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BICUBIC SURFACE REAL-TIMELE
TESSELATION UNIT

Matter enclosed in heavy brackets [ ]| appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present invention 1s a continuation of U.S. application
Ser. No. 10/732,398, now U.S. Pat. No. 7,245,299, entitled

“Bicubic Surface Real-Time Tesselation Unit”, (1935CIP2)
filed Dec. 9, 2003, 1ssued on Jul. 17, 2007, which 1s a con-
tinuation-in-part of abandoned U.S. application Ser. No.
10/436,698, entitled “Bicubic Surface Rendering,”
(19335CIP) filed on May 12, 2003, which 1s a continuation-
in-part of Ser. No. 09/734,438 filed Dec. 11, 2000, now U.S.
Pat. No. 6,563,501 entitled “Bicubic Surface Rendering,”
issued May 13, 2003, which claims priority of provisional
application No. 60/222,105, filed on Jul. 28, 2000, which are

hereby incorporated by reference.

FIELD OF THE INVENTION

The present invention relates to computer graphics, and
more specifically to a method and apparatus for rendering
bicubic surfaces in real-time on a computer system.

BACKGROUND OF THE INVENTION

Object models are often stored 1n computer systems in the
form of surfaces. The process of displaying the object (cor-
responding to the object model) generally requires rendering,
which usually refers to mapping the object model onto a two
dimensional surface. At least when the surfaces are curved,
the surfaces are generally subdivided or decomposed 1nto
triangles 1n the process of rendering the 1images.

A cubic parametric curve 1s defined by the positions and
tangents at the curve’s end points. A Bezier curve, as shown in
FIG. 5 for example, 1s defined by a geometry matrix of four
points (P1-P4) that are defined by the intersections of the
tangent vectors at the end points of the curve. Changing the
locations of the points changes the shape of the curve.

Cubic curves may be generalized to bicubic surfaces by
defining cubic equations of two parameters, s and t. In other
words, bicubic surfaces are defined as parametric surfaces
where the (X,y,z) coordinates in a space called “world coor-
dinates” (WC) of each point of the surface are functions of s
and t, defined by a geometry matrix P comprising 16 control
points (FIG. 5).

While the parameters s and t describe a closed unidimen-
sional interval (typically the interval [0,1]) the points (X,y,z)
describe the surface:

x=1(s,t), y=g(s.t), z=h(s.t) s€[0,1], t.€[0,1], where € repre-
sents an interval between the two coordinates 1n the paren-
thesis.

The space determined by s and t, the bidimensional interval
[0,1]x[0,1] 15 called “parameter coordinates” (PC). Textures
described 1n a space called “texture coordinates” (TC) that
can be two or even three dimensional are described by sets of
points of two ((u,v)) or three coordinates ((u,v,q)). The pro-
cess of attaching a texture to a surface 1s called “texture—
object association” and consists of associating u, v and g with
the parameters s and t via some function:

u=a(s,t) v=b(s,t) (and g=c(s,t))
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FIGS. 1A and 1B are diagrams illustrating a process for
rendering bicubic surfaces. As shown 1n FIG. 1A, the prin-
ciple used for rendering such a curved surface 10 1s to subdi-
vide 1t into smaller four sided surfaces or tiles 12 by subdi-
viding the intervals that define the parameters s and t. The
subdivision continues until the surfaces resulting from sub-
division have a curvature, measured in WC space that is below
a predetermined threshold. The subdivision of the intervals
defining s and t produces a set of numbers {si} where the
indexes 1 and j represent the number of rows and colomns 1n
the resulting subdivision, i=1,n and {tj} j=1,m that determine
a subdivision of the PC. This subdivision induces a subdivi-
sion of the TC, for each pair of parameters (s1,t]) we obtain a
pair (u, , v, ) (or a triplet (u, , v, , q, ). Here ui,j=a(s1,1),
v1,]=b(s1,t1), q1,j=c(s1,1]) represent texture coordinates. For
cach pair (s1,1]) we also obtain a Cartesian point (called “ver-
tex”) 1n WC, Vi,) (1(s1,11),2(s1,11),h(s1,11)). A special type of
texture, called displacement map having the pair (p.r) as
coordinates can be used to generate special lighting effects.
For each pair of parameters (s1,{]) we also obtain an index pair
(p1,] r1,)) that index a displacement value (dxi,;, dyi,j, dzi.7).
for the vertex Vi,j.

This process 1s executed ofi-line because the subdivision of
the surfaces and the measurement of the resulting curvature
are very time consuming. As shown in FIG. 1B, when all
resulting four sided surfaces (tiles) 12 i1s below a certain
curvature threshold, each such resultant four-sided surface 12
1s then divided into two triangles 14 (because they are easily
rendered by dedicated hardware) and each triangle surface
gets the normal to its surface calculated and each triangle
vertex also gets 1ts normal calculated. The normals are used
later on for lighting calculations.

Furthermore, each vertex or triangle plane normal needs to
be transformed when the surface 1s transformed 1n response to
a change of view of the surface, a computationally intensive
process that may need dedicated hardware. Also, there 1s no
accounting for the fact that the surfaces are actually rendered
in a space called “screen coordinates™ (SC) after a process
called “projection” which distorts such surfaces to the point
where we need to take into consideration the curvature in SC,
not 1n WC.

The state of the art i today’s hardware architecture for
rendering relies overwhelmingly on triangle databases such
as meshes, strips, fans. The current state of the art in the
computer graphics industry 1s described in FIG. 2, which
shows an architecture of a conventional computer graphics
system, including the architecture of a graphics processing
unmt (GPU). A CPU 1, executes a software application 1n the
form of a game play or a physical or chemical simulation, etc.,
in which objects to be rendered are represented as triangle
meshes in an object database stored in memory. The triangle
meshes are transmitted over an accelerated graphics port
(AGP) bus 6 to the GPU 5, which 1s typically part of a display
adapter (video card). The AGP bus 6 1s a high-speed port that
1s designed for the display adapter only to provide a direct
connection between the card and memory. The GPU 5
includes a transform unit 2, a lighting unit 3 and a renderer
unit 4.

The object modeling in the application 1s executed on
parametric surfaces such as nurbs, Bezier, splines, and the
surtaces are subdivided or tessellated off-line and stored as
triangle vertices 1n a triangle database by means of commer-
cially available tools, such as the Alias suite. The triangle
vertices are then transmitted from the CPU 1 (the triangle
server) to the GPU 5 (the rendering engine) at the time for
rendering. Previous attempts to execute the tessellation in
hardware 1n real-time have not been successtul because of the
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severe limitations of the implementation so the current state
of the art has been off-line tessellation.

Unfortunately, the off-line tessellation produces a fixed
triangulation that may exhibit an excessively large number of
very small triangles when the object 1s far away. Triangle
rendering 1n this case 1s dominated by the processing of
vertices (transformation, lighting) and by the triangle setup
(the calculation of the color and texture gradients). Since
triangles may reduce to a pixel or less, 1t 1s obvious that this 1s
an 1netficient treatment.

Conversely, when the object 1s very close to the viewer, the
composing triangles may appear very large and the object
looses 1ts smoothness appearance, looking more like a poly-
hedron.

The increase 1n the scene complexity has pushed up the
number of triangles, which has pushed up the demands for
higher bus bandwidth. For example, the bus 6 that connects
the CPU 1 with the GPU 5 has increased 8x 1n frequency,
from AGP 1x to AGP 8x in the PC space 1n the last few years.
There are physical constraints in terms of signal propagation
that preclude the continuation of the frequency increase in bus
design.

With the advent of faster arithmetic 1t has become possible
to change the current architecture such that the CPU 1 will
serve parametric patches and the renderer S will trnangulate
such patches 1n real-time. There are very few past attempts of
implementing real-time tesselation 1n hardware. Sun Corpo-
ration tried 1n the mid-80’s to implement such a machine. The
implementation was based on an architecture described 1n a
paper by Lien, Sheue-Ling, Shantz, Michael, Pratt, Vaughan
“Adaptive Forward Differencing for Rendering Curves and
Surfaces”, Siggraph 87 Proceedings, pp. 111-118 and 1n a
series of associated patents. The implementation was not a
technical and commercial success because 1t made no good
use of triangle based rendering, trying instead to render the
surfaces pixel by pixel. The idea was to use adaptive forward
differencing in interpolating infinitesimally close parallel
cubic curves imbedded 1nto the bicubic. The main drawback
was that sometimes the curves were too close together, result-
ing 1nto pixel overstrikes and other times the curves were too
far apart, leaving gaps. Another drawback was that the
method 1s slow.

In the early 90’s Nvidia Corporation made an attempt to
introduce a biquadric based hardware renderer. The attempt
was not a technical and commercial success because biquad-
rics have an insuificient number of degrees of freedom, all the
models use bicubics, none of the models uses biquadrics.

More currently, Henry Moreton from Nvidia has resur-
rected the real-time tesselation unit described 1n the U.S. Pat.
No. 6,597,356 entitled “Integrated Tesselator 1n a Graphics
Processing Unit,” 1ssued Jul. 22, 2003. Moreton’s invention
doesn’t directly tesselate patches in real-time, but rather uses
triangle meshes pre-tesselated off-line in conjunction with a
proprietary stitching method that avoids cracking and pop-
ping at the seams between the triangle meshes representing
surface patches. His tesselator unit outputs triangle databases
to be rendered by the existing components of the 3D graphics
hardware.

Accordingly, what 1s needed 1s a system and method for
performing tessellation in real-time. The present imnvention
addresses such a need.

SUMMARY OF THE INVENTION

The present invention provides a graphics processing unit
for rendering objects from a software application executing
on a processing unit 1n which the objects to be rendered are
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received as control points of bicubic surfaces. According to
the method and system disclosed herein, the graphics pro-
cessing unit includes a transform unit, a lighting unit, a ren-
derer unit, and a tessellate unit for tessellating both rational
and non-rational object surfaces 1n real-time.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be described with reference to
the accompanying drawings, wherein:

FIGS. 1A and 1B are diagrams illustrating a process for
rendering bicubic surfaces.

FIG. 2 describes the current architecture of a computer
graphics system, 1n specific the current architecture of a
graphics processing unit (GPU).

FIG. 3 describes the new architecture of a GPU that
includes a Tessellator Unit inserted between the Transform
Unit and the Light Unait.

FIG. 4 describes the architecture of an internet system
employing multiple CPU’s at the recerving end performing
real-time tessellation.

FIG. 5 1llustrates a bicubic surface.

FIG. 6 describes the recursive subdivision of the convex
hull of a Bezier curve.

FIG. 7 describes the texture mapping process.

FIG. 8 illustrates the recursive subdivision of the convex
hull of a bicubic surface.

FIG. 9 shows how to calculate one criterion for terminating,
the subdivision.

FIG. 10 shows how cracks can appear at the T-joints on the
boundary curves between surfaces.

FIG. 11 shows how to “zipper” the cracks at the T-joints.

FIG. 12 shows how using the same subdivision for neigh-
boring surfaces completely avoids the cracks.

FIG. 13 shows an example of a strip of surfaces.

FIG. 14 shows an example of a fan of surfaces.

FIG. 15 shows an example of a mesh of surfaces.

DESCRIPTION OF THE INVENTION

The present imnvention 1s directed to a method and apparatus
for minimizing the number of computations required for the
subdivision of bicubic surfaces into triangles for real-time
tessellation. The following description 1s presented to enable
one of ordinary skill 1n the art to make and use the invention
and 1s provided 1n the context of a patent application and 1ts
requirements. Various modifications to the preferred embodi-
ment will be readily apparent to those skilled in the art and the
generic principles herein may be applied to other embodi-
ments. Thus, the present invention 1s not intended to be lim-
ited to the embodiment shown but s to be accorded the widest
scope consistent with the principles and features described
herein.

Because prior art methods for performing surface subdivi-
s1on are so slow and limited, a method 1s needed for rendering,
a curved surface that minimizes the number of required com-
putations, such that the images can potentially be rendered in
real-time (as opposed to oii-line).

U.S. Pat. No. 6,563,501, by the Applicant of the present
application, provides an improved method and system for
rendering bicubic surfaces of an object on a computer system.
Each bicubic surface is defined by sixteen control points and
bounded by four boundary curves, and each boundary curve
1s formed by boundary box of line segments formed between
four of the control points. The method and system include
transforming only the control points of the surface given a
view of the object, rather than points across the entire bicubic
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surface. Next, a pair of orthogonal boundary curves to process
1s selected. After the boundary curves have been selected,
cach of the curves 1s 1teratively subdivided, as shown 1n FIG.
6, wherein two new curves are generated with each subdivi-
sion. The subdivision of each of the curves 1s terminated when
the curves satisty a flatness threshold expressed in screen
coordinates, whereby the number of computations required to
render the object 1s minmimized.

The method disclosed 1n the *501 patent minimizes the
number of computations required for rendering of an object
model by requiring that only two orthogonal curves of the
surface be subdivided, as shown 1n FIG. 8. As the number of
computations 1s decreased, the entire rendering process can
potentially be performed 1n real-time. In addition, the com-
putations for subdivision are performed by expressing the
criteria of terminating the subdivision 1n the screen coordi-
nates (SC). As the curvature 1s estimated based on how flat it
appears to be 1n SC (pixels), rather than how curved 1t 1s 1n
WC, the number of computations required may further be
mimmized. As a result, the possibility of rendering images in
real-time 1s further enhanced. In addition, allowing the cur-
vature to be measured 1n SC units also allows for accommo-
dating the distance to the viewer, thus giving the process an
“automatic level of detail” capability.

The present invention utilizes the above method for mini-
mizing the number of computations required for the subdivi-
s1on of bicubic surfaces into triangles 1n order to provide an
improved architecture for the computer graphics pipeline
hardware. The improved architecture replaces triangle mesh
transformation and rendering with a system that transforms
bicubic patches and tesselates the patches in real-time. This
process 1s executed 1n a real-time tesselation unit that replaces
the conventional transformation unit present in the prior art
hardware 3D architectures.

According to the present invention, the reduction 1n com-
putations 1s attaimned by reducing the subdivision to the sub-
division on only two orthogonal curves. In addition, the cri-
teria for sub-division may be determined mm SC. The
description 1s provided with reference to Bezier surfaces for
illustration. Due to such features, the present invention may
enable objects to be subdivided and rendered in real-time. The
partition into triangles may also be adapted to the distance
between the surface and the viewer resulting 1n an optimal
number of triangles. As a result, the effect of automatic level
of detail may be obtained, whereby the number of resulting
triangles 1s inversely proportional with the distance between
the surface and the viewer. The normals to the resulting tiles
are also generated 1n real-time by using the cross product of
the vectors that form the edges of the tiles. The texture coor-
dinates associated with the vertices of the resulting triangles
are computed 1n real-time by evaluating the functions: u=a(s,
t) v=b(s,t). The whole process 1s directly influenced by the
distance between viewer and object, the SC space plays a
major role 1n the computations.

The steps involved in the combined subdivision and ren-
dering of bicubic surfaces in accordance with the present
invention are described below in pseudo code. As will be
appreciated by one of ordinary skill in the art, the text between
the “/*” and “*/” symbols denote comments explaiming the
pseudo code. All steps are performed 1n real-time, and steps O
through 4 are transformation and tessellation, while steps 5-7
are rendering.

Step O

/* For each surface transiform only 16 points instead of
transforming all the vertices 1nside the surface. There 1s no
need to transform the normals to the vertices since they are
generated at step 4%/.
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For each bicubic surface

Transform the 16 control points and the single normal that

determine the surface

Step 1

/* Simplily the three dimensional surface subdivision by
reducing it to the subdivision of two cubic curves */.

For each bicubic surface

Subdivide the boundary curve representing s interval until
the projection of the length of the height of the

curve bounding box 1s below a certain predetermined num-

ber of pixels as measured in screen coordinates.

Subdivide the boundary curve representing t interval until
the projection of the length of the height of the curve bound-
ing box 1s below a certain predetermined number of pixels as
measured 1n screen coordinates. /*Simplify the subdivision
termination criteria by expressing it in screen coordinates
(SC) and by measuring the curvature 1n pixels. For each new
view, a new subdivision can be generated, producing auto-
matic level of detail */.

Step 2

For all bicubic surfaces sharing a same parameter (either s
or t) boundary Choose as the common subdivision the reunion
of the subdivisions in order to prevent cracks showing along
the common boundary. —OR—

Choose as the common subdivision the finest subdivision
(the one with the most points inside the set)

/* Prevent cracks at the boundary between adjacent sur-
faces by using a common subdivision for all surfaces sharing
a boundary */

Step 3

/* (generate the vertices, normals, the texture coordinates,
and the displacements used for bump and displacement map-
ping for the present subdivision */

For each bicubic surface

For each pair (s1,tj) of parameters /*All calculations
employ some form of direct evaluation of the variables. Here,

1 and j represent a number of rows and columns, respectively

*/

Calculate (texture coordinates (u,; v, ¢, ) and displace-
ment cooredinates (p, ; t; ;) tor vertex V, ;) thru interpolation

/*texture-, displacement map and vertex coordinates as a
function of (s1,t)*/

Look up vertex displacement (dx, ,, dy, ,, dz, ;) correspond-
ing to the displacement coordinates (p; ; 1, ;

Generate triangles by connecting neighboring vertices.

Step 4

For each vertex V, |

Calculate the normal N, ; to that vertex /* Already trans-
formed 1in WC */

Calculate (dN;, ;)/*normal displacement for bump mapping
as a function of (s1,1])*/

N', =N, +dN, /*displace the normal for bump mapping™/
V', =V, +dX, , dy, , dz, )*N, ; /*displace the vertex for
displacement mapping™®/

/* bump and displacement mapping are executed in the
renderer, pixel by pixel for all the points 1nside each triangle
*/

For each triangle

Calculate the normal to the triangle /*used for culling */

Step S

For each triangle

Clip against the viewing viewport

Calculate lighting for the additional vertices produced by
clipping

Cull backfacing triangles

Step 6

Project all the vertices Vi,] into screen coordinates (SC)
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Step 7

Render all the triangles produced after clipping and pro-
jection

Referring now to FIG. 3, a block diagram of the graphics
system ol the present invention 1s shown, where like compo-

nents from FIG. 2 have like reference numerals. The present
invention utilizes the above algorithm to provide an improved
graphics system 10. The system 10 includes CPU 1 and GPU
7. According to the present invention, the GPU 7 includes a
transform unit 2, a lighting unit 3, a renderer unit 4, and a
tessellate unit 9 coupled between the transform unit 2 and the
lighting umit 3 for tessellating both rational and non-rational
object surfaces 1n real-time.

In operation, the CPU 1 executes a software application
and transmits over the AGP bus 6 the object database
expressed 1n a compressed format as control points of the
bicubic surfaces. The control points of the bicubic surfaces
are transformed by the transform unit 2, and then the surfaces
are tessellated into triangles by the tessellate unit 9. The
tessellate unit 9 executes the microcode described above 1n
the Step 1 through Step 4, thereby aflecting the real-time
tessellation. The vertices of the triangles are then Iit by the
lighting unit 3 and the triangles are rendered by the renderer
unit 4 executing steps S through 7.

FI1G. 4 1s a diagram 1illustrating architecture of a network-
based graphics system targeting for performing real-time tes-
sellation for online gaming according to a second preferred
embodiment of the present invention. This second embodi-
ment targets the interactive multi-player game play over a
network, such as the Internet in which multiple client com-
puters 14 comprising a CPU 1 and GPU 5 are 1n communi-
cation with a server 12. The server 12 sends object databases
over the Internet 1n the form of control points for bicubic
patches to the CPUs 1 for tessellation of the databases into
triangles. The CPUs 1 then transfer the triangles to conven-

tional GPU’s § comprising transform units 2, lighting units 3
and renderer units 4. In this embodiment, 1t 1s the CPUs 1 that

execute the microcode steps 0 though 4 described above to
effect the real-time tessellation. Note, that the CPUs 1 also
execute Step 0, the transformation of the control points.

Referring again to U.S. Pat. No. 6,563,501, we use the
described subdivision algorithm while applying our termina-
tion criterion. The geometric adaptive subdivision induces a
corresponding parametric subdivision.

1.1=P1
1.2=(P1+P2)/2
H=(P2+P3)/2
1.3=(L2+H)/?2
R4=P4
R3=(P3+P4)/2
R2=(R3+H)/?2

R1=14=(1.3+R2)/2
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The geometry vectors of the resulting left and right cubic
curves may be expressed as follows:

I.1 8000 Pl
L2 4400 P2
GL = =1]/8=% » =1/8xDLx+«G
1.3 2420 P3
14 1331 P4
8000
4400
where DL =
2420
1331
Pl
P2
(1 =
P3
P4
R1 1331 Pl
R2 0242 P2
GR = =1/8« » =1/8«DR=«=G
R3 0044 P3
R4 0008 P4
0242
1331
where DR =
0044
0008

The edge subdivision results into a subdivision of the para-
metric intervals s {s,,8,,...8; ...8,, fand t{to,t,, ...t ... 1,}.
Only these two parametric subdivisions are stored for each
surface since this 1s all the information needed to calculate the
vertices,

VfJ:V(X(Sf:IEj):y(Sf:B'):Z(S L )) izl:m:jzlzﬂ

X(s,1)=S*Mb*Px*Mb™*T wherein S=[s3 s2 s 1] T=[t3 t2 t
1]° The superscript t indicates transposition

-1 +3 -3 +1
+3 -6 +3 0
Mb = A 4a 0 0 Mb’ is transposed of matrix Mb
+1 0 O 0
P11 P12 P13 Pl4
P21 P22 P23 P24
PX=1p31 P32 P33 P
P41 P42 P43 P44 §

y(s, ) = S« Mb x Py« Mb’ «T

where
PI1 P12 P13 Pl4
o |21 P22 P23 P24
YZ1p31 P32 P33 PM
P4l P42 P43 P4l

zZ(s, ) =S« MbxPz+Mb' «T

For s=constant the matrix M=S*Mb*Pz*Mb’ is constant
and the calculation of the vertices V(x(s,t),y(s,t),z(s,t))
reduces to the evaluation of the vector T and of the product
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M*T. Therefore, the generation of vertices 1s comparable
with vertex transformation. Note that the vertices are gener-
ated already transformed 1n place because the parent bicubic
surface has already been transformed.

In order to determine the vertex normals for each generated
vertex V, ; we calculate the cross product between the edge
entering, the vertex and the edge exiting 1t and we make sure
that we pick the sense that makes an acute angle with the
normal to the surface:

N; =P; | ;P; xP; P, /length(P; | ;P; xP; P, )

If bump mapping or displacement mapping are enabled we
need to calculate additional data:

N'; =N, +dN, /*displace the normal for bump map-
ping, pixel by pixel 1n the renderer section */

P'; =P, +(dx, ;, dy; ;, dz; )*N ;/*displace the point P
fmr displacement mapping, pixel by pixel */

We calculate the texture coordinates through bilinear inter-
polation, as shown i FIG. 7. The parameterization of the
surface produces a natural interpolation of the texture coor-
dinates, see FIG. 7 for details. In our algorithm we calculate
the texture coordinates corresponding to the new vertices
every time a surface 1s retesselated while bump and displace-
ment mapping are executed on a pixel by pixel basis in the
renderer as in the conventional architectures. There 1s no
attempt to execute bump or displacement mapping on a per
triangle vertex basis because this approach would result 1nto
a varying level of detail with each tesselation.

The subdivision algorithm described in U.S. Pat. No.
6,563,501 applied to non rational surfaces. In a further
embodiment of the present invention, the algorithm 1is
extended to another class of surfaces, non uniform rational
B-spline surfaces, or NURBS. Nurbs are a very important
form of modeling 3-D objects in computer graphics. A non-
uniform rational B-spline surface of degree (p, q) 1s defined

by

S(s,0)=[2"7 = | 27 = 1Nzgp(5)
Nf@(S)Nj?g(t)WiJ

N; JOW P V27 27

Such a surface lies within a convex hull formed by 1ts
control points. To fix the idea, let’s pick m=n=4. There are 16
control points, P11 through P44 (similar to the Bezier sur-
faces). The surface lies within the convex hull formed by P11

thru P44.
Now consider any one of the curves:

Cis)=[2"

where p 1s the order, N, (s) are the B-spline basis functions,
P, are control points, andp with the weight of'1s the last ordmate
of the homogeneous point. The curve lies within the convex
hull formed by the control points.

Such a curve can be obtained by fixing one of the two
parameters s or t 1 the surface description. For example
s=variable, t=0 produces such a curve. Like 1n the case of
Bezier surfaces, there are 8 such curves, 4 boundary ones and
4 1nternal ones.

The subdivision of the surface reduces to the subdivision of
the convex hull of the boundary curves or of the internal
curves as described 1n the case of the Bezier surfaces.

Referring to F1G. 9, the subdivision termination criterion1s

shown, as described 1n U.S. Pat. No. 6,563,501:

Maximum {distance (P12 to line (P11, P14), distance
(P13 to line (P11, P14)}*2d/(P12z+P13z)<n

N, (s)w, P, /2" N, (s)w;

Ij5 I

AND

Maximum {distance (P24 to line (P14, P44), distance
(P34 to line (P14, P44)}*2d/(P24z+P34z)<n

where n 1s a number expressed 1n pixels or fraction of pixels.
However, artifacts may be produced with n starting at 1,
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especially along a silhouette. Starting values for n may also
include 0.5 and n>1, for reasons of rapid prototyping and
previewing.

According to a further aspect of the present invention, a
more general criterion 1s provided:

Maximum {distance (P22 to line (P42, P12), distance
(P32 to line (P42, P12)}*2d/(P42z+P12z) AND

Maximum {distance (P33 to line (P43, P13), distance
(P23 to line (P43, P13)}*2d/(P43z+P13z)<n

AND

Maximum {distance (P22 to line (P21, P24), distance
(P23 to line (P21, P24)}*2d/(P21z+P24z) AND

Maximum {distance (P32 to line (P31, P34), distance
(P33 to line (P31, P34)}*2d/(P31z+P34z)<n

AND

Maximum {distance (P12 to line (P11, P14), distance
(P13 to line (P11, P14)}*2d/(P12z+P13z) AND

Maximum {distance (P42 to line (P41, P44), distance
(P43 to line (P41, P44)}*2d/(P42z+P43z)<n

AND

Maximum {distance (P24 to line (P14, P44), distance
(P34 to line (P14, P44)}*2d/(P24z+P34z) AND

Maximum {distance (P21 to line (P11, P41), distance
(P31 to line (P11, P41)}*2d/(P11z+P41z)<n

The above criterion 1s the most general criterion and 1t wall
work for any class of surface, both rational and non-rational.
It will also workiordetormable surfaces. It will work for
surfaces that are more curved along the boundary or more
curved mternally. Since the curvature of deformable surfaces
can switch between being boundary-limited and internally-
limited the flatness of both types of curves will need to be
measured at the start of the tesselation associated with each
instance of the surface. The pair of orthogonal curves used for
tesselation can then be one of: both boundary, both internal,
one boundary and one internal.

Yet another embodiment, the subdivision termination cri-
teria may be used for the control of the numerically controlled
machines. The criterion described below 1s calculated in
object coordinates. In the formulas described below “tol”
represents the tolerance, expressed 1n units of measurement
(typically micrometers) accepted for the processing of the

surfaces of the machined parts:
Maximum {distance (P22 to line (P42, P12), distance (P32

line (P42, P12)} AND

Maximum {distance (P33 to line (P43, P13), distance (P23
line (P43, P13)}<tol

AND

Maximum {distance (P22 to line (P21, P24), distance (P23
ine (P21, P24)} AND

Maximum {distance (P32 to line (P31, P34), distance (P33
line (P31, P34)}<tol

AND

Maximum {distance (P12 to line (P11, P14), distance (P13
ine (P11, P14)} AND

Maximum {distance (P42 to line (P41, P44), distance (P43
ine (P41, P44)}<tol

AND

Maximum {distance (P24 to line (P14, P44), distance (P34
ine (P14, P44)} AND

Maximum {distance (P21 to line (P11, P41), distance (P31
line (P11, P41)}<tol

1o
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If there are no special prevention methods, cracks may
appear at the boundary between abutting patches. This 1s
mainly due to the fact that the patches are subdivided inde-
pendently of each other. Abutting patches may and do exhibit
different curvatures resulting into different subdivisions. For
example, in FIG. 10 we see that the right-hand patch has a
finer subdivision than the left-hand one. At the boundary we
see¢ how a “I-joint” has been formed. When rendering the
parallel strips of triangles to the left and to the right of the
common boundary a crack may become visible 1n the area of
the T-joint.

One of the approaches disclosed herein exhibits 1dentical
straight edges for the two patches sharing the boundary. The
other implementation exhibits even stronger continuity; the
subpatches generated through subdivision form continuous
strips orthogonal to the shared boundary. This 1s due to the
fact that abutting patches are forced to have the same para-
metric subdivision. The present invention provides two dif-
ferent crack prevention methods, each employing a slightly
different subdivision algorithm.

1. In order to avoid cracks between patches use a “zipper
approach” to fix the triangle strips that result at the four
borders of the surface. All four boundary curves for the
patches situated at the edge of the object are used. See FIG. 11
for a rendering of the “zipper” approach. Note that adjacent
patches have different parametric subdivisions resulting into
different triangle meshes. In this embodiment each patch 1s
subdivided independently. All the subdivisions for all the
edges of all the patches are stored. Due to this approach, a
common boundary curve between two patches may be sub-
divided differently inside each of the abutting patches that
form the respective boundary. Where two patches abut along
a common boundary curve, the strips of triangles on the two
sides of the common boundary are compared: if there are
triangle vertices belonging to a first strip that are not exactly
comncident with the vertices of the second strip, the non-
coincident vertices from the first triangle strip are copied into
the second strip resulting 1n a strip with more triangles. FIG.
10 shows how the triangle strip on the right side of the bound-
ary curve produces a vertex (a ““I-joint”) inside the edge of a
triangle belonging to the strip on the left of the boundary. In
FIG. 11, the “T-joint” has been removed by connecting two
edges that emerge from the vertex that originated the
“T-jo1nt”.

2. In order to avoid cracks between patches, use a second
pass that generates the reunion of the subdivisions for all the
patches 1n a patch strip. All four boundary curves for the
patches situated at the edge of the object are used. See FIG. 12
for arendering of this approach. Note that in this case surfaces
that share, for example, as parametric boundary, will share the
same subdivision in s throughout the surface. The tessellation
1s deferred until after the subdivisions are generated. Once the
subdivisions have been generated all the patches can be tes-
sellated and rendered independent of each other. This makes
this approach extremely attractive for parallel processing.

In a preferred embodiment, in order to facilitate the design
of drivers for the architecture shown in FIG. 3, the present
invention provides a Graphics Utility Library (GLU). The
GLU includes several different types of primitives including,
strips, fans, meshes, and indexed meshes of surface patches.

Below, the first three primitives are described. Referring to
FIG. 13, 1n a strip, the first patch contributes 16 vertices, each
subsequent patch contributes only 12 because 4 are shared
with the previous patch. Of the 16 vertices of the first patch,
S1, only 4, the corners P11, P14, P41, P44 have color and
texture attributes, the remaining 12 have only geometry
attributes. Of the 12 vertices of each subsequent patch, Si1, 1n
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the strip only one, P44 has color and texture attributes. This
fact explains the reduction of the memory footprint and of the
bus bandwidth necessary for transmitting the primitive from
the CPU to the GPU over the AGP bus. The compression 1s
further increased by the fact that a patch will be expanded into
potentially many triangles by the tessellator unit inside the
GPU. Each patch has an outward pointing normal.

Referring to FIG. 14, each patch has only 3 boundary
curves, the fourth boundary having collapsed to the center of
the fan. The first patch 1n the strip enumeration has 11 verti-
ces, each subsequent patch having 8. Vertex P11, listed first in
the fan definition, 1s the center of the fan and has color and
texture attributes 1n addition to geometric ones. The first
patch, S1, has two vertices with color and texture attributes,
P41 and P44; the remaining 9 have only geometric attributes.
Each subsequent patch, Si, has only one vertex with all the
attributes.

Referring to FIG. 15, 1n a mesh, the anchor patch, S11 has
16 vertices, all the patches 1n the horizontal and vertical strips
attached to S11 have 12 and all the other patches have 9.

A further embodiment of the present invention provides a
method for accelerating rendering. A well known technique
used for accelerating rendering 1s backiace culling, which a
method which discards triangles that are facing away from the
viewer. It 1s beneficial to extend this technique to cover back-
facing surfaces. This way, we avoid the computational costs
ol tesselating surfaces that face away from the user. Our
proposed method discards such surfaces as a whole, before
even starting the tesselation computation.

Referring to FI1G. 9, observe that the convex hull 1s made up

of 13 planar side panels ({P41,P44,P43.P42}, {P44,P34,P33,
P43}, ... {P33,P23,P22,P32}) and one bottom panel ({P44,
P41,P11,P14}) that may not be planar in most cases. The
order of listing the vertices 1n each of the 14 panels coincides
with the outwards pointing normal. IT any of the 13 side
panels 1s front facing than the surface may be (at least par-
tially) front facing. Therefore, the criterion for culling the
patch as backfacing 1s:

If ANY of the panels of the type {P41, P44, P43, P42} is
front facing then the patch should not be culled.

An alternative criterion can be given as:

If the bottom panel {P44, P41, P11, P14} is backfacing
then the patch should not be culled. This criterion means that
since the bottom panel {P44, P41, P11, P14} is backfacing,
there may be other panels 1n the convex hull that may be front
facing. This being the case, the patch should not be consid-
ered as being backfacing and should not be culled.

A method and system has been disclosed for performing
tessellation in real-time in a GPU. Software written according
to the present invention i1s to be stored in some form of
computer-readable medium, such as memory or CD-ROM, or
transmitted over a network, and executed by a processor.
Although the present invention has been described 1n accor-
dance with the embodiments shown, one of ordinary skill 1in
the art will readily recognize that there could be vanations to
the embodiments and those variations would be within the
spirit and scope of the present invention. Accordingly, many
modifications may be made by one of ordinary skill in the art
without departing from the spirit and scope of the appended
claims.

What 1s claimed 1s:

1. A system, comprising:

a processor; and

a graphics processing unit (GPU) coupled to the processor,

the GPU comprising a transform unit, a lighting unit, a
renderer unit, and a tessellate unit coupled between the
transform unit and the lighting unait;
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wherein objects to be rendered by the GPU are transmatted
as control points to the GPU, the transform unit trans-
forms the control points, the tessellate unit executes a
first set of 1nstructions for tessellating both rational and
non-rational object surfaces expressed in screen coordi-
nates (SC), 1n real-time, the lighting unit lights vertices
of the trnangles resultant from tessellation, and the ren-
derer unit renders and displays the triangles by executing
a second set of structions.

2. The graphics system of claim 1 wherein the first set of
instructions sumplifies three dimensional surface subdivision
of the object surfaces by reducing surface subdivision to a
subdivision of two cubic curves by performing instructions
for:

for each bicubic surface,

subdividing a boundary curve representing an s interval

until a projection of a length of a height of a curve

bounding box 1s below a certain predetermined number

of pixels as measured 1n screen coordinates; and

subdividing the boundary curve representing a t interval
until a projection of a length of a height of the curve
bounding box 1s below a certain predetermined num-
ber of pixels as measured in screen coordinates.

3. The graphics system of claim 2 wherein the first set of
instructions simplifies three dimensional surface subdivision
by reducing it to the subdivision of two cubic curves by
simplifying subdivision termination criteria by expressing
the termination criteria 1n screen (SC) coordinates and by
measuring curvature in pixels, wherein for each new view, a
new subdivision can be generated, producing automatic level
ol detail.

4. The graphics system of claim 3 wherein the first set of

instructions reduces cracks at the boundaries between sur-
faces by using a common subdivision for all surfaces sharing
a boundary by performing instructions for:
for all bicubic surfaces sharing a same s or t parameter
boundary,
choosing as a common subdivision a reunion of the
subdivisions 1n order to prevent cracks showing along
the common boundary or a finest subdivision, the
finest subdivision being the one with the most points
inside the set.

5. The graphics system of claim 4 wherein the first set of
istructions generates vertices, normals, texture coordinates,
and displacements used for bump and displacement mapping
are generated by performing 1nstructions for:

for each bicubic surface,

for each pair (s1,1]) of parameters, where 1 and j represent

a number of rows and columns, respectively,

calculating texture coordinates ((u,; v, ; q; ;) and dis-
placement coordinates (p, ; r, ;) for vertex V, ) thru
interpolation,

looking up vertex displacement (dx; , dy, ., dz, ;) cor-
responding to the displacement coordinates (p
r, ); and

generating triangles by connecting neighboring verti-
Ces.

6. The graphics system of claim 5 wherein the second set of
istructions generates vertices, normals, texture coordinates,
and displacements used for bump and displacement mapping
by performing instructions for:

tor each vertex V, .

calculating a normal N, ; to that vertex, which was pre-
viously transformed 1n world coordinates

calculating (dN, ;) as normal displacement for bump
mapping as a function of (s1,t)

10

15

20

25

30

35

40

45

50

55

L,

60

65

14

calculating N', =N, +dN; ; to displace the normal for
bump mapping; and

calculating V', =V, +(dx, ;, dy, ,, dz, )*N, ; to displace
the vertiex for displacement mapping;

for each triangle,
executing bump and displacement mapping pixel-by-

pixel for all the points 1nside the triangle; and
calculating a normal to the triangle for culling.
7. The graphics system of claim 1 further including a
Graphics Utality Library (GLU) for implementing drivers.

8. The graphics system of claiam 1 wherein the GLU
includes several different types of primitives including, strips,
fans, meshes, and indexed meshes of surface patches.

9. A real-time method for tessellating and rendering sur-

faces of an object on a computer system, comprising:

(a) performing transformation and tessellation by,

(1) for each surface, transforming 16 points;

(11) performing three dimensional surface subdivision
using the computer system by subdividing only two
cubic curves comprising the surface;

(1) terminating the subdivision termination by express-
ing the subdivision in screen coordinates (SC) and by
measuring curvature in pixels;

(1v) for each new view, generating a new subdivision,
thereby producing automatic level of detail;

(v) preventing cracks at boundaries between adjacent
surfaces by using a common subdivision for all sur-
faces sharing a boundary;

(v1) for the current subdivision, generating the vertices,
normals, texture coordinates, and displacements used
for bump and displacement mapping; and

(vi1) generating triangles by connecting neighboring
vertices;

(vi11) for each vertex, calculating the normal, calculating
normal displacement for bump mapping, displacing
the normal for bump mapping, displacing the vertex
for displacement mapping, wherein bump and dis-
placement mapping are executed pixel by pixel for all
the points 1nside each triangle; and

(1x) calculating the normal of each triangle; and

(b) performing rendering by
(1) for each triangle, clipping against a viewing viewport,

calculating lighting for additional vertices produced
by clipping, and culling backfacing triangles;

(11) projecting all vertices into screen coordinates; and

(111) rendering all the triangles produced after clipping
and projection.

10. A system comprising.

a central processing unit;

a bus operatively comnnected to said central processing
unit; and

a graphics processing unit operatively connected to said
bus;

wherein the central processing unit transmits graphic
objects to said graphics processing unit via said bus;
and

wherein said graphics processing unit comprises a trans-
Jorm unit that transforms the graphic objects into trans-
Jormed objects;

a tessellation unit for tessellating the transformed objects,
wherein said tessellation unit is operatively coupled
between said transform unit and a lighting unit; and

said lighting unit comprising means for lighting triangles
resulting from said tessellation unit.

11. The system of claim 10 wherein the tessellation unit

tessellates the transformed objects into a plurality of triangle
vertices.
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12. The system of claim 10 wherein the graphic objects
have spatial coordinates and said transform unit transforms
the spatial coordinates of said graphic objects.

13. The system of claim 10 further comprising a lighting
unit operatively coupled to the tessellation unit for lighting
the tessellated transformed objects.

14. The system of claim 13 further comprising a vendering
unit operatively coupled to the lighting unit for vendering the
lighted, tessellated, transformed objects.

15. A method comprising:

providing a tessellation unit coupled between a transform

unit and a lighting unit;

receiving graphic objects to be rendered by a graphics

processing unit;

transforming the graphic objects into transformed objects

using said transform unit,

tessellating the transformed objects using said tessellation

unit; and

10

15

16

lighting vertices of triangles vesultant from said tessellat-

ing using said lighting unit.

16. The method of claim 15 wherein the graphic objects
comprise control points of a bicubic surface.

17. The method of claim 16 wherein the control points
comprise spatial coovdinates and the transformation step
comprises transforming the coorvdinates of the control points.

18. The method of claim 16 wherein the tessellation step
comprises subdividing the surface into a number of triangles.

19. The method of claim 18 wherein the tessellation step
further comprises terminating the subdivision when the cur-
vature of a triangle is less than a predetermined amount.

20. The method of claim 19 wherein the degree of subdivi-

sion at meeting edges of two bicubic surfaces is equal.
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