(19) United States

12 Reissued Patent
Vallmayjo et al.

(10) Patent Number:
45) Date of Reissued Patent:

USOORE42881E

US RE42.881 E
Nov. 1, 2011

(54) METHOD AND SYSTEM FOR SCANNING
IMAGES IN A PHOTO KIOSK

(75) Inventors: Patrice Vallmajo, Antibes (FR);
Phillippe Joseph Ghislain Bossut,
Portolla Valley, CA (US)

(73) Assignee: Intellectual Ventures I LLC,
Wilmington, DE (US)

(21) Appl. No.: 11/521,620

(22) Filed: Sep. 13, 2006
Related U.S. Patent Documents
Reissue of:
(64) Patent No.: 6,791,723
Issued: Sep. 14, 2004
Appl. No.: 09/271,030
Filed: Mar. 17, 1999

U.S. Applications:
(63) Continuation-in-part of application No. 09/151,437,

filed on Sep. 11, 1998, now Pat. No. 6,750,988.

(51) Imt. CL.

HO4N 1/04 (2006.01)
HO4N 1/46 (2006.01)
GO6K 9/52 (2006.01)
GO6K 9/36 (2006.01)

(52) US.CL ... 358/488; 358/4774; 358/444; 358/452;

358/453; 358/505; 382/199; 382/206; 382/260;

382/289

(58) Field of Classification Search 358/488,

358/486, 478, 401, 444, 452, 453, 464, 465,
358/448, 296, 506, 505; 382/199, 289, 193,
382/206, 205, 286,319, 318, 260, 266, 283,

382/282, 294-296

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,555,042 A 9/1996 Jones et al.
5,623,581 A 4/1997 Attenberg
5,913,019 A 6/1999 Attenberg
6,049,636 A * 4/2000 Yangcccoviviiniiniinn, 382/289
6,111,667 A * §2000 Mishimaetal. 358/488
6,369,908 Bl 4/2002 Frey et al.
6,597,808 B1* 7/2003 Guoetal 382/173
6,750,988 Bl 6/2004 Ghislain Bossut et al.
6,791,723 Bl 9/2004 Vallmajo et al.

2010/0104194 Al1* 42010 Suzuki ..cooovvevieviniinnnn, 382/195

OTHER PUBLICATIONS

Eastman Kodak Company, “Ellminating Red-Eye,” http://www.
kodak.com/cluster/global/en/service/faqs/faq0012.shtml, Sep. 7,

1998.

“IBM/Delphi Photo Kiosk,” http://www.ratio.com/p__photo.htm,
Sep. 7, 1998.

William K. Pratt, “Digital Image Processing,” ISBN:0471857661,
1991, pp. 491-556, John Wiley & Sons, Inc.

* cited by examiner

Primary Examiner — Cheukian Lee
(74) Attorney, Agent, or Firm — Perkins Coie LLP

(57) ABSTRACT

A method and system for determining the orientation of an
image ol a picture within a scanned 1image, including the steps
of locating in the scanned 1image the contour of the image of
the picture, determiming a plurality of bounding boxes con-
fining the contour of the image of the picture, selecting one of
the plurality of bounding boxes that 1s substantially aligned
with the contour of the image of the picture, and calculating
an angle of rotation of the picture based on the selected
bounding box.

64 Claims, 9 Drawing Sheets

U.S. Patent Nov. 1, 2011 Sheet 1 of 9 US RE42.881 E

FIG. 1B

U.S. Patent Nov. 1, 2011 Sheet 2 of 9 US RE42.881 E

200

FILTER PRE-SCANNED IMAGE RESIDENT IN A PHOTO KIOSK

WITH EDGE FILTER

210

IDENTIFY PIXELS WITHIN PRE-SCANNED IMAGE WHERE
SIGNIFICANT EDGES ARE LOCATED

220

DETERMINE A BOUNDING BOX HAVING EDGES PARALLEL
TO THE EDGES OF THE SCANNER BED AND CONTAINING

ALL PIXELS OF THE PRE-SCANNED IMAGE WHERE
SIGNIFICANT EDGES ARE LOCATED

FIG. 2

U.S. Patent Nov. 1, 2011 Sheet 3 of 9 US RE42.881 E

300

FILTER THE PRE-SCANNED IMAGE PRESIDENT

IN A PHOTO KIOSK WITH AN EDGE FILTER

310
IDENTIFY THE PIXELS WHERE THE SIGNIFICANT

EDGES OF THE EDGE MAP ARE LOCATED

INITIALIZE S_SMALLEST TO A VERY LARGE POSITIVE
VALUE
INITIALIZE X=X_START

320
330
340

YES TERMINATE EXECUTION:

1S X>X_END? > THE DESIRED ANGLE OF
ROTATION IS X_ANGLE

NO

350

DETERMINE THE MINIMAL BOUNDING BOX, B,
ORIENTED IN THE DIRECTION OF ANGLE X

RELATIVE TO THE EDGES OF THE SCANNER
BED AND CONTAINING ALL OF THE PIXELS

WHERE A SIGNIFICANT EDGE IS PRESENT

400
X = X+DX SET S = SIZE(B)

380

360

370

N

=S S<S_SMALLEST?>
YES
390
X_ANGLE = X
S SMALLEST =S

FIG. 3

US RE42,881 E

Sheet 4 of 9

Nov. 1, 2011

U.S. Patent

00y W3LSAS ONISS300ud

¢
301Add
ONIINRId

09V

OtV

JOIAIC0
AV1dSIa

¥ Ol

ch
d3INNVOS

vev

SJAVVNI
ONINVY A

JAVYM
HIIHHVYO
031V INAONn

0GY

3OIA30
SNOILLYOINNWANOD

0 AHOWIW

0¥y

331A3d
LAdNI-Y3SN

oLy
LINMY
ONISS3I00dd

US Patent Nov. 1, 2011 Sheet 5 0of 9

U.S. Patent Nov. 1, 2011 Sheet 6 of 9 US RE42.881 E

620

L-0*

FIG. 6

-
)
QLo

L-0
_

610

U.S. Patent Nov. 1, 2011 Sheet 7 of 9 US RE42.881 E

IDENTIFY THE OUTERMOST EDGES OF THE PICTURE
0,

INITIALIZE D_SMALLEST TO A VERY LARGE POSITIVE VALUE

720
INITIALIZE X = X_START
I'4

71

730 740 50
YES TERMINATE EXECUTION THE DESIRED
ANGLE OF ROTATION IS ANGLE_X
NO 760 770
INITIALIZED D=0 MARK ALL PIXEL LOCATIONS IN

THE OUTERMOST EDGES AS BEING

780 UNPROCESSED CHOOSE A PIXEL
MARK P AS BEING LOCATION P WHERE AN OUTERMOST
PROCESSED EDGE IS PRESENT
790 800

lN';@'ﬁ%i;?S&%éEST MARK ALL SIDES OF THE BOX, B,

ORIENTED IN THE DIREGTION OF
POSITIVE VALUE _ [g40 | ANGLE X RELATIVE TO THE EDGES

OF THE SCANNER BED, AS BEING
CHOOSESXS'BDE S OF UNPROCESSED
820
MARK S AS BEING 1230 CALCULATE THE
PROCESSED DISTANCE. L. FROM P TO S

860 NG 340

1S THERE AN UNPROCESSED @
VES SIDE. S. OF BOX B? 1 1

870 NO YES
MALLEST =
D=D+1L SMALLEST 880

IS THERE AN UNPROCESSED PIXE
LOCATION, P, WHERE AN OUTERMOS
EDGE IS PRESENT?

900 90 NG

NO 15 D < D_SMALLEST?
YES
X ANGEL = X
D SMALLEST =D

FIG. 7

YES

US RE42,881 E

Sheet 8 0f 9

Nov. 1, 2011

U.S. Patent

U.S. Patent Nov. 1, 2011 Sheet 9 of 9 US RE42.881 E

-
o
=

1000

980

FIG. S

US RE42,381 E

1

METHOD AND SYSTEM FOR SCANNING
IMAGES IN A PHOTO KIOSK

Matter enclosed in heavy brackets []| appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

This 1s a continuation-in-part of application U.S. Ser. No.
09/151,437, filed on Sep. 11, 1998, now U.S. Pat. No. 6,750,
988, entitled “A Method and System for Scanning Images 1n
a Photo Kiosk.”

FIELD OF THE INVENTION

The present invention relates to scanning images 1n a photo

kiosk.

BACKGROUND OF THE INVENTION

Photo kiosks are booths containing hardware or software
for creating image content. A consumer can, for example,
place a picture 1n the kiosk, have the picture digitized to a
digital image, edit the digital image and print the edited image
on various forms of paper output. Some photo kiosks provide
pre-designed templates into which a consumer can place his
own pictures.

Some photo kiosks contain a scanner unit for converting a
picture to a digital image. Typically the scanner unit 1n such a
photo kiosk 1s a flat bed scanner.

Flat bed scanners are used to convert pictures to digital
images by digitizing picture colors at sample locations within
a fine two-dimensional spatial grid. Such scanners are typi-
cally operated by positioning a picture to be scanned on a
glass surface of the flat scanner bed, closing the scanner bed
cover over the glass surface, and then scanming a region of the
scanner bed by means of scanming units located underneath
the scanner bed. Flat bed scanners are typically connected to
computers and operated using soitware applications.

A picture to be scanned may occupy only a small part of the
tull scanner bed area. In order not to scan the full scanner bed
area, but rather to scan only a smaller area containing the
picture, one can {irst apply a very low resolution pre-scan to
the entire scanner bed area, and then use the pre-scanned
digital 1image to set scanner parameters and select a suitable
region of 1nterest surrounding the picture. Such a low-reso-
lution scan can be at a resolution of approximately 24 dots per

inch (dpi), which corresponds to approximately 1 pixel per
millimeter.

A high resolution scan 1s costly both 1n time spent scanning
and 1n scanned 1mage file size. If one were to scan the entire
scanner bed area with a high resolution scan, most of the time
spent and most of the image data could pertain to the empty
part of the scanner bed that does not contain the picture.
Moreover 11 scanner parameters, such as color look-up tables
and contrast, are not set properly, the scan may have to be
repeated. A pre-scanned digital image can be used to set
scanner parameters, and also to select a region of interest that
surrounds the picture. By setting the scanner parameters in
this way and selecting a region of interest, one ensures that the
high resolution scan captures only a sub-area of the entire
scanner bed area that contains the picture within 1t, and that
the scanner parameters are properly set before performing the
high resolution scan.

10

15

20

25

30

35

40

45

50

55

60

65

2

In photo kiosks that contain scanners, the scanner unit 1s
typically located inside the kiosk. The consumer may not be

able to see the scanner. He may not be able to control the
scanner settings, and he may not even be able to view a
pre-scanned 1mage. Moreover, even 1f 1t were possible to
provide such control, it would only serve to complicate the
operation of a photo kiosk, thereby frustrating and distancing
potential consumers who may have very little or no experi-
ence with scanner devices.

SUMMARY OF THE INVENTION

There 1s provided 1n accordance with a preferred embodi-
ment of the present invention a method for operating a photo
kiosk having a scanner therein, including positioning a user-
provided picture on a scanner bed of the kiosk scanner in an
arbitrary orientation relative to the scanner bed, and automati-
cally determining the orientation of the picture by pre-scan-
ning, using the kiosk scanner, at least an area of the scanner
bed having the picture positioned therein at a low resolution,
to produce a pre-scanned 1mage, and scanming, using the
kiosk scanner, an area of the scanner bed at a high resolution
to provide a photo product having an image of the picture in
a desired orientation therein irrespective of the picture’s ori-
entation relative to the scanner bed.

There 1s also provided i1n accordance with a preferred
embodiment of the present invention a method for determin-
ing the orientation of an 1mage of a picture within a scanned
image for use within a photo kiosk having a scanner therein,
including the steps of positioning a user-provided picture on
a scanner bed of the kiosk scanner 1n an arbitrary orientation
relative to the scanner bed, scanning, using the kiosk scanner,
a preliminary region of the scanner bed having the picture
positioned therein, to produce a preliminary scanned 1mage
containing an image of the picture, determining a plurality of
bounding boxes confining the image of the picture within the
preliminary scanned 1image, selecting one of the plurality of
bounding boxes confining the 1image of the picture, and cal-
culating an angle of rotation of the picture based on the
selected bounding box.

There 1s also provided 1n accordance with a preferred
embodiment of the present invention a system for scanning
pictures within a photo kiosk, including a kiosk scanner hav-
ing a kiosk scanner bed for positioning a picture thereon 1n an
arbitrary orientation relative to the kiosk scanner bed, and a
kiosk processor automatically determiming the orientation of
the picture by pre-scanning, using the kiosk scanner, at least
an arca ol the kiosk scanner having the picture positioned
therein at a low resolution to produce a pre-scanned image,
and scanning, using the kiosk scanner, an area of the scanner
bed at a high resolution to provide a photo product having an
image of the picture 1n a desired orientation thereon 1rrespec-
tive of the picture’s orientation relative to the scanner bed.

There 1s also provided 1n accordance with a preferred
embodiment of the present invention a system for determin-
ing the orientation of an 1mage of a picture within a scanned
image for use within a photo kiosk, including a kiosk scanner
having a kiosk scanner bed for positioning a picture thereon in
an arbitrary orientation, a kiosk processor determining a plu-
rality of bounding boxes confining an 1image of the picture
within a preliminary scanned 1mage, a selector selecting one
of the plurality of bounding boxes confining the image of the
picture, and an 1image processor calculating an angle of rota-
tion of the picture based on the selected bounding box.

There 1s also provided 1in accordance with a preferred
embodiment of the present invention a photo kiosk, including
a scanner having a scanner bed for positioning a picture

US RE42,381 E

3

thereon 1n an arbitrary orientation, and apparatus for deter-
mimng a bounding box confining an 1mage of the picture
within a pre-scanned 1mage, the pre-scanned 1image being,
produced by pre-scanning an area of the scanner bed having
the picture positioned thereon, and the bounding box having,
edges parallel to the borders of the scanner bed.

There 1s also provided 1n accordance with a preferred
embodiment of the present invention a photo kiosk, including
a scanner having a scanner bed for positioning a picture
thereon 1n an arbitrary orientation, and apparatus for deter-
mimng the orientation of an 1image of the picture within a
preliminary scanned image, the preliminary scanned image
being produced by pre-scanming an area of the scanner bed
having the picture positioned thereon.

There 1s also provided i1n accordance with a preferred
embodiment of the present invention a method for determin-
ing the orientation of an 1mage of a picture within a scanned
image, including the steps of locating 1n the scanned 1mage a
contour of the image of the picture, determining a plurality of
bounding boxes confining the contour of the image of the
picture, selecting one of the plurality of bounding boxes that
1s significantly aligned with the contour of the image of the
picture, and calculating an angle of rotation of the picture
based on the selected bounding box.

There 1s also provided 1n accordance with a preferred
embodiment of the present invention a method for operating
a scanner, including detecting that a user has placed a plural-
ity ol pictures 1n arbitrary orientations on a scanner bed of the
scanner, scanning the plurality of pictures to generate a
scanned 1mage containing a plurality of 1images of the pic-
tures, and automatically determining an orientation of at least
one of the images of the pictures relative to the scanner bed
using the scanned 1image.

There 1s also provided i1n accordance with a preferred
embodiment of the present invention a system for determin-
ing the orientation of an 1mage of a picture within a scanned
image, including an 1image processor locating 1n the scanned
image a contour of the image of the picture, a box generator
determining a plurality of bounding boxes confining the con-
tour of the image of the picture, a box processor selecting one
ol the plurality of bounding boxes that 1s significantly aligned
with the contour of the image of the picture, and an angle
processor calculating an angle of rotation of the picture based
on the selected bounding box.

There 1s also provided i1n accordance with a preferred
embodiment of the present invention a system for scanning
pictures, including a scanner generating a single scanned
image from a plurality of pictures, the single scanned 1image
containing a plurality of images of the pictures, a scanner bed
within said scanner on which are located a plurality of pic-
tures 1n arbitrary orientations, and a processor automatically
determining the orientation of at least one of the images of the
pictures using the single scanned image.

DESCRIPTION OF THE DRAWINGS

The present invention will be more fully understood and
appreciated from the following detailed description, taken 1n
conjunction with the drawings 1n which:

FIGS. 1A and 1B are simplified illustrations of a photo
kiosk having a scanner therein, operating in accordance with
a preferred embodiment of the present invention to properly
orient a picture that 1s placed on the scanner in an arbitrary
orientation;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 2 1s a ssmplified flow chart of a preferred embodiment
of the present invention used to determine a region of interest
containing a picture, from a low resolution pre-scanned
1mage;

FIG. 3 1s a simplified flowchart of a preferred “variable box
s1ze¢” embodiment of the present invention for determining an
angle ol rotation of a picture relative to the edges of a scanner
bed;

FIG. 415 a block diagram of a processing system that can be
used to perform processing operations in a photo kiosk
according to embodiments of the present invention;

FIG. 5 1s an illustration of the determination of concentric
boxes used to calculate an angle of rotation of a picture, in
accordance with a preferred “fixed box size” embodiment of
the present invention;

FIG. 6 1s an illustration of the computation of the distance
from a pixel location to a side of a box that 1s not a reference
box (1.e. having non-zero angle of rotation relative to the
scanner bed), based on the distance from the same pixel
location to a side of a reference box, 1n accordance with a
preferred “fixed box size” embodiment of the present inven-
tion;

FIG. 7 1s a simplified flowchart of a preferred “fixed box
s1ze¢” embodiment of the present invention for determining an
angle of rotation of a picture relative to a scanner bed, based
on a contour of the picture;

FIG. 8 1s a simplified illustration of how blobs of pixel
locations grow 1n accordance with a preferred embodiment of
the present invention; and

FIG. 9 1s a simplified 1llustration for measurement of the

separation between two blobs 1n accordance with a preferred
embodiment of the present invention.

DESCRIPTION OF A PREFERRED
EMBODIMENT

In a photo kiosk operating environment 1t 1s necessary to
perform the setting of parameters and selection of a region of
interest completely automatically, without any manual inter-
vention, using a low-resolution pre-scanned digital image.
Specifically, a picture 1s positioned on a scanner bed 1n an
arbitrary orientation either by a user or by an automatic
feeder, and the photo kiosk should automatically select a
region of interest. Herein, an arbitrary orientation refers to a
non-predetermined orientation that may be any one of a con-
tinuous range ol orientations. For example, the picture need
not be positioned tlush with any border of the scanner bed,
and need not even be situated in parallel alignment to the
borders of the scanner bed. That 1s, the picture may be posi-
tioned anywhere within the area of the scanner bed and may
be rotated relative to the borders of the scanner bed.

Reference 1s now made to FIGS. 1A and 1B, which are
simplified illustrations of a photo kiosk 10 having a scanner
12 therein, operating 1n accordance with a preferred embodi-
ment of the present invention to determine the orientation of
a picture 14 that 1s placed on scanner 12 i1n an arbitrary
orientation. The photo kiosk 10 shown in FIG. 1A and FIG.
1B has a protruding slideable scanner bed 16, for placing
picture 14 thereon, a kiosk processor 18 for carrying out
digital image manipulations, and a printer device 20 for out-
putting photo products, such as a poster, personalized station-
ary, business cards, invitations or a calendar.

In addition to producing hard copy photo products, a photo
kiosk may also provide a consumer with the capability of
receiving an electronic (i.e. soit) copy of his photo product.
Moreover, a photo kiosk may operate within a computer

US RE42,381 E

S

network, enabling a consumer to upload an electronic 1image
to the photo kiosk for processing.

As seen 1n FIG. 1A, a user places picture 14 on protruding
slideable scanner bed 16 in an arbitrary orientation. The
placement of picture 14 need not be flush with any border of
scanner bed 16, nor 1n parallel alignment with borders of
scanner bed 16. After the scanner bed 16 slides back into
kiosk 10, scanner 12 operates to digitize picture 14. In an
alternate embodiment, scanner 12 may include an automatic
teeder (not shown) that accepts picture 14 from the user and
teeds picture 14 into position on scanner bed 16 1n an arbitrary
orientation. In either embodiment, after scanner 12 operates
to digitize picture 14, kiosk software or hardware operating in
accordance with a preferred embodiment of the present
invention calculates the orientation of picture 14 on scanner
bed 16.

In FIG. 1B kiosk 10 uses the calculated orientation infor-
mation to correctly adjust the alignment of the displayed
picture with respect to the horizontal and vertical axes of the
kiosk display; 1.e. X and Y axes defined by the borders of
scanner bed 16. When the user prints a photo product 22, an
image of the picture 14 1s properly aligned therein.

An approach that may come to mind for automatically
selecting a region of interest surrounding a picture 1n a pre-
scanned digital image, 1s to look for a constant color back-
ground where only the scanned scanner cover 1s present, but
not the picture. However, scanner covers are often made of
maternial that does not reflect a constant color, and may give
rise to complicated patterns when scanned. In addition, there
may be fine scratches 1n the glass surface of the scanner bed,
or fine patterns 1n the surface of the scanner cover, and these
can show up as faint edges 1n the scanned 1mage. As a result,
the background where only the scanned cover has been
scanned may not have a constant color, and may even have a
complicated coloration pattern. As such, 1t may not be readily
discernible by an automated processor.

Overview

The present specification describes a method and system
for automatically identifying an accurate region of interest
surrounding a picture from a pre-scanned digital image, with-
out manual intervention. The present specification further
describes a method for determining an angle of orientation of
the picture relative to the borders of the scanner bed, also
without manual intervention. The angle of orientation can be
used to later correct the scanned 1image for a positioning of the
picture on the scanner bed that was not aligned with the
directions of the borders of the scanner bed.

As used herein, the term “pixel” denotes an element of a
digital image. A pixel has both a location, referred to as the
pixel location, and a color, referred to as the pixel color. The
pixel color 1s characterized by a pixel color value, which 1s
typically a triplet of three individual color channel values,
such as red (R), green (G) and blue (B). The R, G and B values
may be 8-bit integer values ranging from 0 to 255. Many other
well-known color spaces may also be used, and color chan-
nels may also have precisions other than 8 bits.

Asused herein, the term “picture” denotes an object placed
on the surface of a scanner bed to be converted to a digital
image by scanning. Pictures include drawings, photographs,
document pages, three-dimensional objects such as a book,
and more.

The “angle of orientation” referred to herein can be either
the orientation of the picture relative to the scanner bed, or the
orientation of the subject matter within the picture relative to
the scanner bed. In particular, preferred embodiments of the
present invention can be used to correct for positioning of the
picture that was not aligned with the borders of the scanner

5

10

15

20

25

30

35

40

45

50

55

60

65

6

bed, or for positioning of the subject matter within the picture
that was not aligned with the borders of the picture, or for a
combination of both.

In the ensuing discussion 1t 1s assumed that scanlines 1n the
scanned 1mage are parallel to a border of the scanner bed. That
1s, the scanming units of the scanner scan each of a succession
of lines (scanlines) 1n a direction that 1s parallel to one border
ofthe scanner bed, and each successive scanline 1s offset from
its neighboring scanline 1n a scanline offset direction that 1s
perpendicular to the scanline direction. If scanlines in the
scanned 1mage are not parallel to a border of the scanner bed,
then the present invention as described hereinbelow deter-
mines an angle of rotation of the picture relative to the scan-
line and scanline offset directions. The scanline and scanline
olfset directions are the principal directions, since they cor-
respond to the directions of the horizontal and vertical axes of
the kiosk display. Typically the scanline and scanline offset
directions are aligned with the directions of the borders of the
scanner bed, which 1s assumed to be the case 1n the descrip-
tion hereinbelow.

The present invention operates in two stages, the first stage
being the determination of a region of interest and the second
stage being the determination of an angle of rotation. The first
stage, determining a region of interest, 1s carried out by per-
forming a low resolution pre-scan of the entire scanner bed,
and then using the resulting pre-scanned digital image to
determine a region of interest. The region of interest 1s then
used to limit the scanning area for performing a high-resolu-
tion scan and generating a high-resolution scanned digital
image.

For carrying out the second stage; namely, determining an
angle of rotation, the present specification describes two
embodiments—a “variable box size” embodiment, and “fixed
box s1ze” embodiment. Both embodiments operate by gener-
ating boxes at various angles of rotation that surround the
picture within the scanned 1image, and determining which box
1s “most aligned” with the picture, as described 1n detail
hereinbelow.

For lack of information at the outset, the low resolution
pre-scanned 1image 1s used for the first stage of determining a
region ol interest. Thereafter, either the low resolution pre-
scanned 1mage or the high-resolution scanned 1image can be
used for the second stage of determining the angle of rotation.
That 1s, the variable box size embodiment can be carried out
using either the low resolution pre-scanned image, or the high
resolution scanned image, and similarly the fixed box size
embodiment can be carried out using either the low resolution
pre-scanned image or the high-resolution scanned 1mage.

The choice of whether to use the low resolution pre-
scanned 1mage or the high resolution scanned image should
take into consideration the pros and cons of each. Use of the
low resolution pre-scanned image has the advantage of being
faster to process, but less accurate. Use of the high resolution
image has the advantage of being more accurate, but slower to
pProcess.

For purposes of clarification and for the sake of definite-
ness, the ensuing discussion 1s presented for embodiments in
which the low resolution pre-scanned 1image 1s used for the
variable box size embodiment, and the high resolution
scanned 1mage 1s used for the fixed box size 1image.
Determining a Region of Interest

In a preferred embodiment of the present invention, deter-
mining a region of iterest involves three or more steps. The
first step 1s to pre-scan the scanner bed at a low resolution, to
obtain a pre-scanned digital image. The second step 1s to
identify the “significant” edges within the pre-scanned
image, as described 1n detail hereinbelow. The third step 1s to

US RE42,381 E

7

determine a region of interest that encompasses all of the
significant edges, 1s aligned with the scanner bed and 1s as
small as possible, as described 1n detail hereinbelow. Once a
region of interest 1s determined, a high resolution scan 1s
performed within the area of the region of interest. An
optional fourth step 1s to use the high resolution scanned
image to refine the region of interest calculated in step three.
The refined region of interest 1s not typically used to delimait
another high resolution scan, but 1s rather used to crop the
picture within the scanned 1image for displaying the picture on
a kiosk display.

In a preferred embodiment, the present invention carries
out the second step above by applying an edge filter to the
pre-scanned 1mage, so as to detect the edges therein. Edge
filters use gradients in pixel luminance values to detect edges.
Luminance 1s an achromatic value representing the light
intensity of a color. Luminance, L, 1s related to the red (R),
green () and blue (B) color channels by the approximate
linear relationship L=0.299*R+0.587*G+0.114*B. Human
perception of edges relies on abrupt changes in luminance
values; 1.e. large gradients 1n these values.

The following computer listing of software in the C++
programming language calculates the luminance values of an
input 1mage array, named “image,” and stores the luminance
values 1n a floating point output array buffer—1ntensity. It
also generates luminance values at pixel locations within
strips of pixel locations that extend one pixel beyond the
image dimensions, for the purpose of computing a 3x3 filter,

as described hereinbelow. The actual luminance value calcu-
lation 1s performed within an mline function LUMINANCE.
bool PSmartScanLowRes::ComputeLuminance(const N

PixelButlerMgr& image, PProcessBullers™
butfer)

{

register uint32 pix=0;

register uint32 column=0;

register uint32 columnmax=width;

register uint32 row=0;

register uint32 rowmax=height;

if (tbuffer—IsIntensityMap Valid()) return false;
for (row=0; row<rowmax; row++)

1

for (column=0; column<columnmax; column++)
{
pix=umt32(image.Row(row)[column]);
butfer—=intensity[row+1][column+1]=LUMINANCE
(PIx);
h
h
for (column=0; column<columnmax+2; column++)
{
buffer—ntensity[0][column]|=buffer—intensity[1]
[column];
buffer—ntensity[rowmax+l][column]|=buffer—
intensity [rowmax |[column];

)

for (row=0; row<rowmax+2; row++)

{
buffer—intensity[row][O]=buifer—intensity[row][1];
buffer—ntensity[row][columnmax+1 |=buffer—

intensity[row|[columnmax];

h

return true;

inline bool PProcessBuiiers::IsIntensityMapValid(void)
const

{return (intensity !=0); }

A general reference for edge filters 1s Pratt, William K.,
“Digital Image Processing,” ISBN: 0471857661, published

10

15

20

25

30

35

40

45

50

55

60

65

8

by John Wiley & Sons (hereinaiter “Pratt™), the contents of
which are hereby incorporated by reference.

An example of an edge filter 1s the familiar Sobel filter. In
a preferred embodiment of the present invention a 3x3 Sobel
filter with a vertical gradient direction 1s used for edge detec-
tion in the low resolution pre-scanned image. Such a filter
uses a 3x3 convolution with a two-dimensional matrix

11 1
2 -2 -2
11 1

Restricting to the vertical gradient direction has the advan-
tage of reducing the computational time, and the disadvan-
tage of not detecting strictly vertical edges. Non-vertical
edges are detected, however. Since the Sobel filter 1s used for
determining a bounding box of the picture, and since a box
that bounds all non-vertical edges of a picture will also bound
the picture’s vertical edges (except n the unlikely circum-
stance where the picture has vertical lines around 1ts border),
the limitation of restricting to vertical gradient directions 1s
acceptable.

In an alternate embodiment, a horizontal gradient filter
may be used to perform the edge detection instead of a verti-
cal gradient filter. In yet another alternate embodiment, both
horizontal and vertical gradient filters may be used to perform
the edge detection.

As indicated 1n the software listing above, 1n order to be
able to apply a 3x3 filter at border pixels of the pre-scanned
image, luminance values are provided in an additional strip of
pixels surrounding the pre-scanned image, the additional strip
having a width of 1 pixel. In one embodiment, the luminance
values outside of the pre-scanned 1image are determined by
mirroring; 1.€. setting each such value to the luminance value
of the closest pixel thereto within the pre-scanned image.
Other techniques, such as pixel value extrapolation or aver-
aging, may be used to determine luminance values for the
pixels 1n the strip surrounding the pre-scanned image 1n alter-
nate embodiments.

The following computer listing of software in the C++
programming language implements the 3x3 Sobel filter
described above 1n a method named ComputeSobel3x3. The
luminance values for the pre-scanned 1image are stored 1n a
tfloating point array butier—intensity, and the resulting edge
values are stored 1n a floating point array buffer—gradient. It
1s noted that 1t 1s the absolute values of the filter values that are
being stored in bulfer—gradient.

bool PSmartScanLowRes::ComputeSobel3x3
(PProcessBuifers®bufier)
register uint32 row=0;
register uint32 column=0;
register float* gradient_ptr=0;
register uint32 rowmax=height;
register uint32 columnmax=width;
if ('buffer—IsIntensityMapValid() |
buffer—IsGradientMapValid()) return false;
for (gradient_ptr=buffer—=gradient, row=1; row<rowmax+
1; row++)
{
for (column=1; column<columnmax+1; column++,
oradient_ptr ++)
i
(*gradient_ptr)=float(buffer—intensity[row—1]
[column-1]+
buffer—intensity[row]|[column-1]+

US RE42,381 E

9

-continued

buffer—1intensity [row+1][column-1]+
buifer—intensity [row—1][column+1]+
buffer—intensity [row]|[column+1 |+
buifer—=intensity[row+1][column+1]-
(buffer—intensity[row][column]+
buffer—intensity[row-1][column]|+
buffer—intensity[row+1][column])*
float(2.0));

if (*gradient_ptr <0)*gradient_ptr=—*gradient_ptr;

h
h

refurn true;

inline bool PProcessBuiiers::IsGradientMapValid(void)
const

{return (gradient ! —=0); }

The result of an edge filter operation 1s an edge map, which
1s a monochrome image having gray-scale edge values at the
pixel locations of the pre-scanned image, each edge value
corresponding to the presence or absence of an edge at a pixel
location, and the strength of such an edge. The stronger the
edge at a given pixel location, the darker the edge value at that
location. Edge maps look somewhat like x-rays.

When an edge map has been determined, edges can then be
identified as groups of adjacent pixels, as described herein-
below.

In a preferred embodiment of the present invention a 3x3
median filter 1s applied to the edge map, as a way to remove
edges 1n the pre-scanned 1image that correspond to scratches
on the surface of the scanner bed or scanner cover. A 3x3
median filter operates at each selected pixel location by sort-
ing the 9 edge values situated 1 a 3x3 pixel neighborhood
centered at the selected pixel location, and then replacing the

edge value at the selected pixel location with the median of
the 9 edge values (1.¢. the middle value 1n the sorted list). For
example, 11 the edge values are

33 18 7
17 666 6|
9 14 24

then the edge value of 666 1n the center pixel location would
bereplaced by 17, which 1s the middle value of the ordered list
6-7-9-14-17-18-33-666. Median filters are typically used for
removing speckle noise made up of spots of noise 1n the
image. However, since the pre-scanned image 1s scanned at a
very low resolution, scratches occupy very few pixels within
the pre-scanned 1mage, and, as such, they are akin to speckle
noise.

In an alternate embodiment of the present mvention only
those pixels having edge values exceeding a prescribed
threshold are filtered with a median filter.

The following computer listing of software in the C++
programming language implements the median filter
described above 1 a method named MedianFiltering. The
soltware uses a floating point array, butier—gradient, to store
the values of the edge map, and 1t uses a Boolean array,
bulfer—=edges, to locate the significant edges. Both arrays are
serialized one-dimensional arrays, and have the same number
of elements as total pixels in the image. For the element
corresponding to the pixel at location (1, 1), the value of
bulfer—=gradient gives the edge value atlocation (1, 1), and the
Boolean value of the buller—edges flag indicates whether
there 1s (true) or 1s not (false) a significant edge at location (1,
1). As can be seen 1n the listing below, Boolean values 1ndi-

10

15

20

25

30

35

40

45

50

55

60

65

10

cating whether or not an edge value exceeds a threshold,
GradientHighThreshold, are stored 1n buifer—edges.
Observe that the median filter 1s only applied at locations
where the edge value exceeds a threshold, Gradient-
LowThreshold. The method MedianValue stores the edge
values for neighboring pixels to pixel (1, 1) in an array Medi-
an(Grad, taking into account the cases where (1, 7) 1s situated
on the border of the edge map. For reference purposes, the
QuickSort method that sorts the edge values in MedianGrad 1s
also provided. At the end of the method MedianFiltering, the
Boolean values bufler—edges are set to true wherever
bufter—gradient exceeds GradientHighThreshold.

bool PSmartScanl.owRes::MedianFiltering(PProcessButlers * butlfer)
{

register uint32 row = 0;

register uint32 column = 0O;

register float® gradient_ptr = 0;

register bool—edges_ptr = 0;

register uint32 rowmax = height;

register uint32 columnmax = width;
float threshold = 0.0;

if (buffer—>IsGradientMapValid() || !buffer->IsEdgesMapValid())
return false;
threshold =PThresholdValues::GradientLowThreshold();
for (gradient_ptr=buffer—>gradient, row=0; row<rowmax; row-++)
for (column=0; column<columnmax; column++, gradient_ptr ++)
1
if (*gradient_ptr > threshold)
*oradient_ptr = MedianValue(row, column, gradient_ptr);
h

threshold = PThresholdValues::GradientHighThreshold();
for (gradient_ptr=buffer—>gradient, edges_ptr = buffer->edges, row=0;
rOW<rowimnax; row-++)
for (column=0; column<columnmax; column++, gradient_ptr ++,
edges_ptr++)

1

if (*gradient_ptr >threshold)=edges_ptr= true;

h

return true;

;

inline bool PProcessBuifers:: IsEdgesMapValid(void) const

{return (edges !=0);}

float PSmartScanL.owRes::MedianValue(uint32 1, uint32 |,
float® gradient_ptr)

{

medianValid = 0;
medianGrad[medianValid++] = *(gradient_ptr);

if (j+1<width)
1
medianGrad[medianValid++] = *(gradient_ptr+1);
if (1>0)
medianGrad[medianValid++] = *(gradient_ptr-width+1);
if (1+1<Height())
medianGrad[medianValid++] = *(gradiet_ptr+width+1);
h
if (i+1<height)
1
medianGrad[medianValid++] = *(gradient_ptr+width);
if (1>0)
medianGrad[medianValid++] = *(gradiet_ptr+width-1);
}
if (1>0)
{
medianGrad[medianValid++] = *(gradient_ptr-width);
if (1>0)
medianGrad[medianValid++] = *(gradient_ptr_width-1);
h
if (j>0)

medianGrad[medianValid++] = *(gradient_ptr —1);
QuickSort(0, medianValid-1);
return medianGrad[medianValid/2];

h

vold PSmartScanLowRes::QuickSort(sint32 p, sint32 r)

{

smmt32 q;
if (p<r)

US RE42,381 E

11

-continued

1

q = Partition(p,r);

QuickSort(p,q);
if (g<medianValid) QuickSort(q+1,r);

h
h

sint32 PSmartScanLowRes::Partition(sint32 p, sint32 r)

i

float x = medianGrad|[p];
sint32 1=p-1;

sint32 | =r+1;

while (true)

{
do{j—-;}
while (medianGrad|[i]>x);
do {i++;}
while (medianGrad|[i]<x);
if (1<)
Exchange(i,});
else
return j;
|
h

inline void PSmartScanl.owRes::Exchange(sint32 p, sint32 r)

1

float tmp = medianGrad|[p];
medianGrad[p]= medianGrad|[r];
medianGrad|r]= tmp;

h

After the edge map 1s generated, a preferred embodiment
of the present invention i1dentifies those edges that are con-
sidered “sigmificant,” 1n order to distinguish between actual
edges from the picture and faint edges that might be due to
scratches onthe glass surface of the scanner bed or patterns on
the inside of the scanner cover, or other artifacts that may
arise. Based on a method referred to as “hysteresis,” scratch
removal 1s preferably accomplished by introducing two pre-
scribed thresholds for edge values—a lower threshold and an
upper threshold. Using these thresholds the method of hys-
teresis identifies “significant edges™ as being maximal groups
of contiguous pixels, each such group being characterized 1n
that each pixel of the group has an edge value that exceeds the
lower threshold, and at least one pixel of the group has an edge
value that exceeds the upper threshold. Two pixel locations
are considered contiguous 11 one 1s a neighbor of the other 1n
any of the eight compass directions, N, NE, E, SE, S, SW, W
and NW. Specifically, apixel at location (1, 1) 1s adjacent to the
cight pixel locations (1-1, 1-1), (1-1, 1), 1-1, 1+1), (1, 1-1), (4,
1+1), +1, 3-1), (1+1, 1) and (1+1, j+1).

On account of the requirement that significant edges con-
tain at least one pixel whose edge value exceeds the upper
threshold, scratches are typically not identified as being sig-
nificant edges.

After the significant edges are detected, scratch and other
artifact removal preferably further proceeds by nvalidating
significant edges with fewer than N contiguous pixels, where
N 1s a parameter referred to herein as a length tolerance. The
value of the parameter N can be set by the manufacturer of the
kiosk. For scratch and other artifact removal, a value of
twenty for the length tolerance 1s reasonable.

The following computer listing of software in the C++
programming language implements the hysteresis scratch
removal described above in a method named HysteresisFil-
tering. The method that tracks contiguous edge elements 1s
called EdgeHysteresisFollow, and operates recursively,
building up a list of contiguous edge elements, named “list.”
EdgeHysterysisFollow uses an array of pointers to Boolean
values, named “known,” to keep track of locations that have
already been 1dentified. At each level of the recursion Edge-

10

15

20

25

30

35

40

45

50

55

60

65

12

HysteresisFollow invokes a call to itself at a neighboring pixel
where the value of bulfer—gradient exceeds a threshold,
GradientLowThreshold. At each call, the list of contiguous
edges 1s successively built up by mvoking list—=AddTail.

As seen below, the software introduces a class for an edge
clement, PEdgeElt, containing a row, a column and a pointer
to a next edge element as members. The software introduces
a dertved class, PChaimnedEdge, which further includes a
Boolean-valued member, *valuePtr. The software also intro-

duces a class, PEdgelterator, for a list of edge elements. Such
a list 1s built up from successive calls to a method, AddTail,
which appends an edge element onto an existing list. The
Boolean values, *valuePtr, for each chained edge element 1n
a list of edge elements are set by a method Validate.

When all contiguous edge elements are joined together in a
list, control returns to HysteresisFiltering, where the entire
list of edge elements 1s validated as being significant (by
setting the Boolean values of 1ts edge elements to true) 1t 1ts
size exceeds LengthThreshold, and invalidated for being
insignificant (by setting the Boolean values of its edge ele-
ments to false) i1 1ts length 1s less than LengthThreshold.
Validation 1s performed by invocation or the method Validate,
which sets the Boolean flags to true for each chained edge
clement 1n the list. Specifically, Validate sets the values of
*valuePtr to true. This also serves to set the buller—edges
flags to true, since whenever a new edge element 1s added to
a list by AddTail(new PChaimnedEdge(i, j,edges_ptr), the
pointer valuePtr 1s set to the pointer edges_ptr, which 1s the
same as butler—edges. Observe also that EdgeHysteresisFol-
low 1s only invoked 1f butfer—edges 1s true, thus ensuring that
any list of contiguous edges that 1s validated as being signifi-

cant decidedly contains at least one pixel having an edge
value greater than GradientHigh Threshold.

bool PSmartScanlL.owRes::HysteresisFiltering(PProcessBuifers® butfer)
{
bool *known = new bool[width*height];
register uint32 1= 0;
register uint32 | = 0;
register bool *known_ptr = known;
register bool *edges_ptr = buffer->edges;
register float lowthreshold = PThresholdValues::GradientLowThreshold();
register uint32 lengththreshold = PThresholdValues::LengthThreshold();
if (!buffer->IsEdgesMapValid()) return false;
for (1=0, known_ptr = known; 1<height; 1++)
for (j=0; j<width; j++, known_ptr++)
*known_ptr = false;
for (1=0; 1<height; 1++)
{
for (j=0, known_ptr=known+i1*width,edges_ptr=butfer*edges+1*width;
1<width; j++, known_ptr++, edges_ptr++)
1
PEdgelterator list;
if ((*edges_ptr) && {(*known_ptr))
1
*known_ptr = true;
EdgeHysteresisFollow(buifer, known, 1, j, lowthreshold, &list);

h
1f (list.Size() <lengththreshold) list.Validate(false);

else
list.Validate(Side Artifacts(&list));
h

;

delete known;
return true;

h

vold pSmartScanL.owRes::EdgeHysteresisFollow(PProcessBuilfers™ builer,
bool® map, uint32 1, uint32 |, float lowthreshold, PEdgelterator™ list)

{
uint32 shift = *width + j;
register bool *known_ptr = map+shiit;

US RE42,381 E

13

-continued

register bool *edges_ptr = buifer->edges+shift;
register float *gradient_ptr = buffer->gradient+shift;
list ->AddTail(new PChammedEdge(1,] ,edges_ptr));
if (j+1<width)
f
if (1(*(known__ ptr+1)))
1
*(known_ptr+1) = true;
if (*(gradient_ptr+1) > lowthreshold)
EdgeHysteresisFollow(buffer, map, 1, j+1, lowthreshold, list);

h

if ((1>0) && !(*(known_ptr—width+1)))
{
*(known_ptr-width+1) = true;
if (*(gradient_ptr-width+1) > lowthreshold)
EdgeHysteresisFollow(buffer, map, 1-1, j+1, lowthreshold, list);

h

if ((1+1<height) && (*(known_ptr+width+1)))
i
*(known_ptr+width+1) = true;
if (*(gradient_ptr+width+1) > lowthreshold)
EdgeHysteresisFollow(butfer, map, 1+1, j+1, lowthreshold, list);

h
h
if (1+1 <height)
{
if (!(*(known_ptr+width)))
{
*(known_ptr+width) = true;
if (*(gradient_ptr+width) > lowthreshold)
EdgeHysteresisFollow(buffer, map, 1+1, |, lowthreshold, list);

h

if ((>0) && 1(*(known_ptr+width-1)))
1
*(known_ptr+width-1) = true;
if (*(gradient_ptr+width—1) >lowthreshold)
EdgeHysteresisFollow(buifer, map, 1+1, -1, lowthreshold, list);

h
h
if (1>0)
{
if (1(*(known__ ptr-width)))
i
*(known_ptr—width) = true;
if (*(gradient_ptr—-width) >lowthreshold)
EdgeHysteresisFollow(buifer, map, 1-1, j, lowthreshold, list);
h
if ((G>0) && 1(*(known_ptr-width-1)))
1
*(known__ptr—width-1) = true;
if (*(gradient_ptr—-width-1) > lowthreshold)
EdgeHysteresisFollow(butfer, map, 1-1, -1, lowthreshold, list);

h
h
if ((G>0) && !(*(known_ptr—1)))
{
*(known_ptr—1) = true;
if (*(gradient_ptr-1) > lowthreshold)
EdgeHysteresisFollow(butifer, map, 1,]-1, lowthreshold, list);
h

class SMARTSCANDEC PEdgeLElt
{
friend PEdgelterator;

friend PSmartScanl.owRes;
friend PSmartScanHighRes;

public:
uint32 Row(void) const;
uint32 Column(void) const;
protected:
PEdgeElt(void);

PEdgeElt(const PEdgeLlt&);
PEdgeElt(uint32 row, wnt32 column, PEdgePtr next = 0);
PEdgeElt& operator=(const PEdgeElt&);

virtual ~PEdgeElt(void);
PLEdgePtr next;
private:
uint3?2 rOW,
uint3?2 column;
3

inline PEdgeElt::PEdgeElt(void)

10

15

20

25

30

35

40

45

50

55

60

65

14

-continued

{ row = column = 0; }

inline PEdgeElt::PEdgeElt(const PEdgeElt& elt)

{ row = elt.row; column=elt.column; next * elt.next; }

inline PEdgeElt::PEdgeElt(uint32 arow, uint32 acolumn, PEdgePtr anext)
{ row = arow; column = acolumn; next = anext; |

inline PEdgeElt::~PEdgeElt(void)

1

inline PEdgeElt& PEdgeElt::operator=(const PEdgeElt& elt)

{ row = elt.row; column = elt.column; next = elt.next; return *this; }
inline wint32 PEdgeElt::Row(void) const

{ return row; }

inline wint32 PEdgeElt::Column(void) const

{ return column; }
class SMARTSCANDEC PChainedEdge : public PEdgeLElt

i

friend PEdgelterator;

public:
PChainedEdge(void);
PChainedEdge(const PChainedEdge&);
PChammedEdge(uint32 row, uint32 column, bool* valuePtr,

PEdgePtr next = 0);

PChainedEdgeé& operator=(const PChainedEdgeé&);

virtual ~PChainedEdge(void);

void SetValue(bool value);

bool Value(void) const;
private:

bool *valuePtr,

3
inline PChainedEdge::PChainedEdge(void) : PEdgeElt()
{ valuePtr =0; }
inline PChainedEdge::PChainedEdge(
const PChainedEdgeé& elt) :
PEdgeLElt(elt)
{ valuePtr = elt.valuePtr, }
inline PChainedEdge::PChainedEdge(uint32 arow, umnt32 acolumn,
bool* avaluePtr, PEdgePtr anext) :PEdgeElt(arow, acolumn,
anext)
{ valuePtr = avaluePtr, |
inline PChainedEdge::PChainedEdge(void)
i)
inline PChainedEdge& PChainedEdge::operator=(const PChainedEdge&
elt)
{ this->PEdgeElt::operator=(elt); valuePtr = elt.valuePtr; return (*this); }
inline void PChainedEdge::SetValue(bool value)
{ *valuePtr = value; }
inline bool PChainedEdge::Value(void) const
{ return *valuePtr, }
typedef PEdgeElt *PEdgePtr,
class SMARTSCANDEC PEdgelterator

{
public:
PEdgelterator();

Virtual ~PEdgelterator();
void AddTail(PEdgePtr elt);
PLEdgePtr First(void) const;
PEdgePtr Current(void) const;
PEdgePtr Last(void) const;
PEdgePtr Next(void);
void Reset(void);
void Validate(bool val = true);
uint32 Size(vold) const;
PLdgePtr first;

private:
PLEdgePtr current;
PEdgePtr last;
uint3?2 S1Z¢;

3

inline PEdgelterator::PEdgelterator()
{ first = current = last = 0; size = 0; }
PFdgelterator::~PEdgelterator()

{
PEdgePtr cur = first, next;
Reset();
while (cur != last)
1
next = Next();
delete cur;
cur = next;
h

h

US RE42,381 E

15

-continued

inline PEdgePtr PEdgelterator::First(void) const

{ return first; }

inline PEdgePtr PEdgelterator::Current(void) const

{ return current; } 5
inline PEdgePtr PEdgelterator::Last(void) const
{ return last; }

inline PEdgePtr PEdgelterator:Next(void)

{ return (current)?(current = current->next):0; }
inline void PEdgelterator:Reset(void)

{ current = first; }

inline wint32 PEdgelterator::Size(void) const

{ return size; }

void PEdgclterator::Addtail(PEdgePtr cur)

1

11(last)

1 15
last->next = cur;
last = cur,

h

else
first = last = current = cur;

s1Ze++;

! 20

void PEdgelterator::Validate(bool val)

1

PChainedEdge* cur = (PChainedEdge™)first;

Reset();

while (cur)

{ 25
cur->SetValue(val);
cur = (PChainedEdge™®)Next();

h
h

10

30
Another type of artifact arises from light leakage at the

borders of the scanner cover. Some scanner covers do not seal
suificiently tight to make them light-proof, and as a result
shadows appear at the borders of a scanned 1mage. Light
leakage artifacts can be removed by eliminating an edge from

being considered significant whenever the edge contains a
pixel location within a prescribed distance from a border of
the scanner bed, and 1s contained entirely within a strip of a
prescribed “thickness” parallel to that border of the scanner
bed. The prescribed distance and prescribed thickness are
both set to the same prescribed threshold, referred to as a
thickness tolerance, although it 1s to be appreciated that two
different thresholds may alternatively be used. For removal of
light leakage artifacts, a value of five for the thickness toler-
ance 1s reasonable. This serves to eliminate edges that lie
entirely within a strip five pixels wide near a border of the
scanner bed.

The following computer listing of software in the C++
programming language implements the light leakage artifact
removal described above 1n a method named SideArtifacts. It
1s called from HysteresisFiltering given above. As can be seen
in the listing below, SideArtifacts calculates the minimum
and maximum row coordinates and the minimum and maxi-
mum column coordinates within a list of contiguous edges. I
any of the pixel locations within the list are within a distance 55
ThicknessThreshold from a border of the scanner bed, and 1f
the difference between the maximum and minimum coordi-

nate 1in the direction transverse to such border 1s less than
ThicknessThreshold, then the list 1s assumed to be a light

35

40

45

50

leakage artifact, and 1s invalidated. 60
bool PSmartScanl.owRes::SideArtifacts(PEdgelterator™ list)

{

umnt32 thick = PThresholdValues::ThicknessThreshold(); 63

PChainedEdge™* cur = (PChainedEdge™)list->First();

16

-continued

uint32 rowmin, rowmax, columnmin, columnmax;
bool h_side_edges = false v_side_edges = false;
rOWM1iN = rowmax = cur->Row();

columnmin = columnrnax = cur->Column();
list->Reset();

while (cur)

1

if (cur->Row()<rowmin) rowmin=cur->Row();
else if (cur->Row()>rowmax) rowmax=cur->Row();
if (cur->Column()<columnmin) columnmin=cur->Column();
else if (cur->Column()>»columnmax) columnmax=cur->Column();
if ((th_side_edges) && ((cur->Row() <thick) |
((Height()-cur->Row()) <thick))) h_side edges = true;

else if ((!v_side_edges) && ((cur->Column() <thick) ||

((Width()-cur->Column())<thick))) v_side_edges = true;
cur = (PChainedEdge™)list->Next();

h
if (h_side_edges)

{

if ((sint32(rowmax) - sint32(rowmin))>smt32(thick))
return true;
else
return false;
h

else if (v_side_edges)

h

if ((sint32(columnmax) - sint32(columnmin))>sint32(thick))
return true;
else
return false;
h

else
return true;

h

inline wint32 PProcessBulfers::Width(void) const
{ return width; }
inline wint32 PProcessBuilers::Height(void) const

{ return height; }

Preferably, after the significant edges have been 1dentified,
and scratch and light-leak and other artifacts have been
removed, a third step 1s performed; namely, determining a
region of interest. In a preferred embodiment, the present
invention determines a desired region of interest by finding a
bounding box that has sides parallel to the borders of the
scanner bed, and that encloses all pixels belonging to signifi-
cant edges. This 1s carried out by identifying the minimum
and maximum coordinates of the pixel locations where sig-
nificant edges are present, i each of the coordinate direc-
tions.

In a preferred embodiment of the present invention, the
bounding box determined as above 1s expanded at each side,
by extending each side of the bounding box by at least one
pixel, to account for imprecision due to the low resolution of
the pre-scanned 1mage. This ensures that the bounding box
will surround the entire picture when the high-resolution scan
1s performed.

The following computer listing of software in the C++
programming language implements the determination of the
bounding box in a method named BoundingRectangle. The
bounding box 1s specified by Xorigin, Yorigin, Xsize and
Ysize. BoundingRectangle finds the top side of the bounding
box by searching the edge tlags, 1n order of increasing row, 1,
and breaking as soon as 1t encounters an edge flag value of
true. Similarly, 1t finds the left side of the bounding box by
searching the edge flags, 1n order of increasing column, j, and
breaking as soon as it encounters an edge flag value of true. It
finds the right side of the bounding box by searching the edge
flags, 1n order of decreasing row, 1, and breaking as soon as 1t
encounters an edge flag value of true. Finally, 1t finds the
bottom side of the bounding box by searching the edge tlags,
in order of decreasing column, 7, and breaking as soon as 1t

US RE42,381 E

17

encounters an edge tlag value of true. It 1s noted that at the end
of method BoundingRectangle, the bounding box 1is
expanded by extending each side by one pixel.

bool PSmartScanL.owRes::BoundingRectangle(PProcessButiers™ butler,
sint32* Xorigin, sint32* Yorigin, sint32* Xsize, sint32*
Ysize)
{
register sint32 1 = 0;
register sint32 | = 0;
register sint32 imax = height;
register sint32 jmax = width;
(*Xorigin) = 0;
(*Yorigin) = 0;
(*Xsize) = width;
(*Ysize) = height;
bool found = false;
for (1=0; (found) && (1<1imax); 1++)
i
for (j=0; j<jmax; |++)
if (buffer->edges[1*width+i])
1
found = true;
break;
h
h
(*Yorigin) = 1;
if (1>1imax) (*Yorigin) =1imax-1;
found = false;
for (j=0;(!found) && (J<ymax); j++)
{
for (1=(*Yorigin); 1<max, 1++)
if (buffer->edges[1*width+i])
{
found = true;
break;
h
h
(*Xorigin) = j;
if (j>=jmax) (*Xorigin) =jmax—1;
found = false;
for (j=jmax-1; (found) && (j>=0); |—-)
{
for (1=(*Yorigin); 1<imax; 1++)
if (buffer->edges[1*width+i])
1
found = true;
break
h
h
(*Xsize) = — (*Xorigin);
if (j<0) (*Xs1ze) = ymax-1-(*Xorigin);
found = false;
for (1=imax-1; (found) && (1>=0); 1--)
{
for (j=0; j<ymax; |++)
if (buffer->edges[1*width+i])
{
found = true;
break;
h
h
(*Ysize) =1 = (*Yorigin);
if (1<0) (*Ysi1ze) = imax-1-(*Yorigin);
if ((*Yorigin) >0) (*Yorigin)--;
if ((*Xorigin) >0) (*Xorigin)--;
(*Ysize) += 2;
if (((*Yorigin) + (*Ysize)) > sint32(height)) (*Ysize) = height = (* Yorigin);
(*Xsize) += 2;
if (((*Xorigin) + (*Xsize)) > sint32(width)) (*Xsize) = height = (*Xorigin);
return true;

h

Reference1s now made to FIG. 2, which 1s a simplified tlow
chart of a preferred embodiment of the present invention used
to determine a region of interest containing a picture from a
low resolution pre-scanned image. At step 200 the pre-
scanned 1mage 1s filtered with an edge filter to determine an

10

15

20

25

30

35

40

45

50

55

60

65

18

edge map. At step 210 the pixels within the pre-scanned
image where significant edges are present, are identified. At
step 220 the bounding box with edges parallel to the borders
of the scanner bed, and that contains all of the pixels within
the pre-scanned image where significant edges are located, 1s
selected. In a preferred embodiment, the smallest such
bounding box 1s selected.

The following computer listing of software 1in the C++
programming language implements the tlowchart of FIG. 2.
The AutoCropping method first invokes ComputeLuminance
to calculate the luminance values from an input image array,
named “1mage.” It then invokes ComputeSobel3x3 to calcu-
late the edge map. It then applies median filtering and hyster-
esis filtering to remove scratches, light leakage and other
artifacts, 1n order to 1dentily those edges that are significant.
Finally, it invokes BoundingRectangle to calculate the region

ol iterest, specified by the parameters columnO, row0, col-
umnSize and rowSize.

PIntRectangle PSmartScanl.owRes:: AutoCropping(const
PixelBufferMgr&

image)

{

sit32 row0 =0, columnO = 0, rowSize = 0, columnSize = 0;

width = image.Width();

height = image.Height();

PProcessBuffers™ buffer = O;

if (width && height) buffer = new PProcessBufiers(width, height);

else

return PIntRectangle();

bool ok = true;

ok = buffer->AllocateIntensityMap();

ok = ComputeLuminance(image,butier);

ok = buffer->AllocateEdgesMap();

ok = buffer->AllocateGradientMap();

ok = ComputeSobel3x3(buffer);

buffer->ClearIntensityMap();

ok = MedianFiltering(buffer);

ok = HysteresisFiltering(bufier);

buffer->ClearGradientMap();

ok

=BoundingRectangle(builfer,&column0,&row0,&columnSize,&rowSize);

buffer->ClearEdgesMap();

delete butfter,

return PIntRectangle(columnO, row0, columnO+columnSize,

rowO+rowSi1ze);

h

class SMARTSCANDEC PProcessBuftfers
{

friend PSmartScanL.owRes;

friend PSmartScanHighRes;

friend PSmartScanDebug;

public:
PProcessBuffers(uint32 width, uint32 height);
virtual ~PProcessBuiiers(void);
hool AllocatelntensityMap(void);
bool AllocateEdgesMap(void);
bool AllocateGradientMap(void);
void ClearIntensityMap(void);
void ClearEdgesMap(void);
void ClearGradientMap(void);
bool IsIntensityMapValid(void) const;
bool IsEdgesMapValid(void) const;
bool [sGradientMapValid(void) const;
uint32 Width(void) const;
uint32 Height(void) const;
protected:
float™* intensity;
float™ gradient;
bool* edges;
private:
uint3?2 width;
uint32 height;
s

PProcessButiers::PProcessBullers(uint32 aWidth,uint32 aHeight)

19

-continued

{

intensity = 0;
gradient = 0;
edges = 0;
width=aW1dth;
height=aHeight;
h

PProcessButiers::~PProcessBuflers(void)

learIntensityMap();
learEdgesMap();
learGradientMap();

el ORONEG Iute

bool PProcessButfers::AllocateGradientMap(void)
{
uint32 size = 0;
ClearGradientMap();
gradient = new float[size = width*height];
if (gradient)
for (uint32 1=0; 1<size; 1++) gradient[1] = 0.0;
return (gradient != 0);

h

bool PProcessBuffers:AllocateEdgesMap(void)
{

uint32 size = 0;

ClearEdgesMap();

edges = new bool[size-width*height];

if (edges)

for (uint32 1=0; 1<size; 1++) edges[i] = false;
return (edges !=0);

h
bool PProcessBufiers::AllocateIntensityMap(void)
{
ClearIntensityMap();
bool ok = true;
umnt32 |=0;
try
{
if (height)
1
ok = (intensity = (float™*)new sint32_ptr[height+2]) !=0;
for (j=0; ok && (j<height+2); |++)
{
ok = (intensity[|]= new float[width+2]) != 0;
1f(ok)
for (uint32 1=0; 1<width+2; 1++) intensity[j][1]= O;
h
h
return ok;
h
catch(...)
{

for (uint32 1=0; 1<; 1++) delete intensity|[i]
if (intensity) delete intensity:;
intensity = 0;
throw;
h
h

void PProcessBuftlers::ClearEdgesMap(void)

1
try

{
if (edges) delete edges;
edges = 0;
h
catch(...)
{
edges = 0;
throw;
h
h

void PProcessBuftlers::ClearGradientMap(void)

1
try

1

if (gradient) delete gradient;
gradient = 0;

h
catch (...)

{

US RE42,381 E

5

10

15

20

25

30

35

40

45

50

55

60

65

20

-continued

gradient = O;
throw;

h
h

void PProcessButfers::ClearIntensityMap(void)

{
try

{

if (intensity)

1
if (height)
for (uint32 1 =0; 1 <height +2; 1++) delete intensity[1];
if (intensity) delete intensity:;

;

intensity = 0;

h
catch(...)

intensity = 0;
throw;

h
h

After the bounding box 1s determined as described herein-
above, a high resolution scan of the picture 1n the scanner bed
1s then automatically performed within the bounding box.
The high resolution scanned image can be used to determine
a refined bounding box by the same procedure described
hereinabove for determining a bounding box from the low
resolution pre-scanned image. Namely, the edges of the
image of the picture within the high resolution scanned 1mage
are found, and a bounding box that has sides parallel to the
borders of the scanner bed and that encloses all pixels belong-
ing to the edges 1s determined.

The procedure for finding edges of the 1image of the picture
within the high resolution scanned 1image 1s preferably difier-
ent than the procedure for finding edges of the 1image of the
picture within the low resolution pre-scanned 1image. Within
a high resolution scanned 1image scratches and other artifacts
are typically not characterized by speckle noise, and thus a
median filter and a 3x3 Sobel filter may not be appropriate for
removal of scratches and other artifacts within a high resolu-
tion scanned image. Moreover, since the high resolution
scanned 1mage typically contains an enormous number of
pixels within 1t, the recursive method of hysteresis described
above typically takes a long time to perform.

As described hereinbelow with reference to the fixed box
size embodiment, the present mvention preferably uses a
Laplacian of Gaussian (LoG) method for detecting edges
within the high resolution scanned 1image, based on an ana-
lytical formula for the Laplacian of the Gauss kernel given by
Equation 3 hereinbelow.

Since there 1s already a bounding box for the 1mage of the
picture within the high resolution scanned image at the outset,
it 1s not necessary to determine all ofthe edges of the image of
the picture in order to derive the contour of the image of the
picture within the high resolution scanned image. Rather, 1t
suifices to determine the outermost edges of the image of the
picture. Restricting the search for edges to the contour of the
image ol the picture saves considerable processing time,
especially when working with high resolution images, which
typically contain enormous numbers of pixels.

As described hereinbelow, to find the contour of the image
of the picture 1t 1s only necessary to determine edge locations
near the sides ol the bounding box. Specifically, 1n a preferred
embodiment of the present invention, [starling] starting from
cach pixel location on each side of the bounding box, the edge
detection processing moves inwards towards the image of the
picture, along lines perpendicular to that side of the bounding

US RE42,381 E

21

box, one pixel at a time, until the first edge location 1s found.
By repeating this for each pixel location on each side of the
bounding box, all pixel locations where outermost edges of
the picture are situated are determined.

Determining an Angle of Rotation—Variable Box Size
Embodiment

In a preferred “vaniable box size” embodiment of the
present invention, determining an angle of rotation involves
three or more steps. These steps can be applied either to the
low resolution pre-scanned image or to the high resolution
scanned 1mage. The first step 1s to determine the significant
edges of the picture within the scanned image. If the low
resolution pre-scanned image 1s used, then this step has
already been performed at the stage of determination of a
region of interest, as described hereinabove. Otherwise, 1f the
high resolution scanned 1mage 1s used, then this step must be
performed as part of the determination of an angle of rotation.
The second step 1s to generate a plurality of bounding boxes
having various angles of rotation relative to the scanner bed,
cach box surrounding the picture within the scanned image.
The third step 1s to select a bounding box that 1s most “closely
aligned” with the picture, and to use the selected box for
determining an angle of rotation. Once an angle of rotation 1s
determined, the kiosk software or hardware can adjust the
scanned 1mage so that the picture 1s aligned with the horizon-
tal and vertical axes of the kiosk display.

As mentioned above, the variable box size embodiment of
the present invention can be carried out using the low resolu-
tion pre-scanned 1mage or the high resolution scanned 1image.
For the sake of clarity and definiteness, the ensuing descrip-
tion assumes that the low resolution pre-scanned image 1s
used.

In a preferred embodiment such as that shown in FIGS. 1A
and 1B, the present invention identifies an angle of rotation by
first detecting all of the significant edges of the pre-scanned
image, 1n the manner described hereinabove. Once the sig-
nificant edges are determined, the second step 1s performed,
and minimal bounding boxes are generated 1n each of a range
of directions relative to the borders of scanner bed 16. Spe-
cifically, for a given direction relative to the borders of the
scanner bed, determined by an angle, X, a minimal bounding
box having two parallel edges oriented 1n the direction of
angle X and two parallel edges oriented in the perpendicular
direction, 1s chosen so as to contain all of the significant edges
within 1t, and to be as small as possible. The minimal bound-
ing box can be determined starting with any 1nitial bounding
box having two parallel edges oriented in the direction of
angle X and two parallel edges oriented in the perpendicular
direction, that contains all of the significant edges within it, by
successively contracting the box by moving 1ts edges closer
together, keeping them parallel, until each box edge reaches a
pixel location where a significant edge of the pre-scanned
image 1s present.

Determination of a minimal bounding box 1s carried out for
a range of angles X. After these minimal bounding boxes have
been determined, the third step 1s performed, and a search 1s
made for the “smallest” of the minimal bounding boxes. The
criterion for being smallest can be based on the smallest
width, or the smallest height or the smallest area, or another
such criterion. The angle X corresponding to the smallest of
the minimal bounding boxes 1s taken to be the sought-after
angle of rotation of the picture relative to the borders of the
scanner bed. The rationale for this 1s that the “snuggest” box
should be the one most aligned with the picture.

Reference 1s now made to FIG. 3, which 1s a simplified
flowchart of a preferred ““variable box size” embodiment of
the present mnvention for determining an angle of rotation of a
picture relative to the borders of a scanner bed, from a pre-
scanned 1image. The tlowchart describes a search for a bound-
ing box with the smallest size, as the angle of orientation of

10

15

20

25

30

35

40

45

50

55

60

65

22

the bounding box 1s varied. The delimiters for the angular
variation are denoted by X_START and X_

END; 1.e., the
angle X varies between X_START and X_END at increments
of DX. The variable that stores the size of the smallest bound-
ing box already found as the search advances over the range of

angles, 1s denoted by S_SMALLEST.
As was done 1 FI1G. 2, at step 300 an edge filter 1s applied

to the pre-scanned 1image, to produce an edge map. At step
310 the sigmificant edges within the edge map are identified.

At step 320 S_SMALLEST 1s set to a very large positive
value. At step 330 an angular direction X 1s mitialized to a
starting value X_START. At step 340 a check 1s made whether
X exceeds a final value X_END. If so, then execution termi-
nates at step 350, and the desired angle of rotation 1s
X_ANGLE. If not, then at step 360 a determination 1s made of
the minimal bounding box oriented in the direction of angle X
relative to the scanner bed borders and containing all of the
pixel locations where a significant edge 1s present. At step 370
a “s1ze” S of the minimal bounding box 1s recorded. The size
may be the width, or the height or the area, or any other such
measure. At step 380 a check 1s made whether S 1s less than
the minimal size S_SMALLEST. If so, then at step 390 the

angle X_ANGLE is set to X, and the size S_SMALLEST 1s
set to S. I not, then at step 400 the angle X 1s incremented by
a small amount DX, and control returns to step 340. It 1s noted
that because S_SMALLEST was set to a very large positive
value 1 step 320 and because X_END i1s greater than
X_START, step 390 will be executed at least once to set
X_ANGLE to X.

FIG. 41s ablock diagram of an embodiment of a processing,
system 400 that can be used 1n a photo kiosk to perform the
above-described processing operations. The processing sys-
tem 400 includes a processing unit 410, memory 420, display
device 430, user-input device 440, communications device
450, scanner 12 and printing device 22, each coupled to a bus
structure 460. In the case of the photo kiosk 10 of FIGS. 1A
and 1B, the display device 430 and the user-input device 440
may be implemented by a touch-sensitive screen. In alternate
embodiments, other devices may be used to manipulate ele-
ments displayed on the display device 430 and to allow a user
to imnput information and selections into the processing system
400.

The processing unit 410 may include one or more general
purpose processors, one or more digital signal processors or
any other devices capable of executing a sequence of mstruc-
tions. When programmed with appropriate instructions, the
processing unit may be used to implement the kiosk processor
18 shown 1n FIGS. 1A and 1B, wherein the kiosk processor 18
includes, but 1s not limited to one or more of an edge proces-
sor, edge analyzer, edge finder, pixel processor, and so forth
for performing the above described processing operations.

The communications device 450 may be a modem, area
network card or any other device for coupling the processing
system 400 to a computer network. The communications
device 450 may be used to generate or recerve a carrier wave
modulated with a data signal, for example, for obtaining
images or text from a server computer on the World Wide Web
or other network, or for recerving updated program code or
function-extending program code that can be executed by the
processing unit 410 to implement embodiments of the present
invention.

The memory 420 may include both system memory and
non-volatile storage devices such as magnetic tape, magnetic
disk, optical disk, electrically erasable programmable read
only memory (*_JPROM) or any other computer-readable
medium. As shown in FIG. 4, the memory 420 may be used to
store program code 422 for performmg the above-described
processing operations and images 424 that have been scanned
using scanner 12. In one embodiment, when power 1s applied
to the processing system 400, operating system program code

US RE42,381 E

23

1s loaded from non-volatile storage into system memory by
the processing unit 410 or another device, such as a direct
memory access controller (not shown). Sequences of mnstruc-
tions comprised by the operating system are then executed by
processing umt 410 to load other sequences of instructions,
including the above-described processing applications, from
non-volatile storage mto system memory. Thus, program
code for performing or controlling operations in a photo kiosk
according to embodiments of the present invention may be

obtained from a computer-readable medium, including the
above-described carrier wave, and executed 1n the processing

unit 410.
It 1s noted that the individual processing operations

described above may also be performed by specific hardware
components that contain hard-wired logic to carry out the
recited operations or by any combination of programmed
processing components and hard-wired logic. Nothing dis-
closed herein should be construed as limiting the processing
system or other components of a photo kiosk to a single
embodiment wherein the recited operations are performed by
a specific combination of hardware components.
Determining an Angle of Rotation—Fixed Box Si1ze Embodi-
ment

In a preferred “fixed box si1ze”” embodiment of the present
invention, determining an angle of rotation mvolves three or
more steps. These steps can be applied either to the low
resolution pre-scanned i1mage or to the high resolution
scanned 1mage. The first step 1s to determine the contour of
the picture within the scanned image. The second step 1s to
generate a plurality of bounding boxes having various angles
of rotation relative to the borders of the scanner bed, each box
surrounding the picture within the scanned image. The third
step 1s to select a bounding box that 1s most “closely aligned”
with the picture, and to use the selected box for determining,
an angle of rotation. Once an angle of rotation 1s determined,
the kiosk soitware or hardware can adjust the scanned 1mage
so that an 1mage of the picture 1s aligned with the horizontal
and vertical axes of the kiosk display.

As mentioned hereinabove, the fixed box size embodiment
of the present invention can be carried out using the low
resolution pre-scanned image or the high resolution scanned
image. For the sake of clarity and definiteness, the ensuing
description assumes that the high resolution scanned 1image 1s
used inter alia to calculate the contour of the picture, as
described hereinbelow.

In a preferred embodiment of the present invention edge
detection 1s applied to the high resolution scan to find the
outer envelope of the edges; 1.e. the contour of the picture.
Whereas the edge detection described hereinabove, with
respect to the low resolution pre-scanned image, finds all
edge locations within the image, for the high resolution scan
it suffices to find the outermost edge locations. This simplifies
the edge detection process for the high resolution scan, as
explained hereinbelow.

For the high resolution scan, the edge detection 1s prefer-
ably performed by applying the Marr-Hildreth Laplacian of
Gaussian (LoG) operator. The LoG operator 1s discussed 1n
Pratt, referenced hereinabove. The LoG operator 1s a combi-
nation of Gaussian smoothing with the Laplacian second
derivative operator, and corresponds to convolution with the
well-known “Mexican hat™ filter given by

(3)

10

15

20

25

30

35

40

45

50

55

60

65

24

where r is the radial coordinate r=x"+y~. The parameter o
corresponds to the standard deviation of the Gaussian func-
tion, and 1s a spread parameter. Based on the technical infor-
mation from the Internet web site:

http://www.cs.ucl.ac.uk/research/mip/mipus/IUE/
v1.3.1/tasklibs/iue/edge-detection

the value of o for human visual perception 1s taken to be a
value between 1.2 and 1.4, and the window for the convolu-
tion with the above filter 1s taken to be a square of size
Round(60+3.5).

When using the Marr-Hildreth LoG operator, edge loca-
tions are 1dentified as the zero-crossings of the result when the
scanned 1mage 1s convoluted with the above filter. Since zero
crossings do notalways lie at pixel locations, several methods
are used to 1dentily edge locations. These methods appear 1n
Pratt, and are known to those skilled 1n the art of edge detec-
tion. For example, in one method edge locations are marked at
cach pixel with a positive response that has a neighbor with a
negative response. In another method, the maximum of all
positive responses and the minimum of all negative responses
are formed 1n a 3x3 window around a selected pixel location.
If the magnitude of the difference between the maximum and
the minimum exceeds a threshold, an edge 1s judged to be
present at the selected pixel location.

In a preferred embodiment of the present invention, since it
1s the contour of the picture within the scanned 1image that 1s
being sought, edge locations are only computed near the sides
of the bounding box. Starting from each pixel location on
cach side of the bounding box, the edge detection processing
moves inwards towards the picture, along lines perpendicular
to that side of the bounding box, one pixel at a time, until the
first edge location 1s found. By repeating this for each pixel
location on each side of the bounding box, all pixel locations
where outermost edges of the picture are situated are deter-
mined.

The following computer listing of software in the C++
programming language implements Marr-Hildreth Laplacian
of Gaussian edge detection as used 1n a preferred embodiment
ol the present invention. The constructor marrHildrethFilter
calculates the values of the Mexican hat filter from Equation
3 and sets the elements of the array logaussian accordingly.
The window size, fwidth, 1s set equal to the value sint32(tloat
(6.0)*sigma+iloat(3.5)), as described hereinabove. The
method MarrHildrethSmoothing carries out the convolution
for performing the LoG filter on the luminance values of an
input array, named “1mage.”

The method MarrHildrethEdgesDetection computes the
zero crossings of the LoG for the luminance values. The long
string of logical tests within the i1f-statements do the actual
check for a zero crossing. The first 1f-statement examines the
values of the LoG at the four neighboring pixel locations (r,
c), (r+1, ¢), (r, c+1) and (r+1, c+1), and the second 1f-state-
ment examines the values of LoG at the four neighboring
pixel locations (r, ¢), (r+1, ¢), (r, c—-1) and (r+1, c-1). If the
LoG value at (r, ¢) has a different s1ign than one of its values at
the three other pixel locations, then (r, ¢) 1s marked as an edge
location and added to the list of outermost edges. Whenever
an edge 1s detected, the bounding rectangle NewCrop 1s
adjusted as necessary so as to include the detected edge loca-
tion within 1t.

For each row value, r, the edge detection proceeds 1 two
directions; namely, in the direction of increasing column
value, ¢, and 1n the direction of decreasing column value, c.
The edge detection breaks out of the loop on column value, c,
as soon as the first edge location 1s detected, which sutfices to
detect the outermost edges.

US RE42,381 E

25

class marrHildrethFilter
{
public:
marrHildrethFilter(float sigma, uint32 windowsize = 0);
virtual ~marrHildrethFilter(void);
void SetElement(sint32 1, sint32 |, float x);
float LoG(simnt32 1, sint32) const;
sint32 Size(void) const;
private:
float** logaussian;
sint32 halfsize;
3
inline void marrHildrethFilter::SetElement(sint32 1, sint32 j, float x)

1

logaussian|i+halfsize][j+halfsize|= x;

;

inline float marrHildrethFilter::LoG(simnt32 1, sint32 j) const

1

return logaussian[i+halfsize][j+halisize];

h

inline smt32 marrHildrethFilter::Size(void) const

{

return halfsize;

h

inline marrHildrethFilter::~marrHildrethFilter(void)
{
if (logaussian)
{
for (sint32 1=-halfsize; 1<=halfsize; 1++)
delete logaussian[i+halfsize];
delete logaussian;

h
h

typedet float *floatPtr;
marrHildrethFilter::marrHildrethFilter(float sigma, uint32 windowsize)
{
if (windowsize) halisize = (windowsize — 1)/2;
else
{
sint32 fwidth = sint32(float(6.0)*sigma+float(3.5));
halfsize = (fwidth — 1)/2;
h
sint32 size = halfsize®*2+1;
logaussian = new tloatPtr[size];
sint32 X,y;
for (x = 0; x<size; X++)
logaussian|[x]|= new float[size];
float sigma?2 = sigma * sigma;
float dc = float(1.0/(2.0*PI*sigma2*sigma?2));
dc *= float(0.5 * sigma2);
float sigNorm = float(-1.0/(2.0*s1gma2));
float norm,coef = float(1.0/s1gma?2);
for (y=-halfsize; y<=halfsize; y++)
for (x=-halfsize; x<=halfsize; x++)
1
norm = float(x*x + y*y);
SetBElement(x,y.float(dc™*(2.0-norm*coef)*exp(norm™sigNorm)));

h
h

float PSmartScanHighRes::MarrHildrethSmoothing(
const NPixelBufferMgr& image, PProcessBuifers™ buffer, sint32 1,
sint32 |,
marrHildrethFilter® mh)
i
static const float EPS = PThresholdValues::ZeroCrossingPrecision();
register float™ ptr = &(buifer->gradient[1*width+i]);
if (*ptr = NOT_COMPUTED) return (*ptr);
(*ptr) = 0.0;
register sint32 size = mh->Size();
sint32 X,y;
for (y=-s1ze; y<=size; y++)
for (x=—s1ze; X<=s1ze; X++)
*ptr += mh->LoG(y.x)*ComputeLuminance(image,butfer,1+x,)+v);
if (ABS(*ptr)<EPS)
(*ptr) = 0.0;
return (*ptr);

;

bool PSmartScanHighRes::MarrHildrethEdgesDetection(

const NPixelBufferMgr& image, PProcessBufifers™
buffer,

26

-continued

PIntRectangle®™ newCrop, PEdgelterator™ list)
{
register sint32 r;
> register sint32 ¢,c0;
register sint32 mmax = sint32(height);
register sint32 cmax = sint32(width);
marrHildrethFilter mh(PThresholdValues::LogSigmal());
if (!buffer->IsIntensityMapValid() || tbuffer->IsGradientMapValid())

return false;
10 *newCrop = PIntRectangle();
bool 1s1stCall = true;
for (r=0; r<rmax; r++)

{

for (c=0; c<cmax; c++)
1
if ((MarrHildrethSmoothing(image,buifer,r,c,&mh) != float(0.0)) &&

((MarrHildrethSmoothing(image,buffer,r,c,&mh) >0) &&
(((r+1<rmax) &&
(MarrHildrethSmoothing(image,buffer,r+1,c,&mh)<0)) ||
((c+1<cmax) &&
(MarrHildrethSmoothing(image,buffer,r,c+1,&mh)<0)) |
((r+1<rmax) && (c+1<cmax) &&

20 (MarrHildrethSmoothing(image,buffer,r+1,c+1,&mh)<0)))) ||
((MarrHildrethSmoothing (1image,buffer,r,c,&mh) <0) &&
(((r+1<rmax) &&
(MarrHildrethSmoothing(image,buffer,r+1,c,&mh)>0)) ||
((c+1<cmax) &&
(MarrHildrethSmoothing(image,buffer,r,c+1,&mh)>0)) |

25 ((r+1<rmax) && (c+1<cmax) &&
(MarrHildrethSmoothing(image,buffer,r+1,c+1,&mh)>0)))))

15

list->AddTail(new PChainedEdge(r,c,0));
if (1s1stCall)
{
30 *newCrop = PIntRectangle(c,r,c+1 ,r+1);
1s1stCall = false;
h

else

{
if (sint32(r)<newCrop->Top()) newCrop->SetTop(r);
33 else if (sint32(r+1)>newCrop->Bottom())
newCrop->SetBottom(r+1);
if (sint32(c)<newCrop->Left()) newCrop->SetLeft(c);

h
break;

h

h

if{c != cmax)

{

cO =¢;
for (c=cmax-1; ¢c>c0; ¢c——)
{
if ((MarrHildrethSmoothing(image,buffer,r,c,&rnh) != float(0.0))

45 &&
((MarrHildrethSmoothing(image,buffer,r,c,&mh) >0) &&
(((r+1<rmax) &&
(MarrHildrethSmoothing(image,buffer,r+1,¢,&mh)<0)) ||
((c>0) &&
(MarrHildrethSmoothing(image,buffer,r,c—1,&mh)<0)) |

50 ((r+1<rmax) && (e>0) &&
(MarrHildrethSmoothing(image,buffer,r+1,c-1,&mh)<0)))) ||
((MarrHildrethSmoothing(image,buffer,r,c,&mh) <0) &&
(((r+1<rmax) &&
(MarrHildrethSmoothing(image,buffer,r+1,¢,&mh)>0)) ||
((c>0) &&

55 (MarrHildrethSmoothing(image,buffer,r,c—1,&mh)>0)) ||
((r+1<rmax) && (c>0) &&
(MarrHildrethSmoothing(image,buffer,r+1,c—-1,&mh)>0)))))

40

list* AddTail(new PChamedEdge(r,c,0));
if (sint32(c+1)»newCrop->Right()) newCrop->SetRight(c+1);
60 break;

h
y
y
h

return true;
65 }

US RE42,381 E

27

As 1n the variable box size embodiment described herein-
above, the second step in the fixed box size embodiment
generates boxes having various angles of rotation X relative
to the borders of the scanner bed, and the third step analyzes
the boxes to determine the box that 1s most aligned with the
picture. However, 1n the fixed box size embodiment it 1s not

necessary that each of the boxes generated 1s 1tself “smallest,”
as was the case 1n the variable boxes size embodiment.
Instead, 1n the fixed box size embodiment, the various boxes
are generated by rotating a reference box about its center. The
reference box 1s chosen large enough so that irrespective of
how 1t 1s rotated about 1ts center, 1t encloses the entire contour
of the picture within the high resolution scanned 1image.

In a preferred embodiment of the present invention, the
center of the reference box 1s chosen to be the centroid of the
shape enclosed by the contour of the picture; 1.e., the centroid
of the shape of the picture. The centroid of a shape 1s the
average ol all pixel locations within the shape, and corre-
sponds to the center of gravity of a uniform plate having such
a shape. Moreover, as described hereinbelow with reference
to FIG. 5, by choosing the reference box to be large enough so
that it contains a circle that surrounds the previously deter-
mined bounding box, 1t 1s ensured that the reference box will
enclose the entire contour of the picture, irrespective of the
angle through which 1t 1s rotated about 1ts center.

Reference 1s now made to FIG. 5, which illustrates the
determination of boxes used to calculate an angle of rotation
ol a picture, 1n accordance with a preferred “fixed box size”
embodiment of the present mvention. A circle 510 1s gener-
ated 1n such a way that it completely surrounds contour 520 of
a picture. Such a circle can be constructed by circumscribing
a previously determined bounding box 530 of the picture. The
center O of circle 510 1s chosen to be the centroid of the shape
enclosed by contour 520; 1.e., the shape of the picture itsell.

A reference box 540 1s then chosen to have the same center
point, O, and to enclose circle 5310. This ensures that when
reference box 540 1s rotated about its center O by any angle of
rotation, the rotated box 550 will still enclose the entire pic-
ture within 1t. It 1s not essential 1n this fixed box si1ze embodi-
ment of the present invention that boxes 540 or 5350 be con-
structed to be as small as possible.

The following computer listing of software in the C++
programming language calculates the reference box 540
according to a preferred embodiment of the present invention.
The variables 10 and 10 are used to accumulate sums of the row
and column coordinates, respectively, of all pixels on the
outermost edges of the picture. The sums are averaged by
dividing by the number of such pixels, and the average values
are stored in rowCenter and columnCenter. These average
values determine the center of the desired reference box 540.
The half-width/hali-length of the reference box is set to half
of the length of the diagonal of a given bounding box cro-
pArea, plus an additional pixel.

PFloatRectangle PSmartScanHighRes::BarycentricBoundingBox(
const PIntRectangle& cropArea, PEdgelterator®
edges,

{

sint32 10=0, j0=0, nb = 0;
PEdgePtr cur = edges->First();
edges->Reset();

while (cur = edges->Current())

{

float® rowCenter, float™ columnCenter)

10 += cur->Row();
10 += cur->Column();

10

15

20

25

30

35

40

45

50

55

60

65

28

-continued

edges->Next();
nb++;

y

*rowCenter = float(10)/float(nb);
*columnCenter = float(j0)/float(nb);
sint32 size = simnt32(sort(cropArea.Width(y*cropArea. Width() +
cropArea.Height(y*cropArea.Height())/2.0 + 1.0);
return PFloatRectangle(* columnCenter-size,
*rowCenter-
size, *columnCenter+size, * rowCenter+size);

h

In a preferred fixed box size embodiment, the present
invention calculates, for each orientation angle X, a sum D(X)
that gives a measure of the average distance between the box
oriented at angle X and the picture. Specifically, D(X) 1s given
by the expression

D(X) = d(p, B(X)) (1)

2

all outermost edge
pixel locations p

where p denotes a pixel location in the edge envelope of the
picture, and B(X) denotes the box that 1s oriented at angle X.
Thus D(X) equals the sum of the distances, 3(p, B(X)), {from
cach pixel location p 1n the edge envelope of the picture to the
box B(X). The distance from a pixel location p to a box B(X)
1s defined to be the minimal distance from p to any of the four
sides of B(X). Specifically, the four distances from pixel
location p to each side of box B(X) are considered, and the
value of 3(p, B(X)) 1s set to the smallest of these four dis-
tances. The distance from a pixel location p to a side of a box
1s measured along the line perpendicular to the side.

Were D(X) to be normalized by dividing by the number of
pixel locations 1n the outermost edges, it would represent an
average distance between the outermost edges of the picture
and box B(X). As such, D(X) serves as a metric for how well
box B(X) 1s aligned with the picture. The angle of rotation X
for which D(X) 1s smallest 1s the angle that brings the refer-
ence box closest to the pixels of the outermost edges of the
picture. In other words, the box B(X) that 1s “most aligned”
with the picture 1s the one for which D(X) 1s smallest, among
all values of X.

For the special case of the reference box 540 in FIG. 5,
whose sides are aligned with the scanner bed and whose angle
of rotation 1s X=0, the distance from any pixel location p to a
side of the box corresponds to a difference in row index
between p and the side (for the vertical sides of the reference
box) or a difference in column imndex between p and the side

(for the horizontal sides of the box).

Reference 1s now made to FIG. 6 which illustrates the
computation of distance, in a preferred embodiment of the
present invention, from a pixel location to a side of a box that
1s not a reference box (1.e. a box having non-zero angle of
rotation relative to the scanner bed), based on the distance
from the same pixel location to a side of a reference box, 1n
accordance with a preferred “fixed box size” embodiment of
the present invention. In FIG. 6, a line L-0 denotes the side
610 of reference box (such as box 340 from FIG. 5) that 1s
aligned with a scanner bed, and a point P denotes a selected
pixel location situated on a contour 620 of the picture. The
line L-X denotes the corresponding side 630 of a box B(X)
that 1s rotated by an angle X (such as box 350 from FIG. §),
and thus oriented by angle X relative to the scanner bed.

-

US RE42,381 E

29

A point A denotes the point of intersection of the lines L-0
and L-X. The location of point A can be readily determined
from the distance OR and the angle X. Indeed, referring back
to FIG. 5 where the corresponding sides L-0 and L-X are
indicated, and their point of intersection 1s denoted by A, 1t
can be seen that radius OR 1s perpendicular to -0, and radius
OQ) 1s perpendicular to L-X. As can be seen further in FIG. 5,
the angle QOR 1s equal to X, and the angle AOR 1s equal to
X/2. It thus follows from a consideration of triangle AOR that
AR=0R* tan(X/2), and this determines the position of point
A along line L-0.

Referring again to FIG. 6, the line L-0%* 1s taken from point
P perpendicular to line L-0, and 1t intersects line L-0 at a point
B. The length PB represents the distance between pixel loca-
tion P and side L-0, and can be readily determined from the
pixel coordinates of P and of line L-0. Indeed, since L-0 1s
aligned with the scanner bed, the length PB 1s determined as
the difference 1n row index (1f L-0 1s a aligned to vertically
with the scanner bed) or column index (if L-0 1s aligned
horizontally with the scanner bed) between the location of P
and the location of L-0. Similarly the location of point B can
also be readily determined from the pixel coordinates of P and
of line L-0.

The distance AB can also be readily determined since the
locations of point A and point B are both known.

The line L-X* 1s taken from point P perpendicular to line
L-X, and i1t mtersects line L-X at a point C. The length PC
represents the desired distance between pixel location P and
side L-X. A point D in FIG. 6 denotes the point of intersection
of line L-0* and L-X*. By considering the trnangles ABD and
PCD one can verily that the distance PC 1s given by the
CXPression:

PC=PB*cos(X)-AB*sin(X). (2)

For each pixel location P on an outermost edge of the picture,
the calculation of PC 1s performed for each of the four sides of
box B(X), and the smallest of these four values 1s used for the
term 3(p,B(X)) 1n Equation 1 above. These terms are cumu-
latrvely summed over all such pixel locations to calculate the
value of D(X) in Equation 1 above. The desired angle of
rotation of the picture 1s that angle X for which D(X) 1s
mimmized.

The following computer listing of software in the C++
programming language implements the calculation of D(X)
as used 1n a preferred embodiment of the present invention.
The method InitializeDistanceEdges calculates the sum D(0)
of all the distances from each pixel location 1n an outermost
edge of the picture to the reference box, named “box,” for
which X=0. It uses a class PDistanceEdge inherited from
PedgeFElt that includes four members leftDist, topDist, right-
Dist and bottomDist, representing the distances from the edge
location to the four sides of a box. The method Distance
computes the sum D(X) of the distances from each pixel
location 1 an outermost edge of the picture to the box
obtained by rotating the reference box by an angle alpha (1.e.
X)) about 1ts center, using Equation 2 above.

float PSmartScanHighRes::InitializeDistanceEdges(PEdgelterator™ edges,
PEdgelterator® new_edges, const PFloatRectangle&

box)
i

float distance = 0.0;

PEdgePtr chained_edge = edges->First(), next = 0;
edges->Reset();

PEdgePtr dist_edge;

while (chained_edge)

10

15

20

25

30

35

40

45

50

55

60

65

30

-continued

1

next = chained_edge->next;
dist_edge = new PDistanceEdge(chained edge->Row(),
chained_ edge->Column(),
flat(box.Left()-chained_edge-
>Column()),
float(box.Top()-chained_edge->Row()),
float(box .Right()-chained_edge-
>Column()),
float(box.Bottom()-chained_edge-
>Row()));
new_edges->AddTail(dist_edge);
distance += DistanceMimimal({{(PDistanceEdge™) dist_edge)->Left(),
((PDistanceEdge™)dist_edge)->Top(),
((PDistanceEdge™)dist_edge)->Right(),
((PDistanceEdge™)dist_edge)-

>Bottom());
chained_edge = next;

h

return distance;

h

float PSmartScanHighRes::Distance(PEdgelterator® edges, const

PFloatRectangle& boundingBox, float Xc, float Yc, float angle)

{

float distance = 0.0, cosinus = float(cos(angle)), sinus = float(sin{angle));

float left, top, right, bottom;

float Xm = float(boundingBox.Left());

floatYm =Yc;

float XXm = Xm™*cosinus — Ym*sinus;

float YYm = Xm*simmus + Ym*cosinus:

float left Xr = Xm;

float left_ Yr = (—(Xc-XXm)* Xm+(Xc-XXm)*XXm+
(Ye-YYm)*YYm)/ (Yc-YYm);

Xm = float{(boundingBox.Right());

Ym =Yc;

XXm = Xm*cosinus — Ym*sinus;

YYm = Xm*sinus + Ym™*cosinus;

float right Xr = Xm;

float right. Yr = (—-(Xc-XXm)* Xm+(Xc—XXm)* XXm+
(Ye-YYm)*YYm)/ (Yc-YYm);

XITl = XC;

Ym = float(boundingBox.Top(});

XXm = Xm™*cosinus — Ym™*sinus;

YYm = Xm™*sinus + Ym™*cosinus;

float top_Yr =Ym;

float top_ Xr = (—(Yc-Y Ym)*Ym+(Xc-XXm)*XXm+

(Ye-YYm)*YYm)/ (Xc-XXm);

XM = XC;

Ym = float(boundingBox.Bottom());

XXm = Xm™*cosinus = Ym*sinus;

YYm = Xm™*sinus + Ym™cosinus;

float bottom_ Yr =Ym;

float bottom_Xr = (—(Yc-Y Ym)*Ym+({Xc-XXm)* X Xm+

(Ye-YYm)*YYm)/ (Xc-XXm);

PDistanceEdge™ cur = (PDistanceEdge™®)edges->First();

edges->Reset();

while (cur)

{
left = cur->Left()*cosinus — (cur->Row() = left_Yr)*sinus;
right = cur->Right()*cosinus — (cur->Row() = right_Yr)*sinus;
top = cur->Top()*cosinus — (cur->Column() = top_Yr)*sinus;

bottom=cur->Bottom()*cosinus — (cur->Column() = bottom_ Yr)*sinus;

distance += DistanceMimimal(left, top, right, bottom);
cur = (PDistanceEdge™) (edges->Next());

h

return distance;

)

float PSmartScanHighRes::DistanceMinimal(float aa, float ab, float ac,
float ad)

{

float a = ABS(aa);
float b = ABS(ab);
float ¢ = ABS(ac);
float d = ABS(ad);
if (a<b)
{
if (a<c)
return (a<d)?a:d;
else
return (c<d)?c:d;

US RE42,381 E

31

-continued
h
else
{
if (b<c)
return (b<d)?b:d;
else
return (c<d)?c:d;
h
h
class SMARTSCANDEC PDistanceEdge:public PEdgeElt
{
friend PEdgelterator;
public:
pDistanceEdge(void);
PDistanceEdge(const PDistanceEdge&);
PDistanceEdge(uint32 arow, wint32 acolumn, float leftDist,
float topDist, float rightDist,
float bottomDist, PEdgePtr next = 0);
PDistanceEdge& operator=(const PDistanceEdgedér);
virtual ~PDistanceEdge(void);
float Left(void) const;
float Top(void) const;
float Right(void) const;
float Bottom(void) const;
void SetLeft(float);
void SetTop(float);
void SetRight(float);
void SetBottom(float);
private:
float leftDist, topDist, rightDist, bottomDist;
3

inline PDistanceEdge: :pDistanceEdge(void):PEdgeElt()
{ leftDist = topDist = rightDist = bottomDist = 0.0; }
inline PDistanceEdge::PDistanceEdge(

const PDistanceEdge& elt):

PEdgeLlt(elt)
{ leftDist = elt.leftDist; topDist = elt.topDist; rightDist = elt.rightDist;
bottomDist = elt.bottomDist; }
inline PDistanceEdge::PDistanceEdge(uint32 arow, uint32 acolumn,

float aleftDist, float atopDist,

float arightDist, float abottomDist,

PEdgePtr anext):PEdgeElt(arow, acolumn,
anext)
{ leftDist = aleftDist; topDist = atopDist; rightDist = arightDist;
bottomDist = abottomDist; }
inline PDistanceEdge& PDistanceEdge::operator=(

const PDistanceEdge&
elt)
{ this->pEdgeElt::operator=(elt):leftDist = elt.leftDist; topDist = elt.topDist;
rightDist = elt.rightDist; bottomDist = elt.bottomDist; return (*this); }
inline PDistanceEdge: :~PDistanceEdge(void)
i)
inline float PDistanceEdge:
{ return leftDist; }
inline float PDistanceEdge:
{ return topDist; }
inline float PDistanceEdge:
{ return rightDist; }
inline float PDistanceEdge:
{ return bottomDist; }
inline void PDistanceEdge:
{ leftDist = vat; |
inline void PDistanceEdge:
{ topDist = val; }
inline void PDistanceEdge:
{ rightDist = val; }
inline void PDistanceEdge:
{ bottomDist = val; }

:Left(void) const
:Top(void) const
:Right(void) const
:Bottom(void) const

:SetLeft(float val)

:SetTop(float val)

:SetRight(float val)

:SetBottom(float val)

Reference 1s now made to FIG. 7, which 1s a simplified
flowchart of a preferred “fixed box size” embodiment of the
present mvention for determining an angle of rotation of a
picture relative to the b borders of a scanner bed, based on a
contour of the picture. At step 710 the outermost edges of the
picture are determined within a scanned 1image. The determi-

nation of outermost edges based on knowledge of a bounding,
box that surrounds the picture 1s described hereimnabove. At

step 720 the variable D_SMALLEST 1s mitialized to a very

10

15

20

25

30

35

40

45

50

55

60

65

32

large positive value. This ensures that the first value of the
variable D calculated below 1s less than D SMALLEST, and
thus accepted.

The angle of orientation, X, 1s varied within a range from
X_START to X_END with a step size of DX, 1n order to
search for the desired angle of rotation of the picture. It 1s
assumed that X_START 1s less than X_END. At step 730, X
1s initialized to the value X_START. At step 740 a test 1s made
whether or not X exceeds the value X_END. If so, execution
terminates at step 750, and the desired angle of rotation 1s
given by the varniable X_ANGLE. Otherwise, execution con-
tinues by advancing to step 760, which imitializes to zero the
variable D for the running sum 1n Equation 1 above.

At step 770 all of the pixel locations within the contour of
the picture that were 1dentified at step 710 are marked as being
unprocessed. In addition, a specific pixel location, P, 1s
selected as an 1nmitial location for processing. At step 780 P 1s
marked as being processed. At step 790 the vaniable
L. SMALLEST 1s mnitialized to a very large positive value.
This ensures that the first value of the variable L calculated
below 1s less than IL_ SMALLEST, and thus accepted.

At step 800 a box, B, 1s considered as being oriented in the
direction of angle X relative to the borders of the scanner bed.
This 1s the box 550 from FIG. 5, generated by rotating refer-
ence box 540 by an angle X about its center. Recall that
reference box 540 was chosen large enough so as to ensure
that box B encloses the entire contour of the picture.

The four sides of box B are marked as unprocessed, and at
step 810 a specific side, S, 1s selected as an 1mitial side for
processing. At step 820, S 1s marked as being processed. At
step 830 the distance, L, between pixel location P and side S
1s calculated, preferably based on Equation 2 above. At step
840 a determination 1s made as to whether or not L 1s smaller
than L. SMALLEST. This 1s done 1n order to choose the
smallest of the four distances from P to each of the four sides
of box B, i order to computer the term 3(p, B(X)) from
Equation 1 above. IT L 1s smaller than . SMALLEST, then at
step 850 L SMALLEST 1s setto L, and the tlow of execution
advances to step 860. IT L 1s not smaller than L. SMALLEST,
then step 850 1s by-passed, and the flow of execution advances
directly from step 840 to step 860. As mentioned hereinabove,
the first time the determination of step 840 1s made, L 1s less
than L SMALLEST, since ., SMALLEST was 1nitialized to
a very large positive value at step 790.

At step 860 a determination 1s made whether there remain
any unprocessed sides S of box B. If so, the flow of execution
returns to step 820. If not, then the calculation of L_SMALL-
EST 1s complete, and L_SMALLEST 1s equal to the term
A(p,B(X)) from Equation 1 above. At step 870 this term 1s
added cumulatively to the running sum variable D. At step
880 a determination 1s made whether or not there remain any
unprocessed pixel locations within the contour of the picture.
If so, then control returns to step 730. I not, then all of the
pixel locations within the outermost edges of the picture have
been accounted for in the sum D(X) from Equation 1, and
hence the vanable D equals this sum.

The flow of execution then advances to step 890. At step
890 a determination 1s made as to whether ornot D 1s less than
D_SMALLEST. If not, the flow of execution advances to step
900 where the orientation angle 1s incremented by an amount
DX, and from there the flow of execution returns to step 740.
Otherwise, step 810 1s executed, which sets the angle of
rotation, X _ANGLE, to X, and sets D SMALLEST to D.
D_SMALLEST thus represents the smallest value of D cur-
rently produced by the search, and X__ANGLE represents the
angle of orientation that produced this value of D. As men-
tioned hereinabove, the first time the determination of step

US RE42,381 E

33

890 1s made, D 1s less than D SMALLEST, since
D_SMALLEST was imitialized to a very large positive value
at step 720.

Various well-known search techmques can be used to
determine the angle X_ANGLE that produces the smallest
value of D(X). Although the search techmque presented 1n
FIG. 7 1s an exhaustive technique, 1n alternative embodi-
ments, other search techniques may be used, such as binary
search or numerical techniques such as gradient methods.

In a preferred embodiment of the present invention a search
for the angle of rotation 1s made by varying X 1n units of one
degree from 0° to 90° or from 0° to —90°. The decision as to
whether to search 1n the direction of positive or negative
angles 1s made by 1nitially selecting a small angle of rotation
in one angular direction. It this causes the value of D(X) to
increase, then the search 1s made 1n the opposite direction.
Otherwise, 11 this causes the value of D(X) to decrease, then
the search 1s made in the same direction. Moreover, since
most people are nght-handed and since nght-handed people
tend to rotate the picture clockwise when placing 1t on the
scanner bed, the positive angular direction from 0° to 90° 1s
the more probable one to give rise to the picture’s angle of
rotation. As such, 1n a preferred embodiment of the present
invention, the initial angle of rotation 1s selected 1n the posi-
tive angular direction. In any event the largest number of
directions to search through does not exceed 180, since 180
degrees spans all of the angles between —90° and +90° 1n units
ol one degree.

Regarding the method illustrated in FIG. 7, an advantage of
using Equation 2, which computes the distances between
pixel location P and side S for each angle of rotation X, based
on the corresponding distances for reference box 540 (FIG.
5), 1s that the terms sin(X) and cos(X) appearing in Equation
2 can be computed once and stored 1n a table, obviating the
need to compute them repeatedly. Once such a table 1s avail-
able, the calculations embodied in Equation 2 are simple
additions and multiplications, which can be performed very
quickly.

The following computer listing of software in the C++
programming language implements the tlowchart of FIG. 7.
The method RotationEstimate proceeds by first invoking
BarycentricBoundingBox to calculate the reference box 540
(FIG. 5). It then 1mnvokes InitializeDistanceEdges to calculate
the value of D(X) from Equation 2 above for the reference
box; 1.¢., for the case when X=0. The running variable angle,
stored 1n a variable named “angle,” 1s mitialized to zero, and
the minimum value of D(X), stored 1n a variable named
“distance,” 1s mnitialized to D(0). The vaniable angle 1s incre-
mented 1n units of RADIANT_STEP and the value o1 D(X) 1s
calculated for X=angle. As long as D(X) continues to
decrease (and the angle 1s less than 90°), the method contin-
ues to search over additional positive angles X. As soon as
D(X) begins to increase, the method stops and returns the
previous value of X as the estimated angle of rotation. In case
D(X) increases at the first positive value of X, the method
searches over negative values of X instead.

bool PSmartScanHighRes::RotationEstimate(
const PIntRectangle& cropArea, PEdgelterator™ edges,

fHoat™* rowCenter, float® columnCenter, float™
rotateAngle)

{

if ({(cropArea.Area() == 0)|/(edges->Size() ==
const float PId2=float(PI/2.0);

*rowCenter = *columnCenter = *rotateAngle = 0.0;

PFloatRectangle boundingBox(BarycentricBoundingBox(cropArea, edges,

0)) return false;

10

15

20

25

30

35

40

45

50

55

60

65

34

-continued

rowCenter,
columnCenter));
float rotationCenterRow = float(boundingBox.Top() +
boundingBox.Height()/2.0);
float rotationCenterColumn = float(boundingBox.Left() +

boundingBox.Width()/2.0);

PEdgelterator new_edge;
float distanceO = InitializeDistanceEdges(edges &new_edge,

boundingBox);
float newDistance = distance0O, distance = distance0;
float angle = 0.0;
sint32 iteration = 0;
while ({((newDistance < distance) [DIST_EQUAL (newDistance, distance))
&& (angle <= PId2))

{

angle += float(RADIANT_STEP); iteration++;

distance = newDistance;
newDistance = Distance(&new_edge, boundingBox, rotationCenterRow,
rotationCenterColumn, angle);

iteration--; angle —= float(RADIANT_STEP);
if ((iteration == 0) || (angle>PId2))

1

angle = 0.0; distance = newDistance = distance0;

while (((newDistance <distance) ||
DIST_EQUAL(mewDistance, distance)) && (angle >= -PId2))
1

angle —= RADIANT_STEP;
distance = newDistance;
newDistance = Distance(&new_edge, boundingBox,
rotationCenterRow, rotationCenterColumn,
angle);
h
h

iteration--; angle —= float(RADIANT_STEP);
if (angle<-PId2) return false;

*rotateAngle = angle;

refurn true;

h

Once the angle of rotation of the picture 1s identified, the
photo kiosk can display a corrected image of the picture by
rotating the scanned image 1n the direction opposite to its
rotation angle, so that it appears oriented correctly in the
kiosk display, and aligned with the kiosk display axes. This
correction can be accomplished by either modifying the
scanned 1mage data, or by preserving the scanned image data
and simply including the angle of rotation as part of the image
data as described hereinbelow.

A photo kiosk may represent a scanned 1image internally 1n
the Flashpix image format. FLASHPIX 1s a trademark of the
Digital Imaging Group. A reference for Flashpix is the docu-
ment “Flashpix Format Specification,” ©1996, 1997, East-
man Kodak Company, the contents of which are hereby incor-
porated by reference.

The Flashpix image format allows for the inclusion of
meta-data. Meta-data 1s auxiliary data to the image, such as
data describing the creator, the contents, the copyright, the
date and time created, the date and time last modified, the
camera information and the scanner information. Meta-data
can also 1include parameters for transformations to be app. lied
to the 1mage, such as rotations and scaling, general afline
transformations, contrast adjustments and color space trans-
formations. When displaying a Flashpix image, a Flashpix
viewer must check for the presence of such transformations.
If they are present within the Flashpix file, the viewer must
apply them to the portion of the image being viewed.

As mentioned above, a photo kiosk may provide the con-
sumer with hard copy or soit copy photo products. If the photo
kiosk uses the Flashpix image format internally, then the
kiosk performs the transformations embedded within the
image file prior to displaying the image on the kiosk display

US RE42,381 E

35

and prior to printing out a hard copy photo product. For soft
copy products, the Flashpix image file would be delivered to
the consumer with the transformation data embedded within
the file, 1n which case the consumer would need to have a
Flashpix viewer in his home or office computer 1n order to
properly display or print his photo product.

Multiple Scans

The present invention can be used to automatically gener-
ate multiple 1mages when multiple pictures are placed on a
scanner bed together. Regions of interest and angles of rota-
tion can be determined for each of the pictures independently.

In order to apply the various techniques described herein-
above, the present invention operates by first scanming an area
of the scanner bed containing all of the pictures therewithin,
to produce a single scanned digital image, and then individu-
ally 1solating the pictures within the scanned image. In a
preferred embodiment, this 1s accomplished by identifying
areas of pixel locations within the scanned image that bound
cach of the individual pictures, and then determining the
contours of each individual picture within the respective
bounding areas.

To find bounding areas of pixel locations within the
scanned 1image for each of the pictures, the present invention
first applies edge detection to the scanned 1mage, 1n order to
identily the edges of all of the pictures together within the
scanned 1mage. The present mvention then applies a “blob
growing = algorithm as described in detail hereinbelow. A
“blob” 1s a connected group of pixel locations. A blob 1s
initialized by choosing the group to be a small set of pixel
locations, known to be contained entirely within a single one
of the pictures. In a preferred embodiment of the present
invention blobs are nitialized as small circular sets of pixel
locations, centered at locations within the scanned image
where there are large densities of edges. This ensures that
cach blob 1s mtially contained within a single one of the
pictures.

A blob *“grows” by expanding outwards. For example,
initially a blob could be a circular set of pixel locations, and
the growing could be implemented by inclusion of additional
pixel locations as the set expands radially outward. In a pre-
terred embodiment of the present invention, blobs grow by
tollowing edges that impinge upon their outer boundary. That
1s, given a current blob shape, 11 an edge point (i.e., a pixel
location belonging to an edge) 1s found on the boundary of the
blob, then the blob 1s expanded outwards in the direction of
the edge. The growth process continues until there are no edge
points on the boundary of the blob.

Blobs do not typically grow symmetrically in all direc-
tions. Blob growth can appear to be random. Even 1f a blob 1s
initialized to be a circular set of pixel locations, 1ts shape
changes as 1t grows, and 1ts shape 1s typically not circular nor
oval-shaped nor even convex at any stage other than the mnaitial
stage.

Several blobs located at different parts of the scanned
image are mitialized and grown simultaneously, 1n order to
take all of the pictures into consideration together in deter-
mimng each of their individual bounding areas. Two blobs
that grow 1n such a way that they intersect are coalesced 1nto
a single blob.

Reference 1s now made to FIG. 8, which 1s a simplified
illustration of how blobs of pixel locations grow 1n accor-
dance with a preferred embodiment of the present invention.
Many edges 920 of images of pictures within a scanned image
025 are shown. Also shown are three blobs 930, 940 and 950
of pixel locations, currently having a circular shape. The
boundary of blob 930 intersects seven of the edges 920. The

10

15

20

25

30

35

40

45

50

55

60

65

36

vectors 960 indicate the outward directions of the intersecting
edges. Blob 930 grows by expanding along the vectors 960.

The boundary of blob 940 does not intersect any edges, and
as such blob 940 does not grow. The boundary of blob 950
intersects four of the edges 920. The vectors 970 indicate the
outward directions of the intersecting edges. Blob 950 grows
by expanding along the vectors 970.

Provided that the pictures in the scanner bed do not overlap,
it 15 expected that the blobs will dynamically grow and coa-
lesce until each blob contains a single entire picture within 1t.
At that point, the blobs constitute the desired bounding areas
ol pixel locations.

If a single picture contains multiple disjoint objects within
it, it may happen that multiple blobs are generated within such
a picture, each blob bounding one of the disjoint objects. This
1s undesirable, since the purpose of the blobs 1s to bound an
entire picture, and not just an object within a picture.

To overcome this undesirable result, the present invention
operates by calculating a “separation” between two blobs,
and coalescing two blobs together 1f the separation between
them 1s smaller than a prescribed threshold. Thus blobs within
the same picture will be combined 11 they are close enough
together. Examples for measures of separation between blobs
include the shortest distance between the blobs, or the area 1n
a section between the blobs.

Reference 1s now made to FIG. 9, which 1s a simplified
illustration of measurement of separation between two blobs
in accordance with a preferred embodiment of the present
invention. Shown in FIG. 9 are two blobs 980 and 990. Lines
1000 are drawn to complete a convex hull of the two blobs.
Specifically, lines 1000 are each supporting lines for blobs
980 and 990. A supporting line for a blob has the property that
it touches the blob, but the entire blob lies on one side of it.
The hatched area between blobs 980 and 990 and within their
convex hull 1s used for a measure of the separation between
the two blobs.

A supporting line 1000 for blobs 980 and 990 can be
computer generated by initializing a line connecting the cen-
troids 1010 and 1020 of the two blobs 980 and 990, respec-
tively. The left endpoint of the line 1s moved upward, with the
right endpoint being held fixed, until the line no longer inter-
sects blob 980. The rnight endpoint 1s subsequently moved
upward, with the left endpoint being held fixed, until the line
no longer intersects blob 990, at which point the line connect-
ing the left and right endpoints 1s a supporting line. Similarly,
a second supporting line for blobs 980 and 990 can be com-
puter generated by repeating the above algorithm with the
endpoints moving downward rather than upward.

When the generation of the blobs 1s complete, and the blobs
no longer grow nor coalesce, the present invention uses the
bounding areas of pixel locations corresponding to each blob
to process each picture individually, as described above with
reference to single scanned pictures. Specifically, for the vari-
able box size embodiment, a search for the angle of rotation 1s
conducted according to the tlowchart in FIG. 3. For the fixed
box size embodiment, the contours of the pictures are first
determined by moving inwards from each blob towards the
picture contained therewithin, one pixel ata time until an edge
pixel location 1s found. Then, from the contours of the pic-
tures, a search for the angle of rotation 1s conducted according
to the flowchart 1n FIG. 7.

In the foregoing specification, the mmvention has been
described with reference to specific exemplary embodiments
thereof. It will, however, be evident that various modifica-
tions and changes may be made to the specific exemplary
embodiments without departing from the broader spirit and
scope of the mvention as set forth in the appended claims.

US RE42,381 E

37

Accordingly, the specification and drawings are to be
regarded 1n an illustrative rather than a restrictive sense.

What 1s claimed 1s:

1. A method for determining the orientation of an 1mage of
a picture within a scanned 1mage, comprising the steps of:

locating 1n the scanned 1mage a contour of the image of the

picture;

determining a plurality of bounding boxes confining the

contour of the image of the picture;

selecting one of the plurality of bounding boxes that is

substantially aligned with the contour of the image of the
picture; and

calculating an angle of rotation of the picture based on the

selected bounding box.

2. The method of claim 1 and also including the step of
applying edge detection to the scanned 1image, to locate edges
of the image of the picture.

3. The method of claim 2 wherein the edge detection
includes use of a Gaussian filter.

4. The method of claam 2 wheremn the edge detection
includes use of a Laplace filter.

5. The method of claim 2 wherein the edge detection
includes use of a Laplacian of Gaussian filter.

6. The method of claim 2 and also including the step of
identifying a bounding area of pixel locations that surrounds
the 1mage of the picture.

7. The method of claim 6 and also including the step of
pre-scanning the picture at a low resolution to obtain a pre-
scanned 1image, and wherein the pre-scanned 1image 1s used to
identily the bounding area of pixel locations.

8. The method of claim 6 wherein said locating step com-
prises locating pixel locations situated at edges of the image
of the picture and within the bounding area that are nearest to
the border of the bounding area.

9. The method of claim 1 wherein each of the plurality of
bounding boxes 1s associated with an angle, and wherein the
positioning angle 1s the angle associated with the selected
bounding box.

10. The method of claim 1 wherein said determining step
COmMprises:

providing a reference box; and

rotating the reference box about its center through multiple

angles of rotation.

11. The method of claim 10 wherein said providing step
COmMprises:

finding a region that bounds the contour of the image of the

picture; and

generating a box that encloses within it a circle, the circle

being large enough to enclose the region.

12. The method of claim 11 wherein the center of the circle
1s coincident with the center of the reference box.

13. The method of claim 11 wherein the center of the
reference box 1s comncident with the centroid of the image of
the picture.

14. The method of claim 1 wherein said selecting step
includes:

determining for each of the bounding boxes an average

distance between the bounding box and the contour of
the 1mage of the picture; and

choosing a bounding box for which the average distance

between the chosen bounding box and the contour of the
image of the picture 1s small as compared to the respec-
tive average distances between others of the plurality of
bounding boxes and the contour of the image of the
picture.

15. The method of claim 14 wherein said choosing step
includes choosing a bounding box for which the average

5

10

15

20

25

30

35

40

45

50

55

60

65

38

distance between the bounding box and the contour of the
image of the picture 1s smallest among the respective average
distances between the plurality of bounding boxes and the
contour of the 1image of the picture.
16. A method for operating a scanner, comprising:
detecting that a user has placed a plurality of pictures 1n
arbitrary orientations on a scanner bed of the scanner;

scanning the plurality of pictures to generate a scanned
image contaiming a plurality of images of the pictures;
and

automatically determining an orientation of at least one of

the 1images of the pictures relative to the scanner bed
using the scanned 1mage;

applying edge detection to the scanned image to locate

edges of the plurality of images of the pictures, and
identifying bounding areas of pixel locations for each
image of a picture from among the plurality of images of
pictures, each bounding area surrounding one 1image of a
picture from among the plurality of images of pictures,
such that identifying bounding areas includes,
iitializing a plurality of expandable groups of pixel
locations:
expanding each of the expandable groups of pixel loca-
tions until none of the pixel locations on 1ts boundary
are situated at edges.

17. The method of claim 16 wherein the edge detection
includes use of a Gaussian filter.

18. The method of claim 16 wherein the edge detection
includes use of a Laplace filter.

19. The method of claim 16 wherein the edge detection
includes use of a Laplacian of Gaussian filter.

20. The method of claim 16 and also including the step of
pre-scannming the plurality of pictures at a low resolution to
obtain a pre-scanned image, and wherein the pre-scanned
image 1s used to 1dentify the bounding areas.

21. The method of claim 16 further comprising the step of
coalescing two expandable groups of pixel locations when
they overlap as a result of said expanding step.

22.'The method of claim 16 further comprising the steps of:

determining a separation between two expandable groups

of pixel locations; and

coalescing the two expandable groups of pixel locations

when their separation 1s smaller than a prescribed
threshold.

23. A method for operating a scanner, comprising:

detecting that a user has placed a plurality of pictures 1n

arbitrary orientations on a scanner bed of the scanner;
scanning the plurality of pictures to generate a scanned
image containing a plurality of images of the pictures;
automatically determining an orientation of at least one of
the 1images of the pictures relative to the scanner bed
using the scanned 1image;
applying edge detection to the scanned image to locate
edges of the plurality of images of the pictures, and
identifying bounding areas of pixel locations for each
image of a picture from among the plurality of images of
pictures, each bounding area surrounding one 1mage of a
picture from among the plurality of images of pictures,
wherein said automatically determiming the orientation
comprises, for each image of a picture from among the
plurality of images of pictures, the steps of:
detecting a contour of the image of the picture;
determining a plurality of bounding boxes enclosing the
contour of the image of the picture;
selecting one of the plurality of bounding boxes that 1s
substantially aligned with the contour of the image of
the picture; and

US RE42,381 E

39

calculating an angle of rotation of the picture based on
the selected bounding box.

24. The method of claim 23 wherein each of the plurality of
bounding boxes 1s associated with an angle, and wherein the
positioning angle is the angle associated with the selected >
bounding box.

25. The method of claim 23 wherein said detecting step
comprises locating pixel locations situated at edges of the
image of the picture and within the bounding area of the
image of the picture that are nearest to the border of the
bounding area.

26. The method of claim 23 wherein said determining step

COmMprises:
providing a reference box; and

rotating the reference box about its center through multiple

angles of rotation.

27. The method of claim 26 wherein said providing step
COmMprises:

finding a region that bounds the contour of the image of the 2¢
picture; and

generating a reference box that encloses within 1t a circle,
the circle being large enough to enclose the region.

28. The method of claim 27 wherein the center of the circle

1s coincident with the center of the center of the reference box. 25

29. The method of claim 27 wherein the center of the box
1s coincident with the centroid of the picture.

30. The method of claim 23 wherein said selecting step
includes: determining for each of the bounding boxes, an
average distance between the bounding box and the contour 30
of the image of the picture; and

choosing a bounding box for which the average distance
between the chosen bounding box and the contour of the
image of the picture 1s small as compared to the respec-
tive average distances between others of the plurality of 35
bounding boxes and the contour of the image of the
picture.

31. The method of claim 30 wherein said choosing step
includes choosing a bounding box for which the average
distance between the chosen bounding box and the contour of 40
the 1mage of the picture 1s smallest among the respective
average distances between the bounding boxes and the con-
tour of the 1mage of the picture.

32. A system for determining the orientation of an 1image of
a picture within a scanned 1mage, comprising;: 45

an 1mage processor locating 1n the scanned 1mage a contour
of the 1mage of the picture;

a box generator determining a plurality of bounding boxes
coniining the contour of the image of the picture;

a box processor selecting one of the plurality of bounding 50
boxes that 1s significantly aligned with the contour of the
image of the picture; and

an angle processor calculating an angle of rotation of the
picture based on the selected bounding box.

33. An apparatus, comprising. 55

means for locating in the scanned image a contour of the
image of the picture;

means for determining one ov more bounding boxes con-
fining the contour of the image of the picture;

means for selecting one of the bounding boxes that is 60
substantially aligned with the contour of the image of the
picture; and

means for calculating an angle of votation of the picture
based at least in part on the selected bounding box.

34. An apparatus as claimed in claim 33, further compris- 65

ing means for applving edge detection to the scanned image,
to locate edges of the image of the picture.

10

15

40

35. An apparatus as claimed in claim 34, wherein said
means for applyving edge detection comprises a Gaussian

filter.

36. An apparatus as claimed in claim 34, said means for
applving edge detection comprises a Laplace filter.

37. An apparatus as claimed in of claim 34, said means for
applying edge detection comprises a Laplacian of Gaussian

filter.

38. An apparatus as claimed in claim 34, further compris-
ing means for identifving a bounding area of pixel locations
that surrounds the image of the picture.

39. An apparatus as claimed in claim 38, further compris-
ing means forv pre-scanning the picture at a low resolution to
obtain a pre-scanned image, and wherein the pre-scanned
image is used to identify the bounding area of pixel locations.

40. An apparatus as claimed in claim 38, said means for
locating comprises means for locating pixel locations situ-
ated at edges of the image of the picture and within the
bounding area that are nearest to the bovder of the bounding
area.

41. An apparatus as claimed in claim 33, wherein one or
move of the bounding boxes is associated with an angle, and
wherein the positioning angle is the angle associated with the
selected bounding box.

42. An apparatus as claimed in claim 33 wherein said
means for determining comprises:

means for providing a veference box; and

means for votating the reference box about its center
through multiple angles of rotation.

43. An apparatus as claimed in claim 42 wherein said
means for providing comprises:

means for finding a vegion that bounds the contour of the
image of the picture; and

means for generating a box that encloses within it a circle,
the circle being lavge enough to enclose the region.

44. An apparatus as claimed in claim 43, whervein the
center of the circle is coincident with the center of the refer-
ence box.

45. An apparatus as claimed in claim 43, whervein the
center of the veference box is coincident with the centroid of
the image of the picture.

46. An apparatus as claimed in claim 33, said means for
selecting comprising:
means for determining for one or movre of the bounding

boxes an average distance between the bounding box
and the contour of the image of the picture; and

means for choosing a bounding box for which the average
distance between the chosen bounding box and the con-
tour of the image of the picture is small as compared to
the respective average distances between others of the
plurality of bounding boxes and the contour of the image
of the picture.

47. An apparatus as claimed in claim 46 wherein said
means for choosing comprises means for choosing a bound-
ing box for which the average distance between the bounding
box and the contour of the image of the picture is smallest
among the respective average distances between the one or
more bounding boxes and the contour of the image of the

picture.

48. An apparatus, comprising:

means for detecting that a user has placed one ov more
pictures in arbitrary ovientations on a scanner bed of a
scanner;

US RE42,381 E

41

means for scanning the one or movre pictures to generate a
scanned image containing one or more images of the
pictures; and

means for determining an ovientation of at least one of the
images of the pictures relative to the scanner bed using
the scanned image;

means for applying edge detection to the scanned image to
locate edges of the one or more images of the pictures,
and

means for identifving bounding areas of pixel locations for
one ov more image of a picture from among the one or
more images of pictures, one ov more bounding area
surrounding one image of a picture from among the one
or movre images of pictures, such that said means for
identifving bounding areas comprises:

means for initializing one or more expandable groups of

pixel locations;

means for expanding one or more of the expandable groups
of pixel locations until none, or nearly none, of the pixel
locations on its boundary are situated at edges.

49. An apparatus as claimed in claim 48, said means for
applving edge detection comprising a Gaussian filter.

50. An apparatus as claimed in claim 48, said means for
applving edge detection comprising a Laplace filter.

51. An apparatus as claimed in claim 48, said means for
applying edge detection comprising a Laplacian of Gaussian

filter.

52. An apparatus as claimed in claim 48, further compris-
ing means for pre-scanning the one ov more pictures at a
lower resolution to obtain a pre-scanned image, and wherein
the pre-scanned image is used to identify the bounding areas.

53. An apparatus as claimed in claim 48, further compris-

ing means for coalescing two or more expandable groups of

pixel locations when the two or more expandable groups at
least partially overlap as a result of said means for expand-
Ing.
54. An apparatus as claimed in claim 48, further compris-
Ing:
means for determining a separation between two or more
expandable groups of pixel locations; and
means for coalescing the two or more expandable groups
of pixel locations when their separation is smaller than
a prescribed threshold.
5. An apparatus, comprising.
means for detecting that a user has placed one or more
pictures in arbitrary ovientations on a scanner bed of the
scanner;
means for scanning the one or move pictures to generate a
scanned image containing one ov more images of the
pictures,
means for determining an ovientation of at least one of the
images of the pictures relative to the scanner bed using
the scanned image;
means for applyving edge detection to the scanned image to
locate edges of the one or more images of the pictures,
and
means for identifving bounding areas of pixel locations for
one ov more image of a picture from among the one or
movre images of pictures, one ov more bounding area
surrounding one image of a picture from among the one
or more images of pictures, wherein said means for
determining the ovientation comprises:

10

15

20

25

30

35

40

45

50

55

60

42

means for detecting a contour of the image of the picture;
means for determining a one orv move bounding boxes
enclosing the contour of the image of the picture;

means for selecting one of the one or more bounding boxes
that is substantially aligned with the contour of the
image of the picture; and

means for calculating an angle of votation of the picture

based at least in part on the selected bounding box.

56. An apparatus as claimed in claim 55, wherein one or
morve of the bounding boxes is associated with an angle, and
wherein the positioning angle is the angle associated with the
selected bounding box.

57. An apparatus as claimed in claim 55, said means for
detecting comprising means for locating pixel locations situ-
ated at edges of the image of the picture and within the
bounding area of the image of the picture that are nearest to
the border of the bounding area.

58. An apparatus as claimed in claim 55, said means for
determining comprising.

means for providing a veference box; and

means for rotating the reference box about its center

through multiple angles of rotation.

59. An apparatus as claimed in claim 38, said means for

providing comprising.

means for finding a vegion that bounds the contour of the

image of the picture; and

means for genervating a reference box that encloses within

it a circle, the civcle being large enough to enclose the
region.

60. An apparatus as claimed in claim 59, wherein the
center of the circle is coincident with the center of the center
of the reference box.

61. An apparatus as claimed in claim 59, wherein the
center of the box is coincident with the centroid of the picture.

62. An apparatus as claimed in claim 55, said means for
selecting comprising:

means for determining for one or movre of the bounding

boxes, an average distance between the bounding box
and the contour of the image of the picture; and

means for choosing a bounding box for which the average

distance between the chosen bounding box and the con-
tour of the image of the picture is velatively small as
compared to the vespective average distances between
others of the one or move bounding boxes and the con-
tour of the image of the picture.

63. An apparatus as claimed in claim 62, said means for
choosing comprising means for choosing a bounding box for
which the average distance between the chosen bounding box
and the contour of the image of the picture is smallest, or
nearly smallest, among the respective average distances
between the bounding boxes and the contour of the image of
the picture.

64. An apparatus, comprising.

means for locating in a scanned image a contour of the

image of a picture;

means for determining one or move bounding boxes con-

fining the contour of the image of the picture;

means for selecting one or movre of the bounding boxes that

is significantly aligned with the contour of the image of
the picture; and

means for calculating an angle of votation of the picture

based at least in part on the selected bounding box.

G ex x = e

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : RE42.881 E Page 1 of 1
APPLICATION NO. : 11/521620

DATED : November 1, 2011

INVENTORC(S) . Vallmajo et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 1, line 10, below “Title” insert -- CROSS-REFERENCE TO RELATED APPLICATION --.

Column 39, line 25, 1n Claim 28, delete “coincident with the center of the center of the reference box.”
and 1nsert -- coincident with the center of the reference box. --.

Column 40, line 6, 1n Claim 37, delete “as claimed in of claim 34,” and 1nsert -- as claimed in claim
34, --.

Column 42, lines 30-31, 1 Claim 60, delete “coincident with the center of the center of the reference
box.” and insert -- coincident with the center of the reference box. --.

Signed and Sealed this
Nineteenth Day of June, 2012

. F A - . - -
-- .-.- -. b . -- ‘. .--
. " i . 1 - PR . . - - -
. - . : - - N, AT -
!, . . - - e . A n . . u-
.L; . . e e . L F

_ A
- ' - -
" . N T .
. " - . [g
- dh . . \
: .
. .- A . .

David J. Kappos
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

