(19) United States

12 Reissued Patent
Hallmark et al.

(10) Patent Number:
45) Date of Reissued Patent:

USOORE42664E

US RE42,664 E
Aug. 30, 2011

(54) METHOD AND APPARATUS FOR
IMPLEMENTING PARALLEL OPERATIONS
IN A DATABASE MANAGEMENT SYSTEM

(75) Inventors: Gary Hallmark, Portland, OR (US);
Daniel Leary, New Ipswich, NH (US)

(73) Assignee: Oracle International Corporation,
Redwood Shores, CA (US)

(21) Appl. No.: 09/757,399

(22) Filed: Jan. 5, 2001
Related U.S. Patent Documents
Reissue of:
(64) Patent No.: 5,857,180
Issued: Jan. 5, 1999
Appl. No.: 08/898.080
Filed: Jul. 21, 1997

U.S. Applications:
(63) Continuation of application No. 08/441,527, filed on
May 15, 19935, now abandoned, which 1s a continua-

tion of application No. 08/127,583, filed on Sep. 27,
1993, now abandoned.

(51) Int.CL
GOo6l’ 17/00 (2006.01)
GO6F 15/16 (2006.01)
(52) US.CL ... 707/636; 707/999.003; 70°7/999.008;
70r7/999.1; 709/200; 718/100
(58) Field of Classification Search 707/2, 3,

707/4, 200, 5, 100, 77, 10; 709/200, 201,
709/205; 717/146

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
4,414,624 A * 11/1983 Summeretal. 712/21
(Continued)

OTHER PUBLICATIONS

Hongjun Lu, Kian-Lee Tan, “Dynamic and Load-balanced Task-
Oriented Database Query Processing in Parallel Systems”, 1992,

Springer Berlin / Heidelberg, “Advances 1n Database Technology—
EDBT ’92”; pp. 357-372.%

(Continued)

Primary Examiner — Tony Mahmoudi
Assistant Examiner — Dennis Truong

(74) Attorney, Agent, or Firm — Hickman Palermo Truong
& Becker LLP

(57) ABSTRACT

The present invention implements parallel processing 1n a
Database Management System. The present invention pro-
vides the ability to locate transaction and recovery informa-
tion at one location and eliminates the need for read locks and
two-phased commits. The present invention provides the abil-
ity to dynamically partition row sources for parallel process-
ing. Parallelism 1s based on the ability to parallelize a row
source, the partitioning requirements of consecutive row
sources and the entire row source tree, and any specification
in the SQL statement. A Query Coordinator assumes control
of the processing of a entire query and can execute serial row
sources. Additional threads of control, Query Server, execute
a parallel operators. Parallel operators are called data flow
operators (DFOs). A DFO 1s represented as structured query
language (SQL) statements and can be executed concurrently
by multiple processes, or query slaves. A central scheduling
mechanism, a data flow scheduler, controls a parallelized
portion ol an execution plan, and can become 1nvisible for
serial execution. Table queues are used to partition and trans-
port rows between sets of processes. Node linkages provide
the ability to divide the plan 1nto independent lists that can
cach be executed by a set of query slaves. The present inven-
tion maintains a bit vector that 1s used by a subsequent pro-
ducer to determine whether any rows need to be produced to
its consumers. The present uses states and a count of the
slaves that have reached these states to perform 1ts scheduling
tasks.

54 Claims, 33 Drawing Sheets

432
Query
Coorcinator
428

{employee fable)

412

J,.
l Table Scan l
{depariment iable)

US RE42,664 E
Page 2

U.S. PATENT DOCUMENTS

4,769,772 A 9/1988 Dwyer
4,829,427 A 5/1989 QGreen
4937777 A * 6/1990 Floodetal. 710/107
5,091,852 A 2/1992 Tsuchida et al.
5,193,189 A * 3/1993 Floodetal. 718/103
5,253,171 A * 10/1993 Hsiaoetal.c..ccooontnn 378/4
5,257,372 A * 10/1993 Furtneyetal. 718/105
5,307,485 A * 4/1994 Bordonaroetal. 707/7
5,325,525 A 6/1994 Shan et al.
5,339.429 A 8/1994 Tanaka et al.
5,402,350 A * 3/1995 Klinecoovvvviiviinnnnnn, 700/101
5,442,569 A * /1995 0sanooccovvvviiiiiniinn, 716/20
5448,732 A * 9/1995 Matsumoto 718/104
5,452,468 A 9/1995 Peterson
5495419 A 2/1996 Rostoker et al.
5,495,606 A 2/1996 Borden et al.
5,537,588 A 7/1996 Engelmann et al.
5,551,027 A 8/1996 Choy et al.
5,574,900 A 11/1996 Huang et al.
5,590,319 A 12/1996 Cohen et al.
5,602,754 A * 2/1997 Beattyetal. 716/6
5,642,515 A 6/1997 Jones et al.
5,675,791 A 10/1997 Bhideetal. 395/621
5,680,547 A 10/1997 Chang
5,710,915 A 1/1998 McElhiney
5,787,251 A 7/1998 Hamilton et al.
5,857,180 A * 1/1999 Hallmark etal. 707/2
5918,225 A * 6/1999 Whiteetal. 707/3
6,009,265 A 12/1999 Huang et al.
6,289.334 Bl 9/2001 Reiner et al.
6,311,265 B1* 10/2001 Beckerleetal. 712/203
6,427,154 B1* 7/2002 Kolodneretal. 707/206
6,430,550 Bl 8/2002 Leo et al.
6,430,580 B1* 8/2002 Azaguryetal. ... 707/206
6,438,558 Bl 8/2002 Stegelmann 707/102
6,438,562 Bl 8/2002 Gupta et al.
6,684,203 Bl 1/2004 Waddington et al. 707/3
6,687,798 B1* 2/2004 Thusooetal. 711/154
6,711,560 B2* 3/2004 Levyetal.oo.oooiinnnil, 707/1
6,901,405 Bl 5/2005 McCrady et al.
6,941,360 Bl 9/2005 Srivastavaetal. 709/2273
6,954,776 B1 10/2005 Cruanes et al.
6,961,729 B1 11/2005 Toohey et al.
6,980,988 Bl 12/2005 Demers et al.
6,990,503 Bl 1/2006 Luo et al.
2002/0038313 Al 3/2002 Klein et al.
2002/0138376 Al 9/2002 Hinkle
2002/0143746 Al* 10/2002 Levyetal.ccooennnni. 707/2
2005/0283471 A1 12/2005 Ahmed
2006/0041537 Al 2/2006 Ahmed

OTHER PUBLICATTONS

Goetz Graefe, “Encapsulation of Parallelism in the Volcano Query

Processing System,” Mar. 1990, pp. 102-111.

Bergsten, et al., Prototyping DBS3 a Shared-Memory Parallel Data-
base System, IEEE, 226-234, 1991.

Hirano, et al., Load Balancing Algorithm for Parallel Processing on
Shared Memory Multiprocessor, IEEE, pp. 210-217, 1991.

Hong et al., “Optimization of Parallel Query Execution Plans in
XPRS,” Proceedings of the First International Conference on Parallel

and Distributed Information Systems, IEEE, 1991, pp. 218-225.

“An Analysis of Three Transaction Processing Architectures”
Anupam Bhide, Computer Science Division, UC Berkeley, 1988, pp.
339-350.

“A Benchmark of NonStop SQL Release 2 Demonstrating Near-

Linear Speedup and Scaleup on Large Databases”, Susan Englert, et
al, Technical Report 89.4, May 1989, pp. 1-23.

“A Benchmark of NonStop SQL on the Debit Credit Transaction”,
The Tandem Performance Group, 1988, pp. 337-341.

“Data Placement 1n Bubba™, George Copeland, et al., MCC, 1988,
pp. 99-108.

“The Design of XPRS”, Michael Stonebraker, et al., EECS Depart-
ment UC Berkeley, 1988, pp. 318-330.

“A Performance Analysis of the Gamma Database Machine”,
DeWitt, et al., Computer Sciences Department, University of Wis-
consin, 1988, pp. 350-360.

German Patent and Trademark Office, “Attorney/Client Communi-
cation Privileged and Confidential”, translation attached, Applicia-
tion No. P4497320.9, dated Apr. 25, 2007, 18 pages.

Claims, App. No. PCT/US94/10092, 4 pages.

Rahm, Erhard, et al., “Analysis of Dynamic Load Balancing Strate-
gies for Parallel Shared Nothing Database Systems”, Proceedings of
the 19”* VLDB Conference, 1993, printed Apr. 25, 2007, pp. 182-193.
German Patent Office, “Office Action,” GR App. No. P4479320.9-53,
dated Dec. 22, 2005 (5 pages), with English translation (4 pages).
Current Claims, GR App. No. P4479320.9-53, 9 pages.
Borla-Salamet, Pascale, “Compiling Control into Database Queries
for Parallel Execution Management,” IEEE Conference on Parallel
Distributed Information Systems, 1991, ISBN 0-8186-2295-4, pp.
271-279,

Bergsten, et al., “Prototyping DBS3 a Shared-Memory Parallel Data-
base System”, IEEE, 226-234, 1991.

Bhide, Anupam “An Analysis of Three Transaction Processing Archi-
tectures”, Computer Science Division, UC Berkeley, 1998, pp. 339-
350.

Copeland, George et al., “Data Placement in Bubba,” MCC, 1988, pp.
99-108.

Dewitt, et al., “A Performance Analysis of the Gamma Database
Machine,” Computer Sciences Department, University of Wisconsin,
1988, pp. 350-360.

Englert, Susan et al., “A Benchmark of NonStop SQL Release 2
Demonstrating Near-Linear Speedup and Scaleup on Large Data-
bases”, Technical Report 89.4, May 1989, pp. 1-23.

Graefe, Goetz, “Encapsulation of Parallelism in the Volcano Query
Processing System,” Mar. 1990, pp. 102-111.

Leverenz et al., “Oracle 81 Concepts Release 8.1.5”, Oracle Corpo-
ration, Feb. 1999, located on the internet at <http://www.csee.umbc.
edu/help/oracle8/server.815/a67781/toc. htm>, 121 pages.
Stonebraker, Michael, et al. “The Design of XPRS,”, et al., EECS
Department UC Berkeley, 1988, pp. 318-330.

Tandem, “A Benchmark of NonStop SQL on the Debit Credit Trans-
action”, The Tandem Performance Group, 1988, pp. 337-341.
Hong et al, Optimization of Parallel Query Execution Plans in XPRS,
IEEE, pp. 218-225, 1991.

“Encapsulation of Parallelism In the Volcano Query Processing Sys-

tem”, Goetz Graefe, Computer Science, University of Colorado, Mar.
1990, pp. 102-111.

* cited by examiner

U.S. Patent Aug. 30, 2011 Sheet 1 of 33 US RE42,664 E

, SHARED i
. EVERYTHING

§ CPU 1 e CPUn i

§ o DISK | ... [DISK
[MEMORY MEMORY 1|1 sTORAGE 1 'STORAGE n

FIG. 1A
(Prior Art)

SYSTEM ONE :

] CPU 1
! DISK |
o MEMOB” STORAGE 1] ;

I---u--------------—---—----‘--ﬂ_-—l—---------------—--——l—--————l_-ﬂ-—_—-----------------H---

FIG. 1B
(Prior Art)

U.S. Patent Aug. 30, 2011 Sheet 2 of 33 US RE42,664 E

i SHARED S —

DISK :
| cput |
| MEMORY 1| E‘MEMORYn\; i

)
O
-
-

FIG. 1C

. SHARED NOTHING HARDWARE ,
: SOFTWARE-IMPLEMENTED SHARED DISK :

L]
E DISK
§ MEMORY N || 5T0RAGE 1

L DISK
- MEMORY STORAGE 1

FIG. 1D
(Prior Art)

U.S. Patent Aug. 30, 2011 Sheet 3 of 33 US RE42,664 E

’ - 202
5 FmpTable 45 o0
. _Emp Emp Dept
204 —+~ No Name No :
E-- - ..".".".'.'.'_'.'...'..'..'..'..'.T..'..'.'.':.'.'.'L"."'.'."_TE' == '_'2 1 0
i Dept Table ~214 |
. Dept Dept
212 4~ No Name |
' select deptName, empName | o216
. from empTable, deptTable 5
. where empTable.deptNo=deptTable.deptNo i
. order by empName |
 Resul 224 | 20
. Dept Emp .
202 ¢~ Name Name |
FIG. 2
,-200
: : 5
i ORDER BY 30 .
5 SORT/MERGE 304 ;
’ JOIN .
i 306 208 i
' 312

v 310
()

§ TABLE SCAN TABLE SCAN :
. | (EMPLOYEE TABLE (DEPARTMENT TABLE)| :

----------—-----------------Hﬂl-----------l——ll-H------------—-ﬁ_---------—ﬂ-------

US RE42,664 E

Sheet 4 of 33

Aug. 30, 2011

U.S. Patent

-‘---q---‘---:

200

-—ﬂ-ﬂ--dﬁ------ﬂ-ﬂ------------ﬁ------h-------------—---------—/ﬁﬁ

e ok il W
'lll'lll-l—.“'l'-'l'
- - W g P omm P g EE B W gn B e mh g mr A R ml A AR B e MR W
l__I.tl_l..llIll‘l“lll-llll.‘—l-‘ll""'lll'ltlll‘ -

324C
3248
324A
sort
Table Scan
(department table)

-1---.l---——-—-------—-------------q----___---_-_---_

I' Order by
D
SortMerge
Join
sort
A
Table Scan
(employee table)

- L A L - s B we ok - ol T e W s ML O - W

il
i wiy Gl gy B, we an g W ek Vg oalk Sy ool B wh Wy TS
il l"I""I__l_.ll._ll_l.‘l_lrl".ll_lll_llI..I.-II.I-'IIII.I.Illil‘_l.ll..l._-llIlllll.ll'll.-ll"-.
il s EF W B e A oy o

K1G. 3B

U.S. Patent Aug. 30, 2011 Sheet 5 of 33 US RE42,664 E

{(employee table) (department table)

' SET C PERFORMED f
5 BY SLAVE SET A :
E 322C 5
: 3028 :
: 3094 5
: Order by
340 i
+ SET B PERFORMED E
' BY SLAVESETB 5
324C ;
| D 3248 E
| 324A E
5 SortMerge
: Join :
: sort sort :
i Vo *
' SET A PERFORMED {
. BY SLAVE SETA ;
:‘. Table Scan Table Scan

U.S. Patent Aug. 30, 2011 Sheet 6 of 33 US RE42,664 E

e 432

Query
Coordinator
428
table
queue Q3

424C

table
orser by

410C ll 416
410B

S s m— table
C bl 410A —~—{ =
queue Q1 ‘! Sort/Merge

G Join
408 {sor cor
402C
4028 412

X 402A
Table Scan Table Scan
(employee table) (department table)

FIG. 4

U.S. Patent Aug. 30, 2011 Sheet 7 of 33 US RE42,664 E

~ 508

506

\- 504

~ 502

FIG. 5

U.S. Patent Aug. 30, 2011 Sheet 8 of 33 US RE42,664 E

DFO Type Type of DFO (e.g., table scan,
sort/merge join)
| Pointer to Parent Pointer to parent node
Pointer to Sibling
Row Source
Operation -
able Queue laentitier dentifies table node tor this queue

Skipped Node Information
Non-QC Node Information

Pointer to First Child Jointer {o first chiid of parallelized node

Key Column Number Number of key columns in input table
queue

Partitioning type Parellelized node's partitioning type
(e.g., hash, key range, rowid range,
round robin

Clumped Columns Number of clumped columns with parent
- PpPredcates

Control Blocks
Contains table scan information (e.g.,
table name and degree of parallelism
Contains information for an indexed
name) nested loop join (e.g., right and left
input table

Sort/Merg join Contains information for a sort/merge

join (e.g., merge or outer join
control flags
Contains information for index creation

(e.g., column list, index type, and
storage parameters)

Index Creation

FIG. 6A

U.S. Patent Aug. 30, 2011 Sheet 9 of 33 US RE42,664 E

Pointer to Next-to-Execute Pointer to the next DFQ to execute

Rowid Table Number Number of tables partitioned by rowid
| QL Statement Size IZS I?Ot e SQL settlement representing
SQL Statement SQL statement representing DFO
Flags
Started Slave sends "Started” message upon
__ receipt
Slave sends "Ready" message when
Input consumed
Close ave expects to be closed upon
completion

FIG. 6B

U.S. Patent Aug. 30, 2011 Sheet 10 of 33 US RE42,664 E

Slave Process

Execution messages

700

read execution |
message fromQC |

704) f75

“message ~_Yes

< ,, __ SlaveParse
S ‘parse'?

No

message

Yes | _
i3 "execute'?

SlaveExecute fe

No
714

712

message

Yes
s "resume"?

| SlaveResume |

No
718 . 716

Slave(iose

FIG. 7A

Yes -~ message

IS “close™?

No

U.S. Patent Aug. 30, 2011 Sheet 11 of 33 US RE42,664 E

SlaveParse |

Y - 720
- open database
cursor for each DFO
parse each DFO -
_ SQL statement

724

bind all SQL statement inputs, |
define all output values '

Y o 726
return parsed cursor
numbers to QC

FIG. 7B

U.S. Patent Aug. 30, 2011 Sheet 12 of 33 US RE42,664 E

SlaveExecute |

730

first
< execute ofthis °

NO

Yes
734

732

QC
S oxpects “started” 2
Neply?_~

No | |
process bind variable |
values, execute cursor

736
| _ o 738

send "started”

Yes
reply

send "done” replies |
- to QC for child DFOs |

742
740

QC
< expects "ready”
~eplies? o~

NO
_ 746
> Slave fetch all rows
- 748

 Yes . fetch one row

from DFQ cursor

744

reply "ready”
to QC

FI1G. 7C

U.S. Patent Aug. 30, 2011 Sheet 13 of 33 US RE42,664 E

SlaveResume |

750

752

first
< rowalready | r—-
Jetched? ~

write first row to
output TQ

No|
754
Slave fetch all rows
oy 756
End FIG. 7D

762

760 - —fe 764
| close database ' !
SlaveClose | cursor associated END

with given DFO

FIG. 7E

US RE42.664 E

Sheet 14 of 33

Aug. 30, 2011

U.S. Patent

01 Indjno
0] 403 oM

b

08/ | 8L/

ON|

7 Al NN
= eued, s108dxs
oo_

Aidas Jenied,
B N0 puas

SO

v/ cLe

AL 1A

0L indino o)

MO JXOU BJLIM

¢8L

10819 04 Woy}
MOI 1X8U Y0}

9.4

ON

7 40T ™
~ 1B S140SIN0 04
usAalb

SeA

0L4

SMOJ ||e
019} BABIS

US RE42,664 E,

Sheet 15 of 33

Aug. 30, 2011

U.S. Patent

e Eelgalas e S

'...llll.lllliit‘!iiii!i!l‘l‘tiil‘lil!!iii

Lo I) il

....._
£
=
2D
J o
LAY
O |

- & @ @

804

Serial RHow
Source

806

o
1
O

Serial How

Source

Parallelizer

808

~ 812

SO

Parallelizer

I_l._l_.._.l.__l_..l.l._.rll.lt..llllill_l.l_l,_l..l_-l_.l-_il_l._lti

r----#ﬁﬂ-----—---ﬂ iy = Ay W S O ER o AF %

i o Ny B Ay Y = SR B BN bp am W PP Ny S oy O B Sy Bk o 3 am o ag ik g R e g e At e W el

lll.‘.lllll-_llI.-l..,.l_il..l-_.l..llllll..il.-l.ll...ll

810

ll!lilll'l_llll_lltlltl IIII

DFO

..1..l'II'IIII.‘I’I-[‘.II'.I"I.’I

e e s aplit
PR) Il__l_l_.l.-llll-illiiEi!iiiiiit‘li!iiiii]li!t

illllillili!i!iil

U.S. Patent

Aug. 30, 2011 Sheet 16 of 33

~ S08A

f
§ Sort/Merge 73
| Join

- 910A

| SortMerge 1
Join

- 910B

Table Scan
(location table)

Table Scan |
{location table}

J06A

Sort/Merge |
Join il . .
et | SortMerge)
* | Join |

9068

9048
[

Table Scan |
(department table)]

9028

4A
r 9C

Tabie Scan |
department table)

3024

Table Scan
(employee table)

Table Scan |
employee table)

(

FI1G. 9

9088

SorMerge ¢

{ " Table Scan ;
(department table)

Table Scan |
(employee tab

US RE42,664

308C
| . Sort/Me fge
. Join

310C

- Tabl ca . ‘_-
iocaticn table))

906C

Join ':'

i ‘
= !

904C

- 902C

J

U.S. Patent Aug. 30, 2011 Sheet 17 of 33 US RE42,664 E

AllocateParallelizer]

getroot DFO 1002
__Initialize flags |

count table 1004

| instances scanned |

1006

count table uues ,

1008

count table queues 1
_from query cooridinator

1010 1012

Yes 5[set order

order
buy in query?,

s

1014

1016

close
operation needed? -~

set close ﬂg

No

— — _ 1018
compress redundant operands from

non-key columns of the row vectors |

1020

determine start and ready synchronization 4
requirements and set pointers accordinly _

1022
determine maximum depth of tree
_ 1024

1026

end

U.S. Patent Aug. 30, 2011 Sheet 18 of 33 US RE42,664 E
TreeTraversal
1032
INITIALIZE TQID TO - GET
STARTING
@ TQ ID FOR PARALLEL DFOs
' 1036
1034 AlL VES
ODES PROCESSED RETURN
1038 NO
GET NEXT NODE IN
EXECUTION ORDER
1040
DETERMINE TABLE QUEUE
CONNECTION CODE
AND TQ PARTITIONING TYPE
044 1048
IGNTQIDTO T DETERMINE THE
NCREMENT T 1D COUNTER NUMBER OF DISTINCT
TABLES SCANNED AND
AT RO
YES
TABLE SCANS? TABLES FOR THIS DFO
NO k&
SLAVE " >~ NODE SLAVE
SET 1 TO BE EXECUTED™_ SET 2
1052 1072 SET FIRST
NODE NODE NODE IN
FIRST YES FIRST YES | EXECUTION
IN EXECUTION IN EXECUTION CHAIN 2
CHAIN 17 CHAIN 27 TO BE
CURRENT
1056 NODE
SET PREVIOUS | [SET FIRST
NODE'S NEXT NODE IN SETREN QS
eI || oY | | Bl
NODE BE CURRENT TO CURRENT

NODE

FIG. 10B

NODE

U.S. Patent Aug. 30, 2011 Sheet 19 of 33 US RE42,664 E

— 1058
| determine table queue |
partitioning type

1060

initialize table
queue format

1062

allocate the table queue |
' descriptor

1064

generate the sq
for the DFO

FIG. 10C

U.S. Patent Aug. 30, 2011 Sheet 20 of 33 US RE42,664 E

1102

1104

fetch rows using |
Yes rOW SOUrCe
operation |

° INo
: - ~ 1106 ~ 1118

current node
_not parallelized?

doss
requester still 40 end
. Want rows? .~
Yes". |
(111{}

wait for some output
from slaves processing
current node

1112

received
some output from
~._ 2 slave?

Row

1116 . 1114

ProcessRowOutput | ProcessMsgOutput |

o

FI1G. 11A

U.S. Patent Aug. 30, 2011 Sheet 21 of 33 US RE42,664 E

ProcessRowQutput

get rowirom

1134

1132

1136

"eof"
pulled from
Y TQ? ~

mark slaves as finisheq,
and stop siaves

J Yes

NO

1138 1140

callback
procedure

. __Yes execute callback
N\ supplied?

procedure

NO

-- noRowsRequested
++ rowCount |
Y 1144

1142

FI1G. 11B

U.S. Patent Aug. 30, 2011 Sheet 22 of 33 US RE42,664 E

ProcessMsgOutput

1162 1164

all

No
slaves started?

\nessage = "Started"? L

Yes
No 1166

specity state to wait 1or as "Heady” |
count of slaves reaching "Ready” = 0

| 1168
| Resume(currentDFO)
1170 e ———————
1172
message = "Ready"? Yes ProcessReadyMsg F—
Na
’ 1174 1176

Yes send additional partial(s)

message = "Partial"? |
$8ag L to message sender |

o
FIG. 11C

U.S. Patent Aug. 30, 2011 Sheet 23 of 33 US RE42,664 E

' ' e~ 1180
get next DFO to execute |

1182

modify bit vector to record |
which consumers received |
rows from finished slaves |}

1184

, some DFO
<~ 15 started or started DFO is ™
Ny, Nextornexts

Ty parent o~

| NextDFO |

1188

FIG. 11D

U.S. Patent Aug. 30, 2011 Sheet 24 of 33 US RE42,664 E

GET:
TQ ID FOR CURRENT DFO
OUTPUT TQ PARTITIONING

1202

TYPE CURRENT NODE'S
IDENTIFIER RANGE
PARTITIONING KEYS

1206

YES EMPTY ENTIRE ROW
SOURCE INTO

APPROPRIATE TQ

1204

NODE
EXECUTED BY QC?

1208 NO

SEND RESUME MESSAGE
TO ALL SLAVES EXECUTING
CURRENT DFO NODE

1210

CURRENT'S STATE = DONE
NUMBER OF SLAVES
REACHING DONE =0

1212

FIG. 12

U.S. Patent Aug. 30, 2011 Sheet 25 of 33 US RE42,664 E

ProcessReadyMsq |

/1302

all

- NG
~Slaves ready?

 Yes

1304
MARK "no DFQ started" |
- 1306 P 1308
\Of current ready? > current done? 2

INO

NextDFO(CurrentDFO) |-

1310

parent = parent(currentDFQO)

1312 1314

No . resume(parent) |——o

1316

found and child first -
child of parent?

” 1318

U.S. Patent Aug. 30, 2011 Sheet 26 of 33 US RE42,664 E

NextDFO

1402

identify current node, next
node {o execute, parent |
count and parent state |}

1406

use the bitvec 1o exeutefresume -
the next DFO if the next DFQ is a join |
apprentice to the current DFO |

1408

is
< nextasiblingot -
Ty CUrent? o

1410 N

| set slave count for parent to zero

and mark parent's state as nulf ;:-
1412

I count=0 ?j-; | F

> state = NULL | {start (next DFO)|

1414 1416

does
the next node have 5
~_ 2 child? "

Yes

parent = parent of next

(& O
FIG. 14A

1418

U.S. Patent Aug. 30, 2011 Sheet 27 of 33 US RE42,664 E

1422
1420

number of slaves of |
current node |
state = ready

. i > | count =
next current's '

| count = parent's slave count 1
state = parent's state |

1426

—" haveall >t
< of current's slaves reached SN0

[Ves
) 1428

1430

S e Vs
| start {parent)
- —3 — 1433
set the next DFO to be |
current DFO

1434

" does >
. next have a parent
"y, aNnd 1s next the first child _*

T O parent?

end

U.S. Patent Aug. 30, 2011 Sheet 28 of 33 US RE42,664 E

Start(DFONode) |

1502
Yes Node serially No
1504 “processed? - 1590
slave counter ffi
E—— _settozero |
1506 1522 ~1524

start
confirmation
~Jeeded

indicate o "Reagy '
message needed |

Yes., mark stale as

No
. | - 1508 |
initialize counter mark state as 1
to number of | "Already Started"
' this node | 1528

< confirmation 5
| ..eeded?

ark stateas
‘Already Reaay” |

. _ 1510
get initial rowid range for each parallel table scan 1{
for each slave implementing current DFO |
_) 1512
send an execution message fo each siave
in the slave set implementing current node |
1514

mark current node as g stared ode

return

1516

FIG. 15

U.S. Patent Aug. 30, 2011 Sheet 29 of 33 US RE42,664 E

Close

1602
"CLOSE"
MESSAGE EXPECTED
BY SLAVES?

1604

SendCloseMsg
Stop(CurrentDFO)

1608

CLEAR FLAGS
1610

1600

FIG. 16

U.S. Patent Aug. 30, 2011 Sheet 30 of 33 US RE42,664 E

' SendCloseMsq |

Y o 1702
DFQO = first executed DFO :

1704

—no current >
_DFO or current DFO not.
T parallel? o~

~ Yes

DFOfound? >

NO
“ 1708

_ DFO .
slaves expecting close 5

send close message to
each slave in set

1712 1714

Yes Y end

DFO =
current DFO?

No

- DFO = next DFO |

1716

F1G. 17

U.S. Patent Aug. 30, 2011 Sheet 31 of 33 US RE42,664 E

StartParallelizer
set flags o open, started, no |
| row current, and not EOF |

1804
No

1802

restart with =*
N\WOTK in progress?

Yes
Stop(currentDFO)

— - — ~1808
| set maxSlaves to maximum |

| number of slaves per query |

1810

rowid
~_langesset? o~

NO
| determine rowid ranges per slave |

- e , 1814
allocate rowid ranges and |
slave processes

Yes

1816 1834

wo | oclearflagsin |
output table queue |

any -
siaves available?

F1G. 18A

U.S. Patent Aug. 30, 2011 Sheet 32 of 33 US RE42,664 E

1818

NO . ¥ . 4
start ungerlying |

1820 Yes

allocate variable length items from the cursor work heap |
allocate and initialize bind value pointers
allocate and initialize table queue data structures
allocate SMJ TQ consumer bitvec
| allocate partial execution bitvec

1822~ Y

Yes 1824

| harse and bind DFO SQL |
statemenis at all siaves f

set current node |
o ﬁst node |

set current node's slave count to zero |

set parent node's slave count to zero |
set current node's state to NULL
set parent ncde's state to NULL

1826

1828

- 1830
set TQ bitvec
ciear partial exec b
Initialize row counter
1832

start(current DFQ)

1834

FIG. 18B

U.S. Patent Aug. 30, 2011 Sheet 33 of 33 US RE42,664 E

1902 1904

SERIAL YES | CLOSE UNDERLYING
ROW SOURCE

PROCESS?

19006
CLOSE THE SLAVES AND
DELETE THEM, IF
NECESSARY
1908

INDICATE NO CURRENT
DFO AND NO CURRENT

OQUTPUT TQ
1910

END

FIG. 19

US RE42,664 E

1

METHOD AND APPARATUS FOR
IMPLEMENTING PARALLEL OPERATIONS
IN A DATABASE MANAGEMENT SYSTEM

Matter enclosed in heavy brackets |] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

This application is one of two reissue patent applications
that are based on U.S. Pat. No. 5,857,180. This reissue patent
application and reissue patent application Ser. No. 10/153,

983 are both divisional reissue patent applications based on
U.S. Pat. No. 5,857,180. U.S. Pat. No. 5,857,150 1s a continu-
ation of application Ser. No. 08/441,527/, filed May 15, 1995,

now abandoned, which 1s a continuation of application Ser.
No. 08/127,385, filed Sep. 27, 1993 now abandoned.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to the field of parallel processing in
a database environment.

2. Background Art

Sequential query execution uses one processor and one
storage device at a time. Parallel query execution uses mul-
tiple processes to execute in parallel suboperations of a query.
For example, virtually every query execution includes some
form of manipulation of rows 1n a relation, or table of the
DBMS. Before any manipulation can be done, the rows must
be read, or scanned. In a sequential scan, the table 1s scanned
using one process.

Parallel query systems provide the ability to break up the
scan such that more than one process can perform the table
scan. Existing parallel query systems are implemented in a
shared nothing, or a shared everything environment. In a
shared nothing environment, each computer system 1s com-
prised of 1its own resources (e.g., memory, central processing,
unit, and disk storage). FIG. 1B illustrates a shared nothing,
hardware architecture. The resources provided by System one
are used exclusively by system one. Similarly, system n uses
only those resources 1included in system n.

Thus, a shared nothing environment 1s comprised of one or
more autonomous computer systems that process their own
data, and transmit a result to another system Therefore, a
DBMS implemented in a shared nothing environment has an
automatic partitioning scheme. For example, 11 a DBMS has
partitioned a table across the one or more of the autonomous
computer systems, then any scan of the table requires mul-
tiple processes to process the scan.

This method of implementing a DBMS 1n a shared nothing,
environment provides one technique for introducing parallel-
1sm 1nto a DBMS environment. However, using the location
of the data as a means for partitioning 1s limiting. For
example, the type and degree of parallelism must be deter-
mined when the data 1s 1nitially loaded into the DBMS. Thus,
there 1s no ability to dynamically adjust the type and degree of
parallelism based on changing factors (e.g., data load or sys-
tem resource availability).

Further, using physical partitioning makes 1t difficult to
mix parallel queries and sequential updates in one transaction
without requiring a two phase commit. These types of sys-
tems must do two-phase commit because data 1s located on
multiple disks. That 1s, transaction and recovery information
1s located on multiple disks. A shared disk logical software

10

15

20

25

30

35

40

45

50

55

60

65

2

architecture avoids a two-phase commit because all processes
can access all disks (see FIG. 1D). Therefore, recovery infor-
mation for updates can be written to one disk, whereas data
accesses for read-only accesses can be done using multiple
disks 1n parallel.

Another hardware architecture, shared everything, pro-
vides the ability for any resource (e.g., central processing
unmit, memory, or disk storage) to be available to any other
resource. FIG. 1A illustrates a shared everything hardware
architecture. FIG. 1A illustrates a shared everything hardware
architecture. All of the resources are interconnected, and any
one of the central processing units (1.e., CPU 1 or CPU n) can
use any memory resource (1.e., Memory 1 to Memory n) or
any disk storage (1.e., Disk Storage 1 to Disk Storage n).
However a shared everything hardware architecture cannot
scale. That 1s, a shared everything hardware architecture 1s
teasible when the number of processors 1s kept at a minimal
number of twenty to thirty processors. As the number of
processors increases (e.g., above thirty), the performance of
the shared everything architecture 1s limited by the shared bus
(e.g., bus 102 1n FIG. 1A) between processors and memory.
This bus has limited bandwidth and the current state of the art
of shared everything systems does not provide for a means of
increasing the bandwidth of the shared bus as more proces-
sors and memory are added. Thus, only a fixed number of

processors and memory can be supported 1n a shared every-
thing architecture.

SUMMARY OF THE INVENTION

The present invention implements parallel processing in a
Database Management System. The present invention does
not rely on physical partitioning to determine the degree of
parallelism. Further, the present invention does not need to
use read lock, or require a two-phased commit 1n transaction
processing because transaction and recovery information 1s
located on multiple disks.

The present mnvention provides the ability to dynamically
partition row sources for parallel processing. That 1s, parti-
tioning 1dentifies the technique for directing row sources to
one or more query slaves. The present invention does not rely
on static partitioning (1.e., partitioning based on the storage
location of the data).

The present invention can be implemented using any archi-
tecture (1.¢., shared nothing, shared disk, and shared every-
thing). Further, the present mnvention can be used 1n a soft-
ware-implemented shared disk system (see FIG. 1D). A
soltware-implemented shared disk systems i1s a shared noth-
ing hardware architecture combined with a high bandwidth
communications bus (bus 106 in FIG. 1D) and software that
allows blocks of data to be efficiently transmitted between
systems.

A central scheduling mechanism minimizes the resources
needed to execute an SQL operation. Further, a hardware
architecture where processors do not directly share disk
architecture can be programmed to appear as a logically
shared disk architecture to other, higher levels of software via
mechanisms of passing disk input/output requests indirectly
from processor to processor over high bandwidth shared
nothing networks.

At compilation time, a sequential query execution plan 1s
generated. Then, the execution plan 1s examined, from the
bottom up, to determine those portions of the plan that can be
parallelized. Parallelism 1s based on the ability to parallelize
a row source. Further, the partitioning requirements of con-
secutive row sources and the partitioming requirements of the

US RE42,664 E

3

entire row source tree 1s examined. Further, the present inven-
tion provides the ability for the SQL statement to specify the
use and degree of parallelism.

A Query Coordinator (QC) process assumes control of the
processing of a query. The QC can also execute row sources
that are to be executed serially. Additional threads of control
are associated with the QC for the duration of the parallel
execution of a query. Each of these threads 1s called a Query
Server (QS). Each QS executes a parallel operator and pro-
cesses a subset of mtermediate or output data. The parallel
operators that are executed by a QS are called data flow
operators (DFOs).

A DFO 1s represented as an extended structured query
language (SQL) statement. A DFO 1s a representation of one
row source or a tree of row sources suitable for parallel
execution. A DFO SQL statement can be executed concur-
rently by multiple processes, or query slaves. DFOs introduce
parallelism 1nto SQL operations such as table scan, order by,
group by, joins, distinct, aggregate, unions, intersect, and
minus. A DFO can be one or more of these operations.

A central scheduling mechanism, a data flow scheduler, 1s
allocated at compile time. When the top (1.e., root) of a row
source tree, or a portion of a serial row source tree 1s encoun-
tered that cannot be implemented in parallel, the portion of
the tree below this 1s allocated for parallelism. A data tlow
scheduler row source 1s allocated at compilation time and 1s
executed by the QC process. It 1s placed between the serial
row source and the parallelizable row sources below the serial
row source. Every data flow scheduler row source and the
parallelizable row sources below 1t comprise a DFO tree. A
DFO ftree 1s a proper subtree of the row source tree. A row
source tree can contain multiple DFO trees.

If, at execution, the row source tree 1s implemented using,
parallelism, the parallelizer row source can implement the
parallel processing of the DFOs 1n the row source tree for
which 1t1s the rootnode. If the row source tree 1s implemented
serially, the parallelizer row source becomes invisible. That
1s, the rows produced by the row sources in the DFO tree
merely pass through the parallelizer to the row sources above
them 1n the row source tree.

The present invention uses table queues to partition and
transport rows between sets of processes. A table queue (TQ)
encapsulates the data flow and partitioning functions. A TQ
partitions its mnput to 1ts output according to the needs of the
parent DFO and/or the needs of the entire row source tree. The
table queue row source synchronously dequeues rows from a
table queue. A 'TQ connects the set of producer slaves on its
input to the set of consumer slaves on 1ts output.

During the compilation and optimization process, each
node 1n the row source tree 1s annotated with parallel data tlow
information. Linkages between nodes in a row source tree
provide the ability to divide the nodes into multiple lists. Each
list can be executed by the same set of query slaves.

In the present invention only those processes that are not
dependent on another’s input (1.e., leal nodes), and those
slaves that must be executing to receive data from these pro-
cesses execute concurrently. This techmque of invoking only
those slaves that are producing or consuming rows provides
the ability to minimize the number of query slaves needed to
implement parallelism.

The present invention includes additional row sources to
facilitate the implementation of the parallelism. These
include table queue, table access by partition, and index cre-
ation row sources. An mdex creation row source assembles
sub-indices from underlying row sources. The sub-indices are
serially merged into a single index. Row sources for table and
index scanning, table queues, and remote tables have no

10

15

20

25

30

35

40

45

50

55

60

65

4

underlying row sources, since they read rows directly from
the database, a table queue, or a remote data store.

A table queue row source 1s a mechanism for partitioning
and transporting rows between sets of processes. The parti-
tioning function of a table queue row source 1s determined by
the partitioning type of the parent DFO.

The present invention provides the ability to eliminate
needless production of rows (1.e., the sorcerer’s apprentice
problem). In some cases, an operation 1s dependent on the
input from two or more operations. It the result of any 1nput
operation does not produce any rows for a given consumer of
that operation, then the subsequent input operation must not
produce any rows for that consumer. If a subsequent input
operation were to produce rows for a consumer that did not
expect rows, the input would behave erroneously, as a ““sor-
cerer’s apprentice.”

The present invention uses bit vector to momtor whether
cach consumer process recerved any rows from any producer
slaves. Each consumer 1s represented by a bit 1n the bit vec-
tors. When all of the end of fetch (i.e. eof) messages are
received from the producers of a consumer slave, the con-
sumer sends a done message to a central scheduling mecha-
nism (1.e., a data flow scheduler). The data tlow scheduler
determines whether the consumer slave received any rows,
and sets the consumer’s bit accordingly. The bit in the bat
vector 1s used by subsequent producers to determine whether
any rows need to be produced for any of its consumers. The bit
vector 1s reset at the beginming of each level of the tree.

The datatlow scheduler uses states and a count of the slaves
that have reached these states to perform its scheduling tasks.
As the slaves asynchronously perform the tasks, transmitted
to them by the dataflow scheduler, they transmit state mes-
sages to the datatlow scheduler indicating the stages they
reach in these tasks. The data tlow scheduler keeps track of the
states of two DFOs at a time (1.e., the current DFO and the
parent of the current DFO). A “started” state indicates that a
slave 1s started and able to consume rows. A “ready” state
indicates that a slave 1s processing rows and 1s about to pro-
duce rows. A “partial” state indicates that a slave 1s finished
scanning a range of rowid, or equivalently, scanning a range
of a file or files that contains rows, and needs another range of
rowids to scan additional rows. “Done” indicates that a slave
1s finished processing.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A-1D1llustrates shared everything, shared nothing,
and shared disk environments.

FIG. 2 provides an example of database tables and an
Structured Query Language query.

FIG. 3A 1llustrates an example of a serial row source tree.

FIG. 3B illustrates a parallelized row source tree.

FIG. 3C illustrates a row source tree divided into levels
cach of which 1s implemented by a set of query slaves.

FIG. 4 illustrates table queues.

FIG. 5 illustrates a right-deep row source tree.

FIG. 6 A provides an example of parallelism annotation
information.

FIG. 6B provides an example of information sent to query
slaves.

FIGS. 7TA-TF illustrates slave DFOs process tlows.

FIG. 8 illustrates a row source tree including parallelizer
rOW Sources.

FIG. 9 1llustrates a three way join.

FIG. 10A provides an Allocate Parallelizer process flow.

FIGS. 10B-10C provide an example of the process tlow for
TreeTraversal.

US RE42,664 E

S

FIG. 11A illustrates a process flow for Fetch.

FIG. 11B provides an example of the process tlow of Pro-
cessRowQOutput.

FIGS. 11C-11D 1illustrate a process flow ol ProcessMs-
gOutput.

FI1G. 12 1llustrates a Resume process tlow.

FI1G. 13 1llustrates a process flow for ProcessReadyMsg.

FIG. 14 provides a process flow for NextDFO.

FI1G. 135 1llustrates a process tlow for Start.

FI1G. 16 1llustrates a process flow for Close.

FI1G. 17 1llustrates a process flow for SendCloseMsg.

FIG. 18 illustrates a StartParallelizer process flow.

FI1G. 19 1llustrates a Stop process flow.

DETAILED DESCRIPTION OF THE INVENTION

A method and apparatus for parallel query processing 1s
described. In the following description, numerous specific
details are set forth in order to provide a more thorough
description of the present invention. It will be apparent, how-
ever, to one skilled 1n the art, that the present invention may be
practiced without these specific details. In other instances,
well-known features have not been described 1n detail so as
not to obscure the mvention.

ROW SOURCES

Prior to execution of a query, the query 1s compiled. The
compilation step decomposes a query into i1ts constituent
parts. In the present mnvention, the smallest constituent parts
are row sources. A row source 1s an object-oriented mecha-
nism for manipulating rows of data in a relational database
system (RDBMS). A row source 1s implemented as an 1tera-
tor. Every row source has class methods associated with it
(e.g., open, fetch next and close). Examples of row sources
include: count, filter, join, sort, union, and table scan. Other
row sources can be used without exceeding the scope of the
present invention.

As aresult of the compilation process, a plan for the execu-
tion of a query 1s generated. An execution plan is a plan for the
execution of an SQL statement. An execution plan 1s gener-
ated by a query optimizer. A query optimizer compiles an
SQL statement, i1dentifies possible execution plans, and
selects an optimal execution plan. One method of represent-
ing an execution plan 1s a row source tree. At execution,
traversal of a row source tree from the bottom up vields a
sequence of steps for performing the operation(s) specified by
the SQL statement.

A row source tree 1s composed of row sources. During the
compilation process, row sources are allocated, and each row
source 1s linked to zero, one, two, or more underlying row
sources. The makeup of a row source tree depends on the
query and the decisions made by the query optimizer during
the compilation process. Typically, a row source tree 1s com-
prised of multiple levels. The lowest level, the leal nodes,
access rows from a database or other data store. The top row
source, the root of the tree, produces, by composition, the
rows of the query that the tree implements. The intermediate
levels perform various transformations on rows produced by
underlying row sources.

Referring to FI1G. 2, SQL statement 216 illustrates a query
that 1involves the selection of department name 214 from
department table 210 and employee name 206 from employee
table 202 where department’s department number 1s equal to
the employee’s department number. The result 1s to be
ordered by employee name 206. The result of this operation

5

10

15

20

25

30

35

40

45

50

55

60

65

6

will yield the employee name and the name of the department
in which the employee works 1n order of employee.

An optimal plan for execution of SQL statement 216 1s
generated. A row source tree can be used to represent an
execution plan. FIG. 3A 1illustrates an example of a row
source tree for this query 216. Row source tree 300 1s com-
prised of row sources. Table scan row source 310 performs a
table scan on the employee table to generate rows from the
employee table. The output of table scan 310 1s the mput of
sort 306. Sort 306 sorts the mput by department number.
Table scan row source 312 performs a table scan on the
department table to generate rows from the department table.
The output of table scan 312 1s the input of sort 308. Sort 308
sorts the input by department number.

The output from the two sort row sources (1.€., sort 306 and
sort 308) 1s the mput to sort/merge join row source 304.
Sort/Merge join 304 merges the input from the employee
table (1.e., the input from sort 306) with the input from the
department table (1.e., the mput from sort 308) by matching
up the department number fields 1n the two mputs. The result
will become the output of sort/merge j01n 304 and the input of
orderBy 302. OrderBy 302 will order the merged rows by the
employee name.

DATA FLOW OPERATORS

A Query Coordinator (QC) assumes control of the process-
ing of a query. The QC can also execute row sources that are
to be executed serially. Additional threads of control are asso-
ciated with the QC for the duration of the parallel execution of
a query. Each of these threads 1s called a Query Server (QS).
Each QS executes a parallel operator and processes a subset
of the entire set of data, and produces a subset of the output
data. The parallel operators that are executed by a QS are
called data flow operators (DFOs).

A DFO 1s a representation of row sources that are to be
computed in parallel by query slaves. A DFO for a given
query 1s equivalent to one or more adjacent row sources of
that query’s row source tree at the QC. Each DFO 1s a proper
subtree of the query’s row source tree. A DFO 1s represented
as structured query language (SQL) statements. A DFO SQL
statement can be executed concurrently by multiple pro-
cesses, or query slaves. DFOs introduce parallelism ito SQL
operations such as table scan, orderBy, group by, joins, dis-
tinct, aggregate, unions, mtersect, and minus. A DFO can be
one or more of these operations. A DFO 1s converted back into
row sources at the query slaves via the normal SQL parsing
mechanism. No additional optimization 1s performed when
DFO SQL 1s processed by the slaves.

An SQL table scan scans a table to produce a set of rows
from the relation, or table. A “group by” (groupBy) rear-
ranges a relation mto groups such that within any one group
all rows have the same value for the grouping column(s). An
“order by” (orderBy) orders a set of rows based on the values
in the orderBy column(s). A join joins two or more relations
based on the values in the join column(s) in the relations.
Distinct eliminates any duplicate rows from the rows selected
as a result of an operation.

Aggregates compute functions aggregated over one or
more groups of rows. Count, sum and average aggregates, for
example, compute the cardinality, sum, and average of the
values 1n the specified column(s), respectively. Maximum
(1.e. Max) and minimum (1.e., Min) aggregates compute the
largest and smallest value (respectively) of the specified col-
umn(s) among the group(s) of rows. A union operation cre-
ates a relation consisting of all rows that appear 1n any of two
specified relations. An intersect operation creates a relation

US RE42,664 E

7

that consists of all rows that appear 1n both of two specified
relations. A minus operation creates a relation that consists of

all rows that appear in the first but not the second of two
specified relations.

PARTTTTONING

Existing parallel query systems are implemented i a
shared nothing environment. FIG. 1B 1illustrates a shared
nothing hardware architecture. In a shared nothing environ-
ment, each computer system 1s comprised of its own
resources (e.g., memory, central processing unit, and disk
storage). That 1s, a shared nothing environment 1s comprised
of one or more autonomous computer systems, and each
system processes 1ts own data. For example, system one 1n
FIG. 1B 1s comprised of a central processing unit (1.e., CPU
1), memory (1.e., memory 1), and disk storage (1.e., disk
storage 1). Sitmilarly, system n contains similar resources.

A DBMS mmplemented in a shared nothing environment
has an automatic partitioning scheme based on the physical
location of data. Therefore, partitioning, in a shared nothing
environment, 1s determined at the time the physical layout of
data 1s determined (1.e., at the creation of a database). Thus,
any partitioning in a shared nothing environment 1s static.

A scan of a table 1n a shared nothing environment neces-
sarily includes a scanning process at each autonomous system
at which the table 1s located. Therefore, the partitioning of a
table scan 1s determined at the point that the location of data
1s determined. Thus, a shared nothing environment results 1n
a static partitioning scheme that cannot dynamically balance
data access among multiple processes. Further, a shared noth-
ing environment limaits the ability to use a variable number of
scan slaves. A process, or slave, running in system one of FIG.
1B can manipulate the data that 1s resident on system one, and
then transfer the results to another system. However, the same
process cannot operate on data resident on another system
(1.e., system two through system n).

Thus, processes on each system can only process the data
resident on its on system, and cannot be used to share the
processing load at other systems. Therefore, some processes
can complete their portion of a scan and become 1dle while
other processes are still processing table scan tasks. Because
cach system 1s autonomous, 1dle processes cannot be used to
assist the processes still executing a data access (e.g., table
scan) on other systems.

The present invention provides the ability to dynamically
partition data. The present invention can be implemented
using any of the hardware architectures (i.e., shared nothing,
shared disk, or shared everything). Further, the present inven-
tion can be used 1n a software-implemented shared disk sys-
tem. A software-implemented shared disk system 1s a shared
nothing hardware architecture combined with a high band-
width communications bus and software that allows blocks of
data to be efficiently transmitted between systems. Software
implementation of a shared resource hardware architecture
reduces the hardware costs connected with a shared resource
system, and provides the benefits of a shared resource system.

FIG. 1D illustrates a software-implemented shared disk
environment. System one through system n remain autono-
mous in the sense that each system contains 1ts own resources.
However, a communications bus connects the systems such
that data from system one through system n can transier
blocks of data. Thus, process, or slave, running 1n system one
can perform operations on data transferred from another sys-
tem (e.g., system n).

In addition to the software-implemented shared disk envi-
ronment, the present invention can be mmplemented 1n a

10

15

20

25

30

35

40

45

50

55

60

65

8

shared everything hardware architecture (illustrated in FIG.
1A), and a shared disk hardware architecture (1llustrated 1n
FIG. 1C). In the shared resource environments (FIGS. 1A,

1C, and 1D), any data 1s accessible by any process (e.g.,
shared disk and shared everything). Thus, multiple central
processing units can access any data stored on any storage
device. The present invention provides the ability to dynami-
cally partition an operation (e.g., table scan) based on the
amount of data instead of the location of the data.

For example, the present mnvention provides the ability to
spread a table scan across “N” slaves to balance the load, and
to perform a table scan on a table such that each slave finishes
at virtually the same time. The present invention determines
an optimal number of slaves, “IN”, to perform an operation.
All “N” slaves can access all of the data. For example, a table
can be divided into three groups of “IN” partitions (1.e., “3N)
using three groups of “N”” ranges(i.e., “3N”"). The ranges can
be based on the values that 1dentify the rows (1.e., entries) in
a table. Further, the “3N” partitions are arranged based on
s1ze. Thus, there are “N”” large partitions, “N” medium-sized
partitions, and “N”” small partitions. Each partition represents
are partial execution of the scan operation.

The larger groups of rowids are submuitted to the “IN” slaves
first. Each slave begins to process its rowid range. It 1s pos-
sible for some processes to complete their tasks betore others
(e.g., system resource fluctuations or variations in the estima-
tions of partition sizes). When a process completes a partial
execution, another set of rowid ranges can be submitted to the
process. Since all of the large partitions were submaitted to the
“N””slaves at the start of a scan, faster slaves recetve a medium
or small rowid range partial execution. Similarly, as each
slave completes its current rowid range, additional rowid
ranges can be submitted to the slave. Because decreasing
s1zes of rowid ranges are submitted to the faster slaves, all of
the slaves tend to finish at virtually the same time.

Partitioning Types

The present invention provides the ability to dynamically
partition using any performance optimization techniques. For
example, prior to the execution of an operation to sort a table
(1.e., order by), a sampling can be performed on the data in the
table. From the results of the sampling, even distributions of
the rows can be 1dentified. These distributions can be used to
load balance a sort between multiple processes.

Some examples of partitioning include range, hash, and
round-robin. Range partitioning divides rows from an input
row source to an output row source based on a range of values
(e.g., logical row addresses or column value). Hash partition-
ing divides rows based on hash field values. Roundrobin
partitioning can divide rows from an input row source to an
output row source when value based partitioning 1s not
required. Some DFOs require outputs to be replicated, or
broadcast, to consumers, 1mstead of partitioned.

PLAN PARALLELIZATION

A serial execution plan (e.g., FIG. 3A) provides a nonpar-
allelized representation of a plan for execution of a query. In
serial query processing, only one thread of control processes
an entire query. For example, a table scan of the employee
table (1.e., table scan 310 1n FIG. 3A), for example, 1s scanned
sequentially. One process scans the employee table.

The parallelism of the present invention provides the abil-
ity to divide an execution plan among one or more processes,
or query slaves. Parallel query execution provides the ability
to execute a query 1n a series of parallel steps, and to access

US RE42,664 E

9

data 1n parallel. For example, a table scan of the employee
table can be partitioned and processed by multiple processes.
Theretfore, each process can scan a subset of the employee
table.

At compilation time, a sequential query execution plan 1s
generated. Then, the execution plan 1s examined, from the
bottom up, to determine those portions of the plan that can be
parallelized. Parallelism 1s based on the ability to parallelize
a row source. Further, the partitioning requirements of con-
secutive row sources and the partitioming requirements of the
entire row source tree 1s examined. Further, the present inven-
tion provides the ability for the SQL statement to specily the
use and degree of parallelism.

The present invention provides the ability to combine par-
allelism and serialism 1n the execution of a query. Parallelism
may be limited by the inability to parallelize a row source.
Some row sources cannot be parallelized. For example, an
operation that computes row numbers must allocate row num-
bers sequentially. When a portion of a row source tree 1s
encountered that cannot be implemented in parallel, any por-
tion below the serial row source 1s allocated for parallelism. A
parallelizer row source 1s allocated between the senial row
source and the parallelizable row sources below the serial row
source. The parallelizer row source and the parallelizable row
sources below 1t comprise a DFO tree. The output of this DFO
tree 1s then supplied as 1nput to the serial row source. A row
source tree can contain multiple DFO trees.

If, at execution, a given row source tree 1s implemented
using parallelism, the parallelizer row source can implement
the parallel processing of the parallelizable DFOs 1n the row
source tree for which 1t 1s the root node. If the row source tree
1s implemented serially, the parallelizer row source becomes
invisible. That 1s, the rows produced by the row sources 1n the
DFO tree merely pass through the parallelizer row source to
the row sources above it in the row source tree.

The row source tree 1s examined to determine the partition-
ing requirements between adjacent row sources, and the par-
titioning requirements of the entire row source tree. For
example, the presence of an orderBy row source in a row
source tree requires that all value based partitioning in the row
source tree below the orderBy must use range partitioning
instead of hash partitioning. This allows the orderBy to be
identified as a DFO, and its operations parallelized, since
ordered partitioning of the orderBy DFO’s output will then
produce correct ordered results.

An orderBy operation orders the resulting rows (1.e., the
output from the executed plan) according to the orderBy
criteria contained in the SQL statement represented by the
execution plan. To parallelize an orderBy operation, the query
slaves that implement the operation each recetve rows with a
range of key values. Each query can then order the rows
within 1ts range. The ranges output by each query slave (1.e.,
the rows ordered within each range) can then be concatenated
based on the orderBy criteria. Each query slave implementing,
the orderBy operation expects row sources that fall within the
range specification for that query slave. Thus, the operations
performed prior to the orderBy operation can be performed
using range partitioning to facilitate the direction of the rows
according to the range specification.

FIG. 3B illustrates a row source tree 1n which parallelism
has been mtroduced. Table scan 310 1n FIG. 3A 1s processed
by a single process, or query slave. In FIG. 3B, table scan 310
1s partitioned into multiple table scans 330A-330C. That 1s,
the table scan of the employee table 1s processed by multiple
process, or query slaves.

FIG. 3B represents a parallel DFO tree corresponding to
the row source tree depicted 1n FIG. 3A. Sort 306 and sort 308

10

15

20

25

30

35

40

45

50

55

60

65

10

of FIG. 3A are combined with sort/merge join 304 to distin-
guish the sort/merge j01n DFO of FIG. 3B. Referring to FIG.

3B, slave DFOs 324 A-324C perform the sort and join opera-
tions. The output of slave DFOs 330A-330C 1s transmitted to
slave DFOs 324 A-324C.

Table scan 332 scans a table (1.e., department table) that
does not contain many rows. Thus, the application of paral-
lelism to scan the department table may not improve perfor-
mance. Therefore, table scan 332 can be implemented as a
non-parallel scan of the department table. The output of table
scan 332 becomes the mnput of slave DFOs 324A-324C.

An SQL statement can specily the degree of parallelism to
be used for the execution of constituent parts of an SQL
statement. Hints incorporated in the syntax of the statement
can be used to aflect the degree of parallelism. For example,
an SQL statement may indicate that no amount of parallelism
1s to be used for a constituent table scan. Further, an SQL
statement may specily the maximum amount of partitioning
implemented on a table scan of a given table.

S

(L.

TABLE QUEU.

Some DFOs function correctly with any arbitrary partition-
ing of input data (e.g., table scan). Other DFOs require a
particular partitioning scheme. For example, a group by DFO
needs to be partitioned on the grouping column(s). A sort/
merge j0in DFO needs to be partitioned on the join column(s).
Range partitioning 1s typically chosen when an orderBy
operation 1s present 1n a query. When a given child DFO
produces rows 1n such a way as to be incompatible with the
partitioning requirements of its parent DFO (1.e., the DFO
consuming the rows produced by a child DFO), a table queue
1s used to transmit rows from the child to the parent DFO and
to repartition those rows to be compatible with the parent
DFO.

The present invention uses a table queue to partition and
transport rows between sets of processes. A table queue (TQ)
encapsulates the data flow and partitioning functions. A TQ
partitions 1ts mput to 1ts output according to the needs of the
consumer DFO and/or the needs of the entire row source tree.
The table queue row source synchronously dequeues rows
from a table queue. A TQ connects the set of producers on 1ts
input to the set of consumer slaves on its output.

A TQ provides data flow directions. A TQ can connect a
QC to a QS. For example; a QC may perform a table scan on
a small table and transmit the result to a table queue that
distributes the resulting rows to one or more QS threads. The
table queue, 1n such a case, has one mput thread and some
number of output threads equaling the number of QS threads.
A table queue may connect some number, N, of query slaves
to another set of N query slaves. This table queue has N input
threads and N output threads. A table queue can connect a QS
to a QC. For example, the root DFO 1n a DFO tree writes to a
table queue that 1s consumed by the QC. This type of table
queue has some number of mput threads and one output
thread.

FIG. 4 1llustrates table queues using the parallel execution
plan of SQL statement 216 1n FIG. 2. Referring to FIG. 3B,
the output of the table scans 330A-330C becomes the input of
sort/merge join DFOs 324A-324C. A scan of a table can be
parallelized by partitioning the table into subsets. One or
more subsets can be assigned to processes until the maximum
number o processes are utilized, or there are no more subsets.

While an ordering requirement 1n an SQL statement may
suggest an optimal partitioning type, any partitioning type
may be used to perform a table scan because of the shared
resources (e.g., shared disk) architecture. A table queue can

US RE42,664 E

11

be used to direct the output of a child DFO to its parent DFO
according to the partitioming needs of the parent DFO and/or
the entire row source tree. For example, table queue 406
receives the output of table scan DFOs 402A-402C. Table
queue 406 directs the table scan output to one or more sort/

merge join DFOs 410A-410C according to the partitioning,
needs of DFOs 410A-410C.

In some 1instances, there 1s virtually no benefit in using
parallel processing (e.g., table scan of a table with few rows).
Referring to FIG. 4, table scan 412 of a small table (i.e.,
department table) 1s not executed 1n parallel. In the preferred
embodiment, a table scan performed by a single process 1s
performed by QC 432. Thus, the mput to table queue 416 1s
output from QC 432. Table queue 416 directs this output to
the input of DFOs 410A-410C. Table queue 416 connects QC
432 to QS slave DFOs 410A-410C. The mput from table
queues 406 and 416 1s used by DFOs 410A-410C to perform
a sort/merge join operation.

The output of DFOs 410A-410C 1s transmitted to table
queue 420. Table queue 420 directs the output to DFOs 424 A -
424C. The existence of an orderBy requirement in an SQL
statement requires the use of a type of range partitioning for
table queue 420, and 1s suggested for range partitioning of TQ
406 and 416. Range partitioning will result in row partitions
divided based on sort key value ranges. In the present
example, SQL statement 216 1n FIG. 2 specified an order 1n
which the selected rows should be provided (1.e., ordered by
employee name). Therefore, range partitioning 1s the parti-
tioming scheme to execute SQL statement 216 1n parallel.
Thus, table queue 420 can direct a set of rows to each of the
query slaves executing DFOs 424 A-424C based on a set of
ranges. Range partitioning can be used to divide the rows, by
value ranges, between the query slaves processing the rows.

DFO SQL

A DFO 1s represented as structured query language (SQL)
statements. For example, block 216 1n FIG. 2 illustrates a
selection operation from employee and department tables. A

selection operation 1includes a scan operation of these tables.
The DFO SQL for the employee table scan 1s:

select /*+rowid(e)*/ deptno ¢1, empname ¢2
from emptable
where rowid between :1 and :2

The *“:1” and *“:2” are rowid variables that delimit a rowid
range. Actual rowid values are substituted at the beginning of
execution. As each slave completes the scanning of a rowid
range (1.e., completion of a partial execution), additional
rowid values are substituted at each subsequent partial execu-
tion. The scan produces the department field and employee
name values.

The DFO SQL statement above 1illustrates extensions of
SQL that provide the ability to represent DFOs 1n a precise
and compact manner, and to facilitate the transmission of the
parallel plan to multiple processes. One extension 1nvolves
the use of hints 1n the DFO SQL statement that provide the
ability to represent a DFO 1n a precise and compact way. In
additional to the hint previously discussed to specily the use
and/or degree of parallelism, the present invention provides
the ability to incorporate hints 1n a DFO SQL statement to
specily various aspects of the execution plan for the DFO
SQL statement. For example, 1n the previous DFO SQL state-
ment, the phrase “/*+rowid(e) */” provides a hint as to the

10

15

20

25

30

35

40

45

50

55

60

65

12

operation of the table scan DFO (1.e., use rowid partitioning).
Other examples are: “tull” (1.e., scan entire table), “use_
merge’” (1.e., use a sort/merge join), and “use_nl” (1.e., use a
nested loop jo1n).

Another extension provides the ability to use and reference
table queues. The output of the employee table scan 1s
directed to a table queue (e.g., Q1) as illustrated in F1G. 4. The
contents of table queue Q1 become the input to the next
operation (1.e., sort/merge). The DFO SQL statement assigns
aliases for subsequent references to these fields. The DFO
statement further creates a reference for the columns 1n the
resulting table queue (1.e., “c1” and “c2”). These “aliases™ can
be used 1n subsequent SQL statements to reference the col-
umns 1n any table queue.

A second table scan 1s performed on the department table.
As 1llustrated previously, because the department table 1s
small (1.e., a lesser number of table entries), the department
table scan can be performed serially. The output of the depart-
ment table scan 1s directed to the Q0 table queue. The contents
of Q0 table queue becomes the mput to the sort/merge opera-

tion.
The DFO SQL for the sort/merge operation 1s:

select /*+use__merge(a2)*/ al.c2,a2.c2
from :Q1 al, :Q0 a2
where al.cl =a2.cl

The sort/merge DFO SQL operates on the results of the
employee table scan (1.e., Q1 table queue, or “al”), and the
results of the department table scan (1.e., Q0 table queue, or
“a2”). The output of the sort/merge join DFO 1s directed to
table queue Q2 as 1llustrated 1n FIG. 4. The contents of table
queue Q2 becomes the mput to the next operation (i.e.,
orderBy). The DFO SQL for the orderBy operation 1s:

select ¢, ¢2 from :QQ2 order by ¢l

The orderBy operation orders the results of the sort/merge
join DFO. The output of the orderBy operation 1s directed to
the requester of the data via table queue Q3.

COMBINED DFOs

If the partitioning requirements of adjacent parent-child
DFOs are the same, the parent and child DFOs can be com-
bined. Combining DFOs can be done using the SQL mecha-
nism. For example, a reference to a table queue 1n a SQL
statement (e.g., Qn) 1s replaced with the SQL text that defines
the DFO. For example, 11 block 216 1n FI1G. 2 specified “order
by deptNo,” the sort/merge join and the orderBy operations
can be combined into one DFO SQL. Thus, the first two
statements can be combined to be statement three:

1. select /+ordered use__merge(a2)*/ al.c2,a2.c2,a2.c2
from :Q1 al, :Q0 a2
where al.cl =a2.cl
2. select ¢2, ¢3 from :Q2 order by cl
3. select ¢c2, ¢3
from (select /*+ordered use__merge(a2)*/ al.cl cl,al.c2 c2,
a2.c2 c¢c3
from :Q1 al, :Q0 a2
where al.cl =a2.cl)
order by cl

PLAN ANNOTATIONS

During the compilation and optimization process, each
node 1n the row source tree 1s annotated with parallel data tlow

US RE42,664 E

13

information. FIG. 6 A provides an example of parallelism
annotation information. If the node 1s a DFO, the type of DFO
1s retained (e.g., table scan, sort/merge join, distinct, and
orderBy). If the node 1s a serial row source to be processed by
the QC, the table queue to which the QC outputs the rows
generated from the execution of the row source 1s stored with
the other information associated with the row source, A node
that represents a DFO also contains information regarding the

DFO.

The number of query slaves available at the time of execu-
tion elfects the degree of parallelism implemented. The num-
ber of available processes may be alfected by, for example,
quotas, user profiles, or the existing system activity. The
present invention provides the ability to implement any
degree of parallelism based on the number of query slaves
available at runtime. If enough query slaves are available, the
degree of parallelism 1dentified at compile time can be fully
implemented. ITf some number less than the number needed to
tully implement the degree of parallelism 1dentified at com-
pile time, the present invention provides the ability to use the
available query slaves to implement some amount of paral-
lelism. ITthe number of available query slaves dictates that the
query be implemented serially, the present invention retains
the row source equivalent for each node. Thus, the present
invention provides the ability to serially implement a query
parallelized at compile time.

If the node 1s implemented by the QC, the output table
queue 1dentifier 1s included 1n the node mformation. It the
node 1s not implemented by the QC, the pointer to the first
child of the parallelized node, the number of key columns 1n
the mput table queue, the parallelized node’s partitioning,
type, and the number of columns clumped with parent are
included 1n the node information.

If the node represents a table scan DFO, the information
includes table scan information such as table name and degree
of parallelism 1dentified for the scan. If the DFO 1s an indexed,
nested loop join, the information 1ncludes the right and left
input table names. If the DFO 1s a sort/merge join, the infor-
mation includes two flags indicating whether the operation 1s
a merge join or an outer join. If the DFO represents an index

creation, the information includes a list of columns included
in the index, the index type, and storage parameters.

At the time of implementation, information describing the
DFOs 1s sent to the query slaves implementing the DFOs. All
DFOs of an even depth are sent to one slave set. All DFOs of
an odd depth are sent to the other slave set. Depth 1s measured
from the top (root) node of the tree. FIG. 6B provides an
example of information sent to query slaves. This information
includes a pointer to the next DFO for the slave set to execute.
The next-to-execute pointer points to the next DFO at the
same depth, or, 11 the current DFO 1s the last at 1ts depth, the
pointer points to the leftmost DFO 1n the tree at depth-2. The
next-to-execute pointer links the DFOs not implemented by
the QC 1nto a set of subtrees, or lists.

Using the next-to-execute pointer, a row source tree can be
split into two DFO lists that can be executed by two sets of
query slaves. The DFOs executed by a first set of query slaves
1s grven by a list starting with the leftmost leaf of the DFO tree
and linked by the next-to-execute pointers. The DFOs
executed by a second set of query slaves 1s given by the list
starting with the parent of the leftmost leal and linked by
another set of sibling pointers.

The present invention can be implemented without a cen-
tral scheduling mechanism. In such a case, all of the slaves
needed to implement the DFOs are implemented at the start of

10

15

20

25

30

35

40

45

50

55

60

65

14

execution of the row source tree. However, many of the slaves
must wait to begin processing (1.e., remain i1dle) until other
slaves supply data to them.

In the preferred embodiment of the present invention, a
central scheduling mechanism 1s used to monitor the avail-
ability of data, and to start slaves as the data becomes ready
for processing by the slaves. Therefore, the only slaves that
are started are those that can begin processing immediately
(1.e., leal nodes), and those slaves that must be executing to
receive data from the leal nodes. This technique of invoking
only those slaves that are producing or consuming rows pro-
vides the ability to mimimize the number of query slaves
needed to implement parallelism.

For example, a first set of query slaves can be used to
produce rows for a second set of query slaves. Once the first
set (1.e., the producing set of query slaves) completes its task
of producing rows, the set can be used to implement the DFOs
that consume the output from the second set of query slaves.
Once the second set of slaves completes its task of producing
rows for the first set, the set can be used to implement the level
of the tree that recerves mput from the first set. This technique
of folding the DFO tree around two sets of slave sets mini-
mizes the number of slaves needed to implement a tree. As the
depth of the tree increases, the savings 1n processing power
increases. Further, this technique provides the ability to
implement an arbitrarily complex DFO tree.

FIG. 3C illustrates a row source tree divided into thirds
(1.e., Sets A-C) by lines 340 and 342 representing the levels of
the tree that can be implemented by one set of query slaves.
For example, Set A includes DFOs 330A-C and DFOs 344 A -
344C. These DFOs can be processed by a first slave set (1.e.,
slave set A).

The query slaves 1n slave set A perform table scans on an
employee table and a department table. The rows generated
by these tables scans are the output of slave set A. The output
of slave set A becomes the mput of the query slaves 1n set B.
Thus, the query slaves 1n set B must be ready to receive the
output from slave set A. However, the query slaves imple-
menting the operations 1n set C do not have to be invoked until
slave set B begins to generate output. Slave set B must sort
and merge the rows received from slave set A. Therelore,
output from slave set B cannot occur until after slave set A has
processed all of the rows in the employee and department
tables. Therefore, once slave set A finishes processing the
DFOs 1n set A, slave set A 1s available to implement the DFOs
in set C. Therefore, the implementation of tree 350 only
requires two slave sets (slave set A and B).

Referring to FIG. 6B, mformation sent to query slaves
include the output TQ identifier, the number of rowid-parti-
tioned tables, the size of the SQL statement representing the
DFO, the SQL statement representing the DFO, and flags that
define runtime operations (e.g., slave must send “Started”
message, slave sends “Ready” message when input con-
sumed, and close slave expects to be closed upon comple-
tion).

Additional row sources facilitate the implementation of the
parallelism of the present invention. These include parallel-
1zer, table queue, table access by partition, and index creation
row sources. An mndex creation row source assembles sub-
indices from underlying row sources. The sub-indices are
serially merged into a single index. Row sources for table and
index scanning, table queues, and remote tables have no
underlying row sources, since they read rows directly from
the database, a table queue, or a remote data store.

A table queue 1s a mechanism for partitioning and trans-
porting rows between sets of processes. The mput TQ func-
tion of a table queue 1s determined by the partitioning type of

US RE42,664 E

15

the parent DFO. The following are examples of some consid-
erations that can be used to determine the type of TQ parti-
tioning:

1. The inputs to a DFO must be hash partitioned, 11 the DFO
requires value partitioning (e.g., a sort/merge join or group
by), there 1s no orderBy 1n the DFO tree, and the DFO 1s not
a nested loop jo1n;

2. The 1mnputs to a DFO must be range partitioned, if the
DFO requires value partitioning (e.g., a sort/merge join or
group by), there 1s an orderBy in the DFO tree, and the DFO
1s not a nested loop join;

3. If the DFO 1s a nested loop join., one mput must be
arbitrarily partitioned and the other input must access all of
the input data either by using a broadcast TQ or a full table
scan;

4. When rows are returned to the QC, partitions must be
returned sequentially and 1n order, 1 the statement contains an
orderBy. Otherwise, the rows returned from the partitions can
be interleaved.

DATA FLOW SCHEDULER

The parallelizer row source (1.e., data flow scheduler)
implements the parallel data flow scheduler. A parallelizer
row source links each DFO to 1ts parent using a TQ). If paral-
lelism cannot be implemented because of the unavailability of
additional query slaves, the parallelizer row source becomes
invisible, and the serial row source tree 1s implemented. In
this instance, the parallelizer 1s merely a conduit between the
underlying row source and the row source to which the par-
allelizer 1s the underlying row source. In general, row sources
are encapsulated and, therefore, do not know anything about
the row sources above or below them.

PARALLELIZER ALLOCATION

Atcompilation, when you reach a row source that 1s the top
of a DFO tree, or 1s directly below a portion of the row source
tree that cannot be parallelized, a parallelizer row source 1s
allocated between the top of the DFO tree and below the serial
portion of the row source tree. FIG. 8 illustrates a row source
tree including parallelizer row sources. Parallelizer 808 1s
allocated between DFO subtree 810 and serial row source
806. Parallelizer 812 1s allocated between DFO subtree 812
and serial row source tree 804.

FIG. 10A provides an Allocate Parallelizer process flow.
Processing block 1002 gets the rood DFO 1n the DFO tree and
iitializes tlags. At processing block 1004, the number of
table 1nstances scanned i1s determined. At processing block
1006, the number of table queues 1s determined. The number
ol table queues receiving rows from serially processed nodes
1s determined at processing block 1008.

At decision block 1010 (1.e., “orderBy 1n query?”), 1f an
orderBy 1s present 1n the SQL statement being processed, an
orderBy flag 1s set, and processing continues at decision block
1014. If an orderBy 1s not present 1in the SQL statement,
processing continues at decision block 1014. At decision
block 1014 (1.e., “close message needed?”), i a close mes-
sage must be sent to the slaves, a close flag 1s set, and pro-
cessing continues at processing block 1018. If no dose mes-
sage 1s needed, processing continues at processing block
1018.

At processing block 1018, redundant columns that are not
key columns are eliminated from the SQL statement(s). The
start and ready synchronization requirements (1.e., whether
slaves need to communicate started and ready states to the
data flow scheduler) are determined and retained at block

10

15

20

25

30

35

40

45

50

55

60

65

16

1020. At processing block 1022, the maximum depth of the
tree 1s determined by examining the tree. At 1024, TreeTra-

versal 1s mvoked to traverse the DFO tree for which the
current parallelizer row source 1s being allocated. Processing
ends at processing block 1026.

TreeTraversal 1s mvoked to further define the execution
environment for a DFO tree. FIGS. 10B and 10C provide an
example of the process flow for TreeTraversal. At processing
block 1032, the table queue identifier (TQ ID) 1s imitialized to
zero, and the starting TQ ID for parallel DFOs 1s determined.
At decision block 1034 (1.e., “all nodes processed?”), if the
tree has been traversed, processing returns to AllocateParal-
lelizer at block 1036. I the traversal 1s not complete, process-
ing continues at block 1038. The first, or next node 1n the
execution order 1s 1dentified at processing block 1038.

At processing block 1040, the TQ connection code (i.e.,
from slave set 1 to slave set 2, or from slave set 2 to slave set
1, or from QC to slave set 1, or from slave set 1 to QC, or from
QC to slave set 2, or from slave set 2 to QC) 1s determined, and
the TQ’s partitioning type 1s determined. At processing block
1044, a 'TQ ID 1s assigned to the TQ, and the TQ ID counter
1s incremented. At decision block 1046 (1.¢., “table scans?”),
if there are no table scans 1n the DFO, processing continues at
decision block 1046. If there are table scans, the number of
distinct tables scanned 1s determined, and the index of distinct
tables for this DFO 1s allocated and initialized at processing
block 1046. Processing continues at decision block 1050.

At decision block 1050 (1.e., “node to be executed by slave
set 1 or slave set 2777), 11 the node 1s executed by slave set 1,

processing continues at decision block 1052. At decision
block 1052 (1.e., “node first in execution chain 1?7), 1f the
node 1s the first to be executed 1n the first chain, this node 1s set
as the current node at processing block 1054, and processing
continues at block 1058. If the node 1s not the first to be
executed, the next node pointer of the previous node in this
chain 1s set to point to the current node at processing block
1056, and processing continues at block 1058.

If, at decision block 1050, the node 1s to be executed by
slave set 2, processing continues at decision block 1072. At
decision block 1072 (1.e., “node first in execution chain 27”),
1f the node 1s the first to be executed 1n the second chain, this
node 1s set as the current node at processing block 1074, and
processing continues at block 10358. IT the node 1s not the first
to be executed, the next node pointer of the previous node 1n
this chain 1s set to point to the current node at processing
block 1076, and processing continues at block 1058.

At processing block 1058, the partitioning type for the TQ
1s determined. At processing block 1060, the table queue
format 1s initialized. At processing block 1062 the table queue
descriptor 1s allocated . At processing block 1062, the table
queue descriptor contains information regarding the TQ
including the TQ ID, partitioning type, and connection code.
The SQL for the DFO 1s generated at processing block 1064.
Processing continues at decision block 1034 to process any
remaining nodes of the tree.

PARALLELIZER INITIATION

After an SQL statement 1s compiled and an execution plan
1s 1dentified, the SQL statement can be executed. To execute
an SQL statement, execution begins from the top of the row
source tree. From the root down, each node 1s told to perform
one of 1ts operations (e.g., open, fetch, or close). As each node
begins 1ts operations, it must call upon 1ts underlying nodes to
perform some prerequisite operations. As the tree 1s traversed
in this manner, any parallelizer row sources that are encoun-
tered are called upon to implement its functionality (1e., start).

US RE42,664 E

17

Operations (e.g., fetching rows from DBMS) can be per-
tformed more than once. This results 1n multiple calls to a

parallelizer. When a parallelizer 1s called after a first call to the
parallelizer, the parallelizer must be able to determine the
state of the slaves implementing the underlying DFO tree
(e.g., the state of the slaves, what DFOs are runming). Start-
Parallelizer, illustrated in FIGS. 18A and 18B, provides an
example of the steps executed when a parallelizer row source
1s called.

At block 1802, flags are imitialized (e.g., opened, started,
no row current, and not end of fetch). At decision block 1804
(1.e., “restart with work 1n progress?”), if the parallelizer was
not restarted with work 1n progress, processing continues at
block 1808. Processing continues at block 1808 to set the
maximum number of slaves to the maximum number of
slaves allowed (i.e., based on a system’s limitations) per
query.

At decision block 1810 (i.e., “rowid ranges set?”’), 11 rowid
ranges are set, processing continues at block 1814. If the
rowid ranges have not been set, processing continues at block
1812 to allocate rowid ranges per slave, and processing con-
tinues at block 1814. At processing block 1814, the rowid
ranges and the slave processes to implement the underlying
DFO tree are allocated. At decision block 1816 (i.e., “any
slaves available?””), 11 no slaves are available for allocation to
perform the parallelism of the underlying DFO tree, process-
ing continues at block 1834 to clear flags i output TQ), and at
1836 to start the underlying serial row source. Thus, where
system limitations do not permit any parallelism, the paral-
lelizer 1mitiates the serial row source tree to implement the
functionality of the parallel DFO tree. Processing returns at
block 1834.

If some amount of parallelism 1s available, processing con-
tinues at decision block 1818. At decision block 1818 (1.¢.,
“first execute?”), 1f this 1s the first execution of the parallel-
1zer, processing continues at block 1820 to imitialize working
storage (e.g., allocate variable length 1tems from the cursor
work heap, allocate and initialize bind value pointers, allocate
and mitialize TQ data structures, allocate SMJ TQ) consumer
bit vector, and allocate partial execution bit vector). Process-
ing continues at decision block 1822.

I this 1s not the first execution of the parallelizer, process-
ing continues at decision block 1822. At decision block 1822
(1.e., “SQL statement parsing necessary?”’), if the parsing 1s
required, processing continues at block 1824 to compile and
bind DFO SQL statement at all of the slaves. Processing
continues at block 1826. If parsing 1s not necessary, process-
ing continues at block 1826.

At block 1826, the current node 1s set to the first node to be
executed (1.e., the bottom-most, left-most node of the DFO
tree). At block 1828, the current node’s and 1ts” parent’s slave
count 1s set to zero, the current node’s and its” parent’s state 1s
set to NULL. At block 1830, the TQ bit vector 1s set, the
partial execution bit vector 1s cleared, and the row counter 1s
set to zero. At 1832, Start 1s invoked to start the current DFO.
Processing ends at block 1834.

Start Node

At various stages of implementation of a DFO ftree, the
parallelizer (1.e., data tlow scheduler) traverses the DFO tree,
using the DFO tree pointers, to find the next node to 1mple-
ment. When a node 1s 1dentified that is not already started, the
parallelizer starts the node. FI1G. 15 illustrates a process tlow
for Start.

At decision block 1502 (1.e., “Nodes serially processed?”),
processing continues at block 1504. At block 1504, the node

10

20

25

30

35

40

45

50

55

60

65

18

1s started. At block 1506, the fact that no ready message 1s
needed 1s indicated (1.e., slaves will continue to process with-

out ready synchromizations Ifrom the parallelizer). The
counter 1s set to the number of slaves implementing the node
at block 1508. Processing continues at block 1510.

I, at decision block 1502, parallelism can be used to imple-
ment the node, processing continues at block 1520. At block
1520, the slave counter 1s set to zero. At decision block 1522
(1.e., “start confirmation needed?”), 11 1t 1s determined that a
start confirmation 1s necessary, a tlag 1s set to mark the state as
“Not Started” at block 1524, and processing continues at
block 1510.

If no start confirmation 1s needed, processing continues at
block 1526 to mark state as already started. At decision block
1528 (1.¢., “ready confirmation needed?”’), 1f ready confirma-
tion 1s needed, processing continues at block 1510. IT 1t 1s not
needed, the state 1s marked as already ready, and processing
continues at block 1510.

At block 1510, an 1mitial rowid range of each parallel table
scan 1s obtained for each slave implementing the current
DFO. Atblock 1512, an execution message 1s sent to all of the
slaves that are implementing the current node. At block 1514,

the current node 1s marked as started. Processing returns at
block 1516.

SORCERER’S APPRENTIC.

(L]

The present invention provides the ability to eliminate
needless production of rows (1.e., the sorcerer’s apprentice
problem). In some cases, an operation 1s dependent on the
input from two other operations. If the result of the first input
operation does not produce any rows, there 1s no need for the
second input generator to produce any rows. However, unless
these mput generators are aware of the fact that there 1s no
need to continue processing, they will execute their opera-
tions.

For example, a sort/merge join operation 1s dependent on
the output of two separate underlying operations. If the execu-
tion of the first underlying operation does not produce any
rows, there 1s no need to execute any remaining operations in
the sort/merge join task. However, unless the processes
executing the remaining underlying input are aware of the fact
that there 1s no need to continue processing, they will con-
tinue to process despite the fact that there 1s no need to
continue.

This problem 1s further complicated when multiple pro-
cesses are mvolved (e.g., multiple slaves performing the first
table scan) because some of the processes may produce rows
while others do not produce rows. Therefore, 1t 1s important to
be able to monitor whether any rows are produced for a given
consumer. The producers of the rows can’t be used to perform
the monitoring function because the producers are not aware
ol the other producers or where the rows are going. Therelore,
the consumer of the rows (i.e., the sort/merge join processes)
must monitor whether any rows are recerved from the pro-
ducers.

A bit vector 1s used to indicate whether each consumer
process received any rows from any producer slaves. Each
consumer 1s represented by a bit 1in the bit vector. When all of
the end of fetch (*eol”) messages are received from the pro-
ducers of a consumer slave, the consumer sends a done mes-
sage to the data flow scheduler. The data flow scheduler
determines whether the consumer slave recerved any rows,
and sets the consumer’s bit accordingly. The bit 1n the bat
vector 1s used by subsequent producers to determine whether
any rows need to be produced for any of its consumers. The bit
vector 1s reset at the beginning of each level of the tree.

US RE42,664 E

19

FIG. 9 1llustrates a three way join. Employee table scan 1s
implemented by slave DFOs 902A-902C 1n the first slave set.

Rows produced by slave DFOs 902A-902C 1n the first set are
used by the second slave set implementing the first sort/merge
101n (1.e., slave DFOs 906 A-906C, respectively). The second
set of mput to sort/merge join slave DFOs 906A-906C 1s
generated by department table scan slave DFOs 904A-906C
in the first set, respectively. As slave DFOs 902A-902C com-
plete, the sorcerer’s apprentice bit vector 1s set to indicate
whether any or none of slave DFOs 902A-902C produced any
rows. IT none of these slave DFOs produced any rows, there 1s
no need to continue processing. Further, 11 slave DFOs 902 A -
902C did not produce any rows for consumer slave DFO
906C, there 1s no need for slave DFOs 904 A-904C to send any
output to consumer slave DFO 906C. Therefore, subsequent
slave processes (e.g., 904C, 906C, 908C, or 910C) can exam-
ine the bit vector to determine what consumer slave DFOs
should be serviced with mput. The bit vector 1s updated to
reflect a subsequent consumer slave’s receipt (or lack thereot)
of rows from their producer slaves, and examined by subse-
quent producer slave processes to determine whether to pro-
cess rows for their consumer slaves.

PARALLELIZER EXECUTION

After a parallelizer has been mmitiated, its operations
include synchronising the parallel execution of the DFO tree.
It allocates the DFOs 1n the DFO tree to the available slaves
and specifies table queue information where appropriate.
Like other row sources, the parallelizer row source can per-
form open, fetch, and close operations.

The data tlow scheduler keeps track of the states of two
DFOs at a time (1.e., the current DFO and the parent of the
current DFQO). As the slaves asynchronously perform the
tasks, transmitted to them by the dataflow scheduler, they
transmit state messages to the datatlow scheduler indicating,
the stages they reach in these tasks. The data flow scheduler
tracks the number of slaves that have reached a given state,
and the state itself. The counter 1s used to synchronize the
slaves 1n a slave set that are performing a DFO. The state
indicates the states of slaves implementing a DFO. For
example, a started state indicates that a slave 1s started and
able to consume rows. A ready state indicates that a slave 1s
processing rows and 1s about to produce rows. A partial state
indicates that a slave 1s fimshed with the range of rowids, and
needs another range of rowids to process additional rows.
Partial state 1s the mechanism by which slave processes indi-
cate to the QC that they need another rowid range to scan.
Done indicates that a slave 1s finished processing.

Some states are optional. The need for a given state 1s
dependent on where the DFO 1s positioned in the DFO tree,
and the structure of the DFO. All DFOs except the DFO at the
top of the DFO tree must indicate when they are ready. Every
DFO except the leaves of the DFO tree must indicate when
they have started. A DFO that 1s a producer of rows reaches
the ready state. Only table scan DFOs reach the partial state.
A DFO that consumes the output of another DFO reaches the
started state. Child DFOs that have a parent reach the done
state.

EXAMPLE

Referring to FIG. 3C, each dataflow scheduler starts
executing the deepest, leftmost leaf in the DFO tree. Thus, the
employee scan DFO directs 1ts underlying nodes to produce
rows. Eventually, the employee table scan DFO 1s told to
begin execution. The employee table scan begins 1n the ready

10

15

20

25

30

35

40

45

50

55

60

65

20

state because 1t 1s not consuming any rows. Each table scan
slave DFO SQL statement, when parsed, generates a table
scan row source in each slave.

When executed, the table scan row source proceeds to
access the employee table scan 1n the DBMS (e.g., performs
the underlying operations required by the DBMS to read rows
from a table), gets a first row, and 1s ready to transmit the row
to 1ts output table queue. The slaves implementing the table
scan replies to the data flow scheduler that they are ready. The
data flow scheduler monitors the count to determine when all
of the slaves implementing the table scan have reached the
ready state.

At this point, the data flow scheduler determines whether
the DFO that 1s currently being implemented i1s the first child
of the parent of this DFO. If 1t 1s, the data flow scheduler sends
an execute to a second slave set to start the sort/merge join
(SMJ) DFO (1.e.,324A-324C). The slaves executing the SMJ
DFO (1.e., 324A-324C) will transmit a “started” message.
When the data tlow scheduler has received a “started” mes-
sage from all of the SMI slaves (1.e., “n” slaves where “n” 1

n” 1s
the number of table scan and SMI slaves), the data flow
scheduler sends a resume to the table scan slaves. When the
table scan slaves receive the resume, they begin to produce
rOwSs.

During execution, the table scan slaves may send a partial
message. A partial message means that a slave has reached the
end of a rowid range, and needs another rowid range to scan
another portion of the table. The data flow scheduler does not
have to wait for the other table scan slaves to reach this state.
The data flow scheduler determines whether any rowid ranges
remain. If there are no remaining rowid ranges, the data flow
scheduler sends a message to the table scan slave that sent the
“partial” message that 1t 1s finished. I there are more rowid
ranges, the data flow scheduler sends the largest remaining
rowid range to the table scan slave.

When each of the table scan slaves finish their portions of
the scan, they send an “end of fetch” (*eof””) message to the
slaves that are executing the SMJ DFO via the table queue.
When the SMJ DFO receives the “eof” messages from all of
the table scan slaves, the SMJ DFO will report to the data flow
scheduler that all of the table scan slaves are done. Once it 1s
determined that all of the employee table scan has been com-
pleted, the data tlow scheduler determines the next DFO to be
executed.

The next DFO, the department table scan, 1s started. The
same slave set 1s used to scan both the employee table and the
department table. The department table scan slave DFOs (1.¢.,
344 A-344C) will reach the ready state 1n the same way that
the employee table scan reached ready. At that point, the data
flow scheduler must determine whether the department table
scan 1s the first child of 1ts parent.

In this case, the department table scan DFO 1s not (1.e., the
employee table scan DFO was the first child of the parent of
the department table scan). Therefore, the parent DFO has
already been started, and 1s ready to consume the rows pro-
duced by the department table scan slaves. Therefore, the data
flow scheduler sends a “resume” to the department table scan
slaves. The department table scan slaves will execute the
department table scan sending “partial” messages, 11 appli-
cable.

Once an “eof” message 1s received from all of the slaves
implementing the department table scan, the SMJ DFO slaves
can consume all of its iputs from the employee and depart-
ment table scans, and will become ready to produce a row. At
this point, the SMJ DFO slaves can transmit a “ready” mes-
sage to the data tlow scheduler.

US RE42,664 E

21

Once the data tlow scheduler receives a “ready” message
trom the all of the slaves (i.e., count 1s equal to the number of
slaves implementing the SMJ DFO), the data flow scheduler
must determine whether the SMJ DFO has parent. It so, the
data tlow scheduler must determine whether the SMJ DFO 1s
the first child of its parent. IT 1t 1s, the data flow scheduler must
send a “execute” message to the slaves implementing the
OrderBy DFO. In this case, the SMJ DFO 1s the first child of
the OrderBy DFO (1.e., 322A-322C). Therelore, the data flow
scheduler starts the OrderBy DFO. Because the set of slave
that implemented the table scans are done, the OrderBy DFO
can be implemented by the same set of slaves that imple-
mented the table scan DFOs.

Once the OrderBy DFO has started, it sends a “started”
message to the data flow scheduler. When the data tlow sched-
uler has recerved “started” messages from all of the OrderBy
DFO slaves, 1t can send a “resume” message to the SMJ DFO
slaves. The SMJ DFO begins to produce rows for consump-
tion by the OrderBy slaves. As each SMJ DFO finishes, they
send “eol” messages to the OrderBy DFO. Once the OrderBy
DFO receives an “eof” from all of the SMJ DFO slaves, the
OrderBy DFO sends a message to the data tlow scheduler.
Because the OrderBy DFO 1s at the top of the tree, 1t does not
have to go through any other states. Therefore, 1t can continue
to output rows.

Fetch Operation

When a data flow scheduler receives a request for one or
more rows, it executes its fetch operation. FIG. 11 A illustrates
a process flow for Fetch. At decision block 1102 (1.e., “current
node not parallelized?”), 1f the current node 1s not parallel-
1zed, the row source operation 1s executed serially to satisty
the fetch request at block 1104. The data flow scheduler’s
tetch operation ends at block 1118.

If, at decision block 1102, 1t 1s determined that the current
node 1s parallelized, processing continues at decision block
1106. At decision block 1106 (1.¢., “does requester still want
rows?”’), i1f the requester no longer wants rows, processing,
ends at block 1118. If the requester still wants rows, process-
ing continues at block 1110. At block 1110, the data flow
scheduler waits for some output from the slaves processing
the current node.

Atdecision block 1112 (i.e., “received some output from a
slave?”’), 1f one or more rows are output from the slaves
processing continues at processing block 1116 to invoke Pro-
cessRowOutput. If, at decision block 1112, the output is
message output, processing continues at block 1114 to invoke
ProcessMsgOutput. In either case, after the output 1is
addressed, processing continues at decision block 1106 to
determine 11 more rows are requested by the requester.

ProcessRowQOutput

When the data flow scheduler determines that slaves have
generated rows (e.g., output rows to a TQ), the data flow
scheduler monitors the output using ProcessRowOutput.
FIG. 11B provides an example of the process tlow of Process-
RowOutput. At block 1132, the output i1s accessed 1n the
output TQ. At decision block 1134 (1.e., “‘eof” pulled from
TQ77),11the TQ output is an end of fetch, data flow scheduler
marks all slaves as being finished, and stops the slaves at
processing block 1136, and processing returns to Fetch at
block 1144. I the output 1s not an “eol,” processing continues
at decision block 1138.

At decision block 1138 (1.e., “callback procedure sup-
plied?”), 11 the requester supplied a callback routine to be

10

15

20

25

30

35

40

45

50

55

60

65

22

used when rows have been produced, the data flow scheduler
executes the callback routine, and processing returns to Fetch
at block 1144. If there 1s no callback routine, processing
continues at processing block 1142 to decrement the number

of rows to be supplied, and the number of rows supplied.
Processing returns to Fetch at block 1144.

ProcessMsgOutput

The slaves executing the operations synchronized by the
data flow scheduler send messages to the data flow scheduler
to request additional direction, or to communicate their states.
When the data flow scheduler receives these messages, it
processes them using ProcessMsgQOutput. FIGS. 11C and
11D illustrate a process flow of ProcessMsgOutput. At deci-
s1on block 1162 (i.e., “Message="Started’?”), 11 the message
received from a slave 1s “Started,” processing continues at
decision block 1164. If, at decision block 1164 (1.e., “all
slaves started?””), the data tlow scheduler has not recerved the
“Started” message from all of the slaves processing returns to
Fetch at 1188.

If the data tflow scheduler has recerved the “Started” mes-
sage from all of the slaves, processing continues at block
1166. At processing block 1166, the slaves’ next state
becomes “Ready,” and the data flow scheduler specifies that
none of the slaves have reached that state. After each slave has
sent “Started” message to the data flow scheduler, they wait
for a “Resume” message 1n return. At processing block 1168,
the data flow scheduler sends a resume to the slaves, and
processing returns to Fetch at block 1188.

I1, at decision block 1162, the output was not a start mes-
sage, processing continues at decision block 1170. At deci-
sion block 1170 (i.e., “Message=‘Ready’?”), 1f the outputis a
ready message, processing continues at block 1172 to invoke
ProcessReadyMsg. After the ready message 1s processed by
ProcessReadyMsg, processing returns to Fetch at block 1188.

If, at decision block 1170, the output was not a ready
message, processing continues at decision block 1174. At
decision block 1174 (i.e., “Messag="Partial’?”’), 11 the mes-
sage was a “Partial,” the slave has completed processing a
table scan using a range, and 1s requesting a second range
designation to continue scanning the table. At processing
block 1176, the data flow scheduler sends a remaining range
specification (1f any) to the slave, and processing returns to
Fetch at block 1188.

If, at decision block 1174, the message was not a partial
message, processing continues at decision block 1178. At
decision block 1178 (i.e., “Message="Done’?), 1f the message
1s not a done message, processing returns to Fetch at 1188. If
the message was a done message, processing continues at
block 1180 to get the next DFO to be executed. At processing
block 1182, the bit vector 1s modified to record which con-
sumers of the rows received rows from the finished slaves.

At decision block 1184 (1.e., “all slaves done and some
DFO 1s started or started DFO 1s next of next’s parent?”),
processing continues at block 1186 to invoke NextDFO to
begin the next DFO, and processing returns to Fetch at block
1188. IT all of the slaves are not done or the started DFO 1s not
ready, processing waits until the started DFO becomes ready,
and returns to Fetch at block 1188.

Resume

When a slave repeals a ready for the current DFO, or a slave
reports a started for the parent of the current DFO to the data
flow scheduler, the data tflow scheduler responds to the slave
with a resume message to allow the slave to continue process-

US RE42,664 E

23

ing. FIG. 12 1llustrates a Resume process flow. At block 1202,
the TQ ID for output, the TQ partitioning type, a node i1den-

tifier, and the range partitioning keys are obtained. At decision
block 1204 (i.e., “node executed by QC?”), i the node 1s

being serially executed, processing continues at block 1206.
At block 1206, the process implementing the node (e.g., QC,
data flow scheduler) empties the entire row source into the
appropriate TQ, and Resume ends at block 1212.

I, at decision block 1204, the node 1s parallelized, process-
ing continues at block 1208 to send a resume message to all of
the slaves executing the current node. The next state for the
slaves 1s marked as “DONE.” and the count of the number of
slaves that have reached that state 1s set to zero at processing

block 1210. Resume ends at block 1212.

ProcessReadyMsg

When a producer slave 1s about to produce rows, the pro-
ducer slave sends a “Ready” message to the data tlow sched-
uler. When a ready message 1s recerved by the data flow
scheduler, the data flow scheduler processes the ready mes-
sage using FrocessReadyMsg. FIG. 13 illustrates a process
flow for ProcessReadyMsg. At decision block 1302 (1.e., “all
slaves ready?”’) 1t all of the slaves are not ready, processing
returns to Fetch at 1318 to wait until all of the slaves reach the
ready state.

If, at decision block 1302, it 1s determined that all of the
states have reached ready (1.¢., count1s equal to the number of
slaves), processing continues at processing block 1304, At
block 1304, no DFO started 1s indicated. At decision block
1306 (1.e., “parent of current ready?”), i the parent of the
current node 1s ready to receive the rows produced by the
slaves implementing the current node, processing continues

at decision block 1308.

At decision block 1308 (1.e., “1s the current done?”) i1 the
slaves executing the current DFO have not reached the done
state, processing returns to Fetch to wait for them to complete.
I the slaves have reached the done state, NextDFO 1s invoked
to implement the next node after the current DFO, and pro-
cessing returns to Fetch at block 1318.

I, at decision block 1306 (1.¢., “parent of current ready?”’),
the parent of the current 1s not ready, processing continues at
1310 to 1dentify the parent of the current DFO. At decision
block 1312 (1.e., “child first child of parent), if the current
node has a parent and the current node 1s the first child of the
parent to be executed, Start 1s 1nvoked at block 1316 to start
the parent. I1 the child 1s not the first child of the parent, the
parem has already been started. Therefore, at block 1314,
Resume 1s invoked to allow the parent to continue processing
(e.g., consume the rows produced by the child). In erther case,
processing returns to Fetch at block 1318.

NextDFO

After the most recently process DFO reaches the done
state, 1t 1s necessary to determine the next DFO to be
executed. The pointers that implement the structure of the row
source and DFO trees are used to 1dentily the next DFO to be
executed.

Generally, the row source tree 1s left deep. A row source
tree 1s left deep, 1f any row source subtree 1s the subtree of
only the left input to 1ts enclosing row source subtree. How-
ever, 1t 1s possible for a row source tree to be right deep. When
a done reply 1s received from all of the slaves, it 1s necessary
to determine when to execute the next DFO. In a right-deep
row source tree 1llustrated in FI1G. 5, the next DFO to execute
after execution of current DFO 502 1s DFO 504 not parent

5

10

15

20

25

30

35

40

45

50

55

60

65

24

DFO 506 even though current DFO 502 1s the nghtmost child
of parent DFO 506. That 1s, next DFO 504 1s not the parent of

the current DFO 502. Thus, the normal next state (1.¢., resume
parent DFO 506) after receiving the done from current DFO
502. Therefore, 1t 1s necessary to wait until current DFO 502
1s done, and parent DFO 506 has reached a stable, ready state.
Once parent DFO 506 has reached a ready state, the message
from the data flow scheduler 1s not a resume for parent DFO
506. Instead, the data flow scheduler transmits a message to
execute next DFO 504, and to start DFO 508. When it 1s time
to resume parent DFO 506, 1t 1s important to remember that
parent DFO 506 has already been started, and 1s waiting for a
resume message. All of this 1s handled by NextDFO.

FIGS. 14A and 14B provide a process tlow for NextDFO.
At processing block 1402, the current node, the next node in
the execution chain, the state of the parent, and the number of
slaves executing the parent that have reached that state are
identified. At processing block 1406, the sorcerer’s appren-
tice bit vector 1s used to execute or resume, 1f the next DFO 1s
a jo1n apprentice (1.e., a DFO that needs to examine the join
apprentice bit vector) to the current DFO.

Atdecision block 1408 (1.e., “1s next a sibling of current?”),
if the next DFO to be implemented 1s a sibling of the current
DFO, processing continues at decision block 1412. If, at
decision block 1408, the next DFO 1s not a sibling of the
current DFO, the slave count for the parent 1s set to zero, and
the parent’s state 1s set to NULL at block 1410. Processing
continues at decision block 1412.

At decision block 1412 (1.e., “does the next node have a
chuld?”), i1 the next node does not have a child, the current
DFQO’s state 1s set to NULL, and the number of slaves that
have reached that state 1s set to zero at processing block 1414.
At processing block 1416, Start 1s invoked to start next DFO.
The next DFO 1s set to the current DFO at processing block
1433, processing returns at 1434,

I1, at decision block 1412, the next node does have a child,
processing continues at block 1418. At block 1418, parent 1s
set to the parent of the next node. At decision block 1420 (1.e.,
“1s next current’s parent?”), 1f the next node 1s not the cur-
rent’s parent, the count 1s set to the number of slaves execut-
ing the current node, and the state 1s set to the ready state.
Processing continues at decision block 1426.

I, at decision block 1420, 1t 1s determined that next 1s
current’s parent, processing continues at block 1424 to set the
state of the current node to the state of 1ts parent, and to setthe
count for the number of slaves that have reached that state to
the number of slaves implementing the parent that have
reached that state. Processing continues at decision block
1426.

At decision block 1426 (1.e., “have all current’s slaves
reached the ready state?”), i all of the slaves implementing,
the current node have not reached ready, the next DFO 1s set
to the current DFO at processing block 1433, and processing
returns at block 1434. It all of the slaves are ready, processing
continues at decision block 1428. At decision block 1428 (i.¢,
“does next have a parent and 1s next the first child of the
parent?”’), if next is the first child of its parent, Start 1s invoked
at block 1432 to start parent. If next 1s not the first chuld of 1ts
parent, Resume 1s invoked at block 1430 to resume the parent.
In either case, the next DFO 1s set to the current DFO at block
1433, and processing returns at block 1434.

Close Operation

The close operation terminates the query slaves. Close can
occur when the entire row source tree has been implemented,
or at the end of a DFO tree. Initially, the parallelizer sends a

US RE42,664 E

25

stop message to each of the slaves running DFOs 1n the
parallelizer’s DFO tree to tell each of the slaves to stop
processing. This triggers the slaves to perform any clean up
operations (e.g., release any locks on data or resources) and to
reach a state for termination. In addition, the close operation
remits the slaves to the free pool.

FIG. 16 1llustrates a process tlow for Close. At decision
block 1601 (1.e., “‘Close’ message expected by slaves?”), 1l a

close message 1s expected by the slaves, SendCloseMsg at
block 1604. Stop 1s mnvoked at block 1606. Flags are cleared

at block 1608, and processing ends at block 1610.

FI1G. 17 1llustrates a process flow for SendCloseMsg. At
block 1702, DFO 1s set to the first executed DFO. At decision
block 1704 (1.e., “no current DFO or current DFO not paral-
lel?””), 11 there 1s not current DFO or the current DFO 1s not
parallel, processing ends at block 1714. If not, processing,
continues at decision block 1706.

At decision block 1706 (1.¢., “DFO found?”), if a DFO 1s
not found, processing ends at block 1714. If a DFO 1s found,
processing continues at decision block 1708. At decision
block 1708 (i.e., “DFO slaves expecting close message?”), if
the DFO 1s expecting a close message, processing continues
at block 1710 to send a close message to each of the slaves 1n
the set, and processing continues at decision block 1716. IT

the DFO 1s not expecting a close message, processing con-
inues at decision block 1716.

At decision block 1716 (1.¢., “DFO=current DFO?”), if the
DFO 1s the current DFO, processing ends at block 1714. If 1t
1s not the current DFO, then processing continues at block
1716 to get the next DFO, and processing continues at deci-
sion block 1706 to process any remaiming DFOs.

FIG. 19 illustrates a Stop process tlow. At decision block
1902 (1.e., “Serial process?”), 1f the process 1s a serial process,
processing continues at block 1904 to close the underlying
row source, and processing ends at block 1610. If the process
1s not a serial process, processing continues at block 1906. At
block 19086, the slaves are closed, and deleted, 1f necessary. At
block 1908, current DFO and current output TQ are cleared.
Processing ends at block 1610.

Row Operator

The present invention provides the ability to pass a routine
from a calling row source to an underlying row source. The
routine can be used by the underlying row source to perform
a Tunction for the calling row source. For example, a calling
row source can call an underlying row source and pass a
routine to the underlying row source to place the row sources
in a location for the calling row source. Once the underlying
routine has produced the rows, the underlying row source can
use the callback routine to place the row sources 1n a data store
location (e.g., database or table queue).

SLAVE PROCESSES

A slave DFO recerves execution messages from the data-
flow scheduler. For example, a slave DFO may receive a
message to parse DFO SQL statements, resume operation,
execute a DFO, or close. When a message 1s recetved by a
slave DFO, the slave DFO must determine the meaning of the
message and process the message. FIG. 7A 1llustrates a pro-
cess tlow for receipt of execution messages.

Atblock 702, an execution message from the QC 1sread. At
decision block 704 (1.e., “message 1s ‘parse’ ?”), 1l the execu-
tion message 1s a parse message, processing continues at
block 706 to invoke SlaveParse, and processing continues at
block 702 to process execution messages sent by the QC. If

10

15

20

25

30

35

40

45

50

55

60

65

26

the execution message 1s not a parse message, processing
continues at decision block 708. At decision block 708 (i.e.,
“message 1s ‘execute’?”), 1 the execution message 1s an
execute message, processing continues at block 710 to mnvoke
SlaveExecute, and processing continues at block 702 to pro-
cess execution messages.

I1, at decision block 708, the execution message 1s not an
execution message, process continues at decision block 712.
At decision block 712 (1.e., “message 1s ‘resume’?”), if the
execution message 1s a resume message, processing contin-
ues at block 714 to mvoke SlaveResume, and processing
continues at block 702 to process execution messages. I the
message 1s not a resume message, processing continues at
decision block 716. At decision block 716 (1.e., “message 1s
‘close’?”), 11 the execution message 1s a close message, pro-
cessing continues at block 718 to invoke SlaveClose. If the
message 1s not a close message, processing continues at deci-
s10n block 702 to process execution messages.

SlaveParse

A parse execution message 1s sent after 1t 1s determined that
the DFO SQL statements must be parsed before execution.
FIG. 7B 1llustrates a process flow for a slave DFO processing
a parse message. Atblock 720, a database cursor 1s opened for
cach DFO. At block 722, each DFO SQL statement 1s parsed.
Processing block 724 binds all SQL statement inputs and
defines all output values. At processing block 726, the parsed
cursor numbers are returned to the QC, and the SlaveParse
process ends.

SlaveExecute

If an execute message 1s recerved from the QC, the slave
DFO recerving the message must execute the DFO. FIG. 7C
illustrates a process tlow for executing a DFO. At decision
block 730 (1.e., first execute of this DFO?”), 1f this 1s not the
first execution message received for this DFO, processing
continues at block 746 to invoke SlaveFetch to fetch all rows,
and processing ends at block 748.

If this 1s the first execution message received, processing
continues at decision block 732 (i.e., QC expects ‘started’?”)
to determine whether the QC expects a reply indicating that
the slave has started. If yes, processing continues at block 734
to send a “started” message to the QC, and processing con-
tinues at block 736. If not, processing continues at block 736.

Block 736 processes bind variables, and executes the cur-
sor. At block 738, a “done” replies are sent to QC for all of the
child DFOs of the DFO being executed. At decision block 740
(1.e., “QC expects ‘ready’replies?”’), il the QC expects aready
message to indicate that the slave DFO 1s ready to fetch rows,
processing continues at block 742. At block 742, one row 1s
tetched from the DFO cursor. Processing continues at block
744 1o send a “ready” reply to the QC, and processing ends. If
the QC does not expect a ready message, processing contin-
ues at block 746 to fetch all rows from the DFO cursor, and
processing ends at block 748.

SlaveResume

After a slave DFO sends a ready message, 1t waits for a
resume message from the QC to continue processing. When 1t
receives a resume message, a slave DFO resumes its execu-
tion. FIG. 7E 1llustrates a SlaveResume process tlow. At deci-
s1on block 750 (1.e., “first row already fetched?”), 11 the first
row has already been fetched, processing continues at block
752 to write the first row to the slave DFO’s output TQ, and

US RE42,664 E

27

processing continues at block 754. If the first row has not been
tetch, processing continues at block 754. At block 754,
SlaveFetch 1s invoked to fetch any remaining rows from the
DFO cursor. Processing ends at block 756.

SlaveClose

Upon completion of a DPO, the database cursor associated
with the completed DFO can be closed. FIG. 7E 1llustrates a
process tlow for SlaveClose. At block 762, the DFO’s data-

base cursor 1s closed. Processing ends at block 764.

SlaveFetch

If a “ready” reply 1s not expected, or a slave DFO receives
a resume after sending a “ready” reply, a slave DFO can fetch
all the rows from a DFO cursor. FIG. 7F illustrates a process
flow to fetch all rows. At decision block 770 (i.e., “given DFO
cursor 1s at EOF?”), i1 the DFO cursor 1s at eof, processing
continues at decision block 772.

At decision block 772 (i.e., “QC expects ‘partial” reply?”),
il a partial execution message 1s expected by the QC to indi-
cate that the slave DFO has completed processing the range of
rowi1ds provided by the QC, processing continues at block 774
to send the partial message to the QC, and processing ends at
780. If a partial message 1s not expected (as determined at

decision block 772), processing continues at block 778 to

write an eof to the output TQ for the slave DFO. Processing,
ends at block 780.

If, at decision block 770 (i.e., given DFO cursor 1s at
EOF?), 1t 1s determined that the DFO cursor 1s not at eof,
processing continues at block 776 to fetch the next row from
the DFO cursor. At block 782, the row 1s written to the slave
DFO’s output TQ), and processing continues at decision block
770 to fetch any remaining rows from the DFO cursor.

OTHER PARALLELIZATION EXAMPLES

One application for parallelism 1s the creation of an index.
The 1index creation operation includes table scan, subindex
create, and merge subindices operations. The table scan and
subindex create can be performed 1n parallel. The output from
the subindex creation operation 1s the mput to the merge
subindices process. In addition, a table can be created 1n
parallel. A subtable create operation can create a table in
parallel, and the subtables can be merged.

Thus, a method and apparatus for processing queries in
parallel has been provided.

We claim:
[1. A computer-implemented method of implementing
database management system (DBMS) operations 1n parallel,
independent of physical storage locations, said computer-
implemented method comprising the steps of:
generating a serial execution plan for operations 1n said
DBMS;

generating a parallelized execution plan for said sernal
execution plan, said parallelized execution plan includ-
ing first and second operations, said second operation
including one or more slave processes operating on a
plurality of data partitions, the quantity of said data
partitions being greater than the quantity of said slave
processes, each of said slave processes operating on a
different one of said data partitions, at least one of said
slave processes operating on more than one of said data
partitions;

5

10

15

20

25

30

35

40

45

50

55

60

65

28

executing said parallelized execution plan when a plurality
of parallel resources of said computer system are avail-
able, said first and second operations executing in par-
allel; and

executing said serial execution plan when said plurality of

resources are not available.}

[2. The method of claim 1 wherein said step of generating
a parallelized execution plan 1includes the steps of:

identifying one or more segments of said serial execution

plan that can be parallelized; and

identifying partitioning requirements of said one or more

segments. |

[3. The method of claim 1 wherein said step of generating
a parallelized execution plan 1s based on a specification of
parallelism in a statement specifying one of said operations.]

[4. A method of generating an execution plan to process a
database management system (DBMS) operation in parallel
including the steps of:

generating an execution plan for said operation;

examining said execution plan from bottom up;

identifying a parallelized portion of said execution plan,
said parallelized portion can be processed 1n parallel,
said parallelized portion including first and second
operations, said first and second operations being
executable 1n parallel, said second operation including
one or more slave processes operating on a plurality of
data partitions, the quantity of said data partitions being,
greater than the quantity of said slave processes, each of
said slave processes operating on a different one of said
data partitions, at least one of said slave processes oper-
ating on more than one of said data partitions;

identifying some serial portion of said execution plan, said
serial portion can be processed 1n serial;

allocating a central scheduler between said parallelized

portion and said serial portion.]

[5. The method of claim 4 further including the steps of:

identifying a first data tflow requirement for a first portion

of said execution plan said first data tlow requirement
corresponding to a partitioning of a data flow required by
said first portion;
identifying a second data flow requirement for a second
portion of said execution plan said second data tlow
requirement corresponding by said second portion; and

allocating a data flow director between said first portion
and said second portion when said first data flow require-
ment 1s not compatible with said second data flow
requirement said data flow director repartitioning a data
flow of said first portion to be compatible with said
second data flow requirement.]

[6. A computer-implemented method of executing data-
base management system (DBMS) operations 1n parallel in a
computer system, said method comprising the steps of:

generating an execution plan to execute said operations 1n

parallel, said execution plan including first and second
operations;
imitiating an operation coordinator in said computer system
to coordinate execution of said execution plan;

imitiating, by said operation coordinator, a first set of slaves
operating on a plurality of data partitions to produce
data, the quantity of said data partitions being greater
than the quantity of said first set of slave processes, each
of said slave processes of said first set of slave processes
operating on a different one of said data partitions, at
least one of said slave processes operating on more than
one of said data partitions;

imitiating, by said operation coordinator, a second set of

slaves to consume data; and

US RE42,664 E

29

directing said second set of slaves to produce data and said
first set of slaves to consume data when said first set of
slaves finishes producing data.}

[7. The method of claim 6 wherein said execution plan is
comprised of operator nodes and said operator nodes are
linked together to form execution sets.]

[8. A computer-implemented method of executing data-
base management system (DBMS) operations in parallel in a
computer system, said method comprising the steps of:

generating an execution plan to execute said operations in

parallel, said execution plan including first and second
operations;

initiating a data tlow scheduler 1n said computer system to

coordinate data tflow;
initiating, by said data tflow scheduler, producer slaves
operating on a plurality of data partitions to produce a
first data production the quantity of said data partitions
being greater than the quantity of said producer slaves,
cach of said producer slaves operating on a different one
of said data partitions, at least one of said producer
slaves operating on more than one of said data partitions;

initiating, by said data flow scheduler, consumer slaves to
consume said first data production;

transmitting a ready message to said data flow scheduler

when said producer slaves become ready to produce
data;
transmitting a completion message to said data flow sched-
uler when said first data production 1s completed:

generating, by said data flow scheduler, in response to said
completion message, an 1dentification of a plurality of
said consumer slaves that did notrecerve data 1n said first
data production, said generating step using information
derived from said ready message;

examining, by said producer slaves, said identification dur-

ing a subsequent data production; and

reducing said subsequent data production such that said

subsequent data production does not produce data for
said plurality of said consumer slaves.]

[9. In a computer system, a database management appara-
tus for implementing database operations 1n parallel, inde-
pendent of physical storage locations, said database manage-
ment apparatus comprising;

means for generating a serial execution plan for operations

in said database management apparatus;

means for generating a parallelized execution plan for said

serial execution plan, said parallelized execution plan
including first and second operations, said second opera-
tion 1including one or more slave processes operating on
a plurality of data partitions, the quantity of said data
partitions being greater than the quantity of said slave
processes, each of said slave processes operating on a
different one of said data partitions, at least one of said
slave processes operating on more than one of said data
partitions;

means for executing said parallelized execution plan when

a plurality of parallel resources of said computer system
are available, said first and second operations executing
in parallel; and

means for executing said serial execution plan when said

plurality of resources are not available.]

[10. The apparatus of claim 9 wherein said means for
generating a parallelized execution plan further includes:

means for 1dentifying one or more segments of said serial

execution plan that can be parallelized; and

means for identifying partitioning requirements of said one

or more segments.]

10

15

20

25

30

35

40

45

50

55

60

65

30

[11. The apparatus of claim 9 wherein said means for
generating a parallelized execution plan 1s based on a speci-
fication of parallelism in a statement specilying one of said
operations.]

[12. In a computer system, a database management appa-
ratus for generating an execution plan to process database
operations 1n parallel, said database management apparatus
comprising;

means for generating an execution plan for said operations;

means for examining said execution plan from bottom up;

means for identifying a parallelized portion of said execu-
tion plan, said parallelized portion including first and
second operations, said parallelized portion being pro-
cessed 1n parallel, said second operation 1including one
or more slave processes operating on a plurality of data
partitions, the quantity of said data partitions being
greater than the quantity of said slave processes, each of
said slave processes operating on a different one of said
data partitions, at least one of said slave processes oper-
ating on more than one of said data partitions;

means for identifying some serial portion of said execution

plan, said serial portion being processed 1n serial; and
means for allocating a central scheduler between said par-
allelized portion and said serial portion.}

[13. The apparatus of claim 12 further including:

means for identifying a first data flow requirement for a

first portion of said execution plan said first data tlow
requirement corresponding to a partitioning of a data
flow required by said first portion;

means for identitying a second data flow requirement for a

second portion of said execution plan said second data
flow requirement corresponding to said second portion;
and

means for allocating a data tlow director between said first

portion and said second portion when said first data tlow
requirement 1s not compatible with said second data flow
requirement, said data flow director repartitioning a data
flow of said first portion to be compatible with said
second data flow requirement.]

[14. In a computer system, a database management appa-

ratus for executing database operations 1n parallel, said data-
base management apparatus comprising:
means for generating an execution plan to execute said
operations 1n parallel, said execution plan including first
and second operations, said first and second operations
being executed 1n parallel;
means for mitiating an operation coordinator in said com-
puter system to coordinate execution of said execution
plan;
means for mitiating, by said operation coordinator, a first
set of slaves operating on a plurality of data partitions to
produce data, the quantity of said data partitions being
greater than the quantity of said first set of slave pro-
cesses, each of said slave processes of said first set of
slave processes operating on a different one of said data
partitions, at least one of said slave processes operating
on more than one of said data partitions;
means for imnitiating, by said operation coordinator, a sec-
ond set of slaves to consume data; and
means for directing said second set of slaves to produce
data and said first set of slaves to consume data when
said first set of slaves finishes producing data.]
[15. The apparatus of claim 14 wherein said execution plan
1s further comprised of operator nodes and said operator
nodes are linked together to form execution sets.}

US RE42,664 E

31

[16. In a computer system, a database management appa-
ratus for executing database operations in parallel, said data-
base management apparatus comprising:

means for generating an execution plan to execute said

operations 1n parallel, said execution plan including first
and second operations, said first and second operations
being executed 1n parallel;

means for iitiating a data flow scheduler 1n said computer

system to coordinate data tlow;

means for mitiating, by said data tlow scheduler, producer

slaves operating on a plurality of data partitions to pro-
duce a first data production, the quantity of said data
partitions being greater than the quantity of said pro-
ducer slaves, each of said producer slaves operating on a
different one of said data partitions, at least one of said
producer slaves operating on more than one of said data
partitions;

means for initiating, by said data flow scheduler, consumer

slaves to consume said first data production;

means for transmitting a ready message to said data tlow

scheduler when said producer slaves become ready to
produce data;

means for transmitting a completion message to said data

flow scheduler when said first data production 1s com-
pleted;
means for generating, by said data flow scheduler, 1n
response to said completion message, an 1dentification
of a plurality of said consumer slaves that did not receive
data 1n said first data production, said generating step
using information derived from said ready message;

means for examining, by said producer slaves, said identi-
fication during a subsequent data production; and

means for reducing said subsequent data production such
that said subsequent data production does not produce
data for said plurality of said consumer slaves.]

[17. An article of manufacture comprising a computer
usable mass storage medium having computer readable pro-
gram code embodied therein for causing a processing means
to execute computer-implemented database management
operations 1n parallel, independent of physical storage loca-

tions, said computer readable program code 1n said article of

manufacture comprising:

computer readable program code for causing said process-
ing means to generate a serial execution plan for said
database management operations;

computer readable program code for causing said process-
ing means to generate a parallelized execution plan for
said serial execution plan, said parallelized execution
plan including first and second operations, said second
operation including one or more slave processes operat-
ing on a plurality of data partitions, the quantity of said
data partitions being greater than the quantity of said
slave processes, each of said slave processes operating
on a dif.
said slave processes operating on more than one of said
data partitions;

computer readable program code for causing said process-
ing means to execute said parallelized execution plan
when a plurality of parallel resources of said computer
system are available, said first and second operations

executing 1n parallel; and

computer readable program code for causing said process-
ing means to execute said serial execution plan when
said plurality of resources are not available.]

‘erent one of said data partitions, at least one of

10

15

20

25

30

35

40

45

50

55

60

65

32

[18. The article of manufacture of claim 17 wherein said
computer readable program code for causing said processing
means to generate a parallelized execution plan further
includes:

computer readable program code for causing said process-

ing means to 1dentiy one or more segments of said serial
execution plan that can be parallelized; and

computer readable program code for causing said process-

ing means to identify partitioning requirements of said
one or more segments.J

[19. The article of manufacture of claim 17 wherein said
computer readable program code for causing said processing
means to generate a parallelized execution plan 1s based on a
specification of parallelism 1n a statement speciiying one of
said operations.]

20. A method of parallelizing an operation, the method
comprising the steps of:

dividing the operation into a set of work partitions;

assigning work partitions from said set of work partitions

to a plurality of entities, wherein at least one entity of
said plurality of entities is assigned a plurality of work
partitions from said set of work partitions;

wherein the step of assigning work partitions is performed

by assigning the work partitions in a sequence based at
least in part on sizes associated with the work partitions,
with relatively larger work partitions assigned before
relatively smaller work partitions;

said plurality of entities operating in parallel on work

partitions assigned to said plurality of entities to per-
form said operation; and

wherein assigning the work partitions in a sequence

includes assigning a first previously unassigned work
partition to a particular entity of the plurality of entities,
and when the particular entity completes processing the
first work partition, picking a second previously unas-
signed work partition based at least in part on the size of
the second work partition, and assigning the second
unassigned work partition to the particular entity for
processing,

wherein the method is performed by one or more comptit-

ing devices.

21. A method of parallelizing an operation, the method
comprising the steps of.

dividing the operation into a set of work partitions;

assigning work partitions from said set of work partitions

to a plurality of entities, wherein at least one entity of

said plurality of entities is assigned a plurality of work

partitions from said set of work partitions, wherein the

step of assigning work partitions includes.:

assigning said at least one entity a first work partition
from said set of work partitions; and

after said at least one entity has completed operating on

said first work partition, assigning said at least one

entity a second work partition from said set of work

partitions, wherein the step of assigning said at least one

entity a second work partition includes

determining whether there ave any unassigned work
partitions from a first level in a hierarchy to which
said first work partition belonged; and

if theve are no unassigned work partitions from the first
level in the hierarchy, then selecting said second work
partition from a level in said hievarchy that is two
levels above said first level in said hievarchy;

said plurality of entities operating in parallel on work

partitions assigned to said plurality of entities to per-
form said operation; and

US RE42,664 E

33

wherein the operation is specified in a query that corre-

sponds to the hierarchy of operations,

whevrein the method is performed by one ov morve comput-

ing devices.

22. A method of parallelizing an operation, the method
comprising the steps of:

dividing the operation into a set of work partitions;

assigning work partitions from said set of work partitions

to a plurality of entities, wherein at least one entity of
said plurality of entities is assigned a plurality of work
partitions from said set of work partitions;

said plurality of entities operating in parallel on work

partitions assigned to said plurality of entities to per-
form said operation;

the method includes the step of generating a serial execu-

tion plan for operations in a database management sys-
tem (DBMS) running on a computer system;

the method includes the step of generating a parvallelized

execution plan for said serial execution plan, said par-
allelized execution plan including first and second
operations,

the step of dividing an operation is performed by dividing

said second operation;

the plurality of entities includes one ov more slave pro-

cesses operating on a plurality of data partitions, the
quantity of said data partitions being greater than the
quantity of said slave processes;

executing said parallelized execution plan when a plurality

of parallel resources of said computer system arve avail-
able; and

executing said servial execution plan when said plurality of

resources are not available,

wherein the method is performed by one or morve comput-

ing devices.

23. The method of claim 22 whevrein said step of generating
a parallelized execution plan includes the steps of:

identifving one or more segments of said serial execution

plan that can be parallelized; and

identifving partitioning requirements of said one or more

segments.

24. The method of claim 22 wherein said step of generating
a parallelized execution plan is based on a specification of
parallelism in a statement specifying one of said operations.

25. A method of parallelizing an operation, the method
comprising the steps of:

dividing the operation into a set of work partitions;

assigning work partitions from said set of work partitions

to a plurality of entities, wherein at least one entity of
said plurality of entities is assigned a plurality of work
partitions from said set of work partitions;

said plurality of entities operating in parallel on work

partitions assigned to said plurality of entities to per-
form said operation;

generating an execution plan for said operation;

examining said execution plan from bottom up;

identifving a parallelized portion of said execution plan,
said parallelized portion can be processed in parallel,
said parallelized portion including first and second
operations, said first and second operations being
executable in parallel;

whevrein the step of dividing the operation is performed by

dividing said second operation;

whevrein the plurality of entities includes one or more slave

processes operating on a plurality of data partitions, the
quantity of said data partitions being greater than the
quantity of said slave processes;

5

10

15

20

25

30

35

40

45

50

55

60

65

34

identifying some sevial portion of said execution plan, said
serial portion can be processed in serial; and

allocating a central scheduler between said parallelized
portion and said serial portion,

wherein the method is performed by one or morve compuit-
ing devices.

26. The method of claim 25 further including the steps of:

identifying a first data flow requirement for a first portion
of said execution plan said first data flow requirement
corresponding to a partitioning of a data flow required
by said first portion;

identifying a second data flow requivement for a second
portion of said execution plan said second data flow
requivement corresponding by said second portion; and

allocating a data flow director between said first portion
and said second portion when said first data flow
requivement is not compatible with said second data
flow requirement said data flow dirvector repartitioning a
data flow of said first portion to be compatible with said
second data flow requirvement.

27. A method for parallelizing an operation, the method
comprising the steps of:

dividing the operation into a set of work partitions;

assigning work partitions from said set of work partitions

to a plurality of entities, whevein at least one entity of
said plurality of entities is assigned a plurality of work
partitions from said set of work partitions;

said plurality of entities operating in parallel on work

partitions assigned to said plurality of entities to per-
form said operation,
generating an execution plan to execute database manage-
ment system (DBMS) operations in parallel, said execu-
tion plan including first and second operations;

wherein the step of dividing said operation is performed by
dividing said second operation;

initiating an opervation coovdinator in a computer system to

coordinate execution of said execution plan;
initiating, by said operation coovdinator, a first set of slaves
operating on a plurality of data partitions to produce
data, the gquantity of said data partitions being greater
than the quantity of said first set of slave processes;

initiating, as said plurality of entities, by said operation
coordinator, a second set of slaves to consume data; and

dirvecting said second set of slaves to produce data and said
first set of slaves to consume data when said first set of
slaves finishes producing data,

wherein the method is performed by one or more comput-

ing devices.

28. The method of claim 27 wherein said execution plan is
comprised of operator nodes and said operator nodes are
linked together to form execution sets.

29. A method for parallelizing an operation, the method
comprising the steps of.

dividing the operation into a set of work partitions;

assigning work partitions from said set of work partitions

to a plurality of entities, wherein at least one entity of
said plurality of entities is assigned a plurality of work
partitions from said set of work partitions;

said plurality of entities operating in parallel on work

partitions assigned to said plurality of entities to per-
form said operation,

generating an execution plan to execute said operations in

parallel, said execution plan including first and second
operations,

wherein the step of dividing said operation includes divid-

ing said first operation;

US RE42,664 E

35

initiating producer slaves operating on a plurality of data
partitions to produce a first data production;

initiating consumer slaves to consume said first data pro-
duction;

when said first data production is completed, genervating an
identification of a plurality of said consumer slaves that
did not receive data in said first data production,

examining said identification during a subsequent data
production; and

reducing said subsequent data production such that said
subsequent data production does not produce data for
said plurality of said consumer slaves,

whevrein the method is performed by one or morve comput-
ing devices.

30. A method for processing a statement in a database

svstem, the method comprising the steps of:

receiving, at a database server, a statement that specifies at
least a database operation that operates on data within
a database;

determining, at said database server, a user-specified

degree of parallelism to use in performing the database
operation, wherein said user-specified degree of paral-
lelism expressly indicates a specific number of entities to
use in parallel to perform said database operation;

dividing, at said database server, the database operation
into a set of work partitions;

performing, at said database server, a determination of

how many entities to use to perform said operation

10

15

20

25

based, at least in part, on the user-specified degree of 30

parallelism, wherein the amount of entities that ave cho-
sen to use to perform on the database operation is dif-
ferent than the amount of entities that would have been
chosen if no user-specified degree of parallelism had
been specified;

assigning, at said database server, work partitions from
said set of work partitions to a plurality of entities based
on said determination; and

said plurality of entities operating in parallel on work
partitions assigned to said plurality of entities to per-
Jorm said database operation,

wherein the method is performed by one or more compuit-
ing devices.

31. The method of claim 30 wherein.:

the statement requires a plurality of operations;

the user-specified degree of parallelism is specified in said
statement, and

the statement specifies said degree of parallelism for a
subset of the plurality of operations rvequived by the
statement.

32. The method of claim 30 wherein

the user-specified degree of parallelism is specified in said
statement; and

the degree of parallelism specified by the statement indi-
cates that no amount of parallelism is to be used during
execution of a particular portion of the statement.

33. The method of claim 30 wherein

the user-specified degree of parallelism is specified in said
statement, and

the degree of parallelism specified by the statement indi-
cates a maximum amount of parallelism to use during
execution of said operation.

34. A method of processing a query in a database system,

the method comprising the steps of:

dividing, at a database server, a database operation
requived by said query into a set of work partitions by
generating a set of query fragments, each work partition

35

40

45

50

55

60

65

36

of said set of work partitions to be performed serially by
a single entity to which said work partition is assigned;
incorporating hints into at least some of said query frag-
ments at said database server, wherein said query frag-
ments incovporating hints comprise work partitions that
may be performed in a plurality of ways to reach a same
result, and wherein said hint associated with a given
query fragment indicates one way of said plurality of
ways to perform said work partition;
assigning, at said database server, query fragments from
said set of query fragments to a plurality of entities; and

said plurality of entities operating in parallel on guery
fragments assigned to said plurality of entities to per-
form said database operation, wherein entities working
on a query fragment associated with a hint perform the
work partition associated with said gquery fragment in
said one way dictated by said hint,

wherein the method is performed by one or more comput-

ing devices.

35. The method of claim 34 wherein the step of incorporat-
ing hints includes incorporating hints that dictate the opera-
tion of a table scan.

36. The method of claim 35 wherein the step of incorporat-
ing hints that dictate the operation of a table scan includes
incorporating hints that rowid partitioning is to be used dur-
ing the table scan.

37. The method of claim 34 wherein the step of incorporat-
ing hints includes incovporating hints that specify perfor-
mance of a full table scan.

38. The method of claim 34 wherein the step of incorporat-
ing hints includes incovporating hints that specify using a
particular type of join.

39. The method of claim 38 wherein the step of incorporat-
ing hints that specify using a particular type of join includes
incovporating hints that specify using a sorvt/merge join.

40. The method of claim 38 wherein the step of incorporat-
ing hints that specify using a particular type of join includes
incorvporating hints that specify using a nested loop join.

41. A method of processing a guery, the method comprising
the steps of:

determining a hievarchy of operations associated with a

query;

dividing a first operation required by said query into a first

set of work partitions;

dividing a second operation vequived by said query into a

second set of work partitions, wherein said second
operation immediately follows said first operation in
said hierarchy;,

dividing a third operation vequived by said query into a

thivd set of work partitions, wherein said third operation
immediately follows said second operation in said hier-
archy;

assigning work partitions from said first set of work parti-

tions to a first plurality of entities;

said first plurality of entities operating in parallel on work

partitions assigned to said first plurality of entities from
said first set of work partitions to perform said first
operation,

assigning work partitions from said second set of work

partitions to a second plurality of entities, wherein said
second plurality of entities are different entities than said
first plurality of entities; and

said second plurality of entities operating in parallel on

work partitions assigned to said second plurality of enti-
ties from said second set of work partitions to perform
said second operation;

US RE42,664 E

37

assigning work partitions from said thirvd set of work par-
titions to said first plurality of entities; and

said first plurality of entities operating in parallel on work
partitions assigned to said first plurality of entities from
said thivd set of work partitions to perform said third 5
operation,

wherein the method is performed by one or more compuit-

ing devices.

42. The method of claim 41 further comprising performing
the following steps when a given entity in said first set of 10
entities finishes performing a work partition from said first set
of work partitions.

determining whether there are any unassigned work par-

titions from said first set of work partitions; and

if theve are no unassigned workpartitions from said first set 15

of work partitions, then assigning the given entity a work
partition selected from said third set of work partitions;
and

if theve are unassigned work partitions from said first set of

work partitions, then assigning the given entity a work 20
partition selected from said first set of work partitions.

43. The method of claim 41 wherein the hievarchy includes
odd levels and even levels, and the method further comprises
the steps of assigning work partitions from odd levels to said
first plurality of entities and work partitions from even levels
to said second plurality of entities.

44. The method of claim 41 wherein performing work par-
titions in said first set of work partitions causes said first set
of entities produce output consumed by said second plurality
of entities, and performing work partitions in said third set o
work partitions causes said first set of entities to consume
output produced by said second plurality of entities.

45. A computer-readable storage medium carrying
instructions for parallelizing an operation, the instructions
including instructions for performing the steps of.

dividing the operation into a set of work partitions,

assigning work partitions from said set of work partitions

to a plurality of entities, wherein at least one entity of
said plurality of entities is assigned a plurality of work
partitions from said set of work partitions;

whevrein the step of assigning work partitions is performed

by assigning the work partitions in a sequence based at
least in part on sizes associated, with the work partitions
with relatively larger work partitions assigned before
relatively smaller work partitions;

said plurality of entities operating in parallel on work

partitions assigned to said plurality of entities to per-
form said operation; and

wherein assigning the work partitions in a sequence

includes assigning a first previously unassigned work 50
partition to a particular entity of the plurality of entities,

and when the particular entity completes processing the
fivst work partition, picking a second previously unas-

signed work partition based at least in part to the size of
the second work partition, and assigning the second
unassigned work partition to the particular entity for
processing.

46. A computer-readable storage medium carrying
instructions for parallelizing an operation, the instructions
including instructions for performing the steps of.

dividing the operation into a set of work partitions,

assigning work partitions from said set of work partitions

to a plurality of entities, wherein at least one entity of
said plurality of entities is assigned a plurality of work
partitions from said set of work partitions, whevrein the
step of assigning work partitions includes

assigning said at least one entity a first work partition from

said set of work partitions; and

25

30

35

40

45

55

60

65

38

after said at least one entity has completed operating on
said first work partition, assigning said at least one
entity a second work partition from said set of work
partitions;

said plurality of entities operating in parallel on work
partitions assigned to said plurality of entities to per-
form said operation;

wherein the operation is specified in a query that corre-

sponds to a hierarchy of operations; and

the step of assigning said at least one entity a second work

partition includes

determining whether theve arve any unassigned work
partitions from a first level in the hierarchy to which
said first work partition belonged; and

if there are no unassigned work partitions from the first
level in the hierarchy, then selecting said second work
partition from a level in said hievarchy that is two
levels above said first level in said hievarchy.

47. A computer-readable storage medium carrving
instructions for parallelizing an operation, the instructions
including instructions forv performing the steps of:

dividing the operation into a set of work partitions;

assigning work partitions from said set of work partitions

to a plurality of entities, wherein at least one entity of
said plurality of entities is assigned a plurality of work
partitions from said set of work partitions;

said plurality of entities operation in parallel on work

partitions assigned to said plurality of entities to per-
form said operation;

wherein the instructions include instructions for perform-

ing the step of generating a serial execution plan for
operations in a database management system (DBMS)
running on a computer system,
wherein the instructions include instructions for perform-
ing the step of generating a parallelized execution plan
for said serial execution plan, said parallelized execu-
tion plan including first and second operations;

wherein the step of dividing an operation is performed by
dividing said second operation;

wherein the plurality of entities includes one ov move slave

processes operating on a plurality of data partitions, the
quantity of said data partitions being greater than the
quantity of said slave processes;

wherein the instructions include instructions for perform-

ing the step of executing said parallelized execution plan
when a plurality of parallel vresources of said computer
system are available; and

wherein the instructions include instructions for perform-

ing the step of executing said serial execution plan when
said plurality of resources are not available.

48. The computer-readable storage medium of claim 47
wherein said step of generating a parvallelized execution plan
includes the steps of.

identifving one or move segments of said servial execution

plan that can be parallelized; and

identifving partitioning vequivements of said one or more

Segments.

49. The computer-readable storage medium of claim 47
wherein said step of generating a parvallelized execution plan
is based on a specification of parallelism in a statement
specifving one of said operations.

50. A computer-readable storage wmedium carrying
instructions for parallelizing an operation, the instructions
including instructions forv performing the steps of:

dividing the operation into a set of work partitions;

assigning work partitions from said set of work partitions

to a plurality of entities, wherein at least one entity of
said plurality of entities is assigned a plurality of work

partitions from said set of work partitions;

US RE42,664 E

39

said plurality of entities operating in parallel on work
partitions assigned to said plurality of entities to per-
form some operation;
generating an execution plan for said operation;
examining said execution plan from bottom up;
identifving a parallelized portion of said execution plan,
said parallelized portion can be processed in parallel,
said parallelized portion including first and second
operations, said first and second operations being
executable in parallel;
whevrein the step of dividing the operation is performed by
dividing said second operation;
wherein the plurality of entities includes one or more slave
processes operating on a plurality of data partitions, the
quantity of said data partitions being greater than the
quantity of said slave processes;
identifving some sevial portion of said execution plan, said
serial portion can be processed in serial; and
allocating a central scheduler between said parallelized
portion and said serial portion.
51. The computer-readable storage medium of claim 50
further including instructions for performing the steps of:
identifving a first data flow requivement for a first portion
of said execution plan said first data flow requirement
corresponding to a partitioning of a data flow requirved
by said first portion;
identifving a second data flow requirement for a second
portion of said execution plan said second data flow
requivement corresponding by said second portion; and

allocating a data flow director between said first portion
and said second portion when said first data flow
requivement is not compatible with said second data
flow requirement said data flow director repartitioning a
data flow of said first portion to be compatible with said
second data flow requirement.

52. A computer-readable storage medium carrying
instructions for parallelizing an operation, the instructions
including instructions for performing the steps of.

dividing the operation into a set of work partitions,

assigning work partitions from said set of work partitions

to a plurality of entities, wherein at least one entity of

said plurality of entities is assigned a plurality of work
partitions from said set of work partitions;

said plurality of entities operating in parallel on work
partitions assigned to said plurality of entities to per-
form said operation;

generating an execution plan to execute database manage-
ment system (DBMS) operations in parallel, said execu-
tion plan including first and second operations;

whevrein the step of dividing said operation is performed by
dividing said second operation;

initiating an opervation coovdinator in a computer system to
coordinate execution of said execution plan;

initiating, by said operation coovdinator, a first set of slaves
operating on a plurality of data partitions to produce
data, the gquantity of said data partitions being greater
than the quantity of said first set of slave processes;

initiating, as said plurality of entities, by said operation
coordinator, a second set of slaves to consume data,; and

divecting said second set of slaves to produce data and said

fivst set of slaves to consume data when said first set of

slaves finishes producing data.

53. The computer-readable storage medium of claim 52
wherein said execution plan is comprised of operator nodes
and said operator nodes ave linked together to form execution
sets.

10

15

20

25

30

35

40

45

50

55

60

65

40

54. A computer-readable storage wmedium carrying
instructions for parallelizing an operation, the instructions
including instructions for performing the steps of:

dividing the operation into a set of work partitions;

assigning work partitions from said set of work partitions

to a plurality of entities, wherein at least one entity of
said plurality of entities is assigned a plurality of work
partitions from said set of work partitions;

said plurality of entities operating in parallel on work

partitions assigned to said plurality of entities to per-
form said operation;

generating an execution plan to execute said operations in

parallel, said execution plan including first and second
operations,

wherein the step of dividing said operation includes divid-

ing said first operation;

initiating producer slaves operating on a plurality of data

partitions to produce a first data production;

initiating consumer slaves to consume said first data pro-

duction;

when said first data production is completed, generating an

identification of a plurality of said consumer slaves that
did not rveceive data in said first data production;

examining said identification during a subsequent data

production; and

reducing said subsequent data production such that said

subsequent data production does not produce data for
said plurality of said consumer slaves.
55. A computer-readable storage medium storing instruc-
tions for processing a statement in a database system, the
instructions including instructions for performing the steps
of
receiving, at a database sevver, a statement that specifies at
least a database operation that operates on data within
a database;

determining, at said database sevver, a user-specified
degree of parallelism to use in performing the database
operation, wherein said user-specified degree of paral-
lelism expressly indicates a specific number of entities to
use in parallel to perform said database operation;

dividing, at said database sevver, the database operation
into a set of work partitions;

performing, at said database server, a determination of

how many entities to use to perform said operation
based, at least in part, on the user-specified degree of
parallelism, whevein the amount of entities that ave cho-
sen to use to perform on the database operation is dif-
Jervent than the amount of entities that would have been
chosen if no user-specified degree of parallelism had
been specified;

assigning, at said database sevver, work partitions from

said set of work partitions to a plurality of entities based
on said determination; and

said plurality of entities operating in parvallel on work

partitions assigned to said plurality of entities to per-
Jorm said database operation,

wherein the method is performed by one or more compuit-

ing devices.

56. The computer-readable storage medium of claim 35
wherein.

the statement requires a plurality of operations;

the user-specified degree of parallelism is specified in said

statement, and

the statement specifies said degree of parallelism for a

subset of the plurality of operations vequived by the
statement.

US RE42,664 E

41

57. The computer-readable storage medium of claim 55
wherein

the user-specified degree of parallelism is specified in said

statement; and

the degree of parallelism specified by the statement indi-

cates that no amount of parallelism is to be used during
execution of a particular portion of the statement.

58. The computer-readable storage medium of claim 55
wherein

the user-specified degree of parallelism is specified in said

statement, and

the degree of parallelism specified by the statement indi-

cates a maximum amount of parallelism to use during
execution of said operation.

59. A computer-readable storage medium carryving
instructions for processing a query in a database system, the
instructions including instructions for performing the steps
of

dividing, at a database server, a database operation

required by said query into a set of work partitions by
generating a set of query fragments, each work partition
of said set of work partitions to be performed serially by
a single entity to which said work partition is assigned;
incovporating hints into at least some of said query frag-
ments at said database server, wherein said query frag-
ments incovporating hints comprise work partitions that
may be performed in a plurality of ways to reach a same
result, and wherein said hint associated with a given

query fragment indicates one way of said plurality of

ways to perform said work partition,

10

15

20

25

assigning, at said database server, query fragments from ..

said set of query fragments to a plurality of entities; and

said plurality of entities operating in parallel on guery
fragments assigned to said plurality of entities to per-
Jorm said database operation, wherein entities working
on a query fragment associated with a hint perform the
work partition associated with said query fragment in
said one way dictated by said hint,

wherein the method is performed by one or more compuit-

ing devices.

60. The computer-readable storage medium of claim 59
wherein the step of incovporating hints includes incovporat-
ing hints that dictate the operation of a table scan.

61. The computer-readable storage medium of claim 60
wherein the step of incovporating hints that dictate the opera-
tion of a table scan includes incorporating hints that rowid
partitioning is to be used during the table scan.

62. The computer-readable storage medium of claim 59
wherein the step of incovporating hints includes incorporat-
ing hints that specify performance of a full table scan.

63. The computer-readable storage medium of claim 59
wherein the step of incovporating hints includes incovporat-
ing hints that specify using a particular type of join.

64. The computer-readable storage medium of claim 63
wherein the step of incorporating hints that specify using a
particular type of join includes incorporating hints that
specify using a sovt/merge join.

65. The computer-readable storage medium of claim 63
wherein the step of incorporating hints that specify using a
particular type of join includes incovporating hints that
specify using a nested loop join.

66. A computer-readable storage wmedium carrying
instructions for processing a query, the instructions including
instructions for performing the steps of:

determining a hievarchy of operations associated with a

query,

dividing a first operation required by said query into a first

set of work partitions;

35

40

45

55

60

42

dividing a second operation vequired by said query into a
second set of work partitions, wherein said second
operation immediately follows said first operation in
said hierarchy;,

dividing a third operation vequived by said query into a
third set of work partitions, wherein said thivd operation
immediately follows said second operation in said hier-
archy;

assigning work partitions from said first set of work parti-
tions to a first plurality of entities;

said first plurality of entities operating in parallel on work
partitions assigned to said first plurality of entities from
said first set of work partitions to perform said first
operation;

assigning work partitions from said second set of work
partitions to a second plurality of entities, wherein said
second plurality of entities are different entities than said
first plurality of entities; and

said second plurality of entities operating in parallel on
work partitions assigned to said second plurality of enti-
ties from said second set of work partitions to perform
said second operation;

assigning work partitions from said third set of work par-
titions to said first plurality of entities; and

said first plurality of entities operating in parallel on work
partitions assigned to said first plurality of entities from
said third set of work partitions to perform said third
operation.

67. The computer-readable storage medium of claim 66

Jurther comprising instructions for performing the following

steps when a given entity in said first set of entities finishes
performing a work partition from said first set of work parti-
tions.

determining whether there ave any unassigned work par-

titions from said first set of work partitions; and

i theve ave no unassigned work partitions from said first set

of work partitions, then assigning the given entity a work
partition selected from said third set of work partitions;
and

if there ave unassigned work partitions from said first set of

work partitions, then assigning the given entity a work
partition selected from said first set of work partitions.

68. The computer-readable storage medium of claim 66
wherein the hierarchy includes odd levels and even levels, and
the instructions further include instructions for performing
the steps of assigning work partitions from odd levels to said
first plurality of entities and work partitions from even levels
to said second plurality of entities.

69. The computer-readable storage medium of claim 66
wherein performing work partitions in said first set of work
partitions causes said first set of entities produce output con-
sumed by said second plurality of entities, and performing
work partitions in said third set of work partitions causes said
fivst set of entities to consume output produced by said second
plurality of entities.

70. The method of claim 30, wherein the user-specified
degree of parallelism is specified in said statement.

71. The method of claim 30, wherein the user-specified
degree of parallelism is specified for operations that involve a
particular table.

72. The computer-readable storage medium of claim 55,
wherein the user-specified degree of parallelism is specified
in said statement.

73. The computer-readable storage medium of claim 53,

wherein the user-specified degree of parallelism is specified
Jfor operations that involve a particular table.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : RE42,664 E Page 1 of 3
APPLICATION NO. . 09/757399

DATED : August 30, 2011

INVENTOR(S) . Hallmark et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On Title page 2, Item (56), under “Other Publications”, line 17-18, delete “Appliciation” and insert
-- Application --, therefor.

On Sheet 8 of 33, i figure 6A, line 22, delete “Parellelized” and 1nsert -- Parallelized --, therefor.
See attached.

On Sheet 8 of 33, 1n figure 6A, line 22, delete “name)” and insert -- name --, therefor.
See attached.

On Sheet 17 of 33, m figure 10A, Box 1008, line 2, delete “cooridinator” and insert -- coordinator --,
therefor. See attached.

In column 12, line 53, delete “select /+ordered” and insert -- select /*+ordered --, therefor.

In column 19, line 27, delete “synchronising’ and insert -- synchronizing --, therefor.

In column 22, line 39, delete “““Messag=""and 1nsert -- “Message= --, therefor.

In column 22, line 64, delete “repeals™ and 1nsert -- reports --, theretor.

In column 23, line 22, delete “FrocessReadyMsg.” and insert -- ProcessReadyMsg. --, therefor.

In column 23, line 48, delete “parem’™ and 1nsert -- parent --, therefor.

Signed and Sealed this
Seventeenth Day of April, 2012

......

David J. Kappos
Director of the United States Patent and Trademark Office

CERTIFICATE OF CORRECTION (continued)

U.S. Patent

{ Name

Page 2 of 3

Aug. 30, 2011 Sheet 8 of 33 RE42.664 E
DFO Type Type of DFQ (e.g., table scan,
sertmerge jon)
Pointer to Parent Pointer to parent node

“ointer to Sibling Poinler to nexi-node
Row Source Row source equivalent for this node

— Operafon ______— —— —T 1
ane ueue ldenlimer dentifies fable node for this queue
pped Node Infomation

Non-QC Nogde [nformation
.] Sointer 1o st chig of parallelized node

ey Column Number Number of key columns in input table
___quere
Partitioning type Parallelized node’'s pariiioning type

(e.q., hash, key range, rowid range,
Clumped Columns Number of clumped columns with parent

round rohin

__ ‘reocates
{ontrol Blocks
Table Scan Contains table scan information (e.g.,

table name angd dearee of parallelism
Contains information for an indexed

Indexed Nested Loop Join

nested loop join {e.g., right and left
input table

Sort/Merg ioin taing information for a sort/merge

oin {e.g., merge or outer join
Index Creation

control flags
FIG. 6A

Contains information for index creation
(e.9., columnn list, index iype, and
storage parameters)

CERTIFICATE OF CORRECTION (continued) Page 3 of 3

U.S. Patent Aug. 30, 2011 Sheet 17 of 33 RE42,664)

get root DFO 1002
inttialize fiags
count table 1004
nstances scanned
1006
count table queues
1008
count table queues
from query coordinator
order >4 1010 . 101
buy in query? Yes set order by fiag
NO
1014 1016

close Yoc
.I set close flag

NG
1018
compress redundant gperands from
non-key columns of the row vectors
1020

determine start and ready synchronization
requirements and set pointers accordingly

~ 1022

determine maximum depth of tree
1024

S

FI1G. 10A

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

