USOORE42936E

(19) United States
a2y Reissued Patent (10) Patent Number: US RE42,936 E

Hollis 45) Date of Reissued Patent: Nov. 15, 2011
(54) METHOD AND APPARATUS TO MINIMIZE 6,073,232 A 6/2000 Kroeker et al.
COMPUTER APPARATUS INITIAL 0,098,158 A 8/// 2000 Lay etﬁalid
PROGRAM LOAD AND EXIT/SHUT DOWN oSl T comerten
PROCESSING 6,202,091 Bl 3/2001 Godse
6,212,632 Bl 4/2001 Surine et al.
(76) Inventor: William K. Hollis, Duvall, WA (US) 6,367,074 B1* 4/2002 Batesetal. 711/170
6,553,432 Bl 4/2003 Critz et al.
(21) Appl. No.: 12/614,184 6,567,912 B1* 5/2003 Belkinetal. 713/2
: 6,631,469 Bl 10/2003 Silvester
. 6,883,091 B2 4/2005 Morrison et al.
(22) Filed: Nowv. 6, 2009 6.973.447 B1* 12/2005 Aguilaretal. ..o 11
2001/0047473 Al 11/2001 Fallon
| Related U.S. Patent Documents 2001/0052038 Al 12/2001 Fallon et al.
Reissue of: 2002/0199093 Al 12/2002 Poisner et al.
(64) Patent No.: 7,299,346 2003/0070066 Al 4/2003 Cross et al.
Tssued: Nov. 20, 2007 2003/0135729 Al 7/2003 Mason et al.
Appl. No.: 10/342,020 * cited by examiner

Filed: Jan. 14, 2003

U.S. Applications: |
(63) Continuation-in-part of application No. 10/183,709, Assistant Examiner — Michael] Brown

Primary Examiner — Chun Cao

filed on Jun. 27, 2002, now abandoned. (74) Attorney, Agent, ov Firm — Lowe Graham Jones PLLC

(51) Int. CL. (57) ABSTRACT
gggﬁ 522/177 5388283 A method to reduce and thereby improve the 1nitial program
A _ _ load time of a computing apparatus operating system and thus
(52) US.Cl e, T13/1: 713/2; 713/%(1)8}87'0791/ (2)/212 6 provides for near instantaneous user interaction. When prac-
(58) Field of Classification Search 7’1 A1 9 ticing the 1nstant invention, a computing apparatus operating

system or application processing component 1s loaded neither
sequentially nor completely, but rather on an as required
basis. The invention’s “required only” loading of processing

713/100; 709/222; 710/8, 10
See application file for complete search history.

(56) References Cited components persist through subsequent operation and shut
down of the computing apparatus with each loaded task cre-
U S PATENT DOCUMENTS ating a checkpoint record of processing modifications to non-
volatile memory. Such checkpointing allows shut down pro-
g: éggzggg i }%ﬁgg% gﬁgjsoe;taalj* cessing ol the apparatus to consist of merely flushing memory
5.410,699 A 4/1995 Bealkowski et al. butlers in the apparatus checkpointed non-volatile memory of
5,710,930 A 1/1998 Laney et al. the apparatus to permanent storage and powering oif of the
2,748,957 A S/ 1998 Klein apparatus, with subsequent initial program load (IPL)
g’ggg% éé i g//{ iggg Is)illlxllt) itu?; sequencing referencing the checkpointed records to minimize
5.051.700 A 9/1999 Klein future system initialization elapsed time.
5,968,173 A 10/1999 Watts, Jr.
6,061,788 A 5/2000 Reynaud et al. 27 Claims, 3 Drawing Sheets

CMIT IDLE LOOP |-2HUTDOWN

20

FLUSH NVRAM
BUFFERS

START
‘ 19
4 NOTE *X" = SIZE OF CORE -

‘...l CHECK"X"BYTES OF TASKS MANAGER, THE SiZE

Cad

(B
MAIN MEMORY AND LOAD | OF MEMORY TASKS MANAGER 2 N~ PROEas
CTMAND MTM AND THE SIZE OF RaM FR.gl'é"lE'ss NEEDS CPU SHUTDDWN
5 CHECK TASKS TERMINATING TIME DEVICE
] CHECKMEMORY FOR 1 ? 21
NVRAM DRIVER AND 25\ Es
LOAD NVRAM DRIVER QUEING ALGORITHM oy
T L NOTIFY MTM. DECIDES WHICH TASK CTM
/? MTM UPDATES MEMORY GIVES CPU TIME TO. TASK
TABLE AND MARKS THAT IS EXECUTED.
8 | INTERROGATE AUDIT REFERENGE | | RUN RCT DURING FREE MEMORY AS AVAILABLE 30
] AND DETERMINE MINIMALLY CPU CYCLES. _’_
ESSENTIAL OIS ANC APPLICATION | | TERMINATE AND PASS LOAD / EXECUTE HIGHEST
PROGRAM COMPONENTS RAM ERROR TABLE TO PRIORITY TASKS.
e MTI4 WHEN DONE.
9 ' f
LOAD EXECUTE IDENTIFIED
\l " COMPONENTS INTO RAM. - 15 NO .~ TASKS NEED TO
LOAD UPDATE BIOS TASKS AS LOAD FOR THIS
USER TASK 22
FROM NVRAM AS NECESSARY REQUESTED ANY ™
PER ABOVE TABLE
TA?KE i 34\ | FINISH I
ADD CALLING TASK TO MTM
ARE ALL TAELE NOTING ADDITIONAL
"HIGH PRIORITY" CALLING TASK FOR THAT
TASKS LOAD HIGHEST CHOSEN CALLED TASK, LOAD MTM LOAD TASK AND
LOADED INITIAL TASKS FROM PASSED VARIABLES FOR CREATE TABLE FOR TASK,
1 HISTORY FILE CALL ADD CALLING TASK NAME.

LOAD PASSED VARIABLES
FOR CALL.

US RE42,936 EE

Sheet 1 of 3

Nov. 15, 2011

U.S. Patent

"TIVD 404

S318VINVA J3SSVd VO
'JNYN MSVL ONITIVO aay |
MSVL ¥O4 318VL LY |

ANV ASVYL AVOT AL

ON

&
NV NI
ASVL LVHL
ol

HSINIF SIA 9

(
_ f ASYL
SIHL H04 YO
Ol d33N SAUSY]
4N ANY

bt

SdA

¢e
ON

et

"SUSVL ALMOd
1S3HOIH 41MAJ3X3 7/ AvO

'0d1NO3IX3 Si
MSVYL 'Ol JWIL NdD SINID
W13 MSVL HOIHM $S301030
WHLIHOOTVY ONIFNO

17 S3A

¢ ANIL
NdJ SA33N

$S300¥d
ANY

30IA3Q
NMOGLNHS

od344g
WVYSAN HSM T4

07~

27

6l

NMOGLNRS 40013104l LAD

ON

TIVO
404 S31avIHYA 03SSvd
UVO1 ASVL QI TIVO
1IVHL 504 ASVL ONITIVI
TVNOLLIQQV ONILON 318vL
WL OL MSVL ONITIVO aav

19V IIVAY SV AHJOW3W
IVHL SHYVIN ONY 318V1

ASCWIN S31vadN 1A
WIW AdILON

SdA 7

l
ONILVNIWSGAL
55300dd
ANY

3114 AJOLSIH
WOYd SHSYL IVILINI
NJSOHJ LS3HOIH v

¢
SASVL
ANY G4153N0dd
d330

SVH
Gl

S3A

i ¢l
a3avoi
SASYL
ALIHO™Md HOIH.

11V 34V

318V1 JA08V H4d

AdYSS30dN SY WVHAN WOu 4
SASVYL S0I8 31vddN avon
'WVH OLN! SININOdWOO

d3141LN3AI 31N33X3 / V0T

ANOQJ NIHM WA
Ol 318V1 »O¥Y3 WV S1ININOdWOD WYHO0Hd
SSVd ANV JLVNIWYIL NOILYOINdd¥Y ONV S/0 TVILNISS3
SF10AI NdD ATIVINININ SNIWES 130 ONY
4344 ONINNA LO¥ NN JONIYF43Y 11NV FLYD0HHILNI
h \\
SIAAO WYHAN QY01
ANY ¥3AHAT WYHAN
H04 AHOWAW MO3HD &
SASVL MD5H)
WYY 40 37ZIS JHL GNV WIW GNY W1D
HIAOVNVIN SHSYL AHOW3N 40 | Qv ANV AHOW3IW NIYIN
JZIS JHL "YIOVYNYIN SHSYL 40 S31A9 . X, XHI3HD
3409 40 3ZIS = .X. I1ON)

US RE42,936 EE

Sheet 2 of 3

Nov. 15, 2011

U.S. Patent

VYO 804
S318YIIVA 3S5Vd AvO
"JNVYN ASYL ONITIVD AV
MSYL ¥04 318v1 31v3H0

ANY %SYL Q01 WLN
ON
4 ot
WY NI
MSYL IVHL ~"S3A

Sl

7
fNN MSVL
SIHL ¥O4 QVO1
O1 d33N SUSVL

WIN ANY

£e

SYUSYL ALIMORd
L1S3IHOH 3LNJIX3/ AvOT

0t

'A3LNd3X3 S
¥SV1 ‘0L IWIL NdD SFAID
NLO ¥SVL HOIHM $3Q103d
¢} WHLNHOOTY ONIFND

¥ S3A

& ANIL
NdO SU33IN
$53004d
ANY

JIIA3A
NAMOQLNHS

S¥34404
WVHAN HSM 14

0¢

el
6l

dOO131d[LAND

NMOOQLNHS

TIVO

404 S318VIH¥YA 4455vd

av01 ASYL A311VO

LYHL ¥OJd MSYL ONITIVO

TYNOILIQAY ONILON 318VL
WLN OLXSYL ONITIVO AV

ON

ON

318YIVAY.SY AJOWAN

1YHL SHYYW ANV 318Y1

AHOWZW S31vAdN WLIIN
‘WLIN AJILON

S3A G7

¢
ONILYNING4L
$5300dd
ANY

ON

e)

a3av0
FHY DIINOD 3HL WO
AOYd Q3HIND3Y SINILNOA
17V ANV Q30V01 JaV
JOVAHILNI LSIHDIH LXIN
d04 SHSYL QY01 30V 1N
Q3ZNILN 1S3OIH JHL FTHYNI
/dN ONEE OL SUSVYL AVOT

al

INOd NIHM AW
Ol 319V O3 NV
SSVd ANV JLVNIWyZL
S310AI NdD
3344 ONIMNA 1oYW NN

S3A

Cl

&
d3avOo1l
SASYL
ALIJOIEd HOIH.
11V 34V

ON

318Vl JA08V d3d
AdYSS3D3N SY WVYHEAN NOH
W3vL 5018 G31vadN Avol
MSVL ALINOIMd LSIHOIH
31N33X3/ AVO1T

WYHAN WOYL 318V AHOLSIH

ANV SYSVL SOI8 31vadn
'SHSVL ALIMOINd HOIH YO

A

v

SASVL MI3HD

AvY 40 32715 IHL ANV
HIADYNYIN SHSVL AHOW3W 10
3715 IHL HIDYNYW SHSVL
340D 40 3FZIS =.X. 310N

&3AINA WYHAN QYO

ANV dJARIA WVYEAN
HO4 AHOWIW AO3HD

WLN ONV NLO
Av0T ANV AHOW3IW NIVIA

30 SILAL WX A3IHD

US RE42,936 EE

Sheet 3 of 3

Nov. 15, 2011

U.S. Patent

TIV0 d04

SINYVIHVYA A3SSVd AvO
JAVN ASVYL ONIMIVI AaV

MSYL W04 I18VL 31V3ND
UNV XSYL QVOTANLIN

¢
WVH NI

6¢
xwﬁm _E_.: SIA

'/
FNN MSVYL
SIHL ¥04 avo
OL d33N SHISYL

N ANV

ON

2

OASYL ALIHORS
LSIHOIH 31N03X3 / AvOT

0t

'd31N33aX3 S
ASYL ‘04 AL NdD S3AID
W10 MSVL HOIHM $30103d
L WHLIHOOTV ONIZNO

17 S3A

¢ AWIL
[1d0 SU3IN
$53004d
ANY

301A3dd
NMOQLNHS

ON

34344N8
AVIAN HSN'T

0¢

£l
6l

NVOGLARS dO01 31dI LWO

TIVO

d04 STA1EVIdvA 355Yd
avQ01 MSVYL A3 TIVO

1VHL 304 MSVL DNV
TWNOILIQAY ONILON 318V1
WLN O1 M5V1L ONITIVO adV

be

F18YHYAY SV AHONW3IN
1VHL SHEVIN NV 318V1

AJOWIN S31vddn WL
WL AJILON

SdA G7

&
ONILVNIWY3L
SS300u¥d
ANV

ON

e

d3AV1d JHL NO A3X 435S 34dd
A1LN3ND3H4 1SOW SHLOL
ANOdS3Y TIIM LYHL MSYL QYO
ONOS LVHL AV1d T1IM LVHL
ASVL AVOT ONIMOHS SYM I
NIFHOS JHL ANV ONIAYId
1SV1SVM d3AV 1d JHL ONOS
LYHM J1YOIONI Ol J18VL
AHOLSIH WOY4 V.Lva AvOl

8l

ANOQ NIHM WL
Ol J18V1 4Od8d WYY
SSVd UNV J1LVNINY3AL

S310AD NdD
3344 ONIENAQ LY NNY

SHUSVL MO3IHD

AVY 40 4215 4H1 ONY
d3OVNYI SHSVL AMOWIN 40
3ZIS FHL YIDYNYA SHSYL
3400 40 3ZIS = X, 3LON

S3A

¢l

¢
0Javol
SMSVL
«ALIJOIMd HOIH.

TV 34V

ON

319VL JACSY ¥3d
ALYSSIIIN SV ANVHAN WOHA
ASYL S0I9 d31vdaN VO]
MSVL ALINOINd LS3HOIH
31N03IX3/ AVOT 0l

WYHAN ANOdd 378V AYOLSIH
ANV SHSVL S019 31vadn
ISVL ALIYMORId HOH V0T)

dIAA WYHAN VO

ANV 4JAIJ0 NVHAN
H04 AGOW3W %I3HD

WLA ONV LD

UVO 1 ONV AHJOWIN NIVIN
40 S3LAR XL MIIHD

US RE42,936 E

1

METHOD AND APPARATUS TO MINIMIZE.
COMPUTER APPARATUS INITIAL
PROGRAM LOAD AND EXIT/SHUT DOWN
PROCESSING

Matter enclosed in heavy brackets |] appears in the

original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions

made by reissue.

CROSS-REFERENCE 10O RELATED
APPLICATIONS

This application is a Reissue of U.S. application Ser. No.
10/342,020, filed Jan. 14, 2003 (U.S. Pat. No. 7,299,346 Bl

issued Nov. 20, 2007) to William K. Hollis.

REFERENCE TO PENDING APPLICATIONS

This application 1s a continuation-in-part patent applica-
tion based upon U.S. patent application Ser. No. 10/183,709
entitled “A Method and Apparatus to Minimize Computer
Apparatus Initial Program Load and Exit/Shut Down Pro-

cessing” filed Jun. 27, 2002 now abandoned.

REFERENCE TO MICROFICHE APPENDIX

This application 1s not referenced 1n any microfiche appen-

dix.

TECHNICAL FIELD OF THE INVENTION

The present invention relates to operating systems for com-
puter apparatuses, and more particularly, to a method to
reduce and improve the 1mitial program load time of a com-
puting apparatus operating system and shut down processing,
associated therewith.

BACKGROUND OF THE INVENTION

When a computing apparatus 1s power on, numerous and
varied software components are loaded into 1ts RAM (Ran-
dom Access Memory). As used herein, the term computing
apparatus 1s used synonymously with the terms personal
computers, portable personal electronic devices, personal
digital assistants (PDA’s), and other similarly intended appa-
ratus. As more and more auxiliary devices and functions are
integrated into computing apparatuses additional RAM 1s
required to accommodate operating and application system
functionality requirements. Further, users continue to
demand enhanced functionality of hardware devices, addi-
tional software must also be loaded into RAM during device
initialization to drive such functionality. As RAM must be
validity checked during and after every power on sequence to
verily its continuing integrity and associative increase in the
time required for RAM validation 1s often perceived by the
user of the apparatus.

It would seem as processors increase in speed, computing,
apparatuses operating under control of their respective con-
trol programs should be able to boot (a.k.a. “load”) faster.
However, given the requirements for additional functionality
associated with these computing apparatuses and the neces-
sity ol ensuring the integrity of RAM processing, such
devices require more time than ever to boot (as used herein the
term “boot” 1s used synonymously with the mnitial program

10

15

20

25

30

35

40

45

50

55

60

65

2

(IPL) of one or more operating system or application program
sequence necessary to execute a desired function).

In an associative manner shut down processing or termi-
nation processing, given the advances of the art, should
require the simple act of minimal cleanup by the operating
system resulting 1n almost immediate shut down of the com-
puting apparatus. However, the status of the present art
requires the operating system, or more precisely an operating,
system or application program processing component asso-
ciated therewith to attempt to shut down each and every task,
and each and every device attached to the computing appara-
tus to cease operation (even 1 that task/device 1s not respond-
ing or otherwise presently active 1n the terminating computer
device).

In a number of prior art references, improvements 1n 1nitial
program load time(s) have been asserted. For example, U.S.
Pat. No. 5,968,173 entitled “Method and System for Maxi-
mizing the Apparent Initial Processing Capability of a Com-
puter” purports to disclose and claim a method and system
reduce the apparent time between turning on a computer and
making available the computer processing capability. The
method and system of the *173 patent includes and states in
part ©“ . . . displaying within a shortened predetermined time
period an interface screen that includes a plurality of interface
checkpoints and address data relating to application programs
associated with the user interface checkpoints. The shortened
predetermined time period has a duration substantially
shorter than the period associated with booting the associated
application programs. In turning oif computer, the method
and system 1include generating a shut down command to
computer and storing interface screen and any data files that
are open at the time of turning oif the computer. The interface
screen and data files are stored so that upon subsequently
turning oif the computer, computer displays interface screen
in the shortened predetermined time.”

Another example of a prior art reference purporting to
accelerate processes associated with imitial program load and/
or termination processing are disclosed 1n association with
U.S. Pat. No. 6,073,232, entitled “Method for Mimimizing a
Computer’s Initial Program Load Time after a System Reset
or a Power-on Using Non-volatile Storage” discloses in part a
method for increasing boot speed of a host computer with
associated hard disk drive generates a preftech table that
contains pointers to disk locations and lengths of the records
of an application program requested by the host computer
during an 1nitial power-on/reset. During the next power on/re-
set, before the host computer 1s ready for data but after the
disk drive has completed its reset routine, using the preftech
table the disk drive accesses the previously requested data and
copies 1t onto the cache of the disk drive, from where it 1s
transierred to the host computer when the host computer
requests 1t. The preftech table 1s updated to reflect disk loca-
tion changes for the various records, or to reflect new records
that were requested by the host computer but not found in
cache during the previous power-on/reset).

Yet another reference allegedly shortening the time
required to “boot” a computer system 1s found 1n U.S. Pat. No.
6,098,158, entitled “Software-enabled to Fast Boot” wherein
the abstract of said reference discloses amethod of generating
a boot 1mage and using the boot image to restore a computer
system having a processor, an operating system, physical
memory, virtual memory and disk storage. The method may
be mitiated from any particular soitware application, or at
multiple execution points within a particular application. By
providing full virtual memory support in the boot image, the
computer system may be restored to any predetermined oper-
ating state.

US RE42,936 E

3

U.S. Pat. No. 6,122,677, entitled “Method of Shortening
Boot Uptime In a Computer System” purports to disclose a
method of configuring peer devices without the unnecessary
delay 1n boot up time using a compatibility bridge and dis-
closes 1n part, “Upon 1nitiating a configuration cycle, a BIOS
initialization scans all peer devices located on the host bus. A
watchdog timer times out after a predetermined duration
when the intended apparatus fails to respond to the configu-
ration cycle. A bit corresponding to the particular apparatus 1s
set 1n a scorecard register. The compatibility bridge responds
to the configuration cycle after the watchdog time-out
period)”

U.S. Pat. No. 5,269,022, entitled “Method and Apparatus
for Booting a Computer System by Restoring the Main
Memory from a Backup Memory” purports to disclose a
method of generating a boot image and using the boot 1image
to restore a computer system having a processor, an operating,
system, physical memory, virtual memory and disk storage.

U.S. Pat. No. 35,269,022, according to the Abstract stated
therein, purportedly discloses, “In a computer system, when
the system 1s first booted in a normal mode, main memory
data stored 1n a main memory immediately after the system 1s
booted, 1s stored as backup data in a backup memory or the
like. A backup flag representing whether or not the backup
data can be restored 1s set and the system 1s rebooted. When
the system 1s next booted in the normal mode, the backup data
stored 1n the backup memory or the like 1s restored as the main
memory data in the main memory. The backup flag 1s auto-
matically reset in a maintenance mode.

U.S. Pat. No. 3,710,930, entitled “Apparatus and a Method
for Allowing an Operating System of a Computer to Persist
Across a Power Off and On Cycle”, wherein said patent’s
abstract purports to disclose, “A method of allowing an oper-
ating system of a computer system to persist across a power
off and on cycle 1s described. The method includes the step of
detecting if the computer system 1s to be powered off. IT the
computer system 1s detected to be powered off, the state of the
computer system 1s then preserved by storing data represent-
ing the state of the computer system 1n a designated area of
nonvolatile memory of the computer system. A system 1ni-
tialization code of the operating system 1s then replaced with
new system initialization code that branches to restart code
that accesses to the designated area of the nonvolatile memory
such that when the computer system 1s again powered on, the
restart code accesses the designated area of the nonvolatile
memory for the data to restore the computer system to the
state before the computer system was powered off.

U.S. Pat. No. 5,797,003, entitled “Quick Access to Com-
puter Applications” wherein the abstract purports to disclose,
“In general, 1n one aspect, the invention features a method for
enabling a user of a computer to rapidly begin using an
application which had been previously placed 1n a non-run-
ning state. Prior to the time when the application was placed
in the non-running state, information defining an 1image of an
interactive screen associated with the application is stored 1n
the memory of the computer and locked to prevent corruption
by other running applications. Then, in response to a request
from the user to begin using the application, and before the
application has been fully loaded into memory and 1s again
running, the image defined by the stored information 1s dis-
played to the user. In this way the user 1s given the impression
that the application has become immediately available.

As distinguished from the disclosure and claims of the
instant invention, the common deficiency in all of the above-
noted prior art references is that each reference expressly or
implicitly attempts to restore the computing apparatus to a
state retlecting 1ts most recent status prior to shut down or

10

15

20

25

30

35

40

45

50

55

60

65

4

termination processing. Consequently, the common defi-
ciency 1n all of these references each 1s that each attempts to

restore the computing apparatus to reflect 1ts mostrecent fully
loaded and executing status prior to termination.

Again using the “standard” approach for a boot all memory
must first be verified error free and the state of the machine
must be loaded from non-volatile random access memory
NVRAM (hard drive, flash, etc.). While this approach does
reduce time in loading each component from the NVRAM
apparatus and integrating it into the operating system, it fails
to address or remedy errors 1n the previously saved image.
Had saved information been save incorrectly, 1f there were
errors 1n soltware executing at the time 1t was saved as an
image, such errors are routinely loaded back into memory
when the apparatus 1s again activated. Consequently, this
flawed methodology requires the computer to be shut down
and rebooted yet again after loading the flawed 1mage.

Another flawed approach to enhance boot improvement
and termination processing found 1n the contemporary art 1s
the loading of a memory image to disk once the apparatus has
been booted (attempting to minimize the above errors). How-
ever, 1I new software has been loaded, subsequent to this
image copy, the computer then must be completely rebooted
to recreate a current accurate 1mage of the operating system
(as used herein, the term operating system 1s used synony-
mously with the term “control program™ and relates both to
processes associated with 1nitial program load and termina-
tion processing as well as dispatching control exercised over
application end user oriented programs.

BRIEF SUMMARY OF THE INVENTION

Responsive to the foregoing challenges, Applicant has
developed an 1nnovative method of optimizing the booting of
a computing apparatus to allow that apparatus to function as
quickly as possible for 1ts main (intended purpose) by loading
portions of the operating system as needed. Processes of the
instant mvention are equally applicable to any number of
computing apparatuses. For purposes of full and enabling
disclosure, illustrative examples of the instant invention’s
practice with respect to a PC and personal digital device
(herein synonymously referred to as “PDA”) as well as user
module interfaces are provided.

The inventions methodology assumes and expects all soft-
ware to maintain logs of changes to 1ts data files (user mput)
to expedite the shut down of the apparatus. User shut down or
loss of power mput causes NVRAM bullers to be flushed
(hard drives, etc.) (as indicated 1n block 20) to the static
memory of the NVRAM apparatus and the apparatus to be
shut down (as 1indicated 1n block 21).

When practicing the instant invention, the computing
apparatus 1s booted from software which 1s stored on non-
volatile random access memory device and not from an
“executing” 1mage of RAM when 1t was last shut down.
Consequently, an object of the invention 1s a prioritization of
loadable tasks wherein only operationally essential tasks are
loaded into RAM and executed as quickly as possible with
ancillary functions loaded subsequent thereto, 11 at all.

As will be described throughout the disclosure of the
instant mvention, the methodology of the mstant invention 1s
equally applicable to a variety of computing apparatuses,
such as but not limited to personal computers, routers, and
hand-held personal devices (digital assistants, MP3 players,
etc.). For purposes of full and enabling disclosure as well as
case 1n comprehending the adaptability and versatility of the
instant invention to a variety of computing devices, the imme-
diately following discussion illustrates “commonality” of the

US RE42,936 E

S

instant ivention’s practice with respect to personal comput-
ers, routers, hand held personal devices during boot execution
and shut down/termination processing of each device type.

INVENTION BOOT PROCESSING SUMMARY

When the apparatus 1s powered on (as indicated in block 1),
only the amount of RAM required to load (as indicated 1n
block 3) core operating system processing components 1s
checked for errors (this mitial RAM check may be avoided 1n
computing machinery executed exclusively from NVRAM
on the apparatus). As practiced by the instant invention, any
RAM not specifically required for initial startup 1s verified/
validated on a as needed basis (1.e., when to load a “primary™
function) or as free CPU cycles allow). In the mstant imnven-
tion, errors in RAM will not preclude the apparatus from
booting (as indicated 1n block 7). Such errors are maintained
in a table as memory address(es) to be avoided. The user 1s
notified of errors within the apparatus, RAM and the appara-
tus error address(es) “patcharound.”

“Highest priority” tasks (and all sub-tasks required to sup-
port these tasks) are loaded next (as indicated in block 9). The
tollowing are examples of such task loading by device type:

A. On a personal computer, the monitor driver, the mouse

driver and the keyboard driver (1n that order).

1. The monitor driver maintains a small database on the
hard drive consisting of the background and all 1cons
displayed on the desktop. This database 1s displayed
almost instantaneously by the instant invention.

2. The mouse driver 1s loaded next as this 1s generally
typically what the user will require next.

B. On a router (such as, but not limited to a Cisco® router).

1. The basic input/output system (BIOS) loads only
enough of itself to determine 11 a valid 1mage 1n flash
memory exists and 1f the configuration boots to that
image. If found, then the image 1n tlash memory starts
booting.

2. The router next concentrates interface(s) execution
with respect to the OSI (Open Systems Interconnec-
tion) seven layer model. Concentration emphasis s on
layer one (“line up”), then layer two (*protocol up™)
and last layer 3.

3. The image booting next determines the type routing
(layer three) required (IP (Internet Protocol), IPX (In-
ternet Packet Exchange), Appletalk, X.25, Frame
Relay, etc.) and loads only those portions of the IOS
(Cisco’s Internet Operating System) that are required.
If BGP (Border Gateway Protocol) 1s not 1n the con-
figuration, the BGP 1s not loaded.

4. An additional feature of the instant invention 1s to
accommodate a router’s maintaining of statistics
(stored in NVRAM and regularly updated to allow for
changes 1n traific flows) which interfaces are busiest
and thus allowing prioritization for making those
interfaces operational.

5. When the router has completed all tasks related to
“routing”’, the invention allows user interaction via the
console should be run (on exception to this 1s, of
course, allowing operator input to stop the 1nitial boot
sequence to correct router problems).

C. On a hand held “personal device”

1. The display 1s immediately visible (a “splash™ screen
can be shown first 1f absolutely necessary) showing
the “main function™ of the apparatus.

a) A cell phone would display the main menu
b)a MPEG (Moving Pictures Expert’s Group) would
display video

10

15

20

25

30

35

40

45

50

55

60

65

6

c) A MP3 player would display the songs that are on
the playlist
d) A hand held video game would display the start
screen
. Function buttons are next made accessible to the user
. The apparatus then load, tasks that are 1ts “primary”™
function
a.) A cell phone would load the task to access its
directory of phone numbers
b.) A MP3 player would load the task to play music
(with pointers to the current song, the past two
songs and the next two songs)
c.) A hand held video game would load the start of the
game

' DI

INVENTION EXECUTION SUMMARY

After the absolute highest priority tasks are loaded (as
indicated 1n block 3) attention 1s turned to performing highest
priority tasks interspersed with cycles for lower priority tasks.
Some of the lower priorty tasks would include, but not lim-
ited to: completion of checking RAM {for errors and/or keep-
ing track of user initial actions and proactively loading those
tasks 1into main memory in anticipation of what the user may
do (and updating a database that record user actions).

Application software executing on this computing appara-
tus should “play well” with the operating system. That 1s,
application software (when started) should be compatible
with and adhere to the above “fast boot” checkpointing meth-
odology of the instant invention. Plugins should be loaded
only when needed. As an example, an 1nitial “splash” screen
should be mimimal followed by a “untitled” word processing
document ready for editing, or another document requested
by the user.

INVENTION SHUTDOWN PROCESSING
SUMMARY

Apparatus power oil can be either user mitiated or can be
loss of power to the apparatus (plug pulled, battery runs out)
(as indicated 1n blocks 20, 21 and 22). In 1ts practice, the
instant invention assumes the apparatus 1s designed to allow
the core task has enough time and power to flush all NVRAM
buifers. An interrupt from the power supply to the core task
would be best approach towards ensuring this capability.

If all software running on the apparatus “plays well” as 1n
the preceding paragraph, then a simple flush of the NVRAM
builers would save all logged information just before shut

own. After the flush of buffers, the apparatus then powers
off.

Additional objects and advantages of the invention are set
forth, 1n part, 1n the description which follows and, in part,
will be apparent to one of ordinary skill in the art from the
description and/or from the practice of the imvention.

These together with other objects of the invention, along
with the various features of novelty which characterize the
invention, are pointed out with particularity 1n the claims
annexed to and forming a part of this disclosure. For a better
understanding of the invention, 1ts operating advantages and
the specific objects attained by its users, reference would be
had to the accompanying drawings, depictions and descrip-
tive matter in which there 1s illustrated preferred embodi-
ments and results of the invention.

BRIEF SUMMARY OF THE DRAWINGS

FIG. 1 1s alogic tlow 1llustration of the invention’s practice
with respect to a general purpose personal computing appa-
ratus.

US RE42,936 E

7

FIG. 2 1s a logic flow 1llustration of an embodiment of the
instant invention further illustrating user interface sequencing
with respect to the mvention’s methodology.

FIG. 3 1s a logic flow 1llustration of the mstant invention
wherein the computing apparatus practiced 1s a personal digi-
tal assistant.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

It 1s understood that both the foregoing general description
and the following detailed description are exemplary and
explanatory only, and are not restrictive of the imvention as
claimed. The accompanying drawings, which are incorpo-
rated herein by reference, and which constitute a part of this
specification, illustrate certain embodiments of the invention
and, together with the detailed description, serve to explain
the principles of the present invention.

In this respect, before explaining at least one embodiment
to the invention in detail, 1t 1s to be understood that the
invention 1s not limited in this application to the details of
construction and to the arrangement so the components set
forth 1n the following description or illustrated 1n the draw-
ngs.

The invention 1s capable of other embodiments an of being,
practiced and carried out 1n various ways. Also, 1t 1s to be
understood that the phraseology and terminology employed
herein are for the purpose of description and should not be
regarded as limiting. As such, those skilled in the art waill
appreciate that the conception, upon which this disclosure 1s
based, may readily be utilized as a basis for the designing of
other structures, methods and systems for carrying out the
several purposes of the present invention. It 1s 1mportant,
therefore that the claims be regarded as including such
equivalent constructions 1nsofar as they do not depart from
the spirit and scope of the present invention.

Further, the purpose of the foregoing abstract 1s to enable
the U.S. Patent and Trademark Office and the public gener-
ally, and especially the design engineers and practitioners 1n
the art who are not familiar with patent or legal terms or
phraseology, to determine quickly from a cursory inspection
the nature and essence of the technical disclosure of the
application. The abstract 1s neither intended to define the
invention of the application, which 1s measured by the claims,
nor 1s 1t intended to be limiting as to scope of the invention in
any way.

The apparatus and the method of the instant invention rely
upon processing steps which first requires the loading and
initiation of a BIOS (Built In Operation System) initialization
routine.

The 1nstant invention next limitedly validates that portion
of RAM (as indicated 1n block 3) to be used accommodate the
selective BIOS “load” in1tialization routine to ensure it 1s free
ol addressing or error exceptions. To the extent that portion
necessary to accommodate the initialization routine, and only
that portion necessary in order to accommodate the initializa-
tion routine, 1s checked for validated addressability thus sav-
ing the necessity of validating all RAM accessible to the
device.

Should an error be found in the RAM thus verified, the
instant 1mvention practice 1s to patch around such invalid
addresses and allow the loading of the device to proceed (as
indicated in block 7). Consequently, the portion of the oper-
ating system to be loaded into RAM would be comprised of a
core task manager (CTM) and memory task manager (MTM)
with the function of the CTM to manage and prioritize tasks
(operating systems tasks and program system calls, etc.) and

10

15

20

25

30

35

40

45

50

55

60

65

8

the function of the MTM to manage memory, ram, virtual
memory, vin paging, etc. The MTM tracks RAM usage and, if
required, facilitates paging 1n and out of virtual memory (as
indicated 1n block 9). The MTM also tracks which tasks
(driver system) are no longer active and determines 1f addi-
tional RAM 1s required, such RAM can be reused (as indi-
cated 1 block 9). Should a system routine be resident 1n
memory (but not active) it can be immediately reactivated and
used without requiring the instructions to be reloaded nto
memory from non-volatile RAM.

For purposes of full and enabling disclosure, processing
steps which facilitate the loading and initiation of a bios
initialization routine for the instant invention are immediately
provided 1n commentary and pseudocode format.

Start (as indicated 1n block 1)

/*S1zeO1ICTMMTM 1s the total size of the RAM needed to
load CTM and MTM driver. 25989 bytes 1s just an example
number for size of CTM and MTM, and SizeOfMemory 1s
just an example size of 256 Mb RAM (Total System Mem-
ory).*/

S1zeOICTMMTM=25989

S1zeOtMemory=256000000

Base= 0

Mem= 0

/*Verity the memory needed for the CTM and MTM*/ (as
indicated in block 3)

WHILE (Mem - Base) <S1zeOICTMMTM and Mem <Size-
ofMemory DO

Verity memory location Mem does not have errors
IF location Mem has errors Base=Mem +1
Mem=Mem-+1
ENDWHILE
IF Base=SizeOiMemory them display memory error mes-
sage and halt. No room to load tasks /* Load the CTM and
MTM and execute. CITM and MTM have the highest priority
of all tasks, level 0. */
Load CTM and MTM tasks mnto RAM locations Base thru
Mem and start execution of CI'M and MTM at priority O
/* Keep track of how many tasks there are. CIM and MTM
are required and do not count as tasks. All tasks except CTM
and MTM should be eligible to be swapped out of memory.
RCT does count as a task.™/
Tasks=0
/* Set up start of memory for RCT*/
RCTMem=Mem +1

Following initiation of the mitialization routine for a per-
sonal computer, the operating system of the instant invention,
first interrogates an audit reference to i1dentily those mini-
mally essential operating system and application program (as
indicated 1n block 8, FIG. 1) startup processing components
necessary to effectuate user communication with the appara-
tus. These device dependent audit references are contained
within a data reference accessible to the device and most
casily comprehended as checkpoint records wherein the oper-
ating system and application program prosecution status 1s
recorded for later reference. Having once interrogated the
audit reference, the instant invention next selectively retrieves
the i1dentified startup program components and thereby
bypasses at least a portion of BIOS 1nstruction set normally
required for establishing interactive commumnication between
a user and the apparatus. That 1s, the istant invention 1den-
tifies those portions of the BIOS 1nitialization to be loaded to
RAM to effectuate such communication and then bypasses
other “standard” portions of BIOS processing which are nec-
essary to eflectuate almost instantaneous user communica-
tion.

US RE42,936 E

9

The instant invention next determines an apparatus specific
highest priority task and initiates execution of the task (as
indicated in block 12). Such tasks are obviously determined
by the function of the device with the tasks and the respective
priorities stored a non-volatile memory as a task list (TL) or as

atable in the CTM and ROM. The C'TM then passes the name
and size of the application to the MTM and loads the task into

memory and passes the task back to the CTM for execution.
As an example, the first task on a personal computer 1s the

loading of the driver for hard drive for the additional driver
application can be loaded. While the first task of any personal
device (MP3 player, PDA, etc.) is to display and the first task
ol a router would be to determine whether there was a valid
boot entry on its non-volatile RAM, a flash card or hard drive
(as indicated 1in block 18, FIG. 3). The instant invention next
highest determines what 1s the next execution priority task in
the task list, and executes that task and continues to execute
cach subsequent “next priority task™ until the task load 1s
completed (as mndicated 1n block 30). Once all such tasks are
loaded dispatching control of the operating system 1s turned
to all system and application components necessary to effec-
tuate normal operation. During this normal or standard opera-
tion, the MTM 1nitiates all tasks and tracks the task memory
requirements (as indicated 1 blocks 36 and 39). Each task 1s
individually responsible for managing 1ts own temporary files
and logging all modifications to those files as such modifica-
tions were made. When the files are saved, the original file
plus the logged or audit changes are keptin a file. The original
file 1s kept until creation 1s completed. Then and only then 1s
the old file deleted from the non-volatile RAM device.

As a natural extension of this embodiment, applications
should load with the minimal amount of software to allow the
main page and menu to be displayed. Plugins and other
“extraneous’” subroutines should not load until the operator
requests that function/subroutine.

For purposes of full and enabling disclosure, commentary
and 1illustrative pseudocode 1s immediately provided which
turther 1llustrates and discloses the invention processing coms-
ponent execution sequencing.

Core Task Manager (a.k.a. “CTM”) Main Execution (as indi-
cated 1n block 27)

Pass NVRAM task to MTM to allocate memory/ load
NVRAM task

Tasks = Tasks +1

(as indicated 1n block 25)/* The MTM Task Table 1s an array
holds an array of data that pertains to each task. Items this
table contains about each task are, for example, the task
memory location, priority, passed parameters, whether that
task 1s executing or just loaded, a list of tasks that call that

task */

MTM Task Table [Task] = NVRAM Task information

/* NVRAM task, MTM, RCT and the NVRAM table (see
below) are most likely *““critical” components of operation. I
the MTM returns a memory allocation error then the system
should display a “out of memory/bad memory” error and
halt. */

IF M'TM returns “No Memory Available” error, then display
error message and halt

/* The priority of the NVRAM task 1s dependent on each
device. In the example of a personal computer the NVRAM
task should have a lower priority than the Display, keyboard
or mouse task.

*/

Start execution of NVRAM task at priority X (as indicated 1n
block 30)

Pass RCT task to MTM to allocate memory / load RCT task
Tasks = Tasks + 1

MTM Task Table [Tasks] = RCT Task information

IF M'TM returns “No Memory Available” error, then display
error message and halt (as indicated 1n block 36)

10

15

20

25

30

35

40

45

50

55

60

65

10

RCT task 1s lowest priornty (priority Y) on the C'TM task list.
RCT 1s to run only when there are free CPU cycles orat a high
priority if MTM needs more memory to load a task. */

Start execution of RCT task at priority Y

/* The NVRAM table has a list of “high priority” tasks (and

their associated priority) that need to be read from BIOS 1nto
main memory, a list of the BIOS tasks that have updated code
that resides on NVRAM (again with a priority) an the History
data. The “History data” 1s device dependent (see below).
Note: A default table can reside i BIOS for initial device
operation or 1f the NVRAM table 1s destroyed. */

Read NVR AM table of BIOS tasks, Updated BIOS tasks and
history from NVRAM

/* Entries 1n the NVRAM table should include task location,
s1Ze, priority “Z” */

WHILE entries in BIOS / NVRAM task list DO

Pass task to M'TM to allocate memory / load task

Tasks =Tasks + 1

MTM Task Table [Tasks] = BIOS / NVRAM Task

IF MTM returns “No Memory Available” error, then display
error message and halt

Start execution of task at priority Z (as indicated 1n block 30)
/* Continue execution of tasks in the MTM task table. */
CALL FExecute Tasks

ENDWHILE

/* The entries 1n the History table include a prionity level and
a “load/run” bit. The load/run bit tells whether the task 1s
preloaded into RAM, but not executed until the device
requests them (e.g. task for what to do when the user presses
a particular button of the front panel or the application the
user “usually” double clicks on first) or tasks that are not the
absolute highest priority but still need to be loaded and run at
device startup (e.g. tasks for interface operation on a router or
on a server the applications that run on the server at initial-
ization). The “load” tasks are “historically” the first tasks that
the system executes after 1t 1s fully operational. The “Load
and Run” tasks are configured by the operator of the device. */

WHILE entries 1n history table Run bit set DO

Pass task to M'TM to allocate memory/load task

Tasks = Tasks + 1

MTM Task Table [Tasks]| = Task

Start execution of task at priority indicated 1n History table
/* Continue execution of tasks in the MTM task table. */
CALL Execute Tasks

ENDWHILE (as indicated in block 23)

/* If the invention receive operator input while the invention
are loading tasks, stop loading tasks and execute operator
requested task */

WHILE entries 1n history table Load bit set AND no operator
iput DO

Pass task to M'TM to allocate memory/load task

Tasks = Tasks + 1

MTM Task Table [Tasks]
CALL Execute Tasks
ENDWHILE (as indicated in block 20, 21, 23 and 33)

/* CTM Main loop. The Shutdown flag 1s set to 1 upon
interrupt from the user (gracetul shutdown) or upon receipt of
a power loss interrupt from the power supply (immediate
shutdown). Upon receipt of eirther tlag the CTM should
IMMEDIATELY branch to the shutdown routine. */

Shutdown = 0

WHILE Shutdown Flag not set DO
CALL Execute Tasks

ENDWHILE

= Optional Task

US RE42,936 E

11

CALL Shutdown

MEMORY TASK MANAGER (a.k.a. “MTM”) SUBROU-
TINE
/* The MTM tracks RAM usage and (1f required/if available)

does paging mn/out of Virtual Memory (VM). The CTM or
MTM protects the tasks from other tasks overwriting them
(segmentation violations) and should discourage self modi-
tying programs via not allowing “data” to be executed (helps
prevent possible wviral attacks/buffer overtlow attacks).
Memory protection would be via memory protection hard-
ware or strong memory protection AKAUNIXOS. The MTM
tracks which tasks (drivers, system calls, applications) are
active and which are no longer active so that 1if RAM 1s
required then that RAM can be reused. Memory 1s not
changed until something 1s loaded into that address space. If
a system routine 1s already 1n memory (albeit not active at the
moment) then 1t can be immediately reactivated and used
without requiring the instructions/data be reloaded into
memory from NVRAM (a waste of load time and presumably
NVRAM 1s a slower access device than RAM). */

/* MTM Called to add task if DontNeedTask = 0 */ (as
indicated 1n block 34)

IF DontNeedTask =0 THEN DO

/* The history table needs to be updated on a device by device
basis. In the case of a personal computer the MTM should
track the first “X” tasks the user requests and combine that
information 1n the history table with respect to the previous
information to give a cumulative history of the user’s actions
at startup. In the case of a router the router should keep a
history of the highest traill

ic 1nterfaces and write that infor-
mation to NVRAM on a periodic basis. This gives the router
an 1dea next time 1t starts up which interfaces should have the
highest priority task initialization/execution. In the case ol an
MP3 player the MP3 player should track which button 1s
historically pusher first and load that task first. */
S1zeOtMemory = Size of task to be loaded

IF (Memory available) < S1izeOtMemory then DO

/* Try to complete checking more RAM to load task */
WHILE RCTComplete = 0 and (Memory available) < Size-
OfMemory DO

Execute RCT Task

ENDWHILE

/* Check and see 11 there 1s enough memory now. If not then
free up memory from tasks that are not required. Worst case

page out to Virtual Memory (1 available) */
IF (Memory available) < S1izeOtMemory then DO

MTMTask =1
WHILE ((Memory
MTMTask<Tasks DO
/* I there 1s a task 1n memory that 1s not called by anything,
then that task 1s eligible to be freed. Add that task to the
memory available list */
IF MTMTaskTable[MTMTask, AvailableForRAM]
DO

add that RAM to Memory Available

Clear MTMTaskTablef MTMTask]

Tasks = Tasks— 1

ENDIF

MTMTask = MTMTask + 1
ENDWHILE
/* If the invention still don’t have memory then try Virtual
Memory or error out */
IF VirtualMemory 1s available DO
Swap task(s) to VirtualMemory until ((Memory avail-
able) >S1zeOftMemory
ELSE DO
Display error Message out of memory
CALL Shutdown
ENDIF
ENDIF
ENDIF

and

available)<Si1zeOtMemory)

= (then

5

10

15

20

25

30

35

40

45

50

55

60

65

12
Load Task into RAM
Task =Task + 1
MTMTaskTable| Tasks] = Task (as indicated 1n block 39)

/* Load Task 1s set to 1 to just load task, set to O 1f task 1s to be
loaded and run after it 1s loaded */

MTMTaskTable| Tasks, L.oad Task] = Load Task

/* Otherwise 1t 1s a Delete Task call */

ELSE DO

MTMTaskTable]MTMTask, AvailableForRAM] =0
MTMTask =1

/* 11 the task 1s not required any more, go thru the list of tasks
and remove that task from the called subtask list also. It the
subtask 1s needed 1n the future i1t can be added/reloaded at a

later time */

WHILE MTMTask< Task DO

IF MTMTaskTable[Looptasks] 1s in the MTMTaskTable
[IMTMTask] list then remove MTMTAskTable[Looptasks]
from that list

MTMTaskTable = MTMTask + 1

ENDWHILE

ENDIF

/* Set all the flags back to O (Not Set) */

Load Task =0

DontNeedTask =0

ENDSUBROUTINE

RCT SUBROUTINE

RCTComplete =0

While RCTMem < SizeOitMemory DO

Verity RCTMem 1s free of errors

/* Since most memory errors occur in “Blocks” the MEMBad
table will most likely consist of list of blocks of bad memory
cells rather than 1individual cells that are bad. If any memory
cells are found to be bad then that should somehow be
reported to the user of the device. */

IF RCTMem 1s not free of errors, add that memory location
to the MEMBad table
RCIMem = RCIMem + 1
ENDWHILE
RCTComplete =1
ENDSUBROUTINE
SUBROUTINE Execute Tasks
/* The Execute Tasks subroutine should follow the paradigm
of the UNIX operating system with respect to tasks. Specifi-
cally the Execute Tasks should perform process scheduling
for time-shared operations. No task should “lock up” the
machine. Rogue tasks, 11 detected, should be terminated with-
out prejudice. */
Looptasks = 0
/* The 1dle loop goes thru the tasks and gives them CPU time.
While a plethora of queuing algorithms can be used (and the
Execute Tasks would be modified accordingly) this loop will
use a simple equation of Execution time = (CPUTime/ (Pri-
ority + 1)) scheme where CPUTime 1s “X” 1nstructions. This
allows all tasks some access to the CPU and does not starve
out any task. Standard OS contention / semaphore algorithms

apply to preclude deadlocking processes. */

CPUTime = 10000

WHILE Looptasks <= Tasks do

/* Allow task to operate AT MOST (CPU Time/ (Priorty + 1))
instructions. It the task does not need that many cycles (1.e. 1t
1s 1dle) then the task should set a flag indicating such and
immediately return */

Allow task MTMTaskTable[Looptasks] to operate (CPU-
Time / (Priority +1)) instructions

/* 11 the just executed task requires subtasks to run then it set
a tlag, returns the task name it needs to MTM and ends. That

US RE42,936 E

13

task will now be brought into memory and all the passed
parameters passed to that subtask */

IF NeedTask tlag for task MTMTaskTable[Looptasks] 1s set
DO

IF Task Requested 1s in MTMTaskTable, Pass task name to
MTM to pass parameters and update MTM table with calling
task, set LoadTask flag ELSE Pass task to MTM to allocate
memory / load task and passed parameters, set AddTask flag
ENDIF

/* Likewise 11 a task i1s releasing a subtask or the task 1s
terminating then the invention can release any subtasks to that

task */
IF DontNeedTask flag for task MTM TaskTable[Looptasks] 1s
set or Terminate tlag 1s set DO

IF DontNeedTask flag 1s set, Pass task and subtask name to

MTM and set DontNeedTask flag

If task 1s terminating then pass task name to MTM and set

Terminate flag
ENDIF

ENDWHILE

ENDSUBROUTINE (as indicated in blocks 20, 21 and 22)
SUBROUTINE Shutdown

/* There should be suificient power 1n the power supply so
that after the CTM 1s notified of power loss a final write of all
butilers on the non-volatile memory can be accomplished (it
required) by the CTM. At that time the device can be shut
down. The fast shutdown of the device requires that all tasks
appends a “log” file (changes to that file) to the NVRAM file
as changes are made to that file. When a file 1s “saved” the new
file consists of the original file plus the “logged” changes to
that file. When the new file 1s completely written then the old
file can be deleted. This process allows the system to just flush
all the buifers an not require a graceful shutdown of all
tasks. */

Flush NVRAM Buffers to NVRAM device (if required)
Shut down the device

ENDSUBROUTINE

Complimenting the abstract, summary and detailed
description as provided herein, flowcharts of logic flow
sequencing associated with FIGS. 1 through 3 are immedi-
ately provided for purposes of full and enabling disclosure
while 1llustrative logic step sequencing 1s denoted no such
restriction 1s herein mtended, rather the invention 1s capable
ol being practiced 1n a number of contexts as indicated 1n 1ts
versatility with respect to varying type computer apparatuses.
Consequently logic flow sequencing may be altered in asso-
ciation therewith as will be readily apparent to those skilled 1n
the art.

While this mvention has been described to illustrative
embodiments, this description 1s not to be construed 1n a
limiting sense. Various modifications and combinations of the
illustrative embodiments as well as other embodiments will
be apparent to those skilled in the art upon referencing this
disclosure. It 1s therefore intended that this disclosure encom-
pass any such modifications or embodiments.

What 1s claimed 1s:
1. A method for loading an operating system of a comput-
ing apparatus, comprising:

initiating execution of an mnitialization routine specific to
said computing apparatus;

validating not more than substantially a portion of RAM
suificient to load at least the required portion of the
initialization routine;

loading into RAM at least the required portion of the 1ni-
tialization routine;

10

15

20

25

30

35

40

45

50

55

60

65

14

reading a {ile to identify the programs that are minimally
essential to startup processing components and tasks of
high priority to said computing apparatus;

veritying not more than substantially a portion of the

remaining RAM suificient to load into the RAM at least
the system and application program that are minimally
essential to startup processing components prior to load-
ing into the RAM the programs that are minmimally
essential to said computing apparatus;

selectively retrieving and executing said 1dentified startup

processing components based on the priority of execu-
tion;

appending to and recording 1n a device dependent audit

reference the most recent first occurrences of operating
system and application program processing component
execution;

interrogating said program dependent audit reference to

identify application programs that are minimally essen-
tial to said computing apparatus;
loading into RAM the highest occurrence application pro-
gram at startup 1 the system 1s 1dle and the user has not
requested an application program to start; and,

recording in the above audit file the first application pro-
gram the user requests.

2. The method of claim 1 further comprising the step of
continuing to verity RAM as needed by the system.

3. The method of claim 1 further comprising the steps of
passing dispatching control to the system and application
program processing components to effectuate normal appa-
ratus operation.

4. The method of claim 1 wherein the minimally essential
application program is the user interface.

5. The method of claim 1 wherein errors produced due to

the RAM validation are recorded and the RAM 1s marked as
unusable.

6. The method of claim 1 wherein the shutdown time of the
computing apparatus 1s reduced by allowing the computing
apparatus suificient capacitance to perform system mainte-
nance, prevent data loss, and provide smooth almost 1nstan-
taneous shutdown.

7. The method of claim 1 wherein said computing appara-
tus 1s a network equipment.

8. The method of claim 1 wherein said computing appara-
tus 1s a personal computer.

9. The method of claim 1 wherein said computing appara-
tus 1s an MP3 player.

10. A computing apparatus, comprising:

RAM;

an operating system;

a processing unit that utilizes the RAM; and

an 1nitialization routine specific to the computing appara-

tus and executed during boot-up by the processing unit
that causes the processing unit to (1) identify system and
application programs that are minimally essential to
startup processing components and tasks of high priority
to said computing apparatus, (2) verity not more than
substantially a portion of the RAM sufficient to load
system and application programs that are minimally
essential to startup processing components and tasks of
high priority to said computing apparatus into the veri-
fied RAM and (3) load at least system and application
programs that are minimally essential to startup in the
verified RAM;

means for appending to and recording 1n a device depen-

dent audit reference the most recent first occurrences of
operating system and application program processing
component execution;

US RE42,936 E

15

means for interrogating said device dependent audit refer-
ence to 1identily system and application programs that
are minimally essential to startup processing compo-
nents and tasks of high priority to said computing appa-
ratus;

means for loading into RAM the highest occurrence appli-

cation program at startup if the system is 1dle and the
user has not requested an application program to start;
and,

means for recording 1n the above audit file the first appli-

cation the user requests.

11. The computing apparatus of claim 10 wherein RAM
validation continues as needed by the system.

12. The computing apparatus of claim 10 wherein the 1ni-
tialization routine dispatches control to the system and appli-
cation program processing components to effectuate normal
apparatus operation.

13. The computing apparatus of claim 10 wherein the
application program that 1s minimally essential to startup
processing components and tasks of high prionity to said
computing apparatus 1s the user interface.

14. The computing apparatus of claim 10 further compris-
ing means for recording errors produced due to the RAM
validation; and means for marking the RAM as unusable.

15. The computing apparatus of claim 10, further compris-
ing means for reducing shutdown time 1s reduced by allowing
the computing apparatus suilicient capacitance to perform

system maintenance, prevent data loss, and provide smooth
almost 1nstantaneous shutdown.

16. The computing apparatus of claim 10 wherein the com-
puting apparatus 1s a network equipment.

17. The computing apparatus of claim 10 wherein said
computing apparatus 1s a personal computer.

18. The computing apparatus of claim 10 wherein said
computing apparatus 1s an MP3 player.

19. A method for shutting down a computer apparatus, the
method comprising:

updating a history table to indicate a first number of user

request tasks, wherein the history table includes previ-
ous information of a cumulative history of user’s actions
at a startup of the computer apparatus,

receiving one of a user interrupt and a power loss inter-

rupt, wherein the user interrupt corvrvesponds to a request
to shut down the computer apparatus, and wherein the
power loss interrupt corresponds to an immediate shut-
down of the computer apparatus; and

saving the history table in a non-volatile memory, where in

response to a subsesquent startup of the computer appa-
ratus, the indicated first number of user vequest tasks are
executed.

20. The method of claim 19, further comprising.

performing a final write of a plurality of memory buffers to

the non-volatile memory.

21. The method of claim 19, wherein a log file is maintained
for a first one of a plurality of operating systems and appli-
cation programs executing in the computer apparatus, and
further comprising:

16

performing a final write of the log file to the non-volatile
Memory.
22. A method for shutting down a router, the method com-

prising:

5 periodically updating a history table in a nonvolatile ran-
dom access memory (NVRAM) to indicate at least one
highest traffic interface;

receiving one of a user interrupt and a power loss inter-

rupt, wherein the user interrupt corvresponds to a request
to shut down the computer apparatus, and wherein the
power loss interrupt corresponds to an immediate shut-
down of the computer apparatus; and

saving the history table in a nonvolatile vandom access

memory (NVRAM), where in vesponse to a subsequent
startup of the router, at least one interface operation task
of the indicated at least one highest traffic interface is
given highest priority over at least one other interface
operation task during the subsequent startup.

23. The method of claim 22, wherein updating the history
table comprises:

information sufficient to identify a type of routing layer

protocol used by the at least one highest traffic interface.

24. A method for shutting down a hand held personal
device, the method comprising:

updating a history table to indicate a first number of user

function buttons, whervein the history table includes
information identifving at least one first used function
button selected by the user during startup;

receiving one of a user interrupt and a power loss inter-

rupt, whevein the user interrupt covresponds to a request
to shut down the computer apparatus, and wherein the
power loss interrupt corresponds to an immediate shut-
down of the computer apparatus; and

saving the history table in a non-volatile memory, where in

response to a subsequent startup of the computer appa-
ratus, a task associated with the indicated at least one
first used function button is loaded.

25. The method of claim 24, whevein the hand held per-
sonal device is a music player, wherein the function buttons
correspond to stoved songs, and wherein the task associated
with the indicated at least one first used function button is
plaving a song corresponding to at least one of a last plaved
song and a most frequently plaved song identified in the
history table.

26. The method of claim 24, whevein the hand held per-
sonal device is a cell phone, wherein the function buttons
correspond to phone numbers, and whevein the task associ-
ated with the indicated at least one first used function button
is loading a directory of phone numbers identified in the
history table.

27. The method of claim 24, wherein the hand held per-
sonal device is a game player, wherein the function buttons
correspond to plaved games, and wherein the task associated
with the indicated at least one first used function button is
s plaving a game corvesponding to at least one of a last plaved

game and a most frequently plaved game identified in the

history table.

10

15

20

25

30

35

40

45

50

	Front Page
	Drawings
	Specification
	Claims

