USO0ORE42726E
(19) United States
12 Relissued Patent (10) Patent Number: US RE42,726 E
Keshav et al. 45) Date of Reissued Patent: Sep. 20, 2011
(54) DYNAMICALLY MODIFYING THE 5,263,147 A 11/1993 Francisco et al.
RESOURCES OF A VIRTUAL SERVER 5,325,530 A 6/1994 Mohrmann
5,437,032 A 7/1995 Wol_fet al.
(75) Inventors: Srinivasan Keshayv, Mountain.View,, CA g:g%g:ggg i 1‘%332 ijlfer(tigl of al.
(US); Rosen Sharma, Mountain View, 5.584.023 A 12/1996 Hsu
CA (US); Shaw Chuang, Atherton, CA 5,603,020 A 2/1997 Hashimoto et al.
(US) (Continued)
(73) Assignee: Digit:?l Asset Enterprises, L.L.C., FOREIGN PATENT DOCUMENTS
Wilmington, DE (US) JP 64-002145 * 1/1989
(21) Appl. No.: 11/971,778 (Continued)
(22) Filed: Jan.9,2008 OIHER PUBLICATIONS
(Under 37 CFR 1.47) Plummer, D. C., An Ethernet Address Resolution Protocol-or-Con-
Related U.S. Patent Documents verting Network Protocol Addresses to 48.bit Ethernet Address for

Transmission on Ethernet Hardware, Nov. 1982, [online], [retrieved

Reissue of:
_ on Jan. 17, 2000]. Retrieved from the Internet: <URL: msg.net/
(64) ii?;;_No" 3;91185{(9)3; 006 kadow/answers/extras/rfc/rfc826 .txt>.
Appl. No.: 09/569,371 (Continued)
Filed: May 11, 2000
Primary Examiner — Wen-Tai1 Lin
V
(51) Int. Cl. :) (74) Attorney, Agent, or Firm — Perkins Coie LLP
GO6Il’ 15/173 2006.01
GO6F 11/00 (2006.01) (57) ABSTRACT
GO6F 9/46 (2006.01) . . .
| | | | A system and a method dynamically adjusts the quality of
(52) US.CL ... 70397/(2)/223 3-" 57_0397/3/2243: 17_0791%/2166 57_0791/3/3385’ service guarantees for virtual servers based upon the resource
" " ’ demands experienced by the virtual servers. Virtual server
: : : p Y
(58) Field of Classification Search None resource denials are monitored to determine if a virtual server

See application file for complete search history. is overloaded based upon the resource denials. Virtual server

resources are modified dynamically to respond to the chang-
ing resource requirements of each virtual server. Occasion-
ally, a physical host housing a virtual server may not have
additional resources to allocate to a virtual server requiring

(56) References Cited

U.S. PATENT DOCUMENTS

3,377,624 A 4/1968 Nelson et al. increased resources. In this instance, a virtual server hosted
4,177,510 A 12/1979 Appell et al. hy th loaded phvsical host is t P d 1 h
5 189.667 A 2/1993 Tsaki ef al y the overloaded physical host is transferred to another
5.212.793 A 5/1993 Donica et al. physical host with sufficient resources.
5,226,160 A 7/1993 Waldron et al.
5,249,290 A 9/1993 Heizer 235 Claims, 7 Drawing Sheets
{Munitur virtual server
resource danials
210

No

Is viriual

S8IVer resgurce
overloaded?

220

l Yeos

Is physical
host resource
overloaded?
230

Increase virtual
sarver rEsource
aflocation
240

o S

Mo—»

Yes

+

Select a new physical
host o accomodalte
(increased) virtual server
250

y

Mova {incraased) virtual
sarver {0 selected new
physical host
280]

y

Muova virtual server users
to new virual server
location
270

1

US RE42,726 E

Page 2
U.S. PATENT DOCUMENTS 6,279,040 B 8/200; Ma et al.
5623492 A 4/1997 Teraslinna 0,282,581 BL — 8/2001 Moore et al.
$636371 A 6/1997 6,282,703 Bl 8/2001 Meth et al.
it u 6,286,047 Bl 9/2001 Ramanathan et al.
5,640,595 A 6/1997 Baugher et al. . . -
. 6,298,479 B1 10/2001 Chessin et al.
5,692,047 A 11/1997 McManis - -
. 6,314,558 B1 11/2001 Angel et al.
5,706,097 A 1/1998 Schelling et al. - LT
6,327,622 B1 12/2001 Jindal et al.
5,706,453 A 1/1998 Cheng et al. -
6,336,138 Bl 1/2002 Caswell et al.
5,708,774 A 1/1998 Boden -
6,351,775 Bl 2/2002 Yu
5,719,854 A 2/1998 Choudhury et al. - :
6,353,616 Bl 3/2002 Elwalid et al.
5,727,203 A 3/1998 Hapner et al. -
. 6,363,053 Bl 3/2002 Schuster et al.
5,748,614 A 5/1998 Wallmeler . -
6,370,583 Bl 4/2002 Fishler et al.
5,752,003 A 5/1998 Hart - :
6,381,228 Bl 4/2002 Prieto, Jr. et al.
5,761,477 A 6/1998 Wahbe et al. -
6,385,638 Bl 5/2002 Baker-Harvey
5,764,889 A 6/1998 Ault et al. . -
. 6,389,448 Bl 5/2002 Primak et al.
5,781,550 A 7/1998 Templin et al. - -
6,393,484 Bl 5/2002 Massarani
5,799,173 A 8/1998 Gossler et al. -
6,425,003 Bl 7/2002 Herzog et al.
5,809,527 A 9/1998 Cooper et al. - -
. 6,430,622 Bl 8/2002 Aiken, Jr. et al.
5,828,893 A 10/1998 Wied et al. -
6,434,631 Bl 8/2002 Bruno et al.
5,838,680 A 11/1998 Ozkan -
. 6,434,742 Bl 8/2002 Koepele, Ir.
5,838,916 A 11/1998 Domenikos et al. -
6,438,134 Bl 8/2002 Chow et al.
5,842,002 A 11/1998 Schnurer et al. .
6,442,164 Bl 82002 Wu
5,845,129 A 12/1998 Wendorf et al. -
. 6,449,652 Bl 9/2002 Blumenau et al.
5,850,399 A 12/1998 Ganmukhi et al. -
6,457,008 Bl 9/2002 Rhee et al.
5,860,004 A 1/1999 Fowlow et al. -
6,463,459 B1 10/2002 Orr et al.
5,864,683 A 1/1999 Boebert et al. -
6,470,398 Bl 10/2002 Zargham et al.
5,889,956 A 3/1999 Hauser et al.
6,487,578 B2 11/2002 Ranganathan
5,889,996 A 3/1999 Adams - .
. 6,487,663 Bl 11/2002 Jaisimha et al.
5,802,968 A 4/1999 Iwasaki et al. . -
6,490,670 B1 12/2002 Collins et al.
5,905,730 A 5/1999 Yang et al. -
6,499,137 B1 12/2002 Hunt
5,905,859 A 5/1999 Holloway et al. -
_ 6,529,950 Bl 3/2003 Lumelsky et al.
5,913,024 A 6/1999 Green et al. - :
_ 6,529,985 Bl 3/2003 Delanov et al.
5,915,085 A 6/1999 Koved -
_ . . 6,542,167 Bl 4/2003 Darlet et al.
5,915,095 A 6/1999 Miskowiec - :
_ 6,553,413 Bl 4/2003 Leighton et al.
5,918,018 A 6/1999 Gooderum et al. -
6,560,613 Bl 5/2003 Gylfason et al.
5,920,699 A 7/1999 Bare - :
S 033 603 A /1000 Vahal 1 6,578,055 Bl 6/2003 Hutchison et al.
722 alia eta. 6,578,068 Bl 6/2003 Bowman-Amuah
5,937,159 A 8/1999 Meyers et al. - -
6,580,721 Bl 6/2003 Beshai
5,956,481 A 9/1999 Walsh et al. -
6,647,422 B2 11/2003 Wesinger, Jr. et al.
5,961,583 A 10/1999 Van Fleet - Tt
_ 6,658,571 Bl 12/2003 O’Brien et al.
5,978,373 A 11/1999 Hoff et al. -
. 6,691,312 Bl 2/2004 Sen et al.
5,982,748 A 11/1999 Yin et al. -
. 6,711,607 Bl 3/2004 Goyal
5,987,524 A 11/1999 Yoshida et al. -
o 6,725,456 Bl 4/2004 Bruno et al.
5,991,812 A 11/1999 Srinivasan -
6,754,716 Bl 6/2004 Sharma et al.
5,999,963 A 12/1999 Bruno et al. - -
. 6,760,775 Bl 7/2004 Anerousis et al.
6,016,318 A 1/2000 Tomoike - -
. 6,779,016 Bl 82004 Aziz et al.
6,018,527 A 1/2000 Yin et al. -
. 6,820,117 B1 11/2004 Johnson
6,023,721 A 2/2000 Cummings -
6,948,003 Bl 9/2005 Newman et al.
6,038,608 A 3/2000 Katsumata -
6,976,258 B1 12/2005 Goyal et al.
6,038,609 A 3/2000 Geulen -
. 6,985,937 Bl 1/2006 Keshav et al.
6,047,325 A 4/2000 Jain et al. -
. 7,343,421 Bl 3/2008 Goyal
6,055,617 A 4/2000 Kingsbury 2003/0061338 Al 3/2003 Stelliga
6,061,349 A 5/2000 Coille et al. '
0,065,118 A 5/2000 Bull et al. FOREIGN PATENT DOCUMENTS
6,075,791 A 6/2000 Chiussi et al.
6,075,938 A 6/2000 Bugnion et al. JP 64002145 A 1/1989
6.078.929 A 6/2000 Rao WO WQO 99/39261 8/1999
6,078,957 A 6/2000 Adelman et al. WO WO0-9939261 Al 8/1999
6,086,623 A 7/2000 Broome et al.
6,092,178 A 7/2000 Jindal et al. OIHER PUBLICATIONS
gﬂogil’gzg i ;//3888 i?feile?ta"iﬂ' Huang, X. W. et al., “The ENTRAPID Protocol Development Envi-
6jjh08j701 A 27000 Davis ef al* ronment,” Proceedings of IEEE Infocom’99, Mar. 1999, 9 pages.
6 108750 A /2000 Orcutt ot al Duffield, N.G., et al., “A Flexible Model for Resource Management
6,122,673 A 9/2000 Basak et al. in Virtual Private Networks,” Computer Communication Review
6,154,776 A 11/2000 Martin Conference, Computer Communication, ACM SIGCOMM 99 Con-
6,154,778 A 11/2000 Koistinen et al. ference, Cambridge, MA, Aug. 30, 1999-Sep. 3, 1999. pp. 95-108.
6,161,139 A 12/2000 Win et al. Campbell, A. T. and Keshav, S., “Quality of Service in Distributed
6,167,520 A 12/2000 ‘Touboul Systems,” Computer Communications 21, 1998, pp. 291-293.
6,172,981 Bl 1/2007 Cox et al. Bach, M. J., The Design of the Unix.RTM. Operating System, New
gﬂggﬂggg E ?/%88 hA/Iolore etl al. Delhi, Prentice-Hall of India, 1989, pp. v-x, 19-37.
6jth92j 519 Bih 2/90 OT Cllllets:t al. McDougall, R., et al., Resource Management, Upper Saddle River,
S)) NI, Prentice Hall, 1999, pp. mi-xix, 135-191.
6,230,203 Bl 5/2001 Koperda et al. o . . .
6.240.463 Bl 5/2001 Renmohamed et al. Rysinghani, A., RFC 1624, May 1994, [online], [retrieved Feb. 2,
6,247,057 Bl 6/2001 Barrera 2000]. Retrieved from the internet: <URL:faqgs.org/rfcs/rfc1624.
6,259,699 Bl 7/2001 Opalka et al. html>.
6,266,678 Bl 7/2001 McDevitt et al. Mallory, T and Kullberg, A., RFC 1141, Jan. 1990 [online], [retrieved
6,269,404 Bl 7/2001 Hart et al. Feb. 2, 2000]. Retrieved from the internet: <URL:faqgs.org/rfcs/
6,279,039 Bl 8/2001 Bhat et al. rfc1141.html>.

US RE42,726 E
Page 3

Egevang, K. and Francis P, RFC 1631, May 1994 [online], [retrieved
Feb. 2, 2000]. Retrieved from the Internet: <URL:faqs.org/rfcs/
rfc1631.html>.

Keshav, S., An Engineering Approach to Computer Networking:
ATM Networks, the Internet, and the Telephone Network, Reading,
MA, Addison-Wesley, 1997, pp. vii-x1, 85-115, 209-355, 395-444,
Stevens, R. W., Unix Network Programming vol. 1 Networking APIs:
Sockets and XTI, Upper Saddle River, NJ, Prentice Hall, 1998, pp.
v-x1v, 29-53, 85-110, 727-760.

Tanenbaum, A. S. And Woodhull, A. S., Operating Systems: Design
and Implementation, Upper Saddle River, NJ, Prentice Hall, 1997,
pp. vii-x1v, 1-46, 401-454.

Rubini, A., Linux Device Drivers, Sebastopol, CA, O’Reilly & Asso-
ciates, Inc., 1998, pp. v-x, 13-40.

Goyal, P, et al., “A Hierarchical CPU Scheduler for Multimedia
Operating Systems,” Proceedings of the Second Symposium on

Operating Systems Design and Implementations (OSDE’96),

Seattle, WA, Oct. 1996, 15 pages.

Laurie, B. and Laurie, P., Apache The Definitive Guide, Sebastopol,
CA, O’Rellly & Associates, Inc., Feb. 1999, pp. v-vii, 43-74.

Aho, A.V.and Ullman J. D., Principles of Complier Design, Reading,
MA, 1977, pp. vii-x, 359-362, 519-522.

Jonsoon, J., “Exploring the Importance of Preprocessing Operations
in Real-Time Multiprocessor Scheduling,” Proc. of the IEEE Real-
Time Systems Symposium—Work-in-Progress session, San Fran-
cisco, CA, Dec. 4, 1997, pp. 31-34.

Rusling, D. A., Processes, [online], [retrieved on Dec. 7, 1999].
Retrieved from the Internet: <URL: cebaf.gov/.about.saw/linux/tlk-
html/node44.html>.

Rusling, D. A., Linux Processes, [online], [retrieved on Dec. 7, 1999].
Retrieved from the Internet: <URL:cebaf.gov/.about.saw/linux/tlk-
html/node45 html>.

Rusling, D. A., Identifiers, [online], [retrieved on Dec. 7, 1999].
Retrieved from the Internet: <URL:cebaf.gov/.about.saw/linux/tlk-
html/node46.html>.

Rusling, D. A., Scheduling, [online], [retrieved on Dec. 7, 1999].
Retrieved from the Internet: <URL: cebaf.gov/.about.saw/linux/tlk-
html/node47 . html>,

Rusling, D. A., Scheduling in Multiprocessor Systems, [online],
[retrieved on Dec. 7, 1999]. Retrieved from the Internet:
<URL:cebaf.gov/.about.saw/linux/tlk-html/node48 . html>.

Rusling, D. A., Files, [online], [retrieved on Dec. 7, 1999]. Retrieved
from the Internet: <URL: cebaf.gov/.about.saw/linux-html/node49.
html>.

Goyal, P. et al., “Start-time Fair Queuing: A Scheduling Algorithm
for Integrated Services Packet Switching Networks,” Proceedings of
ACM SIGCOMM ’96, San Francisco, CA, Aug. 1996, 14 pages.
Janosi, T., “Notes on ‘A Hierarchical CPU Scheduler for Multimedia
Operating Systems’ by Pawan Goyal, Xingang Guo and Harrick Vin,”
[online], [retrieved on May 8, 2000]. Retrieved from the Internet:
<URL:http://cs.cornell.edu/Info/Courses/Spring-97/CS6 14/goy.
html>.

Goyal, P., “Packet Scheduling Algorithms for Integrated Services
Networks,” PhD Dissertation, University of Texas, Austin, TX, Aug.
1997.

Boehm, B., “Managing Software Productivity and Reuse,” IEEE
Computer, vol. 32, No. 9, Sep. 1999, 3 pages.

Corbato, F. J. etal. “An Experimental Timesharing System,” Proceed-
ings of the American Federation of Information Processing Societies

Spring Joint Computer Conference, San Francisco, CA, May 1-3,
1962, pp. 335-344.

Deutsch, P. and Grant, C. A., “A Flexible Measurement Tool for

Software Systems,” Information Processing 71 (Proc. of the IFIP
Congress), 1971, pp. 320-326.

Edjlali, G., et al., “History-based Access Control for Mobile Code,”
Fifth ACM Conference on Computer and Communication Security,
Nov. 3-5, 1998, 19 pages.

Erlingsson, U. and Schneider, F. B., “Sasi Enforcement of Security
Policies: A Retrospective,” Proc. New Security Paradigms Work-
shop, Apr. 2, 1999, pp. 1-17.

Erlingsson, U. and Schnieder, F. B., IRM Enforcement of Java Stack
Inspection, [online], Feb. 19, 2000 [Retrieved on Apr. 2, 2002].

Retrieved from the Internet: <URL: http://cs-tr.cs.cornell.edu/
Dienst/UI2.0/ShowPage/ncstrl.cornell/ TR2000-1786>.

Evans, D. and Twyman, A., “Flexible Policy-Directed Code Safety,”
Proc. of 1999 IEEE Symposium on Security and Privacy, Oakland,
CA, May 9-12, 1999, pp. 1-14.

Fraser, T. et al., “Hardening COTS Software with Generic Software
Wrappers,” Proc. of 1999 IEEE Symposium on Security and Privacy,
1999, 15 pages.

Goldberg, I. et al., “A Secure Environment for Untrusted Helper
Applications (Confining the Wily Hacker),” Proc. of the Sixth
USENIX UNIX Security Symposium, San Jose, CA, Jul. 1996, 14
pages.

Goldberg, R. P., “Survey of Virtual Machine Research,” IEEE Com-
puter, Jun. 1974, pp. 34-45.

Pandey, R. And Hashii, B., “Providing Fine-Grained Access Control
for Mobile Programs Through Binary Editing,” Technical Report
TR98 08, University of California, Davis, CA, 1998, pp. 1-22.
Ritchie, D. M., “The Evolution of the Unix Time-Sharing System,”
AT&T Bell Laboratories Technical Journal 63, No. 6, Part 2, Oct.
1984, (originally presented 1979), 11 pages.

Saltzer, J., H. and Schroeder, M. D., The Protection of Information in
Computer Systems, [online], 1973, [retrieved on Apr. 2, 2002].
Retrieved from the Internet: <URL: cs.virginia.edu.about.evans/
csS51/saltzer/>.

Wahbe, R., et al., “Efficient Software-Based Fault [solation,” Proc. of

the Symposium on Operating System Principles, 1993, 14 pages.
Goyal, Pawan et al., Generalized Guaranteed Rate Scheduling Algo-
rithms: A Framework, IEEE/ACM Transactions, vol. 5, Issue: 4, Aug.
1997; pp. 561-571.

Mitra, Debasis et al., “Hierarchical Virtual Partitioning: Algorithms
for Virtual Private Networking,” Bell Labs Technical Journal, Spring,
1997, http://cm.bell-labs.com/cm/ms/who/mitra/papers/globe.ps.
Plummer, D. C., An Ethernet Address Resolution Protocol—or—
Converting Network Protocol Addresses to 48.bit Ethernet Address
for Transmission of Ethernet Hardware, Nov. 1982, [online],
[retrieved on Jan. 17, 2000]. Retrieved from the Internet: <URL.:
msg.net/kadow/answers/extras/ric/ric826.txt>.

Symbol Table, [online] copyright 1997, 1998, [Retrieved on Apr. 4,
2003] Retrieved from the internet <URL: http://216.239.33.100/
search?q=cache:e ASXk8qC__ -AC:www.caldera.com/developers/
gab1*1998-04-29/ch4d.s...], pp. 1-5.

Rusling, D. A., Processes, [online], [retrieved on Dec. 7, 1999],
Retrieved from the Internet: <URL: cebaf.gov/~saw/linux/tlk-html/
node44 html>.

Rusling, D. A., Linux Processes, [online], [retrieved on Dec. 7, 1999],
Retrieved from the Internet: <URL:cebaf.gov/~saw/linux/tlk-html/
node45 html>.

Rusling, D. A., Identifiers, [online], [retrieved on Dec. 7, 1999].
Retrieved from the Internet: <URL:cebaf.gov/~saw/linux/tlk-html/
node46 . html>.

Rusling, D. A., Scheduling, [online], [retrieved on Dec. 7, 1999].
Retrieved from the Internet: <URL: cebaf.gov/~saw/linux/tlk-html/
node47 . html>.

Rusling, D. A., Scheduling in Multiprocessor Systems, [online],
[retrieved on Dec. 7, 1999]. Retrieved from the Internet:
<URL:cebaf. gov/~saw/linux/tlk-html/node48.html>.

Rusling, D. A., Files, [online], [retrieved on Dec. 7, 1999]. Retrieved
from the Internet: <URL:cebaf.gov/~saw/linux/tlk-html/node49.
html>.

Pending United States patent application entitled “Providing Quality
of Service Guarantees to Virtual Hosts,” U.S. Appl. No. 09/452,286,
filed Nov. 30, 1999.

Pending United States patent application entitled “Selective Inter-
ception of System Calls,” U.S. Appl. No. 09/499,098, filed Feb. 4,
2000.

Pending United States patent application entitled “Dynamic Sched-

uling of Task Streams 1n a Multiple-Resource System to Ensure Task
Stream Quality of Service,” U.S. Appl. No. 09/498.,450, filed Feb. 4,

2000.
Pending United States patent application entitled “Disambiguating

File Descriptors,” U.S. Appl. No. 09/500,212, filed Feb. 8, 2000.

US RE42,726 E

Page 4
Pending United States patent application entitled “Restricting Com- Pending United States patent application entitled “Enabling a Service
munication Between Network Devices on a Common Network,” U.S. - - ST
Appl. No. 09/502,155, filed Feb. 11, 2000. Provider to Provide Intranet Services,” U.S. Appl. No. 09/526,980,
Pending United States patent application entitled “Restricting Com- filed Mar. 135, 2000.

munication of Selected Processes to a Set of Specific Network ‘ ‘
Addresses,” U.S. Appl. No. 09/503,975, filed Feb. 14, 2000. * cited by examiner

US RE42,726 EE

Sheet 1 of 7

Sep. 20, 2011

U.S. Patent

OC9L I9AIBS [BNUIA
UOIIED0}E B0IN0SA) %00

4291 JSAJ3E [BNUIA
UOI}BJ0| & €21n0Sal %07

D09} 1soy [BdSAU

3791 JOAJSS [BNUIA
UONBDD)E 3DIN0SS %01

Qzol JeAJaS [BnuiA
uonESjIE 22JN0Sed 90|

JC9L JOAIRT [BRUIA
UOIED0||B 90.n08al 9,01

g091 150y 1801sAyd

azoL Jones [BNMIA
LICIIEO0)|B 824N0S8. %08

VYZOL 18AISG [ENMIA
UOJEVQ)E 80INDS3) %G1

VY091 1soy [edsAyd

L 2inb1J

[
|
|
|
|
|
|
|
|
|
|
|
*
|
ﬂ
_
|
L

Ori
JOAOW JBAISS

[ENLIA DILBUAQ

0Tl
Jalipow 82Jnosal

JANIDS JBNUIA

g ot 00l 8|npo uoienByuoD aoINosay JIWBUAQ

ot l
1aoueieq

peO| 1S0Y |B21SAYd

OL1
JONUOLL 82uNn0sa)

JOASDS jBNUIA

U.S. Patent Sep. 20, 2011 Sheet 2 of 7 US RE42,726 E

Monitor virtual server

resource denials
210

NO

Is virtual
Server resgurce
overioaded?
220

Yes

Increase virtual
server resource

is physical
haost resource
overioaded?

230

No

allocation
240

Yes

Select a new physical
host to accomodate
(increased) virtual server
250

Move (increased) virtual
server to selected new

physical host
260

Move virtual server users
to new virtual server

location
270

Figure 2A

U.S. Patent

No

Sep. 20, 2011

Monitor virtual server

resource denials
210

Is virtual
server resource
overioaded?
220

Yes

Is physical
host rescurce
overioaded?
230

No

Yes

Select a new physical host
to accomodate (increased)
virtual server

250

Move (increased) virtual
server to selected new
physical host
260

Move virtual server users to
new virtual server location
270

Figure 2B

Sheet 3 of 7

Yes

US RE42,726 EE

Decrease virtual server

resource alliocation
246

expired - is
virtual server
resource at
fimit?
244

Set timer for
virtual server
242

Increase virtual server

resource allocation
240

US RE42,726 EE

Sheet 4 of 7

Sep. 20, 2011

U.S. Patent

0cl
Jagipow
29JN0S9!
19AISS [ENUIA

00SE
[BUDIS PAPROYSAD 4594

301N059} NdD

- J0SE
(PUDIS PBPROUOAD «-$8 4

3910581 YIOMSN

a06¢
[eubis PAPROLIAD =S
20IN053) AJOWSIA

vOGt
[eubis papeopsrd 4S9,
221N0S31 Y510

¢ ainbig

ON

aovt
PIOUSAIY) aoce
PB30Xa Sjejuap uoR2|N2jes dwp
| 1ad S[euap Ndo

#

J0vt
¢PloUSan]
P2aoXa S{RISp

#

08¢
UORE|NJIED LUk

J90 S|eIUSP YIOMjON

ON
gove
cpioys=ilg :onm_mw_mmw aun
paaoxa Seusp . .
) Jad siejuap Atowaiy
ON

VObE
Ploysalg
PRVIXI SeIuap

#

VOLE
UONRN9RS alug

Jad sieluap 3si(

O} | JO}IUOK 82IN0SAY JBAIBS [BNUIA

Q0ce
a|qe}

[EIUSD NdO

20Z¢
3/0€) jeruap
HOMION

2[4
o|(E]} jeluap
Aowap

141743
8|q€3

[BiU9p 3810

acie

JClIE
leubis Aejop

Joxoed XIOMBN

gcie

eub|S |elusp
uogesole AIQWan

423

ieubIs jeluap

o[y LA

ieubis
Aeiap bunnpayas
$$320ud NdD

Hé9l
JETE TS

[eNIA

U.S. Patent

Sep. 20, 2011

Resource
overioaded signal
350 from resogurce
monitor 110

Virtual server
resource modifier
120

Sheet S of 7

Wail to receive
resource
overloaded signal
410

Signal received

Signal
within
hysteresis time
window?
420

No

Incraase resource

allocation by amount
430

Sef timer
44

Tuner expired

Resoqurce
fully utilized?
450

No

Peacrease resource
allocation by amount d

460

Figure 4

US RE42,726 EE

Yes

U.S. Patent Sep. 20, 2011 Sheet 6 of 7 US RE42,726 E

Signat from Virtual Signat to Dynamic
Server Resource Virtual Server
Modifier 120 Mover 140

M O

N Q5 510 =
W

-— U m _ (%
5 S S g o
cER 560 £Eam g
D o > (0] £
© 'S 3 ‘5 O
€83 33
> — l: o O

520 ?

)
N
-

Get current PH
resource loads

Physical Host
Resouwrce Nonitor
540

[cad Balancing
Calculator
930

535

Physical Host Load Balancing
Module 130

Periodic Physical Host
Resource Check 545

Physical Host 160A Physical Host 160B Physical Host 160C

Virtual Server Virtual Server ,
Virtual Server
162A 162C 162F

E Virfual Server
162D
Virtual Server

Virtual Server
1628 Virtual Server 162G

162E

U.S. Patent Sep. 20, 2011 Sheet 7 of 7 US RE42,726 E

Transfer Virtual Server
1628 from Physical
Host 160A to Physical
Host 160B
signal 560

Wait {0 receive
transfer virtual

server signal
610

Signal received

Store Virtual Server 162B
state information in File
System 150
620

Stop Virtual Server 1628
processes operating in
Physical Host 160A

Dvnamic Virtual
y | 630

Server-Mover
140

Physical Host 160B
accesses Virtual Server
162B state information in
File System 150
640

Physical Host 1608 starts
Virtual Server 162B
processes locally

650

Transfer Virtual Server
162B User from Physical
Host 160A to Physical
Host 1608
660

US RE42,726 E

1

DYNAMICALLY MODIFYING THE
RESOURCES OF A VIRTUAL SERVER

Matter enclosed in heavy brackets []| appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

CROSS REFERENCE TO RELATED
APPLICATIONS

This application 1s related to U.S. patent Ser. No. 09/499,

098, entitled “Selective Interception of System Calls,” by
Borislav D. Deilanov et al., filed Feb. 4, 2000, now U.S. Pat.

No. 6,546,546 and commonly assigned with the present
application. The subject matter of this related application 1s
incorporated by reference herein 1n 1ts entirety.

BACKGROUND

1. Field of Invention

The present invention relates generally to resource alloca-
tion for a virtual server, and more particularly, to monitoring,
and dynamically moditying the resource allocation for a vir-
tual server based upon usage.

2. Background of the Invention

Networked computer resources are growing more popular
as the benefits of sharing computing resources become evi-
dent. One of the fastest-growing segments of the Internet 1s
the network market. Network systems contain common ele-
ments, generally mncluding a dedicated local server to main-
tain the shared network data, and a communications system
for providing data communication services between devices
on the network. Data communications services and servers
are not easy to configure, manage, and maintain. Thus, there
1s an incentive for Internet Service Providers (ISPs) to provide
such network services and servers, thereby relieving corpo-
rations of the burden of providing these services directly.

It 1s not economically feasible for an ISP to remotely man-
age servers located on a customer’s premises, and support
many different customers in this fashion. Rather, an ISP
would prefer to offer network services to multiple customers
while keeping all of the server host computers within a central
location of the ISP for ease of management. Accordingly,
ISPs typically dedicate one or more physical host computers
as each individual customer’s server(s), and maintain each
host computer in the centralized facility. This means the ISP
will have to own and maintain potentially large numbers of
physical host computers, at least one for each customer’s
server or private network. However, most customers will
neither require nor be amenable to paying for the user of an
entire host computer. Generally, only a fraction of the pro-
cessing power, storage, and other resources of a host com-
puter will be required to meet the needs of an individual
custometr.

Different customers have different virtual server needs. For
example, a company A providing large quantities of data and
information to 1ts employees and customers will want to
ensure that 1ts virtual servers are always available to perform
a large number of tasks. Company A may be willing to pay a
premium for a guaranteed high quality of service, with high
server availability and large amounts of processing power
always on-call. By contrast, a small individual B who merely
uses his virtual server for back-up file storage space has very
different quality of service requirements. Customer B needs

10

15

20

25

30

35

40

45

50

55

60

65

2

(and wishes to pay for) only a limited amount of storage space
to be available on an intermittent basis.

When servicing the needs of multiple customers having
different needs, 1t 1s desirable to provide a virtual server that
1s dynamic, not static, 1n its allocation of resources. A cus-
tomer’s virtual server 1s typically assigned a fixed level of
resources, corresponding to either a fixed percentage of the
capacity of a particular physical host (Tor example, the oper-
ating system may be instructed to allocate twenty percent of
the central processing unit cycles to process A and two per-
cent to process B) or a fixed number of units (for example, the
operating system may be mnstructed to allocate X cycles per
second to process A and Y cycles per second to process B).
However, customers may be unable to anticipate the exact
amount of resources they will require, and a static assignment
of a particular resource allocation limit may not allow the
virtual server system to adapt to changing customer needs.

Instead of requiring customers to select a static level of
resources, a better resource allocation model 1s structured
along the lines of electricity pricing—a customer receives
what he needs, and be pays for what he receives. Referring
back to a previous example, small customer B may 1nitially
request a very low level of resources. However, should his
new home business suddenly expand, he may quickly bump
up against the limit of the server resources he originally
requested. In this case, 1t would be preferable 1f customer B’s
virtual server resources were able to automatically, dynamai-
cally adjust to his increased resource needs.

Thus 1t 1s desirable to provide a system and method for a
virtual server capable of providing quality of service guaran-
tees for a customer, which 1s also capable of adjusting the
quality of service based upon changing customer demand. It
1s desirable for such a system to dynamically adjust the physi-
cal host resources allocated to a virtual server.

SUMMARY OF THE INVENTION

The present mvention dynamically adjusts the quality of
service guarantees for virtual servers based upon the resource
demands experienced by the virtual servers. Virtual servers
having individual quality of service guarantees are distributed
among a group ol physical hosts. Each physical host’s
resources are allocated among the physical host’s resident
virtual servers. The resources allocated to a particular virtual
server may be dynamically adjusted 1n response to changing
virtual server resource needs.

Occasionally, a physical host executing a virtual server
may not have additional resources to allocate to a virtual
server requiring increased resources. In this instance, a virtual
server hosted by the overloaded physical host 1s transferred to
another physical host with sufficient resources.

In one embodiment, a dynamic resource configuration
module monitors resource denials recerved by virtual servers
and determines 11 a virtual server 1s overloaded based upon the
resource demals. A resource denial may refer to any request
by the virtual server that cannot be immediately serviced,
such as a demal of a request to create a file or a network packet
delay. It the resource demials recetved by a particular virtual
server exceed a pre-specified limit, the virtual server 1s con-
sidered overloaded and a request 1s made for additional
resources.

The resource usage of the physical hosts within the system
1s monitored. A load-balancing function 1s performed to
select the appropriate physical host when a virtual server
transier becomes necessary. A virtual server 1s transierred
between physical hosts with minimal impact upon the opera-
tion of the virtual server.

US RE42,726 E

3

The features and advantages described 1n the specification
are not all-inclusive, and particularly, many additional fea-
tures and advantages will be apparent to one of ordinary skall
in the art 1n view of the drawings, specification, and claims
hereof. Moreover, 1t should be noted that the language used in
the specification has been principally selected for readability
and 1nstructional purposes, and may not have been selected to
delineate or circumscribe the inventive subject matter, resort

to the claims being necessary to determine such nventive
subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

FI1G. 1 1s an illustration of a system for dynamically modi-
tying the resources of a virtual server.

FIG. 2A 1s a flowchart of a process for dynamically modi-
tying the resources of a virtual server.

FIG. 2B 1s a flowchart of another process for dynamically
moditying the resources of a virtual server.

FIG. 3 1s a block diagram of a process for determiming,
whether an individual resource 1n a virtual server has reached
its limut.

FI1G. 4 1s a flowchart of a process for determining when to
increase or decrease a virtual server resource allocation.

FIG. 5 1s a block diagram of one process for performing,
resource load balancing among physical hosts.

FIG. 6 1s a flowchart of one process for transierring a
virtual server irom one physical host to another physical host.

The figures depict a preferred embodiment of the present
invention for purposes of illustration only. One skilled 1n the
art will readily recognize from the following discussion that
alternative embodiments of the structures and methods 1llus-
trated herein may be employed without departing from the
principles of the mvention described herein.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Reference will now be made 1n detail to several embodi-
ments of the present invention, examples of which are 1llus-
trated in the accompanying drawings. Wherever practicable,
the same reference numbers will be used throughout the
drawings to refer to the same or like parts. The term “virtual
server’ as used herein refers to a virtual server capable of
receiving a quality of service guarantee from a physical host.
Multiple virtual servers may reside in a single physical host,
and different virtual servers on the same physical host may
receive different quality of service guarantee.

FIG. 1 shows an embodiment of a system for dynamic
resource configuration in virtual servers. A dynamic resource
configuration module 100 1s coupled via a network to a group
of physical host machines 160 (160A, 160B and 160C), or
may be resident on any of these hosts 160. The physical host
machines 160 may be any kind of computer adapted to sup-
port virtual servers. The module 100 may be implemented in
a soltware dniver. It 1s to be understood that the dynamic
resource configuration module 100 will typically support
more than one physical host machine 160. However, in one
embodiment, the dynamic resource configuration module
100 may support a single physical host 160.

The group of physical hosts 160 contains a group of virtual
servers 162. Physical host 160A contains virtual servers
162A and 162B; physical host 160B contains virtual servers
162C, 162D and 162E; and physical host 160C contains
virtual servers 162F and 162G.

In one embodiment, each individual virtual server 162 has
a different quality of service guarantee. Different quality of

10

15

20

25

30

35

40

45

50

55

60

65

4

service guarantees are implemented by allocating different
amounts of the resources of each physical host machine 160
to servicing each of the virtual servers 162. Physical host 160
resources may be allocated as percentages of the resources of
a particular physical host 160, or as a particular number of
units within a physical host 160 (for example, the operating
system may be mnstructed to allocate X cycles per second to
process A and Y cycles per second to process B). In the
embodiment shown 1n FIG. 1, physical host 160 resources are
allocated to individual virtual servers 162 as percentages of
cach physical host 160. Table 1 lists the resource allocations
of each virtual server 162 as shown 1n FIG. 1:

TABL.

L1

1

Virtual Server Resource Allocation in FIG. 1

Virtual Server Resource Allocation
162A 15% of physical host 160A
1628 60% of physical host 160A
162C 10% of physical host 160B
162D 10% of physical host 160B
162E 10% of physical host 160B
162F 20% of physical host 160C
162G 30% of physical host 160C

The virtual servers 162 each may consume a different
amount of the resources of the physical host machines 160.
The resources of a physical host machine comprise the set of
functions and features the physical host machine uses 1n
implementing tasks for each virtual server. Examples of
resources mclude disk space, memory, network capacity and
processing cycles (CPU resources). As shown i FIG. 1,
virtual server 162 A consumes 15% of the physical host 160A
resources. This means that 15% of physical host 160A’s disk
space, memory, network bandwidth, and CPU processing will
be dedicated to servicing the needs of virtual server 162A. A
variety of other types of physical host resources will be evi-
dent to one of skill 1n the art.

A resource allocation for a virtual server 1s specified as a
“quality of service guarantee” for that particular server. Each
physical host stores quality of service guarantees for the
virtual servers 1t hosts. As a physical host performs processes
associated with a particular virtual server, the physical host
accesses the stored quality of service information to enable
the physical host to request the correct quality of service from
the operating system kernel of the physical host.

One implementation for storing quality of service guaran-
tee mformation 1s a quality of service parameter table. A
quality of service parameter table in each physical host 160
associates each virtual server 162 resident 1n the particular
physical host 160 with quality of service parameters. These
parameters are used to allocate physical host 160 resources
for each resident virtual server 162. For example, physical
host 160A 1ncludes a quality of service parameter table,
which lists resident virtual servers 162A and 162B. The
parameter table lists whatever virtual servers are resident in
the physical host. As virtual server resource allocations are
changed, and as virtual servers are transierred between physi-
cal hosts, the corresponding quality of service parameter
tables are updated to reflect these changes and transfers. In
another embodiment, a single master quality of service
parameter table can coordinate multiple slave tables associ-
ated with each physical host.

Dynamic resource configuration module 100 includes a
virtual server resource monitor 110, a virtual server resource
modifier 120, a physical host load balancer 130, a dynamic
virtual server mover 140, and a file system 150. In one

US RE42,726 E

S

embodiment, these modules are portions of the software code
implementing the dynamic resource configuration module
100. The dynamic resource configuration module 100 1s fur-
ther communicatively coupled to each physical host 160.
The wvirtual server resource monitor 110 monitors the
resource usage of the virtual servers 162 to determine i they
are overloaded. The virtual server resource modifier 120
dynamically modifies the resource allocations of the virtual
servers 162 on an as-needed basis. The physical host load-
balancer 130 periodically monitors the resource usage of the
physical hosts 160, and uses the dynamic virtual server mover
140 to transier virtual servers 162 between physical hosts 160
as needed to balance the loads of the physical hosts 160. The
file system 1350 1s used for storing state mformation associ-
ated with a particular virtual server 162 when transferring the
particular virtual server 162 to a different physical host 160.
In another embodiment, the file system 1350 1s not used, and
state information 1s copied directly from one physical host to

another physical host to transtfer a virtual server.

FIG. 2A 1s a flowchart of an embodiment of the overall
process for dynamically modifying the resources of a virtual
server. Virtual server resource demals are monitored 210.
Resource monitoring 1s performed using the selective inter-
ception of system calls. One embodiment of selectively inter-
cepting system calls 1s disclosed in the related application, the
subject matter of which i1s incorporated herein by reference.
Each resource (e.g., disk space, memory, network bandwidth,
or CPU cycles) used by a virtual server 1s monitored to deter-
mine the time at which the resource 1s fully used, that is, the
point at which a request for more resources 1s either implicitly
or explicitly denied. Examples of resource denials include a
memory allocation request denial and a network packet delay
signal.

A determination 1s made 220 as to whether a particular
virtual server resource 1s overloaded. The number of times a
particular resource denial 1s recerved in a time window 1s
averaged using one of a number of well-known techniques. If
the average number of denials 1s beyond a pre-configured
threshold, the virtual server 1s determined 220 to be over-
loaded for the corresponding resource. If the virtual server 1s
not determined to be overloaded, the method continues to
monitor 210 virtual server resource denials.

If the virtual server 1s determined to he overloaded, a deter-
mination 1s made 230 as to whether the corresponding
resource ol the physical host hosting the virtual server
resource 1s also overloaded. For example, referring to FI1G. 1,
il 1t was determined that a resource for virtual server 162B
was overloaded, module 100 would then check to see 1f that
same resource was overloaded for physical host 160A which
contains virtual server 162B. A physical host 160 resource 1s
determined to be overloaded 11 the physical host 160 does not
have enough of the particular resource unallocated to the
resident individual virtual servers 162 to service the resource
increase request. The physical host resource 1s overloaded 1f:
Resource request>Resource available; where Resource avail-

able=0

For example, assume virtual server 162B requests an addi-
tional memory allocation of 1 megabyte. If physical host
160A has only 100 kilobytes of memory available (the rest
already having been allocated to virtual servers 162A and
162B), then physical host 160A cannot service virtual server
162B’s request and physical host 160A 1s considered over-
loaded. This same principle may be extended to other types of
resources.

If the particular physical host resource 1s not determined to
be overloaded the virtual server resource allocation within the

10

15

20

25

30

35

40

45

50

55

60

65

6

physical host 1s increased 240. The method then continues to
monitor 210 virtual server resource denials.

However, 11 the physical host 1s determined to be over-
loaded, a new physical host 1s selected 250 to accommodate
the overloaded wvirtual server and 1ts required resource
increases. A variety of different fitting heuristic methods may
be used to select a new physical host to execute the virtual
server. For example, a first fit method may be used, wherein
the first physical host 160 determined to have enough extra
resources to accommeodate the overloaded virtual server 162
1s selected. In a best {it method, the physical host 160 with
available resources most closely matching the resource needs
of the overloaded virtual server 162 1s selected. In an easiest
fit method, the physical host 160 with the most available
resources 1s selected to accommodate the overloaded virtual
server 162. For the following discussion, assume that physi-
cal host 160A 1s overloaded, and new physical host 160B has
been selected to recerve virtual server 162B.

Once the new physical host 160B has been selected 250,
the virtual server 162B 1s moved 260 to the new physical host
160B. The virtual server 162B 1s also allocated its required
resource increase. In one embodiment, the old overloaded
physical host 160A places state information for the virtual
server 162B being transferred into a common file system 1350,
e.g. 1n a configuration file or other system file. The new
physical host 160B accesses the state information and restarts
the virtual server 162B as resident 1n the new physical host
160B. In another embodiment, the virtual server 162B files
are copied directly from the old physical host 160A to the new
physical host 160B.

Once the virtual server information transier 1s complete,
the old physical host 160A has one fewer virtual server, and
the new physical host 160B has one additional virtual server.
The quality of service tables for both the old and new physical
hosts are modified 260 to reflect this change. The quality of
service table entries for virtual server 162B will also reflect
the virtual server’s resource increase.

The virtual server user 1s transterred 270 from the old
physical host (160A) to the new physical host (160B) by
transierring the virtual server address. The transfer process
may use either “break, then make” timing, or “make, then
break’ timing. The timing of the transfer process determines
whether all processes and configuration information associ-
ated with the virtual server to he transferred are first shut
down 1n the old physical host, or first started up 1n the new
physical host, before the virtual server address 1s transierred.
Transierring the virtual server address transiers the virtual
server user from one virtual server location to another. For
example, using “break, then make” timing, the virtual server
1628 1s first shut down 1n the old physical host 160A, a new
virtual server 1s created in new physical host 160B and started
up, and the virtual server 162B address 1s then transierred
over to the new physical host 160B. In another embodiment
using “make, then break™ timing, a new virtual server 1s
created 1n new physical host 160B and started up, the virtual
server 162B address 1s transierred over to the new physical
host 1608, and the virtual server 162B i1s then shut down 1n
old physical host 160A.

As used herein, the terms “customer,” “user,” and “virtual
server user’ refer to individuals or groups of individuals
accessing the same virtual server. Typically, a virtual server
“user” 1s a group of individuals with a shared association. For
example, “user” may collectively refer to the employees of a
company, or to certain employees within a division of a com-
pany. One company (a “customer”) may have several difler-
ent users, each corresponding to a different group within the

e 4 1

US RE42,726 E

7

company, and each having many different individuals. Addi-
tionally, a “user” may also refer to a single individual.

The process for virtual server resource configuration 1s
dynamic and ongoing during the operation of the virtual
servers. After the virtual server user transfer 270 1s com-
pleted, the process continues to monitor 210 virtual server
resource demals.

FIG. 2B i1s another embodiment of a flowchart of the pro-
cess for dynamically modifying the resources of a virtual
server. The method shown in FIG. 2B 1s similar to the method
shown 1n FIG. 2A. However, the method of FIG. 2B includes
three additional steps, steps 242, 244 and 246, which together
provide a method for reclaiming unused virtual server
resources.

As before, virtual server resource denials are monitored
210. It a determination 220 1s made that a particular virtual
server resource 1s overloaded, and a determination 230 1is
made that the corresponding physical host resources are not
overloaded, the virtual server resource allocation 1s increased
240.

Next, a timer 1s set 242 for a pre-specified interval. Upon
timer expiry, the method determines 244 whether the newly
increased virtual server resource 1s currently operating at 1ts
resource limit. If one or more resource denial signals corre-
sponding to the newly increased virtual server resource are
received during the timer period, the virtual server 1s assumed
to be operating at 1ts resource limiat.

I1 the virtual server 1s determined 244 to be operating at its
limit for a particular resource, the method continues 210 to
monitor resource denials. However, 11 the virtual server 1s not
operating at 1ts limit for a particular resource, the method
decreases 246 the virtual server resource allocation by a pre-
specified amount. Steps 242, 244, and 246 allow the dynamic
resource configuration module 100 to reclaim unused
resources within the virtual server system, by temporarily
increasing resources allocated to a virtual server as needed.

In another embodiment, a recently transferred wvirtual
server 162 may also allow unused resources to be reclaimed
by the virtual server 162°s new physical host. In this embodi-
ment, step 270 would be followed by steps 242, 244 and 246.

FIG. 3 shows an embodiment of one process for determin-
ing whether an individual resource 1n a virtual server has
reached 1ts resource limit. A virtual server resource monitor
110 receives a set of iput signals 312 from a virtual server
162B. The virtual server resource monitor 110 processes
these signals to determine 11 any resources from virtual server
162B are overloaded. If an overloaded resource 1s found, the
virtual server resource monitor 110 sends a “resource over-
loaded” s1ignal 350 to the virtual server resource modifier 120.

Many different types ol input signals 312 may be processed
to determine if a resource 1s overloaded. The virtual server
resource monitor 110 monitors different types of resource
denials, which are instances wherein a request for additional
resources 1s either implicitly or explicitly denied. FIG. 3
shows four examples of resource denial signals: a create file
denial signal 312A generated, for example, by a lack of disk
space, a memory allocation denial signal 312B, a network
packet delay signal 312C generated by a lack of network
bandwidth, and a central processing unit (CPU) process
scheduling delay signal 312D generated by exceeding CPU
usage limaits. It 1s to be understood that there may be many
other types of signals indicating an implicit or explicit denial
of resources. The examples shown herein are used purely for
illustrative purposes.

In order to associate resource request denials with a par-
ticular virtual server executing in a physical host computer,
certain selected system calls are intercepted. For example, not

10

15

20

25

30

35

40

45

50

55

60

65

8

all CPU scheduling within the physical host computer is
associated with a virtual server. The monitor 110 must be able
to distinguish between resource requests made from virtual
servers, and other resource requests. The monitor 110 must
also be able to distinguish between resource requests made by
different virtual servers within the same physical server.

A system call performs some system operation, such as the
access ol a system hardware or software resource, when the
system call 1s executed. In order to make a system call, argu-
ments are programmatically loaded into specific registers of
the central processing unit on which the operating system 1s
executing. One of these arguments 1dentifies the specific sys-
tem call that 1s being made. This argument 1s typically in the
form of a number that 1s an offset into the operating system
interrupt vector table, which contains pointers to the actual
executable code of the system calls. The other loaded argu-
ments mclude parameters to be passed to the system call.

Once the arguments have been loaded, a software interrupt
1s generated, signaling to the operating system that a process
1s requesting execution of a system call. The operating system
reads the registers, and executes the requested system call
with the specified parameters. The system call executes and
performs the desired functionality. If the system call gener-
ates a return value, 1t places the generated return value (or a
pointer thereto) 1n a pre-designated register where 1t can be
accessed by the calling process.

In order to intercept a system call, a pointer 1n an 1interrupt
vector table to a system call 1s replaced with a pomter to
alternative object code to be executed instead of the system
call. Then, when the system call 1s made, the alternative
object code will execute mstead. The alternative object code
1s known as a system call wrapper.

The method of the related application may be used to
selectively intercept system calls such that a system call
wrapper only executes when a system call 1s made by a select
process associated with one of the virtual servers being moni-
tored. When a system call 1s made by a non-select process, the
default system call 1s executed. Furthermore, only certain
types of system calls relating to resource allocation, as
described above, are selectively intercepted.

The system call wrapper for the mtercepted system call
allows the resource request by a particular virtual server and
the resulting response to be monitored. Request demial
responses are monitored by the virtual server resource moni-
tor 110. As will be evident to one of skill in the art, the specific
system calls to be monitored will be system-dependent, and
may vary based upon the type of operating system and physi-
cal server machine being used.

Each resource denial signal 312 1s input into an individual
resource denial table 320 for tracking purposes. Create file
denial signals 312 A are recorded 1n a disk denial table 320A;
memory allocation denial signals 312B are recorded in a
memory demial table 320B; network packet delay signals
312C are recorded 1n a network denial table 320C; and CPU
process scheduling delay signals 312D are recorded 1na CPU
denial table 320D. A calculation 330 i1s performed on the
signals stored 1n each table to determine the mean number of
times a particular resource denial occurs 1n a pre-specified
time window. Different time windows may be specified for
cach type of resource demial. The calculation of mean
resource denials 1s performed 1ndividually for each different
type of resource denial being monitored (330A, 3308, 330C
and 330D).

The mean number of resource denials may be calculated
using one of several well-known techniques for averaging a
signal rate over a period of time. Each technmique determines

US RE42,726 E

9

whether the number of recerved resource denial signals a
received 1n a particular time window t exceeds a certain

threshold T:
a(t)y>T17?

In one embodiment, a “qumping-window” technique 1s
used. The jumping-window technique measures the number
ol resource denials a recerved 1n consecutive windows ol time
length t. A new time interval t starts immediately after the end
of the last time 1nterval t. In another embodiment, a “moving-
window” technique 1s used. The moving-window technique
measures the number of resource denials a recerved in a
continuously moving window of time length t. In the moving-
windows technique, all windows of time length t are mea-
sured.

The virtual server resource monitor 110 checks 340 11 the
metric a(t) calculated 1s beyond the pre-specified threshold T.
This determination 1s made individually for each type of
resource demal signal (340A, 3408, 340C and 340D), and
need not be made simultaneously. Each different type of
resource denial signal 312 may have a different pre-specified
threshold T.

If the metric a(t) representing the average resource denial
rate does not exceed the threshold T, the method continues to
calculate a(t) 330 so that resource denials are continuously
monitored. Using the jumping-window technique, after the
next consecutive time interval t passes, the method will again
check 340 11 a(t)>T. Using the moving-windows technique, a
continuous loop of steps 330 and 340 1s used to measure each
continuously-moving window of time t. In another embodi-
ment, a pre-specified schedule for repeating calculating mean
resource denials 330 and checking 340 11 the threshold T has
been exceeded can be established to limit the amount of
processing required by the virtual server resource monitor
110.

However, 1f the metric a(t) does exceed the threshold T, a
“resource overloaded” signal 1s sent 350 to the virtual server
resource modifier 120. Each type of resource denial signal
312 has an associated resource overloaded signal. FIG. 3
shows four examples of resource overloaded signals: disk
resource overloaded signal 350A, memory resource over-
loaded signal 350B, network resource overloaded signal
350C, and CPU resource overloaded signal 350D. It 1s to be
understood that there may be many other types of signals
indicating an overloaded resource. The examples shown
herein are used purely for i1llustrative purposes.

FI1G. 4 shows a tlowchart of an embodiment of a method for
determining when to increase or decrease a particular
resource allocation within a virtual server. The virtual server
resource modifier 120 performs the method shown in FIG. 4.
A separate analysis using the method of FIG. 4 1s performed
for each type of resource being monitored.

The modifier 120 waits 410 to receive a resource over-
loaded signal 350 from the virtual server resource monitor
110. When a resource overloaded signal 350 1s recetved, the
modifier 120 checks 420 to determine whether the signal 350
talls within a pre-specified “hysteresis time window” H. The
hysteresis time window H check 420 damps the modifier 120
system to avoid rapid changes in the system state. For
example, 1 a situation 1n which a virtual server has over-
loaded 1ts existing memory resource allocation, the virtual
server may attempt to access memory repeatedly before the
memory resource allocation 1s increased. Each memory
access attempt may generate a memory resource overloaded
signal 350B. The modifier 120 only needs to respond to one of
these signals. The hysteresis time window H check 420
avoids repetitive responses to resource overloaded messages.

10

15

20

25

30

35

40

45

50

55

60

65

10

Thus, the modifier 120 checks 420 whether the most recently
recetved resource overloaded signal 350 (receiwved at T,) 1s
close 1 time (within the hysteresis time window H) to a
previously received resource overloaded signal 350 (received
at T,) for a particular resource:

T,-T,<H?

I1 the recent and previous resource overloaded signals have
occurred close enough 1n time to fall within the pre-specified
hysteresis time window H, no further action will be taken and
the modifier 120 returns and waits 410 to receive another
resource overloaded signal 350. If the current resource over-
loaded message 1s not recetved within the hysteresis time
window H, the modifier 120 proceeds to increase 430 the
virtual server resource allocation.

The resource allocation for a particular overloaded
resource 1s 1ncreased 430 by a pre-specified amount 1.
Amount 1 may be specified as a certain percentage of the
resources of a physical host, or alternatively amount 1 may be
specified as a certain number of resource units. Amount 1 may
also be specified as a certain percentage of each particular
virtual server’s current resource allocation, e.g. increase a
resource by 5% of its current value. After a particular resource
has been increased the modifier 120 sets 440 a timer for a
pre-specified time period.

When the timer expires, the modifier 120 determines 450 11
the recently increased resource 1s being fully utilized. In one
embodiment, a resource 1s fully utilized it a corresponding
resource demal signal has been received within the timer
period 440 after the resource was increased.

If the resource 1s determined 4350 to be fully utilized, the
modifier 120 returns and waits 410 for an overloaded signal.
However, 11 1t 1s determined that the resource 1s not being fully
utilized, the modifier 120 decreases 460 the resource by a
pre-specilied amount d. Amount d may be specified as a
certain percentage ol the resources of a physical host, or
amount d may be specified as a certain number of resource
units. Amount d may also be specified as a certain percentage
of each particular virtual server’s current resource allocation,
¢.g. decrease a resource by 10% of 1ts current value.

In one embodiment, d (the resource decreases amount) 1s
larger than 1 (the resource increase amount). This allows
unused resources to be decreased aggressively, but over-
loaded resources to be increased cautiously. In another
embodiment, d and 1 are set such that the resource allocation
1s increased and decreased by equal amounts. For example,
assume that the increase 1n virtual server resources 11s speci-
fied as a percentage of each virtual server’s current resource
allocation. The decrease 1n virtual server resources d 1s speci-
fied as d=1-(1/1+1), which returns the resource allocation to
its previous level. Once the resource reaches a tully utilized
state, the modifier 120 then returns to waiting 410.

FIG. 5 shows a block diagram of an embodiment of a
process for performing resource load balancing among physi-
cal hosts, 1n the context of a working example of overloaded
physical host 160A. The physical host load balancer 130
periodically monitors the resource usage of a group of physi-
cal hosts 160 (160A, 160B and 160C) and transfers virtual
servers to different ones of these physical hosts 160 1n order
to balance the resource loads between the physical hosts 160.
Requests to increase virtual server resource allocations are
also sent to the physical host load balancer 130 1n order to
assist 1 the balancing of physical host 160 resource loads.
This process 1s next explained by example.

In this example, physical host load balancing module 130
receives a signal 510 from the virtual server resource modifier
120 indicating that virtual server 162B requires an increased

US RE42,726 E

11

resource allocation. This signal 1s used as an 1nput 520 into the
load-balancing calculator 530. The load-balancing calculator
530 also requests and receives as mput the current physical
host resource loads 535 from the physical host resource moni-
tor 540.

The physical host resource momitor 340 performs periodic
physical host resource checks 545 upon the group of physical
hosts 160 (160A, 160B and 160C). Resource checks 545
monitor the current virtual server resource guarantees in each
quality of service table for each physical host 160.

The load-balancing calculator 530 determines whether a
virtual server’s request for additional resources 510 will over-
load the particular physical host currently hosting the virtual
server. Using the example shown in FIG. 5, the load-balanc-
ing calculator 530 determines whether physical host 160A 1s
capable of supporting the request for additional virtual server
1628 resources 510. If the resource request 510 exceeds the
available resources of physical host 160A, the load-balancing
calculator 530 determines that physical host 160A 1s over-
loaded.

In one embodiment, the load-balancing calculator 530 uses
an easiest it heuristic to find the physical host that has the
most available resources. Each different type of resource 1s
associated with an ordinal and a weight. The i” resource R,
has ordinal 1 and weight w.. For example, resource R, repre-
sents disk resources, R, represents memory resources, R,
represents network resources and R, represents CPU
resources. The weights for each respective resource are deter-
mined by the system operator.

Let R,(V) denote the resource requirement of the virtual
server under consideration, e.g. virtual server 162B, includ-
ing the requested resource increase from signal 510. Let
R,(S,) denote the resource availability at the i physical host.

The load-balancing calculator 330 computes the weighted
resource availability of physical host 1 as the sum over 1:

D wixRi(S) —Ri(V)

Using the easiest fit heuristic, the load-balancing calculator
530 will select the physical host with the largest weighted
resource availability to receive the virtual server 162B (in the
example of FIG. 5, physical host 160B). The choice of physi-
cal host 160B 1s subject to the constraint that the selected
physical host 160B has suilicient resources to meet the
resource demands of virtual server 162B. The load-balancing,
calculator 530 sends 550 a signal 560 to the dynamic virtual
server mover 140 indicating that virtual server 162B 1s to be
transierred to physical host 160B.

It will be understood by one of skill 1n the art that load-
balancing calculator 530 may use other criteria for selecting
which virtual server to transier out of an overloaded physical
host. In the embodiment given above, the load balancing
calculator 530 transiers the virtual server that has most
recently requested additional resources. However, 1n another
embodiment, the load balancing calculator could select, for
example, the smallest virtual server within an overloaded
physical host for transier, regardless of which virtual server
has recently made a request for increased resources.

FI1G. 6 1s a flowchart of an embodiment of the process for
transierring a virtual server from one physical host to another
physical host. The dynamic virtual server mover 140 directs
the process of FIG. 6. This process 1s next explained by
example.

10

15

20

25

30

35

40

45

50

55

60

65

12

In this example, virtual server 162B 1s transierred from old
physical host 160A to new physical host 160B. The mover
140 waits 610 to receive a transier virtual server signal 560.
The mover 140 recerves a signal 560 directing the transier of
virtual server 162B from physical host 160 A to physical host
160B. The mover 140 directs physical host 160A to store 620
local state information associated with virtual server 162B 1n
the file system 150. As shown 1n FIG. 1, file system 150 1s
commonly accessible from physical hosts 160A, 160B and
160C.

Mover 140 next directs physical host 160A to stop 630
local processes associated with the virtual server being
moved, e.g. virtual server 162B. Mover 140 directs physical
host 160B to access 640 the virtual server 162B state infor-
mation stored 1n file system 150. Mover 140 directs physical
host 1608 to start 650 processes associated with virtual server
1628 locally. This enables virtual server 162B to begin run-
ning locally in physical host 160B. The user of virtual server
1628 1s then transierred 660 from physical host 160A to
physical host 160B by transferring the virtual server 162B
address to the new physical host 160B. As explained previ-
ously, the mover 140 may use either “make, then break”
timing or “break, then make” timing for the transier process.
Although the mvention has been described 1n considerable
detail with reference to certain embodiments, other embodi-
ments are possible. As will be understood by those of skill in
the art, the invention may be embodied 1n other specific forms
without departing from the essential characteristics thereof.
For example, the dynamic resource configuration module
may support different numbers of physical hosts. Addition-
ally, different fitting heuristic methods may be used to select
physical hosts for recerving transferred virtual servers during
load balancing among the physical hosts. Accordingly, the
present invention 1s intended to embrace all such alternatives,
modifications, and variations as fall within the spirit and
scope of the appended claims and equivalents.

What 1s claimed 1s:

1. A network system for dynamically modifying the com-
puter resources allocated to a virtual server, the network sys-
tem comprising a plurality of physical hosts, the virtual server
operating 1n a first physical host, the computer resources
allocated to the virtual server being specified as a quality of
service guarantee, the network system comprising:

a virtual server resource monitor communicatively coupled
to the first physical host and configured to monitor
resource denials and to send a virtual server overloaded
signal 1n response to the resource denials;

a virtual server resource modifier communicatively
coupled to the first physical host and configured to
receive the virtual server overloaded signal and, in
response to the virtual server overloaded signal, to
modily a resource allocation for the virtual server and to
send a virtual server resource modification signal;

a load balancing module communicatively coupled to the
plurality of physical hosts and configured to receive the
virtual server resource modification signal and to deter-
mine whether the first physical host1s overloaded and, 1n
response to a determination that the first physical host 1s
overloaded, to send a physical host transfer signal that
indicates a second physical host; and

a dynamic virtual server mover communicatively coupled
to the plurality of physical hosts and configured to
receive the physical host transter signal and, 1n response
to the physical host transier signal, to transfer the virtual
server from the first physical host to the second physical
host.

US RE42,726 E

13

2. The network system of claim 1, further comprising a file
system communicatively coupled to the plurality of physical
hosts and configured to store virtual server system files.

3. The network system of claim 2, wherein the dynamic
virtual server mover 1s further configured to direct the first
physical host to store, 1n the file system, a set of system {files
tor the virtual server and to direct the second physical host to
access, from the file system, the set of system files for the
virtual server, thereby transferring the virtual server from the
first physical host to the second physical host.

4. A computer-readable storage device storing a computer
program [product] to be executed in a computer for dynami-
cally moditying the computer resources allocated to a virtual
server operating 1n a first physical host 1n a network system,
the network system comprising a plurality of physical hosts,
the computer resources allocated to the virtual server being
specified as a quality of service guarantee, the computer
program [product] comprising:

program code for creating a virtual server resource monitor
communicatively coupled to the first physical host and
coniigured to monitor resource denials and, 1n response
to the resource denials, to send a virtual server over-
loaded signal;

program code for creating a virtual server resource modi-
fier communicatively coupled to the first physical host
and configured to receive the virtual server overloaded
signal and, 1n response to the virtual server overloaded
signal, to modily a resource allocation for the virtual
server and to send a virtual server resource modification
signal;

program code for creating a load balancing module com-
municatively coupled to the plurality of physical hosts
and configured to receive the virtual server resource
modification signal and to determine whether the first
physical host 1s overloaded and, in response to a deter-
mination that the first physical host 1s overloaded, to
send a physical host transfer signal that indicates a sec-
ond physical host; and

program code for creating a dynamic virtual server mover
communicatively coupled to the plurality of physical
hosts and configured to receive the physical host transfer
signal and, in response to the physical host transier
signal, to transter the virtual server from the first physi-
cal host to the second physical host.

5. A system for modifying the computer vesources allocated
to a virtual sevver operating in a first physical host of multiple
phvysical hosts, the system comprising:

a processor and memory;,

a virtual sevver resource monitor configured to monitor
resource denials and to send a virtual server overloaded
signal in vesponse to the vesource denials;

a virtual server resource modifier configured to rveceive the
virtual sevver overloaded signal and, in response to the
virtual sevver overloaded signal, to modify a resource
allocation for the virtual server and to send a virtual
server resource modification signal;

a physical host load balancer configured to receive the
virtual server resource modification signal and to deter-
mine whether the first physical host is overloaded and, in
response to a determination that the first physical host is
overloaded, to send a physical host transfer signal that
indicates a second physical host; and

a dynamic virtual server mover configured to receive the
physical host transfer signal and, in vesponse to the
physical host transfer signal, to transfer the virtual
server from the first physical host to the second physical
host.

10

15

20

25

30

35

40

45

50

55

60

65

14

6. The system of claim 5, further comprising a file system
configured to storve virtual server system files.

7. The system of claim 6, wherein the dynamic virtual
server mover is further configured to dirvect the first physical
host to store, in the file system, a set of system files for the
virtual server and to divect the second physical host to access,
from the file system, the set of system files for the virtual
server, thereby transferving the virtual server from the first
physical host to the second physical host.

8. One or more computer-readable storvage devices collec-
tively storing computer-executable instructions that, if
executed, perform operations for modifyving computer
resources allocated to a virtual sevver operating in a first
physical host in a system, the system comprising multiple
physical hosts, the operations comprising:

under control of a virtual server resource monitor,

monitoring resource denials; and
when a resource denial occurs, sending a virtual server
overloaded signal;

under control of a virtual server resource modifier,

receiving the virtual server overloaded signal;

modifving a rvesource allocation for the virtual server;
and

sending a virtual server resource modification signal;

under control of a load balancer,

receiving the virtual sevver resource modification sig-
nal;

determining that the first physical host is overloaded;
and

sending a physical host transfer signal that indicates a
second physical host; and

under control of a dynamic virtual server mover,

receiving the physical host transfer signal; and
transferring the virtual server from the first physical
host to the second physical host.

9. The computer-readable storvage device of claim 8§
wherein the transferving comprises causing the virtual sevver
to stove files in a file system and causing the second physical
host to access the files stoved in the file system.

10. The one or more computer-readable storage devices of
claim 8 further comprising, under control of the load bal-
ancev, selecting the second physical host based on the
resource required by the virtual server.

11. The one or more computer-readable storage devices of
claim 10 whevrein the selecting includes determining which of
the multiple physical hosts can provide the resource
requested by the virtual server.

12. The one or more computer-readable storage devices of
claim 10 further comprising moving user information from
the first physical host to the second physical host.

13. A method performed by a computing system for man-
aging a quality of service for a virtual server, comprising the
Jollowing computer-implemented instructions:

receiving an indication of a quality of service guarantee

relating to an amount of a resource allocated to the
virtual server, the quality of service specifying an
acceptable threshold value for denial of requests for the
resource;

executing the virtual server at a first physical host;

allocating an amount of the vesource to the virtual server,

causing the virtual server to execute a process;

receiving a rvequest for the vesource, the request generated

by the executing process;

when an insufficient amount of the vesource is allocated to

the virtual server, denyving the rvequest for the resource;
monitoring a count of resource request denials for the
resource;

US RE42,726 E

15

when the count of resource rvequest denials exceeds the

threshold value, generating a signal; and

in response to the genervated signal,

increasing the allocated amount of the resource when
the resource is available on the first physical host; and

transferring the virtual server from the first physical
host to a second physical host when the vesource is
unavailable on the first physical host but is available
on the second physical host.

14. The method of claim 13 further comprising continuing
execution of the process by the transferrved virtual server.

13. The method of claim 14 further comprising transferving
state information for the virtual server from the first physical
host to the second physical host.

16. The method of claim 15 wherein the transferring com-
prises.

causing the virtual sevver executing at the first physical

host to store state information in a file; and

causing the virtual sevver executing at the second physical

host to access state information from the stored file.

17. The method of claim 13 further comprising transferving
usev information from the first physical host to the second
phvsical host.

18. The method of claim 13 further comprising:

decreasing the allocated amount of the resource when the

resource is deallocated.

10

15

20

25

16

19. The method of claim 13 wherein the increasing com-
prises determining whether the signal was generated within a
hysteresis time window.

20. The method of claim 19 wherein the allocated amount
of the resource is increased when the signal is generated
outside the hysteresis time window.

21. The method of claim 20 wherein the allocated amount
of the resource is increased by a specified amount.

22. The method of claim 13 further comprising transferring
the virtual sevver from the first physical host to the second
physical host to balance load between the two physical hosts.

23. The method of claim 13 further comprising selecting
the second physical host based on the availability of the
resource at the second physical host.

24. The method of claim 13 further comprising stoving the
received indication of the quality of service guarantee in a
quality of service parameter table that associates each virtual
server executing at the physical host with quality of service
guarantee provided to that virtual server.

25. The method of claim 13 further comprising updating in
a guality of service parameter table the storved indication of
the quality of service guarantee for the virtual sevver when
transferring the virtual sevver from the first physical host to
the second physical host.

% o e = x

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : RE42,726 E Page 1 of 1
APPLICATION NO. 11/971778

DATED . September 20, 2011

INVENTORC(S) . Keshav et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Title Page 3, item (56), under “Other Publications”, in Column 1, Line 17, delete “(OSDE’96),” and
msert -- (OSDI°96), --.

Title Page 3, item (56), under “Other Publications™, in Column 1, Line 43, delete “linux-html” and
insert -- linux/tlk-html --.

Title Page 3, item (56), under “Other Publications™, in Column 2, Line 35, delete “Transmission of”
and insert -- Transmission on --.

Title Page 3, item (56), under “Other Publications”, in Column 2, Line 41, delete “gab1*1998” and
msert -- gabi/1998 --.

Column 13, line 12, in Claim 4, delete “in a2 and 1nsert -- in g --.

Column 14, line 36, in Claim 9, delete “computer-readable storage device” and 1nsert -- one or more
computer-readable storage devices --.

Signed and Sealed this
Thirteenth Day of March, 2012

......

David J. Kappos
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

