USOORE42685E
(19) United States
a2 Relssued Patent (10) Patent Number: US RE42.,685 E
Oesterreicher et al. 45) Date of Reissued Patent: Sep. 6, 2011
(54) UPGRADING DIGITAL MEDIA SERVERS 2002/0120601 Al 8/2002 Elmendorfetal. 707/1
2002/0170052 Al * 11/2002 Radatttcevvvenvenenenn. 717/171
(76) Inventors: Richard T. Oesterreicher, Naples, FL 2003/0018964 Al 172003 TFox et al.
(US); Craig Murphy, Suwanee, GA 2003/0051235 Ath 3/2003 Slmpson
(US) 2003/0066065 Al 4/2003 Larkinooooevvvvininn.n. 717/177
2003/0074487 Al * 4/2003 Akguletal. 719/328
2004/0133888 Al * 7/2004 Ardetal. ..cccceeeeneno.n.l. 717/174
(21) Appl. No.: 11/961,991 2004/0255293 Al 12/2004 Spotswood
(22) Filed: Dec. 20, 2007 FOREIGN PATENT DOCUMENTS
Related U.S. Patent Documents CN 1762154 4/2006
Reissue of GB 2330 671 4/1999
(64) PatentNo.. 6,978,452 F 198233 771997
‘ JP 2002366381 2/2002
Issued: Dec. 20, 2005 TP 2002506249 2/2002
Appl. No.: 10/406,108 TP 2006-522416 9/2006
Filed: Apr. 2, 2003 IP 03019362 2/2011
JP 7200279 2/2011
(51) Int. Cl. W WO 98/05462 12/1998
GOOF 9/44 (2006.01) WO WO 02/091178 11/2002
WO WO 2004/090686 10,2004
(52) US.CL ..o, 717/171;°717/175; 709/203;
386/332; 348/E5.008 OlHER PUBLICATIONS
(58) Field of .Cla.ssiﬁcation Search 7.17/ 168173 Niemeyer et al., “Learning Java,” May 2000, 1979-181,
See application file for complete search history. 557 503
(56) References Cited (Continued)
U.5. PALENT DOCUMENTS Primary Examiner—I11 B Zhen
5,210,854 A 5/1993 Beaverton et al.
5,432,927 A 7/1995 Grote et al. (57) ABSTRACT
5,826,085 A 10/1998 Bennett et al. A system and method are disclosed for upgrading both hard-
5,867,713 A 2/1999 Shrader et al. d soft £ dieital d4;
5,870,611 A 2/1999 London Shrader et al. ware and soltware components ol a digital media server
5020775 A 7/1000 Ma et al. without disrupting media delivery services. In a preferred
6,101,327 A 2/7000 Holte-Rost et al. embodiment, the present system and method employ an
6,112,253 A 8/2000 Gerardetal. 719/315 object-oriented model that allows system servers to remain
6,189,145 B1 * 2/2001 Bellinetal. 717/170 tully operational while software upgrades at both the operat-
6,266,736 BL * 772001 Atkinson et al. 7117103 ing system and application levels are installed. Additionally,
6,360,363 Bl ~ 3/2002 Moser et al. the system and method use redundant or partitionable pro-
6,463,584 B1 * 10/2002 Gardetal. 717/171

grammable logic devices to perform firmware upgrades

6,978,452 B2 12/2005 Oesterreicher et al. without disrupting media delivery services.

7,003,767 B2 2/2006 Larkin

7,155,712 B2 * 12/2006 Takimoto 717/170
7,373,643 B2 5/2008 Radatti 50 Claims, 9 Drawing Sheets
505
-~ \ 520
Management \
Initiates upgrady v Perform runtime extensible upgrade
— . — : 570
Id;;t:gt : ?:’ \.530 Instantiate new f\550 ?t::r';?: N
upgrar.lje package » Oblectsinto - r refi;rences
g applications and for new Obiects
10 Enumerate services ‘ ¢ J
methods | 535 l 560 & =
and properties opy existing 575
, . references from [
in Objects | If replacing replaced Objects |
y | Objects: copy |
Evaluate version | existing l
compatibility with fields from -
dependent old Objects Unload unLIS.Ed ori~ 580
Objects | -540 | fo new Objects replaced Objects |
L

US RE42,685 E
Page 2

OTHER PUBLICATTONS

“Extensible Firmware Interface,” intel.com/technology/efl/
index.htm>, 2003.

“Auto Update Server,” cisco.com/warp/public/cc/pd/wr2k//
vpmnso/ps3993/index.shtml>, 1992-2002.

“Georgia Tech DEOS Project,” .cc.gatech.edu/systems/
projects/DEOS>, Mar. 28, 2001.

Clarke et al., “An Architecture for Dynamically Extensible
Operating Systems,” 1998.

Clarke et al., “An Explicit binding Model for Runtime
Extensible Operating Systems,” 1999.

Bershad et al., “Extensibility, Safety and Performance in the
Spin Operating System,” 1995.

Peollabauer et al., “Cooperative Runtime Management of
Adaptive Applications and Distributed Resources,” 2002.
Salles et al., “Security of Runtime Extensible Virtual Envi-
ronments,” Sep. 2002, 3-4.

Supplementary European Search Report dated Jul. 6, 2007
issued 1n corresponding EP Application No. EP04758665.

Written Opinion of the International Searching Authority
mailed Jun. 17, 2005 1ssued in corresponding PCT Applica-
tion No. PCT/US04/09887.

International Preliminary Examination Report on Patentabil-

ity 1ssued Oct. 14, 2005 1n corresponding PCT Application
No. PCT/US04/09887.

International Search Report mailed Jun. 17, 2005 1n corre-
sponding PCT Application No. PCT/US04/09887.

United States Patent and Trademark Office: Non—Final
Office Action dated Feb. 1, 2005, U.S. Appl. No. 10/406,
108.

United States Patent and Trademark Office: Notice of Allow-
ance dated Aug. 2, 2005, U.S. Appl. No. 10/406,108.

* cited by examiner

US RE42,685 E

Sheet 1 0of 9

Sep. 6, 2011

U.S. Patent

SUOISSS |

1ash mau
buijdeooe uibeg

5

L9l

|

S3DIAISS Helsal

_ 10 JOAISS 0049y
S

GOl
juswebeuew

apeldbdn-}sod

S

suoijesljdde pue _

]

ﬁwmﬁw_oma apesbdn

*

lwoJy sjusuodwod

mau Adop

-

saipadold

pue sbuljjas

Ajipows 10 Adog | |
|3 —Z
Gl _

apelbdn

L ‘D14

DUl|-}§0
suoneodijdde pue

saoIes yeL || [SPA

i

Z
L2}

SUOISSaS 19sh
1ajsueiyuiy |

e

—< |
GZl

juswobeuew
opelbdn-aid

0cl

061

¢Elpall UONQUISIE
UO JO papeojumop
abeyoed apeibdn

OLl

ope.Bdn sajenjius
juswabeuey

GOl

US RE42,685 E

Sheet 2 0of 9

Sep. 6, 2011

U.S. Patent

AIE

0ge

aoea)u| wm Nmn_

YIOMIBN

0ce sulbu3 alempie|

Gee
1Yng
BID3N

8o}
SES

7¢ Seoelsju| a.empleH

097 wajsAg Bunesedo

/ 0GZ JUaWUOIIAUS]

awnuny paalO-alqo

\ oveZ
% 1I8)NdWwo N asodind-|eiauas)

— 00¢ 19A19S eIpap jenbig

U.S. Patent Sep. 6, 2011 Sheet 3 of 9 US RE42,685 E

Read Blocks from
Storage Device

310 (DMA)

Assemble Data
from Blocks In
320 Media Bufter

(Generate Packets

in Hardware while
330 Reading from
Media Buffer

Write Packets
340 to Network

Fig. 3

US RE42,685 E

Sheet 4 of 9

Sep. 6, 2011

U.S. Patent

gy ‘B4

P

012 _ _

09¢
0¥ 18ndwion
asodind
jeJauac)
052 |
JUaWIUOJIAUT
SWIUNY

ol

0Z¢ suofedlddy

0EP SIOINDG

labeuey 109! |
W 199140 _~Obb

v bi4

glp~ 1T
-
A

ITV sedepaju

Spoylan

GLY

¥ ¥ seiuadoid

Spi=id

F

198[q0

oLy

US RE42,685 E

Sheet S of 9

Sep. 6, 2011

U.S. Patent

0.6 M

s}oalqp padelda.

108G “JO pasnun peojun

1

" s109lq0 paseidal
/6™

LWOJ} S8ouai8)el
buisixa Ado)

ﬁ

s103lqO mau 1o}

. oiweuAp

ysliqe}s3

SO0UDI9Jal |

sjoalqO mau 0}
s}0alqQ pjo
WwioJ) Sp|al}

Bunsixs

Ad09 :s)09lqO

Buioe|das J|

09% _

|

pue suolneoidde

S9OIAJSS

ol $103[qQ
Mau ajeijue)su|

0ES

apelbdn s|qisusixa awnunl wuopad

GG\

syelqo
juapuadap
| Yum Ayjigiedwod

3

UQISIOA 3jenjea |

_; s}o8(qQ ul
saiuadoud pue
spoyaw

ajelawnug

i

abeyoed apeibdn

us s309lq0
mau Ajijuapi

.

025

SaA

GOS

’ |

\.

|

’

pu3

ON

LISIXO
abeyoed
apelbdn

s20(]

4\\

apelbdn sajeniul

\VEmEmmmcmz y

065

014

US RE42,685 E

Sheet 6 of 9

Sep. 6, 2011

U.S. Patent

I
v
g(ﬂ

..........I j
a)ejdwoo g 199lgo
0} Y 103{qo wo.} apeibdn

?

I

labeuep 103lqo Aq
V7 paeiep v 108(q0

T eiin

196euep 102(qo Aq
paxoojun g 108iqQ

T r———

]
]

%9

9 ‘bi4

g 193lq0 0} v 192lqQ)]

LWOJ} pa}oa.JIpal
=N EIETET

e

LES1}SUMO(]

1abeuepy 108Iq0

i

GE9
|

g 198la0
0} v j08(qQ wolj
paldos sadualsjal
wealssdn

ocg 812000 0} v 108lq0

twoJy paidod spjal4

GCY /\..

lobeueN
103[q0 Aq paxoo| g
}03[q0 pue v 128(q0

i AQ pajenuelsul
si g 109[q0

-

T _ rm i,

0¢9

Jobeue
109[q0 Aq payien sjoalqo
Weassumop yiim Aligneduwlod
Auadoid pue poylsy

I

gL9

Al i

1ebeuepy 109la0 Aq
paijusA §)o9(qo
wealjsdn yum Ajqueduwod
Apadold pue poyisiy

] _ ._ -

N\

msmﬁosiom_%
wo.} apelbdn Emmmv

—

L~ 019

US RE42,685 E

Sheet 7 0of 9

Sep. 6, 2011

U.S. Patent

_

g/ ‘b4

4

Em 4 | goomeqabol | yeq | V @omeq 2iboT yled

eleq inding | °Slqewweibold | ejeq | Slqewlweiboid ejeq ndu

“ v/, "B

e S
ME AN RS A 092

081 0LL

sadiaa(] ajqewiurIBoldey Juepunpay YA suljadigd Alaaljaq eipew 1eubig

087

|

< _ yed indino

Yied nduj €—

0cL
a%iAa(a|qewurelboida)y Ijqeuopiyed

UM augiedid Lieallaq etpaiy 1enbig

)

OLL

0L

US RE42,685 E

Sheet 8 0f 9

Sep. 6, 2011

U.S. Patent

g "bi-

paja|dwod
uolissas apelbdn

uoiiued Mmau 0} uoniped
P|O WOJ} |OJJUOD JBjSuiel |

0t8

.IlJ sy el e

aJemMuLlly

uoniyed pjo weiboiday MBU UM

uoniued mau welboid

= — iy

Ov8 0¢8

ul uonipued mau ayeal)

adid

apeibdn ajemull)
sajeljiul Juswabeuepy

0L8

US RE42,685 E

Sheet 9 of 9

Sep. 6, 2011

U.S. Patent

pP3)a|dwod
uolissas apelfbidn

S}Q 2IeMulll)
mau Buipeo| Aq
sapeibdn y 20iA8(

6 "bi4

ybnoiy} ssed sswooaq
9)e)s Y S2IA3P - SAl}0E
SBWO022(3)B)S g 991Aa(]

N,

Ov6

s}iq aJemuuly
mau bBuipeo] Ag
sapeibdn g a21Aa(]

0C6

aanoe si vy :ubnoiyr

ssed SI UoIym pue aAljoe -

S| 92IA3P Y2IyMm auiud)a(

apelbdn ajemuy
sajeniul Juswabeue

b

0

16

US RE42,685 E

1
UPGRADING DIGITAL MEDIA SERVERS

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

FIELD OF THE INVENTION

This invention relates to the field of digital media servers.

BACKGROUND OF THE INVENTION

Digital media servers such as Web-based servers and
video-on-demand servers typically include a number of
functional components 1ncluding components for storing
digital media, converting such media from {file format to wire
format, and scheduling the delivery of media packets. Dur-
ing operation, a media server accepts incoming requests for
content from clients or administrators and delivers media
packets to clients via a network.

Most digital media servers employ a PC-based architec-
ture and run a variety of software components to provide the
above-described functionality. Great effort 1s made during
the design of such software components to ensure that they
are fully debugged and free from defects. As a practical
matter, however, many defects are not discovered during the
design phase and are exposed only when the software 1s put
into actual operation.

Detfects discovered during system operation are oiten cor-
rected by performing a software upgrade. Software upgrades
are also sometimes performed to supplement or improve

server functionality, thus extending a server’s competitive
life.

To upgrade an executing software component, the compo-
nent must be stopped, and the replacement version loaded
into memory and run. During this period, services normally
provided by the component are unavailable.

The consequences of a defect in a media server’s operat-
ing system may be even more severe. Operating systems are
typically designed around a number of tightly coupled mod-
ules that supply abstract data structures such as files,
memory storage, input/output streams, semaphores,
processes, and threads to other programs. Application pro-
grams access these abstract structures through an application
programming interface (API). A change made to one of
these structures may cause side-effects 1 other structures or
modules. Generally, replacement of operating system-level
components requires reloading the entire operating system,
and 1s accomplished during a reboot of the server. Thus,
operating system-level resources cannot be upgraded with-
out taking the media server ofthine, and rebooting may take a
considerable amount of time before these services can be
restored.

Offline servers are unable to accept incoming requests or
deliver content to existing sessions. Consequently, an offline
server may aifect the availability of an entire service net-
work unless adequate redundant servers are available

FIG. 1 illustrates a typical upgrade process and 1ts effect
on network availability. As shown 1n FIG. 1, 1n step 105, an

upgrade 1s 1mnitiated. Next, 1n step 110, an upgrade package 1s
detected. If the upgrade package cannot be downloaded, the

upgrade process terminates (step 190).

Before the upgrade can be nstalled, pre-upgrade manage-
ment steps 120 are performed. In particular, 1n step 125, user
sessions are either thinned or transferred to unatfected
machines. Next, in step 127, services affected by the soft-
ware to be upgraded are discontinued.

5

10

15

20

25

30

35

40

45

50

55

60

65

2

Next, upgrade process steps 140 are performed. In
particular, in step 145, the settings and properties of the sys-
tem are either copied or modified. In step 147, new compo-
nents are copied from the upgrade package. Although some
media servers may permit the local or remote transier of data
into the server while 1t 1s operating, some service disruption
1s typically necessary to eflect the-upgrade, and 1n most
cases the server must first be brought ofthine.

Next, post-upgrade process steps 160 are performed. In
particular, 1n step 165, the media server’s power 1s cycled off
and then back on (if the server was taken oitline), and ser-
vices provided by the upgraded software are restarted. A
single power cycle may last anywhere from a few seconds to
several minutes. The amount of time required for a single
power cycle depends on how long the server needs to per-
form an orderly shutdown of runnming applications belore
powering off plus the time needed to reboot the server and
restore the applications after powering back on. Only after
these events are completed can the server begin to accept
new user sessions (step 167).

The above process may significantly affect system
operation, especially 1n cases of system-wide upgrades such
as an upgrade of all system APIs and low-level drivers. A
typical digital-media company may have dozens of on-line
media servers atlected by such an upgrade. Although the
company may select a time for the upgrade when server
usage 1s at 1ts lowest point, the upgrade may still disrupt
service to some extent 1f 1t necessitates shutting down media
servers. At a minimum, the company may experience loss of
revenue for the downtime and risk customer dissatisfaction

To avoid such service disruptions, companies often main-
tain excess server capacity or redundant systems to handle
traffic channeled away from affected servers during an
upgrade. But redundant systems introduce additional over-
head cost and 1n many cases are not available.

SUMMARY OF THE INVENTION

A system and method are disclosed for upgrading both
hardware and soitware components of a digital media server
without disrupting media delivery services In a preferred
embodiment, the present system and method employ an
object-oriented model that allows system servers to remain
tully operational while software upgrades at both the operat-
ing system and application levels are 1nstalled. Additionally,
the system and method use redundant or partitionable pro-
grammable logic devices to perform firmware upgrades
without disrupting media delivery services.

In one aspect, the present invention 1s directed to a method
of upgrading a digital media server comprising checking for
the existence of an upgrade package comprising new
objects; 1dentifying new objects 1n the upgrade package;
identifying functions and properties of the new objects;
evaluating compatibility of the new objects; instantiating
new objects as applications objects or services objects;
determining whether a new object replaces an old object;
and 1 the new object replaces the old object, replacing the
old object.

In another aspect of the present invention, the step of
replacing further comprises: locking the old object and the
new object; copying fields from the old object to the new
object; establishing links from the new object to objects
dependent on the old object; rerouting links to the old object
from other objects to the new object; unlocking the new
object; and removing the old object.

In another aspect of the present invention, the step of
removing comprises archiving the old object.

US RE42,685 E

3

In another aspect of the present invention, the step of
removing comprises purging the old object.

In another aspect of the present invention, the upgrade
package further comprises one or more new methods for old
objects, and the method further comprises: 1dentifying the
one or more new methods; evaluating compatibility of the
one or more new methods; determining whether a new
method replaces an old method; and 1f the new method
replaces the old method, blocking and replacing the old
method.

In another aspect of the present invention, the old method
1s an 1nterface.

In another aspect of the present mmvention, the method
turther comprises downloading the upgrade package from a
network source.

In another aspect of the present mmvention, the method
turther comprises loading the upgrade package from a stor-
age medium.

In another aspect, the present mvention 1s directed to a
method of upgrading a digital media server having a parti-
tionable programmable logic device having a first active par-
tition and a second 1nactive partition, comprising: program-
ming the second partition with new logic; transitioning the
second partition from the 1nactive state to the active state and
simultaneously assuming data processing functions from the
first partition; and transitioning the first partition to an inac-
tive state.

In another aspect of the present mvention, the method
turther comprises programming the first partition with the
new logic

In another aspect, the present mvention 1s directed to a
method of upgrading a digital media server having two or
more redundant programmable logic devices, each having an
active and 1nactive state, comprising: determining a first set
of programmable logic devices that are 1n the active state;
loading new logic nto a second set of one or more logic
devices 1n the mactive state; transitioning the second set of
devices to the active state and simultaneously assuming data
processing functions from the first set of devices; and transi-
tioming the first set of devices to the nactive state.

In another aspect of the present ivention, the method
turther comprises loading new logic into the first set of
devices.

In another aspect, the present mvention 1s directed to a
method of installing upgrades on a digital media server com-
prising a general purpose computer and a hardware engine,
the computer comprising an object oriented runtime
environment, and the hardware engine comprising a pro-
grammable logic device having a first active partition and a
second 1nactive partition, the method comprising: checking
for the existence of an upgrade package comprising new
objects and new logic; identifying new objects in the
upgrade package; identitying functions and properties of the
new objects; evaluating compatibility of the new objects,
instantiating new objects as applications objects or services
objects; determining whether a new object replaces an old
object; 11 the new object replaces the old object, replacing
the old object; identifying new logic 1n the upgrade package,
programming the second inactive partition with the new
logic; transitioning the second partition from an inactive
state to an active state and simultaneously assuming data
processing functions from the first active partition; and tran-
sitioning the first partition to an 1nactive state.

In another aspect of the present invention, the step of
replacing further comprises: locking the old object and the

10

15

20

25

30

35

40

45

50

55

60

65

4

new object; copying fields from the old object to the new
object; establishing links from the new object to objects
dependent on the old object; rerouting links to the old object
from other objects to the new object; unlocking the new
object; and removing the old object.

In another aspect, the present mvention 1s directed to a
method of 1installing upgrades on a digital media server com-
prising a general purpose computer and a hardware engine,
the computer comprising an object oriented runtime
environment, and the hardware engine comprising two or
more programmable logic devices, each having active and
inactive states, the method comprising checking for the
existence of an upgrade package comprising new objects and
new logic; 1dentifying new objects 1n the upgrade package;
identifying functions and properties of the new objects;
evaluating compatibility of the new objects; instantiating
new objects as applications objects or services objects;
determining whether a new object replaces an old object; 1f
the new object replaces the old object, replacing the old
object; 1dentiiying new logic 1n the upgrade package; deter-
mining a first set of programmable logic devices that are in
the active state; programming the new logic mto a second set
ol one or more logic devices 1n an 1nactive state; transition-
ing the second set of devices to the active state and simulta-
neously assuming data processing functions from the first set
of devices; and transitioning the first set of devices to the
inactive state.

In another aspect of the present invention, the step of
replacing further comprises: locking the old object and the
new object; copying fields from the old object to the new
object; establishing links from the new object to objects
dependent on the old object; rerouting links to the old object
from other objects to the new object; unlocking the new
object; and removing the old object.

In another aspect of the present invention, the upgrade
package further comprises one or more new methods for old
objects, and the method further comprises: i1dentifying the
one or more new methods; evaluating compatibility of the
one or more new methods; determining whether a new
method replaces an old method; and if the new method
replaces the old method, blocking and replacing the old
method.

In another aspect of the present invention, the old method
1s an interface.

In another aspect, the present mvention 1s directed to a
digital media server comprising: an object store; and an
object-oriented, runtime environment, comprising: service
objects, application objects, and an object manager adapted
to facilitate the replacement of the service objects and the
application objects without disrupting data processing func-
tionality supplied by the service and application objects.

In another aspect of the present invention, the server fur-
ther comprises a network interface for downloading an
upgrade package comprising replacement service and appli-
cation objects.

In another aspect of the present invention, the server fur-
ther comprises storage media for storing an upgrade package
comprising replacement service and application objects.

In another aspect, the present mvention 1s directed to a
digital media server comprising: two or more programmable
logic devices, each capable of switching between an active
state and an 1nactive state; an input data path; and an output
data path; wherein one or more programmable logic devices
in the active state processes digital media arriving on the
input data path and presents processed digital media to the
output data path while one or more programmable logic
devices 1n the 1nactive state are programmed.

US RE42,685 E

S

In another aspect, the present invention 1s directed to a
digital media server comprising: a partitionable program-
mable logic device having two or more mdependently pro-
grammable partitions, each partition capable of switching
between an active state and an inactive state; an mput data
path; and an output data path; wherein one or more partitions
in the active state process digital media arriving on the mput
data path and present processed digital media to the output
data path while one or more partitions in the inactive state
are programmed.

In another aspect, the present mvention 1s directed to a
digital media server comprising: an object store; an object-
oriented, runtime environment, comprising: service objects,
application objects, an object manager adapted to facilitate
the replacement of the service objects and the application
objects without disrupting data processing functionality sup-
plied by the service and application objects; two or more
programmable logic devices, each capable of switching
between an active state and an inactive state; an input data
path; and an output data path; wherein one or more program-
mable logic devices in the active state processes digital
media arrving on the mput data path and presents processed
digital media to the output data path while one or more pro-
grammable logic devices in the inactive state are pro-
grammed with new logic.

In another aspect, the present invention 1s directed to a
digital media server comprising: an object store, an object-
oriented, runtime environment, comprising: service objects,
application objects, an object manager adapted to facilitate
the replacement of the service objects and the application
objects without disrupting data processing functionality sup-
plied by the service and application objects; a partitionable
programmable logic device having two or more indepen-
dently programmable partitions, each partition capable of
switching between an active state and an 1nactive state; an
input data path; and an output data path; wherein one or
more partitions 1n the active state process digital media arriv-
ing on the input data path and present processed digital
media to the output data path while one or more partitions in
the 1active state are programmed with new logic.

BRIEF DESCRIPTION OF THE DRAWINGS

FI1G. 1 1s a tlow diagram 1llustrating an upgrade process in
accordance with the prior art;

FIG. 2 15 a block diagram depicting a preferred embodi-
ment of a digital media server;

FIG. 3 1s a flow diagram 1llustrating a preferred embodi-
ment of a digital media server streaming process;

FIG. 4A 1s an exemplary embodiment of an object;

FIG. 4B 1s a block diagram depicting a preferred embodi-
ment of a general-purpose computing device in one embodi-
ment of the present invention;

FIG. 5 1s a flow diagram illustrating the steps 1n a pre-
ferred embodiment for performing an upgrade process;

FIG. 6 1s a flow diagram illustrating the steps in a pre-
terred embodiment for staging the replacement of objects;

FIG. 7A 1s a block diagram illustrating a preferred
embodiment of a digital media delivery pipeline with a par-
titionable reprogrammable logic device;

FIG. 7B 1s a block diagram illustrating a preferred
embodiment of a digital media delivery pipeline with redun-

dant reprogrammable devices;

FIG. 8 1s a tlow diagram 1llustrating a preferred embodi-
ment for performing a firmware upgrade of a hardware
engine with a partitionable programmable logic device; and

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 9 15 a flow diagram 1illustrating a preferred embodi-
ment for performing a firmware upgrade of a hardware
engine with redundant programmable logic devices.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

For purposes of illustration and to facilitate understanding
ol the present invention, the preferred embodiments

described below will be described in connection with a par-
ticular digital media server.

As shown in FIG. 2, the digital media server 200 of these
preferred embodiments preferably comprises a hardware
engine 220, a general-purpose computer 240, and a storage
device 210. Hardware engine 220 preferably comprises a
media butler 225, one or more programmable logic devices
(PLDs) 227, and a network interface 230. As described 1n
detail below, i a preferred embodiment, hardware engine
220 may comprise a partitionable PLD or redundant PLDs to
facilitate media server upgrading without service disruption.

General-purpose computer 240 preferably comprises an
object-oriented runtime environment 250, an operating sys-
tem 260, and hardware interfaces 270. Buses 280 provide
data communication paths between hardware engine 220,
general-purpose computer 240, and storage 210.

Hardware engine 220 1s preferably adapted to generate
wire data packets from data stored on storage device 210 and
send them to clients across a digital network. In a preferred
embodiment, data 1s copied from storage device 210 to
media buifer 225 under control of general-purpose comput-
ing device 240. A preferred architecture comprising a
general-purpose computing device 240 and hardware engine
220 1s described 1n U.S patent application Ser. No. 10/369,
305, entitled “Hybrid Streaming Platform,” filed on Feb. 19,
2003 (and i1dentified by Pennic & Edmonds LLP docket no.
11055-005-999), which 1s hereby incorporated by reference
in 1ts entirety for each of its teachings and embodiments.

PLDs 227 are preferably adapted to convert the copied
data 1n media builer 225 from file format to wire format.
Complete data packets are sent onto the network by network
interface 230. A preferred system and method for imple-
menting these steps 1s described 1 U.S. patent application
Ser No. 10/369,306, entitled “Flexible Streaming
Hardware,” filed on Feb. 19, 2003 (and 1dentified by Pennie
& Edmonds LLP docket No. 11055-006-999), which 1s
hereby incorporated by reference 1n its entirety for each of
its teachings and embodiments.

A preferred embodiment of a streaming process 1mple-
mented by digital media server 200 1s illustrated 1n FIG. 3.
As shown 1n FIG. 3, 1n step 310, blocks of media data are
read from storage device 210 and copied directly to media
buifer 225 1 accordance with instructions from general-

purpose computing device 240. In step 320, hardware engine
220 reassembles the media data from the blocks stored in

media bufter 225.

In step 330, hardware engine 220 generates data packets
while reading from media buffer 225. In step 340, hardware
engine 220 transfers the freshly generated data packets to
network interface 230, which 1n turn writes the packets to a
digital network. As noted, this process and a platform for
implementing it are described 1n more detail in U.S. patent
application Ser. No. 10/369,306, entitled “Flexible Stream-
ing Hardware,” filed on Feb. 19, 2003 (and identified by
Pennie & Edmonds LLP docket No. 11055-006-999), and
Ser. No. 10/369,305, entitled “Hybrid Streaming Platform,”
filed Feb, 19, 2003 (and identified by Pennic & Edmonds
LLP docket No. 11055-005-999), both of which are hereby

US RE42,685 E

7

incorporated by reference in their entirety for each of their
teachings and embodiments.

In a preferred embodiment, general-purpose computing
device 240 preferably has installed a runtime environment
250 adapted to run object-oriented software programs
including programs for accomplishing any desired stream-
ing solutions or other tasks. Such tasks may include session
setup, management and teardown of streaming sessions, and
error handling. In a preferred embodiment, these programs
are designed as object-oriented programs.

FIG. 4 A 1llustrates the composition of an object 410 1n a
preferred embodiment. As shown in FIG. 4A, object 410
preferably comprises fields 412, methods 415, and dynamic
references 418. Fields 412 store data within object 410 and
comprise data that can be accessed by other objects, known
as properties 414, and data hidden from other objects. Fields
412 represent the current state of object 410.

Methods 415 are procedures or functions that may be used
to operate on data 1n fields 412. Methods of an object that
may be called by other objects to interact with the object are
known as itertaces 417.

Dynamic references 418 represent control and data flow
paths between objects 410. An object’s references 418 need
not be defined before runtime, and can be changed even after
object 410 has been created in runtime environment 250.

FIG. 4B 1illustrates runtime environment 250 in more
detail. Environment 250 preferably comprises applications
420, services 430, and an object manager 440. Applications
420 are a collection of objects designed to perform a certain
task. Dynamic references 418 between objects are 1llustrated
as double-headed arrows 1n FIG. 4B. Services 430 are col-
lections of objects designed to provide an interface between
application objects and general-purpose computer 240°s
operating system (OS) 260 and hardware 1nterfaces 270.

Object manager 440 1s preferably responsible for main-
taining the state of all objects 410 included 1n applications
420 and services 430. In a preferred embodiment, object
manager 440 validates objects 410 to ensure that these
objects are properly formed and not corrupt before loading
them into runtime environment 250. Object manager 440
also enumerates the objects and evaluates them to ensure
compatibility with object manager 440, environment 250
generally, and other objects 410.

Runtime environment 250 1s preferably built on facilities
provided by general-purpose computer 240’s operating sys-
tem 260. Application objects can indirectly access hardware
270 by interacting with services 430 through operating sys-
tem 260. One with skill 1in the art will recognize that operat-
ing system 260 may be implemented using object-oriented
components. Such an operating system may be located
within runtime environment 250, and operate as an exten-
sion of services 430. Elfectively, runtime environment 250
may then be viewed as merged with operating system 260.
This permits the operating system to be upgraded without
interrupting the functionality 1t provides, as described below.

l

Hardware 270 preferably includes mput-output interface
cards 272, 274 for interfacing with objects 1n the runtime
environment as well as data storage 210.

Data storage 210 1s a repository that preferably contains
definitions for objects or collections of objects known as
packages 490. Such packages are typically assembled to
make delivery of a collection of objects more convenient.
Upgrade Process

A preferred embodiment for upgrading object-oriented
software running on general-purpose computer 240 1s
described 1n connection with FIG. 5. As shown 1n FIG. 5, 1n

10

15

20

25

30

35

40

45

50

55

60

65

8

step 505, a system administrator initiates an upgrade session.
In step 510, object manager 440 determines whether an
object package 490 (containing upgraded objects) exists 1n
data store 210. If an upgrade package 1s available, a runtime
extensible upgrade 1s performed 1n step 520.

Belore performing the runtime extensible upgrade (step
520), object manager 440 continually tracks the state of all
current 1nstances ol objects 1n environment 250 including
theirr dynamic references 418 to other objects. In step 530,
object manager 440 identifies any new objects 1n upgrade
package 490, and, 1f so, validates that they are properly
formed and not corrupt. In step 535, each object 1n package
490 and the object’s corresponding interfaces and properties
are enumerated. During this enumeration process, object
manager 440 determines how the objects will interact with
other objects. Next, 1n step 540, each object 1s evaluated for
compatibility with other objects that may call it. Also, the
object version 1s preferably checked to ensure that 1t 1s com-
patible with object manager 440 and environment 250, as
well as other interacting objects.

In step 550, object manager 440 creates nstances of the
new objects 1n appropriate areas of environment 250. Object
manager 440 also establishes the logical connections
between the new objects and existing services 430 or appli-
cations 420.

With respect to new objects that wholly or partially
replace functions provided by existing objects, object man-
ager 440 1s preferably adapted to direct an orderly transition
from those existing objects being replaced to the new objects
being installed. This process 1s referred to herein as staging,
and 1s described 1n more detail below 1n connection with
FIG. 6. In step 560, object manager 440 copies ficlds 412
from existing objects into their corresponding replacement
objects. Next, in step 370, new dynamic references 418 are
established between existing objects that are to remain on
line and any new objects. In step 375, existing dynamic ref-
erences 418 are re-routed to the new objects. This permits an
orderly rerouting of object references 418 from existing
objects to new objects.

In step 580, objects 410 that are no longer 1n active use are
either permanently purged from environment 250 by object
manager 440, or archived to storage 210 for possible later
retrieval.

Because an upgrade may include a partial or complete
replacement of existing objects, a potential exists for suspen-
sion of services or functions provided by objects being
replaced. In a preferred embodiment, the present system and
method address this 1ssue by staging new replacement
objects to avoid service disruption as existing objects are
replaced. More specifically, staging allows object manager
440 to transfer active data communication paths from exist-
ing objects to new objects during an upgrade rather than
disrupting or terminating these data communication paths.

An exemplary staging process 1s illustrated in FIG. 6. In
the exemplary scenario of FIG. 6, object A 1s being replaced
by object B as part of an upgrade. In step 610, object man-
ager 440 verifies that the methods and properties of object B
are compatible with upstream objects that object A refer-
ences These upstream objects are objects that provide data or
services to object A. In step 6135, object manager 440 verifies
that the methods and properties of object B are compatible
with downstream objects that reference object A. These
downstream objects are objects that require services or
receive data from object A. Once these verifications have
been completed, object manager 440 creates an 1nstance of
object B 1in environment 250.

Next, in step 625, object manager 440 locks object A and
object B 1n environment 250. Locking prevents fields 412 of

US RE42,685 E

9

either object from changing, and provides object manager
440 with exclusive access to these objects during the transi-
tion from object A to object B.

While the objects are locked 1n step 630, object manager
440 copies the value of fields found 1n object A to object B.
Then, 1n step 6335, references 418 to upstream objects are
copied from object A to object B. Likewise, 1n step 640,
references to object A found 1n downstream objects are redi-
rected to object B. In step 645, object B 1s unlocked by
object manager 440, thus restoring the services and func-
tionality originally provided by object A but now provided
by object B and making available any new services and func-
tionality provided by object B. In step 650, object manager
440 purges or archives object A, thus completing the staging
process.

Staging may also comprise a finer-grained approach
where an object’s methods are changed without replacing
the entire object. In such cases, the entire object need not be
locked; nstead, access to the upgraded method 1s restricted.
For example, suppose that a log writer interface contained 1n
a stream manager object requires upgrading. The stream
manager object continues to provide functions to other
objects through other methods. The staging process blocks
object access to the log writer interface, but does not lock the
stream manager object. After the code for the log writer
interface has been replaced, objects can resume 1nteraction
with the log writer interface.

Run Time Extensible Digital Media Servers

Programmable logic devices 227 in hardware engine 220
do not typically comprise an operating system like general-
purpose computer 240. Instead, PLDs 227 are typically
designed with programmable logic to efficiently accomplish
a relatively limited set of data processing tasks, as described
above. Two preferred embodiments for maintaining media
delivery at tull capacity during an upgrade of the program-
mable logic found 1 a PLD 227 are described below.

In the first preferred embodiment, each PLD 227 1is
capable of selectively partitioning and reprogramming spe-
cific portions of the device, leaving other non-atfected por-
tions operating normally. In the second preferred
embodiment, hardware engine 220 comprises redundant
PLDs. These embodiments are described 1n connection with
FIGS. 7A-B and FIGS. 8-9.

FIG. 7 A 1illustrates the partitionable, PLD embodiment. In
this embodiment, a digital media delivery pipeline 700 pret-
erably comprises a data path 710 and a partitionable repro-
grammable logic device 720. Partitionable programmable
logic device 720 preferably includes a plurality of partitions,
(e.g., 722,724, 726) cach of which may be separately repro-
grammed while the other partitions continue to operate.

An example of a firmware upgrade process for partition-
able PLD 700 1s illustrated 1n more detail in FIG. 8. As
shown 1 FIG. 8, in step 810, when a system administrator
iitiates a firmware upgrade, a new partition 1s created 1n
PLD 700. Next, in step 820, the partition 1s programmed
with a new set ol hardware description language (HDL)
logic. In step 830, an operational transier 1s made, wherein
the partition takes control of processing functions from an
original partition that 1t 1s replacing. More specifically, the
new, 1nactive partition 1s transitioned to the active state, and
supplies the processing functions necessary to continue
streaming digital media. Concurrently, the original partition
1s transitioned to an inactive state. Then, 1n step 840, the
original partition 1s reprogrammed, thus completing the
upgrade session.

FIG. 7B illustrates the redundant logic device embodi-
ment. In this embodiment, a digital media delivery pipeline

5

10

15

20

25

30

35

40

45

50

55

60

65

10

750 preterably includes a data path 760, a first program-
mable logic device 770 (PLD-A), and a second program-

mable logic device 780 (PLD-B). The mactive device merely
passes data through path 760.
With this redundant approach, one PLD may be leit avail-

able for reprogramming while the other responds to requests
from general-purpose computer 240. Later, the two PLDs
may again swap control so that the other may be upgraded. A
firmware upgrade may thus be completed without disrupting
digital media delivery service.

An example of a firmware upgrade process for redundant
PLD pipeline 750 1s illustrated in more detail 1in FIG. 9. As
shown 1 FIG. 9, 1n step 910, when a system administrator
initiates a firmware upgrade, a determination 1s made as to
which device 770, 780 1s active and which 1s 1nactive or
pass-through. For purposes of the exemplary scenario of
FIG. 7B, it will be assumed that PLLD-A 770 1s active. Next,
in step 920, PLD-B 780 1s upgraded by loading a new set of
hardware description language (HDL) logic. In step 930, an
operational transfer 1s made, wherein PLD-B 780 becomes
the active device, and PLD-A 770 becomes 1nactive. Then,
in step 940, PLD-A 1s upgraded with a new set of HDL logic,
thus completing the upgrade session.

While the mvention has been described in conjunction
with specific embodiments, 1t 1s evident that numerous
alternatives, modifications, and variations will be apparent to
those persons skilled in the art 1n light of the foregoing
description.

What 1s claimed 1s:

1. A method of upgrading a digital media server compris-
ing an object oriented runtime environment implemented 1n
a memory, the method comprising:

checking for the existence of an upgrade package com-
prising new objects;

identilying t2e new objects 1n the upgrade package;

identifying functions and properties of the new objects;

evaluating compatibility of the new objects;

instantiating new objects as applications objects or ser-
vices objects 1n the memory;

determining whether a new object replaces an old object
in the object oriented runtime environment; and

11 the new object replaces the old object, replacing the old
object by:
locking the old object and the new object;
copying fields from the old object to the new object,
establishing links from the new object to objects depen-
dent on the old object;
rervouting links to the old object from other objects to
the new object;
in response to rverouting the links, unlocking the new
object; and
removing the old object.
[2. The method of claim 1, wherein the step of replacing
further comprises:

locking the old object and the new object;
copying fields from the old object to the new object;

establishing links from the new object to objects depen-
dent on the old object;

rerouting links to the old object from other objects to the
new object;

unlocking the new object; and

removing the old object.}

3. The method of claim [2] /, [wherein the step of remov-
ing comprises] further comprising archiving the old object.

4. The method of claim [2] /, wherein [the step of] remov-
ing the old object comprises purging the old object.

US RE42,685 E

11

5. The method of claim 1, wherein the upgrade package
turther comprises one or more new methods for old objects,
the method further comprising:

identifying the one or more new methods from the
upgrade package;
evaluating compatibility of the one or more new methods;

for each of the one or more new methods:
determining whether a new method replaces [an] a cor-
responding old method; and
i the new method replaces the corresponding old
method, blocking and replacing the old method wit/
the new method.

6. The method of claim 5, wherein the old method 1s an
interface.

7. The method of claim 1, further comprising download-
ing the upgrade package from a network source.

8. The method of claim 1, further comprising loading the
upgrade package from a storage medium.

9. A method of mstalling upgrades on a digital media
server comprising a general purpose computer and a hard-
ware engine, the computer comprising an object oriented
runtime environment, and the hardware engine comprising a
programmable logic device having a first [active] partition i
an active state and a second [inactive] partition in an inac-
tive state, the method comprising,

checking for the existence of an upgrade package com-
prising new objects and new logic;

identifying t2e new objects in the upgrade package;

identifying functions and properties of the new objects;
evaluating compatibility of the new objects;

instantiating new objects as applications objects or ser-
vices objects;

determining whether a new object replaces an old object
in the object oriented runtime environment;

if the new object replaces the old object, replacing the old
object;
identifying the new logic 1n the upgrade package;

programming the second [inactive] partition with the new
logic;
transitioning the second partition from [an] #ze inactive
state to [an] #ze active state and simultaneously assum-
ing data processing functions from the first [active] par-
tition; and
transitioning the first partition to [an] #ze inactive state.
10. The method of claim 9, further comprising program-
ming the first partition with the new logic.
11. The method of claim 9, further comprising download-
ing the upgrade package from a network source.
12. The method of claim 9, further comprising loading the
upgrade package from a storage medium.
13. The method of claim 9, wherein [the step of] replacing
the old object turther comprises:

locking the old object and the new object;
copying fields from the old object to the new object;

establishing links from the new object to objects depen-
dent on the old object;

rerouting links to the old object from other objects to the
new object;

in response to revouting the links, unlocking the new
object; and

removing the old object.
14. The method of claim 13, [wherein the step of remov-
ing comprises] further comprising archiving the old object.

10

15

20

25

30

35

40

45

50

55

60

65

12

15. The method of claim 13, wherein [the step of] remov-
ing the old object comprises purging the old object.

16. A method of installing upgrades on a digital media
server comprising a general purpose computer and a hard-
ware engine, the computer comprising an object oriented
runtime environment, and the hardware engine comprising
two or more programmable logic devices, each having active
and 1nactive states, the method comprising:

checking for the existence of an upgrade package com-
prising new objects and new logic;

1dentilying t2e new objects 1n the upgrade package;

identifying functions and properties of the new objects;

evaluating compatibility of the new objects;

instantiating th2e new objects as applications objects or
services objects;

determining whether a new object replaces an old object
in the object oriented runtime environment;

11 the new object replaces the old object, replacing the old
object;

identifying t2e new logic in the upgrade package;

determiming a first set of programmable logic devices that
are 1n the active state;

programming the new logic into a second set of one or
more logic devices 1n an 1nactive state;

transitioning the second set of devices to the active state
and simultaneously assuming data processing functions
from the first set of devices; and

transitioning the first set of devices to the 1nactive state.
17. The method of claim 16, further comprising program-

ming the new logic into the first set of devices.
18. The method of claim 16, further comprising down-

loading the upgrade package from a network source.

19. The method of claim 16, further comprising loading
the upgrade package from a storage medium.

20. The method of claim 16, wherein [the step of] replac-
ing the old object further comprises:

locking the old object and the new object;
copying fields from the old object to the new object;

establishing links from the new object to objects depen-
dent on the old object;

rerouting links to the old object from other objects to the
new object;

in response to rerouting the links, unlocking the new
object; and

removing the old object.

21. The method of claim 20, [wherein the step of remov-
ing comprises] further comprising archiving the old object.

22. The method of claim 20, wherein [the step of] remov-
ing the old object comprises purging the old object.

23. The method of claim 16, wherein the upgrade package
further comprises one or more new methods for old objects,
the method further comprising;

identifying the one or more new methods;
evaluating compatibility of the one or more new methods;

determining whether a new method replaces an old
method; and

11 the new method replaces the old method, blocking and
replacing the old method.
24. The method of claim 23, wherein the old method 1s an
interface.
25. A digital media server comprising:

a storage medium comprising an object store; and

a computing device configured to execute an object-
oriented, runtime environment, the object-oriented,
runtime environment COmprising:

US RE42,685 E

13

service objects, application objects, and an object man-
ager adapted to facilitate the replacement of the ser-
vice objects and the application objects without dis-
rupting data processing functionality supplied by the
service and application objects by:
locking an old object and a new object;
copying fields from the old object to the new object;
establishing links from the new object to objects

dependent on the old object,

rervouting links to the old object from other objects to

the new object;

in vesponse to rvevouting the links, unlocking the new
object; and

removing the old object.

26. The server of claim 25, further comprising a network
interface for downloading an upgrade package comprising
replacement service and application objects.

27. The server of claim 25, [further comprising] #ze stor-
age [media for storing] medium further comprising an
upgrade package comprising replacement service and appli-

cation objects.
28. A digital media server comprising:
an object store;

an object-oriented],] runtime environment, comprising:
service objects, application objects, and an object man-
ager adapted to facilitate the replacement of the service
objects and the application objects without disrupting
data processing functionality supplied by the service
and application objects;

two or more programmable logic devices, each capable of
switching between an active state and an 1nactive state;
an 1put data path; and

an output data path;

wherein one or more programmable logic devices 1n the
active state processes digital media arriving on the
input data path and presents processed digital media
to the output data path while one or more program-
mable logic devices in the inactive state are pro-

grammed with new logic.
29. The server of claim 28, further comprising a network
interface for downloading an upgrade package comprising

replacement service and application objects and new logic.
30. The server of claim 28, further comprising storage
media for storing an upgrade package comprising replace-
ment service and application objects and new logic.
31. A digital media server comprising:

an object store;

an object-oriented],] runtime environment, comprising:
service objects, application objects, and an object man-
ager adapted to facilitate the replacement of the service
objects and the application objects without disrupting
data processing functionality supplied by the service
and application objects;

a partitionable programmable logic device having two or
more independendy programmable partitions, each par-
tition capable of switching between an active state and
an 1nactive state;

an 1put data path; and

an output data path;
wherein one or more partitions in the active state pro-
cess digital media arriving on the input data path and
present processed digital media to the output data
path while one or more partitions in the mactive state
are programmed with new logic.

32. The server of claim 31, further comprising a network
interface for downloading an upgrade package comprising
replacement service and application objects and the new
logic.

14

33. The server of claam 31, further comprising storage
media for storing an upgrade package comprising replace-
ment service and application objects and the new logic.

34. A method of upgrading a digital media server com-

5 prising an object oriented runtime environment implemented
in a memory, the method comprising:

tracking logical comnnections to other objects for each
object in the object orviented runtime environment;

identifving functions and properties of a new object in an
10 upgrade package;
instantiating the new object as an application object or

service object in the memory,

determining whether the new object veplaces an old object

15 in the object oriented runtime environment,

establishing new logical connections between the new
object and the other objects in the object oriented runt-
Ime environment;

in response to establishing the new logical connections,
20 replacing the old object with the new object;
identifving new logic in the upgrade package;
programming an inactive programmable logic device par-
tition with the new logic;

transitioning the inactive programmable logic device par-

23 tition from an inactive state to an active state and

assuming data processing functions from an active pro-
grammable logic device partition; and

transitioning the active programmable logic device parti-
tion to an inactive state.
SO 35. The method of claim 34, wherein veplacing the old
object further comprises locking the old object and the new
object.

36. The method of claim 35, wherein veplacing the old
object further comprises copving fields from the old object to
the new object.

37. The method of claim 35, wherein veplacing the old
object further comprises establishing links from the new
object to objects dependent on the old object.

38. The method of claim 35, wherein veplacing the old
object further comprises rerouting links to the old object
from other objects to the new object.

39. The method of claim 35, wherein veplacing the old
object comprises removing the old object from the object
oriented runtime envivonment and archiving the old object.

40. A method of upgrading a digital media server com-
prising an object oviented runtime envivonment implemented
in a memory, the method comprising:

35

40

45

identifving a new method for an old object in an upgrade
package, wherein the old object comprises at least one
other method;

evaluating compatibility of the new method,

50

determining whether the new method replaces an old
method in the object oriented runtime envivonment; and

55 if the new method replaces the old method, replacing the
old method while allowing access to the at least one
other method by:
blocking access to the old method,
replacing the old method with the new method, and

60 allowing access to the new method;

identifving new logic in the upgrade package;
programming an inactive programmable logic device par-
tition with the new logic;

transitioning the inactive programmable logic device par-

65 tition from an inactive state to an active state and

assuming data processing functions from an active pro-
grammable logic device partition; and

US RE42,685 E

15

transitioning the active programmable logic device parti-
tion to an inactive state.

41. The method of claim 40, wherein the old method is an

interface.

42. A method of installing upgrades on a digital media
server comprising a general purpose computer and a havd-
ware engine, the computer comprising an object oriented
runtime environment, and the havdware engine comprising a
programmable logic device having a first partition in an
active state, the method comprising.

detecting an instruction to initiate an upgrade;

responsive to detecting the instruction to initiate the
upgrade, creating a second partition in an inactive
state on the programmable logic device;

identifving a new object in an upgrade package, said new
object being for execution in the object orviented runt-
Ime environment;

determining that the new object replaces an old object in
the object oviented runtime environment;

programming the second partition with the new object;

transitioning the second partition from the inactive state
to an active state;

assuming, by the second partition, data processing func-
tions from the first partition; and

transitioning the first partition to the inactive state.

43. The method of claim 42, further comprising program-
ming the first partition with the new object.

44. A method of installing upgrades on a digital media
server comprising a generval purpose computer and a havd-
ware engine, the computer comprising an object orviented
runtime environment, and the havdware engine comprising
two ov more programmable logic devices, each having active
and inactive states, the method comprising:

identifving a new object in an upgrade package, said new
object being for execution in the object oriented runt-
Ime environment;

determining that the new object replaces an old object in
the object oriented runtime environment,

determining that a first programmable logic device is in
an active state;

programming the new object into a second programmable
logic device in an inactive state;

copving the values of at least one field of the old object
into at least one field of the new object;

transitioning the second programmable logic device to the
active state;

assuming, by the second programmable logic device, data
processing functions from the first programmable logic
device; and

transitioning the first programmable logic device to the

inactive state.

45. The method of claim 44, further comprising program-
ming the new object into the first programmable logic
device.

46. A digital media server comprising:

an object-oriented runtime environment cCOmprising sevr-

vice objects and an object manager, wherein the object

manager is configured to:

identify functions and properties of a new object,

instantiate the new object as an application object or a
service object in a memory,

determine whether the new object replaces an old
object in the object oviented runtime environment,

establish new logical connections between the new
object and other objects in the object oriented runt-
ime environment, and

5

10

20

25

30

35

40

45

50

55

60

65

16

in response to establishing the new logical connections
between the new object and the other objects,
replace the old object with the new object;

two or movre programmable logic devices, each capable of
switching between an active state and an inactive state;

an input data path; and

an output data path;

whevrein one or more programmable logic devices in the
active state processes, in the object orviented runtime
environment, digital media arriving on the input data
path and presents processed digital media to the out-
put data path while one or more programmable logic
devices in the inactive state arve programmed by the
object manager with new logic for execution in the
object oriented runtime environment, and wherein
the object manager establishes new logical connec-
tions between the new logic and objects in the object
oriented runtime environment.

47. The server of claim 46, further comprising a network
interface for downloading an upgrade package comprising
replacement service and application objects and the new
logic.

48. The server of claim 46, further comprising a storvage
medium for storing an upgrade package comprising replace-
ment service and application objects and the new logic.

49. A digital media server comprising:

an object-oriented runtime envivonment comprising ser-

vice objects and an object manager, wherein the object

manager is configured to:

identify functions and properties of a new object,

instantiate the new object as a service object in a
memory,

determine whether the new object replaces an old
object in the object orviented runtime environment,

establish new logical connections between the new
object and other objects in the object oriented runt-
ime environment, and

in response to establishing the new logical connections
between the new object and the other objects,
replace the old object with the new object;

a partitionable programmable logic device having two or
movre independently programmable partitions, each
partition capable of switching between an active state
and an inactive state, wherein a second partition in the
inactive state is created on the partitionable program-
mable logic responsive to detecting an instruction to
initiate an upgrade;

an input data path; and

an output data path;

whevrein a first partition in the active state processes, in
the object oriented runtime environment, digital
media arriving on the input data path and presents
processed digital media to the output data path while
the second partition in the inactive state is pro-
grammed with new logic for execution in the object
oriented runtime environment.

50. The server of claim 49, further comprising a network
interface for downloading an upgrade package comprising
replacement service and application objects and the new
logic.

51. The server of claim 49, further comprising a storvage
medium for storing an upgrade package comprising replace-
ment service and application objects and the new logic.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : RE42,685 E Page 1 of 1
APPLICATION NO. : 11/961991

DATED . September 6, 2011

INVENTOR(S) . Oesterreicher et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Title page, item (56), under “Foreign Patent Documents™, in Column 2, Line 7,
delete “JP 03019362 2/2011” and insert -- WO 03019362 2/2011 --.

Title page, item (56), under “Other Publications”, in Column 2, Line 1, delete “1979-181,” and insert
-- 179-181, --.

IN THE CLAIMS:
Column 11, line 26, 1in Claim 9, delete “comprising,” and 1nsert -- comprising: --.
Column 12, line 53, in Claim 23, delete “comprising;” and insert -- comprising: --.

Column 13, line 54, m Claim 31, delete “independendy’™ and insert -- independently --.

Signed and Sealed this
Seventh Day of February, 2012

David J. Kappos
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

