(19) United States

12 Reissued Patent
Tedesco

(10) Patent Number:
45) Date of Reissued Patent:

USOORE428038E

US RE42.808 E
Oct. 4, 2011

(54) METHOD, SYSTEM AND APPARATUS FOR 3885 8(1)2’;% ﬁllg i 13}%88% El‘?iSighetJﬁl* |
1 riesch, Jr. et al.
SEPARATELY PROCESSING DATABASE 5003/0101238 Al 52003 Davicor
QUERIES 2003/0182276 Al 9/2003 Bossman et al.
2005/0114352 Al 5/2005 Ronneburg et al.
75) Inventor: Michael A. Tedesco, Monroe, C1 (US
(75) (US) OTHER PUBLICATIONS
(73) Assignee: Harrison Agate, LLLC, Las Vegas, NV Hongjun Lu and Kian-Lee Tan, Dynamic and Load-Balanced Task-
(US) Oriented Database Query Processing 1n Parallel Systems, Dept. of
Information Systems and Computer Science, National University of
(21) Appl. No.: 12/315,061 Singapore, ACM, 1992, pp. 357-372.
. .
(22) Filed: Nov. 26, 2008 cited by examiner
Related U.S. Patent Documents Primary Examiner — Debbie M Le
Reissue of (74) Attorney, Agent, or Firm — McDonnell Boehnen
(64) PatentNo. 7,143,080 Hulbert & Berghotf LLP
Issued: Nov. 28, 2006
57 ABSTRACT
Appl. No.: 10/032,770 (57)
PCT Filed: Dec. 27,2001 A computing system provides database access to a plurality of
users, for example, over a computer network such as the
(51) Int.CL Internet. The computing system includes an established data-
GO6F 17/30 (2006.01) base engine and accompanying database files containing data
(52) U.S.CL oo 707/758; 707/770 that the users may query. The computing system further
(58) Field of Classification Search 707/1-3, wcludes an alternate database engine that may intercept and
707/10; 718/105-106 execute such database commands submitted by the users. The
See application file for complete search history. alternate database engine may translate and recognize com-
mands submitted in the format of the established database
(56) References Cited engine. The alternate database engine may further provide
results 1n the format of the established database engine. In this
U.S. PATENT DOCUMENTS manner, an alternate database engine can be implemented to
6,032,143 A * 2/2000 Leungetal. oo, 207/2 provide further or more efficient processing capabilities. At
6,128,279 A 10/2000 O’Neill et al. the same time, users may continue to 1nteract with the data
6,151,601 A 11/2000 Papierniak et al. maintained by the established database engine 1in a manner
6,226,649 Bl : 52001 Bodamer et al. 707/104.1 with which they are familiar, and data providers may switch to
g’ggg’;gé E Eggg% %;uillﬁadr; ZE i “““““““““ 70772 the alternate database engine without reformatting the data
6.820.073 Bl 11/2004 Bedell etal. stored in the established database engine.
6,886,035 B2 4/2005 Wolff
2002/0116457 Al 8/2002 Eshleman et al. 75 Claims, 19 Drawing Sheets
/f_ 100
END USER e ‘REGUIRNG LARGE
CLUERY TOOLS APPLICATION SCALE QUERY
110 112 CAPABILITY 14
QUERY
FACILITY
102
ORACLE
LISTENER
I]l@
ORACLE ENTERFRISE SERVER
OLTP READMWRITE
COORDINATED ACCESS TO DATA FILES
ROW-LEVEL LOCKING MANAGEMENT
ROLLBACK, TRANSACTION 1SOLATION, INTEGRITY 104
AR
CRACLE ORACLE
DATA DATA
UNIC FILE FILE ORACLE
VERITAS | RAW ORACLE ORACLE ?:TE
FILE Vo DATA DATA
SYSTEMS FILE ORACLE FILE
DATA
ORACLE | | [FuE ORACLE
DATA DATA
108 FILE FILE

U.S. Patent Oct. 4, 2011 Sheet 1 of 19 US RE42.808 E

100
e

| ‘ ATA l APPLICATION CODE
| END USER MINING REQUIRING LARGE
QUERY TOOLS SCALE QUERY
APPLICATION | APABILITY
L 101 | 112 D -
|—b- _
i
QUERY
FACILITY
102
= o e
| ORACLE
| LISTENER |
108 :
o : — I

ORACLE ENTERPRISE SERVER
| OLTP READ/WRITE
| COORDINATED ACCESS TO DATA FILES

 ROW-LEVEL LOCKING MANAGEMENT B
ROLLBACK. TRANSACTION ISOLATION. INTEGRITY -

L T — i S P — —— - P e S —

e

UNIX RAW DEVICE MOUNT
POINT
|
,] DATA !
UNIX/ | L FE
VERITAS | RAW ORACLE
4 FILE 11O DATA
(| svsTEMS s LFILE
~ |
[ORACLE |
.] | DATA | |
108 | FLE |

U.S. Patent

Oct. 4, 2011

—

Sheet 2 0f 19

US RE42,808 E

| DATA APPLICATION CODE | 100
END USER NG REQUIRING LARGE
QUERY TOOLS SCALE QUERY
| APPLICATION CAPABILITY
] g 102 | | 114 |
L 1
= -
- o QUERY
| FACILITY
102
| ORACLE
| | LISTENER
106
| — ——
ORACLE ENTERPRISE SERVER]
OLTP READMWRITE ‘
| COORDINATED ACCESS TO DATA FILES
| l ROW-LEVEL LOCKING MANAGEMENT
ROLLBACK, TRANSACTION ISOLATION, INTEGRITY ‘04
i - T — |
POINT POINT POINT POINT l
roracE] | | roreeE] | | T | |
| DATA | | DATA |
UNIX/ l FILE | FILE OEE%E |
VERITAS | RAW | | | [ORACLE] | | oracte | | || rie ||
| FILE O | DATA DATA
| SYSTEMS FILE | { | | ORACLE FILE |
— DATA
| ORACLE | FILE | | ORACLE | |
o DATA | DATA |
‘ | 108 I FILE] | Lo FILE ||
| — 1 IS T R
= - R —— ‘
T ORNADG READ ONLY DIRECT ACCESS TO DATA FILES
l ~ LISTENER E TORNADO QUERY ENGINE -
] — S B {1+
- |

TORNADO COMMAND LINE INTERFACE

i
e

FIG. 2

i —

P . S, A ey y ——

U.S. Patent Oct. 4, 2011 Sheet 3 of 19 US RE42.808 E

END USER

| QUERY TOOLS QUERY MANAGEMENT
110 FACILITY WITH MASSIVELY
SR— PARALLEL SOFTWARE

LAYER CAPABLE OF

|

MERGING. SORTING

DATA MINING ! ACROSS INSTANCES

APPLICATION I"
14

CAPABILITY .

U.S. Patent Oct. 4, 2011 Sheet 4 of 19 US RE42.808 E

APPLICATION CODE

END USER DATA MINING REQUIRING LARGE
QUERY TOOLS APPLICATION SCALE QUERY
202 CAPABILITY 949 |

—

T ini— P = —- .

QUERY MANAGEMENT FACILITY WITH MASSIVELY PARALLEL BACKBONE
LEVERAGES SWITCHED DESIGN FOR LINEARLY SCALEABLE ARCHITECTURE

PROPRIETARY SWITCHED DATABASE NETWORK

—1 . |

r—_ - l 104 | 660

| I] ||

STORAGE AREA NETWORK SWITCHED ARCHITECTURE

U.S. Patent

104

Oct. 4, 2011

Sheet S 0of 19

TOFROM USER OR APPLICATION
MAKING DATABASE COMMAND,
ENTRENCHED DATABASE ENGINE

US RE42,808 E

. | COMMUNICATION
= PORT(S)
308
I —]
_ |
RAM CPY(S)
202 500 |

USER RIGHTS TABLE
520

SYSTEMS PERFORMANCE
MANAGEMENT

| MAIN PROGRAM PROCESS INSTRUCTIONS 510

USER RIGHTS
ASSESMENT
PROCESS 512

SYSTEM
PERFORMANCE

TABLE 599

LANGUAGE COMMAND
REFERENCE
TABLE

.

DATA FORMAT
PARAMETERS
TABLE

226

USER COMMAND
OVERRIDE PARAMETER
TABLE 528

MEASUREMENT
PROCESS 514

e

W — L

COMMAND
INTERPRETATION

AND DECISIONING
PROCESS «1¢

ALTERNATIVE

DATABASE ENGINE |
PROCESS |

218
—

TO/FROM
DATABASE FILE AND
TRANSACTION
LOG FILES

FIG. S

COMMUNICATION
PORT(S)
208

—

TO/FROM
OPERATING
SYSTEM AND)
DATABASE SYSTEM
PERFORMANCE
UTILITIES

9 Ol

US RE42,808 E

029 K 5l 719) i
ST114 907 00 |
53714 X30N 314 V1VG NOILLOVSNVYL
AIHONIHLNS GIHONIUING %m%uwmwﬂ Jovav1va STEVL WILGAS
1\ JALLYNYILTY

Sheet 6 0of 19

019
ol HOSSID0Hd NOILYISNVYL T4 ANYNIG
v 809 909
< H0SS300Yd INIONA
- H3ZINLHO AY3IND NOILVYIWHOZSNYYL ONV 35VavlvQ _
X NOILYININYIN Y1VQ _
- _ L o | | |
¢09 _

NOLLVIAING 3OVNONY

dOSS30048d ANYWWOD

. lnl S - Fa e e e e e e el e ekl

v/ 815 INIONT 3SYaVLYa SAILYNYILTY

U.S. Patent

U.S. Patent Oct. 4, 2011

INPUT QUERY

Sheet 7 0f 19

READ USER'S
PRIVILEGES FROM USER
RIGHTS TABLE 702

DETERMINE USER'S
THRESHOLD VALUES FOR
QUERY PROCESSING

| DETERMINE USER'S
| TIME OF DAY RESTRICTIONS 704

; DETERMINE USER'S
QUERY RIGHTS 705

1S
USER AN
ADMINISTRATOR?

706

NO

1S USER

OPERATING
WITH STATEMENT LEVEL
EXCEPTIONS?

708

NO

e

TOFIG. 7B

700

YES)
SET ADMINISTRATOR FLAG

US RE42,808 E

07

]

YES

SET STATEMENT LEVEL

F1G. TA

N

EXCEPTION FLAG 700

U.S. Patent Oct. 4, 2011 Sheet 8 of 19 US RE42.808 E

FROM FIG. 7A

9

PARSE INPUT COMMANDS

1

TOKENIZE INPUT INTO
FUNCTIONAL COMMANDS
AND PARAMETERS 744

GET CONFIGURATION FROM
SYSTEM PERFORMANCE
MANAGEMENT TABLE 71

v .

SCAN FUNCTIONAL COMMANDS
TOKENS TO IDENTIFY IMPACTED
COMPONENTS OF SYSTEM 713

DETERMINE TOTAL NUMBER

OF RELEVANT SYSTEM
COMPONENTS TO MEASURE 714

HAS

PERFORMANCE -
YES BEEN MEASURED FOR ALL NC | GET NEXT RELEVANT SYSTEM
RELEVANT SYSTEM COMPONENT TO MEASURE
COMPONENTS? o - 716

9

S A
THIRD-PARTY
TOOL REQUIRED TO

MEASURE SYSTEM
COMPONENT?

a7

- — NO

MEASURE CURRENT OPERATING
PERFCRMANCE OF SYSTEM
COMPONENT USING NATIVE

SYSTEM COMM. CALLS 74q
—= YES
i o MEASURE CURRENT OPERATING
) PERFORMANCE OF SYSTEM

| COMPONENT USING THIRD-PARTY
TOOL OVER COMM LAYER 744

TOFIG. 7C

FIG. 7B

U.S. Patent Oct. 4, 2011 Sheet 9 of 19 US RE42.808 E

FROM FIG. 7B

i GET OPERATING PARAMETERS
FROM SYSTEM PERFORMANCE

MANAGEMENT TABLE 790 |

/I

DID A SYSTEM Y _
ADMINISTRATOR SET GET OPERATING PARAMETERS N
ACCESS LIMITS ON ANY FROM USER RIGHTS TABLES (¢
PARTICULAR SYSTEM 204
RESOURCES? —
721
DID A
SYSTEM
| | ADMINISTRATCR NO
YES 727 SET ACCESS LIMITS FOR
1_ THIS PARTICULAR
| SET LIMIT AND USER?
| THRESHOLD 725
FLAGS AS
PRE THE | APPROPRIATE | YES
LIMITS RELEVANT
TO THE INPUT
QUERY? ARE THE
122 YES LIMITS RELEVANT
TO THE INPUT
YES QUERY?
| 726
| NO
SET LIMIT AND THRESHOLD i R
FLAGS FOR RELEVANT I —
RESOURCES 799 \J
— — DO LIMITS
PROCESS CONVENTIONALLY IN YES PREVENT USE OF AN NO
ENTRENCHED DATABASE ALTERNATIVE DATABASE
129 ENGINE? o
728
FIG. 7C TO FIG. 7D

U.S. Patent Oct. 4, 2011

FROM FIG. 7C

L QOKUP COMMAND TOKEN
IN LANGUAGE COMMAND
REFERENCE TABLE 730

1S
COMMAND
INDIRECTLY
SUPPORTED?

31

YES

NO |

LOOKUP CCMMAND IN USER

COMMAND OVERRIDE TABLE -

dp————

IS USER
OVERRIDE SET FOR

Sheet 10 0of 19

THIS COMMAND?
734

YES

TOFIG. 7E

FIG. 7D

US RE42,808 E

COMPOSE STRING OF
DIRECTLY SUPPORTED

COMMAND FUNCTIONS 739

PROCESS CONVENTIONALLY [N
ENTRENCHED DATABASE

735

U.S. Patent Oct. 4, 2011 Sheet 11 of 19 US RE42.808 E

FROM FIG. 7D

ITERATE THROUGH
LANGUAGE ELEMENT TOKENS
TO PROCESS 36

p—

COMPARE TOKENS TO
LANGUAGE COMMAND
REFERENCE TABLE 737

ASSEMBLE FINAL LIST

OF LANGUAGE TOKENS
TO EMULATE 728

SEQUENCE LANGUAGE
TOKENS TO REFLECT INPUT
FORMAT FOR ALTERNATIVE

DATABASE ENGINE 739

—

TRANSLATE INPUT
COMMAND TOKENS

740

PROCESS COMMANDS

)

TOFIG. 7F

741

ey S—

FIG. 7E

U.S. Patent Oct. 4, 2011 Sheet 12 of 19 US RE42.808 E

FROM FIG. 7E

1S
COMMAND

A SQL SELECT

STATEMENT?

742

TO STEP 743

NO |

1S
COMMAND

A SQL INSERT

STATEMENT?

149

YES

NO

1S
COMMAND

A SQL DELETE

STATEMENT?

790

——

SET READ-WRITE FLAG
| 792

1 TO STEP 753

YES

NO

1S
COMMAND

A SQL UPDATE

STATEMENT?

751

YES

NO

10 STEP 795

FIG. 7F

U.S. Patent Oct. 4, 2011 Sheet 13 of 19 US RE42.808 E

FROMFIG. 7E

IS
COMMAND
A SQL SELECT
STATEMENT?

742

YES o

TO STEP 743

NO

1S
COMMAND

A SQL INSERT

- STATEMENT?

148

YES

NO

1S
COMMAND

A SQL DELETE

STATEMENT?

750

YES
SET READ-WRITE FLAG

192

TO STEP 753

1S
COMMAND

A SQL UPDATE

STATEMENT?

791

NO

TO STEP 755

FIG. 7F1

U.S. Patent Oct. 4, 2011 Sheet 14 of 19 US RE42.808 E

FROM STEP 742

READ-ONLY
SET READ-ONLY FLAG 143

PARSE TOKENS IN
SELECT STATEMENT 744

DETERMINE TEMPORAL
SENSITIVITY BY COMPARING
TO LIST OF HEAVILY-UPDATED
DATA TABLES 245

SET TRANSACTION LOG
ACCESS FLAG TO SECURE AGAINST
INTEGRITY PROBLEMS AND
IN-FLIGHT TRANSACTIONS -,

IS COMMAND
TEMPORALLY
SENSITIVE?

746

YES

NO

DECOMPOSE COMMAND
STREAM TO FILE ACCESS

SEQUENCE 748

GO TO BINARY FILE ACCESS
PROCESS 800

FIG. 7F2

U.S. Patent Oct. 4, 2011 Sheet 15 of 19 US RE42.808 E

FROM STEP 752

CAN
ALTERNATIVE
DATABASE OBTAIN
READ-WRITE CONTROL
OVER DATA
FILE?

193

VES DECOMPOSE COMMAND
STREAM TO FILE ACCESS

SEQUENCE 764

GO TO BINARY FILE ACCESS
PROCESS 800

NO

PROCESS CONVENTIONALLY [N

ENTRENCHED DATABASE

{57

FROM STEP 756

FIG. 7F3

U.S. Patent Oct. 4, 2011 Sheet 16 of 19 US RE42.808 E

FROM STEP 751

1S
COMMAND
A PROPRIETARY DDL
COMMANQD?

135

NO

IS A
TRANSLATED
COMMAND AVAILABLE
IN THE ALTERNATIVE
ENGINE?Y

756

TO STEP 757

YES

GO TO BINARY FILE ACCESS
PROCESS 800

U.S. Patent Oct. 4, 2011 Sheet 17 of 19 US RE42.808 E
BINARY FILE ACCESS
PROCESS 800 /

IS READ-ONLY
FLAG SET?

802

OPEN ENTRENCHED DATA
AND INDEX FILES FOR

READ-WRITE ACCESS gpg
e |

YES

1S
TEMPORALLY
SENSITIVE FLAG
SET?

804

YES

OPEN TRANSACTION
LOG FILES FOR

READ-ONLY ACCESS

h 4

OPEN ENTRENCHED DATA
AND INDEX FILES FOR
READ-ONLY ACCESS gog

SCAN DATA FILES AND
INTERPRET SCHEMA 10

SCAN INDEX FILES AND

INTERPRET STATISTICS 812 |

PROCESS FILE ACCESS
SEQUENCE 814

TO FIG. 8B

FIG. BA

U.S. Patent Oct. 4, 2011 Sheet 18 of 19 US RE42.808 E

FROM FIG. 8A

NO PREPARE TRANSACTIONAL
TRANSFORMATION PLAN

|S READ-ONLY
FLAG SET?

816 82

e —

LOG TRANSACTIONAL UPDATES
YES THROUGH ALTERNATIVE DATABASE

TRANSACTION LOG 804
PREPARE QUERY PLAN
‘ 818

OPTIMIZE QUERY PLAN - °
TO FIG. 8C

QO

00
™
o

|

FIG. 8B

U.S. Patent Oct. 4, 2011 Sheet 19 of 19 US RE42.808 E

FROM FIG. 8B

1S A
RESULTSET TO
BE OUTPUT?

YES LOOKUP DATA FORMAT
PARAMETERS FROM FILE

828
826 — —
NO FORMAT RESULTS
830
TRANSMIT RESULTS TO USER
832
ISA e
MESSAGE VES LOOKUP MESSAGE FORMAT
PENDING TO BE FROM LANGUAGE COMMAND

QUTPUT?
834

REFERENCE FILE 336

NO FORMAT MESSAGE

RETURN CONTROL TRANSMIT MESSAGE
TOUSER 842 RESULT TO USER

FIG. 8C

US RE42,308 E

1

METHOD, SYSTEM AND APPARATUS FOR
SEPARATELY PROCESSING DATABASE

QUERIES

Matter enclosed in heavy brackets |] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s related to U.S. patent application Ser.
No. 10/034,885 entitled “METHOD AND APPARATUS

FOR SCREENING DATABASE QUERIES PRIOR TO
SUBMISSION TO A DATABASE” filed on Dec. 26, 2001 1n
the name of Michael Tedesco, the entirety of which 1s 1ncor-
porated herein by reference.

FIELD OF THE INVENTION

The present invention relates generally to database man-
agement and, more particularly, to methods and apparatuses
for accessing data from an established database using an
alternate database engine.

BACKGROUND OF THE INVENTION

Businesses typically employ enterprise-wide database
engines 1n order to allow employees, customers, and other
such users, to access data stored in one or more data files
maintained thereby. Users typically access a database engine
over a computer network 1n which a user’s computing termi-
nal may communicate with one or more servers maintaining,
the database engine. Examples of such database engines
include those supporting Structured Query Language (SQL)
formats, Open-Database Connectivity (ODBC) and Javas-

cript Database Connectivity (JDBC) protocols produced by
MICROSOFT, ORACLE, SYBASE, SUN MICROSYS-

TEMS and the like.

Businesses employing such database engines typically find
that 1t 1s difficult to convert to or incorporate an alternate
database engine that 1s produced by another database manu-
facturer or that employs a differing data format. This prob-
lem, known as entrenchment, arises due to costs that arise
from conversion between competing database products.
These costs are due largely to the nature of existing computer
software, 1n that differing data standards, command struc-
tures, and {ile formats are typically used by competing data-
base manufacturers. For example, conversion of any data
stored by an established database engine to a format sup-
ported by the new database engine may be labor-intensive,
and therefore, expensive. In addition, new data commands
corresponding to the new database engine must be learned by
users 1n order to interact efficiently with them. The process of
learning new commands temporarily reduces the user’s efli-
ciency, thereby impacting his or her efliciency. Businesses
then may determine that the costs associated with conversion
would prevent them from selecting a new database engine, 1
when 1t would provide new or more desirable functionality.

A business or other entity 1s thus largely wedded to a
particular established database system once it has been
selected and implemented. Over time, entrenchment may
result 1n additional unwanted costs. For example, a database
manufacturer may require its customers to purchase software
upgrades periodically, 1n order to maintain service contracts

10

15

20

25

30

35

40

45

50

55

60

65

2

and the like for the established database engine, even when
such upgrades do not provide any additional functionality that
1s specifically beneficial to the business.

In another example, a business may wish to expand data-
base services to users by providing additional database serv-
ers on the computer network, particularly where large
amounts of data are maintained or large numbers of users are
provided with access. In such a case, the business would be
forced to purchase another license for the established data-
base engine to run on a new server, even when less costly

database engines may be available.
Various solutions to the entrenchment problem have been

attempted. A first example involves certain database engines
that periodically copy or replicate data stored by an estab-
lished database engine and provide it to further users. How-
ever, this solution 1s not ideal 1n the case of temporally-
sensitive data that changes on a continuing basis, such as a
historical stock price data. There 1s mherently some delay
associated between conversion of the data between the estab-
lished and the new database engines. Also, there 1s a delay
associated with data transfer between the two database
engines. This may result 1n 1naccurate result sets being gen-
erated and returned to users accessing such database engines.

A second example 1s a class of software products known as
middleware applications, such as ODBC produced by
MICROSOFT, and JDBC by SUN MICROSYSTEMS. In
such applications, the network connectivity layers of the
middleware and the established database system are still tied
together. Thus, database commands submitted to the middle-
ware application must be processed by a command software
layer of the established database system. In a case where the
new database engine 1s implemented to relieve some of the
processing performed by the established database engine,
system usage resources and other costs, including financial
costs, associated with the established database engine are still
negatively-impacted.

A final example 1s a class of software products commonly
known as database gateway products. These products provide
a command gateway between competing database engines of
differing data formats, allowing users to submit one com-
mand to interact with two or more such separate, supported,
database engines. Examples of such gateway products
include TRANSPARENT GATEWAY by ORACLE,
MICROKERNEL by PERVASIVE, OMNISQL by
SYBASE, STARNET and STARGATE produced by POW-
ERHOUSE and DB INTEGRATOR by DIGITAL EQUIP-
MENT CORPORATION. However, these gateway products
generally require continuous maintenance and customiza-
tion. For example, data mapping 1n a metadata mapping layer
must be continuously changed with every change to the sepa-
rate supported database engines. Furthermore, the command
layer of each separate database engine 1s accessed by such
gateway products in order to process database commands,
thus impacting system resources of each server that maintains
a database engine. Again, the desired purpose of having a
separate database engine may be to relieve some processing
from an established database engine. In such a case, this final
example 1s not an optimal solution since system resources of
both database engines are impacted.

Accordingly, there 1s a need for a method and apparatus for
implementing and using an alternate database engine with an
existing database engine that addresses certain problems of
existing technologies.

SUMMARY OF THE INVENTION

The present application 1s directed to particular features of
a system for implementing and using an alternate database

US RE42,308 E

3

engine with an existing database engine 1in which queries
directed to an existing database are itercepted and executed
by an alternate database engine.

According to a first embodiment, a method for processing
a database command commences when a database command
1s received from a user that requires data from an established
database engine. The established database engine has a com-
mand layer for processing database commands. However, in
order to preserve system resources and the like of the estab-
lished database server, the database command may be pro-
cessed by accessing data from the established database
engine using only a command layer of an alternate database
engine without accessing the command layer of the estab-
lished database engine.

In a second embodiment, a method for implementing and
using an alternate database engine 1in conjunction with an
established database engine commences when a plurality of
users are given access to an established database engine that
has a command layer for processing database commands. An
alternate database engine 1s then established on the same
computing system. A database command 1s recerved from one
of the plurality of users, where the database command 1s
directed to data stored by the established database engine.
The command 1s processed using only the alternate database
engine without accessing the command layer of the first data-
base engine. In addition, the alternate database engine may
maintain a second database file including second data which
1s accessible to the user and queried through the command
layer of the alternate database engine as well.

The computing system 1s contemplated 1n various embodi-
ments to include one or more of a local area network, a wide
area network, an intranet, an extranet, a wireless network and
the Internet.

The submitted database command may compatible with
any known data format or protocol, such as a Structured
Query Language format, a Javascript Database Connectivity
protocol and an Open-Database Connectivity protocol.

In further embodiments, the command may be evaluated to
determine 1ts impact on available system resources or to
determine whether the query can be optimized.

In additional embodiments, the alternate database engine
determines whether the command requires accessing the tem-
porally sensitive data of the established database engine, and
il so, accesses a transaction log of the first database engine
without interacting with the command layer of the established
database engine.

Results of the query obtained by the alternate database
engine may be provided to the user in a format associated with
the established database engine.

The methods and apparatuses of the present invention may

be used with enterprise database systems, or any other scale
database system.

BRIEF DESCRIPTION OF THE DRAWINGS

Further aspects of the present invention will be more
readily appreciated upon review of the detailed description of
the various embodiments provided below when taken 1n con-
junction with the accompanying drawings, ol which:

FI1G. 1 1s a diagram of a first exemplary network for imple-
menting the alternate database engine of the present mnven-
tion;

FIG. 2 1s a diagram of a second exemplary network for
implementing the alternate database engine of the present
invention;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 3 1s a diagram of a third exemplary network for
implementing the alternate database engine of the present
imnvention;

FIG. 4 1s a diagram of a fourth exemplary network for
implementing the alternate database engine of the present
invention;

FIG. 5 1s a schematic block diagram of an exemplary server
for use 1n the networks of any of FIGS. 1-4;

FIG. 6 1s an 1llustration of exemplary protocol layers used
by the alternate database engine established on the server of
FIG. §;

FIGS. 7A-7F3 are a flowchart depicting an exemplary gen-
eral process for implementing an alternate database engine
according to certain embodiments of the present invention;
and

FIGS. 8A-8C are a flowchart depicting an exemplary
binary file access process for translating database commands
according to certain embodiments of the present invention

DETAILED DESCRIPTION OF THE INVENTION

Various embodiments of the present invention involve a
computer network having one or more servers that maintain
an established database engine and an alternate database
engine. The established database engine maintains legacy
data that 1s accessible by a plurality of users having user
terminals on the network. The alternate database engine may
maintain further data that 1s stored after the alternate database
engine 1s incorporated into the system. In some embodiments,
the established database engine may also store some or all
such further data.

Various database commands, that may require result data
from the established database engine, may be selectively
intercepted, evaluated, optimized and processed by the alter-
nate database engine. The alternate database engine may
translate the query, when necessary, to a recognizable format
and process the same directly with the database file main-
tained by the established database engine, without interacting
with the command layer of the established database engine. In
such manner, the system resources of the server maintaining,
the established database engine are not overly impacted. Fur-
thermore, the database commands may be submitted to the
alternate database engine i1n the format of the established
database engine, which 1n turn translates such commands to a
native format, thereby allowing users to operate in a com-
mand environment with which they are already familiar.

A database command may be evaluated by the alternate
database engine to determine system resources that will be
impacted by a database command. For example, 1n a case
where the database command 1s a query, the parameters of the
query may be compared to historical or estimated perfor-
mance data related to similar queries 1n order to estimate the
impact on system usage. Particular parameters used for such
evaluation are provided 1in exemplary fashion further below.

In a particular example, 1t may be desired to selectively
intercept queries and process them through an available alter-
nate database engine, rather than an overly-impacted estab-
lished database engine. Where a database command 1s found
to be read-intensive, write-intensive, or read-write-intensive,
the database command may be intercepted and processed by
an alternate database engine having available system
resources. Other, less-intensive database commands may be
passed to the established database engine when desired.

The database command may be further evaluated by the
alternate database engine to determine whether temporally-
sensitive data 1s requested from an established database
engine. If so, the alternate database engine may access trans-

US RE42,308 E

S

action logs of the established database engine to determine
whether further data responsive to a database command has
been submitted to the first database engine. Access of the
transaction log may be performed without interacting with
the command layer of the established database engine. Cer-
tain data from the transaction log may then be provided to the
user 1n response to the database command, thereby ensuring,
accuracy ol such generated results.

The alternate database engine of the present invention 1s
contemplated to be fully compatible with, and may incorpo-
rate, the query optimization systems described in the appli-
cant’s co-pending U.S. patent application Ser. No. 10/034,
885 entitled “METHOD AND APPARATUS FOR
SCREENING DATABASE QUERIES PRIOR TO SUBMIS-
SION TO A DATABASE” filed on Dec. 26, 2001, the entirety
of which 1s incorporated herein by reference. The query opti-
mization may be used in conjunction with the processes 700
and 800 described below with respect to FIGS. 7A-8C, 1n a
manner readily apparent to one of ordinary skill 1 the art.
Particular aspects and functionalities of these query optimi-
zation systems are described with respect to FIGS. 3 and 4
below.

Referring now to FIGS. 1-8C, wherein similar components
of the present invention are referenced in like manner, pre-
terred embodiments of a method and apparatus for imple-
menting and using an alternate database engine with an exist-
ing database engine are disclosed.

Turning now to FIG. 1, there 1s depicted a first exemplary
computer network 100 by which a plurality of users operat-
ing, for example, user terminal(s) 110, data mining applica-
tions 112 and large-scale query systems 114 may communi-
cate with one or more established database servers 104 that
maintain established database engines. Such communica-
tions may be intercepted an processed by an alternate data-
base server 102 maintaining an alternate database engine.

Computer network 100 may be an Internet-based network
such as the World Wide Web, a local area network (LAN), a
wide-area network (WAN), an intranet environment, an extra-
net environment, a fiber optic network, or any other type of
wired, wireless, or hybrid computer networks.

User terminals 110-114 may each be any type of comput-
ing device, such as a personal computer, a workstation, a
network terminal, a hand-held remote access device, a per-
sonal digital assistant (PDA) or any other device that can
accomplish two-way electronic communication over the net-
work 100. Users may run a web browser or the like on user
terminal 110-114 to communicate with the server 102 over
the Internet. The alternate database engine may be a main-
tained on a single server or group of distributed servers. The
established database engine may be maintained on server 104
in conjunction with a network listening device 106 for receiv-
ing submitted queries. In a UNIX environment, the server 104
may be 1n further communication with other UNIX process-
ing devices 108 that maintain database files and the like
utilized by the server 104. The server 104 may store database
management software, relational database tables for stored
databases, index files for stored databases, and the like, the
functions of which are readily known to one of ordinary skill
in the art.

Further specific functions and operations of user terminals
110-114, alternate database server 102, and established data-
base server 104 are discussed further below.

In FIG. 2, there 1s depicted a second exemplary network
configuration for the network 100, 1n which the established
database server 104 1s 1n further operative communication
with a query optimization server 109 that may be utilized by
the network 100 to evaluate submitted database commands to

10

15

20

25

30

35

40

45

50

55

60

65

6

determine their impact on system resources, and re-direct,
edit, reject or limit data output based on the evaluation of the
database command.

A query optimization system of the present invention 1s
operative to 1mtercept an individual query containing search
parameters and logical arguments, and dynamically process
the same on a query-by-query basis to determine 1ts projected
impact on system resources ol a database engine that will
process the query. Groups of such queries may be intercepted
and evaluated in this manner. The resources to be evaluated
may include: (1) a number of relational databases to be uti-
lized 1n fulfilling the query, (11) a size of the data fields and
number of rows and/or columns to be searched for the query,
(111) an availability of hardware resources (such as processing
time, memory, put/output transfer rates and disk space
usage) of a system maintaining the database, (1v) a number of
relational database tables to be employed for the query, (v) a
limitation to be 1mposed on a size of a query result set, a
number of rows and/or columns of data to be returned 1n a
query result set, (v1) a cost of a previously-stored query with
similar parameters and (vi1) a number of function calls
employed by the query.

Individual query parameters may be evaluated during the
screening process performed by the present system. For
example, query parameters, such as search terms and logical
arguments, may be in a structured query language (SQL)
format, or other similar database query formats. The query
parameters may be optimized by available third-party query
optimization tools known to those of ordinary skill 1n the art.
When multiple tools are available, the system of the present
invention may select one of such tools for performing query
optimization, based on historical performance of the tools or
by mtended performance improvements of the tools.

Theuser rights of the user submitting the query may also be
evaluated by the present system. The user rights may include
an assigned accessibility right of a user, based on a class or
category of a user. In addition, user rights may be based on
historical system resource requirements of the user’s previ-
ous queries, and further, upon the historical scores of the
user’s previously evaluated queries.

In various embodiments of the present invention, all such
evaluations described above must take place prior to submis-
sion of the query to the database engine. In some embodi-
ments, the query 1s submitted by a user terminal to a database
engine, and intercepted and analyzed by a separate screening
server prior to receipt by the database engine. In this manner,
the screening server may save utilization of the system
resources of the database engine by first evaluating the query.

Queries that are intercepted and screened 1n any or all of
these manners may be assigned a final impact rating. The
rating may be determined, for example, by i1dentifying the
various system resources that may be mmpacted impacted,
assigning a weight to each impacted resource, and generating
a score reflective of the results. Other useful weighted com-
putational models may also be used. The generated rating 1s
then compared to one or more threshold values set by a
database administrator, determined by an analysis of avail-
able system resources, or the like.

If the rating surpasses the threshold value, the query may be
rejected. Alternatively, the screening server may negotiate or
assign a limited result set to be provided 1n response to the
query. This limitation 1s then communicated to the database
engine upon submission of the query. If, on the other hand, the
rating does not surpass the threshold value, the query may be
submitted to the database engine for processing. The result
sets generated by the database engine 1n response to the query
may then be communicated to the user by either the database

US RE42,308 E

7

engine or the screening server. In the latter case, the query
parameters may nonetheless be optimized by the previously
described third-party optimization tools prior to submission
to the database engine.

In various embodiments, the system of the present inven-
tion can optionally prioritize and queue queries for the data-
base engine based on the priority of the query or the user
submitting the query. The system may further pause process-
ing of lower priority queries so that higher priority queries
may be processed and/or completed first.

In FIG. 3, there 1s depicted a third exemplary configuration
for the network 100 1n which a single alternate database
server 102, 1n conjunction with a single query optimization
server 109, are 1n operative communication with a plurality of
established database engines 104 1n a massively parallel
architecture. As displayed in FIG. 4, the network 100 may be
configured with a single alternate database server 102 1n
communication with a plurality of servers 104, 109 1n a mas-

stvely parallel architecture.

Other operative network configurations for network 100
are readily contemplated to be employed by the present inven-
tion.

Turning now to FIG. 5, displayed therein are exemplary
components of a computing device, such as an alternate data-
base server 102, for use 1n any of the configurations described
above with respect to FIGS. 1-4. It should be understood that
any computing device described herein may share similar
configurations to server 102. However, for sake of brevity, the
discussions of hardware components used by various devices
herein will be made 1n reference to the server 102 only.

The primary component of the alternate database server
102 15 a central processing unit (CPU) or microprocessor 300,

which may be any commonly available microprocessor, such
as the SunSPARC family of processors manufactured by
SUN MICROSYSTEMS. The CPU 3500 may be operatively
connected to Turther exemplary components, such as random
access memory (RAM) 502, read-only memory (ROM) 504,
a clock 506, mput/output devices such as communication
port(s) 508, and a memory 510. The memory 510, 1n turn,
may store one or more application and operating system
programs, such as user rights assessment processing instruc-
tions 512, system performance measurement processing
instructions 514, command interpretation processing instruc-
tions 516 and alternate database engine process nstructions
518.

The memory 510 may further store various system-based
database files, used by the server 104 to evaluate and process
data commands. Such database files include a user rights table
520 for storing database access rights of a plurality of users,
a system performance management table 522 for determining
database command 1mpact against parameters stored therein,
a language command reference table 524 for converting data-
base commands between various supported formats, a data
format parameters table 526 for storing format parameters of
stored data and a user command override parameter table 528
used to store any user-specific customizations to language

translation processing.
The CPU 500 operates 1n conjunction with RAM 502 and

ROM 504 1n a manner well known 1n the art. The RAM 502
may be a suitable number of Single In-line Memory Module
(SIMM) chips having a storage capacity (typically measured
in kilobytes or megabytes) suificient to store and transier,
inter alia, processing instructions utilized by the CPU 500,
that 1n turn may be may be recerved from the application
programs 512-518. The ROM 504 may be any permanent,
non-rewritable memory medium capable of storing and trans-

10

15

20

25

30

35

40

45

50

55

60

65

8

ferring, inter alia, processing instructions performed by the
CPU 500 during a start-up routine of the alternate database
server 102.

The clock 506 may be an on-board component of the CPU
50 which dictates a clock speed (typically measured in MHz)
at which the CPU 500 performs and synchronizes, inter alia,
communication between the internal components of the alter-
nate database server 102.

The communication port(s) 508 may be one or more com-
monly known devices used for recerving system operator
iputs, network data, and the like and transmitting outputs
resulting therefrom. Accordingly, exemplary imput devices
may include a keyboard, a mouse, a voice recognition unit
and the like for recerving inputs from an operator of the
alternate database server 102. Additionally, output devices
may include any commonly known devices used to present
data to an operator of the alternate database server 102 or to
transmit data over the computer network 100, described fur-
ther below. Accordingly, suitable output devices may include
a display, a printer and a voice synthesizer connected to a
speaker. Other output devices may include a telephonic or
network connection device, such as a communication port, a
telephone modem, a cable modem, a T-1, T-2 or T-3 connec-
tion, a digital subscriber line or a network card, or any other
device for communicating data to and from other computing
devices over the computer network 100. In an environment 1n
which high numbers of users are involved, 1t 1s preferred that
the communications devices used as communication ports
508 have capacity to handle high bandwidth traffic in order to
accommodate communications with a large number of users.

The memory 510 may be an internal or external large
capacity device for storing computer processing instructions,
computer-readable data, and the like. The storage capacity of
the memory 310 1s typically measured in megabytes or
gigabytes. Accordingly, the memory 510 may be one or more
hard disk drives and/or any other computer readable medium
that may be encoded with processing mstructions in a read-
only or read-write format. Further functions of and available
devices for memory 510 will be apparent.

The memory 510 may further store, inter alia, a plurality of
operating system application programs which may be any one
or more ol UNIX-based system such as LINUX, or one or
more personal computer (PC) programs, such as a web host-
ing program and a database management program of the type
manufactured by ORACLE, each of which may be necessary
to implement various embodiments of the present mnvention.
In an Internet environment, web hosting software may
include functionality suilicient to read JAVASCRIPT, hyper-
text markup language (HITML), extensible markup language
(XML) and other similar programming languages typically
used 1n conjunction communicating data between clients and
servers over the Internet.

In any type of network environment, the application pro-
grams may also include a database management program, of
the type commonly manufactured by ORACLE CORP. to
store and maintain various databases as described below at
the alternate database server 102. For example, the database
programs may be used to maintain the user rights table 520,
the system performance management table 522, the language
command reference table 524, the data format parameters
table 526 and the user command override parameter table
528. Further or fewer databases may be used i1n certain
embodiments of the present invention. It should be readily
appreciated that any number of database files presented
herein may be configured into any number of relational data-

US RE42,308 E

9

bases. In addition, configurations other than database formats
may be used to store the data maintained in these exemplary
databases.

Turning now to FIG. 6, therein 1s depicted an exemplary
programming structure 518 for the alternate database engine >
maintained by the alternate database server 102. The structure
514 includes a top-most command processing layer 600,
whereby database commands are processed by the alternate
database engine. The structure 518 may further include a
language emulation layer, by which a plurality of database
languages may be recogmizable and translatable by the alter-
nate database engine. The structure 518 further includes a
database engine kernel 604 for managing native system tables
612 storing system usage parameters and a native transaction
log 614 for storing read and write operations to data files
maintained by the alternate database server 102. The structure
518 may also include a data manipulation and transformation
processor layer 606 and a query optimizing layer 608 for
evaluating and optimizing database commands recerved by 2g
the alternate database engine. Finally, the structure 518 may
include a binary file translation processor for converting data-
base commands and recerved data 1into a desired format that 1s

compatible with the established database engine, {for
example, by referencing transaction log files 616, database 25
files 618 and index files 620 maintained by the established
database engine on server 10.

Other software layers, such as network communication
layers and the like (not shown), may also readily be employed
to implement the present invention. 30

FIGS. 7A-7F3 depict a general process 700 for intercepting
and executing database commands performed by the alternate
database engine 500 of FIG. 5 1n any of the various network
configurations described with respect to FIGS. 1-4. The pro-
cess 700 begins when a database command, such as a query, 35
1s submitted by a user to the database engine (step 701). The
input query may be obtained 1n a transparent manner. That 1s,
the user may not receive an indication that the query intended
for the established database engine has been intercepted by
the alternate database engine. In other embodiments, queries 40
may be intercepted by batch submission or by providing
direct access to the alternate database engine to a plurality of
users.

The alternate database engine receives an identification of
the user and accesses the user rights table 520 to determine the 45
user privileges of the user (step 703). The user rights table
may store, for example, an 1dentification of the user and user
access rights. In various embodiments, 1t 1s possible to allow
or disallow access to users who are not listed 1n the user rights
table 520. 50

Based on the user rights table information for the user, the
alternate database engine then determines the user’s thresh-
old values for query processing (step 703), further determines
whether any time of day restrictions apply to the user (step
704), and also determine the user’s query rights (step 705). 55

The alternate database engine then determines whether the
user 1s an administrator (step 706). If so, the process continues
to step 707 where the alternate database engine sets an admin-
istrator flag, otherwise, the process 700 continues to step 708
below. 60

At step 708, the alternate database engine determines
whether the user 1s operating with statement-level exceptions
or any command-level overrides intended to alter processing
beyond default processing rules established by an adminis-
trator or the like. (step 708), If, so, step 709 1s performed. 65
Otherwise, the process 700 continues to step 710 below,
described with respect to FIG. 7B.

10

15

10

The alternate database engine next sets a statement level
exception flag (step 709). The alternate database engine then
may set additional appropriate tlags which are used later in
the process to determine whether to reject, allow or edit a
query submitted by the user, based on query parameters. This
information may be determined from the access of the user

rights table 520 described previously above, or 1n any other
known manner.

Continuing now to FIG. 7B, the process 700 next involves
the alternate database engine parsing the recerved query (step
710). The query 1s tokenized into functional commands and
query parameters (step 711). The alternate database engine
then retrieves configuration information from the system per-
formance management table 522 (step 712). The system next
assesses database management parameters, for example, by
accessing the system performance management table 522
which may store, inter alia, performance parameters of the
alternate database engine. The system performance manage-
ment table 522 may accordingly store such parameters as (1)
processor speed and usage, (11) available memory, (111) avail-
able input/output resources, (1v) usage and disk resources and
usage, and (v) preferences set by an administrator of the
administrator of the alternate database engine. These param-
cters may be dynamically updated based on the current oper-
ating conditions of the alternate database engine or the estab-
lished database engine.

Continuing to step 713, the alternate database engine then
scans the functional command tokens to i1dentily impacted
components of the alternate database server 102. Alterna-
tively or in addition thereto, impacted components of the
established database server 104 may be determined and ana-
lyzed 1n this process 700. The alternate database engine then
determines a total number of relevant system components to
measure (step 714) and further determines whether perfor-
mance has been measured for all relevant components (step
715). I so, the process 700 continues to step 720 of FI1G. 7C,
otherwise, the process 700 continues to step 716.

The alternate database engine, at step 716, retrieves a next
relevant component to measure and determines whether a
third-party tool 1s required to measure the next system com-
ponent (step 717). If so, the process 700 continues to step 718.
Otherwise, the process 700 continues to step 719 below.

At step 718, the alternate database server measures the
current operating performance of system component using
third party tools, after which the process returns to step 7135
above.

At step 719, the alternate database engine measures the
current operating performance of system component using
native system (step 719), after which the process 700 returns
to step 715 above.

Continuing now to FIG. 7C, the process 700 next requires
that the alternate database engine retrieve operating param-
cters from the system performance management table 522
(step 720) and to determine whether an administrator has set
access limits on particular system resources (step 721). If so,
the process 700 continues to step 722. Otherwise, the process
700 continues to step 724 below.

At step 722, the alternate database engine determines
whether any such limits are relevant to the input command by
comparing tokens to the stored limit parameters (step 722). If
the limits are relevant, the process continues to step 723.
Otherwise, the process 700 continues to step 724 further
below.

The alternate database engine may then set limit and
threshold flags for the relevant resources 1n accordance with
the limits set by the administrator (step 723). The alternate

US RE42,308 E

11

database engine next retrieves the operating parameters from
user rights table 520 (step 724).

The alternate database engine next determines if the
administrator set limits on operating parameters for the user
submitting the query based on the stored user rights (step
725). I so, the process 700 continues to step 726. I not, the
process continues to step 728 further below.

At step 726, the alternate database engine determines
whether the established limits are relevant to the particular
query. I1 so, the process 700 continues to step 727. if not, the
process 700 continues from step 728 below.

The alternate database then set limit and threshold flags as
appropriate (step 727). At step 728, the alternate database
engine determines whether the established limits prevent use
ol the alternate database engine to process the query. If so, the
process continues to step 729. I not, the process 700 contin-
ues to step 730 described further below with respect to FIG.
7D.

At step 729, the alternate database engine processes the
query conventionally by passing 1t to the established database
engine, due to the impact the query would have on the
resources of the alternate database server 102.

Continuing to FIG. 7D, the alternate database engine looks
up a command token from the parsed query in the language
command reference table 524 (step 730). The alternate data-
base engine then determines whether the command 1s indi-
rectly supported (step 731). If so, the process 700 continues to
step 732 below. Otherwise, the process 700 continues to step
733.

At step 732, in order to determine 1f the given user has
customized how the alternate database engine should handle
specific language commands, the alternate database engine
composes a string of directly supported command functions
corresponding to the query, and looks up the command in the
user command override table 528 (step 733). If a user override
command 1s set for the query (step 734), the process 700
continues to step 735. Otherwise, the process 700 continues
to step 736 of FI1G. 7E.

At step 735, the query 1s processed conventionally by pass-
ing it to the command layer of the established database
engine, after which process 700 ends.

Continuing to FIG. 7E, the alternate database engine next
iterates through language element tokens (step 736), com-
pares the language tokens to the language command refer-
ence table 524 (step 737), assembles a final list of language
tokens to emulate (step 738), sequences the language tokens
to reflect the mput format for alternate database engine (step
739), translates the query tokens (step 740) and processes the
query without accessing a command layer of the established
database engine (step 741). The alternate database engine
may also be programmed to execute read-only commands,
exclusive of read-write and write commands, 1n certain
embodiments of the present invention. A benefit of perform-
ing read-only commands 1s in using the alternate database
server as a low-cost mechanism for increasing overall data-
base system availability and redundancy in an enterprise
computing environment.

Continuing now to FIGS. 7F1-7F3, the alternate database
engine determines whether the query 1s a SQL select (or
functionally equivalent) statement (step 742) If so, the pro-
cess 700 continues to step 743. Otherwise, the process 700
continues to step 749 further below.

Atstep 743, aread only tlag 1s set by the alternate database
engine. Tokens are parsed from the select statement (step 744)
and the alternate database engine then determines whether the
query calls for temporally sensitive data by, for example,
comparing the tokens to a list of heavily updated data tables

10

15

20

25

30

35

40

45

50

55

60

65

12

(step 745). If the query 1s temporally-sensitive (step 746), the
process 700 continues to step 747. Otherwise, the process 700
continues on to step 748 described further below.

At step 747, the alternate database engine sets a transaction
log access flag, decomposes the query to a file access
sequence (step 748) and mnitiates the binary file access and
translation process 800, described below with respect to
FIGS. 8A-8C.

Write commands may unduly impact system performance
of the alternate or established database servers. Accordingly,
any write commands, such as msert commands and delete
commands are evaluated.

At step 749, the alternate database engine next determines
if the query includes an insert statement. If so, the process
continues to step 752. If not, the process continues at step 750
turther below.

At step 750, the alternate database engine next determines
if the query includes a delete statement. If so, the process
continues to step 752. If not, the process continues at step 751
below.

At step 751, the alternate database engine next determines
if the query includes an update statement. I so, the process
700 continues to step 752. If not, the process continues at step
755, described further below.

At step 752, the alternate database engine sets a read-write
flag and determines whether the alternate database engine can
obtain read-write control over data filein step 753. If so, the
process continues to step 754. Otherwise, the process contin-
ues to step 756 below.

At step 754, the alternate database engine decomposes the
query to a file access sequence, after which the binary file
access process 800, described with respect to FIGS. 8A-8C 1s
initiated.

Returning to 755, the alternate database engine determines
whether the query 1s a proprietary data-defimition language
command (for example, a “create table” command, or an
“alter table” command). If so, the process 700 continues to
step 756, and 11 not, the process 700 ends.

At step 756, the alternate database engine determines
whether a corresponding translated query 1s available 1n the
alternate database engine. It so, the alternate database engine
initiates the binary file access process 800 of FIGS. 8A-C.
Otherwise, the process 700 ends.

Turming to FIGS. 8A-8C, a binary file access process 800 1s
depicted 1n which queries and commands that are submaitted
in a format of the established database engine are translated to
a format recognizable by the alternate database engine. The
binary translation processor converts proprietary binary data,
index, transaction log structures and the like into a standard-
1zed internal form suitable for processing with alternate data-
base

The process 800 begins by determining whether a read-

only tlag 1s set (step 802). If so, the process 800 continues to
step 804. Otherwise, the process continues to step 809,
described further below.

Next, the alternate database engine determines whether a
temporally-sensitive data flag has been set (step 804). IT so,
the process 800 continues to step 806 below. IT not, the pro-
cess 800 continues on to step 808.

The alternate database engine opens transaction log files of
the established database server for read only access (step 806)
and further opens data and index files for the established
database engine for read only access (step 808). The data files
are then scanned (step 810) to interpret the data schema of
stored data, the alternate database engine further scans index

US RE42,308 E

13

files and interprets data statistics based on the same (step
812). From this information, a file access sequence 1s pro-
cessed (step 814).

Continuing now to FIG. 8B, the alternate database engine
next determines if a read-only tlag is set (step 816). 11 so, the
process 800 continues to step 818. Otherwise, the process 800
continues to step 822 below.

At step 818 a query plan 1s prepared. At step 820, the query
plan may be optimized using the methods described previ-
ously, after which the process 800 continues to step 826,
described below with respect to FI1G. 8C.

At step 822, a transactional transformation plan 1s pre-
pared, whereby data that 1s intended to be determined to be
written to the data file 1s condensed to a series of specific
Insert/Update/or Delete command steps. These Insert/Up-
date/or Delete command steps are then first stored 1n a trans-
action log file (and then later applied transactionally) to help
ensure data integrity. The alternate database server next
updates its transactional log through alternate database trans-
action log 614 (step 824).

From either step 820 or 824 above, the process 800 con-
tinues to step 826 where the alternate database engine deter-
mines whether a result set can be generated and outputted to
the user in response to the query. 11 so, the process continues
to step 828. Otherwise, the process continues to step 834
described further below.

At step 828, the alternate database engine looks up data
format parameters from the alternate database transaction log
614, formats the results 1n a manner similar to results output
by the alternate database engine (step 830), and transmits the
results to user (step 832).

If a result can not be generated, due to an error 1n the query
or the lack of responsive data in the established database
engine, the alternate database engine determines whether a
message regarding the failed query is to be output (step 834),
iI not, the process 800 ends. Otherwise, the process 800
continues to step 836 where the alternate database engine
retrieves the message format employed by the established
database engine. The message 1s placed 1n the appropriate
format (step 838) and which 1s then transmaitted to the to the
user (step 840), the process 800 then ends.

While the processes 700 and 800 have been described
above with respect to a single user terminal, a single alternate
database server and a single established database engine, 1t 1s
contemplated that any number of such servers may be
employed 1n an operative embodiment of the present mnven-
tion, as particularly illustrated in the exemplary network con-
figurations of FIGS. 2-4.

While the data command submitted by a user has been
described herein as a database query, other database com-
mands, such as write commands, read/write commands,
indexing commands and the like may readily be employed
and processed by the system of the present mnvention.

Although the invention has been described 1n detail 1n the
foregoing embodiments, 1t 1s to be understood that the
descriptions have been provided for purposes of illustration
only and that other variations both 1in form and detail can be
made thereupon by those skilled 1n the art without departing
from the spirit and scope of the mvention, which 1s defined
solely by the appended claims.

What 1s claimed 1s:

1. A method for processing a database command, per-
formed by an alternate database engine, the method compris-
ng:

receiving, from a user, a database command requiring data
from a first database engine, the first database engine
having a command layer for processing database com-

10

15

20

25

30

35

40

45

50

55

60

65

14

mands|:] and separately processing the database com-
mand using a command layer of an alternate database
engine without accessing the command layer of the first
database engine;
evaluating the database command to determine system
usage of the database command at the database engine,
prior to execution of the database command;

determining a threshold value for system usage of the
alternate database engine, wherein the threshold value 1s
based on one or more of: estimated processor usage,
estimated memory usage, input/output resource usage
and disk resource usage of the alternate database engine;

generating a result of the database command; and

transmitting the result to the user submitting the database
command.

2. The method of claim 1, wherein the first database engine
stores the data 1n a first database file.

3. The method of claim 1, wherein the alternate database
engine stores second data 1n a second database file.

4. The method of claim 1, wherein the database command
1s compatible with one or more of: a Structured Query Lan-
guage format, a Javascript Database Connectivity (JDBC)
protocol and an Open-Database Connectivity protocol.

5. The method of claim 1, wherein the database command
1S a query.

6. The method of claim 5, said processing the database
command further comprising:

evaluating the query.

7. The method of claim 6, said evaluating further compris-
ng:

evaluating the query against system usage.

8. The method of claim 7, said evaluating turther compris-
ng:

evaluating the query based on one or more of: a parameter

of the query, a number of relational databases to be
accessed for the query, a size of a data field to be
searched for the query, an availability of resources of a
system maintaining the alternate database engine, an
availability of resources of a system maintaining the first
database engine, a number of relational database tables
to be employed for the query, a limitation imposed on a
s1ze of a query result set, a number of columns of data to
be returned 1n a query result set, a cost of a similar stored
query and a number of function calls for the query.

9. The method of claim 7, further comprising:

submitting the query to the alternate database engine with

a limit on a number of returns responsive to the query,
based on said evaluating.

10. The method of claim 7, turther comprising.

editing the query, based on said evaluating.

11. The method of claim 7, turther comprising:

rejecting the query, based on said evaluating.

12. The method of claim 6, wherein said evaluating com-
Prises:

determiming, prior to said processing, whether the database

command requires accessing the first database engine,
and 1 not, accessing data stored only by the alternate
database engine.

13. The method of claim 12, said determining further com-
prising:

translating the query to a native format of the alternate

database engine.

14. The method of claim 6, said evaluating further com-
prising:

determining whether the query requires accessing tempo-

rally sensitive data, and 11 so, accessing a transaction log
of the first database engine.

US RE42,308 E

15

15. The method of claim 1, wherein said transmitting fur-
ther comprises:
transmitting the result in a format of the first database
engine.
16. The method of claim 1, further comprising:
storing second data 1n a database file maintained by the
alternate database engine.
17. The method of claim 16, said processing further com-
prising:
determining whether the database command requires at
least a portion of said second data, and 11 so, 1dentifying
said portion responsive to the database command.
18. The method of claim 1, further comprising:
receiving new data to be provided responsive to database
commands; and
storing said new data 1n a database file maintained by the
alternate database engine.
19. The method of claim 1, further comprising:
receiving new data to be provided responsive to database
commands; and
storing said new data 1n a database file maintained by the
first database engine.
20. The method of claim 1, said processing further com-
prising:
translating the database command to a native format of the
alternate database engine.
21. The method of claim 1, wherein said processing further
COmMprises:
identifying data stored by the first database engine that 1s
responsive to the database command; and
accessing said identified data, wherein said identifying and
accessing are performed exclusively through the com-
mand layer of the alternate database engine, without
interaction with the command layer of the first database
engine.
22. The method of claim 1, wherein the alternate database
engine executes only read-only database commands.
23. An apparatus for processing a database command,
comprising:
a processor; and
a memory 1n operative communication with the processor,
the memory for storing a plurality of processing instruc-
tions for directing the processor to:
receive|, from a user,] a database command requiring
data from a first database engine, the first database
engine having a command layer for processing data-
base commands;
separately process the database command using a com-
mand layer of an alternate database engine without
accessing the command layer of the first database
engine;
evaluate the database command to determine system
usage ol the database command at the database
engine, prior to execution of the database command;
determine a threshold value for system usage of the
alternate database engine, wherein the threshold
value 1s based on one or more of: estimated processor
usage, estimated memory usage, 1nput/output
resource usage and disk resource usage of the alter-
nate database engine;
generate a result of the database command; and
transmit the result [to the user submitting the database
command].
24. A computer-readable medium encoded with processing,
instructions [for implementing a method for processing a
database command, performed by an alternate database

5

10

15

20

25

30

35

40

45

50

55

60

65

16

engine, the method] directing a processor to perform func-
tions, the functions comprising:

receiving[, from a user,] a database command requiring

data from a first database engine, the first database
engine having a command layer for processing database
commands;

separately processing the database command using a com-

mand layer of an alternate database engine without
accessing the command layer of the first database
engine;
evaluating the database command to determining system
usage of the database command at the database engine,
prior to execution of the database command;

determiming a threshold value for system usage of the
alternate database engine, wherein the threshold value 1s
based on one or more of: estimated processor usage,
estimated memory usage, mput/output resource usage
and disk resource usage of the alternate database engine;
generating a result of the database command; and

transmitting the result [to the user submitting the database
command].

25. A method for implementing and using an alternate
database engine 1n conjunction with an established database
engine, the method comprising:

providing access to a first database engine to a plurality of

users on a computing system, the first database engine
having a command layer for processing database com-
mands;

establishing an alternate database engine on the computing,

system;

recerving a database command from one of the plurality of

users, the database command directed to data stored by
the first database engine;

separately processing the database command using the

alternate database engine without accessing the com-
mand layer of the first database engine;
evaluating the database command to determine system
usage of the database command at the database engine,
prior to execution of the database command;

determiming a threshold value for system usage of the
alternate database engine, wherein the threshold value 1s
based on one or more of: estimated processor usage,
estimated memory usage, iput/output resource usage
and disk resource usage of the alternate database engine;

generating a result of the database command; and

transmitting the result to the user submitting the database
command.

26. The method of claim 25, wherein the computer system
1s one or more of: a local area network, a wide area network,
an 1ntranet, an extranet, a wireless network and-/or the Inter-
net.

27. The method of claim 25, wherein the first database
engine stores the data 1n a first database file and the alternate
database engine stores data 1n a second database file.

28. The method of claim 25, wherein the database com-
mand 1s compatible with one or more of: a Structured Query
Language format, a Javascript Database Connectivity proto-
col and an Open-Database Connectivity protocol.

29. The method of claim 25, wherein the database com-
mand 1s a query.

30. The method of claim 29, said evaluating further com-
prising:

evaluating the query based on one or more of: a parameter

of the query, a number of relational databases to be
accessed for the query, a size of a data field to be
searched for the query, an availability of resources of a
system maintaining the alternate database engine, an

US RE42,308 E

17

availability of resources of a system maintaining the first
database engine, a number of relational database tables
to be employed for the query, a limitation imposed on a
s1ze of a query result set, a number of columns of data to
be returned 1n a query result set, a cost of a similar stored
query and a number of function calls for the query.

31. The method of claim 29, further comprising:

submitting the query to the alternate database engine with

a limit on a number of returns responsive to the query,
based on said evaluating.

32. The method of claim 29, further comprising:

editing the query, based on said evaluating.

33. The method of claim 29, further comprising:

rejecting the query, based on said evaluating.

34. The method of claim 29, wherein said evaluating com-
Prises:

determining, prior to said processing, whether the database

command requires accessing the data of the first data-
base engine, and 1f not, accessing only data stored by the
alternate database engine.

35. The method of claim 34, said determining further com-
prising:

translating the query to a native format of the alternate

database engine.

36. The method of claim 29, said evaluating further com-
prising:

determining whether the query requires accessing tempo-

rally sensitive data, and 11 so, accessing a transaction log
of the first database engine.

37. The method of claim 25, wherein said transmitting,
turther comprises:

transmitting the result in a format of the first database

engine.

38. The method of claim 25, further comprising;:

storing second data 1n a database file maintained by the

alternate database engine.

39. The method of claim 38, said processing further com-
prising;:

determining whether the database command requires at

least a portion of said second data, and 11 so, 1dentifying
said portion responsive to the database command.

40. The method of claim 25, further comprising;:

receiving new data to be provided to the plurality of users;

and

storing said new data in a database file maintained by the

first database engine.

41. The method of claim 25, said processing further com-
prising:

translating the database command to a native format of the

alternate database engine.

42. The method of claim 235, wherein said processing fur-
ther comprises:

identifying data stored by the first database engine that 1s

responsive to the database command; and

accessing said identified data, wherein said identifying and

accessing are performed exclusively through a com-
mand layer of the alternate database engine, without
interaction with the command layer of the first database
engine.

43. The method of claim 25, wherein the alternate database
engine executes only read-only database commands.

44. An apparatus for implementing and using an alternate
database engine 1n conjunction with an established database
engine, comprising:

a processor; and

10

15

20

25

30

35

40

45

50

55

60

65

18

a memory 1n operative communication with the processor,
the memory for storing a plurality of processing nstruc-
tions directing the processor to:
provide access to a first database engine to a plurality of
users on a computing system, the first database engine
having a command layer for processing database
commands;

establish an alternate database engine on the computing,
system:

receive a database command from one of the plurality of
users, the database command directed to data stored
by the first database engine;

separately process the database command using the
alternate database engine without accessing the com-
mand layer of the first database engine;

evaluate the database command to determine system
usage of the database command at the database
engine, prior to execution of the database command;

determine a threshold value for system usage of the
alternate database engine, wherein the threshold
value 1s based on one or more of: estimated processor
usage, estimated memory usage, 1nput/output
resource usage and disk resource usage of the alter-
nate database engine; and

generate a result of the database command; and transmit

the result to the user submitting the database com-
mand.

45. A computer-readable medium encoded with processing,
instructions [for performing a method of implementing and
using an alternate database engine 1 conjunction with an
established database engine, the method] directing a proces-
sor to perform functions, the functions comprising:

providing access to a {irst database engine to a plurality of

users on a computing system, the first database engine
having a command layer for processing database com-
mands;

establishing an alternate database engine on the computing,

system:

recerving a database command from one of the plurality of

users, the database command directed to data stored by
the first database engine;

separately processing the database command using the

alternate database engine without accessing the com-
mand layer of the first database engine;
evaluating the database command to determine system
usage of the database command at the database engine,
prior to execution of the database command;

determining a threshold value for system usage of the
alternate database engine, wherein the threshold value 1s
based on one or more of: estimated processor usage,
estimated memory usage, input/output resource usage
and disk resource usage of the alternate database engine;
and

generating a result of the database command; and trans-

mitting the result to the user submitting the database
command.

46. A method for processing a database command, per-
formed by an alternate database engine, the method compris-
ng:

receving, from a user, a database command directed to a

first database engine, the first database engine having a
command layer for processing database commands;
separately processing the database command using a com-

mand layer of the alternate database engine without
accessing the command layer of the first database
engine, said processing further comprising:

US RE42,308 E

19

evaluating the database command to determine system
usage of the query at the database engine, prior to execu-
tion of the database command, said evaluating based on

one or more oi: a parameter of the query, a number of

relational databases for the database command, a size of 5

a data field to be searched for the database command, an
availability of resources of the database engine, a num-
ber of relational database tables to be employed for the
database command, a limitation 1imposed on a size of a
query result set, a number of columns of data to be
returned 1n a query result set, a cost of a similar stored
database command and a number of function calls for
the database command;
determining a threshold value for system usage of the
alternate database engine, wherein the threshold value 1s
based on one or more of: estimated processor usage,
estimated memory usage, mput/output resource usage
and disk resource usage of the alternate database engine;

if the system usage surpasses a threshold value, performing
one or more of the following: submitting the database
command to the alternate database engine with a limit on
a number of returns responsive to the database com-
mand, editing the database command, and rejecting the
database command;:

determining whether the database command requires

accessing data maintained by the first database engine,
and 1f not, accessing second data stored only by the
alternate database engine;
determining whether the database command requires
accessing temporally sensitive data, and 1f so, accessing
a transaction log of the first database engine;

translating the database command to a native format of the
alternate database engine; and

generating a result of the database command; and trans-

mitting the result to the user 1n a format of the first
database engine.

47. The apparatus of claim 23, [further comprising]
wherein the plurality of processing instructions arve for fur-
ther divecting the processor to:

[receiving] receive new data to be provided responsive to

database commands; and

[storing] store said new data in a database file maintained

by the alternate database engine.

48. The apparatus of claim 23, [further comprising]
wherein the plurality of processing instructions arve for fur-
ther divecting the processor to:

[receiving] receive new data to be provided responsive to

database commands; and

[storing] store said new data in a database file maintained

by the first database engine.

49. The apparatus of claim 23, [said processing further
comprising] wherein the plurality of processing instructions
are for further directing the processor to:

[translating] translate the database command to a native

format of the alternate database engine.

50. The apparatus of claim 23, wherein [said processing
further comprises] the plurality of processing instructions are
for further directing the processor to:

[identifying] identify data stored by the first database

engine that 1s responsive to the database command; and

[accessing] access said identified data, wherein said iden-

tifying and accessing are performed exclusively through
the command layer of the alternate database engine,
without 1nteraction with the command layer of the first
database engine.

51. The apparatus of claim 23, wherein the alternate data-
base engine executes only read-only database commands.

10

15

20

25

30

35

40

45

50

55

60

65

20

52. The [method] computer readable medium of claim 24,
wherein the database command 1s a query.
53. The computer readable medium [method] of claim 52,
said evaluating further comprising:
evaluating the query based on one or more of: a parameter
of the query, a number of relational databases to be
accessed for the query, a size of a data field to be

[

searched for the query, an availability of resources of a
system maintaining the alternate database engine, an
availability of resources of a system maintaining the first
database engine, a number of relational database tables
to be employed for the query, a limitation imposed on a
s1ze ol a query result set, a number of columns of data to
be returned 1n a query result set, a cost of a similar stored
query and a number of function calls for the query.

54. The computer readable medium [method] of claim 52,
turther comprising:

submitting the query to the alternate database engine with

a limit on a number of returns responsive to the query,
based on said evaluating.

55. The computer readable medium of claim 52, [further
comprising] wherein the functions further comprise:

editing the query, based on said evaluating.

56. The computer readable medium of claim 52, [further
comprising] wherein the functions further comprise:

rejecting the query, based on said evaluating.

57. The computer readable medium of claim 52, wherein
said evaluating comprises:

determining, prior to said processing, whether the database

command requires accessing the first database engine,
and 11 not, accessing data stored only by the alternate
database engine.

58. The computer readable medium of claim 57, said deter-
mining further comprising:

translating the query to a native format of the alternate

database engine.

59.The computer readable medium of claim 52, said evalu-
ating further comprising:

determiming whether the query requires accessing tempo-

rally sensitive data, and 11 so, accessing a transaction log
of the first database engine.

60. The computer readable medium of claim 24, wherein
said transmitting further comprises:

transmitting the result 1n a format of the first database

engine.

61. The computer readable medium of claim 24, [further
comprising] wherein the functions further comprise:

storing second data in a database file maintained by the

alternate database engine.

62. The computer readable medium of claim 61, [said
processing| wherein the functions further [comprising] com-
prise:.

determiming whether the database command requires at

least a portion of said second data, and 1f so, identifying,
said portion responsive to the database command.

63. The apparatus of claim 44, further comprising:

recerving new data to be provided to the plurality of users;

and

storing said new data 1n a database file maintained by the

first database engine.

64. The apparatus of claim 44, said processing further
comprising;

translating the database command to a native format of the

alternate database engine.

65. The apparatus of claim 44, wherein said processing
further comprises:

US RE42,308 E

21

identifying data stored by the first database engine that 1s
responsive to the database command; and
accessing said identified data, wherein said identifying and
accessing are performed exclusively through a com-
mand layer of the alternate database engine, without
interaction with the command layer of the first database
engine.
66. The apparatus of claim 44, wherein the alternate data-
base engine executes only read-only database commands.
67. The computer readable medium of claim 45, wherein
the database command 1s a query.
68. The [method] computer readable medium of claim 67,
wherein said evaluating further comprises:
evaluating the query based on one or more of: a parameter
of the query, a number of relational databases to be
accessed for the query, a size of a data field to be
searched for the query, an availability of resources of a
system maintaining the alternate database engine, an
availability of resources of a system maintaining the first
database engine, a number of relational database tables
to be employed for the query, a limitation imposed on a
s1ze of a query result set, a number of columns of data to
be returned 1n a query result set, a cost of a similar stored
query and a number of function calls for the query.
69. The computer readable medium of claim 67, wherein
the functions further [comprising] comprise:
submitting the query to the alternate database engine with
a limit on a number of returns responsive to the query,
based on said evaluating.
70. The computer readable medium of claim 67, wherein
the functions further [comprising] comprise:
editing the query, based on said evaluating.
71. The computer readable medium of claim 67, wherein
the functions further [comprising] comprise:
rejecting the query, based on said evaluating.
72. The computer readable medium of claim 67, wherein
said evaluating comprises:
determining, prior to said processing, whether the database
command requires accessing the first database engine,
and 11 not, accessing data stored only by the alternate
database engine.

10

15

20

25

30

35

22

73. An apparatus for processing a database command,
COmprising.

a processor; and

a memory in operative communication with the processor,

the memory for storing a plurality of processing instruc-

tions for dirvecting the processor to perform functions,

the functions comprising.

receiving a database command,

separately processing the database command using a
command layer of an alternate database engine with-
out accessing a command laver of a first database
engine,

evaluating the database command to determine system
usage of the database command at the alternate data-
base engine, prior to execution of the database com-
mand,

determining a threshold value for system usage of the
alternate database engine, whervein the threshold
value is based on one or move of: estimated processor
usage, estimated memory usage, Iinput/output
resource usage and disk resource usage of the alter-
nate database engine,

generating a vesult of the database command, and

transmitting the result of the database command.

74. The apparatus of claim 73, whervein the memory further
stoves a user rights table and wherein the determining the
threshold value comprises determining the threshold value
based on the user rights table.

75. The apparatus of claim 72, wherein generating a rvesult
of the database command comprises:

comparing the threshold value to the system usage;

responsive to the system usage not exceeding the threshold

value, submitting the database command to the alterna-
tive database engine; and

generating a result of the submitted database command at
the alternative database engine.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : RE42,808 E Page 1 of 1
APPLICATION NO. : 12/315061

DATED : October 4, 2011

INVENTOR(S) : Tedesco

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 16, line 50, in Claim 26, delete “and-/or” and insert -- and/or --.

Column 22, line 29, mm Claim 75, delete “claim 72,” and insert -- claim 73, --.

Signed and Sealed this
Seventeenth Day of April, 2012

.......

- - .
% = 4 .
1 - PR . . - - -
- - - = = B - ... a
- . a - . . -
- - " a - . L] Y . -
. - oe ok - . B - =
PR [254
. . . -
e

David J. Kappos
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

