Jan. 24, 2012

(54) METHOD AND APPARATUS FOR
PROVIDING A SEARCH ENGINE FOR
OPTIMIZING A DECENTRALIZED OR
EMERGENT MODEL ON A COMPUTER
NETWORK

(75) Inventors: Matthew Wall, Cambridge, MA (US);
Timothy Wall, Cambridge, MA (US)

(73) Assignee: Ocls Applications, LL.C, Wilmington,
DE (US)

(21) Appl. No.: 12/113,904

(22) Filed: May 1, 2008
Related U.S. Patent Documents
Reissue of:
(64) Patent No.: 7,039,920
Issued: May 2, 2006
Appl. No.: 09/898,506
Filed: Jul. 3, 2001

U.S. Applications:
(60) Provisional application No. 60/215,917, filed on Jul. 3,
2000, provisional application No. 60/215,903, filed on

Jul. 3, 2000.
(51) Imt. CL.

GO6F 13/00 (2006.01)
(52) US.CL ... 719/316; 719/331; 719/332; 707/706
(58) Field of Classification Search 719/316,

719/331, 332; 707/706
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,317,729 A 5/1994 Mukherjee et al.
5,517,655 A 5/1996 Collins et al.
5,550,976 A 8/1996 Henderson et al.

600

5,724,575 A 3/1998 Hoover et al.
5,787,080 A 7/1998 Hulyalkar et al.
5,796,986 A 8/1998 Fuller

(Continued)

FOREIGN PATENT DOCUMENTS

WO 9815908 8/1997
(Continued)

OTHER PUBLICATIONS

Elmaghraby, et al., “Web-based performance visualization of distrib-
uted discrete event simulation™, 12999, Proceedings of the 3 1st con-

ference on Winter simulation: Simulation—a bridge to the future—
vol. 2, ISBN:0-7803-5780-9, pp. 1618-1623.

(Continued)

Primary Examiner — Andy Ho

(74) Attorney, Agent, or Firm — Stolowitz Ford Cowger
LLP

(57) ABSTRACT

A search engine 1s provided for searching, evaluating and/or
optimizing an emergent model on a computer network. The
emergent model 1s created by independently generating, pub-
lishing references to, and subscribing to data objects and/or
function objects 1n a manner free of a globally predefined data
object and/or function object definition. Messages are sent to
referencing data objects and/or function objects when refer-
enced data objects and/or function objects change. Functions
within the function objects are solved when the messages are
received. The data objects and/or the function objects are
stored 1n a distributed manner across multiple computing
devices on a computer network. At least one of the data
objects 1s defined as an input data object and at least one of the
data objects 1s defined as an output data object to a search
engine, the search engine generating changes to the input data
object until the output data object satisfies a predefined crite-
ria.

61 Claims, 11 Drawing Sheets

Start

A0D (Generate data and/or
function objects

4 Publish references to the
60 data and/or function objects

Subscribe to

606 published references

608 Send change messages

610 Solve model functions

612~ Store the emergent model

US RE43,146 E
Page 2

U.S. PATENT DOCUMENTS

5,838,973 A 11/1998 Carpenter-Smith et al.

5,881,268 A 3/1999 McDonald et al.

5,930,512 A 7/1999 Boden et al.

6,195,625 Bl 2/2001 Day et al.

6,349.342 Bl 2/2002 Menges et al.

6,526,455 B1* 2/2003 Kamimura 719/316
6,629,128 Bl 9/2003 Glass

6,633,922 B1* 10/2003 Brocketal. 719/316
6,898,791 Bl 5/2005 Chandy et al.

7,039,920 B2 5/2006 Wall

7,043,736 B2 5/2006 Wall et al.

7,062,771 B2 6/2006 Wall et al.

7478405 B2* 1/2009 Hinsonetal. 719/318
7,661,109 B2* 2/2010 Lindhorstetal. 719/316

2002/0062463 Al 5/2002 Hines
2003/0046047 Al 3/2003 Dong et al.

FOREIGN PATENT DOCUMENTS

WO WO 98/15908 8/1997
WO 02003198 1/2002
OTHER PUBLICATTONS

C. Baja), S. Cutchin, “Web based collaborative visualization1 of
distributed and parallel simulation™, Oct. 1999, Proceedings of the

1999 IEEE symposium on Parallel visualization and graphics,

IBSN:1-58113-237-9, pp. 47-54.

I. Nakahori, “Management for emergent properties 1n the research
and development process™, Aug. 15, 2000, Proceedings of the 2000
IEEE Engineering Management Society, pp. 491-496.

Marcus Goncalves, “Firewalls Complete”, 1997, McGraw-Hill,
ISBN 0-07-024645-9, Chapter 7.

Rao, Chemyakhovsky, and Wilsey, “WESE: A Web-Based Environ-
ment for Systems Engineering”, 2000, Proceedings of the 2000 Inter-
national Conference on Web-based Modeling and Simulation
(WEBSIM-2000).

Borland, N. et al., “Integrating Environmental Impact Assessment
into Product Design”, Proceedings of DETC98, 1988 ASME Design

Engineering Technical Conference, Sep. 13-16, 1998, Atlanta, Geor-
gia (8 pp.).

Pahng, F. et al., “Modeling and Evaluation of Product Design Prob-
lems 1n a Distributed Design Environment”, Proceedings of DETC
"97: 1997 ASME Design Engineering Technical Conferences, Sep.
14-17, 1997, Sacramento, California (11 pp.).

Abrahamson, S. et al, Integrated Engineering, Geometric, and Cus-
tomer Modeling: LCD Projector Design Case Study, Proceedings of

DETC 99: 1999 ASME Design Engineering Technical Conferences,
Sep. 12-16, 1999, Las Vegas, Nevada (9 pp.).
“PIC—Windchill Product Information Homepage,” downloaded

May 24, 2000.

“Project JXTA: Technical Specification, Version 1.0”, Sun
Microsystems, Inc., Apr. 25, 2001 (26 pp.).

Abrahamson, S. et al., “Integrated Design 1n a Service Marketplace,”
Computer-Aided Design, 32 (2):97-107 (2000).

Senin, N. et al., “Distributed modeling and optimization of mixed
variable design problems,” MIT CADlab Technical Report: 99.01,
1999 (32 pp.).

Dabke, P., “Enterprise Integration via Corba-Based Information

Agents,” Internet Computing, Sep.-Oct. 1999, p. 49-57.
“Enterprise Engineering Solutions—Next Generation Design Envi-
ronment for the Integrated Enterprise,” (white paper) Phoenix Inte-

gration, Nov. 1998 (12 pp.).
“1Sight v.5.0. Solutions,” downloaded Mar. 23, 2000.
Dabke, P., “Simulation Based Design: An infrastructure for collabo-

rative development of complex engineering products,” Advanced
Technology Center Working Paper, Lockheed Martin Advanced
Technology Center, Feb. 5, 1999 (20 pp.).

Fisher, M., “Zero-latency Engineering”, Aviatis Corporation, 1999
(16 pp.).

Wallace, D.R. et al., “Design Process Elicitation through the Evalu-
ation of Integrated Model Structures,” Procedures of DETC 99, 1999
ASME Engineering Technical Conferences, Sep. 12-16, 1999, Las
Vegas, Nevada (8 pp.).

Senin, N. et al., “A framework for mixed parametric and catalog-
based design problem modeling and optimization,” MIT CADlab
Technical Report: 97.02, 1997 (39 pp.).

Haupt, T. et al., “WebFlow: a framework for web based metacomput-
ing,” i1n Future Generations Computer Systems, vol. 16, No. 5, (pp.
445-451), Elsevier Science Publishers, Amsterdam (Mar. 2000).
Pahng, F. et al., “Distribution modeling and evaluation of product
design problems,” Computer Aided Design, vol. 30, No. 6 (pp. 411-
423), Elsevier Publishers BV, Barking GB (May 1, 1998).

Henning and Vinoski “Advance CORBA Programming with C++",
Feb. 1999, Addison Wesley, ISBN 0-201-37927-9, Section 2 4.
Stolowitz Ford Cowger LLP; Related Case Listing; May 12, 2010; 1
Page.

“PTC—Windchill Product Information Homepage,” http:/www.ptc.
com/products/windchill/index.htm, downloaded May 24, 2000.
Gong, L., “Project JXTA:Technical Specification, Version 1.0,” Sun
Microsystems, Inc., Apr. 25, 2001 (26 pp.).

“ISight v.5.0 Solutions,” http://www.engineous.com/1sight.html,
downloaded Mar. 23, 2000.

* cited by examiner

U.S. Patent Jan. 24, 2012 Sheet 1 of 11 US RE43,146 E

Computer
Network

50

N

110

102 104

Communications
Network

106b

1024 1042

“ HM¢fﬁ_ ~100b

102b 104b

100
\ 200 208 210 212

Interface |

Interface |

Interface

- Mouse |
Interface §

204

Memory | Processor |

202

200

U.S. Patent Jan. 24, 2012 Sheet 2 of 11 US RE43,146 E

US RE43,146 E

Sheet 3 0f 11

Jan. 24, 2012

U.S. Patent

300

wivom vibpt rewel einbe Pt et el et ey ek g MR ke L Rl R Rl Rl RS Py Wieiel Bieim Bivbr il ek vt byl by ek el AL

Fewbel bl etk By gl SOl ek ok ek Ry SRR B GRRAN RERE R EERE EERE B ol el ekl ek bl ofiplih gl Rl el Rk bkl AL R SR

US RE43,146 E

Sheet 4 of 11

Jan. 24, 2012

U.S. Patent

US RE43,146 E

Sheet Sof 11

Jan. 24, 2012

U.S. Patent

iiiiiiiiii

_— . el AR Mippls ek derlr e e WO

-
I
I
I
:
I
;
i
I
I
|
I
I
f
I
i

+
;
I
|
|
|
;
{
i
|
I

S

. DN
|
!
;
;
i
|
I

3
I

riiliiiill IiiiiiilllIIl...l..l.!r’l.l—.-\.—.—-l}f.li._.iIIlllIEIIIIIIIEIIi*iL

““H“mmm““m—hLm_—_—

IIIIIIIIIIIIIIIIIIIIIIIII

U.S. Patent Jan. 24, 2012 Sheet 6 of 11 US RE43,146 E

U.S. Patent Jan. 24, 2012 Sheet 7 of 11 US RE43,146 E

460a 460c

U.S. Patent Jan. 24, 2012 Sheet 8 of 11 US RE43,146 E

500
. Function Object o

504~ Fumtnore EXD?’%SS'GF”! |

506 - Object References . .

508 ~ Acc:ess Pohc:y Constramt
510 Solver 1 '
012

540

562 /

| float/meters

Area

550

float/sq meters
19 52

prwate

Area

Area
Dependency |
Constraint |

U.S. Patent

Jan. 24, 2012 Sheet 9 of 11

602

604 ~]

606

608

610

612

600

' function objects
| data and/or function objects §

| published references |

Send change messages

Solve model functions

Store the emergent mode!

614

US RE43,146 E

U.S. Patent Jan. 24, 2012 Sheet 10 of 11 US RE43,146 E

Name '

i

Info

R P AR

+ CO Server 1
- CO Server 2
+ Model A
+ Model B
+ Directory of Models

Client Object Edit

Name . Value { Type

-+ Object_X 502 506 504
- Object_Y
- L 3.2 number oublic
- W 6.1 number public
- Area L*W function public
- A Area number private

H

U.S. Patent Jan. 24, 2012 Sheet 11 of 11 US RE43,146 E

US RE43,1460 E

1

METHOD AND APPARATUS FOR
PROVIDING A SEARCH ENGINE FOR
OPTIMIZING A DECENTRALIZED OR

EMERGENT MODEL ON A COMPUTER
NETWORK

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

RELATED APPLICATION

This application claims the benefit of U.S. Provisional
Application No. 60/215,917 and U.S. Provisional Applica-
tion No. 60/215,903, both filed on Jul. 3, 2000. The entire
teachings of the above provisional application(s) are incor-
porated herein by reference. This application 1s related to
United States Patent Applications titled: METHOD AND
APPARATUS FOR GENERATING AN EMERGENT
MODEL ON A COMPUTER NETWORK by Matthew B.
Wall and Timothy R. Wall (application Ser. No. 09/898/307,
now U.S. Pat. No. 7,043,736); METHOD AND APPARATUS
FOR GENERATING A DECENTRALIZED MODEL ON A
COMPUTER NETWORK by Matthew B. Wall and Timothy
R. Wall (application Ser. No. 09/898,501, now U.S. Pat. No.
7,062,771), and METHOD FOR MAPPING BUSINESS
PROCESSES USING AN EMERGENT MODEL ON A
COMPUTER NETWORK by Matthew B. Wall and Timothy
R. Wall (application Ser. No. 09/898,52°7, now U.S. Pat. No.

7,131,107), these related applications filed on even date here-
with and commonly owned by the owner of this application.

This application 1s also related to United States Patent Appli-
cation titled: METHOD AND APPARATUS FOR PROVID-

ING ACCESS CONTROL FOR A DECENTRALIZED OR
EMERGENT MODEL ON A COMPUTER NETWORK by
Matthew B. Wall and Timothy R. Wall (application Ser. No.
10/040,161, now U.S. Pat. No. 7,080,384) filed on Oct. 22,
2001, which claims foreign priority benefits under 35 U.S.C.
119(a)-(d) to International Application PCT/US01/21171
filed on even date herewith and commonly owned by the
owner of this application.

BACKGROUND OF THE INVENTION

This mvention relates generally to computer based meth-
ods of modeling processes, and more specifically to a method
and apparatus for providing a search engine for optimizing a
decentralized or emergent model on a computer network.

Modeling 1s a process of describing the behavior of a
system, possibly through the use of computers, such that the
system’s behavior can be predicted based upon varying
inputs. Models can describe objects (entities) and their inter-
relationships using mathematical equations. For example, a
spreadsheet tool can be used to build a financial model of a
particular business (system) to predict financial behavior,
thus allowing a user to evaluate and choose among various
solutions (designs).

Certain models are constructed from a set of modules (ob-
jects) that present an input and output interface. The mputs
and outputs form connections and dependencies to use 1n
integrating the objects to construct the model. Individual
objects, although integrated, may be stored in a distributed
tashion over a computer network. Objects themselves may be
comprised of multiple objects.

10

15

20

25

30

35

40

45

50

55

60

65

2

Different types ol objects are used to relate information
concerning different aspects of the system being modeled.
Physical/mechanical modeling can produce solid models,
surface models, three-dimensional models, two-dimensional
models, and wire-frame models, and can be used to convey
the physical aspects of a system within a defined space.
Design modeling can be built to predict a system’s behavior
for a given set of design variables. Design models allow for
the modification of their input variables to achieve a desired
performance characteristic. Evaluation models can compare
performance characteristics of a design model against spe-
cific value structures to access design alternatives.

The product design process 1s an example of a process that
can include physical modeling, design modeling and evalua-
tion modeling. Some people refer to these models 1n product
design as Simulation Based Design. Product design 1s a com-
plex and collaborative process that 1s often multi-disciplinary
and multi-objective. These aspects of the product design pro-
cess require a robust modeling framework.

An example of Simulation Based Design (“SBD”) 1s a
program sponsored by the Defense Advanced Research
Project Agency (“DARPA™) 1n cooperation with Lockheed
Martin Missiles & Space company. The goal of SBD software
1s to enable an enterprise to perform “faster, better, cheaper™
by establishing tlexible, efficient communications channels
among human participants and software tools across heter-
ogenous resources. This work 1s directed to developing a
collaborative distributed computing infrastructure. Their
work can be used as a framework for providing interoperabil-
ity for a range of soltware (e.g., design/modeling) tools based
on a Common Object Request Broker Architecture
(“CORBA”) backplane. The NetBuilder application from
Lockheed Martin Missiles & Space company 1s a framework
for integrating and linking design and modeling components.
An object-oriented repository for storing model components
and a dynamic object server for maintaining various aspects
of product development and interactions between multiple
development disciplines. Legacy components within the Net-
Builder framework are “wrapped” to encapsulate their capa-
bilities, allowing legacy components to be linked with non-
legacy components within the framework. Agents are also
used within the NetBuilder framework to encapsulate infor-
mation management paradigms, publish/subscribe informa-
tion and manage automation of distributed workflow pro-
cesses. NetBuilder acts as middleware to coordinate the
development process.

MIT-DOME (Distrilbuted Object-based Modeling and
Evaluation) 1s a distributed modeling environment for inte-
grated modeling that 1s used at the MIT CADLab (Senin,
1997; Pahng, 1998). In this environment, designers can easily
build object-oriented models visualized as entity-relationship
graphs. Both discrete and continuous variable types are
allowed 1n the models. Models can be arranged into sub-
models, these sub-models can be referenced 1n so called
“catalogs” that allow for the selection of different sub-models
when constructing a model. In MIT-DOME, model mputs
with uncertain values can be defined as probability density
functions, and these uncertainties are automatically propa-
gated through the model using Monte Carlo simulation and
other methods. MIT-DOME users also set goals or specifica-
tions and are provided with a design alternative which can be
calculated. A built-in optimization tool, using a genetic algo-
rithm as a solver, manipulates independent parameters and
catalog choices to find an optimal tradeoil between model

goals.

SUMMARY OF THE INVENTION

Existing modeling frameworks (e.g., MIT’s DOME) do
provide some physical modeling, design modeling and evalu-

US RE43,1460 E

3

ation modeling within a distributed and integrated frame-
work, but these frameworks lack the ability to create emer-
gent models.

An emergent model 1s a model that 1s created without a
predefined or global definition, such that the emergent model
arises from a dynamic, integrated model built on a distributed,
multi-computing device network. An emergent model 1s com-
prised of data objects (modules) and/or function objects
(modules) that are linked and distributed across multiple
computing devices on a computer network. A search engine 1s
disclosed for optimizing an emergent model on a computer
network

The present mvention provides the capability to publish
model data and integrate that data to predict system perfor-
mance. The emergent model 1s then evaluated and optimized.
The present invention can be viewed as a Web Server for
engineering, product and business data. No other company
currently provides customers a means to create live data links
across the Internet 1n a software neutral environment for the
purpose of creating an emergent model. The Web-enabled,
realtime business-to-business interfaces of the present inven-
tion reduce the time/cost to market for product development,
as well as increase abilities to manage the product supply
chain.

Accordingly, the present invention provides access control
for amodel on a computer network. In one embodiment of the
present invention a method for providing access control for an
emergent model comprises generating data objects and/or
function objects, publishing references to the data objects
and/or the function objects and subscribing to the data objects
and/or the functions by creating relationships between the
data objects and/or the function objects through referencing
data objects within the function objects, thereby linking the
data objects and/or the function objects, wherein networks of
linked data objects and/or function objects emerge. The emer-
gent linked data objects and/or function objects are make
available for further linking with other data objects and/or
function objects and messages are sent to referencing data
objects and/or Tunction objects when referenced data objects
and/or referenced function objects change. The functions are
solved when the messages are received, thereby causing at
least one of the referenced data to be changed. The data
objects and/or the function objects are stored 1n a distributed
manner across multiple computing devices on a computer
network. The emergent linked data objects and/or function
objects are mndependently published to, and subscribed to, 1n
a manner free of a globally predefined data object and/or
function object definition, thereby generating the emergent
model. Access control 1s provided by identifying users of the
emergent model and assigning appropriate read, write,
execute and administrative permissions on a per data objects
and/or Tunction objects basis such that the permissions are
used to limit access to the data objects and/or function
objects. At least one of the data objects 1s defined as an 1nput
data object and defiming at least one of data objects 1s defined
as an output data object to a search engine, the search engine

generating changes to the mput data object until the output
data object satisfies a predefined criteria.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features and advantages
of the mmvention will be apparent from the following more
particular description of preferred embodiments of the inven-
tion, as illustrated 1n the accompanying drawings 1in which
like reference characters refer to the same parts throughout

10

15

20

25

30

35

40

45

50

55

60

65

4

the different views. The drawings are not necessarily to scale,
emphasis instead being placed upon illustrating the principles

ol the invention.

FIG. 1 illustrates a computer network on which an embodi-
ment of the present invention i1s implemented.

FIG. 2 shows the mternal structure of a computing device
on the computer network of FIG. 1.

FIG. 3 illustrates an emergent model composed of inter-
connected computing devices hosting models and legacy
applications as generated by an embodiment of the present
ivention.

FIG. 4 1llustrates an emergent model composed of inter-
connected computing devices hosting models and legacy
applications configured and stored on multiple computing
devices on a computer network by an embodiment of the
present invention.

FIG. § 1llustrates an emergent model composed of inter-
connected computing devices hosting models and legacy
applications where multiple configurations share a common
repository as used by an embodiment of the present invention.

FIG. 6 1illustrates an emergent model composed of inter-
connected computing devices hosting models and legacy
applications grouped by the interdependency between the
models as generated by an embodiment of the present inven-
tion.

FIG. 7a 1illustrates models communicating 1n a unidirec-
tional manner according to an embodiment of the present
invention.

FIG. 7b 1illustrates models communicating in a bidirec-
tional manner according to an embodiment of the present
invention.

FIG. 8aillustrates an emergent model usable as a portion of
a Turther emergent model according to an embodiment of the
present invention.

FIG. 8b 1llustrates an emergent model used as a portion of
a Turther emergent model according to an embodiment of the
present invention.

FIG. 9a illustrates an object-orniented design for use 1in
implementing a method of generating an emergent model
composed ol interconnected computing devices hosting mod-
¢ls and legacy applications by an embodiment of the present
invention.

FIG. 9b 1illustrates an example model defined using the
object-oriented design defined in FIG. 9a.

FIG. 9c¢ 1llustrates an example model orgamization hierar-
chy.

FIG. 10 1s a flowchart of the process of providing a search
engine for optimizing a decentralized or emergent model on a
computer network according to an embodiment of the present
ivention.

FIGS. 11a and 11b illustrate a graphical user interface for
use 1n providing a search engine for optimizing a decentral-
1zed or emergent model on a computer network according to
an embodiment of the present invention.

FIGS. 12a and 12b illustrate networks of computing
devices.

DETAILED DESCRIPTION OF THE INVENTION

A description of preferred embodiments of the ivention
follows. Various subsets of the above described distributed
combinations exist 1 the prior art. Many systems provide
non-distributed storage, execution and access (fully-central-
1zed). MIT-DOME provides distributed storage with non-
distributed execution and access. Other systems (e.g., Mod-
clCenter™ by Phoenix Integration of Blacksburg, Va.)
provide various combinations of distributed execution, stor-

US RE43,1460 E

S

age or access, but only the present invention combines fully-
distributed execution, storage and access to generate emer-
gent models.

In a system generating an emergent model 1t 1s often desir-
able to represent aspects of the system using an object-ori-
ented paradigm, 1n which a system 1s viewed as a collection of
discrete objects that are self-contained collections of data
structures and routines having the ability to interact with other
objects 1n the system. Object-oriented systems provide for the
definition of classes that are used to create (instantiate)
objects of that class. The objects allow for the encapsulation
of data and provide well defined intertaces for other objects to
use when sending data to, or recerving data from, an object.
One class definition can inherit the capabilities of another,
allowing more complex classes to be built from simpler,
underlying classes. These classes can also specily certain
behaviors that are only fully defined at run-time. The combi-
nation of features provided 1n object-oriented systems help
create a platform for hosting an embodiment of the present
invention used to generate emergent models.

In the present invention, models are collections of com-
puter instructions and data that present an interface for
describing the behavior of part of a system being modeled,
such that the interface 1s understood by other parts of the
system. The present ivention provides for generating an
emergent model consisting of one or more models where a
model consists of one or more objects, therefore a model can
contain a complex hierarchy of submodels. Objects can be
model mputs and outputs that are made available to relate
various models to one another. These objects are 1mple-
mented using standard distributed object management tech-
niques (e.g., CORBA, DCOM). As such, each object has a
corresponding object reference.

CORBA stands for Common Object Request Broker
Architecture. A specification developed by the Object Man-
agement Group 1 1992 in which pieces ol programs (objects)
communicate with other objects 1n other programs, even 1f the
two programs are written 1n different programming lan-
guages and are runmng on different computing platforms. A
program makes 1ts request for objects through an object
request broker (ORB), and thus does not need to know the
structure of the program from where the object comes.
DCOM 1s an acronym for Distributed Component Object
Model, the version of Microsoit’s Component Object Model
(COM) specification that stipulates how components, com-
municate over Windows-based networks. DCOM permits the
distribution of different components for a single application
across two or more networked computers, running an appli-
cation distributed across a network so that the distribution of
components 1s not apparent to the user, and remotely display-
ing an application.

In the present invention, the object reference can consist of
a relattve Uniform Resource Identifier (URL) component
and/or a unique Uniform Resource Identifier (URI) compo-
nent. Distributed object management techniques provide for
the resolution of an object reference into a proxy object suit-
able for making method invocations on the corresponding
remote object. Techniques for sending messages between
objects 1 a distributed object system are common. The
present mvention sends and receives change messages that
contain the object reference of the source of the message as
well as information indicating how the source object
changed. Common to message sending techniques is the
option of having the sending object block or not block while
the receiving object processes the message. In the present
invention, blocking message processing 1s used.

5

10

15

20

25

30

35

40

45

50

55

60

65

6

In the present invention, objects have two primary types,
that of data objects and function objects. Objects can have
objects and/or object references as attributes allowing objects
to be used to organize other objects. Objects can have
attributes that are of numeric (e.g., tloating point, integer and
imaginary), string, boolean, vector, matrix, table and file type.
Numeric attributes can be deterministic or probabilistic.
Interdependencies or relationships within a model can be
defined using function objects. Interfaces to existing infor-
mation or systems can be defined using a combination of data
objects and function objects.

In the present invention, objects can have constraints that
are used to define the behavior of an object. Constraints are
attributes of each object, are associated with methods of the
object and corresponding constraints are checked when
method 1nvocations are made on the object. If a check indi-
cates that a corresponding constraint 1s violated the method
invocation 1s not completed, which can result 1n an error
message/code being returned to the invoker of the method.
Constraints can be placed on an object such that 1t will be
unavailable as an 1input and/or an output of a model. Types of
constraints include but are not limited to dependency con-
straints, permissions/access control constraints, data type
constraints, units constraints and message propagation con-
straints.

A dependency constraint can be added to a data object
when the data object’s value 1s set by a function object. While
the constraint 1s 1n place, only that function object corre-
sponding to the constraint can set the value of the data object.
Objects that are dependent on other objects can only be out-
puts (read-only) because their values are constrained by that
dependency. Once an object has a dependency constraint
additional dependency relationships can not be created with
other function objects. Dependency constraints prevent loops
from being formed 1n the relationships between objects.

Access/permission settings are another way in which to
create constraints on an object. Information specifying which
users or objects can view, edit, execute (solve) or administrate
an object are placed 1n an access policy constraint. Invoca-
tions of methods on objects that have access constraints are
only permitted it the invoker 1s listed in the constraint as
having permission to ivoke the method. For example, a
getValue() method can only be invoked by an invoker with
view permissions in the corresponding access constraint.
Objects are only outputs for users with read-only permissions
for those objects (e.g., aread-only object can not be written by
another function object). Objects are only nputs for users
with write-only permissions for those objects. Objects are
inputs and outputs for users with read-write permissions for
those objects.

Message propagation constraints are checked when a mes-
sage 1s sent and/or received, which can prevent messages
from being sent or recerved. Message propagation constraints
can reference message routing information such as source
and destination object references and message content infor-
mation such as the new or old value associated with a value
change of a data object. Access constraints are also used as
message constraints to prevent users from obtaining data in
messages for objects for which they do not have permissions
to view data. A “trigger” message constraint on a function
object determines when a function object 1s “triggered” to
solve 1ts expression. Trigger constraint modes include: “any”,
“all”, “none” and “custom”. The “any” trigger allows a func-
tion object to solve when any object referenced by function
sends a message that 1t changed, whereas “none” prevents
automatic re-evaluation when objects referenced by the func-
tion object change. The “all” trigger requires that all objects

US RE43,1460 E

7

referenced by the function send change messages in order for
a re-evaluation to occur. The “custom” trigger 1s a hook pro-
vided for another object to determine 11 a function should be
solved.

Data objects contain data as attributes and provide methods
for getting and setting the attributes. A data object sends a
change message to objects registered to listen for change
messages when the data object changes. A number data object
1s an example of a data object implemented by the present
invention. A number object has a name, value and units
attributes, as well as an access policy constraint associated
with the methods of the object. When values of data objects
are set, coercion 1s performed using common techniques and
rules. Data objects that are coercible without data loss are
coerced. Coercion that could result 1n data loss 1s detected and
can be tlagged for approval by a user.

A unit 1s a particular physical quantity, defined and adopted
by convention, with which other particular quantities of the
same kind are compared to express their value. The Interna-
tional System of Units (SI) defines seven base units:

length meter,

mMass kilogram,
time second,
electric current ampere,
thermodynamic temperature,
amount of substance mole,
luminous intensity candela.

Function objects provide behavior by providing expres-
s10ons that can relate data objects and function objects thereby
creating networks of linked function objects and data objects.
Function objects have a name, an expression, an object ret-
erence table and a solver attribute as well as access policy and
trigger message propagation constraints. The expression can
be thought of as a function with a plurality of inputs and
output objects, which is evaluated by the solver. The expres-
sion text can be defined using various programming lan-
guages including Basic, C, C++ and Java, among others. The
object reference table can contain references to data objects
and function objects. The expression text can contain portions
that specily method calls on the objects referenced in the
object reference table. The solver evaluates the expression
text, which may result 1n changes to objects referenced by the
function object. Solvers can be implemented using compilers,
interpreters or entire legacy applications. The function object
solves the expression when a change message 1s received
from one of the objects referenced by the function object.
Function objects can also be solved manually by a user.
Dependency constraints are optionally placed on data objects
that have their values set by the expression of a function
object.

An equivalence function object 1s an example of a function
object implemented with the present invention. The following
simplified example 1llustrates an equivalence function object
that keeps several data objects equivalent (1.e., 1f one of the
data object values changes, then the other data object values
are changed such that their values match). In this example, the
equivalence function i1s used 1n combination with a number
data object, further providing an example of a message propa-
gation constraint being applied.

function object: equivalence {
referenced objects table
receive message {

10

15

20

25

30

35

40

45

50

55

60

65

8

-continued

if (constraints are met) {
solve the function expression using solver()

h
h

function expression {
get the changed object value
for (each referenced table entry) {
if (reference does not correspond to changed object) {
set referenced object value to the obtained object value

h
h
h

solver {
solve the function expression...

)

access policy constraints {
check invoker permissions...

h

add object reference {
add an entry in the referenced objects table
register with the object to enable message receiving

h

remove object reference {
remove an entry in the referenced objects table
de-register with the object to disable message receiving
h
h
data object: number {
table of object references of registered message receivers
name
value
set value method {
set number value to new value
for (each reference table entry) {
1f (message propagation and access constraints are met)
send a message to referenced object indicating
value has changed
h

h
h

get value method {
provide number value to requester;

h

message propagation constraint {
if (reference corresponds to the object value changer) {
disallow the message to be sent

}else {

allow message to be sent

y
h

access policy constraint {
all users and/or objects can get and set the name and value

)

add object reference {
add an entry in the table of object
references of registered message recelvers

h

remove object reference {
remove an entry in the table of object
references of registered message receivers

h
h

A model 1s generated by creating instances of data objects
and/or function objects. In the process of generating, the
contents of an object can be obtained from and coordinated
with the data and or functions of a legacy application using the
known application programming interfaces (APIs) of the
application. For example, a data module can have its value
match that of a cell in a spreadsheet.

An object 1s made available by publishing 1t. Publishing is
done using standard distributed object management tech-
niques whereby objects are made available 1n a standard way
to be activated and used by a subscriber to the object. When
published, each data object and function object has an object
reference that can be used to access and control that object.
Once an object 1s published, the object’s object reference,

US RE43,1460 E

9

usually a URL, 1s communicated to prospective users via
conventional techniques (e-mail, posting a message), or a
prospective user mitiates a search that reveals the object ref-
erence of the published object.

A object 1s subscribed to by adding the object reference to
the referenced objects table of a function object. This also
results 1n have a reference to the function object placed 1n the
table of message recieves of the referenced object, which 1s a
standard part of enabling messages to be sent from referenced
objects to referencing objects.

When areferenced object changes amessage will be sent to
any referencing objects which will solve their expressions
subject to constraints. Solving the expressions may result 1n
data objects being changed.

At any time additional objects can be generated, published
and subscribed to by different users or objects representing
users. As these steps are carried out a network of linked data
objects and function objects emerges which 1s an emergent
model. These steps can also be guided by a definition of a
network of objects that 1s desired.

The values of the data objects of an emergent model can be
optimized. Standard optimization packages are available that
can be interfaced 1n known ways to an object environment
such as the one described in the present invention. For
example, known optimization algorithms can be accessed by
the expression of a function object so that the optimization
algorithm will be run when the function object 1s solved.
Objects are 1dentified as mputs and outputs for the optimiza-
tion algorithm to use. The optimization algorithm 1s given a
set of typical criteria for stopping the algorithm to prevent too
many resources from being consumed. When the optimiza-
tion algorithm 1s run i1t changes the input objects according to
the algorithm design and the resulting changes to the output
objects. The output objects change because they are linked to
the 1put objects 1n a network of function objects and data
objects. The optimization stops when the stopping conditions
are reached, after which the optimal values of the data objects
can be viewed or accessed by other data objects.

FIG. 1 illustrates a computer network 30 on which an
embodiment of the present invention 1s implemented. A com-
puting device 100 provides processing, storage and input/
output devices for generating and viewing an emergent model
300. Computing device 100 1s connected to a respective key-
board 102 and mouse 104 for receiving input and a respective
display 106 for presentation of content. In one embodiment,
computing device 100 1s a personal computer. Computing
device 100 1s also linked to a communications network 110
having access to other computing devices 100a,b with respec-
tive mput/output devices 102a,b, 104a,b and 106a,b. The
communications network 110 1s part of the Internet, the
worldwide collection of computers, networks and gateways
that use the TCP/IP suite of protocols to communicate with
one another. The Internet provides a backbone of high-speed
data communication lines between major nodes or host com-
puters, consisting of thousands of commercial, government,
educational, and other computer networks, that route data and
messages. Computing devices 100 connected to the commu-
nications network 110 hosts models and legacy applications
used 1n the generation of an emergent model. These models
are displayed on display 106 for viewing by a user of an
embodiment of the present invention.

FI1G. 2 shows the internal structure of a computing device
100 1n the computer network 30 of FIG. 1. The computing
device 100 contains a system bus 204, a bus 1s a set of
hardware lines used for data transfer among the components
of a computing device 100 on computer network 50. A bus
204 1s essentially a shared highway that connects different

10

15

20

25

30

35

40

45

50

55

60

65

10

parts of a system (e.g., processor, disk-drive controller,
memory, and input/output ports) which enables the different
parts to transier information. Attached to system bus 204 1s
display interface 206, display interface 206 allows display
106 to communicate with other components on system bus
204. Keyboard interface 208 and mouse interface 210 are also
attached to system bus 204 and allow the mput devices to
communicate with other components on system bus 204.
Network interface 212 provides the link to an external net-
work (e.g., communications network 110), allowing pro-
cesses running on computing device 100 to communicate
with other computing devices 100 connected to a communi-
cations network 110. A memory 200 stores computer soit-
ware 1nstructions and data structures used to implement an
embodiment of the present invention. A processor 202
executes 1nstructions stored in memory 200, allowing the
computing device 100 to participate in the generation of an
emergent model.

FIG. 3 illustrates an emergent model composed of inter-
connected computing devices hosting models and legacy
applications as generated by an embodiment of the present
invention. An emergent model 300 1s a model that 1s created
without a predefined or global definition, such that the emer-
gent model 300 arises from a dynamic, integrated objects
built on a distributed, multiple computing device, computer
network 350. Servers 302-374 host the models (302-322,
shown as circles) and legacy applications (352-374, shown as
squares) that make up emergent model 300.

Models (302-322) are collections of computer instructions
and data that present an interface for describing the behavior
of part of a system being modeled, such that the interface 1s
understood by other parts of the system. This interface 1s one
means by which models communicate the outputs that they
produce and the mputs that they require. The models (302-
322) may store data using their own storage subsystem or they
may use a common data repository. The objects themselves
can be stored within a file system, a database or a product data
management system.

Legacy applications (352-374) are collections of computer
instructions that present an interface existed prior to the use of
a newer system. Legacy applications (352-374) require a
change 1n process or technique, such as translating data files
formats 1n order to interface with the new system being mod-
cled. Often this translation 1s accomplished through the use of
“wrappers” provided by the new system. These wrappers
allow legacy applications (352-374) to interface with models
(302-322) to generate an emergent model 300. Additionally,
objects of the present system can interface with legacy appli-
cations through code libraries loaded by these applications,
using the legacy application’s API. Although the existence of
legacy applications (352-374) 1s not required for the creation
of an emergent model 300, their use often reduces the time
required to generate an emergent model. Legacy applications
(352-374) may also include enterprise-wide tools, such
Enterprise Resource Planning (“ERP”) systems (e.g., SAP
R/3 from SAP America Inc. in Newtown Square, Pa.).

An example of an emergent model 300 that includes mod-
cls (302-322) and legacy applications (352-374) 1s an emer-
gent model 300 for modeling the product design of a power
tool. Aspects of the power tool product design, including its
shell and motor as well as 1ts performance, environmental
impact and cost are modeled. A model for the shell of the
power tool may already exist in a conventional mechanical
design tool (e.g., Pro/ENGINEER from PTC Corporation 1n
Waltham, Mass.) and a model relating to its environmental
impact may already exist 1n a spreadsheet tool (e.g.,
Microsoit® Excel from Microsoit Corporation in Redmond,

US RE43,1460 E

11

Wash.). These legacy applications (352-374) are associated
with native models (302-322) for the power tool motor, per-
formance and cost to generate an emergent model 300.

FIG. 4 1llustrates an emergent model composed of inter-
connected computing device hosting models and legacy
applications configured and stored on multiple computing
devices 1n a computer network by an embodiment of the
present mvention. The computing devices (302-374) which
host the models (302-322) and legacy applications (352-374)
are typically organized into groups for eflective management
and control. Each computing device configuration (380-386)
represents groupings ol computing devices (302-374). Con-
figuration 380 may be a department within a larger company,
configurations 382 and 384 may be separate companies
involved 1n a partnership. Configuration 386 may be a outside
consulting group contracted to provide a model. These con-
figurations (380-386) need not be symmetric and their orga-
nization places no restriction on the communications capa-
bilities of the models (302-322) and legacy applications (352-
374) running within them.

FIG. 5 illustrates an emergent model composed of the
interconnected computing devices hosting models and legacy
applications of FIG. 4, where the multiple configurations
(380-386) share a common repository as used by an embodi-
ment of the present invention. Models describing the behavior
ol a system often contain large amounts of data, this data can
be managed by a central repository for effective access and
control. For example, data used 1n the product design model-
ing process can be managed by conventional product data
management (“PDM”) systems (e.g., Metaphase® Enter-
prise™ by Structural Dynamics Research Corporation of
Milford, Ohio). PDM systems can provide elfective storage
and version management capabilities useful in the develop-
ment of a large product design model. These systems can
assist 1n the management of emergent models. In FIG. 5 a
PDM data repository 388 1s used to store portions of the
emergent model running on configurations 380 and 382 of
FIG. 4, whereas configuration 384 1s stored 1in repository 390
and configuration 386 1s stored 1n repository 392.

FIG. 6 illustrates emergent model 300 composed of inter-
connected computing device hosting models and legacy
applications of FIGS. 4 and 5, grouped by the interdepen-
dency between the models as generated by an embodiment of
the present invention. For example, one set of interdependen-
cies produces a motor performance model 394 which utilizes
underlying model 302 for motor speed analysis, model 304
for friction analysis and model 312 for electric current analy-
s1s, with legacy application 352 providing torque require-
ments analysis and legacy application 360 providing motor
cost analysis. Sitmilarly, environmental impact model 396 and
overall cost model 398 utilize underlying models and legacy
application when run. Each of these grouped models contrib-
utes to the generation of emergent model 300.

FIG. 7a 1llustrates models communicating 1n a unidirec-
tional manner according to an embodiment of the present
invention. The outputs of one model may be the mputs to
another model, either directly, or indirectly. Communication
among models need not be symmetric; that 1s, a model may
accept mputs from another model to which 1t supplies no
outputs and visa versa. For example, a model 324 may supply
its outputs as iputs to model 326. Model 326 may supply 1ts
outputs to model 328 as imnputs, model 328 which may in turn
supply its outputs back to model 324. Because publishing and
subscribing among various models may create circular
dependencies, emergent model 300 contains a process for
detecting and address circular dependencies, thus preventing
models from runmng 1n infinite loops where desired.

10

15

20

25

30

35

40

45

50

55

60

65

12

The inputs of amodel are made available by publishing the
model 1 such a way that another model requiring puts
subscribes to them. Traditionally, providers of components
might publish their availability 1n paper catalogs, designers
would then look for a component that match their criteria in
the catalog. If a conforming component was found, 1ts param-
eters could then be used to model an aspect of the system of
interest being modeled. In an integrated and distributed
model implemented on a computer network this publish and
subscribe mechanism can be emulated by connecting the
various inputs and outputs of the models 1n such a way that an
emergent model 1s created when underlying models are run.

FIG. 7b illustrates models communicating 1n a bi-direc-
tional manner according to an embodiment of the present
invention. As noted 1n the discussion of FI1G. 7a; the outputs of
one model may be the inputs to another model, either directly,
or indirectly. When two models directly share their inputs and
outputs their communication 1s said to be bi-directional.
Model 324 1in FIG. 7b produces some outputs used by model
326 and model 326 produces some outputs used by model
324, this 1s an example of bi-directional communication.

FIG. 8aillustrates an emergent model usable as a portion of
a Turther emergent model according to an embodiment of the
present invention. Models describe the behavior of a system
being modeled. Underlying behaviors are grouped into mod-
els of their own, creating a hierarchy of models within models
(sub-models). Models are therefore scalable. Models can be
organized by their interdependencies as well as by which
server they might be associated with. For example, users
460a-c interact with the sub-models of model 450 to generate
an emergent model.

FIG. 8b 1llustrates an emergent model used as a portion of
a Turther emergent model according to an embodiment of the
present mvention. The model 450 1s combined with other
models (452, 454) to generate emergent model 456. This
ability to combine sub-models, without a predefined model
definition, facilitates the creation of large emergent models,
for example emergent model 456.

FIG. 9a 1llustrates an object-oriented design for use 1n
implementing a method of generating an emergent model
composed of interconnected computing device hosting mod-
¢ls and legacy applications by an embodiment of the present
invention. Object classes 500 and 501 are example classes
that define multiple attributes/fields (502-512) used ifor
describing the state and behavior of a model. Instances of
object classes 500 and 501, 1n addition to other object classes,
are used to create an emergent model. Object class 500 lists
the attributes/fields that define a function object and object
class 501 lists the attributes/fields that define a number data
object. Name field 502 1s a moniker for referencing an object.
Unuts field 503 defines the units of measure for the value field
503 stored as part of a number data object. An access policy
constraint field 508 1s defined to control access to objects by
users 460a-1. Many access configurations are possible based
upon the desired level of viewing, editing, executing and
administrating appropriate of each object within the emergent
model. At a mimimum, access policies 508 covering private
and public access are implemented. Trigger message propa-
gation constraint 512 controls the timing of re-evaluation of
the function object. As described above, trigger modes
include: “any”, “all”, “none” and “custom”. Expression 504
defines the object relationship between the object references
506. Solver 510 solves/executes the expression 304 and
updates the objects 1n object references 506. Object refer-
ences 506 provide the solver access to methods on referenced
objects, such as for getting and setting the values of refer-
enced objects.

US RE43,1460 E

13

FIG. 9b 1llustrates an example model defined using the
object-oriented design defined 1n FIG. 9a. A simple model
presenting an object that describes the square footage of an
area (1.e., A=L*W) 1s generated using objects instantiated
from object classes 500 and 501. Object 530, representing the
length of the area 1s defined by the object named “L”, having
a units attribute of “meters” and a value of *“3.2”. An access
policy attribute 508 1s used to control user 460a-1 access to an
object. A setting of public access signals that all users 460a-1
of the computer network are able to access this object, while
a private access policy may indicate only users 460a-1 of a
certain privilege level have access to this object. In a similar
fashion to length object 530, width object 540 defines a value
for the width of the area. Objects (e.g., area object 520)
needing the values of these objects access the objects using,
methods provided on them (e.g., Object.getValue()). Area
function object 520 stores the equation “A=L*W” as 1ts
expression 304. Function object 520 then uses solver 510
which gets the values of length object 530 and width object
540 to determine the value of object 550.

Length object 530 and width object 540 are unconstrained
either by dependencies or by access/permissions (both have
public access). Area object 550 1s constrained as read-only
due to the fact that 1ts value 1s determined by solver 510 of
area function object 520. Additionally, area object 350 1is
defined as private for access/permissions indicating that some
users have restricted access to 1ts value.

FI1G. 9c¢ 1llustrates an example model organization hierar-
chy. Generally a server contains a plurality of models and a
model contains a plurality of objects. Servers are logical
constructs used to organize models. In FIG. 9¢ Serverl 570
contains Modell 572 and Modell 572 contains Object] 574.
Addressing these servers, models 20 and objects 1s done using,
URL/URI addressing where the server, model and object
hierarchy 1s represented by an address 1n the form “server/
model/object” (e.g., “Schema://ServerA IP address:port/
Model A/ObjectB”). This addressing 1s used by the publish/
subscribe steps to link objects.

FIG. 10 1s a flowchart of the process ol generating an
emergent model according to an embodiment of the present
invention. The process begins at step 600, at step 602 data
and/or Tunction objects are generated to create a model. For
example, area object 520 (FIG. 9b) represents a model gen-
erated according to step 602. Typically, a user 1s guided to
generate objects by a user mterface whereby commands can
be 1ssued to create objects and further commands can be
1ssued to specily the values of the attributes/fields of those
objects. At step 604, references to generated objects are pub-
lished by making the object references available or known,
such as through electronic media, print media or human con-
versation. At step 606, Tunction objects or data objects are
subscribed to by referencing the objects 1n function objects.
For example, area function object 520 (FIG. 9b) subscribes to
objects 330, 540 and 3550 (FIG. 9b). At step 608, when
changes are make to referenced data objects and/or function
objects messages are sent to the referencing data objects
and/or function objects. At step 610, when a function object
receives a message that a referenced object changed and the
function object does not filter the message, the function object
solves its expression. Solving the expression may result 1n
calling methods on the referenced objects, such as getting and
setting the values of data objects or initiating the solvers of
function objects. Solving the expression can result in changes
in values of referenced objects which can result 1n additional
messages being sent. At step 612, cach object on each com-

10

15

20

25

30

35

40

45

50

55

60

14

puting device 1s optionally stored when 1t 1s created, when the
object changes or as needed. Storage of the individual objects
results 1n the emergent model being stored i computing
devices on the computer network, providing users the ability
to further interact and enhance the emergent model. The
emergent network of linked data objects and/or function
objects are independently published to, and subscribed to, 1n
a manner Iree of a globally predefined network of data object

and/or function objects, thereby generating the emergent
model. As described 1n the discussion of FIGS. 4 and 5, the

storage of the emergent may occur on preexisting configura-
tions with or without the use of a separate repository. The
process ends at step 614. FIGS. 11a and 11b illustrate a
graphical user interface for use in generating an emergent
model according to an embodiment of the present invention.
In this example two windows (FIGS. 11a and 11b) are pre-
sented to show a model defined using hierarchical relation-
ship of servers, models and objects. Here, a server acts as a
repository for models and directories of models. Models are
built from objects (e.g., sub-models) and objects contain
model objects and other models. Some aspects of object-
oriented model class 500 are shown in FIG. 11b, including
name 3502, value 506, type/units 304 and access policy 508.
This example shows the area object 520 defined as
Object_Y, where Object_Y, along with Object_X, 1s con-
tained 1n Model A. Model A 1s stored on CO_Server 2,
along with Model_B and a Directory of Models. This hierar-
chy represents only one arrangement for defining area object
520, other model organizations could be generated to define
an equivalent model.

FIGS. 12a and 12b illustrate networks of computing
devices. The present invention provides for creating networks
with zero or more than one coordinating computing device.
FIG. 12a comprises computing devices 702, 704, 706 and
708. Computing device 706 1s a coordinating computing
device. Coordinating computing devices orchestrate commus-
nications between computing devices on a computer network.
For example, in order for computing device 702 to send a
message to computing device 708, the message must be coor-
dinated through coordinating computing device 706. In con-
trast, FIG. 12b shows a network of computer devices 710, 712
and 714 that lack a single (or central) coordinating computing
device (e.g., coordinating computer device 706 of FIG. 12a).
In the network of computing devices depicted by FI1G. 12b,
messages are sent directly from one computing device to
another computing device, without indirect coordination. For
example computing device 710 can send a message to com-
puting device 712.

While this mvention has been particularly shown and
described with references to preferred embodiments thereot,
it will be understood by those skilled 1n the art that various
changes 1 form and details may be made therein without
departing from the scope of the invention encompassed by the
appended claims. Specifically, combinations of data objects
and/or function objects form a model according to the present
invention.

What 1s claimed 1s:

1. A method of providing an engine for searching and/or
optimizing an emergent model on a computer network, the
emergent model including one or more models having com-
puter instructions and data that describe behavior of a system
and/or evaluate the system, comprising the steps of:

generating data objects and/or function objects, at least

some ol the data objects and/or function objects being
model inputs and/or model outputs, at least some of the
function objects defining interdependencies within a

US RE43,1460 E

15

model by providing solvable expressions that relate data
objects and/or function objects;

publishing identifiers for the data objects and/or the func-
tion objects;

subscribing to the data objects and/or the function objects
by creating relationships between the data objects and/or

the function objects by referencing the data objects and/
or the function objects within the function objects,
thereby linking the data objects and/or the function
objects, wherein networks of linked data objects and/or
function objects emerge;

sending messages to referencing data objects and/or func-

tion objects when referenced data objects and/or refer-
enced function objects change;

invoking methods on data objects and/or function objects

when data objects and/or function objects require infor-
mation;

solving the expressions within the function objects when

the messages are received;

storing the data objects and/or the function objects 1n a

central location on a single computing device or 1n a
distributed manner across multiple computing devices
on a computer network; and

defiming at least one of the data objects and/or function

objects as an mput object and defining at least one of the
data objects and/or function objects as an output object
to a search engine, the search engine generating changes
to the mput object until the output object satisfies a
predefined criteria; and

wherein the emergent networks of linked data objects and/

or function objects are independently published to, and
subscribed to, 1n a manner free of a globally predefined
network of data objects and/or function objects, thereby
generating the emergent model.

2. The method of claim 1 wherein at least a part of the
configuration of the networks of linked data objects and/or
function objects 1s predefined and used to determine which
data objects and/or function objects are generated on which of
the computing devices in the computer network.

3. The method of claim 1 wherein a user interface 1s defined
that displays the data objects and/or function objects on a
computing device on the computer network using a client
process that communicates with a server process wherein the
data objects and/or function objects can be viewed on any
computing device connected to the computer network.

4. The method of claim 1 wherein the data objects and/or
function objects are stored in logical groups.

5. The method of claim 1 wherein the references to the data
objects and/or function objects are published using electronic
media, print media or human conversation.

6. The method of claim 1 wherein the step of generating the
data objects and/or function objects provides an interface
mapping for data objects and/or function objects stored in
application programs, databases or computer code libraries.

7. The method of claim 1 wherein the function objects are
implemented by computer code that 1s complied, dynami-
cally linked and evaluated at runtime.

8. The method of claim 1 wherein the function objects are
implemented by computer code that 1s interpreted and evalu-
ated at runtime.

9. The method of claim 1 wherein the sending or recerving,
of messages can be enabled or disabled based on predefined
criteria.

10. The method of claim 9 wherein the criteria 1s based
upon message source, message destination or message con-
tents.

5

10

15

20

25

30

35

40

45

50

55

60

65

16

11. A method of providing an engine for optimizing a
decentralized model on a computer network, the decentral-
1zed model including one or more models having computer
instructions and data that describe behavior of a system and/
or evaluate the system, comprising the steps of:

generating data objects and/or function objects, at least

same of the data objects and/or function objects being,
model inputs and/or model outputs, at least some of the
function objects defining interdependencies within a
model by providing solvable expressions that relate data
objects and/or function objects;

publishing 1dentifiers for the data objects and/or the func-

tion objects;

subscribing to the data objects and/or the function objects

by creating relationships between the data objects and/or
the function objects by referencing the data objects and/
or the function objects within the function objects,
thereby linking the data objects and/or the function
objects, wherein networks of linked data objects and/or
function objects emerge;

sending messages to referencing data objects and/or func-

tion objects when referenced data objects and/or refer-
enced function objects change;

invoking methods on data objects and/or function objects

when data objects and/or function objects require nfor-
mation;

solving the expressions within the function objects when

the messages are received;

storing the data objects and/or the function objects 1 a

central location on a single computing device or 1n a
distributed manner across multiple computing devices
on a computer network;

defining at least one of the data objects as an 1nput data

object and defining at least one of data objects as an
output data object to a search engine, the search engine
generating changes to the mput data object until the
output data object satisfies a predefined critena; and
wherein the relationships between the data objects and/or
function objects are created without using a single coor-
dinating computing device, or are created using multiple

coordinating computing devices on the computer net-
work.

12. The method of claim 11 wherein at least a part of the
configuration of the networks of linked data objects and/or
function objects 1s predefined and used to determine which
data objects and/or function objects are generated on which of
the computing devices 1n the computer network.

13. The method of claim 11 wherein a user interface 1s
defined that displays the data objects and/or function objects
on a computing device on the computer network using a client
process that communicates with a server process wherein the
data objects and/or function objects can be viewed on any
computing device connected to the computer network.

14. The method of claim 11 wherein the data objects and/or
function objects are stored 1n logical groups.

15. The method of claim 11 wherein the references to the
data objects and/or function objects are published using elec-
tronic media, print media or human conversation.

16. The method of claim 11 wherein the step of generating
the data objects and/or function objects provides an interface
mapping for data objects and/or function objects stored in
application programs, databases or computer code libraries.

17. The method of claim 11 wherein the function objects
are implemented by computer code that 1s compiled, dynami-
cally linked and evaluated at runtime.

US RE43,1460 E

17

18. The method of claim 11 wherein the function objects
are 1mplemented by computer code that 1s interpreted and
evaluated at runtime.

19. The method of claim 11 wherein the sending or receiv-
ing ol messages can be enabled or disabled based on pre-
defined critena.

20. The method of claim 19 wherein the criteria 1s based
upon message source, message destination or message con-
tents.

5

18

and/or function objects or the data and/or function objects of
other networks on any computing device coupled to a net-
Work.

28. The apparatus of claim 22 where the processor is
further configured to execute instructions that vesult in stor-
ing the data and/or function objects in the storage device in
logical groups.

29. The apparatus of claim 22 where the processor is
further configured to execute instructions that vesult in pub-

21. The method of claim 11 wherein the method provides a 10 lishing the identifiers for the data and/or function objects

search engine for performing any one or combination of

searching, evaluating and optimizing a decentralized model.
22. An apparatus for generating an emergent model
including one or more models that describe a system, com-
prising:
at least one storage device; and
a processor configured to execute instructions storved in the
at least one storage device that vesult in:

generating data and/or function objects, at least one of

the function objects configured to define intevdepen-
dencies within the emergent model by providing solv-
able expressions that velate the data and/or function
objects;

publishing identifiers for the data and/ov function
objects;

subscribing to the data and/ov function objects in
response to the published identifiers by rveferencing
one data and/or function object within at least
another function object to link the one data and/or
Junction object with the at least another function
object in a network of data and/ov function objects;

invoking methods in response to data and/ov function
objects requiring information;

solving the solvable expressions responsive to rveceiving
a message that the one data and/or function object
referenced within the at least another function object
has changed; and

defining an input object and an output object of a search
engine configured to generate changes to the input
object until the output object satisfies a predefined
criteria;

where the network of data and/or function objects interop-

erates with other networks of data and/or function
objects in a manner free of a globally predefined network
of objects to generate the emergent model.

23. The apparatus of claim 22 where the processor is
further configured to execute instructions that result in
enabling or disabling of the message vesponsive to at least
one of a message source, message destination, ov message
conitents.

24. The apparatus of claim 22 where the processor is
further configured to execute instructions that vesult in stor-
ing the data and/or function objects in a central location on a
single computing device ov in a distributed manner across
multiple computing devices.

25. The apparatus of claim 24 where the processor is
further configured to execute instructions that vesult in con-
figuring at least part of the network of data and/or function
objects to identify at least one of a plurality of computing
devices on a networkto genervate a corvvesponding data and/or
function object within the network of data and/ov function
objects.

26. The apparatus of claim 22 where the processor is
further configured to execute instructions that vesult in defin-
ing a user interface to display the data and/or function objects
on at least one computing device using a client or server
process.

27. The apparatus of claim 26 where the processor is
further configured to execute instructions that vesult in view-
ing the data and/or function objects of the network of data

15

20

25

30

35

40

45

50

55

60

65

using at least one of electronic media, print media, human
conversation, ov human interaction.

30. The apparatus of claim 22 where the processor is
further configured to execute instructions that vesult in map-
ping the data and/or function objects stored in at least one of
an application program, database, or computer code library.

31. The apparatus of claim 22 where the processor is
further configured to execute instructions that result in imple-
menting function objects using computer code that is com-
piled, dynamically linked, intevpreted, or evaluated at rum
time, or combinations thereof.

32. A non-transitory computer veadable medium having
instructions stoved theveon that, when executed by a comput-
ing device, result in.

generating objects at least one of which comprises a func-

tion object configured to define interdependencies
within a model by providing solvable expressions that
relate objects;

publishing identifiers for the objects;

subscribing to the objects responsive to the published iden-

tifiers by referencing one object within a function object
to link the one object with the function object in a net-
work of objects;

solving the solvable expressions responsive to receiving a

message that the one object veferenced within the func-
tion object has changed;

invoking methods vesponsive to objects requiving informa-

tion; and

defining an input object and an output object of a search

engine, the search engine being configured to generate
changes to the input object until the output object satis-
fies a predefined criteria;

where the network of objects interoperates with other net-

works of objects in a manner free of a globally pre-
defined network of objects to generate an emevgent
model: and

where the emergent model includes one or move models

having corresponding computer instructions that
describe a system.

33. The computer readable medium ot claim 32 further
comprising enabling or disabling of the message responsive
to at least one of a message source, message destination, or
message contenis.

34. The computer readable medium of claim 32 further
comprising storing the objects in a central location on a
single computing device or in a distributed manner across
multiple computing devices.

35. The computer readable medium of claim 32 further
comprising configuring at least part of the network of objects
to identify at least one of a plurality of computing devices on
a network to gemnerate a corresponding object within the
network of objects.

36. The computer readable medium of claim 32 further
comprising defining a user interface to display the objects on
at least one computing device using a client or sevver process.

37. The computer readable medium of claim 32 further
comprising viewing the objects of the network of objects or
the objects of other networks on any computing device
coupled to a network.

US RE43,1460 E

19

38. The computer readable medium of claim 32 further
comprising storing the objects in a storage device in logical
groups.

39. The computer readable medium of claim 32 further
comprising publishing the identifiers for the objects using at

least one of electronic media, print media, human conversa-
tion, or human interaction.

40. The computer readable medium of claim 32 further
where generating the objects comprises mapping the objects
stored in at least one of an application program, database, or
computer code library.

41. The computer readable medium of claim 32 further
comprising implementing function objects using computer
code that is compiled, dvnamically linked, interpreted, or
evaluated at run time, or combinations thereof.

42. An apparatus for generating an emergent model on a
compiiter network, the emergent model including at least one
model having computer instructions that describe a system,
COmprising:

a plurality of objects at least one of which comprises a
function object configured to define intervdependencies
within the model by providing solvable expressions that
relate objects;

a plurality of identifiers, each identifier configured to iden-
tifv a corresponding object;

a publisher configured to publish the plurality of identifi-
ers;

a subscriber configured to create relationships between the
plurality of objects responsive to the published plurality
of identifiers by referencing one object within a function
object to create a network of objects that interrelate free
of a globally predefined network of objects;
solver configured to solve the solvable expressions
responsive to a message that the one object vefervenced in
the function object has changed;
an invoker configured to invoke methods on the least one

object responsive to the at least one object requiring

information,
an input object;
an output object configured to generate changes to the
input object until the output object satisfies a predefined
criteria provided to a search engine; and
a storage device configured to store the plurality of objects.
43. The apparatus of claim 42 where the message is con-
figured to be enabled vesponsive to at least one of a message
source, message destination, or message contents.

44. The apparatus of claim 42 where the storage device is
further configured to stove the plurality of objects in a central
location on a single computing device or in a distributed
manner across multiple computing devices.

45. The apparatus of claim 42 where the subscriber is
further configured to identify at least one computing device
on a network of computing devices to generate a covvespond-
ing object within the network of objects.

46. The apparatus of claim 42 further comprising a user
interface configured to display the plurality of objects on at
least one client or server in the computer network.

47. The apparatus of claim 42 further comprising a display
configured to display the plurality of objects of the network of
objects or the plurality of objects in other networks of objects.

48. The apparatus of claim 42 where the storage device is
configured to store the plurality of objects in logical groups.

49. The apparatus of claim 42 where the publisher is con-
figured to publish the plurality of identifiers in at least one of

electronic media, print media, human conversation, or
human interaction.

20

50. The apparatus of claim 42 where the storage device is
further configured to map the plurality of objects stored in at
least one of an application program, database, or computer
code library.

51. The apparatus of claim 42 further comprising a run
time compiler configured to compile, dvnamically link, inter-
pret, or evaluate, at run time, computer code implementing
the plurality of objects.

52. An apparatus for generating an emergent model on a
compiiter network, comprising:

means for generating objects at least one of which com-

prises a function object configured to define intevdepen-

dencies within a model by providing solvable expres-

sions that velate intervdependencies between objects;
means for publishing identifiers for the objects;

means for subscribing to the objects respomnsive to the

published identifiers by referencing one object within
another object to link the one object with the another
object in a network of objects;

means for solving the solvable expressions vesponsive to

receiving a message that the one object referenced
within the another object has changed;

means for invoking methods responsive to objects requir-

ing information; and

means for defining an input object and an output object of

a search engine, the search engine being configured to
generate changes to the input object until the output
object satisfies a predefined criteria;

where the network of objects intevoperates with other net-

works of objects in a manner free of a globally pre-
defined network of objects to generate the emervgent
model: and

where the emergent model comprises at least one model

having computer instructions that describe a system.

53. The apparatus of claim 52 further comprising means
for enabling the message vesponsive to at least one of a
message source, message destination, or message contents.

54. The apparatus of claim 32 further comprising means
for storing the objects in a central location on a single com-
puting device or in a distributed manner across multiple
computing devices.

55. The apparatus of claim 52 further comprising means
40 for comfiguring at least part of the network of objects to

identify at least one of a plurality of computing devices on a
network to generate a corresponding object within the net-
work of objects.
56. The apparatus of claim 52 further comprising means
45 Jor defining a user interface to display the objects on at least
one computing device using a client or server process.

57. The apparatus of claim 32 further comprising means
Jorviewing the objects of the network of objects or the objects
of other networks on any computing device coupled to a
network.

58. The apparatus of claim 52 further comprising means
for storing the objects in a storage device in logical groups.

59. The apparatus of claim 352 further comprising means
Jor publishing the identifiers for the objects using at least one
of electronic media, print media, human conversation, or
human interaction.

60. The apparatus of claim 52 where means for generating
the objects comprises mapping the objects stoved in at least
one of an application program, database, or computer code
library.

61. The apparatus of claim 52 further comprising means
Jorimplementing function objects using computer code that is
compiled, dynamically linked, interpreted, or evaluated at
run time, or combinations thereof.

5

10

15

20

25

30

35

50

55

60

¥ ¥ H ¥ H

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : RE43,146 E Page 1 of 1
APPLICATION NO. : 12/113904

DATED . January 24, 2012

INVENTOR(S) : Wall et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Page 2, item (56), under “Other Publications”, in Column 1, Line 1, delete “visualization1™ and insert
-- visualization --.

Page 2, item (56), under “Other Publications™, in Column 2, Lines 43-44, delete “Gong, L., “Project
JXTA:Technical Specification, Version 1.0,” Sun Microsystems, Inc., Apr. 25, 2001 (26 pp.).” and
mnsert -- Gong, L., “Project JXTA: A Technology Overview,” Sun Microsystems, Inc., Apr. 25, 2001

(12 pp.). --.
Column 1, line 23, delete “09/898/507,” and insert -- 09/898,507, --.

Column 15, line 57, m Claim 7, delete “complied,” and insert -- compiled, --.

Column 16, line 7, in Claim 11, delete “same” and insert -- some --.

Column 18, line 49, m Claim 33, delete “of” and insert -- of --.

Signed and Sealed this
Seventeenth Day of July, 2012

David J. Kappos
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

