(19) United States

12 Reissued Patent
Politis

(10) Patent Number:
45) Date of Reissued Patent:

USOORE42847E

US RE42.847 F.
Oct. 18, 2011

(54) EXPRESSION TREE OPTIMIZATION FOR
PROCESSING OBSCURED GRAPHICAL

OBJECTS

(75) Inventor: George Politis, Ryde (AU)

(73) Assignee: Canon Kabushiki Kaisha, Tokyo (JP)
(21) Appl. No.: 10/368,583

(22) TFiled: Feb. 20, 2003

Related U.S. Patent Documents

Reissue of:
(64) Patent No.:
Issued:

Appl. No.:
PCT Filed:

6,191,797
Feb. 20, 2001
08/861,063
May 21, 1997

(30) Foreign Application Priority Data

May 22, 1996 (AU) eooooeeeeeeeeeeeeeeeee e PO0021

(51) Int.CL.
GO6T 15/00 (2006.01)

(52) US.CL ... 345/440; 345/422; 345/420; 345/421

(58) Field of Classification Search 345/420-421,
345/433, 435, 440, 419, 422

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,123,084 A 6/1992 Prevostetal. 345/420
5,274,718 A 12/1993 Leonardietal. 382/240
5,295,236 A 3/1994 Bjorgeetal. 395/134
5,515,487 A * 5/1996 Beaudetetal. 345/440
5,579455 A 11/1996 Greencetal. 345/422
5,600,763 A 2/1997 Greeneetal. 345/420
(Continued)
in
A 101
103 / \
rotate 30 0X
102 I
'\

arrow

FOREIGN PATENT DOCUMENTS

AU 23362/95 ¥ 2/1996
(Continued)

OTHER PUBLICATIONS

Goldfeather, Jack; Near Real-Time CSG Rendering Using Tree Notr-

malization and Geometric Pruning; IEEE Computer Graphics &
Applications; pp. 20-28.

(Continued)

Primary Examiner — Phu K Nguyen
(74) Attorney, Agent, or Firm — Fitzpatrick, Cella, Harper &
Scinto

(57) ABSTRACT

The present ivention relates to a method, apparatus and
system for optimizing an expression tree (101,902,1102) for
compositing an 1mage. Such an expression tree (101,902,
1102) can comprise at least two nodes. Each node 1s either a
graphical element (102,104) or image compositing operator
((103,104) and has a region of the image represented by the
node (102,103,104). In the method, for atleast one node 1n the
tree, several steps are carried out. The region represented by
the node (103,104) 1s compared to a region representation
data structure, which 1s preferably a quadtree representation,
corresponding to one or more regions represented by at least
one other node. A determination 1s then made if the region
represented by the node (102,103,104) 1s totally or partially
obscured by the one or more regions. If the region represented
by the node 1s at least partially or totally obscured, the expres-
s1on tree (101,902,1102) 1s modified. Modifying the expres-
sion tree (101,902,1102) involves applying a clipping opera-
tor (58,59) to the node 11 the region represented by the node 1s
partially obscured. If the node 1s totally obscured, either
removing the node if the node 1s a graphical element (102,
104) or applying a predetermined set of node replacement
rules 1n accordance with the image compositing operator i

the node (103) 1s a image compositing operator.

32 Claims, 10 Drawing Sheets

02— 106 _, &

DNt ™

US RE42,847 E

Page 2
U.S. PATENT DOCUMENTS EP 069881 1/1996
3

5,724,494 A 3/1998 Politisccooeviiiiiin, 345/434]JE}F 80??22% é?iggg

5,745,121 A 4/1998 Politisocoovviiiiiniin 345/433
2002/0027563 Al* 3/2002 Van Doanetal. ... 345/630 OTHER PUBLICATIONS
2003/0118250 Al* 6/2003 Tlaskaletal. 382/284
2005/0267908 Al1* 12/2005 LeTourneau 707/101 M. Shantzis, “A Model for Efficient and Flexible Image Computer”,

pp. 147-154, Computer Graphics SIGGRAPH 1991, Jul. 28-Aug. 2,

FOREIGN PATENT DOCUMENTS Las Vegas, Jan. 1, 1994 XP000571017.

AU A-23362/95 2/1996
EP 0528631 2/1993 * cited by examiner

U.S. Patent Oct. 18, 2011 Sheet 1 of 10 US RE42,847 E

¢
¢

oy
e
X
&
A
%
X
2
X%
X
%
e

“!
/

)
5

*
)
5%

\ A
R

X
d&{

X

X
5

»
*Qi
050,

&
é&
X
e
¥

"".1
X
%S

X
X
Yo
()

\/
*#
\/

X
5S¢
ﬁ&»
é‘
X
X
()
X

o/

\

150

A

9
¢

e
Woree %%
V%% %%
Welete2es

/
#*
()

\/
@

g

¢ 0.0
gfb
@,

\/

&
&
&

()
o:O

*e
X/
Xy

OO X
fVVVVVW%ﬁ‘P
0. 9.6 0 00000 ’
29990060 0,00
-ﬁﬂﬁﬁﬂﬁﬂﬂfy.'

K
X
o:o
0

F/
AR
1%0%6%%%"

RS
020000

O
Y 9.08.0.0.\
OSSR
o002 % W
S %a%%% %

A RIN B

FIG. 1

U.S. Patent Oct. 18, 2011 Sheet 2 of 10 US RE42,847 E

in_ o— 101
103
A / \ 104
rotate 30° box 4
102
-~ |
) FIG. 2A
30°
102\ 104 104 5105
FIG. 2B
30° 30°
102 104 105
107
S
FIG. 2C
30°
102 N 104 106 —AL

FIG. 2D

U.S. Patent Oct. 18, 2011 Sheet 3 of 10 US RE42.847 E

12 text “C”
13

Ptmlh
pmmunh

FIG. 3

U.S. Patent Oct. 18, 2011 Sheet 4 of 10 US RE42.847 E

e

OVerl

22

23

J/

QVEer

image A

24 text C

FIG. 4

22

image A

FIG. S

U.S. Patent Oct. 18, 2011 Sheet 5 of 10 US RE42.847 E

4 P

circle B

L |
ii

rw '*..l.#*7l-."ih'jil'.‘-l-l--fliil‘jll“.-.llﬁq"-‘-.'qi.I"-l+-l-1Il'| & P+ WEF & T PRkl g g bk A AP EE [-

39

r.“"“‘-'_"ﬂ"""‘ il S e e T e '“‘“*-"‘f"‘““‘ e
[] ; »
1 L |
* :' -

U.S. Patent Oct. 18, 2011 Sheet 6 of 10 US RE42.847 E

[START | g0 514 [ENP /

S1,S7,513

OVCFQ“-_E.

S2,54, se. /

55
\ S8, SIO S12
53"‘* ‘"’ over
A circle B
1mage

text C page D
FIG. 7
0w:r4/Sl
m -— §7)
/53\
image A circle B

over

FIG.8 S \ . ‘>

5
text C \ page D

U.S. Patent Oct. 18, 2011 Sheet 7 of 10 US RE42.847 E

.L 902
Expression

Tree

904
914

For eagh nOde

in the tree, do
the following:

Select a remaining node 206
as the current node.

Compare the region of the node
{0 a region representation data
structure of another region
represented by a corresponding
node.

908

910

)s the
regton of the

selected node
obscured? .

Yes

~ 912
Modify the S
expression tree

FIG. S

U.S. Patent Oct. 18, 2011 Sheet 8 of 10 US RE42.847 E

912
H/'
|||| _ 1002
1004
s the Partially
region of the
node totally or Obscured
partially obscured?
Totally
1006 Obscured
s the graphical
{lode d operator
graphical elemem
or operator?
graphical
glement
i
Remove the node from 008
the expression tree.
Apply an appropriate one 1010

of a set of node
replacement rules for the
graphical operator

. 1012
Apply clipping operator

to the node.

1014

FIG. 10

U.S. Patent

FIG. 11

Oct. 18, 2011 Sheet 9 of 10

Expression 1102

Tree

1104

For each node in the

tree, where the tree
1 traversed

node-by-node, do

the following:

Select a remaining node as the
current node.

US RE42,847 £

1106

11068

Done .

Receive a first region representation Va 1110
from a parent node.

Pass 10 a 15t operand of a graphical
operator a modified representation per
a 1st modification rule for the operator.

Determine a second region
representation of regions obscured by a

sub-tree of the 18t operand and return it
lo graphical operator.

Pass 10 a 2nd operand of the graphical
operator a modified representation per

a 2nd modifrcation rule for the
operator.

Determine a third region representation
of regions obscured by a sub-tree of the

2nd operator and return it to the
operator.

Determine final ragion represeniation

per set rule for operator and return it to
the parent node

1112

1114

1116

1113

1120

U.S. Patent Oct. 18, 2011 Sheet 10 of 10 US RE42.847 E

1200
Video 1216 f
Display

1202

Video
Interface

t(ﬁo 1212¢ 1214
t 1204 ¢ 1206 i 1208

Storage

Device

/O
Processor Memo
OLE R Interface
1218
Keyboard I-. 1990

FIG. 12

US RE42,347 E

1

EXPRESSION TREE OPTIMIZATION FOR
PROCESSING OBSCURED GRAPHICAL
OBJECTS

Matter enclosed in heavy brackets |] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

This application is a reissue of U.S. Pat. No. 6,191,797,
which issued from application Ser. No. 08/861,063 filed May
21, 1997.

FIELD OF THE INVENTION

The present invention relates to the creation of computer-
generated 1mages both 1n the form of still pictures and video
imagery, and, in particular, relates to a process, apparatus, and
system for creating an 1mage made up by compositing mul-
tiple components.

BACKGROUND

Computer generated images are typically made up of many
differing components or graphical elements which are ren-
dered and composited together to create a final 1image. In
recent times, an “opacity channel” (also known as a “matte”,
an “alpha channel”, or simply “opacity”) has been commonly
used. The opacity channel contains information regarding the
transparent nature of each element. The opacity channel 1s
stored alongside each instance of a colour, so that, for
example, a pixel-based image with opacity stores an opacity
value as part of the representation of each pixel. An element
without explicit opacity channel immformation 1s typically
understood to be fully opaque within some defined bounds of
the element, and assumed to be completely transparent out-
side those bounds.

An expression tree oflers a systematic means of represen-
tation for rendering objects or elements of an image. Expres-
s10n trees comprise a plurality of nodes including leat nodes,
internal nodes and a root node. A leaf node, being the outer
most node of an expression tree, has no descendent nodes and
consists ol one or more graphical elements. An internal node
typically branches to left and right subtrees, wherein each
subtree 1s 1tself an expression tree comprising at least one leat
node. The internal nodes of an expression tree are composit-
ing operators, which treat the leit and right subtrees as oper-
ands of the operator. The first node of the expression tree 1s
commonly referred to as a root node. The root node of an
expression tree represents the final image, and each node of
the tree represents a portion of the final image.

Although a graphical element may of itself be of a certain
s1ze, 1t need not be entirely visible 1n a final 1image, or only a
portion of the element may have an effect on the final image.
For example, assume an image of a certain size 1s to be
displayed on a display. However, 1f the image 1s positioned so
that only the top left corner of the image 1s displayed by the
display device, the remainder of the 1image 1s not displayed.
The final 1mage as displayed on the display device thus com-
prises the visible portion of the 1image, and the 1nvisible por-
tion 1n such a case need not be rendered.

Another way 1n which only a portion of an element may
have an effect 1s when the portion 1s obscured by another
clement. For example, a final image to be displayed (or ren-
dered) may comprise one or more opaque graphical elements,

[l

10

15

20

25

30

35

40

45

50

55

60

65

2

sonic of which obscure other graphical elements. Hence, the
obscured elements have no efiect on the final image.

I an element, or parts of elements, that have no effect on
true final 1image can be 1dentified, those elements (or parts)
need not be rendered, thereby saving considerable time and
possibly memory.

Problems arise with prior art methods, at least for images
where overlaps occur, because these methods do not easily
cope with transparent graphical objects, nor do they handle
the full range of compositing operators. It 1s therefore desir-
able to at least ameliorate one or more of those problems.

SUMMARY

In accordance with one aspect of the present 1nvention,
there 1s provided a method of optimising an expression tree
for compositing an 1mage, the expression tree comprising
graphical elements and graphical operators, each node 1n the
tree being either a graphical element or a graphical operator
and having a region of the image represented by the node, the
method comprising, for at least one node 1n the tree:

comparing the region represented by the node to a region

representation data structure corresponding to one or
more regions represented by at least one other node;
determining if the region represented by the node 1s totally
or partially obscured by the one or more regions; and
modifying the expression tree in the event that the region
represented by the node 1s partially or totally obscured.

In accordance with another aspect of the present invention,
there 1s provided a method of optimising an expression tree
for compositing an 1image, the expression tree comprising a
node being either a graphical element or a graphical operator
and having a region of the image represented by the node, the
method comprising the steps of:

traversing the expression tree node by node;

determining at a current node 1f a region of the image

represented at the node 1s obscured by regions repre-

sented by at least one other node, and modifying the
expression tree 1 the event that the current node is
partially or totally obscured.

In accordance with yet another aspect of the present inven-
tion there 1s provided a method of optimising an expression
tree for compositing an image, the expression tree comprising
a node being either a graphical element or a graphical opera-
tor and having a region of the 1mage represented by the node,
the method comprising the steps of:

traversing the expression tree node by node and at each

current node comprising a graphical operator applying

the sub-steps of:

(1) recerving a first region representation from a parent
node;

(11) passing to a first operand of the graphical operator a
modified first region representation in accordance
with a first predetermined modification rule for the
operator;

(111) returning to the graphical operator a second region
representation of regions obscured by a sub-tree asso-
ciated with the first operand;

(1v) passing to a second operant of the graphical operator
a modified second region representation 1 accor-
dance with a second predetermined modification rule
tor the operator;

(v) returning to the graphical operator a third region
representation of regions obscured by a sub-tree asso-
ciated with the second operand; and

US RE42,347 E

3

(v1) determining, in accordance with a set rule for the
graphical operator, a final region representation to be
returned to the parent node.

BRIEF DESCRIPTION OF THE DRAWINGS

A preferred embodiment of the present invention 1s here-
inafter described with reference to the accompanying draw-
ings and the Appendix, in which:

FIG. 1 schematically illustrates various compositing
operations;

FIGS. 2A to 2D 1illustrate an example of applying a clip-
ping operator in accordance with an embodiment of the
present invention;

FI1G. 3 illustrates an example of rendered image composed
ol simple graphical objects;

FIG. 4 illustrates an 1image expression tree which repre-
sents the composition of the simple graphical objects to com-
pose or render the image of FIG. 3;

FIG. 5§ shows a simplified image expression tree of the
image expression tree of FIG. 4 1n accordance to an embodi-
ment of the present invention;

FIG. 6 illustrates another example of a rendered image
composed of simple graphical objects;

FIG. 7 shows an 1image expression tree which represents

the composition of graphical objects to compose or render the
image of FIG. 6;

FIG. 8 illustrates a simplified expression tree for compos-
ing the image of FIG. 6 1n accordance with the embodiment of
the present invention;

FI1G. 9 1s a high-level flow diagram providing an overview
of the process of optimising an expression tree used to com-
posite an 1mage 1 accordance with the preferred embodi-
ment;

FIG. 10 1s a detailed flow diagram 1llustrating modification
ol the expression tree 1 accordance with step 912 of FIG. 9;

FI1G. 11 1s a further detailed flow diagram of optimising the
expression tree; and

FIG. 12 1s a block diagram of a conventional general-
purpose computer that can he used to implement the embodi-
ments of the invention.

The Appendix contains pseudo-code routines suitable for
computer implementation of the preferred embodiment.

DETAILED DESCRIPTION

In the following description of the preferred embodiment,
it 1s assumed that an 1mage composition expression tree, as
herein described, has been determined for an 1mage to be
rendered.

Preferably, image region representations are hierarchical
data structures suitable for representing a region or portion of
an 1mage and typically used 1n 1image processing. One such
image region representation 1s known to those skilled 1n the
art as “quadtrees”. Other forms of 1mage region representa-
tions can serve the same purpose. For the sake of simplicity,
an 1mage region representation 1s hereinafter referred to as a
quadtree.

Typically, the creation of a quadtree representing a region
of an 1mage requires the sub-division of the region into a
plurality of cells, each cell being a portion of the region, and
cach cell represented by a node of the quadtree. Hence,
increasing the number of subdivisions of a region of an image
correspondingly 1increases the number of nodes of the
quadtree, thereby increasing the depth of the quadtree and the
resolution of the region represented by the quadtree.

10

15

20

25

30

35

40

45

50

55

60

65

4

Compositing Operations

Compositing operations include 13 main compositing
operations; for combining two portions of a single image. The
function of each of those compositing operations 1s set our 1n
Table 1, where Dc 1s a premultiplied destination or resultant
color, Do 1s a destination or resultant alpha (o) channel value,
Ac 1s a premultiplied pixel color of a first portion of a first
source A, Ao 1s an a value corresponding to the pixel having
the color Ac, B¢ 1s a premultiplied pixel color value of a
portion of an 1mage of a second source B, and Bo 1s the a
channel value of the pixel corresponding to Bc of the source

B.

TABL.

L1l

1

Compositing Operations

OPERATION EQUATION
clear Dc=0
Do=0
A Dc = Ac
Do = Ao
B Dc =Bc
Do = Bo
Aover B Dc=Ac+ Bec (1 - Ao)
Do =Ao+ Bo (1 - Ao)
A rover B Dc =Ac (1 — Bo) + Bc (Reverse case of A over B)
Do =Ao (1 - Bo) + Bo
AmB Dc = AcBo
Do = AoBo
ArmnB Dc = AoBc (Reverse case of A 1n B)
Do =AoBc
Aout B Dc=Ac (1 - Bo)
Do =Ao (1 - Bo)
A rout B Dc =Bc (1 — Ao) (Reverse case of A out B)
Do =Bo (1 - Ao)
A atop B Dc =AcBo + Bc (1 - Ao)
Do =AoBo + Bo (1 - Ao)
A ratop B Dc=Ac (1 - Bo) + BcAo
Do =Ao (1 - Bo) + BoAo
A Xor B Dc=Ac (1 - Bo)+ Bc (1 - Ao)
Do =Ao (1 - Bo) + Bo (1 - Ao)
A plusW B Dc = Ac + Be (with Dc “wrap around™)
Do = Ao + Bo (with Do “wrap around”)
A plusCB Dc = Ac + Bc (with Dc “clamped™)

Do = Ao + Bo (with Do “clamped”)

Table 1 specifically shows various compositing methods
for combining two different images together utilising differ-
ent operators. Additional operators are also possible. The
additional operators may be utilized to implement special
ellects.

The “wrap around” nature of the “plusW” operator means
that when, for example, the addition of Ac+Bc 1s greater than
a maximum value of a color component, the value 1is
“wrapped around” to start again with reference to the mini-
mum value 1n the color space. Alternatively, the process of
“clamping’” utilized by “plusC” mvolves clamping the addi-
tion of, for example, Ac+Bc to the maximum value of a color
component when the addition 1s greater than this component.

FIG. 1 1llustrates several examples of the final 1mage cre-
ated when various operations (as set out 1n Table 1) are uti-
lized 1n the compositing of two fully opaque circles A and B.
The operators “rover”, “rin”, “rout” and “ratop” are equiva-
lent to the swapping of the operands to the “r” (reverse)
operator and applying the corresponding operator “over”,
“mn”, “out” and “atop” respectively.

In the preferred embodiment, an expression tree can con-
tain a variety of node types including binary compositing
operators, unary operators and primitives. Unary operators
typically include colour transformations, image convolu-

US RE42,347 E

S

tions, alline transformations and 1mage warping. Primitives
typically include graphical elements like pixel-based images,
spline-based paths, text, “all” (*all” 1s a graphical element
which spans the size of the entire 1mage being created), edge
blends, boxes or the like.

Binary Compositing Operators

Table 2 lists a set of binary compositing operators and the
action to be performed when those operators are treated when

simplifying an expression tree.

TABLE 2

Passto Pass to If left If right

left right operand operand
Operator operand operand Retumn vanishes vanishes
over do QoVUdar qzVYqg R L
in do do qz, M 9z Vv N4
ratop do do qz Vv L
out QoY dzr 9o qz — Blright) v L
(apply to right
operand first)
out do do q; — B(right) V L
(apply to left
operand first)
plusC do do 9z Y gz R L
plusW, Xor do do (q; — B(right)) U R L

(qr — Bllett))

At anode of an expression tree represented by an operator,
typically a region representation, such as a quadtree, 1s passed
to each operand during the process of simplitying the expres-
sion tree. At the node comparing the operator, an action 1s to
be taken as to whether a sub-tree branching off the node 1s to
vamnisih (1 € , branches need to he pruned) or a quadtree
corresponding to the unobscured portions of graphical ele-
ments 1s to be returned from this node for possible further
processing at other nodes.

The following notation 1s used in Table 2:

qO the quadtree passed to the node:

ql, gR the quadtree returned by the left and right subtrees and
corresponding to the left and right operand of an operator
from Table 2;

q; Mgy

q; Uqgs quadtree set operations; and

q1 — Y2

B (node) a quadtree completely containing the node’s

bounding box.

In the last two columns of Table 2, typical replacement
rules are specified, where “L” means replace a current node
with the left sub-tree branching off the current node, “R”
means replace a current node with the right sub-tree branch-
ing oif the current node, and “V”” means that the current node
vanishes. A node that 1s to “vanish” implies that the region of
the 1mage represented by the node 1s obscured by other
graphical elements. Hence, the node has no efiect on the final
image. If both operands vamish, the current node also van-
ishes.

Reverse operators can be substituted for the operators
described 1n Table 2. The “over” operator, described as “A
over B” implies graphical element “A” 1s over graphical ele-
ment “B”. For example, the can he substituted by a reverse
operator of the “over” operator, typically denoted as “rover”
(reverse over), so that “B rover A” results in a composite of
graphical element “A” and “B” equivalent to “A over B”.

10

15

20

25

30

35

40

45

50

55

60

65

6

Examples of Binary Compositing Operators

As an 1llustrative example, consider the (first) operator 1n
the first row of the “Operator” column of Table 2 (i.e., the
“over” operator). At a current node of an expression tree
represented by an “over” operator, a parent node passes a
quadtree q, to the current node. Following the action under
the heading “Pass to left operand™ (column 2 of Table 2), the
quadtree g, 1s passed to the left operand, which 1s the left
sub-tree or branch at the current node.

The quadtree g, 1s used to process the left operand, and a
quadtree q, 1s returned as the obscuring area of the left oper-
and. From “Pass to right operand™ (column 3 of Table 2), the
action to be take at the current node 1s to pass down, as the
right operand a union of the parent node, quadtree q,, and the
now returned, left-operand quadtree q,. The quadtree result-
ing from this union (q,Uq,;) 1s used to process the right
operand. A quadtree g, 1s returned to the current node as the
obscuring area of the right operand. The current node then
returns the union (q, Uq) of the left operand g, and the right
operand q, to the parent node (see “return” in column 4 of
Table 2).

If the region represented by the left operand 1s found to be
completely obscured by the quadtree q, passed down to the
left operand, the action “if left operand vanishes” of column
S of Table 2 1s to replace the current node with the right (“R™)
sub-tree, or right operand. This 1s desirable because changing
the tree by replacing the current node with 1ts right operand
does not change the rendered 1image, but improves the time
taken to render the 1mage. Similarly, 1f the region represented
by the right operand 1s found to be completely obscured by the
quadtree (q,Uq;) passed down to the right operand, the action
“1f nght operand vanishes™ of column 6 of Table 2 1s to replace
the current node with the left (L") sub-tree.

Unary Operators

The treatment of unary operators when simplifying an

expression tree depends on the type of operation:

(a) In colour transtormation, the quadtree q, 1s passed
down to the operand of the colour transformation opera-
tor. If the transformation preserves opaqueness (1.c.
opaque pixels remain opaque aiter transformation), the
quadtree returned from the operand 1s returned by the
unary operator. In other words, the operand obscures
that which the result of the colour transformation
obscures. If the transformation does not preserve
opaqueness, the unary operator returns an empty
quadtree, because the region that the unary operation
obscures cannot be determined. I the operand vanishes,
the unary operator vanishes, unless invisibility (zero
opacity) 1s not preserved. If invisibility 1s not preserved,
the sub-tree having the unary operator as i1ts root 1s
replaced by an appropriate “all” graphical element.

(b) Afline transformations and 1mage warps do not pre-
serve geometry between the quadtree and the primitives.
If the unary operator 1s obscured by quadtree g, 1t van-
ishes. Otherwise, traversal 1s restarted at the operand of
the afline transformation or image warp operator, pass-
ing an empty quadtree as the obscuring region. An empty
quadtree 1s returned by the operator unless the quadtree
returned by 1ts operand can be easily transformed.

(¢) Image convolution: If the unary operator 1s obscured by
quadtree q,, 1t vanishes. Otherwise, traversal 1s restarted
at the operand of the image convolution. passing an
empty quadtree as the obscuring region. An empty
quadtree 1s returned by such an operator because the

US RE42,347 E

7

blurring induced by the operator makes 1t difficult to use
any quadtree returned by its operand. However, 11 the
image convolution operator does not alter opacity, the
quadtree returned by the operator’s operand can be 1n
turn returned by the operator of the image convolution to
its parent node.

Optimising Expression Tree

In the preferred embodiment, an image composition
expression tree (hereinalter “expression tree”) of an 1mage to
be rendered 1s traversed, preferably 1n a depth-first fashion.
Each node of the expression tree recetves from 1ts parent node
a region representation of one or more areas of the image. The
region representation 1s compared to the region represented at
the node to determine if the region represented by that node 1s
obscured.

A node 1 which the region represented by the node 1s
totally obscured i1s removed from the expression tree with an
appropriate simplification of tile expression tree, as hereinat-
ter described. In the event that the region represented by the
node 1s only partially obscured, a clipping operator 1s applied
to the region represented by the node to clip the region of the
image represented at the node to discard the obscured por-
tions of the image. For example, 1 the region represented by
a node 1s totally obscured by one or more regions represented
by other nodes of the expression tree, the node 1s removed
from the expression tree 1n such a way that a graphical opera-
tion or a graphical element at the node need not be executed or
rendered, whichever the case may be.

If a node 1s partly obscured by one or more regions repre-
sented by other nodes 1n the expression tree, a clipping opera-
tor 1s applied to the node 1 such a way that, when executing,
a compositing operator, substantially unobscured regions of
the 1image represented at the node are 1n the resultant com-
posite of theregion ol the node. When ani1mage 1s composited
and subsequently rendered from an expression tree compris-
ing nodes clipped by a clipping operator, substantially those
portions of the graphical elements that are unobscured by
other graphical elements of the image are reproduced or ren-
dered.

Applying a clipping operator to a node can, 1n 1ts simplest
form, result in the cropping of the graphical elements repre-
sented at the descendent nodes to substantially those portions
of the graphical elements that are unobscured. However,
applying a clipping operator to a node 1s not limited thereto.
Applying a clipping operator to a node of an expression tree
having a compositing operation at that node can result 1n a
different combination of compositing operators, having an
cifect on the node as 11 the region represented 1s cropped to 1ts
unobscured portion.

The process of compositing an expression tree 101 shown
in FI1G. 2A 1s now described with reference to FIGS. 2B to 2D.
As depicted 1n FIG. 2B, an arrow 102 1s rotated 30° 1n a
clockwise direction, and the “in” operator 1s executed 1n
conjunction with an opaque box 104 to result 1n a portion of
the rotated arrow 105 that lies within the box 104. This can be
achieved by applying a clipping operator to the arrow rotated
30° clockwise to crop the rotated arrow to the boundaries of
tile box 104.

Alternatively, as shown 1n FIG. 2C, the application of a
different combination of operators can result in substantially
the same final 1mage result 105. The box 104 is rotated
counter-clockwise 30° , and the arrow 102 1s clipped to the
box 104. The resultant image 107 1s rotated clockwise 30° to
achieve a final 1mage result 105. However, as shown 1n FIG.
2D, this 1s not the same as cropping the arrow 102 to the box

10

15

20

25

30

35

40

45

50

55

60

65

8

104, and then applying a clockwise rotation of 30°, to obtain
a final composite image 106. In this manner, the application

of a clipping operator to a node can result 1n a different
combination ol compositing operators.

If a region of the image represented by a node has been
determined to be unobscured or only partially obscured, the
node passes the region representation that the node recerved
from a parent node, to each of its descendant nodes 1n turn.
The same process occurs at each descendant node with the net
eifect that each descendant node passes back to 1ts parent
node either an 1mage representation of tae areas of the image
obscured by the region represented at the descendant node, or
an indication that the descendant node 1s totally obscured.

After the descendants of a node have been processed, the
region representations returned from the descendants are uti-
lized to derive a region representation of the regions of the
image that are obscured by the node. This result 1s returned to
the node’s parent.

In the preferred embodiment, the traversal of the expres-
s10n tree to simplily the tree 1s mnitiated at the root of the tree
in a “depth-first fashion™, known to those skilled 1n the art.
Preferably, when traversing an expression tree in a depth-first
tashion, the path leading down the lett branch, at any node, 1s
grven priority and this path down the tree to a descendent node
1s taken first. When no further left ranch paths are available at
a current node, processing returns to the previous node and a
path heading down a right branch of this node 1s taken. An
expression tree 1s traversed in this manner until all nodes of
the expression tree have been visited.

Flow Diagrams of Optimising An Expression Tree

FIG. 9 1s a igh-level flow diagram providing an overview
of the process of optimising an expression tree 902 used to
composite an image in accordance with the preferred embodi-
ment. The expression tree 902 includes at least two nodes, and
cach node 1s either a graphical element or a graphical opera-
tor. Preterably, the graphical operators are image compositing
operators. Further, a region of the image 1s represented by the
node. The expression tree 902 can be traversed node by node.
Control block 904 1s preferably a for-loop control structure
for processing each node of the expression tree 902, which 1s
provided as input. When the entire expression tree 902 has
been processed (indicated by “done”), processing stops at
step 914. Otherwise processing continues at step 906.

In step 906, one of the remaining nodes 1s selected as the
current node. In step 908, the region represented by the node
1s compared to a region representation data structure corre-
sponding to one or more regions represented by at least one
other node. The region representation 1s preferably of the
form of a hierarchical data structure, and still further may be
a quadtree representation. In decision block 910, a check 1s
made to determine 1f the region represented by the node 1s
obscured, either totally or partially, by one of the regions. If
decision block 910 returns false (no), processing continues at
control step 904. Otherwise, 1f decision block 910 returns true
(ves), processing continues at step 912. In step 912, the
expression tree 1s modified. The modification may include
removing the current node or replacing the current node with
another node of the expression tree. It may further include
clipping, or marking for clipping at a later time, the region
represented by the current node. Processing then continues at
control step 904.

FIG. 10 1s a more detailed flow diagram 1illustrating steps
for modifying the expression tree in accordance with step 912
of FI1G. 9. Processing starts 1n step 1002, and 1n step 1004, a
check 1s made to determine 1f the region represented by the

US RE42,347 E

9

current node 1s totally or partially obscured. If decision block
1004 determines that the region 1s partially obscured, pro-
cessing continues at step 1012. In step 1012, a clipping opera-
tor 1s applied to the node and then the process returns at step
1014. Otherwise, 11 decision block 1004 determines that the

region 1s totally obscured, processing continues at decision
block 1006.

In decision block 1006, a check 1s made to determine 1f the
current node 1s a graphical element or a graphical operator. If
decision block 1006 determines that the node 1s a graphical
clement, processing continues at step 1008. In step 1008, the
node 1s removed from the expression tree and processing
returns to the calling procedure in step 1014. Otherwise, 1
decision block 1006 determines that the node 1s a graphical
operator, processing continues at step 1010. In step 1010, a
predetermined set of node replacement rules 1s applied in
accordance with the graphical operator.

The predetermined set of node replacement rules (not
shown 1 FIGS. 9 and 10) may include one or more of the
following rules:

il the parent node 1s an “over” graphical operator and the
current node1s ata left branch of the parent node, replace
the parent node with a right subtree of the parent node;

if the parent node 1s an “over” graphic operator and the
current node 1s at a right branch of the parent node,
replace the parent node with a left subtree of the parent
node;

if the parent node 1s an “in” graphical operator, remove the
parent node and any subtree branching off the parent
node;

if the parent node 1s a “ratop” graphical operator and the
current node1s ata left branch of the parent node, remov-
ing the parent node and any subtree branching off the
parent node;

if the parent node 1s a “ratop” graphical operator and the
current node 1s at a right branch of the parent node,
replace the parent node with a left subtree of the parent
node;

if the parent node 1s an “out” graphical operator and the
current node 1s at a left branch of the parent node,
remove the parent node and any subtree branching off
the parent node.

if the parent node 1s an “out” graphical operator and the
current node 1s at a right branch of the parent node,
replace the parent node with a left subtree of the parent
node;

if the parent node 1s a “plusC” graphical operator and the
current node1s ata left branch of the parent node, replace
the parent node with a right subtree of the parent node;

if the parent node 1s an “plusC” graphical operator and the
current node 1s at a right branch of the parent node,
replace the parent node with a left subtree of the parent
node;

if the parent node 1s a “plusW” or an “Xor” graphical
operator and the current node 1s at a left branch of the
parent node, replace the parent node with a right subtree
of the parent node; and

if the parent node 1s an “plusW” or an “Xor” graphical
operator and the current node 1s at a right branch of the
parent node, replace the parent node with a left subtree
of the parent node.

FIG. 11 provides a detailed flow diagram of a process of
optimising an expression tree 1102 according to another
embodiment. The expression tree has anumber of nodes, each
of which can be either a graphical element or a graphical
operator and represents a legion of the image. Control block
1104 1s preferably a for-loop control structure for processing

10

15

20

25

30

35

40

45

50

55

60

65

10

cach node of the expression tree 1102, which 1s provided as
input. The expression tree 1s traversed node by node. At each
current node comprising a graphical operator, steps 1108 to
1120 are applied, as described hereinaiter. When the entire
expression tree 1102 leas been processed (indicated by
“done”), preferably 1n a depth-first manner, processing stops
at step 1106. Otherwise processing continues at step 1108.

In step 1108, one of the remainming nodes 1s selected as the
current node. In step 1110, a first region representation 1s
received from a parent node. In step 1112, a modified first
region representation passes to a first operand of the graphical
operator 1n accordance with a first predetermined modifica-
tion rule for that operator. In step 1114, a second region
representation of regions obscured by a sub-tree of the first
operand 1s determined and 1t 1s returned to the graphical
operator. In step 1116, a modified second region representa-
tion passes to a second operand of the graphical operator in
accordance with a second predetermined modification rule
tor the operator.

In step 1118, a third region representation of regions
obscured by a sub-tree associated with the second operand 1s
returned to the graphical operator. In step 1120, a final region
representation 1s determined in accordance with a set rule for
the graphical operator and 1s returned to a parent node of the
current node. Preferably, the set rule 1s selected from the
group consisting of:

(A) where the graphic operator 1s an “over” or a “plusC”
operator, the final region representation 1s determined
from a union of the second region representation and the
third region representation;

(B) where the graphic operator 1s an “in”” operator, the final
region representation 1s determined from an intersection
of the second region representation and the third region
representation;

(C) where the graphic operator 1s an “ratop” operator, the
final region representation 1s the second region repre-
sentation;

(D) where the graphic operator 1s an “out” operator, the

final region representation 1s determined from a differ-

ence of the second region representation and a region
representation comprising at least a region represented
by a bounding box of a node at a right subtree of the
current node; and

(E) where the graphic operator 1s an “Xor” or a “plusW”
operator, the final region representation 1s determined

from a union of the second region representation less a

region representation comprising at least a region rep-

resented by a bounding box of anode at a right subtree of
the current node and the third region representation less

a region representation containing a bounding box of a

node at a right subtree of the current node.

The first predetermined modification rule preferably 1s to
pass substantially tile first region representation as the modi-

fied first region representation if the graphical operator 1s an
Eioverﬂ'? Y SN - B Y 4

,“m”, “ratop”, “plusC”, “plusW”, “Xor”, “out” (visit
left operand first)” or a like operator. If the graphical operator
1s an “out (visit right operand {irst)” operation, 1t involves
passing as the modified first region representation a union of
the first region representation with the second region repre-
sentation.

Further, the second predetermined modification rule 1s to
pass substantially the first region representation as the modi-
fied second region representation if the graphical operator 1s
an “mn”, “ratop”, “out”, “plusC”, “plusW”, “Xor” or like
operators. If the graphical operator 1s an “over” operator, 1t

US RE42,347 E

11

involves passing as the modified second region representation
a union of the first region representation with the second
region representation.

Preferably, the image representation 1s not created at a
node, or returned to a parent node of the node, unless the
image representation 1s subsequently utilised, or 1f the node 1s
the right operand of an “over” operator and the “over” opera-
tor node does not need to return an 1image representation to its
parent node. Likewise, the image representation 1s not created
at a node or returned 11 the node 1s the left or the right operand
ofan“in”, “plusC”, “plus W or “Xor” operator and the opera-
tor node does not need to return an 1image representation to its
parent node. Still further, the image representation may not be
created at a node or returned to the parent node 11 the node 1s
the lett operand of an “out” or “ratop’ operator and does not
need to return an 1mage representation to 1ts parent node. The
image representation may not be created at a node or returned
if the node 1s the right operand of a “ratop” operator, the root
of the expression tree, the operand of an 1image warp, aifine
transformation or convolution operator, the operand of a
colour transformation that does not preserve opaqueness, or 1f
the transformation node does not need to return an 1mage
representation to its parent node.

Further aspects of the preferred embodiment are set forth in
detail 1n the Appendix forming part of the description. In
particular, the Appendix contains pseudocode listings for
implementing the method according to the preferred embodi-
ment. In this connection, the preferred embodiment 1s pret-
erably implemented as computer software, capable of being
stored on recording media, that can be carried out as a process
executing on a computing device, such as a general purpose
computer.

The embodiments of the mnvention can preferably be prac-
ticed using a conventional general-purpose computer, such as
the one shown 1n FIG. 12, for performing processes including,
those of F1IGS. 9 to 11, as well as the pseudocode contained in
the Appendix. In particular, the steps of the method of opti-
mising the expression trees are elffected by mnstructions in the
software that are carried out by the computer. The computer
system 1200 consists of the computer 1202, a video display
1216, and inputdevices 1218, 1220. In addition, the computer
1200 system can have any of anumber of other output devices
including line printers, laser printers, plotters, and other
reproduction devices connected to the computer 1202. The
computer system 1200 can be connected to one or more other
computers using an appropriate communication channel such
as a modem communications path, a computer network, or the
like.

The computer 1202 1tself consists of a central processing,
unit(s) (simply referred to as a processor hereinafter) 1204, a
memory 1206 which can include random access memory
(RAM) and read-only memory (ROM), an mput/output (10)
interface 1208, a video intertace 1210, and one or more stor-
age devices generally represented by a block 1212 1n FIG. 12.
The storage device(s) 1212 can consist of one or more of the
tollowing: a floppy disc, a hard disc drive, a magneto-optical
disc drive, CD-ROM or any other of a number of non-volatile
storage devices well known to those skilled 1n the art. Each of
the components 1204 to 1212 1s typically connected to one or
more ol the other devices via a bus 1214 that 1n turn can
consist of data, address, and control buses.

The video mterface 1210 1s connected to the video display
1216 aid provides video signals from the computer 1202 for
display on the video display 1216. User mput to operate the
computer 1202 can be provided by one or more input devices.
For example, a operator can use the keyboard 1218 and/or a
pointing device such as the muse 1220 to provide input to the

10

15

20

25

30

35

40

45

50

55

60

65

12

computer 1202. Exemplary computers on which the embodi-
ment can be practiced include IBM-PC/AT's and compatibles,

and Sun SparcStations.

FIRST EXAMPLE

FIG. 3 illustrates an 1mage 10 comprising a number of
graphical elements. The graphical elements include an
opaque 1mage A referred to as sub-image 11, a circle 12
referred to as circle B that 1s obscured by the sub-image 11,
and the text “hello” 13 optionally referred to as text “C”. A
dotted line 14 shows the extent of the image 10, and repre-
sents an empty foreground region having nothing therein to
obscure the 1mage 10.

FIG. 4 shows an expression tree 20 that represents the
composition of the image of FIG. 3. An example of simpli-
tying the expression tree of FI1G. 4 1s now described. At a root
(first node) 21 of the expression tree 20, a computer-imple-
mented process passes to the first node 21 an empty quadtree
representative of the empty region 14 not obscuring image 10
of F1G. 3 or equivalently having no other nodes above the first
node 21 of the expression tree 20 to obscure it.

The first node 21 1s a compositing operator (1, an “over”
operator) requiring a left and right operand. The leit operand
1s a leat node 22 representing the sub-image 11 of FIG. 3, and
the right operand 1s returned by a second node 23 of the
expression tree which 1s also an “over” compositing operator.

Following receipt ol the empty quadtree at the first node 21,
the process passes the empty quadtree to leal node 22. At the
leal node 22, the quadtree 1s typically compared with the
sub-image 11 to determine 1f the sub-image 11 1s obscured.
However, 1n this example, since the quadtree 1s an empty
quadtree, no direct comparison 1s necessary to determine the
result that the sub-image 11 1s not (or cannot) be obscured by
the empty quadtree.

Comparing a quadtree with a graphical element (eg, the
sub-image 11) entails a comparison, 1n which regions of an
image represented by the quadtree ate compared with regions
of the 1mage covered by the graphical element to determine
whether one region obscures another region of the image. The
comparison of a quadtree representation of a region of an
image with other regions of the image includes comparing the
region of the image with the other regions either by direct
comparisons of their respective areas, or by comparing
equivalent representations or the like.

Sub-image 11 represented at the leat node 22 1s opaque and
therefore can potentially obscure other graphical objects of
the image 10. A first quadtree representation of sub-image 11
1s therefore constructed which includes the bounds of the
sub-image 11 and 1s returned to the first node 21 since no
turther left or right branches are available at the leaf node 22
of the expression tree 10. At the first node 21, the “over”
operator performs a union of the quadtree originally passed to
that node, being an empty quadtree, and the quadtree repre-
sentation 1s returned from the left node, 1n accordance with
the rules set out 1n Table 2 for the treatment of binary com-
positing operators.

The union of an empty quadtree with the first quadtree
representation of the sub-image 11 results 1n a quadtree
equivalent (or substantially i1dentical) to the first quadtree
representative and referred to hereinafter as the first left

quadtree.
The first left quadtree 1s forwarded to the second node 23 of

the expression tree 10, and 1s passed following the same
manner as described 1n relation to node 21 to the left branch
of the second node to a leat node 24 branching off the second
node 23. The circle 12 1srepresented at the leat node 24. Upon

US RE42,347 E

13

forwarding the first left quadtree to the leal node 24, the
process compares the first left quadtree (that 1s an 1mage
region represented by the first left quadtree) to the region of
the 1mage occupied by circle 12 to result, at least for this
example, 1n a finding that the region of the circle 12 of FIG. 3
1s totally obscured by the region represented by the first left
quadtree. The finding that the region of the circle 12 1s totally
obscured 1s returned to the second node 23.

The second node 23 typically recerves from the leaf node
24 a quadtree representative ol the portion of 1mage 10
obscured by sub-image 11 and the circle 12 (aregion obtained
by the union of the sub-image 11 and the circle). However, in
the present example, since the circle 12 1s totally obscured by
the sub-image 11, a union of the quadtrees for sub-image 11
and the circle 12 does not need to be performed.

A quadtree substantially equivalent to the first left quadtree
representing the sub-image 11 1s returned to the second node
23, where this quadtree 1s passed to a right leal node 25,
branching off the second node 23. The right leat node 25 of
the expression tree represents a region of 1mage comprising,
text (“hello”) 13.

The text 1s not obscured by the quadtree (the image region
represented by the quadtree) passed down from the second
node 23. Typically, a quadtree representing the region of the
image which 1s obscured by the graphical element at the right
leat node 25 1s returned to the second node 23. However, since
the text does not obscure a substantial region (area) 1n this
case, an empty quadtree 1s returned to the second node 23. A
substantial region 1s preferably defined by a performance
1ssue of the process as hereinafter described.

The second node 23 receives the empty quadtree from the
right leat node 25. Following the action (shown 1n Table 2) of
an “over” operator at the node when the left operand 1is
obscured, the second node 23 replaces 1tself with the right leaf
node 25 and prunes the left “branch”, which 1n this example
1s the left leal node 24. The quadtree (albeit the empty
quadtree) returned to the second node 23 1s passed back to the
first node 21.

At the first node 21, neither of 1ts descendants are pruned
and the action of an “over” operator 1s to form a union of the
quadtrees returned by 1t to the “over” operator left and right
branches. Typically, the result of this union 1s passed back to
the node’s 21 parent node. However, this step can be opti-
mised out of this example because the first node 21 1s the
top-most node of the expression tree (root node). Therefore,

the result of the union 1s not utilised 1n the optimisation of the
expression tree, and the simplified expression tree 1s 1llus-
trated 1n FIG. 5, where the second node 23 and the left leat
node 24 have been removed from the expression tree of FIG.
4. The simplified expression tree of FIG. 5 can then be used to
render the image of FIG. 3 without the need to render the
graphical element, the circle 12 as this graphical element 1s
obscured by the sub-image 11.

SECOND EXAMPLE

Another example of simplifying (optimising) an expres-
s1on tree 1s now described with reference to FIGS. 6 to 8. FIG.
6 illustrates an 1image 40 comprising several graphical ele-
ments, a page “D” 41, an opaque sub-image 42, text 43, and
a circle 44. A corresponding expression tree for compositing
or rendering the image 40 of FI1G. 6 1s illustrated in FI1G. 7. In
FIG. 7, S0 to S14 represents the steps taken 1n this example of
the preferred embodiment to simplify or optimise the expres-
s1on tree 30.

5

10

15

20

25

30

35

40

45

50

55

60

65

14

The following steps S0 to S14 correspond to the action
taken by a computer implemented process at each node when
simplifying the expression tree 50 of FIG. 7.

S0: An empty quadtree g, 1s created representing the empty

foreground region 39 not obscuring the entire 1mage 40.
This empty quadtree g, 1s passed to a first node 51 (or
root node) of the expression tree 50.

S1: The first node 51 of the expression tree 50 1s an “over”

operator. The process receives the empty quadtree g
passed to the first node 31 from the previous step S0 and
compares the region of the image represented by the
quadtree g, with a region represented by the firstnode 51
to determine 1f the region represented by the firstnode 51
1s obscured. Since q, 1s an empty quadtree and cannot
obscure the region represented by the first node 51, the
process continues on to the descendant nodes. Firstly,
the quadtree g, 1s passed down the left branch of the node
51 to a second node 52.

S2: The second node 52, being 1n this example an “in”

operator, recerves the empty quadtree q,. The quadtree
q, 1s compared with a region represented by the second
node 32 to determine 11 this region 1s obscured by the
quadtree q,. The region of the second node 52 1s not
obscured by the quadtree g, since the quadtree g, is
empty. The process continues 1n a depth-first fashion and
passes the quadtree g, to the left branch of the second

node 52.

S3: A third node 53 1s a leaf node representing the sub-

image 42. This third node 53 receives the quadtree g,
passed down from the S2 step and compares the region
of this node 53 with the region represented by the
quadtree J, to determine 1f the region represented ':)y
node 53 1s obscured by the quadtree q,,. In this example,
the quadtree g, 1s empty and therefore the node 53 1s not
obscured. However, the image “A” 1s a graphical ele-
ment that can potentially obscure other graphical ele-
ments. Hence, a quadtree q, that represents the region
obscured by the image 1s created, and passed back to the

second node 52 since no further left branches are avail-
able at the third node 53.

S4: The second node 52 receives back from the third node

GG 2

53 the quadtree q, and as the second node 352 1s an “in

operator, the quadtree g, 1s stored 1n memory as the
obscuring region of the left operand of the “in™ operator.
The obscuring region of the left operand of an operator
1s denoted herein as q;. .

Thus, 1n this example, q,=q;.
The action of the process, 1n accordance with Table 2. 1s
to pass down to aright descendant node 34 of the node 52
the quadtree recerved at the second node 52 passed down
from 1ts parent node 51. In this example, the quadtree gy,
passed to the second node 52 from the first node 31
(parent node) 1s sent down the right branch to the right
descendent node 54.

S5: The right descendentnode 54 (fifth node) 1s again a leaf

node and has represented therein the region indicated as
the circle 44. The quadtree g, has been passed down
from the second node 52 following step S4, and 1s com-
pared with the region of the image occupied by the circle
44 to determine 1f the region represented by the quadtree
J, 1s obscured by the circle 44. Again, the quadtree g, 1s
empty, and the node 34 1s therefore not obscured. How-
ever, the circle 44 1s a graphical element (object) with the
potential to obscure graphical elements (objects) which
may lie beneath. Hence, a quadtree q, 1s created repre-
senting the region of the image occupied by the circle.
The quadtree g, 1s passed back to the second node 52
since no further branches are available at this node 54.

US RE42,347 E

15

S6: The second node 52 receives the quadtree g, passed
back from 1ts right descendent node 34, and the quadtree
- 1s stored as the obscuring region of the right operand
of the “in” operator (1.€., g,=q,). The process proceeds
in accordance with the action set out 1n Table 2 for the
“mn” operator. It passes back to 1ts parent node (1e, the
first node 51) the intersection of the regions represented
by its two operands (1¢, the sub-image 42 with the region
of the circle 44). The intersection results in the region
represented by the portion of sub-image 42 that coin-
cides with the circle 44 (ie, the quadtree q,). In this
example, this intersection g, Mq,=q,/1q,=q, represents
the region 1n which node 52 can obscure other graphical
clements.

S7: The first node 51 receirves the quadtree g, passed back
from the second node 52. The quadtree g, 1s stored as the
obscuring region of the left operand of the “over” opera-
tor (q,=q). In accordance with Table 2, the action to be
performed when descending a right branch of a node
having an “over” operator 1s to pass down the right
branch a union (1e, q,Uq,;=q,1q-.=q,) of the quadtree q,
and the quadtree q, passed back from the second node
52. The result of this union (g,Uq;) 1s a quadtree sub-
stantially 1dentical with q,. Hence, the result of this
umon (the quadtree q,) 1s passed down the right branch
to a fifth node 35 also representing an “over” operator.

S8: The region represented by the quadtree q, passed to the
fifth node 55 1s compared with the region represented at
the fifth node 55 to determine 11 the region of the node 55
1s obscured by the quadtree g, (region of). The region of
the image represented at the fifth node 55 1s not obscured
by the region of the quadtree q,. The quadtree q, 1s

passed down to the left branch descendent of the fifth
node 55.

S9: The left descendent of the fifth node 35 1s a leal node 56
representing the region of the image of FIG. 6 1llustrat-
ing the text 43. The leal node 56 recerves the quadtree g,
passed down from the fifth node 35 and 1s compared to
the region represented at the leal node 56 (typically, the
region of the image of FIG. 6 occupied by the text 43 1s
a bounding box comprising text) to determine 1f the
region represented by quadtree g, obscures the region
represented at leal node 56. The region represented by
the quadtree g, (the region occupied by circle 44) partly
obscures text 43. Hence, the text 43 1s clipped or tagged
for clipping at a later stage. The text 43 1s clipped by
applying a clipping operator, wherein the clipping
operation constructs a “clip” path from the quadtree q,
and clips or cuts the text 43 to this path.

At this point, typically, a new quadtree representing the
region of the image occupied by the text 1s created and
returned to the fifth node 55. However 1n this embodiment, 1
a graphical element 1s too small to substantially obscure other
graphical elements of the image (eg, the graphical element
text “hello” 43 does not substantially obscure other graphical
clements even though the bounding box of text 43 represents
a substantial region), an empty quadtree 1s preferably
returned rather than expend processing time to achieve a
quadtree representation of the region of text 43. Hence, the
creation of a new quadtree q, for regions of the image occu-
pied by text 43 1s chosen as an empty quadtree. The choice to
create an empty quadtree for the region represented by text 43
1s an 1ssue of performance of the process that 1s hereinafter
described under the sub-heading “Performance issues”.
While a quadtree representation for text 43 can be created, the
cost 1n the performance speed of the process out-weighs the

10

15

20

25

30

35

40

45

50

55

60

65

16

time 1t lakes to render text. Hence, the empty quadtree g, 1s
created and passed back to the fifth node 55.

S10: The fifth node 55 receives the empty quadtree g,
passed back by the previous step S9. This quadtree g, 1s
stored as the obscuring region of the left operand of the
“over” operator at the fifth node 55 (q,=q,). Again, 1n
accordance with Table 2, the action to be performed
when descending a right branch of a node having an
“over” operator 1s to pass down to the right branch a
union of the quadtree g, passed to the node 55 by the
parent node 51 with the quadtree g, associated with the
left operand (q,Uq,=q,Uq,=q,). The union of the
quadtree g, with the quadtree g, results in a quadtree
equivalent to quadtree q,, since quadtree g, 1s the empty
quadtree described 1n step S9. Therefore, quadtree g, 1s
passed down the right branch of the expression tree to a
right leal node 57 of parent node (fifth node) 35.

S11: The right leal node 57 1s represented by the graphical
clement page “D” 41 representing the background page
in FI1G. 6. The quadtree g, passed down to the right leaf
node 57 by the fifth node 55 1s compared with the region
of page “D” 41 to determine 1f the region represented by
the quadtree g, obscures the region represented by page
“D” 41. The result of this comparison 1s that the region
represented by quadtree g, (circle 44) partly or 1n total
obscures page “D” 41.

The graphical element page “D” 1s therefore either tagged
so as to be clipped to the boundary of the circle 44 (a clip path
derived from quadtree g,) at some later stage of processing
typically, before rendering, or a clipping operator 1s applied
and the page “D” 41 1s clipped so that the region described by
the circle 44 1s cut out of the page “D” 41. A quadtree can be
created for representing the page “D” 41 so that it may be
passed back to a parent node. However, 1n this example, the
creation of such a quadtree 1s not needed since it can be
deduced that no further graphical elements can be obscured.

S12: The process returns to the fifth node 55, where no
further quadtrees need to be created.

S13: The process returns to the first node 51, where no
further quadtrees need to be created.

S14: The process ends having optimised the expression
tree 50 of F1G. 7 to provide the expression tree 60 of F1G.
8. The diamond shape symbols 58 and 39 shown 1n FIG.
8 indicate that the text 43 and the page “D”” 41 are to be
clipped (or have been clipped whichever the case may
be), respectively.

Pertormance Issues

The foregoing examples of quadtree representations,
described with reference to FIGS. 1 to 8, are created repre-
senting a region ol an 1image occupied by a graphical element
(object) 1rrespective of the relative size of the graphical ele-
ment when compared with the entire 1mage. However, the
process performed 1n the embodiment 1s preferably governed
by the following principles and corollaries:

(a) 1t 1s preferable to do the little that covers most cases than

to attempt periect results; and

(b) at anode, atleast in1tially, 1t 1s not known whether or riot

obscuration actually occurs 1n an 1mage, so it 1s prefer-
able to avoid expensive tests having benefits that are
uncertain. These principles apply 1n the following ways.

Firstly, increasing the depth (ie, the number of nodes and
branches) of a quadtree increases the quadtree resolution and
the ability to detect obscuration. However, beyond a prede-
termined resolution, the computational cost of creating and
combining quadtrees increases exponentially, exceeding the

US RE42,347 E

17

savings 1n performance gained by attempting to eliminate
from an expression tree the diminishing areas represented by
the increased quadtree depth.

Secondly, 1t 1s computationally expensive to treat every
opaque primitive as a potential obscurer (a graphical element
likely to obscure other graphical element of an 1mage). The
smaller a primitive 1s the less likely 1t 1s to obscure another
primitive. Hence, the creation of quadtrees 1s preferably lim-
ited to potential obscurers that are of a predetermined size or
greater. Typically, primitives that are too costly to convert to
a quadtree are not considered because they cannot guarantee
a good return on the mvestment. Thus, a “good obscurer”
preferably has the following features:

(a) fully opaque;

(b) larger than a predetermined size (and thus likely to

obscure other primitives of an 1mage);

(c) simple to convert to a quadtree very quickly (for
example, choose only graphical objects comprising a
single simple convex outline).

Thirdly, testing for obscuration (1, determining whether a
first graphical element obscures one or more graphical ele-
ments of an 1mage) can be performed by representing the
region covered by the first graphical element as a quadtree and
testing 11 one or more cells of the region represented at the
nodes of the quadtree obscure regions covered by the one or
more graphical elements of the 1image. Typically, the one or
more regions are also represented by quadtrees, and the cells
ol quadtrees are compared. However, representing an arbi-
trary region of an image as a quadtree representation, to a
predetermined resolution, may prove very computationally
expensive though entirely possible. Hence, a bounding box of
a region represented at a node of an expression tree 1s prefer-
ably constructed. Whether the node 1s a graphical element or
an operator, the region represented at the expression tree node
1s well defined.

While the bounding box at anode of an expression tree may
not exactly represent the region covered by the node, the
enhancement in computational performance typically out-
weighs the detriment 1n performance by failing to detect
obscurities. Testing for obscured graphical elements by com-
paring their respective bounding box 1s preferred over com-
paring a quadtree representation of the regions of the image
occupied by the graphical elements. This may result 1n some
obscured graphical elements, below a predetermined size,
being missed and considered not obscured. However, select-
ing a simple test for determining whether graphical elements
are obscured by other graphical elements of the image is
preferable over computationally expensive tests that in most
common cases do not justily the return on the investment.

The following 1s an example of a pseudo-code call to a
routine “test” which compares the bounding box at a node
with a quadtree cell (hereinafter “cell™).

function test (bounding_box, cell)
begin
if cell 1s full then
return true (representing obscuration)
else if cell 1s empty then
return false (representing non-obscuration)
else begin
cell 1s subdivided.
if bounding box and top right subcell have non-empty intersection then
if not test (bounding box, top right subcell) then
return false
if bounding box and top left subcell have non-empty intersection then
if not test (bounding box, top left subcell) then
return false

10

15

20

25

30

35

40

45

50

55

60

65

18

-continued

if bounding box and bottom right subcell have non-empty
intersection then
if not test (bounding box, bottom right subcell) than
return false
if bounding box and bottom left subcell have non-empty
intersection then
if not text (bounding box, bottom left subcell) then
return false
return true
end
end

This function (routine) 1s invoked with:

if bounding_box has non-empty imntersection with rectangle represented by
quadtree root then
call test (bounding_box, quadtree root)

(Quadtrees are created and discarded continuously. A very
simple and fast scheme to manage computer memory 1s pre-
terred with low memory allocation activity (eg, allocating
largish blocks of memory, say, 1000 quadtree cells at a time).
Cells are allocated to these blocks, treated as write-once-read-
only, and not deallocated until the end of the entire expression
tree traversal. This approach allows cells to be shared
amongst quadtrees, and considerably reduces copying when
performing quadtree set operations.

Preferably, as a performance 1ssue, 1f a region representa-
tion (quadtrees) need not be created, no region representation
1s generated at a node. For example, a parent node may
request from a descendent node a quadtree of the region
which the descendent node and 1ts descendent node may
obscure. Typically, 1f a region representation 1s never to be
utilized 1n subsequent computation, the region representation
preferably does not need to be created.

The aforementioned process for optimising an expression
tree 1s described using recursion for convenience. Implemen-
tation of the process 1s also possible using a non-recursive
process utilising back-pointers. This 1s both to reduce func-
tion-call overhead, and to handle very large trees that in
practise are rarely balanced.

The foregoing describes only a small number of embodi-
ments of the present invention and modifications, obvious to
those skilled in the art 1n view of the foregoing description,
can be made thereto without departing from the scope and
spirit of the present invention.

APPENDIX

The following function tests node for obscuration against
quadtree q,. It returns whether or not all visible parts of node
are obscured. If need_result, then 1t also returns a quadtree
representing what areas node obscures. It 1s invoked with the
call:

obscure(root node of tree, false, empty quadtree)

function obscure(node, need_result, q)
begin
case node’s type begin
primitive —
if qo obscures the node’s bounding box then
return obscured.

US RE42,347 E

19

-continued

else il q, partially obscures the node’s bounding box and
there 1s advantage 1n clipping the primitive (eg., it 1s an 1image,
edge blend, box, all, or path primitive) then
begin
Clip if the overhead of clipping 1s worth the saving in not gen-
erating and compositing the clipped pixels.
Obtain a clip path from qq. This clip path remains associated with
q, while 1t exists, so that it is only ever created once.
Tag the node as requiring clipping to this path.
end
if need_result then
begin
if the primitive i1s a good obscurer (a large opaque 1mage, box or all:
a large opaque path containing a single, simple, convex edge)
then
Construct a quadtree from the primitive’s boundary.
return this quadtree.
clse
return empty quadtree.
end
colour transformation —=
1f q, obscures the node’s bounding box then
return obscured.
else if g, partially obscures the node’s bounding box then
begin
Clip, as we expect the overhead of clipping to be worth the saving
in not transforming the clipped pixels.
Obtain a clip path from q,. This clip path remains associated with
qo while 1t exists, so that it 1s only ever created once.
Tag the node as requiring clipping to this path.
end
Determine whether the transformation preserves opaqueness
(opacity 1 maps to opacity 1), and whether it preserves invisbility
(opacity O maps to opacity 0).
call obscure(node’s operand, transformation preserves opaqueness
and need_result, qg), obtaining quadtree q; if requested. If
opaqueness 1s not preserved, then we can’t know what areas will
be obscured after the transformation 1s applied, so there is no
point asking for a quadtree.
if operand is obscured then
begin
Note that 1f the operand is said to be obscured, then it 1s only the
visible parts (opacity # 0) that are guaranteed to be obscured.
if transformation preserves invisibility then
return obscured.
clse
begin
Determine what the transformation will transform nvisible
(opacity = 0) to.
Replace this node by an “all” primitive of this colour/opacity.
if need_result then
return a quadtree constructed from the all’s boundary.
return
end
end

if need_result then
if transformation preserves opaqueness then
return quadtree q;.
else
return empty quadtree.
affine transformation, image warp —
if q, obscures the node’s bounding box then
return obscured.
else if q,, partially obscures the node’s bounding box then
begin
Clip, as we expect the overhead of clipping to be worth the saving
in not generating and compositing the the clipped pixels.
Obtain a clip path from qq. This clip path remains associated with
q0 while 1t exists, so that it 1s only ever created once.
Tag the node as requiring clipping to this path.

end
call obscure(node’s operand, false, empty quadtree). We cannot
pass q, down the tree or accept a result unless we
inverse/transform the quadtrees through the transformation.
image convolution —=
if g, obscures the node’s bounding box then
return obscured.
call obscure(node’s operand, false, empty quadtree).

10

15

20

25

30

35

40

45

50

55

60

65

20

-continued

binary operator —
if qq obscures the node’s bounding box then
return obscured.
case node’s operator begin
over —
call obscure(node’s left operand, true, q,), obtaining area q; obscured
by left operand.
call obscure(node’s right operand, need_result, if left operand
1s obscured then q else qylUq;), obtaining area qg, obscured
by right operand if need_result.
if left operand is obscured and right operand is obscured then
return obscured.
else if left operand is obscured then
begin
Replace this node with 1ts right operand.
if need_result then
return qJg.
end
else if right operand is obscured then
begin
Replace this node with 1its left operand.
if need_result then
return ql..
end
else
if need result then
return q;Uqs.
end
in —
call obscure(node’s left operand, need_result, q,), obtaining area q;
obscured by left operand if need_result.
if left operand is obscured then
return obscured.
call obscure(node’s right operand, need_result, q,), obtaining area qg
obscured by right operand 1f need_result.
if right operand is obscured then
return obscured.
if need result then
return q;1q.
out —
call obscure(node’s right operand. true, q,), obtaining area qp
obscured by right operand.
call obscure(node’s left operand, need_result, if right operand is
obscured then q, else qylUqg), obtaining area q; obscured by
left operand if need_result.
if left operand is obscured then
return obscured.
else if right operand is obscured then
begin
Replace this node with its left operand.
if need_ result then
return q;.
end
clse
if need_result then
return q;-B(right operand).
end
ratop —
call obscure(node’s left operand, need result, q,), obtaining area q;
obscured by left operand if need_result.
if left operand is obscured then
return obscured.
call obscure(node’s right operand, false, qg).
if right operand i1s obscured then
Replace this node with its left operand.
if need_result then
return q;.
plusC —
call obscure(node’s left operand, need_result, q,), obtaining area q;
obscured by left operand 1f need_result.
call obscure(node’s right operand, need result, qg), obtaining area qp
obscured by right operand 1f need_result.
if left operand 1s obscured and right operand is obscured then
return obscured.
else 1f left operand is obscured then
begin
Replace this node with its right operand.
if need_result then

return gg.
end

US RE42,347 E

21

-continued

else 1f right operand is obscured then
begin
Replace this node with its left operand.
if need_result then
return q;.
end
else
if need_result then
return q; T q.
end
plusW, Xor —
call obscure(node’s left operand, need_result, q,), obtaining area q;
obscured by left operand i1f need_result.
call obscure(node’s right operand, need_result, q,), obtaining area qz
obscured by right operand if need_result.
if left operand 1s obscured and right operand is obscured then
return obscured.
else if left operand is obscured then
begin
Replace this node with its right operand.
if need_result then
return qg.
end
else if night operand 1s obscured then
begin
Replace this node with its left operand.
if need_result then
return q;.
end
else
begin
if need_result then
return (q;-B(rightoperand)) U (qz-B(leftoperand)).
end
end case binary operator
end case node type
end

What is claimed 1s:

1. A method of optimising an expression tree, said expres-
s1on tree for compositing an 1image and comprising at least
three nodes, each said node of said tree being at least either a
graphical element or a graphical operator, the method com-
prising, for at least one node 1n said tree, the steps of:

comparing a first region of said node to a second region

derived from at least one other node anywhere in said
expression tree;

determining 1f said first region 1s totally or partially

obscured by said second region; and

modilying the expression tree 1f said first region 1s at least

partially or totally obscured by said second region, to
form an optimised expression tree 1n which an optimised
part of said expression tree substantially represents
unobscured portions of said first region,

wherein said steps are performed by means of a pro-

grammed compuiter.

2. The method as recited in claim 1, wherein the step of
modifying the expression tree includes applying a clipping
operator to said node 1n the event said first region 1s partially
obscured.

3. The method as recited 1n claim 1, wherein the step of
modifying the expression tree when said node i1s totally
obscured further includes the steps of:

removing the node; and

if the node has a parent node which has a graphical opera-

tor, selecting a node replacement rule from a predeter-
mined set of node replacement rules 1n accordance with
said graphical operator and applying said rule.

4. The method as recited 1n claim 3, wherein said predeter-
mined set of node replacement rules comprises at least one
step selected from the group consisting of:

10

15

20

25

30

35

40

45

50

55

60

65

22

11 the parent node 1s an “over” graphical operator and the
current node 1s at a left branch of the parent node, replac-
ing the parent node with a right subtree of the parent
node;

if the parent node is an “over” [graphic] graphical operator
and the current node 1s at a right branch of the parent
node, replacing the parent node with a left subtree of the
parent node;

11 the parent node 1s an “in” graphical operator, removing,
the parent node and any subtrees branching off the par-
ent node;

11 the parent node 1s a “ratop” graphical operator and the
current node 1s at a left branch of the parent node, remov-
ing the parent node and any subtrees branching oif the
parent node;

11 the parent node 1s a “ratop” graphical operator and the
current node 1s at a right branch of the parent node,
replacing the parent node with a left subtree of the parent
node;

11 the parent node 1s an “out” graphical operator and the
current node1s ata left branch of the parent node, remov-
ing the parent node and any subtrees branching oif the
parent node;

11 the parent node 1s an “out” graphical operator and the
current node 1s at a right branch of the parent node,
replacing the parent node with a left subtree of the parent
node;

11 the parent node 1s a “plusC” graphical operator and the
current node 1s at a left branch of the parent node, replac-
ing the parent node with a right subtree of the parent
node;

11 the parent node 1s a “plusC” graphical operator and the
current node 1s at a right branch of the parent node,
replacing the parent node with a left subtree of the parent
node;

i1 the parent node 1s a “plusW” or an “Xor” graphical
operator and the current node 1s at a left branch of the
parent node, replacing the parent node with a right sub-
tree of the parent node; and

1f the parent node 1s an “plusW” or an “Xor” graphical
operator and the current node 1s at a right branch of the
parent node, replacing the parent node with a left subtree
of the parent node.

5. The method as recited 1n any one of claims 1 to 4,
wherein the graphical operators are 1mage compositing
operators.

6. The method as recited 1in claim 1, wherein said second
region 1s represented by a region representation in the form of
a hierarchical data structure.

7. The method as recited 1n claim 6, wherein the hierarchi-
cal data structure 1s a quadtree representation.

8. A method of optimising an expression tree for compos-
iting an 1mage, said expression tree comprising a plurality of
nodes, each said node being at least either a graphical element
or a graphical operator, said method comprising the steps of:

traversing the expression tree node by node; and

determiming at a current node if a first region of the 1mage
represented at said current node 1s obscured by a second
region dertved from at least one other node anywhere 1n
said expression tree, and modifying said expression tree
in the event that said first region of said current node 1s
partially or totally obscured by said second region, to
form an optimised expression tree in which an optimised
part of said expression tree substantially represents
unobscured portions of said first region,

wherein said steps are performed by means of a pro-
grammed compuiter.

US RE42,347 E

23

9. The method as recited in claim ti, wherein said [modi-
tyinig] modifving includes removing said current rode or
replacing said current node with another node of the expres-
s101 tree.

10. The method as recited in claim [7] 8, wherein said
moditying further includes clipping, or marking for clipping
at a later time, said first region represented by said current
node.

11. A method of optimising an expression tree for compos-
iting an 1mage, said expression tree comprising a plurality of
nodes, each said node comprising;:

at least erther a graphical element or a graphical operator
and having a region of the image represented by said
node, said method comprising the steps of:
traversing the expression tree node by node and at each

current node comprising a graphical operator apply-
ing the sub-steps of:

(1) recerving a first region representation from a parent
node;

(11) passing to a first operand of said graphical operator a
modified first region representation 1 accordance
with a first predetermined modification rule for said
operator;

(1) returning to the graphical operator a second region
representation of regions obscured by a sub-tree asso-
ciated with the first operand;

(1v) passing to a second operand of said graphical opera-
tor a modified second region representation 1n accor-
dance with a second predetermined modification rule
for said operator;

(v) returning to the graphical operator a third region
representation of regions obscured by a sub-tree asso-
ciated with the second operand; and

(v1) determiming, 1n accordance will a set rule for said
graphical operator, a final region representation to be
returned to the parent node to form an optimised
expression tree in which said final region representa-
tion substantially represents [an unobscured portion
of the first region represented at the parent node] a
region within which said current node is capable of
obscuring other nodes in said expression tree,

wherein said steps arve performed by means of a pro-
grammed compuiter.

12. The method as recited 1n claim 11, wherein said set rule
1s selected from the group consisting of:

(a) where the graphic operator 1s an “over” or a “plusC”
operator, the final region representation to be returned to
the parent node 1s determined from a union o the second
region representation and the third region representa-
tion;

(b) where the graphic operator 1s an “in” operator, the final
region representation to be returned to the parent node 1s
determined from an intersection of the second region
representation and the third region representation;

(c) where the graphic operator 1s a “ratop” operator, the
final region representation to be returned to the parent
node 1s the second region representation;

(d) where the graphic operator 1s an “out™ operator, the final
region representation to be returned to the parent node 1s
determined from a difference of the second region rep-
resentation and a region representation comprising at
least a region represented by a bounding box of a node at
a right subtree of the current node; and

(e) where the graphic operator 1s an “Xor” or a “plusW”
operator the final region representation to be returned to
the parent node 1s determined from a union of the second
region representation less a region representation com-

10

15

20

25

30

35

40

45

50

55

60

65

24

prising at least a region represented by a bounding box of
a node at a right subtree of the current node and the third
region representation less a region representation con-
taining a bounding box of a node at a right subtree of the
current node.

13. The method as recited 1n claim 11, wherein the first

predetermined modification rule comprises:

passing substantially the first region representation as the
modified first region representation in the event that the
graphical operator 1s an “over”, “in”, “ratop”, “plusC
“plusW”, “Xor”, or “out” (visit left operand first)” Jor
alike operators] operator; and

if the graphical operator 1s an “out (visit right operand
first)” operation, passing as the modified first region
representation a union of the first region representation
with the second region representation.

14. The method as recited 1n claim 11, wherein the second

predetermined modification rule comprises:

passing substantially the first region representation as the

modified second region representation in the event that

the graphical operator is an “in”, “ratop”, “out”

2
3

1n out”,
“plusC”, “plusW”, or “Xor” Jor alike operators] opera-
tor, and

in the event that the graphical operator 1s an “over’” operator
passing as the modified second region representation
union of the first region representation with the second
region representation.

15. The method as recited 1n any one of claims 11 to 14,
wherein the 1image representation 1s not created at a node, or
returned to a parent node of said node, unless said 1mage
representation 1s subsequently utilised.

16. The method as recited in claim 15, wherein the image
representation 1s not created at a node or returned to the parent
node 11 the node 1s selected from a group consisting of:

a right operand of an “over” operator and the “over” opera-
tor node does not need to return an 1image representation
to 1ts parent node;

a left operand of an “1n”, “plusC”, “plusW”” or “Xor” opera-
tor and said operator node does not need to return an
1mage representation to its parent node;

a right operand of an “in”, “plusC”, “plusW” or “Xor”
operator and said operator node does not need to return
an 1mage representation to its parent node;

a left operand of an “out” or “ratop” operator and said
operator node does not need to return an 1mage repre-
sentation to 1ts parent node;

a right operand of a “ratop” operator;

a root of the expression tree;

an operand of an 1mage warp, aifline transformation or
convolution operator; and

an operand of a colour transformation that does not pre-
serve opaqueness or 1f said transformation node does not
need to return an 1mage representation to 1ts parent node.

17. An apparatus for optimising an expression tree, said
expression tree for compositing an image and comprising at
least three nodes, each said node of said tree being at least
either a graphical element or a graphical operator, the appa-
ratus comprising:

means for[,] comparing a first region of said node to a
second region dertved from at least one other node any-
where 1n said expression tree;

means for determining 11 said first region 1s totally or par-
tially obscured by said second region; and

means for modifying the expression tree 1n the event that
said first region 1s at least partially or totally obscured by
said second region, to form an optimized expression tree

US RE42,347 E

25

in which an optimized part of said expression tree sub-
stantially represents unobscured portions of said first
region.

18. The apparatus as recited in claim 17, wherein the modi-
tying means includes means for applying a clipping operator
to said node 1n the event said first region 1s partially obscured.

19. The apparatus as recited in claim 17, wherein the modi-
fying means comprises:

means for removing the node; and

means for selecting a node replacement rule from a prede-

termined set of node replacement rules 1 accordance
with said graphical operator and applying said rule 1f the
node has a parent node which has a graphical operator
and the node 1s totally obscured.

20. The apparatus as recited 1 claim 19, wherein said
predetermined set of node replacement rules comprises at
least one step selected from the group consisting of:

if the parent node 1s an “over” graphical operator and the

current node 1s at a left branch of the parent node, replac-
ing the parent node with a right subtree of the parent
node;

if the parent node is an “over” [graphic] graphical operator

and the current node 1s at a right branch of the parent
node, replacing the parent node with a left subtree of the
parent node;

if the parent node 1s an “in” graphical operator, removing,

the parent node and any subtrees branching oif the par-
ent node;

if the parent node 1s a “ratop” graphical operator and the

current node1s ata left branch of the parent node, remov-
ing the parent node and any subtrees branching oif the
parent node;

if the parent node 1s a “ratop” graphical operator and the

current node 1s at a right branch of the parent node,
replacing the parent node with a left subtree of the parent
node;

if the parent node 1s an “out” graphical operator and the

current node1s at a left branch of the parent node, remov-
ing the parent node and any subtrees branching oif the
parent node;

if the parent node 1s an “out” graphical operator and the

current node 1s at a right branch of the parent node,
replacing the parent node with a left subtree of the parent
node;

if the parent node 1s a “plusC” graphical operator and the

current node 1s at a lelt branch of the parent node, replac-
ing the parent node with a right subtree of the parent
node;

if the parent node 1s a “plusC” graphical operator and the

current node 1s at a right branch of the parent node,
replacing the parent node with a left subtree of the parent
node;

if the parent node 1s a “plusW” or an “Xor” graphical

operator and the current node 1s at a left branch of the
parent node, replacing the parent node with a right sub-
tree of the parent node; and

if the parent node 1s a “plusW” or an “Xor” graphical

operator and the current node 1s at a right branch of the
parent node, replacing the parent node with a left subtree
of the parent node.

21. The apparatus as recited 1n any one of claims 17 to 20,
wherein the graphical operators are 1mage compositing
operators.

22. The apparatus as recited 1 claim 17, wherein said
second region 1s represented by a region representation 1n the
form of a hierarchical [to] data structure.

10

15

20

25

30

35

40

45

50

55

60

65

26

23. The apparatus as recited 1n claim 22, wherein the hier-
archical data structure 1s a quadtree representation.

24. An apparatus for optimizing an expression tree for
compositing an 1mage, said expression free comprising a
plurality of nodes, each said node being at least either a
graphical element or a graphical operator, said apparatus
comprising;

means for traversing the expression tree node by node;

means for determining at a current node 11 a first region of
the 1image represented at said current node 1s obscured
by a second region derived from at least one other node
anywhere 1n said expression tree; and

means for modifying said expression tree 1n the event that
said first region of said current node 1s partially or totally
obscured by said second region to form an optimized
expression tree 1n which an optimized part of said
expression tree substantially represents [unobsured]
unobscured portions of said first region.

25. The apparatus as recited in claim 24, wherein said
modifying means includes means for removing said current
node or replacing said current node with another node of the
expression tree.

26. The apparatus as recited in claim 24, wherein said
moditying means further includes means for clipping, or
marking for clipping at a later time, the region represented by
said current node.

27. An apparatus for optimizing an expression tree for
compositing an i1mage, said expression free comprising a
plurality of nodes, each said node comprising at least either a
graphical element or a graphical operator and having a region
of the 1image represented by said node, said apparatus com-
prising:

means for traversing the expression tree node by node, said
traversing means for each current node comprising a
graphical operator, further comprising:

means for receiving a first region representation from a
parent node;

means for passing to a first operand of said graphical opera-
tor a modified first region representation in accordance
with a first predetermined modification rule for said
operator;

means for returming to the graphical operator a second
region representation of regions obscured by a sub-tree
associated with the first operand;

means for passing to a second operand of said graphical
operator a modified second region representation 1in
accordance with a second predetermined modification
rule for said operator;

means for returning to the graphical operator a third region
representation of regions obscured by a sub-tree associ-
ated with the second operand; and

means for determining, in accordance with a set rule for
said graphical operator, a final region representation to
be returned to the parent to form an optimized expres-
sion tree 1 which said final region representation sub-
stantially represents [an unobscured portion of said first
region represented at the parent node] a region within
which said current node is capable of obscuring other
nodes in said expression tree.

28. The apparatus as recited 1n claim 27, wherein said set

rule 1s selected from the group consisting of:

(a) where the graphic operator 1s an “over” or a “plusC”
operator, the final region representation to be returned to
the parent node 1s determined from a union of the second
region representation and the third region representa-
tion;

US RE42,347 E

27

(b) where the graphic operator 1s an “in” operator, the final
region representation to be returned to the parent node 1s
determined from an intersection of the second region
representation and the third region representation;

(c) where the graphic operator is [an] a “ratop” operator,
the final region representation to be returned to the par-
ent node 1s the second region representation;

(d) where the graphic operator 1s an “out™ operator, the final
region representation to be returned to the parent node 1s
determined from a difference of the second region rep-
resentation and a region representation comprising at
least a region represented by a bounding box of anode at
a right subtree of the current node; and

(¢) where the graphic operator 1s an “Xor” or a “plusW”
operator the final region representation to be returned to
the parent node 1s determined from a union of the second
region representation less a region representation com-
prising at least a region represented by abounding box of
a node at a right subtree of the current node and the third
region representation less a region representation con-

taining a bounding box of anode at a right subtree of the
current node.

29. The apparatus as recited 1n claim 27, wherein the first

predetermined modification rule comprises:

passing substantially the first region representation as the
modified first region representation in the event that the
graphical operator 1s an “over”, “in”, “ratop”, “plusC
“plusW”, “Xor”, or “out” (visit left operand first)” Jor
alike operators] operator; and

if the graphical operator 1s an “out (visit right operand
first)” operation, passing as the modified first region
representation a union of the first region representation
with the second region representation.

30. The apparatus as recited 1n claim 27, wherein the sec-

22
2

ond predetermined modification rule comprises:

10

15

20

25

30

35

28

passing substantially the first region representation as the
modified second region representation 1n the event that

the graphical operator is an “in”, “ratop”, “out”,

“plusC”, “plusW”, or “Xor” Jor alike operators] opera-
tor, and

in the event that the graphical operator 1s an “over” opera-
tor, passing as the modified second region representation
a union of the first region representation with the second
region representation.

31. The apparatus as recited in any one of claims 27 to 30,
wherein the 1mage representation 1s not created at a node, or
returned to a parent node of said node, unless said 1mage
representation 1s subsequently utilised.

32. The apparatus as recited in claim 31, wherein the image
representation 1s not created at a node or returned to the parent
node 11 the node 1s selected from a group consisting of:

a right operand of an “over” operator and the “over” opera-
tor node does not need to return an 1image representation
to 1ts parent node;

a left operand of an “1n”, “plusC”, “plus W™ or “Xor” opera-
tor and said operator node does nor need to return an
image representation to its parent node;

a right operand of an “in”, “plusC”, “plusW” or “Xor”
operator and said operator node docs not need to return
an 1mage representation to its parent node;

a left operand of an “out” or “ratop” operator and said
operator node does not need to return an 1mage repre-
sentation to 1ts parent node;

a right operand of a “ratop” operator;

a root of the expression tree;

an operand of an 1mage warp, aifline transformation or
convolution operator; and

an operand of a colour transformation that does not pre-
serve opaqueness or 1 said transformation node does not
need to return an 1imap representation to its parent node.

G ex x = e

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : RE42.847 E Page 1 of 1
APPLICATION NO. : 10/368583

DATED : October 18, 2011

INVENTORC(S) : Politis

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page:

Item [64], Replace sub-heading, PCT Filed: with sub-heading, Filed.

Signed and Sealed this
First Day of November, 2011

David J. Kappos
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

