USOORE426338E

(19) United States
a2y Reissued Patent (10) Patent Number: US RE42,638 E

Ray et al. 45) Date of Reissued Patent: Aug. 23, 2011
(54) RESAMPLE AND COMPOSITE ENGINE FOR 6,111,582 A 82000 Jenkins
REAL-TIME VOLUME RENDERING 6,304,266 B1 102001 Li
6,310,620 B1 10/2001 Lauer et al.
6,456,285 B2* 9/2002 Havhurst 345/422
(75) Inventors: Harvey Ray, Longmont, CO (US); 6,636,215 B1* 10/2003 Greenecoo..... 345/422
Deborah Silver, East Brunswick, NJ 0,826,297 B2* 11/2004 Saitoetal.c.oceeen 382/131
(US) 7,136,064 B2* 11/2006 Zwderveld 345/424
7,167,181 B2* 1/2007 Duluketal. 345/506
(73) Assignee: Rutgers, The State University of New 7,362,329 B2* 4/2008 Zuderveld 345/424
JerseyNlJ (US) OTHER PUBLICATIONS
(21) Appl. No.: 11/305,902 ‘_Yagel, R., et :':11: “Accelerating Volume 5nim.j:1ti0_n by Space-Leap-
ing”’, Proceedings of the Conference on Visualization, San Jose, Oct.
(22) Filed: Dec. 16, 2005 25-29, 1993, New York, IEEE, US, Oct. 25, 1993, pp. 62-69,
Under 37 CFR 1.47 AP0Y0475412.
() Hirai, T., et al: “Hybrid Volume Ray Tracing of Multiple Isosurfaces
Related U.S. Patent Documents with Arbitrary Opacity Values”, IEICE Transactions on Information
Reissue of and Systems, Institute of Electronics Information and Comm. Eng.
(64) Patent No.: 6,664,961 Tokyo, JP, vol. E79-D, No. 7, Jul. 1, 1996, pp. 965-972,
Tssued: Dec. 16. 2003 XP000628406.
T - €e. 19, Mueller, K., et al: ““Fast Perspective Volume Rendering with Splatting
A‘pp .No.: 09/741,558 by Utilizing a Ray-Driven Approach”, Visualization *96. Proceed-
Filed: Dec. 20,2000 ings of the Visualization Conference, San Francisco, Oct. 27-Nov. 1,
1996, Proceedings of the Visualization Conference, New York, IEEE/
(51) Int.CL. ACM, US, Oct. 27, 1996, pp. 65-72, XPO00704171.
Goo6T 15/00 (2006.01) _
(52) US.Cl oo 345/424; 345/426; 345/505 (Continued)
(58) Field of Classification Searcl;45/424426 2113/452015, Primary Examiner — Phu Nguyen
See application file for complete search history. (57) ABSTRACT
(56) References Cited The: present inveption ig a digit.al clectronic system for ren-
dering a VO]}III]EE image 1n real time. The system accelerators
U S PATENT DOCUMENTS the processing of voxels through early ray termination and
5113357 A 5/1997 Tohnson of al space leaping, techpiques in the projection guided ray Casiting
5499323 A 3/1996 Doi et al. of the voxels. Predictable and regular voxel access from high-
5,557,734 A 9/1996 Wilson speed internal memory further accelerates the volume render-
3,594,842 A 1/1997 Kautman et al. ing. Through the acceleration techniques and devices of the
gﬂggiﬂ; éi i liiggg E:Eg;aﬂ et al. present invention real-time rendering of parallel and perspec-
5:9 17:937 A 6/1999 Sveliski of al. tiv; Viezlvs,, including those for stereoscopic viewing, are
6,008,813 A 12/1999 Lauer et al. ACNICVEU.
6,034,697 A 3/2000 Becker
6,078,332 A 6/2000 Ohazama 91 Claims, 9 Drawing Sheets

Initialize the frame buffer with each ray's initial
color, opacity, entry position into the dataset and [~—10
increment vector.

Select a voxel access block for processing. (~—12

:

Forward project the selected voxel access block
onto an image plane having pixel access blocks.

l

Bound the pixel access blocks containing the
forwarded proiected image to ¢reate a 20 image in [~— 16

14

image-space.
_Eackward project through each pixel on the 2D 18
image.

:

Render any segment along each ray that pentrates
the voxel block and write these rays into aframe | 4
buffer.

Store the new state, including color, opacity and
position, of these rays as a pixel inside the frame [™22
buffer.

Repeat step 10 to 22 until each voxel access block .. o4
has been processed.

Early-ray termination and space-leaping for
rendering the image from stored pixels. ~— 26

US RE42,638 E
Page 2

OTHER PUBLICATIONS Service Center, Piscataway, NJ, US, vol. 5, No. 3, Jul. 1999, pp.

- - T 210-223, XP000865305.
Ray, H., et al: “Ray Casting Architectures for Volume Visualization”,

IEEE Transactions on Visualization and Computer Graphics, IEEE * cited by examiner

U.S. Patent Aug. 23, 2011 Sheet 1 of 9 US RE42,638 E

. G, . . U, U, ", . . . U W . U W
. L N, ", . . VO, U, WD, TR, " W, " WA W,
~. U, ", V. . U, W, W . W W WA
G, U, U U, U, i, U, V. WD, A
. ", W, "V, . ", . . . U, . ", . W W WA
. i R "W, P . "W, . W, . ", U W W W

NPT T S ISP IST DT JEr P RT I P T IL P X7
N . U R, W, W W . O
K S S S S S S S S 8 8 S N
““.““““““
N, . S, S, . U G ", U ", . W U W
‘.‘“““““““
““““““““
., . ", . . ", . . N, . U, . . . U
. . U, . "N, U, O . . L WA, ¢ . U, W U W

\EEEEEEEEERZEREEE
e
\EEEEEEEEERZEEEEN
\EEEENEEEEEZEEEEE
EEEEEEEEERZENENE
T rrrea
ENENEEEEENZEEEEE
EEEEEEEEENZENENE
=Illllllllﬁlllll
—
—

A,
A

A

AV A AV A .

A S A AW A AW .

P
4
’

N aN

4

\ Mg

AR AT AN T AN

> 72 72 72 2 7 LU

.
A A A S A AV A

A B £ A i AW AW

AEEEEEEEERZEENEE
EEEEEEENEZEEEEE
\IENNNEEENEZENENE
AT e
IEEEEEEEEEZRENER
ANESEENEEEZEEEEE
ANEEENEEENZEEEEN

A A A S 8 AW
/7 £ L L. L L L

AT AN N,

US RE42,638 EE

Sheet 2 0of 9

Aug. 23, 2011

U.S. Patent

uonoafoid o1doosoalsls (D

1amMalA JYbiry

/i
p

(AO4) M3IA JO PIat

\\ \\\

A] &

uonoaloid anjoadsiad (d

JIOMBIA Y] JOMDIN

\

aue|d abeuw

uoioaloid |ajjeted (v

\\§

7
/)

19s8)8(]
SLN|OA

US RE42,638 £

Sheet 3 of 9

Aug. 23, 2011

U.S. Patent

sJayng |19xid
uolisoduwon

uonisodwo)

buipeys

Buipeys

UOIBOISSE|D

UONEDYISSE|D

auijadid JapJo-abew|

auladid J1aplo-103lqO

UOIONJISUODN
UOIIONJ)SUOD8H

slayng
XN . B I A I

L JUEQGIQ)uegG JuEegy JUEGE dueg|Z Yueg|l Jueg|0 jueg
1I9XOA | [9XOA | 1IBXOA | 19XOA | 19XOA | 19XOA | |19XOA

£ 1A

Initialize the frame buffer with each ray's initial
color, opacity, entry position into the dataset and

Increment vector.

Select a voxel access block for processing.

Forward project the selected voxel access block
onto an image plane having pixel access blocks.

Bound the pixel access blocks containing the
forwarded projected image to create a 2D image in
Image-space.

Backward project through each pixel on the 2D

image.

Render any segment along each ray that pentrates
the voxel block and write these rays into a frame

buffer.

Store the new state, including color, opacity and
position, of these rays as a pixel inside the frame
buffer.

Repeat step 10 to 22 until each voxel access block
has been processed.

Early-ray termination and space-leaping for

rendering the image from stored pixels.

U.S. Patent Aug. 23, 2011 Sheet 4 of 9 US RE42,638 E

10

12

14

16

18

20

22

24

26

U.S. Patent Aug. 23, 2011 Sheet 5 of 9 US RE42,638 E

U.S. Patent Aug. 23, 2011 Sheet 6 of 9 US RE42,638 E

.

- I
P

(X0 Yo1Zo)

(x1:Y1 !21)

S S OSSNSO
..‘.‘““‘1 P\

U N WL W W W WA W W
.““‘ N
\ S

H.F“%."“‘“‘
S
\ Q.‘l-lllx-

Ray Position Increment Vector

“~

walbd .

0 Re

= X > N

O lr" Ir- l1—
X S N

- T

O X > N

X]

O

Color

U.S. Patent Aug. 23, 2011 Sheet 7 of 9 US RE42,638 E

(o
-

US RE42,638 EE

Sheet 8 0f 9

Aug. 23, 2011

U.S. Patent

snq (axid 0) Aey

Nesx v| ZAX _ [Awoedgliojod --Il-l-!él-ﬁ.
B L) Ao K2 TR
ENANEEENNEEREEEA

ayoe [axid

anany SB:O ¢s
mmmmﬂ.-.mmnnan“. To0d Z Ued
- {0 VS A D DY I\
] S— SRR R | N\ B e
uoibala dijo jo Ino # —
Ael yuswaliou (paddi|o) aneapaju| =: Ae) 3]lIM BYDED

lenba (paddio) ananp) 1deooy =: Ae)

VEITEILIN
enba(” [Belapeys [miz N\ pue di 08

o0} [Bey]alsodwo)
aledwo)

Bulpeys

uotesijisse|D

plieaul Jo Iy
[1L+nd]pieA pue

uomisod diD

Aejop aAB3|18)U|

[11d]Jeyoen
- Ge) »03yD

DIjeA pue

[Aesyuowasou| ‘ssiw (9 Aq uonisod

JUSWIBID U
‘L=SJi

:..5 m>mm__muc_

UOIIONIISUOI3 Y

anenp ydeody B. paddijp Jo ‘| =S ‘"D 2 DO
Bejj deg|-aoeds
3z VL yoayd -uonisod

LL dikidiian

SSQ0JE

19)JNq |9XOA
N Y s 0 pue '0=s ‘paddip Z# Uled\ = Ajoedo dyn /JI# Yied
Bupseo-Aes - (303) 1uadi00) Jo pus
sopio-abew - aNaND INdU| eV (JOS) Juld}oo) JO He)s

(s) 6e|) deaj-aoeds
sdweg

1009

0L

snq |axid wol} Aey

US RE42,638 EE

SS990\
"BIIM
HEM

&N

T

&

&N

'

Qo

= e

= Hem
SS90V

— PESY

—

gl

e

g

an

—

>

U.S. Patent

saji-joxid

86

13]|0JU0D
SS90V

Aowawl mE#_o> £i0W

(jeuondo
UOISJAUODUBDS)
juudjooy ayndwo)d

195NG 9tEl] (x=18) 0=T1S
0} alum dnjeg uoijeziuoIydUAs 40j 30ss8301d /Jos5a001d yoES
SBA LJBa 0] XI0|q PlemiO 0} uoibais dio aue|d abewl-An

; 9|qe|ieAe a|qe] AJOISIH ay) piemio} 9 Bey Q:JMM__M_N_-Q__Q
m:m-_mx_a. ay) S| waolj Ajua Jes|d pue 1S 3234D .
. anany)-AI0ISIH peay onanD 1utdi004 _
SBA ” "
$,B1lIMm 0} Apea. | =

anany) SS9y

d
10SS320. ojqel AojsiH @NBNDIMOISIH 4,6y9n awnjop

YOES S| — Bey (15) deaj-eoedg
— | a)esauab g
layng swiel [[m 06 9|q¥e] mx.\\/uxﬂﬁr:mw ¥l
0} peaJ dnjeg I_NmII.IIIII baddio
ON WINJISNH MBIA
o} diIJ
; 98N 300|g 103leY
ul ApeaJe —
paiiad [iuUNn AEM | gn-jaxid auy S| (Z’A"X)
— UOISIaAUI pue
SOA uoneInwlad

¢9|-jaxid

MaU E 10} (1's')
Hepn | Apeal jossaooud 13juUno9d }20Jq
HOED S] yoeg-o} -juol4

US RE42,638 E

1

RESAMPLE AND COMPOSITE ENGINE FOR
REAL-TIME VOLUME RENDERING

Matter enclosed in heavy brackets []| appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

FIELD OF THE INVENTION

The present 1nvention 1s a system for providing three-
dimensional computer graphics. More particularly, the
present invention 1s a system that accelerates the processing,
of volume data for real-time ray casting of a three-dimen-
sional image and a method thereof.

BACKGROUND OF THE INVENTION

Volume rendering projects a volume dataset onto a two-
dimensional (2D) image plane or frame-butfer. Volume ren-
dering can be used to view and analyze three-dimensional
(3D) data from various disciplines, such as biomedicine, geo-
physics, computational fluid dynamics, finite element models
and computerized chemistry. Volume rendering 1s also useful
in the application of 3D graphics, such as Virtual Reality
(VR), Computer Aided Design (CAD), computer games,
computer graphics special effects and the like. The various
applications, however, may use a variety of terms, such as 3D
datasets, 3D 1images, volume images, stacks of 2D images and
the like, to describe volume datasets.

As schematically depicted in FIG. 1, a volume dataset 1s
typically organized as a 3D array of samples which are often
referred to as volume elements or voxels. The volume dataset
can vary in size, for example from 128" to 1024° samples, and
may also be non-symmetric, 1.e., 512x512x128. The samples
or voxels can also vary in size. For example, a voxel can be
any useful number of bits, for instance 8 bits, 16 bits, 24 bits,
32 bits or larger, and the like.

The volume dataset can be thought of as planes of voxels or
slices. Each slice 1s composed of rows or columns of voxels or
beams. As depicted i FIG. 1, the voxels are uniform in size
and regularly spaced on a rectilinear grid. Volume datasets
can also be classified 1nto non-rectilinear grids, for example
curvilinear grids. These other types of grids can be mapped
onto regular grids.

Voxels may also represent various physical characteristics,
such as density, temperature, velocity, pressure and color.
Measurements, such as area and volume, can be extracted
from the volume datasets. A volume dataset may often con-
tain more than a hundred million voxels thereby requiring a
large amount of storage. Because of the vast amount of infor-
mation contained 1n a dataset, interactive volume rendering or
real-time volume rendering defined below requires a large
amount of memory bandwidth and computational through-
put. These requirements often exceed the performance pro-
vided by typical modern workstations and personal comput-
ers.

Volume rendering techniques include direct and indirect
volume rendering. Direct volume rendering projects the
entire dataset onto an 1mage-plane or frame buifer. Indirect
volume rendering extracts surfaces from the dataset 1n an
intermediate step, and these projected surfaces are approxi-
mated by triangles and rendered using the conventional
graphics hardware. Indirect volume rendering, however, only
allows a viewer to observe a limited number of values 1n the

10

15

20

25

30

35

40

45

50

55

60

65

2

dataset (typically 1-2) as compared to or all of the data values
contained therein for direct volume rendering.

Direct volume rendering that 1s implemented in software,
however, 1s typically very slow because of the vast amount of
data to be processed. Moreover, real-time direct (interactive)
volume rendering (RTDVR) 1volves rendering the entire
dataset at over 10 Hz, however, 30 Hz or higher 1s desirable.
Recently, RTDVR architectures have become available for
the personal computer, such as VolumePro, which 1s commer-

cially available from RTVIZ, a subsidiary of Mitsubishi Elec-
tronic Research Laboratory. VIZARD II and VG-Engine are
two other RTDVR accelerators that are anticipated to be
commercially available. These accelerators may lower the
cost of mteractive RTDVR and increase performance over
previous non-custom solutions. Moreover, they are designed
for use 1n personal computers. Previous solutions for real-
time volume rendering used multi-processor, massively par-
allel computers or texture mapping hardware. These solutions
are typically expensive and not widely available due to, for
instance, the requirement for parallel computers. Alterna-
tively, these solutions generate lower quality images by using
texture-mapping techniques.

Although accelerators have increased the availability and
performance of volume rendering, a truly general-purpose
RTDVR accelerator has yet to emerge. Current accelerators
generally support parallel projections and have little or no
support for perspective projections and stereoscopic render-
ing. These different projections are illustrated in FI1G. 2. Ste-
reoscopic rendering 1s a special case where two 1mages, gen-
crally two perspective images, are generated to approximate
the view from each eye of an observer. Stereoscopic rendering
typically doubles the amount of data to be processed to render
a stereoscopic 1mage. Moreover, current accelerators also
require high memory bandwidths that can often exceed 1
Gbyte per second for a 256> dataset.

Furthermore, these current accelerators are typically erther
image-order or object-order architectures. An 1mage-order
architecture 1s characterized by a regular stepping through
image space and the object-order architecture 1s characterized
by a regular stepping through object space. Image-order ray
casting architectures may support algorithmic speed-ups,
such as space leaping and early ray termination, and perspec-
tive projections. Object-order architectures tend to provide
more hardware acceleration and increased scalability.
Object-order architectures, however, have not generally pro-
vided algorithmic acceleration. The trade-off between these
various limitations are typically either (1) good parallel ren-
dering performance and no support for perspective projec-
tions or (1) good algorithmic acceleration and little hardware
acceleration and vice versa.

The voxel-to-pipeline topologies of typical image-order
and object-order accelerators are shown schematically 1n
FIGS. 3 and 4, respectively. Image-order architectures must
access several voxels from a volume memory per processor.
This typically causes a bottleneck in achievable hardware
acceleration and thereby limits the number of useful proces-
sors. For example, as illustrated 1n FIG. 3, a typical image-
order architecture has an 8-to-1 bottleneck for each 1mage-
order pipeline. Although algorithmic acceleration for the
reconstruction, classification, shading and the composition of
the voxels can often increase performance, such an increase in
performance 1s often outweighed by the voxel bottleneck in
the memory system, thereby limiting the overall acceleration.

As depicted in FIG. 4, object-order pipelines generally
require only one voxel access per processor thereby providing
greater hardware acceleration due to the lack of a voxel or a
memory bottleneck. Object-order reconstruction of the

US RE42,638 E

3

dataset, however, makes 1t difficult, 11 not 1mpossible, to
implement algorithmic acceleration or support perspective
projections.

Neither 1mage-order nor object-order architectures are
general-purpose techniques because of their limitations. For
example, image-order architectures only deliver interactive
performance for certain types of datasets by relying heavily
on algorithmic acceleration. Performance can be extremely
sensitive to viewing parameters (and dataset characteristics)
potentially causing large fluctuations in performance. On the
other hand, object-order architectures yield more consistent
performance but typically do not support perspective projec-
tions. As a result, these architectures cannot be used for appli-
cations that require stereoscopic rendering, virtual reality,
computer graphics, computer games and tly-throughs.

Thus, there 1s a need for a device capable of general-
purpose volume rendering performance that supports inter-
active rendering for both parallel and perspective projections.
Furthermore, there 1s a need for a general-purpose device that
supports interactive rendering for stereoscopic displays.

SUMMARY OF THE INVENTION

The present invention 1s a general-purpose device that sup-
ports interactive rendering for parallel and perspective pro-
jections and stereoscopic rendering thereof. The general-pur-
pose device 1s fTurther characterized as a digital electronic
system for real-time volume rendering of a 3D volume
dataset. A new hybrid ray casting 1s used to volume render a
real-time 1mage from external memory. Volume rendering
includes reconstruction, classification, shading and composi-
tion of subvolumes or voxels of a volume dataset representing,
the 3D 1mage. Early ray termination and space leaping accel-
erate the processing of the voxels by dynamically reducing
the number of voxels necessary to render the image. Further-
more, the underlying hardware of the present invention pro-
cesses the remaining voxels to 1n an efficient manner. This
allows for real-time volume 1maging for stereoscopic dis-
plays.

The hardware architecture of the present invention sup-
ports projection-guided ray casting, early ray termination and
space leaping for improved memory usage. The hardware
architecture further accelerates the volume rendering due, 1n
part, to regular and predictable memory accessing, fully pipe-
lined processing and space leaping and builering of voxels to
climinate voxel-refetch.

The incorporation of the projection guided ray casting,
including early ray termination and space leaping, and the
hardware architecture permit rendering of the 1mage where
the rendering 1s not the critical time-consuming operation. In
other words, the present invention can render many volumes
in a faster time period than the entire volumes can be read
from external memory.

Another aspect of the present invention includes a method
for volume rendering an 1mage where there 1s no substantial
refetching of data from external memory. Perspective projec-
tions, under certain circumstances, may require a minimal,
but non-limiting, refetching of some data. The method
includes early ray termination and space leaping accelera-
tions and the processing of voxels 1 predictable manner in
hardware to volume render an 1mage 1n real-time.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 1s a schematic depiction of a volume dataset for
rendering an 1mage.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 2 1s an 1llustration of different projection useful for
rendering an 1mage.

FIG. 3 1s a schematic 1llustration showing voxel-to-pipe-
line topology or processor of an image-order accelerator.

FIG. 4 1s a schematic 1llustration showing voxel-to-pipe-
line topology or processor of an object-order accelerator.

FIG. 5 1s a schematic illustration of the projection-guided
ray casting of the present invention.

FIG. 6 1s a conceptual 1llustration of the projection-guided
ray casting of the present invention.

FIG. 7 1s a schematic illustration of a frame builer 1nitial-
ization of the present invention.

FIG. 8 1s a schematic overview of the hardware architecture
the present invention.

FIG. 9 1s a schematic depiction of data flow for processors
of the hardware architecture of FIG. 8.

FIG. 10 1s a schematic depiction of data flow for controller
of the hardware architecture of FIG. 8.

DETAILED DESCRIPTION OF THE INVENTION

The system of the present invention 1s a digital electronic
system, including hardware architecture, for real-time vol-
ume rendering of a 3D volume dataset. The system of the
present invention maximizes processing efficiency while
retaining flexibility of ray casting by selecting image-forming,
voxels, such as non-transparent and non-occluded voxels, for
further processing and minimizing the processing require-
ments or rejecting non-image-forming voxels, such as trans-
parent or occluded voxels.

Desirably, the system of the present invention (1) sustains
burst memory accesses to every voxel, (2) constantly accesses
voxels from the memory system, (3) does not fetch voxels
from the memory system more than once and (4) allows for
carly-ray termination and space leaping. Sustaining burst
memory accesses to every voxel 1s accomplished, in part, by
having each set of voxels being accessed 1n a regular manner
based on the desired virtual viewing position. The number of
voxels 1n the set 1s dictated by the minimum burst length
required to hide the latency of the dynamic random access
memory (DRAM) device. The constant access of voxels
requires, 1n part, that the set of voxels be processed 1n a
predictable order so that the correct voxels can be prefetched
from memory. This allows fully pipelined rendering and
climinates delays or idle cycles 1n the hardware architecture.
The elimination of refetching i1s achieved, 1n part, by having
cach voxel’s contribution to the 1mage-plane being deter-
mined when the voxel 1s accessed, thereby allowing the voxel
to be discarded once 1t i1s processed. The last condition
requires, 1n part, that rays be launched independently of each
other.

The system of the present invention may be included 1nto a
personal computer or similar device. Such a device will also
typically contain a screen for viewing the rendered graphic
image, and typically contains memory.

As described in further detail herein, the present invention
includes projection guided ray casting and hardware archi-
tecture for rendering real-time 1mages. The projection guided
ray casting further includes early ray termination and space
leaping, which are discussed below in further detail.
Projection Guided Ray Casting (PGRC)

The hybrid ray casting of the present invention 1s described
as Projection Guided Ray Casting (PGRC) because 1t suc-
cessiully merges the benefits of the object- and 1image-order
processing using hardware acceleration and sample process-
ing acceleration. Required memory-bandwidth and compu-
tational-throughput for interactive volume rendering 1s

US RE42,638 E

S

reduced making 1t possible to render a dataset faster than the
entire dataset can be read from memory.

In traditional ray casting, rays are cast through each pixel
on the image-plane. Samples inside of the volumetric dataset
are reconstructed and rendered at evenly space intervals along
cach ray. Image-plane traversal 1s typically scanline-by-scan-
line, which gives rise to random memory access of the volume
dataset and multiple voxel refetches which typically thrash
the volume memory resulting in poor hardware efficiency due
to 1dle memory cycles. Although the overall efliciency of
traditional ray casting may possibly be enhanced by algorith-
mic acceleration, the low hardware acceleration efficiency
typically causes the rendering performance to be slower than
the reading of the dataset from memory. These aspects of
traditional ray casting typically limait 1ts performance.

A schematic and a conceptual 1illustration of PGRC are
shown 1 FIGS. 5 and 6, respectively. PGRC uses forward
projections to enhance the memory performance of the ray
casting. The dataset 30 1s partitioned 1nto hundreds or thou-
sands of sub-volumes referred to as voxel access blocks 32.
Ray casting 1s applied to rays that penetrate these voxel access
blocks 32, when the voxel access-blocks are accessed from
memory Since these voxel access blocks 32 are small, they
project to a small portion of the image-plane. Only the small
groups of rays that penetrate each voxel access block 32 are
rendered. The PGRC 1terates over each voxel access block 32
with a front-to-back processing thereof until the entire dataset
30 1s processed. In PGRC virtually all voxel re-fetch 1s elimi-
nated.

Forward projections that are used during PGRC may also
used during scan-conversion in traditional 3D polygon-based
acceleration. Scan-conversion hardware 1s an itegral part of
personal computers and workstations. Using a view transior-
mation matrix that maps from object-space to 1mage-space,
cach vertex can be projected onto the image-plane. The poly-
gon 15 filled with a color and/or texture (texture-mapping). In
PGRC, these conventional scan-conversion computations
along with a front-to-back processing of voxel access blocks
32 are used, in part, to eliminate memory thrashing in the
ray-casting algorithm.

Referring to FIG. 5, at step 10 a view transformation matrix
1s computed based on the desired view or perspective. A
frame butfer 1s mnitialized with the entry-point of each ray into
the dataset 30. At step 12, a cubic set of voxels or the voxel
access blocks 32 are selected and processed in front-to-back
order. Voxel access blocks 32 area “bxbxb™ array ol voxels as
shown 1n FIG. 6. At step 14, eight voxels on the corner of a
voxel access block 32 are each projected onto the image plane
34 using a view the transformation matrix or forward projec-
tors 36, as depicted 1n FIG. 6, forming a 2D footprint 40 in
image-space. At step 16, the pixel access blocks 42, which
contain the forward projected 1mage, 1s bound to complete the
creation of the 2D footprint 40 1n 1mage space.

At step 18, rays of backward projectors 38 are then cast
through each pixel that lies on or within this 2D footprint 40.
At step 20, the segment along each ray that penetrates the
voxel access block 32 1s computed. Upon exiting the voxel
access block 32, the rays are written into a frame buffer 35.
The new state (color, opacity, and position) of these rays 1s
stored at step 22 as a pixel inside of the frame builer 35. The
above steps are repeated for each voxel access block 32 1n
front-to-back order until every voxel access block has been
processed.

As depicted 1n FI1G. 7, the imitial intersection of each ray 48
with the dataset 30 1s stored into frame butier 35 along with its
X.,Y and 7 increment vector. The opacity and color values are
initialized to zero for the entire frame butfer.

5

10

15

20

25

30

35

40

45

50

55

60

65

6

Voxel access blocks are processed from front-to-back
order to allow early-ray termination. Since front-to-back
ordering depends on a particular view position and view
direction, which are known prior to rendering, the next voxel
access block 1s prefetched allowing tully pipelined operation
in hardware. The direction of projection can be determined
from the viewing parameters. It 1s a vector pointing from the
center of projection towards a viewer. The e1ght corner voxels
of each voxel access block 32 are projected onto the 1mage-
plane 34. The resulting vertices are mapped into 1image-space
using a view transformation matrix.

The eight projected vertices form a convex region in
image-space are then filled using well-known scan-line algo-
rithms. The filling process determines the pixels (1.e., rays)
that lie within the 2D footprint 40 of voxel access block. As a
result, only the exact rays that are needed are cast.

As discussed above, ray casting 1s applied to each ray from
the true 2D footprint of the voxel access block. In practice,
however, clipping regions are projected onto the image-plane
instead of the voxel access block boundaries. Clipping
regions are a function of the front-to-back ordering and type
of projection. Clipping regions represent portions of a pro-
jected voxel access block near a projected ray and these
clipping regions are processed for image rendering. Clipping
regions are both translated by and enlarged so that the clip-
ping region coincides with data in the internal buifers. The
clipping regions are enlarged by one to handle reconstruction
computations, such as interpolation and gradient computa-
tions, 1n the proximity of an 1ntra-block space.

Each pixel 1n the frame-bufler contains the state of the ray
that penetrates 1t. Using an increment vector and the sample
location of the ray, a segment of the ray 1s rendered until 1t
exits the voxel block’s clipping region. For perspective pro-
jections, the clipping region closest to the viewer 1s accessed
first.

Early Ray Termination and Space Leaping

The PGRC algorithm directly supports early-ray termina-
tion and space leaping. Both of these are “algorithmic accel-
eration” techniques because they reduce the amount of com-
putation for rendering an image. Conceptually, early-ray
termination selects non-occluded voxels for further process-
ing and rejects occluded voxels from further processing. The
dataset 1s not tested over all samples the viewing parameter
dictates supersample. Because of the fully pipelined design,
voxel access block memory accesses are overlapped with the
processing of another voxel access block; therefore, there 1s
no performance benefit 1n completing a voxel-block early
unless the voxel-block 1s supersampled. During supersam-
pling, however, the memory system 1s delayed for a length of
time proportional to the sample-to-voxel ratio. Early-ray ter-
mination reduces or eliminates these delays.

Using early-ray termination, every voxel access block
inside of the dataset 1s accessed only once. Therefore, the
peak performance 1s equal to the rate at which the entire
dataset can be read from memory. Since one goal of the
present invention 1s to render the dataset faster than 1t can be
read from memory, a more aggressive data processing accel-
eration technique 1s used that allows the skipping of the
memory access to entire voxel access blocks.

Space leaping can provide substantial acceleration for
many datasets especially medical datasets where the regions
ol interest are typically near the center of the volume and
there 1s a lot of empty space. Space leaping skips, or leaps
over, transparent regions and requires either explicit or
implicit distance information. The dataset is preprocessed
and the distance to the next non-transparent sample along a
ray 1s stored for each voxel inside the dataset. Encoding a

US RE42,638 E

7

distance at each voxel requires added memory and prepro-
cessing overhead. In the present invention the additional
memory requirements are minimized or reduced. Distances
are encoded for a group of voxels thereby reducing the overall
leaping distance which lowers memory requirements while
only slightly reducing the acceleration achievable through
space leaping.

Using implicit distance information, regions inside of the
dataset are flagged transparent or non-transparent. When a
ray advances to a transparent region, the ray can be quickly
incremented through the region, taking into consideration the
orientation and size of the region. This method has advan-
tages over explicitly storing distances. For example, this
method uses much less memory, for mstance a single bit per
region. Moreover, preprocessing involves simply comparing,
cach voxel inside of the region to a user-defined threshold and
this can be computed on-the-fly. Desirably, implicit distance
information 1s used to leap over empty regions.

The volume data 1s first rendered as described above. As the
dataset 1s rendered, each voxel contained a voxel access block
1s compared against a user-defined transparency threshold. If
every voxel 1s below the threshold, then the voxel access
block 1s flagged empty 1n a small binary lookup-table. This
table 1s called an empty voxel access block table. After the
first image 1s rendered, the table can be applied to subsequent
images until the dataset or user-defined transparency thresh-
old 1s altered. Desirably, the empty voxel access block table 1s
checked belfore accessing a voxel-block from the volume
memory. In order for a voxel access block to be skipped, the
voxel access block and its 26 neighbors must be transparent.
The 26 neighbors are required to be transparent because of the
way voxels are buffered and the clipping regions are trans-
lated. I the entire neighborhood of voxels 1s empty, any ray 1n
the clipping region can be incremented by a dimension, b, of
the voxel access block, regardless of the direction of the
increment vector. Thus, perspective projections are supported
by the present mvention. Furthermore, the time to process a
voxel access block 1s reduced. One benefit of this acceleration
1s that the overhead of computing the empty voxel access
block table 1s completely hidden by usetul work.

Hardware Architecture

The hardware architecture of the present invention 1s called
Resample and Composite Engine (RACE) and 1s a hardware
engine for, among other things, accelerating real-time volume
rendering of a graphic 1mage by having image-forming vox-
¢ls available for processing without having to refetch a sub-
stantial number of voxels from external memory, such as the
memory contained within a personal computer. An overview
of the hardware architecture 1s described below, followed by
a description of the data flow for the processors and the
controllers of the present invention.

An overview of this hardware architecture 1s shown sche-
matically in FIG. 8. The hardware architecture 50 contains a
control unit 532 and a plurality (p+1) processors 54. Each
processor 34 contains a rendering unit 56, a volume memory
58 and a pixel memory 60.

The control umit 52 implements, among other things,
object-order projection to control memory accesses to the
voxel and pixel memories. The rendering units 56 implement
the 1image-order ray casting, voxel-bullering and clipping.
The control unit 52 provides synchronization for each pro-
cessor 34 and generates memory addresses for all transac-
tions on both the voxel memory bus 62 and the pixel memory
bus 64. The volume memory 58 stores the data volume. The
pixel memory 60 stores the color and the current state of each
ray during the ray casting process.

10

15

20

25

30

35

40

45

50

55

60

65

8

The RACE architecture partitions the dataset ito thou-
sands of subvolumes or voxel blocks. In multiprocessor
RACE configurations, each subvolume 1s equally divided
among each processor 34. As the voxels are streamed 1nto the
processors 54 from the volume memory 38, they are quickly
distributed among processors using local communication.
Each processor 54 has a dedicated connection to the volume
memory 38. Voxels from other processors are distributed
using local neighbor-to-neighbor communication 1n a circu-
lar faction.

With a “p+1” number of processors 54 1n the system, after
p+1 clock cycles, each processor 54 contains a local copy of
the voxel-block. This allows fast random interpolation from
high-speed internal SRAM memories. This 1s important for
supersampling and for discrete ray-tracing architectures.
Central differences at grid-points are computed on this fixed
stream of voxels and stored 1nto a gradient butier. Alternately,
voxels can be stored 1n a quad-ported SRAM allowing gradi-
ents to be computed directly from adjacent samples. This
alternate method, however, requires more memory addresses
to be generated. The size of the builler-memory 1s propor-
tional to the resolution of the voxel-block. Because each
voxel gets forwarded to other processors, memory partition-
ing 1s not critical and low-order interleaving to distribute the
volume may be used. Interleaving allows accesses for each
memory module to share a single memory address. Voxel-
blocks that have at least 8(p+1) voxels can be stored 1n con-
tiguous memory locations or interleaved groups of eight vox-
¢ls between internal memory banks to guarantee peak DRAM
memory performance.

The rendered 1mage 1s written into the pixel-memory 60.
Each pixel stores the color, opacity, position and increment
vector for a ray that penetrates 1t. The depth of each pixel in
the frame-butler 1s approximately twice the depth of pixels
used 1n modern polygon-based accelerators. Modern 3D
polygon-based accelerators store color, alpha, z-buffer, and
stencil information per pixel using anywhere from 6-8 bytes
of data. In the context of volume rendering, doubling the
depth of the frame-bufler 1s reasonable because memory
capacity 1s dominated by the volume buifer. As an example,
frame-bulfer capacity 1s typically 4 MB to 16 MB whereas 3D
datasets often require 32 MB tol GB of storage capacity. The
current trend 1n medical and scientific visualization 1s higher
resolution datasets that consistently require over 128 Mbytes
of memory storage. In the present mvention each pixel
memory also responds to a single memory address using
low-order image interleaving. The frame buffer 1s partitioned
equally among processors. The least significant bits of the
pixel position dictates which processor owns the pixel. Low-
order interleaving enhances load balancing between proces-
sors because of spatial coherence.

Betore rendering starts, the RACE frame bufler 1s 1nitial-
1zed with a color, opacity and the ray’s entry position into the
volume dataset or at the front-clipping plane. For perspective
projections, the increment vector per ray 1s stored into the
frame bulfer. A slope-per-ray 1s only stored for perspective
projections. For parallel projections, a register inside of the
processor stores the increment vector and 1s updated once per
projection. During shading, 3D accelerators interpolate val-
ues across the face of polygons. Typically, a color intensity
(Gouraud shading) or a normal (Phong shading) 1s interpo-
lated. To 1mitialize the frame buffer, the color components of
a voxel are assigned to be the actual position of the voxel for
use 1n the Gouraud shading model. For parallel projections,
the three visible faces can be then rendered as polygons to
initialize the frame-butiler. For perspective projections, the
view position 1s subtracted from each position and normal-

US RE42,638 E

9

1zed to determine the increment vector. Since these calcula-
tions are 2D and performed once per projection, they will not
cause a bottleneck 1n the 3D volume rendering performance.

The controller 52 generates addresses for the volume
memory 58 and pixel-memory 60. Addresses for the volume
memory are determined by the front-to-back ordering of the
voxel access blocks and this ordering is based on user-defined
viewing parameters. The controller 52 stores the empty voxel
access block table that allows skipping of transparent or
undesired subvolumes. Before 1ssuing a memory access for a
voxel access block, the controller 52 first checks the empty
voxel access block table to determine 11 the block and 1ts 26
neighboring voxel access blocks are transparent. If so, the
controller 52 advances to the next voxel access block 1n
front-to-back order and repeats. If the voxel access block or
any of 1ts 26 neighbors are not empty, the controller 32 gen-
crates the appropriate memory addresses for the DRAM
memory.

For each voxel access block, the controller 52 computes a
corresponding clipping region based on the front-to-back
ordering. The 2D footprint of each clipping-region 1s deter-
mined using the view transformation matrix. The view trans-
formation matrix 1s applied to each corner of the clipping-
region. A bounding box 1n image-space 1s computed based on
mimmum or maximum coordinates thereof or, alternatively,
scanconversion can be used to compute a footprint. The foot-
print 1s rounded to pixel-block boundaries. The controller 52
1ssues a memory address for each pixel-block 1nside of the
footprint. The frame butiler responds by delivering an array of
pixels. These pixel-tiles can be stored 1n contiguous memory
locations on a DRAM page or interleaved between memory
banks such that they can be accessed at the peak speed of the
memory system.

The processors 54 perform the image-order ray-casting
algorithm, voxel-butlering, and clipping to the local clipping
region and global view-frustum. Each voxel from the proces-
sor’s dedicated pixel memory 60 is streamed into internal
butfers. Voxels 64 from other volume memory modules are
streamed 1n from the right neighbor. The processor 54 also
forwards voxels 64 to its left neighbor. The entire sub-volume
1s distributed to each processor 54 1n a circular fashion using
neighbor-to-neighbor communication. Therefore, each pro-
cessor 54 recetves “p” voxels per clock-cycle, 1.e., one from
its dedicated memory system and “p-1"" from its right-neigh-
bors. Conceptually, this 1s the same as connecting all memory
modules to every processor, however, to limit the fan-out on
the memory bus, voxels are forwarded to neighboring proces-
sors. This increases the pin-out of the application-specific
integrated circuit (ASIC).

Each of the “p” voxels 1s written to appropriate internal
slice or voxel block butfers inside the rendering unit. Voxels
are buflered to eliminate duplicate accesses to the volume
memory, and this allows for reconstruction near the gaps
between voxel blocks. Two slices of voxels are bullered for
interpolation and gradient computation in each of the advanc-
ing directions. The first slice 1s necessary to interpolate
samples that lie 1n between adjacent subvolumes. The second
slice 1s needed to mterpolate samples on the advancing faces
of the previous block. Also, a slice of central difference gra-
dients are builered. The volume-slice buffers will dominate
on-chip storage.

Processor Data Flow

FIG. 9 1s a schematic illustration of the data flow for the
processors 54. Each processor 34 recetves a stream of pixels
(rays) 70 from the frame-buffer and queues them in an 1nput
queue 72. Each ray 70 entering the input queue 72 1s stamped
with a tag (pixel-block address) and ofiset (relative position

10

15

20

25

30

35

40

45

50

55

60

65

10

inside of the pixel-block). Each 2D footprint 1s delimited by a
start-of-footprint (SOF) and end-of-footprint (EOF) flag so
that the processor 54 can match clipping-regions to rays (pix-
els). In addition, a space-leap (SL) flag 1s used to determine 1f
the ray can skip over the clipping region without rendering.
These stamps originate from the controller 52.

Rays read from the input queue 72 are loaded into anew ray
register 74. The following fields 1n the ray register 74 are
checked: EOF/SOF flags, opacity threshold, SL flag, and

position. EOF/SOF tlags are used to synchronize (or switch)
clip-regions. The opacity threshold 1s used to prevent the
rendering of occluded samples, 1.e., early ray termination.
Conversely, the SL flags prevent the rendering of transparent
samples. Theray’s position 1s examined to see 11 1t lies within
the active clip-region.

Ray’s that are not opaque, clipped, or skipped are sent to
the accept queue 76 to be rendered all other rays take a second
path (or clip path). Along the clip-path, 11 SL flag 1s set and the
ray-position was not clipped, then the position 1s incremented
(space-leaped) through the clip region. Then, these rays are
written to the appropnate line inside of the pixel-cache.

After exiting the accept queue 76, least significant bits
from the x-, y-, and z-ray positions are used to address the
voxel and gradient buifers. The fractional components are
used as weights for the trilinear interpolations. The color,
opacity, position and increment vector proceeds through the
ray-casting pipeline. A ray interleaving unit 78 interleaves
rays from the accept queue 76 onto the inputs of image-order
ray caster 77. Ray interleaving 1s used to eliminate data haz-
ard due to possible feedback 1n the composition calculation.
The ray interleave unit 78 coordinates that two consecutive
(or adjacent) samples along the same ray are at the output of
the shader stage and the output of the composition stage. This
guarantees that two samples along the same ray are blended
together

Therendered ray 1s added into the pixel-cache 82. No cache
misses are possible on this path because each ray that 1s added
to the accept queue 76 gets a reserved cache-line. Otherwise,
it 1s not loaded into the accept queue 76 until a cache-line
becomes available. Each write-access to a cache-line incre-
ments a counter for the corresponding cache-line; 1t can be
determined when the cache-line (1.e., pixel-tile) 1s complete
and ready to be written to the frame-buifer.

Once complete, the entire cache line 1s serially added to an
output queue 83. Then, the valid bit and write counter for the
cache-line 1s cleared. Whenever the output queue 83 is not
empty, the processor 52 sends a write-pending flag to the
controller. When the pixel-bus becomes 1nactive, the control-
ler 1ssues a write acknowledge causing the pixel-block to be
streamed from the output queue 83 onto the pixel-bus. In a
multiple processor configuration, the controller must receive
a pending flag from each processor betore releasing the pixel-
bus. For most of this analysis, the terms pixel and ray are
completely interchangeable since only one ray penetrates a
grven pixel.

The voxel butfer logic 1s responsible for generating central
difference gradients and storing voxels at the correct loca-
tions in the internal static-RAMs (SRAM). There are four
types ol builer memonies: voxel-block, block-slice, beam-
slice and volume-slice. One set of buffers store voxels and
another set stores central differences at on-grid positions.
Central differences are computed as the voxel-block 1is
streamed 1nto the processor. When accessing the bulfers for
interpolation, gradient buflers and voxel-block bulfers
respond to a single memory address. Each buller 1s an eight-

US RE42,638 E

11

way interleaved SR AM to provide the necessary voxel values
to reconstruct the sample value and each component of the
gradient in parallel.

Two voxel slices and one gradient slice are bullered 1n each
advancing x, y, and z direction. These bullers are double-
butifered to allow access to a previous slice and to update the
next slice for subsequent voxel-blocks. Front-to-back order-
ing proceeds beam-by-beam then slice-by-slice. As a resullt,
these slices will dominate on-chip storage requirements. In
general, architectures that seek to eliminate voxel-refetch
must buifer slices unless smaller reconstruction kernels are
used for samples near a slice boundary.

To reduce memory, the slice of gradients can be eliminated
by buflering a third slice of voxels and re-computing central
differences for this particular slice. Desirably, the slice of
gradients 1s bullered to simplily computation.

Various methods can be used to remove or reduce the size
of the volume-slice builer, including, but not limited to, stor-
ing the volume-slice memory in off-chip memory or pixel
memory, rendering the dataset 1n sections and prebuiiering.
When the volume-slice memory 1s stored in the frame-buifer
having a wide connection, the volume-slice builer could be
completely eliminated. In the RACE architecture, the pixel
interface 1s wider than the voxel interface (e.g., 16 bytes).
Theretore, these slices can be quickly loaded from the pixel
memory. Each processor accesses the volume-slice from their
dedicated pixel-memory.

To reduce the size of the volume-slice butifers, the dataset
can be rendered in sections. The volume-slice bullers are
inversely proportional to the number of sections used. Voxels
residing on/near a boundary of a section are re-fetched from
the volume memory slightly lowering performance. Any face
of a voxel-block can potentially lie on the boundary of a
section. As a result, the memory accesses to any of the six
faces may cross DRAM-page boundaries due to our low-
order interleaving scheme. Alternately, the voxel-block can
be organized such that boundary block-slices can be retrieved
conflict-free from any direction using a skewed memory
organization.

Auxiliary voxel-butlers (beam-, block- and volume-slice)
may be eliminated by accessing a voxel-block and boundary
voxels from neighboring voxel-blocks each time the block 1s
accessed. This method 1s a prebuffering method because the
dataset can be reorganized during a quick preprocessing stage
which combines each voxel-block with a surrounding shell of
voxels mside of the memory (increasing memory capacity).
This creates self-contained blocks that have all of the neces-
sary mformation to reconstruct samples that lie in a (b+1)x
(b+1)x(b+1) subvolume; however, the butlers mustbe (b+3)x
(b+3)x(b+3) in size. Therefore, this method will lower
performance by introducing some duplicate memory access
to the volume memory, especially for small-blocks. It has the
advantage of simplifying internal buffering logic and reduc-
ing the number of separately addressable butfers from four to
one for the interpolation and gradient memories. These buil-
ers are internally eight-way interleaved.

Moreover, because of the block processing utilized by the
RACE architecture, higher-order gradient filters can be used
without incurring a performance penalty. Gradient encoding
or lookup-table based gradients can also be incorporated into
the architecture. The logic that converts the stream of voxels
into central differences at on-grid locations can be and
replaced by lookup-tables containing gradient components.

After the gradient and interpolation computations, the
interpolation value 1s used to index the classification tables
tor the red, green, blue and opacity transter functions. Option-
ally, the gradient magnitude may be used to modulate the

10

15

20

25

30

35

40

45

50

55

60

65

12

opacity function. This highlights surface boundaries and
increases the transparency in homogeneous regions of the
dataset. The gradient magnitude computation requires a com-
putationally expensive square root operator. It can be approxi-
mated using the norm of the gradient vector or using iterative
numerical methods.

The pixel cache serves several purposes, including retiring,
two rays every clock cycle, 1.e., one skipped (or clipped) and
one rendered, synchronizing the pixel-blocks with the con-
troller and completing out-of-order pixel-block.

Each ray entering into the RACE pipeline takes one of two
paths: accept path (path #1, for rendering) or the algorithmi-
cally skipped/clipped path (path #2, little/no processing).
Path #1 processes ray segments that are not algorithmically
climinated and lie 1nside of the clipping-region; therefore,
they must be rendered. Each of these rays are loaded 1nto the
accept queue 76.

Along the first path, all rays are rendering using the con-
ventional ray-casting algorithm until they exit the clipping-
region. Once they exit, rays are written to the current cache-
line or the next sequential cache-line, 1.e., pixel cache. No
cache misses occur along this path; because, a cache-line 1s
reserved betfore the ray enters path #1 and the cache-line1s not
discarded until the all rays from the cache-line has been
processed.

Path #2 handles two cases: the segment of the ray 1s algo-
rithmically eliminated (skipped/occluded) or the ray’s cur-
rent Xyz position 1s outside of the voxel-blocks clipping
region. Along Path #2, the Clip-and-Add Unit 80 increments
the ray’s position if the SL flag 1s set and the ray 1s inside of
the current (space-leapable) clip-region. This adder incre-
ments the ray position by a distance of b in the ray’s primary
direction. This quickly advances the ray through an empty
voxel-block. This allows the ray-position to be incremented
by another ray-position that is exactly one voxel-block in the
major viewing direction along the ray with a single incre-
ment. Also, by limiting the norm to be a power of two, each
component of the increment vector 1s scaled using a shift-
register.

After exiting the clip-and-add circuitry 80, rays are written
to the pixel cache 82. If a cache-hit occurs on the current
cache-line, the ray 1s written at the appropriate address 1n the
cache line. The current cache-line 1s indicated by a pointer to
the cache. This cache utilizes three pointers: two write point-
ers for the Path #1 (render) and Path #2 (skip/clip). Data 1s
read from the cache from a single read pointer and loaded into
the output queue 83. Each pointer increments sequentially
through the cache.

The pixel cache 82 1s direct mapped to a pointer that
indexes the cache and not the pixel address. As a result, only
one tag compare 1s necessary regardless of the size of the
cache. No tag comparison 1s necessary for the read-port of the
cache. The read ports cycles through each cache-line waiting
the write counter to expire before advancing.

If a cache-miss occurs on the path #2, the clip pointer 1s
incremented by one to the next cache-line. Cache misses can
only occur for the first pixel inside of a pixel-block. IT next
cache-line 1s marked valid, then the clip logic halts all regis-
ters between the Input Queue along the clip-path until the line
becomes 1nvalid. Once the line becomes available, the line 1s
marked valid and the ray’s tag 1s stored on the cache-line.
Then, the ray’s color, position and increment vector are writ-
ten 1nto the cache. Cache-lines are marked invalid after the
tull number of write operations have occurred to a single
cache-line and the entire cache line has been transferred into
the output queue 83. The pixel-block 1s not retired until the

US RE42,638 E

13

cache-line 1s indexed by the read pointer. Each ray on the
cache-line 1s then transferred into the output queue 83.

In multiprocessor implementations, the pixel-blocks are
evenly partitioned among each processor. The size of the
cache-line and the termination write-count are inversely pro-
portional to the number of RACE processors. A benefit of this
dual-path approach 1s that two rays can complete on single
clock cycle. Furthermore, 1t allows the majority of the pixels
that lie outside of the true-footprint but within the bounding-
box to be clipped without causing additional stalls 1n the
image-order ray casting pipeline.

Because sequential pointers index the cache, pixels from
the same pixel-block but residing in different processors are
written to the same relative cache-line 1n the corresponding,
processor. The sequential read pointer guarantees that pixel-
blocks are retired 1n the same order that they are reserved.
This provides synchronization with the controller. As a resullt,
the controller can resynchronize the pixel-blocks among mul-
tiple processors belore they are written over the pixel-bus.
The controller simply waits for each processor to generate a
write pending signal. After a cache-line 1s transferred to the
output queue 83, the read pointer 1s incremented to the next
cache-line 1n a circular fashion.

If the output queue 83 1s not empty, a flag 1s sent to the
controller to indicate a write pending status. If the queue 1s
tull, a critical write-pending status tlag 1s sent to the control-
ler. Once the controller receives at least a write pending status
from each processor and the pixel-bus is mactive, 1t sends a
write acknowledge signal to each processor. In turn, the out-
put queue 83 responds by placing pixels senially onto the
pixel-bus 1n a first-in-first-out (FIFO) sequence.

Controller Data Flow

A dataflow for the RACE controller 52 1s 1llustrated in FIG.
10. Front-to-back ordering generates a sequence of voxel-
blocks to be accessed from the DRAM memory. These voxel-
blocks can be accessed ifrom memory using one or more
volume memory addresses based on the size of the voxel-
block, b, the DRAM page-size, and DRAM burst size needed
to hide latency. The controller 52 1s responsible for setting up
both read and write memory transiers to the pixel-memory.
As the controller 1ssues memory addresses to the frame-
buffer, 1t records the history of the previous, h, memory
addresses 1n a queue called the history queue 90. The maxi-
mum number of pixel-blocks that can be processed (or1ssued)
at a given time limited by either the mimimum of the history
queue size or the number of pixel-blocks that can be stored 1n
the internal buffers (queues and caches) iside of the RACE
Processor.

When the history table 92 becomes full, the controller 52
stops processing the footprint until a pixel-block 1s retired.
The history queue 90 generates the correct write address
when 1t 1s time to retire a pixel-block. The history table 92
prevents the accessing of pixels that are already rendered and
1s a random access copy of the pixel-block address. Fach
pixel-block entry in the table has a valid/invalid flag. Before
any pixel-block 1s 1ssued to the pixel-memory controller, the
pixel-block address 1s checked to see if it 1s already being
processed. If so, the RACE controller halts the pixel-block
access until a pixel-block 1s retired. Note that this mechanism
can potentially be used to re-1ssue the pixel-block internally

inside of the RACE processor enhancing performance. When
the controller acknowledges a write request, one pixel-block
entry 1s simultaneously retired from the history queue 90 and
history table 92.

10

15

20

25

30

35

40

45

50

55

60

65

14

The front-to-back generator 1s a simple three-digit counter
that counts voxel-blocks. Voxel blocks are counted beam-by-
beam then slice-by-slice until each block 1n the data volume
has been visited.

IT a block 1s clipped, the block 1s discarded. As a result, the
block does not consume any throughput on the voxel-bus or
pixel-bus. ITthe block 1s not clipped, the 3D empty block table
1s checked to determine whether or not the current voxel-
block and its 26 neighbors are transparent. If so, the block 1s
flagged as empty. For synchronization purposes, the block 1s
loaded 1n the volume memory access queue 94 and a DRAM
memory access 1s not generated. Instead, the block’s clipping
region 1s forwarded to each processor and 1t 1s used to clip
space-leaped rays. The empty block 1s also loaded nto the
footprint queue 96. Once the block reaches the head of the
footprint queue 96, its clipping region 1s projected onto the
image plane.

If the voxel-block 1s not tagged empty, 1t 1s 1ssued to the
volume memory controller 98 once 1t leaves the volume
memory access queue 96. The controller waits until previous
voxel-block access 1s complete before 1ssuing the next voxel-
block.

As blocks exit the footprint queue 96, they are mapped
from object-space (xyz) to image-space (uv) using the view
transformation matrix. Once the u and v coordinates are com-
puted for each comer of the voxel-block, the footprint of the
voxel-block 1s computed 1n 1mage-space. In conventional
graphics accelerators, a precise scanline algorithm 1s used to
compute the footprint (1.e., projected area) of primitives 1n
image-space. Alternately, the RACE controller using a simple
bounding box approximation of the 2D footprint thereby
climinating the need for scan-conversion hardware. Since
cach ray must be clipped against the current 3D voxel-block,
the true 2D footprint 1s determined inside the processor. By
proceeding center outwards, the controller quickly generates
a workload for the RACE rendering pipelines by placing rays
with longer paths into the queue first. This leads to less
sensitivity to fluctuations on the pixel-bus and fewer wasted
clock cycles 1n the pipeline.

The controller checks handshaking signals from the pro-
cessor to determine whether or not each processor 1s ready to
receive a pixel-block. This signal indicates the near-1ull state
of the mput queue 72. If each processor 1s not ready, the
controller halts the projection unit until each processor 1s
ready. In addition, the history table 92 1s checked to determine
if the pixel-block 1s currently in-use by the RACE processors.
The history table 92 records all of the pixel-blocks mside of
the history queue 90. The history queue 90 keeps the correct
ordering of pixel-blocks that are being rendered and provides
necessary synchronization for write operations on the pixel-
bus. Once each processor indicates a write-pending status, the
controller 1ssues a write acknowledge signal when the pixel-
bus becomes available. The write request signal indicates that
data resides 1n a processor’s output queue 83. Each processor
responds by placing pixels onto the pixel-bus. The combina-
tion of the history queue 90 and pixel cache 82 provide
synchronization for write operations. The sequential read
pointer that 1s used to index the pixel cache 82 guarantees that
the pixel-blocks are retired 1n the same order they are read.
Memory addresses from the history queue 90 are used to
generate the write address for each pixel write operations.
When an address 1s removed from the history queue 90,the
entry 1s also cleared 1nside of the history table 92.

The controller 52 1s also responsible for generating
memory addresses for the frame buller and the volume
memory. Furthermore, the controller 52 keeps each engine
operating 1n a fully pipelined manner.

US RE42,638 E

15

The following example 1s provided to further illustrate the
architectures and methods of the present invention for real-
time volume rendering of images. The example 1s illustrative
only and 1s not intended to limait the scope of the mnvention 1n
any way.

EXAMPLES

Example 1

The resample and composite engine architecture was simu-
lated 1n software using a C++ clock cycle simulator. The
simulator conservatively assumed that the pixel memory bus
operated at the same rate as the voxel memory bus and that the
entire dataset lies within the view volume. In practice, embed-
ded DRAM technology can be used for the relatively small
pixel memory to enhance performance. Voxel-blocks sizes
were varied between 64(4°)-32768(32%) voxels. Pixel-tiles
were sized to accommodate 16 pixels per processor. For
example, 11 4 processors are simulated a pixel-tile containing
64 pixels are used. This allowed the Resample And Compos-
ite Engine to hide the memory latency when accessing the
pixel-memory.

Each processor was configured as follows: the Input Queue
could store up to 128 rays, the Accept Queue could store up to
16 rays, the Pixel Cache could store 128 rays, and the Output
Queue could store up to 128 rays. The auxiliary on-chip
storage required less than 10K Byte of memory. Voxel butfers
were doubled buffered and required either 256, 2K, 16K or
64K bytes of memory based on the block resolution, b. The
internal slice-buffers dominated the on-chip storage and
required 448K Bytes for a 256° dataset.

The Resample And Composite Engine controller required
less than 16 K Byte of on-chip storage for the Opaque Voxel
Block (OVB)table, Transparent Voxel Block (TVB) table and
internal buffers. An 8-entry pixel-address builer was used to
record the pixel-tiles that were being rendered by the resa-
mple and composite engine processors. This prevented the
reading of stale data from the frame-builer. The performance
of the resample and composite engine architecture was simu-
lated for six different datasets. The datasets were rendered
using a plausible classification mapping. For example, CT
datasets were rendered with a mapping of soit tissue to a
semi-transparent value and bone to an opaque value. For each
dataset, 26 (orthogonal, side and diagonal) view positions
were used to estimate average rendering performance. The
performance was then compared with the Data Access Rate
(DAR), which 1s the peak rate at which the entire dataset can
be read from the memory system. These results are presented

10

15

20

25

30

35

40

45

16

in the Table 1 below for a single resample and composite
engine processor operating at 100 MHz. In this configuration,
the resample and composite engine architecture used only

MByte

second

200

of volume memory throughput.
From this table, the performance of the resample and com-
posite engine architecture consistently outperformed the

DAR rate for 8°-32° voxel-blocks when the dataset was

larger than 128°. In particular, 8 -16> voxel-blocks delivered
nearly a 75% increase 1n performance over the DAR rate with
peak performance exceeding 200% (1.e., 3.0 memory eifi-
ciency). For small voxel-blocks, the number of pixels per
footprint can be greater than the number of voxels 1nside the

voxel-block, therefore, the pixel bus can cause a bottleneck in
performance.

A faster pixel interface allowed substantial gains in perfor-
mance for small voxel-blocks (4°-8°) whose performance
was limited by the pixel throughput. Because embedded
DRAM’s enable increased pixel memory throughput by a
factor of 4 or more, this 1s a promising result. Each ray (or
pixel) read from the frame butler was also written, therefore,
the read and write throughputs were 1dentical. Small voxel-
blocks consumed less than the full bandwidth of the volume
memory bus because of algorithmically skipped blocks. This
feature 1s exploited 1n shared memory accelerators, such as
accelerated graphics port (AGP), when the dataset 1s rendered
directly from main memory.

The pixel-bus was not limiting performance for larger
voxel blocks. Furthermore, the sharing of pixel interfaces
between two or more resample and composite engines can be
potentially realized with only a small penalty 1n performance.

The memory efliciency of the resample and composite
engine architecture generally increased with an increase 1n
dataset resolution. Comparing the relative memory efliciency
of a low resolution 64° dataset and a higher resolution 256>
dataset revealed more than a 100% increase for 8 voxel-
blocks, as described 1n Table 1. This 1s because large datasets
tended to have corresponding larger regions of non-image
forming voxels. As a result, expected average performance
for a resample and composite engine architecture configured
with 8716 size voxel-blocks to exceed the DAR rate by a
factor 3 as dataset resolutions approach 512°. Colossal
datasets will offer even more potential for acceleration ben-
efits resulting from the present invention.

TABLE 1

Simulation Results for a Single Pipeline Operating at 100 M Hz

250 x 256 x 128

CT-head (Bone 2567

647 1282 high-opacity, CT-engine CT-head (Bone
Dataset Size Synthetic MRI-head tissue Semi- MRI-head high-opacity, tissue
Voxel-block High-opacity =~ High-opacity semitransparent) transparent High-opacity semitransparent)
(Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz)
Data Access 381.47 47.68 11.92 11.92 5.96 5.96
Rate
4° 243,44 + 106.70 4434 £ 18770 10.01 £4.89 750271 7.32+3.14 3.39 £+ 1.54
83 403.08 £59.95 8428 +£16.71 19.27+£4.07 1746+2.69 13.82+2.73 8.81 +1.62
162 381.23 £ 0.28 66.20 £ 1.17 15.78 +0.55 1640031 10.39+£0.34 9.33 £0.26
32° 381.46 = 0.00 47.67 £0.02 12.81 £0.10 12.11 £0.10 6.41 £0.04 7.93 +0.04

US RE42,638 E

17

A 256> MRI dataset with multiple resample and composite
engine processors for parallel and perspective projections
was also simulated. As expected, perspective projections
delivered less performance due to a slight increase in the
amount of voxel refetch. By using 8°-16° voxel-blocks, 20
Hz (15 Hz) performance was obtained for a 256°x16-bit
dataset using only

MB yte

second

400

(1.e., two 100 MHz processors) of volume memory through-
put and two resample and composite engines for parallel
(perspective) projections. Extrapolating these results to a
512° dataset, the resample and composite engine architecture
requires only

GBvte
) y

second

of volume memory throughput for similar frame rates. Larger
algorithmic speedups are expected when the dataset resolu-
tion 1s 1ncreased. As a result, the resample and composite
engine allows next generation size datasets to be rendered
interactively using similar volume memory throughput that
other solutions currently use to render smaller datasets. For
example, texture mapping engines offer less than 10 Hz for
256> datasets using more than

GByte

second

3.2

of volume memory throughput. The VG-engine and VIZARD
IT approaches will require approximately

GB
) B

second

bandwidth for similar performance on a smaller dataset. In
the RACE architecture, 16° voxel-blocks offer the best com-
bination of scalability and performance when the pixel-bus
and voxel-bus operate at the same clock frequency.

Various changes to the foregoing described and shown
methods and corresponding structures would now be evident
to those skilled 1n the art. The matter set forth 1in the foregoing
description and accompanying figures 1s therefore offered by
way of illustration only and not as a limitation. Accordingly,
the particularly disclosed scope of the invention 1s set forth in
the following claims.

What 1s claimed 1s:

1. A digital electronic system for real-time volume render-

ing of a 3D volume dataset comprising:

a data-processing accelerator for reducing a number of
voxels for rendering an 1mage 1n real-time by selecting
image-forming voxels that are non-transparent and non-
occluded from a projection and by rejecting non-1mage-
forming voxels that are transparent or occluded from the
projection, wherein the voxels are a volume dataset of
the 1mage to be rendered contained 1n memory external
to the system;

10

15

20

25

30

35

40

45

50

55

60

65

18

a control unit for forward projecting the 3D volume dataset
at regularly spaced voxel positions to determine number
of rays to be casted wherein said 3D volume dataset 1s
divided 1nto a plurality of voxel access blocks having a
cubic array of voxel;

a processor for ray casting the rays of the image-forming
voxels 1n a front-to-back order to form 2D representation
of 1mage planes;

a hardware engine for accelerating the real-time volume
rendering by having the image-forming voxels available
for processing without having to refetch a substantial
number of the voxels from the external memory;

wherein the real-time 1mage 1s rendered from the 1mage-
planes formed from the selected voxels.

2. The system of claim 1 wherein the projection1s a parallel

projection.

3. The system of claim 1 wherein the projection 1s a per-
spective projection.

4. The system of claim 1 wherein the projection 1s a ste-
reoscopic projection.

5. The system of claim 1 wherein the ray casting includes
carly-ray termination and space leaping for selecting the
image-forming voxels, wherein the image-forming voxels are
non-occluded voxels and early-ray termination substantially
avoilds oversampling of the occluded voxels.

6. The system of claim 1 wherein ray casting includes space
leaping for selecting the image-forming voxels, wherein the
image-forming voxels are non-transparent voxels and space
leaping substantially avoids overprocessing of transparent
voxels.

7. The system of claim 1 wherein the hardware engine
turther comprises volume memory for storing a local copy of
a small subset of the data volume defining the voxels, a
rendering unit for implementing the ray casting of the stored
data volume and pixel memory for storing output ray data
from the rendering unit from which the real time 1mage 1s to
be rendered.

8. The system of claim 1 wherein the hardware engine
includes at least two processors and a controller synchronizes
the processors.

9. The system of claim 8 wherein the data volume of
neighboring voxels 1s distributed between the at least two
Processors.

10. The system of claim 9 wherein data volume from one
processor 1s distributed in a circular fashion to the other
processor for iterpolating image-cast rays.

11. The system of claim 10 wherein the volume memory 1s
a high-speed internal static or dynamic random access
memory and each processor has a dedicated connection the
high-speed 1internal static or dynamic random access
memory.

12. The system of claim 11 wherein the 1mage can be
rendered from the hardware engine faster than all of the
voxels 1n the volume dataset can be read from the external
memory.

13. The system of claim 1 further comprising a personal
computer containing the external memory.

14. The system of claim 1 further comprising a screen for
viewing the rendered real-time 1mage.

15. A method for rendering a real-time 1mage comprising;:

retrieving a volume dataset from external memory;

subdividing the volume dataset into a plurality of voxel
access blocks, wherein said voxel access blocks are a
cubic array of voxels;

storing the voxel access blocks in high-speed internal
memory;

US RE42,638 E

19

forward projecting the voxels located at the corers of the
block to determine number of rays to be casted, wherein
said corner voxels correspond to a position of said block;

ray casting the rays in a front-to-back order to form a
two-dimensional representation therefrom;

reducing a number of the voxels for rendering an image 1n
real-time by selecting non-transparent voxels and non-
occluded voxels and by rejecting transparent voxels or
occluded voxels wherein the voxels are the volume
dataset of the image to be rendered contained in said
external memory;

processing the selected voxels to form pixels in a plurality
of processors having interleaved memories for process-
ing and distributing the voxels thereamong without hav-
ing to refetch the voxels from the external memory; and

rendering a real-time 1image therefrom.

16. The method of claim 5 further including wherein the
step of reducing the number of voxels further includes early-
ray termination for selecting the non-occluded voxels to sub-
stantially avoid oversampling of occluded rays.

17. The method of claim 16 wherein the step of reducing
the number of voxels further includes space-leaping to sub-
stantially avoid the overprocessing of the transparent voxels.

18. The method of claim 16 further including processing
the pixels and the voxels in high-speed internal random
access memory to render the image therefrom faster than the
step ol retrieving the volume data set from the external
memory.

19. A method for rendering a real-time 1mage comprising:

retrieving a volume dataset from external memory;

forward projecting the volume dataset at regularly spaced
voxel positions to compute number of rays/pixels to be
casted, wherein the dataset 1s divided into plurality of
voxel access blocks having cubic array of voxels;

ray casting the rays/pixels in front-to-back order visiting
all voxel access blocks except for transparent or
occluded blocks without having to refetch the voxels
from the external memory to form a 2D representation of
image planes, wherein said image planes 1s a calculation
of color, opacity and position of the rays/pixels.

20. A method for vendering a rveal-time image comprising:

retrieving a volume dataset from external memory;

subdividing the volume dataset into a plurality of voxel
access blocks;

storing the voxel access blocks in high-speed internal
mMemory;,

Jorward projecting the voxels located at the covners of the
block to determine number of vays to be casted, wherein
said corner voxels correspond to a position of said
block;

ray casting the vays in a front-to-back order to form a
two-dimensional representation therefrom;

reducing a number of the voxels for vendering an image in
real-time by selecting non-transparent voxels and non-
occluded voxels and by rejecting transparent voxels or
occluded voxels wherein the voxels are the volume
dataset of the image to be vendered contained in said
external memory;

processing the selected voxels to form pixels in a plurality
of processors having interleaved memories for process-
ing and distributing the voxels theveamong without hav-
ing to refetch the voxels from the external memory; and

rendering a rveal-time image thervefrom.

21. A system for rendering a volume dataset, wherein the
volume dataset includes a plurality of voxel blocks, wherein
each of said voxel blocks includes two or more voxels, the
system comprising.

10

15

20

25

30

35

40

45

50

55

60

65

20

one ov movre rendering units,

a first memory configured to store said plurality of voxel

blocks

a control unit, whevein, for each of said plurality of voxel

blocks, said control unit is configured to:

identify, by performing a forward projection, a portion
of a frame buffer corresponding to the voxel block;

determine whether the voxel block is selected for trans-
Jfer from said first memory to said one or move render-
ing units, wherein said determination is based upon
whether said voxel block is transparent and whether
said voxel block is occluded velative to a curvent view-
ing position; and

transfer the voxel block from the first memory to said one
or more rendering units in response to said determi-
nation indicating that the voxel block is selected for
transfer;

wherein, for each voxel block, said one or more rendering

units are configured to process, in front-to-back ovder, a
set of rays passing through the corresponding portion of
the frame buffer, and whevein said one or more rendering
units are configured to terminate processing of rays
determined to be occluded.

22. The system of claim 21, wherein the control unit is
configured to perform said identification accorvding to a front
to back ovdering of the voxel blocks.

23. The system of claim 21, wherein said performing the

forward projection is based on a parallel projection, a per-

spective projection, or a stereoscopic projection.

24. The system of claim 21, wherein a first of the one or
movre rendering units is configured to detevmine whether a ray
is occluded by comparing an opacity value of the ray to an
opacity threshold.

25. The system of claim 21, wherein a first of the one or
movre rendering units is configured to perform space leaping
on at least one of the rays of the set of rays in response to an
indication that a curvent one of the voxel blocks and voxel
blocks neighboring the curvent voxel block are transparent.

26. The system of claim 21, whevrein the first memory com-

prises one ov movre volume memories coupled respectively to

the one or more rvenderving units, whevein the plurality of
voxels are partitioned among the one or more volume memo-
vies.

27. The system of claim 26, wherein each of the voxel blocks
is partitioned among the one or more volume memories.

28. The system of claim 27, whevein each of the one or more
rendering units is configured for circular distribution of vox-

els among the one or move rendering units.
29. The system of claim 21, wherein the frame buffer is

partitioned among one or more pixel memories coupled

respectively to the one ov movre rendering units.
30. The system of claim 29, wherein the control unit is

further comnfigured to tramsfer blocks of rays between the
frame buffer and the one ov more rendering units.

31. The system of claim 30, wherein the rays of each block
of rays is distributed among the one or movre pixel memories
so that each of the one or more rendering units processes a
corresponding portion of the rays in each block of rays.

32. The system of claim 21, whevein the one or more ven-
dering units are configured to interpolate samples along the
rays of said set of rays based onvoxels of the transferred voxel
block.

33. The system of claim 21, wherein a first of the one or
movre rendering units is configured to compute gradients from
voxels of the transferved voxel block.

34. The system of claim 21 further comprising a personal
compuiter containing the first memory.

US RE42,638 E

21

35. The system of claim 21 further comprising a scveen for
viewing an image stored in the frame buffer.

36. The system of claim 21, where the frame buffer vepre-
sents a rendered image of the volume dataset.

37. The system of claim 21, wherein, for each of the voxel
blocks, the control unit is configured to issue blocks of rays to
the one or move rendering units starting from a center of said
portion of the frame buffer.

38. The system of claim 21, wherein a first of the one or
move rendering units includes a vay caster unit, wherein the
ray caster unit is configured to operate on rays by performing

calculations including one or more of the following tvpes of

calculations: veconstruction, classification, shading, compo-
sition.

39. The system of claim 38, wherein the ray caster unit is
configured to perform composition calculations, and wherein
the first vendering unit further includes a ray intevleave unit
configured to interleave rays of said set of rays in ovder to
prevent feedback in said composition calculations performed
in the ray caster unit.

40. The system of claim 21, wherein the volume dataset is a
computed tomography (CT) dataset or a magnetic resonance
imaging (MRI) dataset.

41. The system of claim 21, wherein the volume dataset
represents geophysical information.

42. The system of claim 21, wherein the volume dataset
describes one or more properties of a fluid or of a chemical
system.

43. The system of claim 21, whevein the system is a 3D
graphics system.

44. The system of claim 21, wherein the system is a com-
puter aided design (CAD) system.

10

15

20

25

30

45. The system of claim 21, wherein said determination

includes determining that the voxel block is not selected for
transfer based on information indicating that the voxel block
is occluded relative to the current viewing position.

46. The system of claim 21, wherein said determination
includes determining that the voxel blockis selected for trans-
fer based on information indicating that the voxel block is not
occluded rvelative to the current viewing position and infor-

mation indicating that the voxel block is not transparent.

47. The system of claim 21, wherein said determination
includes determining that the voxel blockis selected for trans-
fer based on information indicating that said voxel block is
transparent, information indicating that the voxel block is not
occluded relative to a current viewing position, and informa-
tion indicating that neighboring voxel blocks of said voxel
block are transparent.

48. A system for rendering a volume dataset, wherein the
volume dataset includes a plurality of voxel blocks, wherein
each of said voxel blocks includes two or more voxels, the
system comprising:

one or more rendering means for performing rvenderving

computations,

a first means for storing said plurality of voxel blocks;

a control means for:

identifving, by performing a forward projection, a por-
tion of a frame buffer corresponding to each of the
voxel blocks;

determining whether the voxel block is selected for
transfer from said first means to said one or more
rendering means, whervein said determination is
based upon whether said voxel block is transparent
and whether said voxel block is occluded velative to a
current viewing position; and

40

45

50

55

60

65

22

transferring the voxel block from the first means to said
one ov more rendering means in vesponse to said
determination indicating that the voxel block is
selected for transfer;

wherein said one or more rvendering means comprise

means for:
processing, in a front-to-back ovder, a set of rays passing
through the portion of the frame buffer, and
terminating the processing of rays determined to be occluded.

49. The system of claim 48, wherein a first of said one or
move rvendering means includes a first buffer for buffering two
slices of voxels.

50. The system of claim 49, wherein the first rendering
means includes a second buffer for buffering omne slice of
gradient data.

51. The system of claim 48, wherve the frame buffer is
configured to storve data vepresenting a two-dimensional
array of pixels, whervein each pixel defines a corresponding
ray relative to the viewing position, wherein the stored data
for each pixel includes a coloy, an opacity and a position.

52. The system of claim 51, wherein the stoved data for each
pixel also includes an increment vector.

53. The system of claim 48, wherein said determination
includes determining that the voxel block is not selected for
transfer based on information indicating that the voxel block
is occluded relative to the curvent viewing position.

54. The system of claim 48, wherein said determination
includes determining that the voxel blockis selected for trans-
fer based on information indicating that the voxel block is not
occluded relative to the current viewing position and infor-
mation indicating that the voxel block is not transparent.

55. The system of claim 48, wherein said determination
includes determining that the voxel blockis selected for trans-
fer based on: information indicating that said voxel block is
transparent, information indicating that the voxel block is not
occluded relative to a current viewing position, and informa-
tion indicating that neighboring voxel blocks of said voxel
block are transparent.

56. A method for vendering a volume dataset, wherein the
volume dataset includes a plurality of voxel blocks, wherein
each of said voxel blocks includes two or more voxels, the
method comprising:

a computer system storving the plurality of voxels in a first
Memory;,
for each of the voxel blocks.:
the computer system identifving, by performing a for-
ward projection, a portion of a frame buffer corre-
sponding to the voxel block;
the computer system determining whether the voxel
block is selected for retrieval from said first memory,
wherein said determining is based upon whether said
voxel block is transparent and whether said voxel
block is occluded relative to a curvent viewing posi-
tion; and
the computer system retrieving the voxel block from the
first memory in response to said determination indi-
cating that the voxel block is selected for vetrieval;
processing, in front-to-back order, a set of rays passing
through the corresponding portion of the frame
buffer; and
the computer system terminating processing of rays deter-
mined to be occluded.
57. The method of claim 56, wherein each of the voxel
blocks is retrieved from the first memory at most once per
frame.

US RE42,638 E

23
58. The method of claim 56, wherein said identifying the

portion of a frame buffer corresponding to each of said voxel
blocks is performed according to a front-to-back ovdering of
the voxel blocks.
59. The method of claim 56 further comprising:
displaving an image from the frame buffer.
60. The method of claim 56 further comprising:
determining that a vay is occluded by comparing an opac-
ity value of the ray to an opacity threshold.

61. The method of claim 56 further comprising:

performing space leaping on at least one of the rays of said

set of rays in vesponse to a determination that the voxel
block and a plurality of neighboring voxel blocks are
fransparent.

62. The method of claim 56, wherein said determining
includes determining that the voxel block is not selected for
retrieval based on information indicating that the voxel block
is occluded relative to the current viewing position.

63. The method of claim 56, wherein said determining
includes determining that the voxel block is selected for
retrieval based on information indicating that the voxel block
is not occluded relative to the curvent viewing position and
information indicating that the voxel block is not transparent.

64. The method of claim 56, wherein said determining
includes determining that the voxel block is selected for
retrieval based on information indicating that said voxel
block is transparent, information indicating that the voxel
block is not occluded relative to a current viewing position,
and information indicating that neighboring voxel blocks of
said voxel block are transparent.

65. A volume vendering controller configured to:

access stoved information to determine whether a block of

voxels is selected for retrieval from a memory, wherein
said stoved information includes at least information
specifving whether said block is transpavent and infor-
mation specifving whether said block is occluded rvela-
tive to a current viewing position;

determine, by performing a forward projection, a portion

of a frame buffer corresponding to the block;

output a clipping rvegion of the block;

control a transfer of the block from the memory onto a first

bus in response to a determination that the block is
selected for retrieval.

66. The volume rendering controller of claim 65 further
configured to:

control a transfer of pixel tiles in the corresponding portion

of the frame buffer onto a second bus.

67. The volume rendering controller of claim 65 further
configured to:

generate a space-leap flag for the block based on an exami-

nation of said information, wherein the space-leap flag
indicates whether space-leaping is to be performed on
one or movre rays associated with said portion of the
frame buffer; and

output the space leaping flag for the block.

68. The volume rendering controller of claim 65, wherein
the volume rendering controller is further configured to deter-
mine that the block is not selected for vetrieval based on the
information indicating that the block is occluded relative to
the current viewing position.

69. The volume rendering controller of claim 65, wherein
the volume venderving controller is further configured to deter-
mine that the block is selected for vetrieval based on the
information indicating that the block is not occluded relative
to the current viewing position and the information indicating
that the block is not transparent.

10

15

20

25

30

35

40

45

50

55

60

65

24

70. The volume rendering controller of claim 65, wherein
the volume rendering controller is further configured to deter-
mine that the block is selected for rvetrieval based on: the
information indicating that said block is transparent, the
information indicating that the block is not occluded relative
to a curvent viewing position, and additional information
indicating that blocks of voxels neighboring said block are
fransparent.

71. A method comprising:

accessing stored information to determine whether a block

of voxels is selected for vetrieval from a memory,
wherein said stored information includes at least infor-
mation specifying whether said block is transpavent and
information specifyving whether said block is occluded
relative to a current viewing position;

determining, by performing a forward projection, a por-

tion of a frame buffer corresponding to the block;
outputting a clipping rvegion of the block;

controlling a transfer of the block from the memory onto a

first bus in vesponse to a determination that the block is
selected for retrieval.

72. The method of claim 71 further comprising:

controlling a transfer of pixel tiles in the corresponding

portion of the frame buffer onto a second bus.

73. The method of claim 71 further comprising:

generating a space-leap flag for the block based on an

examination of said information, whevein the space-leap

flag indicates whether space-leaping is to be performed
on one or movre rays associated with said portion of the
frame buffer; and

outputting the space leaping flag for the block

74. The method of claim 71 further comprising:

determining that the block is not selected for retrieval

based on the information indicating that the block is
occluded relative to the curvent viewing position.

75. The method of claim 71 further comprising:

determining that the block is selected for retvieval based on

the information indicating that the block is not occluded
relative to the current viewing position and the informa-
tion indicating that the block is not transparent.

76. The method of claim 71 further comprising:

determining that the block is selected for rvetrieval based

on: the information indicating that said block is trans-
parent, the information indicating that the block is not
occluded velative to a current viewing position, and
additional information indicating that blocks of voxels
neighboring said block are transparent.

77. A medical imaging system for rvendering a volume
dataset, wherein the volume dataset includes a plurality of
voxel blocks, wherein each of said voxel blocks includes two
or movre voxels, the system comprising.

one ov movre rendering units,

a first memory configured to store said plurality of voxel

blocks;

a control unit, wherein, for each of said plurality of voxel

blocks, said control unit is configured to:

identify, by performing a forward projection, a portion
of a frame buffer corresponding to the voxel block;

determine whether the voxel block is selected for trans-
fer from said first memory to the one ov more render-

ing units, wherein said determination is based upon
whether said voxel block is transparent and whether
said voxel blockis occluded velative to a curvent view-
ing position; and

US RE42,638 E

25

transfer the voxel block from the first memory to said one

or more rendering units in vesponse to said determi-

nation indicating that the voxel block is selected for
transfer,

wherein, for each voxel block, said one or more rvendering

units arve configured to process, in front-to-back order, a set of

rays passing through the corrvesponding portion of the frame
buffer, and whevrein the one or more vendering units are con-
figured to terminate processing of rays determined to be
occluded.

78. The medical imaging system of claim 77, wherein the
volume dataset is a medical information dataset.

79. The medical imaging system of claim 77, wherein said
determination includes determining that the voxel block is not
selected for transfer based on information indicating that the
voxel block is occluded relative to the curvent viewing posi-
tion.

80. The medical imaging system of claim 77, wherein said
determination includes determining that the voxel block is
selected for transfer based on information indicating that the
voxel block is not occluded relative to the curvent viewing
position and information indicating that the voxel block is not
fransparent.

81. The medical imaging system of claim 77, wherein said
determination includes determining that the voxel block is
selected for transfer based on: information indicating that
said voxel block is transparent, information indicating that
the voxel block is not occluded rvelative to a currvent viewing
position, and information indicating that neighboring voxel
blocks of said voxel block are transparent.

82. A system for vendering a volume dataset, wherein the
volume dataset includes a plurality of voxel blocks, wherein
each of said voxel blocks includes an array of voxels, the
system comprising.

a plurality of rendering units;

a first memory configured to storve said plurality of voxel

blocks;

a control unit, wherein, for each of said plurality of voxel

blocks, said control unit is configured to:

identify, by performing a forward projection, a portion
of a frame buffer corresponding to the voxel block;

determine whether the voxel block is selected for trans-
fer from said first memory to at least one of the plu-
rality of rendering units, wherein said determination
is based upon information rvegarding whether said
voxel block is transparent and information rvegarvding
whether said voxel block is occluded relative to a
current viewing position; and

26

transfer the voxel block from the first memory to said at
least one rendering unit in response to said determi-
nation indicating that the voxel block is selected for
transfer;

5 wherein, for each voxel block, said at least one vendering unit
is configured to process, in front-to-back ovder, a set of rays
passing through the corresponding portion of the frame
buffer, and wherein said at least one vendering unit is config-
ured to perform early ray termination on rays determined to

10 be occluded.

83. The system of claim 82, wherein the control unit is
configured to perform said identification of the portion of the
frame buffer corresponding to each of said voxel blocks
according to a front-to-back ovdering of the voxel blocks.

84. The system of claim 82, wherein the at least one ren-
dering unit is configured to determine that a ray is occluded
by comparing an opacity value of the vay to an opacity thresh-
old.

85. The system of claim 82, wherein the at least one ren-
dering unit is configured to perform space leaping on at least
one of the rays of the set of rays in vesponse to an indication
that a current one of the voxel blocks is transparent.

86. The system of claim 82, wherein the at least one ren-
dering unit is configured to interpolate samples along one or
movre of the rays of said set of rays based on voxels of the
transferrved voxel block.

87. The system of claim 82, wherein the array of voxels is a
rectangular array.

88. The system of claim 82, wherein the array of voxels is a
cubic array.

89. The system of claim 82, wherein said determination
includes determining that the voxel block is not selected for
transfer based on information indicating that the voxel block
is occluded relative to the curvent viewing position.

90. The system of claim 82, wherein said determination
includes determining that the voxel blockis selected for trans-
fer based on information indicating that the voxel block is not
occluded velative to the current viewing position and infor-
mation indicating that the voxel block is not transparent.

91. The system of claim 82, wherein said determination
includes determining that the voxel blockis selected for trans-
fer based on: information indicating that said voxel block is
transparent, information indicating that the voxel block is not
occluded relative to a current viewing position, and informa-
45 tiom indicating that neighboring voxel blocks of said voxel

block are transparent.

15

20

25

30

35

40

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : RE42,638 E Page 1 of 1
APPLICATION NO. : 11/305902

DATED : August 23, 2011

INVENTORC(S) : Ray et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Title Page, item (73), under “Assignee”, in Column 1, Line 2, delete “JerseyNJ (US)” and
isert -- Jersey NJ (US) --.

Column 19, line 17, 1n Claim 16, delete “claim 5°° and insert -- claim 15 --.

Column 19, line 48, in Claim 20, delete “determine number” and 1nsert -- determine a number --.
Column 20, lines 25-26, m Claim 22, delete “front to back” and insert -- front-to-back --.
Column 20, line 56, in Claim 31, delete “rays is” and insert -- rays are --.

Column 21, lime 62, 1n Claim 48, delete “whether the voxel” and 1msert -- whether a voxel --.
Column 23, lines 59-60, i Claim 68, delete “the information” and 1nsert -- information --.
Column 23, lines 64-65, 1 Claim 69, delete “the information™ and 1nsert -- information --.
Column 23, line 66, in Claim 69, delete “the information™ and insert -- information --.
Column 24, lines 3-4, in Claim 70, delete “the information™ and insert -- information --.
Column 24, lines 4-5, in Claim 70, delete “the information™ and insert -- information --.
Column 24, line 36, in Claim 74, delete “the information™ and 1nsert -- information --.
Column 24, line 40, in Claim 75, delete “the information™ and insert -- information --.
Column 24, lines 41-42, i Claim 75, delete “the information” and 1nsert -- information --.

Column 24, line 45, in Claim 76, delete “the information™ and insert -- information --.

Column 24, line 46, in Claim 76, delete “the information™ and insert -- information --.

Signed and Sealed this
Fifteenth Day of May, 2012

David J. Kappos
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

