(19) United States
12y Reissued Patent

(10) Patent Number:

USOORE42578E

US RE42,578 E

High et al. 45) Date of Reissued Patent: Jul. 26, 2011
(54) SYNCHRONIZATION USING COMMITMENT 6,449,627 B1* 9/2002 Baeretal.ccccc...... 715/514
6,526,416 B1* 2/2003 Longcc.covveeeiiinnnnnnn, 707/202
2
(75) Inventors: Darrell K. High, Arlington, TX (US); 6,970,883 B2* 11/2005 Kuetal. ...cooooeeeer 707103 Y
Robert S. Shaw, Cupertino, CA (US) OTHER PUBLICATIONS

(73) Assignee: Hewlett-Packard Development
Company, L.P., Houston, TX (US)

(21) Appl. No.: 10/788,046

(22) Filed: Feb. 26, 2004
Related U.S. Patent Documents

Reissue of:
(64) Patent No.: 6,601,069

Issued: Jul. 29, 2003

Appl. No.: 09/738,119

Filed: Dec. 15, 2000
(51) Int. CL.

GO6F 17/00 (2006.01)
(52) US.CL ... 707/102; 707/100; 707/101; 707/103 R
(58) Field of Classification Search 707/8, 9,

707/10, 103 R, 200, 201
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
6,064,382 A * 5/2000 Diedrichetal. 715/700
6,088,694 A * 7/2000 Burnsetal. 707/8
6,301,601 B1* 10/2001 Hellandetal. 709/101
(START)

QOPEN FILE 80

LOCK FILE

READ ATTRIBUTES & DATA

CONTENT
SUITABLE?

NO

YES

FILE IN
USE?

'

WRITE DATA

92

/"88 1 s 94

e .

UNLOCK THE FILE

(SUCCESS)

UNLOCK THE FILE

[FAILURE)

Papadopoulos, C.V.; discloses heterogeneity of distributed databases
integrating commit protocols; Distributed Computing Systems,
1994., Proceedings of the 14th International Conference; Jun. 21-24,

1994; pp. 380-386.*

Inseon Lee; Yeom, H.Y. discloses a single phase distributed commut
protocol for main memory database systems Parallel and Distributed
Processing Symposium., Proceedings International, IPDPS 2002,
Abstracts and CD-ROM, 2002; pp. 14-21.%

* cited by examiner

Primary Examiner — Sana Al-Hashemi

(57) ABSTRACT

A method of sharing a file object among a plurality of com-
peting processes, the file object having a content that at least
one competing process may need to adjust so that the file 1s
suitable for the operating environment of the competing pro-
cess. To help make an adjustment, the file object includes a
state attribute that indicates whether or not the file 1s commit-
ted and whether the file 1s 1n an inconsistent state. If the file
contents are suitable for the specific process and the file object
1s not committed, the file can be committed by the specific
process. If the file contents are not suitable for the specific
process and the file object 1s not commutted, the file 1s locked,
set to 1nconsistent, adjusted, committed by the specific pro-
cess and then unlocked. This process improves concurrency
of the competing processes and reduces message overhead.

23 Claims, 11 Drawing Sheets

(START)
140

SEND

LOCKUNLESSCOMMITTED
REQUEST TO DISK PROCESSOR

: 141 !
! IN DHSK PROCESS IF FILE LOCKED, PUT REQUEST !
i ASIDE UNTIL FILE 1S UNLOCKED !
. :
: :
| UNCOMMITTED COMMITTED :
E INCONSISTENT |
! 4 4 :
| LOCK FILE FOR LOCK FILE FOR |
| SPECIFIC CLIENT SPECIFIC CLIENT ;
I PROCESS PROCESS :
. 145 147 149
| y - - ; !
'l REPLY TO CLIENT REPLY TO CLIENT REPLY TO CLIENT | |
| | WITH 'UNCOMMITTED'] I WITH 'INCONSISTENT| | WITH 'COMMITTED' | |
i STATUS STATUS STATUS !

RE-READ FILE DATA

RE-READ FILE DATA

(RETURN)

U.S. Patent Jul. 26, 2011 Sheet 1 of 11 US RE42,578 E

U.S. Patent Jul. 26, 2011 Sheet 2 of 11 US RE42,578 E

60 62

CENTRAL
PROCESSOR

MEMORY
SUBSYSTEM

/0
SUBSYSTEM

72

\10,12,14,16,18

TO STORAGE
SYSTEM

FIG. 2

Previous Design When No Modification Needed

. 100
Client ,,_____a_,__._____z_,____;_,é_
Processor ' Opﬂﬂ "*\ Lock v Read "1 Unlock

) ! !

t‘Reqp /—’ : } e /,.-, r “1Req /"‘! ' L Req
\ i 3 ! \ t ‘
3 i \ 7 b ! |
104—, 108, 49— 1107 4952 T4/ 116—
v N ' /File \
! Open ID [Granted v, Data s
DiSk 0o (= o TR 102
Processor

FIG. 4

U.S. Patent

YES

Jul. 26, 2011

Sheet 3 0f 11

START

OPEN FiILE 3

LOCK FILE
READ ATTRIBUTES & DATA

WRITE DATA
UNLOCK THE FILE

SUCCESS

86

CONTENT
SUITABLE?

NO

FILE IN o0

USE?

NO

92
-88

8
8

O
2
4

US RE42,578 E

94
UNLOCK THE FILE

FAILURE

FIG. 3

U.S. Patent Jul. 26, 2011

OPEN FILE
READ ATTRIBUTES & DATA

122

NO

126

CONTENT
SUITABLE & NOT
INCONSISTENT?

NO

PERFORM A
LOCKUNLESSCOMMITTED
OPERATION

PERFORM A
SETINCONSISTENT
OPERATION

134
ADJUST CONTENT A
OF FILE OBJECT

PERFORM A

COMMITANDUNLOCK
OPERATION

YES

Sheet 4 of 11 US RE42,578 E

120

FIG. 5

YES

128
PERFORM A

COMMITIFUNCOMMITTED
OPERATION

130

132

124

CONTENT
SUITABLE?

YES

NO

FAILURE

136

U.S. Patent Jul. 26, 2011 Sheet 5 of 11 US RE42,578 E

FIG. 6A

SEND
LOCKUNLESSCOMMITTED
' REQUEST TO DISK PROCESSOR

140

141
IN DISK PROCESS IF FILE LOCKED, PUT REQUEST
ASIDE UNTIL FILE IS UNLOCKED

142

FILE

E UNCOMMITTED STATE? COMMITTED
INCONSISTENT
! 144 146 :
| LOCK FILE FOR LOCK FILE FOR ;
| SPECIFIC CLIENT SPECIFIC CLIENT ;
i PROCESS PROCESS :
i 145 147 149
: 4 :
'l REPLY TO CLIENT REPLY TO CLIENT REPLY TO CLIENT | .
| WITH 'UNCOMMITTED' | | WITH 'INCONSISTENT | | wiTH 'commiTTED' | |
| STATUS STATUS STATUS :
148 150

RE-READ FILE DATA RE-READ FILE DATA
() O ©

U.S. Patent Jul. 26, 2011 Sheet 6 of 11 US RE42,578 E

FIG. 6B

REPLY TQ CLIENT REPLY TO CLIENT REPLY TO CLIENT

WITH 'SUCCESS WITH 'INCONSISTENT WITH 'COMMITTED'
STATUS STATUS STATUS

160
SEND
COMMITIFUNCOMMITTED
REQUEST TO DISK PROCESSOR
N DISKPROCESS 161 :
; > IF FILE LOCKED, PUT REQUEST !
: ASIDE UNTIL FILE IS UNLOCKED l
162 :
' UNCOMMITTED COMMITTED !
| ?
164 :
; :
| SET FILE TO
| CommTTeD INCONSISTENT :
: 165 163 167

RE-READ FILE DATA

RETURN s o

U.S. Patent Jul. 26, 2011 Sheet 7 of 11 US RE42,578 E

—————-—_-—'_—_-——_-----_‘ S ahh - s S - S S S AN s | S S . OSSO e A S - . e . e

-
‘\.l
N

SET THE STATE OF THE
FILE OBJECT TO COMMITTED

I IN DISK PROCESS

174
RELEASE THE EXCLUSIVE

LOCK ON THE FILE OBJECT

180
SET THE STATE OF THE

FILE OBJECT TO INCONSISTENT

RETURN

U.S. Patent Jul. 26, 2011 Sheet 8 of 11 US RE42,578 E

New Design When No Modification Needed (First Open)

Client y _
Process t QOpen ‘ \ Comirnit if | ?
\ Req. ; d Uncommitted
\ 7 204, 7
200 :" 202 r' l‘ 206 f'
" ! Open I0), Y N
Y ! Uncommilted, ', ! You
: r File Data ‘ + Committed _
Disk Uncommitted.........c.c............ revee v e committed.........cccovevvirrreriiriciees
Process

New Desigh When No Modification Needed (Additional Opens)

Client
Process v Open 4 -
‘s‘Req. ,‘:"'— 212
210—]
Y + Open ID,
N /! Committed,
- 1 File Data |
Disk O70] 18] 011110 FETUT TP

Process

U.S. Patent Jul. 26, 2011 Sheet 9 of 11 US RE42,578 E

Racing to Commit When No Maodification Needed

Client __ﬁr?____j___‘c_____?___r_)—z_
« Open v Commt if « {retry
Frocess b \ Req / /_. Uncommitted [/_m Read
Vo Tode N o Tede T~ a8
224"'""* 226 \ 234 \ N
. Open 1D, \ K Failed: " +fresft
‘,, r Uncommilted, f Already " + File
) . File Data _ :) Committed - + Data
Disk Uncommitted........oveeeeeeeeieaia. oMM, ..ot
Process
4 Open ID, 4 . You
,' ‘ Uncommifted, " 1 Commitied
o /4 \ File Data ! /. \
t) \
220 f 222 ~ . 230
228, \
r Open Y + Commit if \
Client !" Req. !" ' Uncommitted
Process A
Moditfier Losing Race to Committer
Moditying (retry)
Client B ; Oper: ; ' i ock Unless ;
*- Reg. /-—\ Committed /
'L /—;’
252 ;- 254
240-—.‘" 242 L .rllI
! 'Open ID, " o
‘, ’ " Uncommitted, \ + Failed -
: ! File Data : . Committed
Disk Uncommitted.....cc.cooviivmieiiinienireneneeeseceees Committed.....ccoevriiieieereen e
Process
v Open iD { v You
N . Uncommitted, ! ' Commitied
/j’ // \File Data N /-' "
244 246 7 250
"4 248 \1
N OPEH 'Comm.rt if
Committing ' Reg. ! ! Uncommitted 1
Client A

FIG. 10

U.S. Patent Jul. 26, 2011 Sheet 10 of 11 US RE42.,578 E

Committer Losing Race to Maodifier
Moditying

ClientB ' 9re” ; Lock Uniess 4 Set incon- ‘t Write '1 Commit
\ Req. /_. Committed / \ sistent & Unlock
\ /’J \ f / /
) 268 7276 . 278'280"
260 262 ' ' 270 fr \ 1 \
" | ‘OpeniD, 1+You \ \ \
| . " Uncommitted, . L Locked " \ \
\ / File Data : Uncomt'd) . \
Disk UnCOMMItEd.oeer ittt el ICONS StENT...COmMMmitted. ..
Process LOCKE. it vt e retresrnssinrenrenesres
4 '\ OpenID | . Failad:
; ‘\ UnCOmmmEd, : /“ A[ready
—_ r't Fﬂe Data ! 27 4 ‘x‘Commf'tted
264 ! D66 \ /? \
\ 272 ! \
N OPE” \ 'Commlr if p
Committing ! Req. 1 ! Uncommitted 1
Client A (retry)
FIG. 11
Racing to Modify
Client

 Open ;) Lock Unless ; v Sel incon- \ Wirite . Cammit

Process B 1 Req. /... Committed | /' \ Sistent /‘ /‘ & Unlock
e L A ANA
—_-""* 300 \ \ 1 \
290 \ K 'Open ID, " 308 :You \ ‘ .
" a Uncommitted, “ K 'Locked \ Y \
‘ . Fite Data \ . Uncomt'd \ A \ .
Disk UNCOMMI . e b CONSIStENE Commritted...
Process LOCKEA ..o eeii oo ereee e e ae st ns
4 '\ OpenlD, | « Lock failed -
K ', Uncommitted, ’ /’x Committed
/-—;‘ fF”E Data : 31 8 “
302 504" ~)
/! 310 ‘Lock \
_] 'Open ‘x 'Uniless "
Client ' Reg. 3" ;| Committed !‘
Process A (retry}

FIG. 12

U.S. Patent Jul. 26, 2011 Sheet 11 of 11 US RE42,578 E

Failure During Modify Attempt

Failure
clent — o1
v OE v Write
ProcessB " ..
\SleEHf) \ Detection of
/ 3 \Faﬂure
‘, (unlocks)
. 330%
\‘ 'll‘.i \
Disk] -eeeenes [aToTelal=1E) =] 1] USROS Committed
Process | Locked.................. o eerrrreenarans Locked......ccovvemvirieiirieee,
v You Locked - fresh 4
, / inconsistent ..‘ '\ Fite ,"')
N Dara
7 336 \ ‘ /‘* /""
334 / /1 ock \ 338 340 342 344 /
oC
| ’Unfess ‘\ ! Read “ r White r Comm:t
Client ' Committed \ ' Req. !‘ / Req. / & Unlock
Process A

FIG. 13

US RE42,578 E

1
SYNCHRONIZATION USING COMMITMENT

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

CROSS-REFERENCE TO RELATED
APPLICATIONS

Field of the Invention

The present invention relates generally to a loosely-
coupled multi-processor system that shares a commonly-
used file, and it more particularly relates to processes that
execute on each of the processors of the multi-processor
system; the invention reduces the message traflic among the
processors needed to achieve a single, consistent image of the
commonly-used file.

DESCRIPTION OF THE RELATED ART

FIG. 1 shows a system setting in which the present inven-
tion operates. In this figure there are a plurality of processing,
systems 10, 12, 14, 16, 18, preferably having a similar archi-
tecture, connected via a number of point-to-point connections
20,22, 24, 26, 28, 30. One or more of the processing systems
(storage systems) 16, 18 provide storage-related functions for
the other processing systems (client systems) 10, 12, 14 and
these storage systems 16, 18 arc connected to one or more
permanent storage devices 32, 34, 36, 38, such as hard disk
drives. Each client system 10, 12, 14 1s connected to each of
the storage systems 16, 18, preferably using the point-to-
point connections 20, 22, 24, 26, 28, 30 and the storage
systems themselves are interconnected via a point-to-point
connection 40 so that they can serve as a unified, redundant
storage system for the client systems. (The storage systems
are 1llustrated as distinct from the set of client processing
systems, but the present invention does not depend upon this
distinction.)

FIG. 2 shows a diagram of a representative computer sys-
tem shown 1n FIG. 1 in which a central processing unit 60, a
memory subsystem 62 and an I/O subsystem 64 are prefer-
ably interconnected preferably by point-to-point links 66, 68,
70. The representative computer system 1s connected, via a
link 72, to the storage systems via the I/O subsystem. (While
these diagrams 1llustrate point-to-point connections, the cur-
rent invention 1s not limited to that topology.) The software on
cach client system 1n FIG. 1 includes a number of processes
(client processes) 42, 44, 46 that execute on that system and
cach of these processes typically requires access to the file
objects of the storage systems 16, 18. The client processes
42-46 make requests to obtain file objects from the storage
systems by sending messages over the point-to-point links to
a process called a disk process 48, 50 that executes on each of
the storage systems. The disk process 48, 50, upon receipt of
the message from a client process 42-46, sends reply mes-
sages to the message sender.

File objects, such as executables and library object files,
that are requested by the client processes generally contain
references that may need to be adjusted when the file object 1s
downloaded on a particular client system so that 1t properly
references other library files, possibly of a different version,
on that client system. These references must be written into
the contents of the file object and the adjustment must be
synchronized with the other client systems so that the file
object contents remains consistent. This means that each cli-

10

15

20

25

30

35

40

45

50

55

60

65

2

ent process 42-46 that uses the file object must determine
whether the contents of a file object are properly adjusted for
the process environment that the file object will encounter on
the particular client system 10-14. If a file object 1s currently
loaded and 1n use by any client process, 1t cannot be changed,
but 1s sharable as long as the other sharing client processes
can use the file object with 1ts current adjustments. It 1s
necessary to have a protocol to determine when the current
adjustments are appropriate and preserve that state, and to
deal with the case in which a client process must adjust the
contents of a file object for proper use within 1ts processing
environment

A protocol for achieving such a modification that is con-
sistent with the processing requirements of processes on the
other client systems 1s shown in FIG. 3 and operates as fol-
lows. The client process opens the file object 1n step 80 and
then locks the file object in step 82. This requires that a lock
message be sent to the disk process of a storage system that
maintains the consistency of the file object. (Once the file
object 1s locked, other processes that attempt to lock the file
are delayed until the lock 1s released.) Next, in step 84, the
client process reads the attributes and relevant contents from
the file object. If the content of the file 1s suitable for use, as
determined in step 86, the file 1s unlocked 1n step 88 and a
success imndication 1s returned. It the file object is not properly
adjusted (1.e., the content 1s not suitable), as determined 1n
step 86, for the client system processing environment based
on the contents read from the file object and 1f the file object
1s not 1n use as determined 1n step 90, an adjustment 1s made
in step 92 and the changes are written back to the contents of
the file object. The file object 1s then unlocked in step 88 and
a success 1mdication 1s returned. If the file object 15 1n use, as
determined 1n step 90, the file object 1s unlocked 1n step 94
and a failure indication 1s returned.

FIG. 4 shows a scheduling diagram of the prior art method
for synchronization to more clearly illustrate the approximate
timing of events at the client system and the storage system,
and similar figures are used through out this specification to
illustrate ditlerent aspects of the present invention. In FIG. 4,
the upper line 100 represents an event line for the client
system and the lower line or bar 102 represents an event line
for the storage system. A line segment 104, 108, 112, 116
directed towards the storage system line indicates a message
sent from the client system to the storage system (disk pro-
cess) and a line segment 106, 110, 114 directed towards the
client system represents a message sent from the storage
system to the client system. The slope of the directed line
segment simply indicates that the message travels at some
finite speed between the two systems and the label on the
directed line segment indicates the type of message being
sent.

The first event 104 depicted 1n FIG. 4 1s the client system
transmitting an open request to the disk process of the storage
system. This message 1s received and, 1n response, the disk
process sends an open acknowledge message 106 back to the
client system, which then proceeds to make a lock request
108. This message arrives at the disk process which then
grants the request 110 to lock the file object. Following the
receipt of the lock-granted message 110, aread request 112 1s
made of the file object by the client system to the storage
system, and when the message arrives the storage system
returns the file contents 114 that were requested back to the
client system. The client system then determines whether the
file object 1s properly adjusted for running 1n the environment
of the client system and, 1n this example, finds that the file
object 1s properly adjusted and no changes need to be written.
Finally, an unlock message 116 1s sent to the disk process

US RE42,578 E

3

releasing the file object. As 1s apparent from the scheduling
diagram, the file object stays locked from the time of the lock
grant 108 to the time that the unlock request 116 1s recerved
and executed at the disk process.

Though the above protocol 1s effective at maintaining the
consistency of the shared file among the competing processes
of the client systems, 1t 1s expensive 1n terms of the messages
that are required to be sent to and from the disk process. Two
messages, a lock and an unlock, are required by each com-
peting process to determine whether the file 1s 1n proper
condition for use by that process, regardless of whether or not
the file contents must be adjusted. The protocol 1s also expen-
stve 1n terms of the lack of concurrency that such a process
causes to the competing processes because each process must
lock the file 1 order to determine whether an adjustment 1s
required. This does not permit any other process access to the
file to determine if the condition of the file 1s proper for the
other processes. If the process cannot obtain the lock because
another process has the lock, 1t must wait for the lock to be
released before 1t can even examine the file.

Theretfore, there 1s a need for an improved protocol that
reduces the message traffic to and from the disk process and
improves the concurrency among the several client processes.

BRIEF SUMMARY OF THE INVENTION

The present invention 1s directed towards the above need. It
provides a method for sharing among a plurality of competing,
processes a file object that includes file contents and a state
that describes whether the file contents are inconsistent and
whether the file object 1s 1n the use of a competing process.
The state has a value that 1s either ‘uncommitted’, ‘inconsis-
tent” or ‘committed’. The method includes determining the
state value of the file object and whether or not the file content
1s suitable for use by a specific one of the competing pro-
cesses. 11 the state value of the file object 1s not ‘committed’
and either the state value 1s ‘inconsistent” or the file content 1s
not suitable for use by the specific one of the competing
processes, the method then obtains exclusive access to the file

object, adjusts the contents of the file object, sets the state of

the file object to ‘committed’, and relinquishes exclusive
access to the file object. If the state value of the file object 1s
not ‘committed” and the state value 1s not ‘inconsistent’ and
the file content 1s suitable for use by the specific one of the
competing processes, the method sets the state of the file
object to ‘committed’. If the state value of the file object 1s
‘committed’ and the file content 1s suitable for use by the
specific process, the method shares the commutted file; oth-
erwise, the method returns a failure status.

One advantage of the present invention 1s that the message
tral
the shared file to either none or one message 1n the most
common cases. One message 1s needed 1f the state value of the
file object 1s “uncommitted” and 1ts contents are suitable for
use. No message 1s needed 1s 11 the state value of the file object
1s ‘committed’ and the file content 1s suitable for shared use by
the specific process. Only when the file must be adjusted are
more messages required. However, that case occurs rarely.

Another advantage 1s that the client processes can each

operate with a greater degree of concurrency because each of

the client processes has access to the shared file withouta lock
being required 1n order to determine whether the file contents
are suitable for use. In most cases the file 1s 1n the proper
condition for that client process and needs no adjustment,

1c 15 greatly reduced from two messages for each check of

10

15

20

25

30

35

40

45

50

55

60

65

4

which means that no locks are required and a process can
continue its execution of the shared file without delay.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features, aspects and advantages of the
present invention will become better understood with regard
to the following description, appended claims, and accompa-
nying drawings where:

FIG. 1 shows a system setting 1n which the present inven-
tion operates;

FIG. 2 shows a diagram of a representative computer sys-
tem shown 1n FIG. 1;

FIG. 3 shows a flow chart of the prior art protocol for
synchronization;

FIG. 4 shows a scheduling diagram of the prior art process
for synchronization when no modification of the file 1s
needed;

FIG. 5 shows a tflow chart of the synchronization protocol
of the present invention;

FIG. 6 A shows a flow chart of the LockUnlessCommuitted
operation of the present invention;

FIG. 6B shows a flow chart of the CommuitlfUncommitted
operation of the present invention;

FIG. 6C shows a flow chart of the CommitAndUnlock
operation of the present invention;

FIG. 6D shows a flow chart of the Setlnconsistent opera-
tion of the present ivention;

FIG. 7 shows a scheduling diagram of the synchronization
protocol of the present invention when no modification 1s
needed;

FIG. 8 shows a scheduling diagram of the synchronization
protocol of the present invention 1n which no modification 1s
needed and file 1s commutted;

FIG. 9 shows a scheduling diagram of the synchronization
protocol of the present mvention 1n which there 1s a race to
commit when no modification 1s needed:;

FIG. 10 shows a scheduling diagram of the synchroniza-
tion protocol of the present invention 1n which there 1s a race
between a moditying client and a commuitting client and the
moditying client loses;

FIG. 11 shows a scheduling diagram of the synchroniza-
tion protocol of the present invention in which there 1s a race
between a moditying client and a commuitting client and the
committing client loses;

FIG. 12 shows a scheduling diagram of the synchroniza-
tion protocol of the present invention in which there 1s a race
between two moditying clients; and

FIG. 13 shows a scheduling diagram of the synchroniza-
tion protocol of the present mvention 1 which there 1s a
failure during a modifying attempt.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 5 shows a flow chart of the synchronization protocol
ol the present invention for each client process. In accordance
with and to enable the protocol of FIG. 5, a state attribute 1s
included in each file object. This state attribute can take on
three different values, which are ‘uncommitted’, ‘inconsis-
tent’, and ‘committed’.

The ‘uncommuitted’ state value means that the file object 1s
not i use by any client process. If the file object 1s undergoing
modification, the state 1s temporarily set to ‘inconsistent’,
which means that the file may have been partially altered.
Once the file content has been accepted by a client, the state 1s
set to ‘committed’. When no client 1s using the file object, 1ts
state reverts to ‘uncommuitted’.

US RE42,578 E

S

Returning to FIG. §, the following discussion of FIG. 5
applies when there 1s no change to the state of the state of the
file object after that state has been determined 1n FIG. 5. The
cases 1 which the state of the file object may have changed
alter the state has been determined by the client process are
discussed subsequently 1n conjunction with the flow charts of
FIGS. 6 A-6D, which include details not shown 1n FIG. 5.

In FIG. 5, one of the client processes (hereinafter the spe-
cific client process) requests that a file object be opened 1n
step 120 and reads the relevant attributes (state) and contents
of the file object, without using a lock 1n step 120. From this
information an assessment 1s made as to the state of the file
object and whether to the contents of the file object need
adjustment. There are four cases that the protocol must
handle.

In the first case, 1f the state value of the file object 1s
‘commuitted’, as determined 1n step 122, and the file contents
are 1n proper form for use by the specific client process as
determined in step 124, then a success indication 1s returned.
This means that no adjustment of the file object contents was
required and the file object can be shared by the specific client
process.

In the second case, 11 the state value of the file object 1s
‘commuitted’, as determined 1n step 122, and the file contents
are not in proper form for use by the specific client process as
determined 1n step 124, then a failure indication 1s returned.

In the third case, if the state value of the file object 1s not
‘committed’, as determined 1n step 122, and the state value of
the file object 1s not ‘1nconsistent’ and 1ts contents are suitable
for use, as determined 1n step 126, the specific client process
makes an attempt to commuit the file. To do this, the client
process performs a CommitlfUncommitted operation 1n step
128. Uponrecerving a reply from the disk process that the file
object 1s committed, the flow terminates with a success 1ndi-
cation.

In the fourth case, 11 the state value of the file object 1s not
‘commuitted’, as determined 1n step 122, and either the state
value 1s ‘inconsistent’ or the file object’s contents are not
suitable for use, as determined 1n step 126, the specific client
process attempts to lock the file by performing a LockUnless-
Committed operation in step 130. This operation entails send-
ing a LockUnlessCommitted request to the disk process and
receiving a reply that an exclusive lock has been granted from
the disk process 1n response to the message. Following this, a
Setlnconsistent operation 1s performed 1n step 132, which sets
the state of the file object to “inconsistent’, and the contents of
the file object are adjusted 1n step 134. Finally, a CommitAnd-
Unlock operation 1s performed 1n step 136. This operation
commits the adjusted file and releases the exclusive lock on
the file object.

It can be observed that the protocol of the present mnven-
tion, then, only locks a file object if the file object must be
adjusted (the fourth case above). It does not lock the file
object to determine whether the contents of the file object are
suitable for use by the client process. Therelore, 11 the most
commonly occurring case 1s that the file object needs no
adjustment, then a lock and unlock message to the disk pro-
cess are saved and only a CommitlfUncommitted message 1s
needed (the third case above). It the file object 1s already
committed, no message 1s required and two messages are
saved (the first and second cases above). Thus, either one or
two messages are saved by the protocol of the present inven-
tion and the concurrency of each of the competing processes
1s 1improved because no lock 1s required to determine the
condition of the shared file.

FIG. 6 A shows a flowchart of the LockUnlessCommitted

operation of the present invention. As mentioned above, FIG.

5

10

15

20

25

30

35

40

45

50

55

60

65

6

5 depicts the case in which the state value that 1s determined
when the file object 1s first open and read does not change
during the various subsequent steps. However, when there are
multiple client processes, operating concurrently, there 1s a
chance that the mnitially determined state of the file object 1s
altered by a client process other than the specific client pro-

cess. The LockUnlessCommitted operation at step 130 1n
FIG. S takes this possibility into account, as illustrated in FIG.
6A.

First, 1n step 140, the client process sends a LockUnless-
Commuitted request to the disk process. In the disk process, at
step 141, 11 the file 1s locked, the request stays pending until
the file 1s unlocked. The disk process then ascertains, in step
142, the current state of the file object, which can be any one
of the three states.

If the state value of the file object 1s “uncommutted’, the
disk process locks the file for the specific client process, 1n
step 144, and replies back to the client process indicating that
the file object’s state 1s “uncommitted,” 1n step 145. The pro-
cess then continues at step 132 of FIG. 5.

I1 the state value of the file object 1s “inconsistent’, the disk
process locks the file for the specific client process, in step
146, and then replies back to the client process indicating that
the state value of the file object 1s ‘inconsistent,” in step 147.
In response to receiving this reply, the client process re-reads
the contents of the file object, 1n step 148, and the flow
continues at A in FIG. 5, at which point the contents of the file
object are adjusted to be suitable for the specific client pro-
CEesS.

I1 the state value of the file object 1s ‘commutted’, the disk
process replies back to the client process indicating that the
file object’s state 1s ‘committed’. This prompts the client
process, uponreceipt, to re-read the contents of the file object,
in step 150. The flow then continues at C 1n FIG. 5, at which
the client process determines whether the content 1s suitable
for that process. I so, it shares the file object and the flow ends
successiully. If not, the flow ends with a failure indicated.

FIG. 6B shows a flow chart of the CommuitlfUncommitted
operation of the present invention, which, again, takes nto
account any changes that may have occurred to the state value
ol the file object after the mitial state determination in FIG. 5.
FIG. 6B details step 128 of FIG. 5.

In step 160, the specific client process sends a Commitl-
tUncommitted Request to the disk process. In the disk pro-
cess at step 161, if the file 1s locked, the request stays pending
until the file 1s unlocked. The disk process then ascertains, in
step 162, the current state value of the file object, which can be
any one of the three states.

If the state value of the file object 1s ‘uncommitted,” the
state value 1s set to ‘committed’ in step 164, and the disk
process sends a reply back to the specific client process indi-
cating success, 1n step 1635. The return path in FIG. 6B com-
pletes the normal exit from step 128 of FIG. 5.

I1 the state value of the file object 1s ‘inconsistent,” the disk
process sends a reply back to the specific client process so
indicating, in step 163, and the flow continues at B 1n FIG. 5,
at which a LockUnlessCommitted operation 1s performed.
Because the state value of the file object 1s “inconsistent’, the
specific client process must re-adjust the file contents before
the file object can be commuitted.

I1 the state of the file object 1s ‘commutted,’ the disk process
sends a reply back to the specific client process so indicating,
in step 162, and this prompts the client process to re-read the
contents of the file object 1n step 166. The process continues
at C 1n FIG. 5, at which the client process determines, 1n step
124, whether the content 1s suitable for that process. 11 so, the

US RE42,578 E

7

specific client process shares the committed file object. If not,
the flow ends with a failure indication.

FIG. 6C shows a flow chart of the CommitAndUnlock
operation of the present invention, expanding step 136 of FIG.
5. This operation does not need to check the state value of the
file object again because the operation only occurs when the
file object 1s locked, which precludes its state from being
changed. The operation begins with the disk process setting
the state of the file object to commutted in step 172 and then
releasing the lock 1n step 174.

FIG. 6D shows a flow chart of the Setlnconsistent opera-
tion of the present invention. This operation simply sets the
state value of the file object to “1inconsistent’, in step 180, and
returns.

The protocol of the present invention requires the follow-
ing conventions. First, while the state value of a file object 1s
‘commutted’, it cannot be changed. Second, the contents of a
file object can only be changed when it 1s locked. Third, while
the state value of a file object 1s ‘uncommutted’, the contents
of the file object are not altered. These conventions allow the
sharing of the file object by multiple processes without a lock
to determine whether the contents of the file object are suit-
able for use without adjustment. This sharing, 1n turn, permaits
a greater degree of concurrency among the processes coms-
peting for the file object and cuts down on message traific
because a lock 1s not required to determine the suitability of a
file object for a specific client process.

FIG. 7 shows a scheduling diagram of the synchronization
protocol of the present invention when no modification 1s
needed. This diagram depicts the order of events for the path
of FIG. 5 1n which the CommitlfUncommitted operation
successiully returns because the state value of the file object
1s remains ‘uncommitted’. See FIG. 6B. The first event 1s a
request 200 by the specific client process to open the file and
read the attributes and contents. Upon receipt of the request,
the disk process returns 202 the Open ID, the state value
(‘uncommuitted’, 1n this case) and the requested file object
contents. The specific client process then, after reviewing the
information returned, sends a CommitlfUncommitted mes-
sage 204 to the disk process which then responds with an
acknowledgement 206 that the file 1s commuatted.

FIG. 8 shows a scheduling diagram of the synchronization
protocol of the present invention 1n which no modification 1s
needed and the state value of the file object 1s ‘committed’.
This diagram shows the order of events for the path of FI1G. 6B
in which the state value of the file object 1s ‘commuitted’. The
first event, again, 1s an open request, 1n step 210, from the
client process. Again, the disk process returns the Open 1D,
the state value (‘committed’, in this case) and the requested
file contents 1n step 212. If the contents of the file object are
correctly adjusted for the client process, then there 1s a suc-
cess indication; otherwise a failure 1s indicated.

FIG. 9 shows a scheduling diagram of the synchromization
protocol of the present mvention 1n which there 1s a race to
commit when no modification 1s needed. In this diagram there
are two client processes, A and B, that race to change the state
value of the file object to ‘commit’. The events 1include two
clients performing a CommitlfUncommitted operation. The
disk process, on behalf of one of the clients (client A 1n the
diagram), determines that the state value of the file object 1s
“uncommuitted’, performs the commit and sends a reply to the
specific client process (client A) that the state value of the file
object 1s ‘committed’. The other of the clients (client B)
discovers that the state value of the file object 1s ‘commuitted’.
This other client then re-reads the contents of the file object to
determine whether the file object 1s suitable for use by that
client process.

10

15

20

25

30

35

40

45

50

55

60

65

8

The race occurs as follows. In FIG. 9, client process A
makes an open request of the disk process in step 220 and the
disk process returns the Open ID, the state value of the file
object (‘uncommitted’) and the requested file contents in step
222. Shortly after client process A makes 1ts open request,
client process B makes its open request in step 224 and the
disk process return to it the Open 1D, the state value of the file
object (‘uncommitted’) and the requested file contents 1n step
226. Now, there are two processes that have read the file
object and both decide that the file object 1s properly adjusted
for use (no adjustment 1s needed). This state of affairs causes
a race to commit the uncommitted file object, but only one
client process can win the race. In FIG. 9, client process A
wins the race because 1its CommitlfUncommitted message in
step 228 1s delivered slightly earlier than the similar request
from client process B. In step 230, client A recetves a reply
that 1t was successiul 1n its attempt to set the state value of the
file object to ‘commuitted’. The contents are now suitable for
client A. When client process B sends 1ts CommitIiUncom-
mitted message to the disk process, in step 232, the disk
process responds with a message saying the state of the file
object has already been changed to ‘commuatted’, 1n step 234.
See FIG. 6B. This response causes client process B to make a
request to re-read the file contents, in step 236, which are then
returned by the disk process 1n step 238. Because the contents

of the file object are still properly adjusted, client process B
can share the file.

In an alternative version of the imnvention, the disk process
tracks, for each client, whether the contents of the file object
have been written or adjusted after a client process opened the
file object, and 11 not, then replies, 1n step 234 o FI1G. 9, with
an indication that the state value of the file 1s ‘committed’ and
the file object contents are unchanged. This alternative per-
mits steps 236 and 238 to be omutted.

FIG. 10 shows a scheduling diagram of the synchroniza-
tion protocol of the present invention in which there 1s a race
between a “modifying client” (client B) and a “commuitting
client” (client A) and the “moditying client” loses. The “com-
mitting client” traverses through a path 1n FIG. 6B i which
the CommitlfUncommitted operation returns a reply that the
state value of the file object 1s ‘committed’. The modifying
client traverses through the path 1in FIG. 6 A 1n which the
LockUnlessCommuitted operation discovers that the state
value of the file object has changed to ‘commuitted’, which
prompts the “modilying client” to re-read of the file object’s
contents.

The first event in FIG. 10 1s client B’s request to open the
file object 1n step 240 and obtain, 1n response, the OpenlD,
state value of the file object (‘uncommitted’) and the
requested file object contents 1n step 242. Next, client A
makes an open request 1n step 244 and, in response, receives
the same contents 1n step 246. Client A can use the file object
contents with 1ts current configuration but client B cannot;
client B must modify the file to make 1t suitable for its use.
Thus, client A and client B are 1n a race. Client A 1s racing to
perform a commit operation on the file object, but client B 1s
racing to lock the file object so that 1t can adjust the contents
of the file object. In the diagram of FIG. 10, client A wins the
race. Client A’s CommitlfUncommitted operation in step 248
receives a reply that the state value of the file object 1s ‘com-
mitted’, 1n step 250. See FIG. 6B. When client B eventually
performs the LockUnlessCommitted operation in step 252,
client B receives a reply that the state value of the file object
1s ‘committed’, 1n step 254. See FIG. 6A. The latter message
causes client B to request a re-read of the file contents to
re-assess whether 1t can use the contents of the file object.

US RE42,578 E

9

FIG. 11 shows a scheduling diagram of the synchroniza-
tion protocol of the present invention in which there 1s a race
between a “modifying client” (client B) and a “commutting
client” (client A) and the “committing client” loses. In this
case, the client A traverses through the path of FIG. 6B 1n
which a CommitlfUncommitted operation receives an reply
that the state value of the file object 1s ‘committed’, triggering,
a re-read of the contents of the file object by client A. Client
B traverses through the path 1n FIG. 6 A 1n which the state
value 1s ‘uncommitted’ and a LockUnlessCommiuitted opera-
tion recerves a reply that the lock on the file object 1s granted
to client B. Client B proceeds, according to FIG. 3, to perform
a Setlnconsistent operation, to adjust the file object and to
perform a CommitAndUnlock operation.

The first event 1n FIG. 11 1s the open request by client B in
step 260 which causes the disk process to return, 1n response
to the open request, the Open ID, the state value of the file
object (‘uncommitted’) and the requested file contents 1n step
262. Shortly thereatfter, client A makes an open request 1n step
264 and receives, 1n response, the same contents in step 266.
There 1s now a race between client A and client B. Client A
needs to perform a commit because the file object contents (as
a given) are 1n the correct configuration for client A. Client B
needs to perform a lock on the file object to adjust the file
object’s contents. In this diagram, client B wins the race and
performs a LockUnlessCommitted operation 1n step 268, for
which a successiul reply 1s sent to client B 1n step 270.

Meanwhile, client A requests a CommitlfUncommitted
operation 1n step 272, and waits for the reply. The request 1s
held by the disk process because o the lock obtained by client
B on the file object, which delays the state value of the file
object from being available to other client processes.

As mentioned above, client B performed a LockUnless-
Commuitted operation 1n step 268. The disk process replied
with a grant of the lock i1 step 270 and client B then
responded with a Setlnconsistent message in step 276 back to
the disk process. At this point client B has exclusive owner-
ship of the file object and 1s free to adjust the contents of the
file object, 1n step 278, to meet 1ts operating conditions.
Following adjustments to the file object’s contents, client B
performs a CommitAndUnlock operation 1n step 280. Once
the file object 1s unlocked by client B, the disk process replies
to the waiting client process A 1n step 274. Only then does
client A discover that the state value of the file object 1s
‘commuitted’. This causes client process A to request a re-read
ol the contents of the file object to determine 11 the altered file
object 1s suitable for 1ts use.

FIG. 12 shows a scheduling diagram of the synchroniza-
tion protocol of the present invention in which there 1s a race
between two modilying clients, client process A and B. Cli-
ent’s A and B are both attempting to obtain a successtul lock
on the file object by means of a LockUnlessCommiuitted opera-
tion and Client B 1in the figure 1s the winner.

The first event 1s, as usual, an open request 1n step 290 by
client B. The disk process replies in step 300 with the Open
ID, the state value of the file object (‘uncommitted’) and the
requested file object contents. The second event 1s an open
request from client process A 1n step 302 which returns the
same 1mformation in step 304. Now, because both processes
need to alter the contents of the file object, there 1s a race to
lock the file object by performing a LockUnlessCommutted
operation. In the figure, client process B performs the Lock-
UnlessCommiuitted operation, in step 306, and the disk process
responds by replying that the lock 1s granted to client B in step
308. Client A then performs a LockUnlessCommitted opera-
tion 1n step 310 but does not receive an immediate response.
The delay 1n recerving the response occurs because the file

10

15

20

25

30

35

40

45

50

55

60

65

10

object 1s locked and undergoing an adjustment by client B.
After Client B performs a Setlnconsistent operation 1n step
312 and adjusts the file object contents 1n step 314, client B
then performs a CommitAndUnlock operation 1n step 316.
The unlocked condition of the file object causes client A to
discover that the state value of the file object 1s ‘commuitted’,
in step 318 and to request a re-read to determine whether the
changed file 1s now suitable for use of the file in client A’s
environment. It so, client A can share the file.

FIG. 13 shows a scheduling diagram of the synchroniza-
tion protocol of the present mvention i which there 1s a
failure during a modifying attempt. In this diagram, client A
needs to obtain a lock to modify the contents of the file object
and client process B has already obtained a lock and 1s modi-
tying the file object contents 1n step 330 when a failure 1n
client process B occurs 1n step 332. Client process A has
performed a LockUnlessCommitted operation in step 334,
but has not recetved a reply from the disk process because the
file object 1s locked. Normally, client process B would com-
plete i1ts updates and then unlock and commut the file. How-
ever, as stated above, a failure 1n client process B occurs 1n
step 332. This causes the disk process to unlock the file object
in step 332 leaving the contents of the file object 1n a possibly
partially changed state, as retlected by the state value of
‘inconsistent’. Upon the unlocking of the file object, the disk
process responds to client process A’s pending LockUnless-
Committed message by granting a lock while the state value
of the file object 1s ‘inconsistent’, 1n step 336. See FIG. 6A.
According to the tlow chart of FIG. 6 A, client process A must
now re-read the file object contents, 1n step 338, to determine
its suitability following step 340. The process adjusts the
contents of the file object 1n step 342 and then, continuing at
A1nFIG. 5, performs a CommitAndUnlock operation, in step
344, to commit the file object. Thus, the state value of “1ncon-
sistent’ facilitates the discovery of such a failure event and 1ts
proper handling.

Although the present invention has been described 1n con-
siderable detail with reference to certain preferred versions
thereol, other versions are possible. Therefore, the spirit and
scope of the appended claims should not be limited to the
description of the preferred versions contained herein.

What 1s claimed 1s:

1. A method for sharing among a plurality of competing
processes a file object that includes file contents and a state
that describes whether the file contents are imnconsistent and
whether the file object is 1n the use of a competing process, the
state having a value being selected from a group consisting of
‘uncommitted’, ‘inconsistent’ and ‘committed’, the method
comprising;

determining the state value of the file object and whether or
not the file content 1s suitable for use by a specific one of
the competing processes;

(1) 1f the state value of the file object 1s not ‘committed” and
cither the state value 1s ‘inconsistent’ or the file content
1s not suitable for use by the specific one of the compet-
1Ng Processes:
obtaining exclusive access to the file object;
adjusting the contents of the file object;
setting the state of the file object to ‘committed’; and
relinquishing exclusive access to the file object;

(1) 1T the state value of the file object1s not ‘commuitted” and
the state value 1s not ‘inconsistent’ and the file content 1s
suitable for use by the specific one of the competing,
processes,
setting the state of the file object to ‘commuitted’;

(111) 1f the state value of the file object 1s ‘committed’ and
the file content 1s suitable for use by the specific process,

US RE42,578 E

11

sharing the commutted file; and

(1v) otherwise, returning a failure status.

2. A method as recited in claim 1, further comprising the
steps of:

setting the state value of the file object to ‘inconsistent’
alter obtaining exclusive access to the file object; and

if the specific process fails while having exclusive access to
the file object, relinquishing exclusive access to the file
object to leave the state value of the file object as “1ncon-
sistent’.

3. A method for sharing among a plurality of competing
processes a file object that includes file contents and a state
that describes whether the file contents are inconsistent and
whether the file object is 1n the use of a competing process, the
state having a value being selected from a group consisting of
‘uncommuitted’, ‘inconsistent’ and ‘committed’, the method
comprising;

(a) opening and reading the file object to determine the
state value of the file object and whether or not the
contents of the file object are suitable for use by a spe-
cific one of the competing processes;

(1) 11 the state value of the file object 1s not ‘commuitted’
and either the state value 1s ‘“inconsistent’ or the file
content 1s not suitable for use by the specific one of the
competing processes:

(b) performing a LockUnlessCommitted operation;

(c) upon receiving a lock on the file, performing a Set-
Inconsistent operation;

(d) adjusting the contents of the file object;

(¢) performing a CommitAndUnlock operation to commiut
and unlock the file object; and

(1) returning a success indication;

(11) 1f the state value of the file object 1s not ‘commuitted’
and the state value 1s not ‘inconsistent’ and the {file
content 1s suitable for use by the specific one of the
competing processes’:

(g) performing a CommitlfUncommuitted operation on the
file object to commut the file object; and

(h) upon recerving an indication that the file object 1s ‘com-
mitted’, returning a success indication; and
(111) 11 the state value of the file object 1s ‘committed’:

(1) 1f the content 1s suitable, sharing the commatted file; and

(k) 1f the content 1s not suitable, returming a failure 1ndica-
tion.

4. A method as recited 1n claim 3, wherein the step of

performing a LockUnlessCommitted operation includes:

(n) requesting a lock on the file object;

(m) ascertaining the state value of the file object;

(1v) 1f the state value of the file object 1s “‘uncommutted’:

(0) locking the file object; and

(p) replying to the specific one of the client processes that
the state value of the file object 1s “uncommutted’;

(v) 11 the state value of the file object 1s ‘inconsistent’:

(q) locking the file object;

(r) replying to the specific one of the client processes that
the state value of the file object 1s ‘inconsistent’;

(s) re-reading the contents of the file object; and

(t) continuing at step (d); and
(v1) 1f the state value of the file object 1s ‘committed’:

(u) replying to the specific one of the client processes that
the state value of the file object 1s “1nconsistent’;

(w) re-reading the contents of the file object;

(x) 11 the contents are suitable, sharing the file object and
returning a success indication; and

(v) 1f the contents are not suitable, returning a failure indi-
cation.

10

15

20

25

30

35

40

45

50

55

60

65

12

5. A method as recited 1n claim 4, wherein the step (im) of
ascertaining the state value of the file object includes the steps
of:

determinming whether the file object 1s locked;

11 the file object 1s locked, waiting until the file object 1s

unlocked; and

11 the file object 1s notlocked, determining the state value of

the file object.

6. A method as recited 1n claim 4, wherein step (n) 1s
performed by the specific client process.

7. A method as recited 1n claim 4, wherein steps (m), (o),
(p), (q), (r), and (u) are each performed by a disk process.

8. A method as recited 1n claim 4, wherein steps (s) and (w)
are each performed by the specific client process.

9. A method as recited in claim 3, wherein the step of
performing a CommitlfUncommited operation on the file
object includes the steps of:

(n) requesting to change the state value of the file to ‘com-

mitted’;

(m) ascertaining the state value of the file object;

(1v) 1f the state value of the file object 1s “‘uncommutted’:

(0) setting the state value of the file to ‘committed’; and

(p) replying to the specific one of the client processes with

a success status;
(v) 11 the state value of the file object 1s ‘commutted’:

(q) replying to the specific one of the client processes that

the state value of the file object 1s ‘committed’;

(r) re-reading the contents of the file object; and

(s) continuing at step (3); and

(v1) 1f the state value of the file object 1s “‘1inconsistent’:

(1) replying to the specific one of the client processes that

the state value of the file object 1s “inconsistent’; and

(u) continuing at step (b).

10. A method as recited 1n claim 9, wherein step (n) 1s
performed by the specific client process.

11. A method as recited 1n claim 9, wherein steps (m), (o),
(p), (q), and (t) are each performed by a disk process.

12. A method as recited 1n claim 9, wherein step (r) 1s
performed by a disk process.

13. A method as recited i claim 9, wherein the step (m) of
ascertaining the state value of the file object includes the steps
of:

determiming whether the file object 1s locked;

i1 the file object 1s locked, waiting until the file object 1s

unlocked; and

1f the file object 1s notlocked, determining the state value of

the file object.

14. A method as recited 1n claim 3, wherein the step of
performing a CommitAndUnlock operation includes:

(n) setting the state value of the file object to ‘commuitted’;

and

(m) releasing the lock on the file object.

15. A method as recited 1n claim 3, wherein the step of
performing a Setlnconsistent operation includes the step of
(n) setting the state value of the file object to ‘inconsistent’.

106. A processing system, comprising:

a processor; and

an I/0 subsystem coupled to the processor and adapted to

couple to another system on which an object is stored,
the object having an associated state and data contents;

wherein the processor rvetrieves the object through the I/0

subsystem, examines the object without using a lock and
determines the state of the object;

wherein, if the processor determines the state to be a first

state in which the data contents have been accepted for
use and ave suitable for the processing system, the pro-
cessor returns a success indicator; or

US RE42,578 E

13

wherein, if the processor determines the state not to be the
fivst state nor a second state indicative of the data con-
tents being modified, and determines the contents to be
suitable for the processing system, the processor
requests the system on which the object is stored to

transition the state of the object to the first state.

17. The processing system of claim 16 wherein, if the pro-
cessor determines the state to be the first state, but that the
data contents are not suitable for the processing system, the
processor returns a failure indicator.

18. The processing system of claim 16 wherein, if the pro-
cessor detevmines the state not to be the first state and deter-
mines either that the data contents are not suitable for the
processing system or that the state is not the second state, the
processor requests the system on which the object is stored to
lock the object, changes the data contents and requests the
object to be unlocked.

19. A system, comprising.

a processor; and

an 1/0 subsystem coupled to the processor and adapted to

couple to another system on which an object is stored,
the object having an associated state and data contents;

whevrein the processor retrieves the object through the 1/O

subsystem, veads the object without using a lock and
determines the state of the object; and

whevrein, if the processor determines the object is already in

use by another system, the processor determines
whether the data contents arve suitable for use; and

if the processor determines that the object is not already in

use by another system and determines that the data
contents are suitable for use and not being modified, the
processor requests the object to be committed to indicate
that the processing system has accepted the object; or

5

10

15

20

25

30

14

if the processor determines that the object is not being used
by another system and that the data contents are not
suitable for use, the processor vequests the object to be
locked and then modifies the object’s data contents.

20. The system of claim 19 wherein, if the processor deter-
mines the object is alveady in use by another system and
determines that the data contents are suitable for use, the
processor returns a success indication.

21. The system of claim 19 wherein, if the processor deter-
mines the object is alveady in use by another system and
determines that the data contents are not suitable for use, the
processor returns a failure indication.

22. A processing system, COmMprising.

means for retrieving a file object having a configurable

state and data contents;

means for reading the file object without locking the file

object;

means for determining whether the file object is in use by

another processing system;
means for determining whether the data contents are suit-
able for use by the processing system if the object is
alveady in use by another processing system; and

means for committing the file object if the file object is not
alveady in use by another processing system and if the
data contents are suitable.

23. The processing system of claim 22 further comprising
means for vequesting the object to be locked and for modify-
ing the data contents if the file object is not being used by
another processing svstem and the data contents are not
suitable.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : RE42,578 E Page 1 of 1
APPLICATION NO. : 10/788046

DATED - July 26, 2011

INVENTOR(S) : Darrell F. High et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In column 11, Iine 37, in Claim 3, delete “processes’™ and insert -- processes --, therefor.

In column 12, line 16, 1n Claim 9, delete “CommitIfUncommited™ and insert
-- CommitlfUncommitted --, therefor.

Signed and Sealed this
First Day of May, 2012

David J. Kappos
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

