(19) United States

USOORE42466E

a2y Reissued Patent (10) Patent Number: US RE42.,466 E
Yokol 45) Date of Reissued Patent: Jun. 14, 2011

(54) BRANCH PREDICTING APPARATUS AND
BRANCH PREDICTING METHOD

(75) Inventor: Megumi Yokoi, Kawasaki (IP)
(73) Assignee: Fujitsu Limited, Kawasaki (JP)
(21) Appl. No.: 12/656,111

(22) Filed: Jan. 15, 2010
Related U.S. Patent Documents

Reissue of:
(64) Patent No.: 7,320,066
Issued: Jan. 15, 2008
Appl. No.: 11/065,712
Filed: Feb. 25, 2005
(30) Foreign Application Priority Data
Nov. 30, 2004 (IP) eooeeiiiiiie, 2004-347194

(51) Int.Cl.

GO6F 9/38 (2006.01)
(52) US.CL ..., 712/239; 712/238; 712/240
(58) Field of Classification Search 712/238,

712/239, 240
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

4,459,659 A 7/1984 Kim

5,193,205 A 3/1993 Matsuo et al.
5,355,459 A 10/1994 Matsuo et al.
5,526,498 A 6/1996 Matsuo et al.
5,604,877 A 2/1997 Hoyt et al.
5,701,449 A 12/1997 Matsuo et al.
5,964,808 A 10/1999 Gochman et al.

i—‘l1ﬂ

msmucnnn']
FETCH -

5,978,904 A 11/1999 Matsuo et al.

6,151,673 A 11/2000 Matsuo et al.

6,408,385 Bl 6/2002 Matsuo et al.
2002/0188833 Al 12/2002 Henry et al.
2004/0003218 Al 1/2004 Ukai

FOREIGN PATENT DOCUMENTS

JP 57-143642 9/1982

JP 1-258032 10/1989

JP 2004-38323 2/2004
OTHER PUBLICATIONS

EP Search Report for corresponding application EP 05251154.0-

2211 dated Jul. 1, 2005.

U.S. Appl. No. 10/995,158, filed Nov. 24, 2004, Megumi Yoko1 et al.
Office Action mailed on Mar. 21, 2007 1n parent application U.S.
Appl. No. 11/065,712.

Notice of Allowance mailed on Nov. 26, 2007 1n parent application
U.S. Appl. No. 11/065,712.

Primary Examiner — William M Treat
(74) Attorney, Agent, or Firm — Staas & Halsey LLP

(57) ABSTRACT

A branch history stores execution history mformation of
branch instructions, and predicts presence of a branch mnstruc-
tion and a corresponding branch destination. A first return
address stack stores, when an execution of a call instruction of
a subroutine 1s completed, address mnformation of a return
destination of a corresponding return instruction. A second

return address stack stores, when presence of a call instruc-
tion ol a subroutine 1s predicted, address information of a
return destination of a corresponding return instruction. An
output selecting umit selects, when presence of a return
instruction 1s predicted, 11 address information 1s stored 1n the
second return address stack, the address information as a
result of the branch prediction with a highest priority, and
outputs the address information selected.

19 Claims, 47 Drawing Sheets

120
CACHE

CONTROL UNIT |

CONTROL
UNIT

¢ 140 130

DECQODER

150
INTEGER FLOATING
m“ﬁ‘ﬁ‘ﬂ‘ ASTMETS || \EONT |1 GENERATON
STATION RESERVATION REE?E}’.EH“"

INSTRUCTION
BUFFER

—b SELECTION CIRCUIT

STATION (200
E T T T T T BRANGH PREDICTION |
RETURN APPARATUS |
210 ADDRESS :
1 ARITHMETIC
CIRCUIT
ADDRESS QF CALL —-—
Ll BRANCH INSTRUCTION, .
HISTORY EXECUTION OF 240 |
WHICH HAS BEEN —
COMPLETED RETURN ADDRESS
CALL HIT 250 B8TACK X
| .
S M CONTROL STK-Xn
|_ CIRCUIT .
RETURN HIT
SIGNAL ' 260
ADDRESS
ADDRESS FOR
WHICH CALL ARITHMETIC
INSTRUCTION CIRCUIT
IS PREDICTED
—— CALL/RETURN
INSTRUCTION FLAG
Yy w270
RETURN STACK
POINTER
L000 ADDRESS STACK

Lazp
281

RETURN ADDRESS

_J-EBE

OUTPUT SELECTION CIRCUIT

iii

N3N13Y |
woizy | sy | |

0
P NOILONHLSNI 8 +4

NOILONYLSNI

US RE42,466 L

- JIAVIE0 v 3018
5 < TIVD] > NOLLONNLSNI
NOILONMLSNI 43AVI30
vOLS
~ . < n
<t INILNOYENS 3
3 £0LS
-
v— g
= INLLNONENS
=
s 9

NYNL3

NOILONYLSNI
ad3Avi13a

Jun. 14, 2011

ANILNOYENS

_‘ " o _ H_ INILNOY NIVIA

U.S. Patent

U.S. Patent Jun. 14, 2011 Sheet 2 of 47 US RE42.466 E

FIG.2A

RETURN ADDRESS
STACK X

STK- X4

RETURN STACK STK - X3

POINTER STK - X2

STKO

STK1

STK2

STK3
RETURN

ADDRESS STACK

FIG.2B

RETURN ADDRESS
STACK X

RETURN STACK
POINTER

STKO
STK1
STKZ2
STK3

RETURN
ADDRESS STACK

U.S. Patent Jun. 14, 2011 Sheet 3 of 47 US RE42.466 E

FIG.2C

RETURN ADDRESS
STACK X

RETURN STACK
POINTER
RETURN
ADDRESS STACK
RETURN ADDRESS
STACK X
STK - X4
RETURN STACK STK - X3

STK - X1

STKO
STK1
STK2
STK3

RETURN
ADDRESS STACK

U.S. Patent Jun. 14, 2011 Sheet 4 of 47 US RE42.466 E

RETURN ADDRESS
STACK X
STK - X4
RETURN STACK STK - X3
POINTER

STK - X2

STKO
STK1

STK2
STK3

RETURN
ADDRESS STACK

U.S. Patent Jun. 14, 2011 Sheet 5 of 47 US RE42.466 E

FIG.3

110 120
INSTRUCTION CACHE
FETCH CONTROL
CONTROL UNIT UNIT
140 130
DECODER NS RN

150 160 170 180

INTEGER FLOATING
ARITHMETIC POINT

RESERVATION ARITHMETIC
STATION RESERVATION
STATION

BRANCH
RESERVATION

ADDRESS
GENERATION

STATION RESERVATION

STATION

BRANCH PREDICTION :

RETURN APPARATUS
ADDRESS
ARITHMETIC
CIRCUIT
ADDRESS OF CALL 230
BRANCH INSTRUCTION,
HISTORY EXECUTION OF 240
WHICH HAS BEEN
COMPLETED RETURN ADDRESS
CALL HIT — 1L 250 STACK X

e I -

VALID
CéJNgROL
IRCUIT
RETURN HIT -'
SIGNAL "

RETURN

ADDRESS FOR ADDRESS
WHICH CALL ARITHMETIC
INSTRUCTION CIRCUIT
IS PREDICTED
CALURETURN
INSTRUCTION FLAG
A

RETURN STACK
POINTER
RETURN

ADDRESS STACK

AAA

RETURN ADDRESS
SELECTION CIRCUIT

F---‘ﬁ---‘------ﬁ---------------------------------.—--.----_-‘-_-—----
ST Y YT X IE I RETE T EE SR LR R R R R R RENR NN R RR N L E BN R XK E N ENBEZRSREJLENENENEILIRERTE RS NENNENRERNREDNS§BBE N E K N K § N E B B E B B 3B 3B B E_RE E_B B _E E_B B B KB X K B J

R mm o e e e owm oww o vl e WE o W M M gy WS M wr omr e e ome MR T RS B WE W MR WY W A T WY AN B W WS R O B M B A W W e o B AP W W B OSSN W W T R W M S mm ege e ol A T T AN TN APIR I NN N W W W WE NN WP W NN N WE W W Al W M W mm me g W e e B ae e B W

U.S. Patent Jun. 14, 2011 Sheet 6 of 47 US RE42.466 E

S1001

RETURN

ADDRESS SIGNAL IS
RECEIVED FROM RETURN
ADDRESS STACK X?

No

S1002

Yes

OQUTPUT RETURN ADDRESS SENT FROM
RETURN ADDRESS STACK X

S1003

SIGNAL
SENT FROM RETURN
ADDRESS POINTER IS 0 OR
MORE?

SIGNAL IS SENT FROM
INDICATED ENTRY OF RETURN
ADDRESS STACK?

OUTPUT RETURN ADDRESS SENT

FROM INDICATED ENTRY OF RETURN
ADDRESS STACK

U.S. Patent Jun. 14, 2011 Sheet 7 of 47 US RE42.466 E

FIG.5A
RETURN ADDRESS
STACK X
RETURN STACK
POINTER

=

STKO
STK1
STK2
STK3
RETURN
ADDRESS STACK
RETURN ADDRESS
STACK X
RETURN STACK
POINTER

—

RETURN
ADDRESS STACK

U.S. Patent Jun. 14, 2011 Sheet 8 of 47 US RE42.466 E

FIG.5C

RETURN ADDRESS

RETURN STACK
POINTER

RETURN
ADDRESS STACK

US RE42,466 L

Sheet 9 of 47

Jun. 14, 2011

U.S. Patent

INILNOYBNS

90¢S

G0CS

Nanil3y

II

NOLLONYLSNI

NOILONHLSNI

O3AV130

TIVO

NOILONMLSNI

A>.
Q

INILNROYHBNS

8+H

P0OCS

J
NOILLONYLSNI

NOILONYLSN!

Q3AV1I3Q

-~
NOILONYLSNI

g
ANILNOYENS

e
NOLLONYHLSNI

v
INILNOHANS

1

g+
b+

3

3

=

£02S

AN TAD

LOCS

L

NOILOMNYLSNI

NOILOMY 1SN
J4AV 134

1IvO

NOILONYLSNI
NOILONYLSNI

NOLLONHLSNI

NOILOMNHLSNI

d3AV130
TWO

NOILONYLSNI

owousn

NOILONMISNI

INILNOYH NIVIA

8+0

U.S. Patent Jun. 14, 2011 Sheet 10 of 47

RETURN STACK

POINTER

RETURN STACK
POINTER

svee [T7

STK —X1

STKO
STK1
STK2
STK3

FIG.7A

RETURN ADDRESS
STACK X

STKO
STK1
STK2
STK3
RETURN

ADDRESS STACK

FIG.78B

RETURN ADDRESS
STACK X

RETURN
ADDRESS STACK

US RE42,466 L

U.S. Patent Jun. 14, 2011 Sheet 11 of 47 US RE42.466 E

FIG.7C

RETURN ADDRESS

RETURN STACK
POINTER

RETURN
ADDRESS STACK

FIG.7D

RETURN ADDRESS

RETURN STACK
POINTER

RETURN
ADDRESS STACK

U.S. Patent Jun. 14, 2011 Sheet 12 of 47 US RE42.466 E

FIG.7E

RETURN ADDRESS
STACK X

RETURN STACK
POINTER STK — X2
stk-x1 [V[_Dp+s

STKO
STK1
STKZ2
STKS

RETURN
ADDRESS STACK

FIG.7F

RETURN ADDRESS

STACK X
RETURN STACK

E POINTER

D+8

ADDRESS STACK

U.S. Patent Jun. 14, 2011 Sheet 13 of 47 US RE42.466 E

FIG.7G

RETURN ADDRESS
STACK X

RETURN STACK

POINTER
_

RETURN
ADDRESS STACK
RETURN ADDRESS
STACK X
RETURN STACK
POINTER

RETURN
ADDRESS STACK

US RE42,466 L

Sheet 14 of 47

Jun. 14, 2011

U.S. Patent

X

_Ajwous
_[AJoows

ADVIS
SS3JAAV N3N

ADVLS SS3HAAV
NYN13H AHYNIOVIAI

LXALS-A
CXALSA
EXANLS-A
PXALS-A
GXMALS-A

WX=-ALS-A

8 Ol

J189V.
1iH NdN13Y

d31INNOD
1IH TWO

U.S. Patent Jun. 14, 2011 Sheet 15 of 47 US RE42.466 E

FIG.O

110 120
INSTRUCTION CACHE
FETCH CONTROL
CONTROL UNIT UNIT
140 130
INSTRUCTION

160 170 180

INTEGER FLOATING ADDRESS
BRANCH POINT
ARITHMETIC GENERATION
RESERVATION ARITHMETIC
RESERVATION RESERVATION
STATION _{300
IR R R s = BRANCH PREDICTION !
ADDRESS APPARATUS |
110 ARITHMETIC
ADDRESS OF CALL CIRCUIT
INSTRUCTION,
EXECUTION OF 330

WHICH HAS BEEN
COMPLETED

CALL
INSTRUCTION
p FLAG
CALL HIT

BRANCH
HISTORY

AR I § I
! ' COUNTER - RggRN
ADDRESS STACK
I FEE'. X
RETURN HIT :
SIGNAL X-TOP

ARITHMETIC X -NXT

CIRCUIT

CALL/RETURN
INSTRUCTION FLAG

ADDRESS FOR
WHICH CALL
INSTRUCTION
IS PREDICTED

RETURN
STACK
POINTER

RETURN
ADDRESS STACK

391
| 'Y Y
RETURN ADDRESS .
SELECTION CIRCUIT

392

i . i i e S A W M A W G G WS R ER WM M mw me G vE Er mp me e SR R M e m m wh e mk e e ok ake E 0R A S e A e e A N M N A N M M M ER ER SR SR S SR ER N A B N SN W S S S e e e e M R s e - O A TR SR OSE GRCER SR SR R R W W R R

- SR R TSSO TS E S e e e B A B B SR W e e v e e S s e B e A U N e A B i ne e R W N NE g O B A W B A N W W W W AR By e o W il e AR R E e A S R R ok R A am o e

U.S. Patent Jun. 14, 2011 Sheet 16 of 47 US RE42.466 E

FIG.10

COMP_CALL

CALL_HIT
LATCH < K:0>

i CALL_HIT_CTR<K:0>
o

FIG.11
CTR EQ m
o
LL]
QO
CALL_HIT CTR<K:0> § CTR_EQ 2
0 CTR EQ 1

CTR_EQ_O ..."ENTRY IS
EMPTY”

U.S. Patent Jun. 14, 2011 Sheet 17 of 47 US RE42.466 E

XHm_SET

XH3_SET
XH2_SET
XH1_SET

RETURN_HIT ' XHI SET
CTR EQ_|

XHi
XHi-1

XH j+1 --IJ

CTR_EQ_i-1
XHi-1
XHi-2

XH j+1 _U

CTR_EQ_ j+1
XH j+1

CTR_EQ_j

U.S. Patent Jun. 14, 2011 Sheet 18 of 47 US RE42.466 E

FIG.13

XHm

XH3
XH2
XH1

CTR_EQ_I

XHi
XHi-1

XH 1 _U

CTR_EQ_I - 1

USE_X

XHi- 1
XHi-2

XH 1
CTR_EQ_2

U
)

XH1

CTR_EQ_1
XH1

US RE42,466 L

I~

=t

=

2

s

i

P,

u e

~ — -

o <0:Z>81d MIS NI - H

- <0:¢> HO1V B

m LIH 1IVD
1IH NYNL3Y

vl Old

U.S. Patent

R

N3N13Y dNOD

1IvO dWOD

U.S. Patent Jun. 14, 2011 Sheet 20 of 47 US RE42.466 E

FIG.15
. PTR_EQ_111
B PTR_EQ_000
RTN_STK_PTR<2:0> § PTR EQ 001
o PTR_EQ_010

PTR_EQ_011

U.S. Patent Jun. 14, 2011 Sheet 21 of 47 US RE42.466 E

(PTR=000) STKO_TIAR
(PTR=001) STK1_TIAR
(PTR=010) STK2_TIAR
(PTR=011) STK3_TIAR

AMENDED
USE X —%
X TOP_VALID ' X_TOP_SEL
PTR_EQ_000 [~
@
PTR EQ_001 -
®
PTR_EQ_010 —
STK2_VALID — STi2 SEL
®
PTR EQ_011 —
@
STKO_SEL =
STK1_SEL —
K2_SEL - RTN STK_SEL
STK3_SEL —
X _TOP_SEL —
RETURN_HIT
BRANCH |
HISTORY
BRHIS_TIAR gg| ECTOR
! SELECTOR
= 2
|

— T
T
.

'
:.

BRHIS_TARGET_ADRS

I
J

X_TOP_TIAR

STKO_SEL
STK1_SEL
STK2_SEL
STK3_SEL
X_TOP_SEL

RTN_STK_SEL

US RE42,466 L

NO THX
I~
=t
-~
&
~ 440 THX
m 13S THX
s NO THX 440 THX
-
m —
« 13S LHX
m 138 ZHX
= 13S €HX
138 WHYX

AN

U.S. Patent

? L+ HX

L -WHX
W HX

1IH N3NL3Y

1IH 1vO

EENE R TR

U.S. Patent Jun. 14, 2011 Sheet 23 of 47 US RE42.466 E

F1G.18

XHmM

XHm-1
(USE_X

XH2

XH 1

US RE42,466 L

MOVLS SSIHAAY NHNLIN
ENMLS
ZH1S
~ IN1S
= ONLS
3
e
p
.4-.; -
= X
—
MOVLS SSIHAAV NyNLIN

U.S. Patent

d31NIOd
AIVLS NdNl3d

V6l Old

d3LNNOD
1IH 1VO

US RE42,466 E

MOVLS SS3IHAAVY NdN1L3d
EN1S
IN1S
I~ IMLS
>
S OML1S
~£
2
P,
=
<
& MOVLS SSIHAAY NYNLIY

U.S. Patent

d31NIOd
ADVLS NdN13y

d61 Ol

318V1
1IH NaNL3d

b

d31NNOO
LIH 11vO

AJVLS SSIHAAV NANL3d

US RE42,466 L

Sheet 26 of 47

X

Jun. 14, 2011

ADVLS SSFHAAV NHN13H

U.S. Patent

v

d31NIOd
NOVLS NdNldN

1XN-X
dO1-X

Q61 Ol

LHX
CHX

. <t
. I
- >

318v1
1IH NyNL13Y

d31INNOD
1IH 11VO

ADVLS SSFHAAY NANLIY

US RE42,466 L

Sheet 27 of 47

T v

8+a |A| doLx

X
MOVLS SSIHAAV NuNL3y

Jun. 14, 2011

U.S. Patent

dJ31INIOd
AODVLS NdNL3d

aecl Ol

318V.1

11H NdN.134

N
L
>

<t ™
L
X

Te
L

>}

s .

X

J31NNOD
1IH T1VO

MOVLS SS34AAVY NdNL3d

US RE42,466 L

b

H31NIOd
ADVLS Nyf13d

Sheet 28 of 47

M., 319V 1
=
X
MOVLS SS3IHAAVY NHN13

U.S. Patent

LHX

™
X

L

> 4

d431NNOD
1IH 1VO

AOVLS SS3HAAV NaNL3d

US RE42,466 L

S HILNIOd
= MOV1S NYNL13IY
Q
Q 31avl
= LIH NYNL3Y
=
=
MOVLS SSINAAY NYN.L3Y

U.S. Patent

H31NNOD
JIH TIVO

MIOVLS SSIHAAY NuN13S

US RE42,466 L

s

™~

m xo&mwhn,_m_o:n_ﬁm =

o

7 0
0

3 Javl

- LIH N¥N13Y

m..

ADVIS SS3IHAAY N3N1L3

061 Ol

U.S. Patent

d31NNOD
1IH TTvO

US RE42,466 L

AOVLS SSFHAAV NdNL3y

e
M H331NIOd l
s MOVLS NyuNL3Y =
E 0
7 0
=
N 319V1
M. 8 + o Al dOL-X 1IH NYN13Y
m X

MOV1S SS3HAAV N¥N.L3Y
Hol 9l

U.S. Patent

N

0,
L

q
L
X

Yy
.

I
>

X

X

H331NNOD
lIH TIVO

MOVLS SS3HAAV NYNL3x

US RE42,466 L

Sheet 32 of 47

1 XN-X
dOl-X

Jun. 14, 2011

X
MNOVLS SS3JAAV NxNl3d

U.S. Patent

H31INIOd
MOVLS NHN13

161 Ol

319V.1
LIH NaN13yd

&

d431LNNOD
1IH TIVvO

MOV.LS SS3HAAY NuNl3d

US RE42,466 L

ENLS
CALS
IMLS
OMLS

Sheet 33 of 47

1XN-X
dO.l-X

Jun. 14, 2011

X
MOVLS SSIHAAV NHNL3H

U.S. Patent

H431NIOd
MOVLS NdN13y

61 Ola

319Vl

1IH NdN13y

B

J31NNOOD
1IH 1IvO

MOVLS SS33AAV NJNL13S

US RE42,466 L

b |

b | X
: 43 LNIOd 0| eHX
m ADVLS NufL3dd = YHX
"o | o
% o] -
S LXNX 3718V.L
s HOL-X LIH N¥N13Y
E

X
¥OV1S SS3¥AavV N¥N13Y
M6l Ol4

U.S. Patent

H31LNNOD
1IH 11VO

AOVLS SS3FHAAY NdNL3Y

US RE42,466 L

v L
m H31NIOd =
m MOVLS NYNL3Y =
7 0
= LXN-X I7avL
o dOL-X LIH N¥N13Y
=
= X

MOVLS SSIHAAY NYNLINH
1ol Ol

U.S. Patent

LHX
CHX
EHX

d31NNOD
1IH T1VO

US RE42,466 E

I~

<t

-~

- X MOV.LS e, VX ALSA

> SS340AY Ninl3y R L SXMLSA

z o
. i WXMLSA

— MOVLS SS3¥Aav w

~ NYNLIH ANYNIOVWI

=

—

X

—

p

0c¢ Ol

U.S. Patent

F18v1 AINMYA X

d31NNOD
1IH TIvO

U.S. Patent Jun. 14, 2011 Sheet 37 of 47 US RE42.466 E

FIG.21 120

110
INSTRUCTION CACHE
FETCH CONTROL
CONTROL UNIT UNIT
140 130
- INSTRUCTION
180 160 170 180

FLOATING

INTEGER ADDRESS
BRANCH ARITHMETIC rOME GENERATION
RESERVATION| | gESERVATION| | ARITHMETIC |IRESERVATION
STATION 400
e] B BRANCH PREDICTION |
ADDRESS APPARATUS :

ARITHMETIC

410
ADDRESS OF CALL CIRCUIT
INSTRUCTION,
EXECUTION OF 430 09
BRANCH WHICH HAS BEEN
HISTORY COMPLETED

CA
INSTRUCTION
FLAG

RETURN HIT
SIGNAL

ARITHMETIC
CIRCUIT

CALL/RETURN
INSTRUCTION FLAG

ADDRESS FOR
WHICH CALL

INSTRUCTION
IS PREDICTED

POINTER

B T T E T TR T R R W N T Y E R T T N T W W O OB ON PR R AT R Rt e e e e e e a e T ey Y N N RN NFERE NN E KR B _FE_R NN B B B B L N _B B B L _E_BE_ B _E_R_NB_E_ B B _E B N N1 |
--—--ﬁ--ﬁ-ﬁ---#---n---—--------ﬁ--_----—*-ﬁ#------------**-‘----------

R A T gy e A TP L SR AL P IR WD A B N TR R SR AR iy e W I e A A e el O A A T AP W W A R e BN SR B T i T T W W e e I U AR W W W W N N W W SR A AR A R A W e A e omarw SESm-

U.S. Patent Jun. 14, 2011 Sheet 38 of 47 US RE42.466 E

FIG.22

XVm SET

XV3_SET
XV2_SET
XV1_SET

CTR_EQ_j-1
XV]_ON
CALL_HIT

RETURN_HIT

XV]|_OFF

XVM ~
XVM -1 ®
@

XV j+1 —U
XVj_ON
XVj_SET
XVj_OFF

FIG.23

XVm

XV3

XVm ___H
XV2
USE_X
XV XV3
XV2
XV 1

US RE42,466 L

Sheet 39 of 47

Jun. 14, 2011

U.S. Patent

AOVLS SS3HAAVY NdNL3Y

ENLS

CALS
IMLS
OM1S

T o

g+V |A]| doLx

X
NOVLS SS3IHAAVY NJIN13d

d31NIOd
MOVLS NdN13H

319V.1 dI'VA X

Ve Old

b

H31INNOD
1IH T11VO

US RE42,466 L

Sheet 40 of 47

Jun. 14, 2011

U.S. Patent

MOVLS SS3HAAV NJNL3d

EMLS
ALS
IMLS
OMLS

d31NIOd

0
KN
KN
MOVLS NYN13IY =
o
KN
o

318v1 AI'VA X

d31INNOD
1IH 1VO

HOVLS SSIHAAV NEN1L3Y

US RE42,466 L

Sheet 41 of 47

IXN-X
dO.L1-X

Jun. 14, 2011

X
MOVLS SS3IHAAY NYNL3Y

U.S. Patent

d3LNIOd
ADVIS NJN13Y

318V1 GINVA X

Ove Ol

d31NNOD
11H 711VvO

NOVILS SS3HAdv NYN13d

US RE42,466 L

Sheet 42 of 47

T o

8+ |A| doLX

X
NOVLS SS3HAAV NdNL3x

Jun. 14, 2011

U.S. Patent

o
MALNIO 0 | e
MOVLS N¥N13Y H PAX
o
o | unx
I18VL AINVA X
dve Ol

H331INNOD
1IH 1vO

MOVILS SSIHAAV NyN13

US RE42,466 L

Sheet 43 of 47

8+Q AL 1xNX
| 8+d |Af dorx

X
MOVLS SS3HAAV NaN13d

Jun. 14, 2011

U.S. Patent

d31NIOd
AOVIS NINL3Y

J319VL AINVA X

3v¢ Ol

d431NNOD
1IH 1TIVO

AOVILS SS3HAAY NJNL3d

US RE42,466 L

Sheet 44 of 47

Jun. 14, 2011

ADVIS SS3HAAV NaNl3d

U.S. Patent

]

] [
H31NIOd ' LAX

MOVLS NYNLIY = bAX
0 | SAX

"o] wx

31av.L AINVA X
4¥¢ 9Ol

¢

d31NNOD
1IH 11vO

ADVLS SS3IHAAV NJNL3Y

US RE42,466 L

Sheet 45 of 47

Jun. 14, 2011

ADVILS SSIHAAV NdN1l3d

U.S. Patent

KN
T
KN
N
o
3719V.1L GINMYA X
ove Old

B

d31NNOD
1IH 1IVO

US RE42,466 L

MAOVLS SS3HAAV NdN1L3H

]
0 |eax
e~
~+
5 3LNIOd 0 | enx
> MOVLS NYNLI 0 | vAX
- 0| wax
2
~ 318VL AINVA X
:
—
-

AV LS SSIHAAVY NHNL3IA

H¥¢ Ol

U.S. Patent

B

d431NNOD
1IH 711VvO

ADVILS SS3HAAV NuNL3dy

US RE42,466 L

N

5 H31INIOd = EAX %__.P_m__n%%
= MOV.LS NNNL3N
: o
: 0 | sAx
%] -
S LXNX 318V1 QIVA X
~ dO1-X
-
- X

MOVLS SSIHAAY N¥NLIY

V¢ Ol

U.S. Patent

US RE42,466 E

1

BRANCH PREDICTING APPARATUS AND
BRANCH PREDICTING METHOD

Matter enclosed in heavy brackets [] appears in the -
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

CROSS-REFERENCE 10O RELATED 10
APPLICATIONS

This application is a reissue application of U.S. Pat. No.
7,320,066 B2, which is based on U.S. application Ser. No.

11/065,712, filed with the U.S. Patent Trademark Office on 15
Feb. 25, 2005 and which claims earlier priority benefit to
Japanese Patent Application No. 2004-347194 filed with the
Japanese Patent Office on Nov. 30, 2004, the disclosures of

which arve incovporated hervein by reference.
20

BACKGROUND OF THE INVENTION

1) Field of the Invention

The present invention relates to a branch predicting appa-
ratus and a branch predicting method that perform branch 25
prediction 1n a processor of a pipeline system. In particular,
the present invention relates to a branch predicting apparatus
and a branch predicting method that can keep accuracy of a
branch prediction high when plural call instructions are
detected by a branch history prior to completion of execution 30
of a call instruction.

2) Description of the Related Art

Conventionally, a method of branch prediction 1s widely
used for speed-up of processing 1n a processor of a pipeline
system. When a branch 1s present 1n a program, it 1s essen- 35
tially necessary to stop a pipeline until the branch 1s defined.
However, a processor for performing branch prediction pre-
dicts a branch and executes an instruction after the predicted
branch speculatively.

The branch prediction has a significant advantage that, 40
when a prediction comes true, 1t 1s possible to reduce process-
ing time equivalent to time for waiting for a branch to be
defined. However, when the prediction does not come true,
since 1t 1s necessary to flush a pipeline and re-execute pro-
cessing from a part where a branch instruction 1s given, the 45
branch prediction also has a significant penalty. Therelore,
accuracy of prediction 1s very important in the branch predic-
tion.

In general, a branch history 1s used 1n the branch prediction.
The branch history i1s a device that holds an address of a 50
branch mstruction executed 1n the past and an address of a
branch destination branched by the branch instruction as a
pair. Since the branch prediction using the branch history 1s
based on a history in the past, the branch prediction 1s very
clifective when the same branch 1s repeated as i loop pro- 55
cessing. However, the branch prediction is less effective for a
branch according to a return instruction from a subroutine.

When a branch occurs according to the return instruction
from the subroutine, a branch destination 1s an 1nstruction
next to a call instruction of the subroutine. However, 1in gen- 60
eral, since the subroutine 1s called from various sections of a
program, a return destination of the return mstruction 1s not
fixed. Therefore, even 11 the branch destination 1s predicted
according to a history in the past, the prediction 1s not always
correct. 65

Thus, 1n a method widely adopted, an address of a return
destination according to a return instruction 1s stored 1n a

2

return address stack when a call instruction of a subroutine 1s
executed and, concerning the return istruction, branch pre-

diction 1s performed for the return address stack preferen-
tially over a branch history, whereby accuracy of a prediction
1s improved.

After the execution of the call instruction 1s completed, the
return address stack stores an address of a return destination
of a return instruction corresponding to the call instruction.
Therefore, when the return instruction 1s detected by the
branch history because of read-ahead or the like of an 1nstruc-
tion stream before the execution of the call instruction 1s
completed, there 1s a problem in that the address of the return
destination 1s not stored 1n the return address stack and accu-
racy of branch prediction falls.

Thus, 1 Japanese Patent Application No. 2004-222399,
the inventor proposes a technique for realizing highly accu-
rate branch prediction even in the case described above by
providing a second return address stack and storing an
address of a return destination of a return instruction 1n a
second return address stack at a stage when a call 1instruction
1s detected by a branch history.

However, the technique proposed in the above literature
has a problem 1n that 1t 1s not taken into account that, after a
call instruction 1s detected by the branch history, another call
instruction 1s detected by the branch history until the execu-
tion of the call mstruction 1s completed. Only one entry for
storing an address of a return destination of a return instruc-
tion 1s provided in the second return address stack. Thus,
when there are plural call instructions that have been detected
by the branch history but execution of which has not been
completed, addresses other than an address of a return desti-
nation of a return instruction corresponding to a call mnstruc-
tion detected last are discarded and accuracy of prediction of
a branch destination falls.

SUMMARY OF THE INVENTION

It 1s an object of the present invention to solve at least the
above problems in the conventional technology.

A branch predicting apparatus according to one aspect of
the present invention, which performs a branch prediction in
a pipeline processor, includes a branch history that stores
execution history information of branch instructions includ-
ing a call mstruction and a return instruction, and searches
through the execution history information to predict presence
of a branch instruction and a branch destination correspond-
ing to the branch instruction; a first return address stack that
stores, when an execution of a call instruction of a subroutine
1s completed, address information of a return destination of a
return instruction corresponding to the call instruction; a sec-
ond return address stack that stores, when presence of a call
instruction of a subroutine 1s predicted by the branch history,
address information of a return destination of a return 1struc-
tion corresponding to the call instruction; and an output
selecting unit that selects, when presence of a return nstruc-
tion 1s predicted by the branch history, 11 address information
1s stored 1n the second return address stack, the address infor-
mation stored 1n the second return address stack as a result of
the branch prediction with a highest priority, and outputs the
address information selected.

A branch predicting method according to another aspect of
the present invention, which 1s for performing a branch pre-
diction 1n a pipeline processor, includes predicting presence
of a branch instruction and a branch destination correspond-
ing to the branch instruction using a branch history that stores
execution history information of branch instructions includ-
ing a call instruction and a return instruction; a first storing

US RE42,466 E

3

including storing, when presence of a call instruction of a
subroutine 1s predicted at the predicting, address information
of areturn destination of a return instruction corresponding to
the call istruction 1n a storing unit; a second storing includ-
ing storing, when an execution of a call instruction of a
subroutine 1s completed, address information of a return des-
tination ol a return instruction corresponding to the call
instruction in the storing unit; and a output selecting includ-
ing selecting, when presence of a return instruction 1s pre-
dicted at the predicting, 11 the address information 1s stored at
the second storing, the address information stored at the first
storing as a result of the branch prediction with a highest
priority, and outputting the address information selected.

The other objects, features, and advantages of the present
invention are specifically set forth 1n or will become apparent
from the following detailed description of the invention when
read in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a sample diagram of an 1nstruction stream for
explaining an operation of a branch predicting apparatus
according to an embodiment of the present invention;

FIGS. 2A to 2E are explanatory diagrams for explaining an
operation of the branch predicting apparatus according to the
present embodiment;

FIG. 3 1s a block diagram of a structure of the branch
predicting apparatus according to the present embodiment;

FI1G. 4 15 a flowchart of a processing procedure of a return
address selection circuit shown 1n FIG. 3;

FIGS. 5A to 5C are explanatory diagrams for explaining an
operation of the branch predicting apparatus according to the
present embodiment;

FIG. 6 1s a sample diagram of an instruction stream for
explaining an operation of a branch predicting apparatus
according to an embodiment of the present invention;

FIGS. 7A to TH are explanatory diagrams for explaining an
operation of a conventional branch predicting apparatus;

FIG. 8 1s an explanatory diagram for explaining an outline
of a branch predicting method according to the present
embodiment;

FIG. 9 1s a block diagram of a structure of the branch
predicting apparatus according to the present embodiment;

FI1G. 10 1s a logical circuit diagram of a circuit structure of
a call hit counter;

FI1G. 11 1s a logical circuit diagram of a decoder section of
the call hit counter:

FI1G. 12 1s a logical circuit diagram of a circuit structure of
a return hit table;

FI1G. 13 1s a logical circuit diagram of a circuit structure of
an output section of the return hit table;

FIG. 14 1s a logical circuit diagram of a circuit structure of
a return stack pointer;

FIG. 15 1s a logical circuit diagram of a decoder section of
the return stack pointer;

FIG. 16 1s a logical circuit diagram of circuit structures of
a return address selection circuit and an output selection
circuit;

FI1G. 17 1s a logical circuit diagram of a circuit structure of
a return hit table;

FI1G. 18 1s a logical circuit diagram of an output section of
the return hit table;

FIGS. 19A to 19L are explanatory diagrams for explaining,
an operation of the branch predicting apparatus according to
the present embodiment;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 20 1s a explanatory diagram for explaining an outline
of a branch prediction system according to an embodiment of

the present invention;

FIG. 21 1s a block diagram of a structure of a branch
predicting apparatus according to the present embodiment;

FIG. 22 1s a logical circuit diagram of a circuit structure of
an X valid table;

FIG. 23 1s a logical circuit diagram of an output section of
the X valid table; and

FIGS. 24 A to 241 are explanatory diagrams for explaining,
an operation of the branch predicting apparatus according to
the present embodiment.

DETAILED DESCRIPTION

Exemplary embodiments according to the present inven-
tion will be explained 1n detail with reference to the accom-
panying drawings.

FIG. 1 1s a sample diagram of an instruction stream for
explaining an operation of the branch predicting apparatus
according to a embodiment of the present mvention. As
shown 1n the figure, a main routine calls a subroutine A
according to a call instruction 1n an address A (step S101).
After executing several instructions, the subroutine A returns
to the main routine according to a return instruction 1n an
address C (step S102). An address of a destination to which
the subroutine A returns according to the return instruction 1s
an 8-byte-address after the address of the call instruction, that
1S, A+8.

Here, the address of the return destination of the return
instruction 1s the address of the call instruction plus 8 because
a processor for executing this istruction stream has a speci-
fication 1n which there 1s an nstruction length of 4 bytes and
the call instruction 1s always accompanied by a delayed
instruction. Therefore, depending on a specification of the
processor, 1t 1s possible that the address of the return destina-
tion of the return 1nstruction 1s the address of the call instruc-
tion plus 4 or the address of the call instruction plus 16.
However, in the explanation in this specification, 1t 1s assumed
that the address of the return destination of the return mnstruc-
tion 1s the address of the call instruction plus 8.

The main routine calls a subroutine B according to a call
instruction 1n an address D (step S103). After executing sev-
eral instructions, the subroutine B calls a subroutine C
according to a call mnstruction in an address F (step S104).
After executing several instructions, the subroutine C returns
to the subroutine B according to a return instruction 1n an
address H (step S105). An address of a return destination 1s
F+8. After executing several instructions, the subroutine B
returns to the main routine according to a return instruction in
an address I (step S106). An address of a return destination 1s
D+38.

Next, an outline of the branch prediction system according
to the present embodiment will be explained with a case 1n
which the mstruction stream shown 1n FIG. 11s executed as an
example. FIGS. 2A to 2E are explanatory diagrams for
explaining an operation of the branch predicting apparatus
according to the present embodiment. FIG. 2A shows a scene
in which a call instruction 1s detected 1n an address A by a
branch history. Note that it 1s assumed that the branch pre-
dicting apparatus 1s 1n an initial state before the call mstruc-
tion 1s detected 1n the address A.

As shown 1n the figure, a return address stack, a returns
address stack X, and a return stack pointer are present in this
branch predicting apparatus. The return address stack 1s a
generally-used return address stack and 1s a device 1n which,
when execution of a call instruction 1s completed by an execu-

US RE42,466 E

S

tion unit, an address of a return destination of a return 1nstruc-
tion corresponding to the call instruction 1s stored.

The return address stack has plural entries, and an address
of a return destination of a return 1nstruction 1s pushed to a top
entry STKO0 every time the execution of the call instruction 1s
completed by the execution unit. For example, 1n a scene 1n
which execution of two call instructions 1s completed by the
execution unit, an address of a return destination of a return
instruction corresponding to the call instruction executed sec-
ond 1s stored 1n the top entry STKO0, and an address of a return
destination of a return instruction corresponding to the call
instruction executed first 1s stored in a second entry STK1. In
addition, the return address stack performs a pop operation
every time the execution of the return instruction 1s completed
by the execution unit and discards a content of a latest entry.

The return address stack X 1s a second return address stack
that 1s provided to improve prediction accuracy when, before
execution of a call instruction 1s completed by the execution
unit, a return mstruction corresponding to the call instruction
1s detected by the branch history. In addition, the return
address stack X 1s a device in which, when a called instruction
1s detected by the branch history, an address of a return
destination of a return instruction corresponding to the call
instruction 1s stored.

In the patent document 1, the return address stack X has
only one entry. However, 1t 1s assumed that the return address
stack X has plural entries according to the present embodi-
ment. The return address stack X stores an address of a return
destination of a return instruction in order from a top entry
STK-X1 every time a call instruction 1s detected by the
branch history. For example, 1mn a scene in which two call
instructions are detected by the branch history, an address of
a return destination of a return 1nstruction corresponding to
the call instruction detected first 1s stored in the top entry
STK-X1, and an address of a return destination of a return
instruction corresponding to the call instruction detected next
1s stored 1n a second entry STK-X2.

The return address stack X performs a shift operation to
expel a content of an oldest entry every time the execution of
the call instruction 1s completed by the execution unit. In
addition, when any one of the entries 1s used for branch
prediction, the return address stack X sets a valid bit of the
entry to OFF to invalidate the entry.

The return stack pointer 1s a device that decides which of
the entries 1n the two return address stacks 1s an entry for
which a branch prediction result 1s acquired. The return stack
pointer holds a value O 1n an 1mitial state. The value 15 decre-
mented by one every time a call instruction 1s detected by the
branch history and incremented by one every time a return
instruction 1s detected by the branch history. In addition, the
value 1s incremented by one every time the execution of the
call mstruction 1s completed by the execution unit and dec-
remented by one every time the execution of the return
istruction 1s completed by the execution unit.

When a value of the return stack point 1s O or more, this
means that an entry, for which a branch prediction result 1s
acquired, 1s present 1n the return address stack. When the
value 1s 0, SK'T0 at the top of the return address stack 1s the
entry for which a branch prediction result 1s acquired. The
entry, for which a branch prediction result 1s acquired, moves
to the next entry every time the value of the return stack
pointer increases by one 1n a positive direction. For example,
when the value of the return stack pointer 1s 3, STK3 of the
return address stack 1s the entry for which a branch prediction
result 1s acquired.

When a value of the return stack pointer 1s negative, this
means that an entry, for which a branch prediction result 1s

10

15

20

25

30

35

40

45

50

55

60

65

6

acquired, 1s present 1n the return address stack X. In the patent
document 1, since 1t 1s assumed that there 1s only one entry 1n
the return address stack X, there 1s no description about a
correspondence between the return address stack X and the
entry at the time when a value of the return stack pointer 1s 0.

According to the present embodiment, when a value of the
return stack pointer 1s -1, STK-Z1 at the top of the return
address stack X 1s an entry for which a branch prediction
result1s acquired, and the entry, for which a branch prediction
result is acquired, moves to the next entry every time the value
of the return stack pointer increases by one 1n a negative
direction. For example, when the value of the stack pointer 1s
-3, STK-X3 of the return address stack X 1s the entry for
which a branch prediction result 1s acquired.

FIG. 2A 1s a scene 1n which a call instruction 1s detected 1n
the address A. Thus, A+8 1s stored in STK-X1 at the top of the
return address X as an address of a return destination and the
value of the return pointer 1s decremented by one to —1. Here,
when 1t 1s assumed that a return 1nstruction in the address C 1s
detected by the branch history, the value of the return stack
pointer 1s —1. Thus, the value stored 1n STK-X1, that 1s, A+8
1s acquired as a branch prediction result. A+8 1s a correct
address as a branch destination of the return instruction in the
address C.

At this stage, since execution of the call instruction has not
been completed, an address of a branch destination 1s not
stored 1n the return address stack. However, the return address
stack X 1s made capable of effectively functioning to perform
correct branch prediction.

FIG. 2B shows a scene after a return 1nstruction 1s detected
in the address C. Since STK-X1 1s used for branch prediction,
a valid bit thereot 1s set to OFF and STK-X1 1s invalidated. In
addition, the value of the return stack pointer 1s incremented
by one to O according to the detection of the return instruction.
FIG. 2C shows a scene 1n which execution of a call instruction
in the address A 1s subsequently completed. In response to the
completion of the execution of the call instruction, the
address A+8 of the return destination 1s stored in SK'T0 at the
top of the return address stack and the value of the return stack
pointer 1s incremented by one to 1.

FIG. 2D shows a scene 1n which a call instruction 1s sub-
sequently detected 1n the address D. In response to the detec-
tion of the call instruction, an address D+8 of a return desti-
nation 1s stored in STK-X1 at the top of the return address
stack X and the value of the return stack pointer 1s decre-
mented by one to 0. FIG. 2E shows a scene 1in which a call
istruction 1s subsequently detected in the address F. In
response to the detection of the call instruction, an address
F+8 of a return destination 1s stored in STK-X2 of the second
entry in the return address stack X and the value of the return
stack pointer 1s decremented by one to 1.

Here, when it 1s assumed that a return instruction in the
address H 1s detected by the branch history, since the value of
the return stack pointer 1s —1, the value stored in STK-X1, that
1s, D+8 1s acquired as a branch prediction result. Since D+8 1s
not an address of a branch destination of the return instruction
in the address H, wrong branch prediction 1s performed.

In the scene 1n FIG. 2E, addresses of two return destina-
tions are stored 1n the return address stack X. However, 1t 1s
seen from the order of execution of the mstruction stream 1n
FIG. 1 that a call instruction in the address D 1s always
detected earlier than a call mstruction in the address F. In
other words, 1n the return address stack X, D+8, which 1s a
return destination of a return 1nstruction corresponding to the
call instruction in the address D, 1s stored first and F+8, which
1s a return destination of a return istruction corresponding to
the call instruction 1n the address F 1s stored next.

US RE42,466 E

7

Similarly, 1t 1s seen from the order of execution of the
instruction stream in FIG. 1 that a return instruction 1n the
address H 1s always detected earlier than a return instruction
in the address I. In other words, F+8, which 1s a return desti-
nation of the return instruction in the address H, should be
used 1n branch prediction earlier than D+8 that 1s a return
destination of the return instruction 1n the address 1.

Therefore, 1t 1s seen that addresses of return addresses
stored 1n the return address stack X only have to be used from
one stored lastregardless of a value of the return stack pointer.
In the scene 1n FIG. 2E, when 1t 1s considered that a return
instruction in the address H 1s detected by the branch history,
an address of a return destination stored last 1s F+8, which 1s
a correct value as an address of a branch destination of the
return mstruction 1n the address H.

As an order for detection of a call instruction and comple-
tion of the execution of the call instruction, the detection 1s
always performed earlier. In other words, an address of a
branch destination of a return instruction 1s stored in the
return address stack X before the address 1s stored in the
return address stack. Since the completion of call instructions
1s always performed 1n order, a call istruction, a return des-
tination of which 1s stored in the return address stack X, 1s
executed after a call instruction, a return destination of which
1s stored 1n the return address stack.

Since return instructions should be detected in order from
one corresponding to a call istruction executed last, an
address of a return destination stored in the return address
stack X 1s required to be used for branch prediction earlier
than an address of a return destination stored 1n the return
address stack. Therefore, 1t 1s seen that, when a valid entry 1s
present 1n the return address stack X, 1t 1s necessary to acquire
an address of a branch destination from the return address
stack X regardless of a value of the return stack pointer.

For example, 1n the scene in FIG. 2D, when a return
instruction in the address I 1s detected, 1f a branch destination
1s acquired according to a value of the return stack pointer, a
wrong branch destination A+8 1s acquired. In this case, since
a valid entry 1s present in the return address stack X, a correct
branch destination D+8 1s acquired if an address registered
last 1s acquired from the return address stack X.

As described above, in the branch prediction system
according to the present embodiment, when a valid entry 1s
present 1n the return address stack X, an address of a branch
destination 1s acquired from a valid entry, a value of which 1s
stored last 1n the return address stack X. By adopting this
system, 1t 1s possible to perform highly accurate branch pre-
diction even when there are plural call instructions that have
been detected by the branch history but execution of which
has not been completed.

FIG. 3 1s a block diagram of a structure of the branch
predicting apparatus according to the present embodiment.
As shown 1n the figure, a branch predicting apparatus 200 1s

connected to an instruction fetch control unit 110 and a
branch reservation station 150.

The 1nstruction fetch control unit 110 1s a unit that controls
acquisition of an instruction to be executed in pipeline. A
request for acquisition of an instruction by the instruction
tetch control unit 110 1s sent to a cache control unit 120 for
actual acquisition of an 1nstruction and also sent to a branch
history 210 1n the branch predicting apparatus 200 for branch
prediction.

The cache control unit 120 1s a unit that acquires the
instruction requested by the mstruction fetch control unit 110
from a cache or a main storage. The instruction acquired by
the cache control unit 120 1s temporarily stored in an mnstruc-

10

15

20

25

30

35

40

45

50

55

60

65

8

tion butier 130 and, then, decoded by a decoder 140 and sent
to a reservation station corresponding to a type of the 1nstruc-
tion.

As the reservation station, there are the branch reservation
station 150, an integer arithmetic reservation station 160, a
floating-point arithmetic reservation station 170, an address
generation reservation station 180, and the like. A branch
istruction 1s sent to the branch reservation station 150 and
executed therein.

The branch predicting apparatus 200 includes the branch
history 210, a return address stack 220, a return address
artthmetic circuit 230, a return address stack X 240, a valid
control circuit 250, a return address arithmetic circuit 260, a
return stack pointer 270, a return address selection circuit
281, and an output selection circuit 282.

The branch history 210 1s a device that stores an address of
the branch instruction, which 1s executed 1n the branch reser-
vation station 150, and a branch destination according to the
istruction as a pair together with other information flags. A

call nstruction and a return instruction are types of the branch
instruction, and results of branch of the instructions are stored
in the branch history 210.

In addition, when the branch history 210 acquires an
address of an instruction stream from the instruction fetch
control unit 110, the branch history 210 refers to information
in the branch history 210 itself and judges whether branch
occurs according to an mstruction included in the instruction
stream. When 1t 1s judged that branch occurs, the branch
history 210 sends information like an address of a branch
destination to the output selection circuit 282.

The return address stack 220 1s a device that stores an
address of a return destination of a return istruction corre-
sponding to a call instruction executed 1n the branch reserva-
tion station 150. Respective entries of the return address stack
220 1include valid bits indicating validity of the entries. A
valid entry in the return address stack 220 sends address
information stored 1n the entry to the return address selection
circuit 281. Note that, in the explanation of the present
embodiment, i1t 1s assumed that the return address stack 220
includes four entries. However, the number of entries does not
always have to be four.

The return address arithmetic circuit 230 1s a circuit that
performs an arithmetic operation for converting an address of
a call instruction conveyed from the branch reservation sta-
tion 150 1nto an address of a return destination of a return
instruction and sends the address to the return address stack
220. As described already, 1n the processor explained accord-
ing to the present embodiment, the address of the return
destination of the return instruction 1s obtained by adding 8 to
the address of the call instruction. However, in processors of
other specifications, a conversion system may be different.

The return address stack X 240 1s a device that, when a call
instruction 1s detected by the branch history 210, stores an
address of a return destination of a return nstruction corre-
sponding to the call instruction. Respective entries of the
return address stack X 240 include valid bits indicating valid-
ity of the entries. The return address stack X 240 sends infor-
mation on a valid entry, a value of which 1s stored last, to the
return address selection circuit 281.

The valid control circuit 250 1s a circuit that controls states
of the valid bits 1n the entries of the return address stack X
240. The valid control circuit 250 changes the states of the
valid bits 1n the entries of the return address stack X 240
according to a state of a call hit signal or the like from the
branch history 210.

The return address arithmetic circuit 260 1s a circuit that
performs an arithmetic operation for converting an address of

US RE42,466 E

9

a call instruction detected by the branch history 210 into an
address of a return destination of a return instruction and
sends the address to the return address stack X 240. As in the
case of the return address arithmetic circuit 230, 1n the pro-
cessor explained according to the present embodiment, the
address of the return destination of the return instruction is
obtained by adding 8 to the address of the call instruction.
However, 1n processors of other specifications, a conversion
system may be different.

The return stack pointer 270 1s a device that holds values
indicating entries of a return address stack that should be used
when a return instruction 1s detected. More specifically, when
values held by the return stack pointer 270 are 000, 001, 010,
and 011, this means that entries SKT0, SKT1, STK2, and
STK3 of the return address stack 220 should be used for the
values, respectively. Note that, when a valid entry 1s present in
the return address stack X 240, branch prediction 1s per-
formed using information held in the return address stack X
240 regardless of values held 1n the return stack pointer 270.

The return address selection circuit 281 1s a circuit that
selects an appropriate address of a branch destination based
on information in the return address stack 220, the return
address stack X 240, and the return stack pointer 270 and
sends the address to the output selection circuit 282.

FI1G. 4 15 a flowchart of a processing procedure of the return
address selection circuit 281 shown 1n FIG. 3. As shown 1n the
figure, 1f valid address of a branch destination 1s sent from the
return address stack X 240 (Yes 1n step S1001), the retur
address selection circuit 281 sends the address information to
the output selection circuit 282 (step S1002). When there 1s no
information from the return address stack X 240 (No 1n step
S1001), 1f the return stack pointer 270 indicates a valid entry
in the return address stack 220 (Yes in step S1003) and 1f
address information 1s sent from the indicated entry (Yes 1n
step S1004), the return address selection circuit 281 sends
address information stored 1n the entry to the output selection
circuit 282 (step S1003). It the return stack pointer 270 does
not indicate a valid entry 1n the return address stack 200 or 1t
address information 1s not sent from the indicated entry (No 1n
step S1003 or No 1n step S1004), the return address selection
circuit 281 does not send address information to the output
selection circuit 282.

The output selection circuit 282 1s a circuit that selects
appropriate branch information from plural pieces of branch
information and sends the branch information to the instruc-
tion fetch control unit 110. More specifically, when the
branch history 210 has detected a return instruction, if address
information 1s sent from the return address selection circuit
281, the output selection circuit 282 sends the address as an
address of a return destination of the return instruction. Oth-
erwise, the output selection circuit 282 sends an address sent
by the branch history 210 as an address of a return destination
of the return 1nstruction.

FIGS. 5A to 5C are explanatory diagram for explaining
operations of the branch predicting apparatus 200 according
to the present embodiment. FIG. SA shows a scene 1n which
execution of a return instruction in the address C 1s completed
after the scene 1 FI1G. 2E. In response to the completion of the
execution of the return instruction, a hop operation is per-
formed 1n the return address stack to discard a content of
SKTO at the top and the value of the return stack pointer 1s
decremented by one to -2.

FIG. 5B shows a scene 1n which execution of a call instruc-
tion 1n the address D 1s subsequently completed. In response
to the completion of the execution of the call instruction, the
value of the return stack pointer 1s incremented by one to 1.
In addition, 1n the return address stack X, a shift operation 1s

10

15

20

25

30

35

40

45

50

55

60

65

10

performed to discard D+8 of STK-X1 at the top. On the other
hand, 1n the return address stack, D+8 that 1s an address of a
return destination of a return 1nstruction corresponding to the
call information, execution of which has been completed, 1s
stored 1n a top entry STKO.

As described above, 1n the branch predicting apparatus 200
according to the present embodiment, an address of a return
destination of a return instruction corresponding to a call
instruction detected by the branch history i1s temporarily
stored 1n the return address stack X and, when the execution
of the call imnstruction 1s completed by the execution unit, the
branch predicting apparatus 200 operates as 11 the address of
the return destination of the return instruction moves from the
return address stack X to the return address stack according to
a shift operation.

In other words, 1f detection of a call instruction and a return
instruction by the branch history 1s pertect, the return address
stack X and the return address stack function as an integrated
stack. Thus, 1t 1s possible to always accurately predict a
branch destination of the return istruction corresponding to
the call instruction detected by the branch history regardless
of the extent to which execution of the call instruction and the
return mstruction has made progress.

FIG. 5C shows a scene in which a return instruction 1s
subsequently detected in the address H. In this case, since a
valid entry 1s present in the return address stack X, F+8, which
1s address information stored in the return address stack X
last, 1s acquired as a branch prediction result. This 1s a scene
aiter plural entries are stored in the return address stack X.
The branch predicting apparatus 200 according to the present
embodiment succeeds 1n accurately predicting a branch des-
tination of a return instruction.

As described above, according to the first embodiment,
when a valid entry 1s present 1n the return address stack X, an
address of a branch destination 1s acquired from a valid entry,
a value of which 1s stored 1n the return address stack X last,
regardless of a value of the return stack pointer. Thus, 1t 1s
possible to perform highly accurate branch prediction even
when there are plural call instructions that have been detected
by the branch history but execution of which has not been
completed.

If the branch prediction system explained according to the
first embodiment 1s used, 1t 1s possible to perform highly
accurate branch prediction even when there are plural call
instructions that have been detected by the branch history but
execution of which has notbeen completed. However, there 1s
a problem 1n that, to improve accuracy of branch prediction
using this branch prediction system, entries 1n the number
suificient for the return address stack X have to be prepared,
leading to an increase 1n cost.

Thus, according to a second embodiment of the present
invention, a branch prediction system, which can perform
branch prediction highly accurately when there are plural call
instructions that have been detected by the branch history but
execution of which has not been completed while holding
down the number of entries 1n the return address stack X, will
be explained.

FIG. 6 1s a sample diagram of an instruction stream for
explaining an operation of a branch predicting apparatus
according to the second embodiment. As shown 1n the figure,
a main routine calls a subroutine A according to a call instruc-
tion 1 an address A (step S201). After executing several
instructions, the subroutine A returns to the main routine
according to a return instruction in an address C (step S202).
An address of a destination to which the subroutine A returns
according to the return 1nstruction 1s an 8-byte-address after
the address of the call instruction, that 1s, A+8.

US RE42,466 E

11

The main routine calls a subroutine B according a call
instruction 1n an address D (step S203). After executing sev-
eral 1nstructions, the subroutine B calls a subroutine C
according to a call instruction 1n an address F (step S204).
Then, after executing several instructions, the subroutine C
calls a subroutine D according to a call mstruction 1 an
address H (step S203).

After executing several instructions, the subroutine D
returns to the subroutine C according to a return instruction in
an address J (step S206). An address of a return destination 1s
H+8. After executing several instructions, the subroutine C
returns to the subroutine B according to a return instruction in
an address K (step S207). An address of a return destination 1s
F+8. After executing several instructions, the subroutine B
returns to the main routine according to a return instruction in
an address L (step S208). An address of a return destination 1s
D+38.

Next, an operation of a conventional branch predicting
apparatus will be explained with a case in which the mstruc-
tion stream shown 1n FIG. 6 1s executed as an example. Here,
so called the conventional branch predicting apparatus 1s the
branch predicting apparatus explained according to the first
embodiment. The branch predicting apparatus will be
explained assuming that there are two entries 1 a return
address stack.

FIGS. 7A to 7TH are explanatory diagrams for explaining
operations of the conventional branch predicting apparatus.
FIG. 7A shows a scene 1n which a call instruction 1s detected
by the branch history 1n the address A. Note that 1t 1s assumed
that the branch predicting apparatus 1s 1n an 1imitial state before
the call instruction 1s detected 1n the address A.

As shown 1n the figure, 1n this branch predicting apparatus,
a return address stack, a return address stack X, and a return
stack pointer are present. The return address stack 1s a gener-
ally-used return address stack and 1s an apparatus 1n which,
when execution of a call instruction 1s completed by an execu-
tion unit, an address of a return destination of a return 1nstruc-
tion corresponding to the call instruction 1s stored.

The return address stack X 1s a second return address stack
that 1s provided to improve prediction accuracy when, before
the execution of the call instruction 1s completed by the
execution unit, a return nstruction corresponding to the call
instruction 1s detected by the branch history. In addition, the
return address stack X 1s a device 1n which, when a called
instruction 1s detected by the branch history, an address of a
return destination of a return 1nstruction corresponding to the
call instruction 1s stored.

The return stack pointer 1s a device that decides which of
the entries 1n the return address stacks 1s an entry for which a
branch prediction result 1s acquired. When a value of the
return stack pointer 1s O or more, this means that an entry, for
which a branch prediction result 1s acquired, 1s present in the
return address stack. However, when a valid entry 1s present in
the return address stack X, an entry indicated by the return
stack pointer 1s not used for branch prediction.

FIG. 7A 1s a scene 1n which a call instruction 1s detected in
the address A. A+8 1s stored in STK-X1 at the top of the return
address stack X as an address of a return destination and a
value of the return stack pointer 1s decremented by one to 1.
Here, when it 1s assume that a return instruction in the address
C 1s detected by the branch history, since a valid entry 1s
present 1n the return address stack X, the value stored 1n the
latest entry STK-X1, that 1s, A+8 1s acquired as a branch
prediction result. A+8 1s a correct address as a branch desti-
nation of a return instruction in the address C.

FIG. 7B shows a scene after a return 1nstruction 1s detected
in the address C. Since STK-X1 1s used for branch prediction,

10

15

20

25

30

35

40

45

50

55

60

65

12

a valid bit thereot 1s set to OFF and STK-X1 1s invalidated. In
addition, the value of the return stack pointer 1s incremented
by one to O according to the detection of the return instruction.
FIG. 7C shows a scene 1n which execution of a call instruction
in the address A 1s subsequently completed. In response to the
completion of the execution of the call instruction, the
address A+8 of the return destination 1s stored in SKT0 at the
top of the return address stack and the value of the return stack
pointer 1s mncremented by one to 1.

FIG. 7D shows a scene 1n which a call instruction 1s sub-
sequently detected 1n the address D. In response to the detec-
tion of the call instruction, an address D+8 of a return desti-
nation 1s stored i STK-X1 at the top of the return address
stack X and the value of the return stack pointer 1s decre-
mented by one to 0. FIG. 7E shows a scene 1n which a call
istruction 1s subsequently detected in the address F. In
response to the detection of the call instruction, an address
F+8 of a return destination 1s stored in STK-X2 of the second
entry 1n the return address stack X and the value of the return
stack pointer 1s decremented by one to —1.

FIG. 7F shows a scene 1n which a call instruction 1s sub-
sequently detected 1n the address H. In response to the detec-
tion of the call instruction, H+8, which 1s an address of a
return address, 1s pushed to the return address stack X. How-
ever, since both the two entries are filled, the old information
D+8 1s pushed out and disappears. In this way, the return
address stack X comes 1nto a state 1n which H+8 1s stored 1n
STK-X2 and F+8 1s stored in STK-X1. In addition, the value
of the return stack pointer 1s decremented by one to -2.

Here, when it 1s assumed that a return instruction 1n the
address I 1s detected by the branch history, since a valid entry
1s present 1n the return address stack X, the value stored in the
latest entry STK-X2, that 1s, H+8 1s acquired as a branch
prediction result. H+8 1s a correct address as an address of a
branch destination of the return instruction in the address J.
FIG. 7G shows a scene alter the return instruction 1s detected
in the address J. Since STK-X2 1s used for branch prediction,

a valid bit thereof 1s set to OFF and STK-X2 1s invalidated. In

addition, the value of the return stack pointer 1s incremented
by one to -1 according to the detection of the return mnstruc-

tion.

Here, when it 1s assumed that a return instruction 1n the
address K 1s detected by the branch history, since a valid entry
1s present 1n the return address stack X, a value stored 1n the
latest entry STK-X1, that 1s, F+8 1s acquired as a branch
prediction result. F+8 1s a correct address as an address of a
branch destination of the return instruction in the address K.
FIG. 7H shows a scene after the return instruction 1s detected
in the address K. Since STK-X1 1s used for branch prediction,
a valid bit thereot 1s set to OFF and STK-X1 1s invalidated. In
addition, the value of the return stack pointer 1s incremented
by one to 0 according to the detection of the return instruction.

Here, when it 1s assumed that a return instruction 1n the
address L 1s detected by the branch history, since a valid entry
1s not present 1n the return address stack X and the value of the
return stack pointer 1s 0, the value stored 1n SK'T0 of the return
address stack, that 1s, A+8 1s acquired as a branch prediction
result. Since A+8 1s not an address of a branch destination of
the return mstruction 1n the address L, wrong branch predic-
tion 1s performed.

The wrong branch prediction i1s performed here because
the fact that D+8 was pushed out in the scene 1n FIG. 7F
because the number of entries was suilicient 1s not taken
into account. In the branch predicting apparatus according to
the present embodiment, 1t 1s imagined that a large number of

US RE42,466 E

13

entries are present 1n the return address stack X, and a system
for managing validity of those imaginary entries with a man-
agement table 1s adopted.

FIG. 8 1s an explanatory diagram for explaining an outline
of the branch prediction system according to the present
embodiment. As shown 1n the figure, a return hit table and a
call hit counter are used 1n the branch prediction system
according to the present embodiment.

The return hit table 1s a table for managing validity of
respective entries 1n the 1maginary return address stack X.
Each bit in the return hit table corresponds to one entry in the
imaginary return address stack X and takes 0 as an initial
value. IT the bit takes a value O, this indicates that an 1magi-
nary entry corresponding thereto 1s valid, and 1if the bit takes
a value 1, this indicates that an imaginary entry corresponding
thereto 1s used for branch prediction and 1nvalidated.

In the return hit table, the bits are used 1n order from a least
significant bit XH1 every time a call istruction 1s detected,
and a value of the least significant bit 1s discarded according
to a shift operation every time the execution of the call
instruction 1s completed. This 1s because, 1f the execution of
the call instruction 1s completed, since an address of a return
destination of a return instruction 1s stored in the return
address stack, the entries 1in the imaginary return address
stack X are made unnecessary.

Since the return hit table only has to have one bit for each
entry of an 1imaginary return address stack X, 1t 1s possible to
mount the return hit table at extremely low cost. For example,
when an address length 1s assumed to be 64 bits, 1t eight
entries are provided 1n an actual return address stack X, total
512 (64x8) bits are required. However, the return hit table
requires only 8 bits.

The call hit counter takes O as an mitial value and is incre-
mented by one every time a call instruction 1s detected and
decremented by one every time execution of the call mstruc-
tion 1s completed. Therefore, a value of the call hit counter
indicates the number of call istructions that have been
detected by the branch history but execution of which has not
been completed, that 1s, the number of entries in the 1magi-
nary return address stack X 1n which the value 1s stored.

FIG. 8 indicates that the value of the call hit counter 1s 5,
there are five call instructions, execution of which has not
been completed by the execution unit, and addresses of return
destinations of return instructions corresponding to those call
instructions are stored 1n five entries 1n the imaginary return
address stack X.

The return instructions corresponding to some of those call
instructions may have already been detected by the branch
history. In an example 1n FIG. 8, third and fifth call instruc-
tions are pertinent to such call imstructions, and values of bits
in the return hit table corresponding to the call instructions are
1. When a return nstruction 1s detected and an entry 1s made
unnecessary, a bit corresponding to the entry 1s held 1n the
return hit table to hold an order for shift-out at the time when
the execution of the call instruction 1s completed.

It 1s assumed that the actual return address stack X includes
only two entries because of limitation on cost or the like. In
this return address stack X, an address of a return destination
of a return instruction 1s pushed when a call mstruction 1s
detected, and a content of a latest entry 1s discarded by a pop
operation when a return instruction 1s detected. When a call
instruction 1s detected 1n a state 1n which all the entries are
filled, a content of an oldest entry 1s pushed out and discarded.

In the example 1n FIG. 8, since three valid entries are
present 1n the imaginary return address stack X but only two
entries are present in the actual return address stack X, a
content of an oldest entry 1s pushed out. However, since a

10

15

20

25

30

35

40

45

50

55

60

65

14

record in the return hit table indicates that three entries should
originally be present in the return address stack X, it 15 pos-
sible to prevent an address of a branch destination from being

acquired by mistake from the return address stack as in the
case of FIGS. 7 and 8.

In the branch prediction system according to the present
embodiment, when a return instruction 1s detected by the
branch history, 1 a value of the call hit counter 1s 1 or more,
the return hit table 1s checked. Then, 11 at least one bit having
a value 0 1s present between a bit indicated by the call hit
counter to a least significant bit, a value of a bit closest to a
position indicated by the call hit counter 1s changed to 1, and
a content 1n a latest entry of the actual return address stack X
1s acquired to set the content as a branch prediction result.

When address information has been discarded by pushout,
all entries 1n the return address stack X may have been 1nvali-
dated. In this case, since 1t 1s impossible to perform branch
prediction using the return address stack X and the return
address stack, a prediction result by the branch history 1is
adopted as a branch prediction result. Although the prediction
result by the branch history may be wrong, 1t 1s possible to
acquire a prediction result that 1s much higher 1n accuracy
than acquiring an address from the return address stack by
mistake.

If a bit having a value 0 1s not present in the return bit table
at all, since all the entries 1n the 1imaginary return address
stack X have been used, an address of a return destination 1s
acquired from the return address stack according to the return
stack pointer.

As described above, in the branch prediction system
according to the present embodiment, validity of the respec-
tive entries in the imaginary return address stack X 1s man-
aged by the return hit table. Thus, even when the number of
entries 1n the actual return address stack X 1s not enough, 1t 1s
possible to perform branch prediction while keeping high
accuracy.

Actually, since it 1s assumed that there are few scenes 1n
which a larger number of pieces of address information are
pushed to the return address stack X, this system, which can
keep accuracy of branch prediction high while holding down
the number of entries 1n the return address stack X, has
extremely high cost performance.

FIG. 9 1s a block diagram of a structure of the branch
predicting apparatus according to the present embodiment.
Since components from the mstruction fetch control unit 110
to the address generation reservation station are the same as
those according to the first embodiment, explanations thereof
are omitted.

A branch predicting apparatus 300 includes a branch his-
tory 310, a return address stack 320, a return address arith-
metic circuit 330, a return address stack X 340, a return
address arithmetic circuit 350, a call hit counter 360, a return
hit table 370, a return stack pointer 380, a return address
selection circuit 391, and an output selection circuit 392.

The branch history 310, the return address stack 320, and
the return address arithmetic circuit 330 correspond to and
have the same functions as the branch history 210, the return
address stack 220, and the return address arithmetic circuit
230 according to the first embodiment, respectively.

The return address stack X 340 1s a device that, when a call
instruction 1s detected by the branch history 310, stores an
address of a return destination of a return instruction corre-
sponding to the call instruction. The return address stack X
340 has two entries X-TOP and X-NX'T. In the return address
stack X340, since an address 1s pushed at the time of detection
of a call instruction and a content of a latest entry pops up at

US RE42,466 E

15

the time of detection of a return instruction, the top entry
X-TOP 1s always the latest entry.

The return address arithmetic circuit 350 1s a circuit that
performs arithmetic operation for converting an address of a
call instruction detected by the branch history 310 into an
address of a return destination of a return instruction and
sends the address to the return address stack X 340.

The call hit counter 360 1s a device that keeps information
on an entry 1n the imaginary return address stack X corre-
sponding to the return hit table 370 up to which address
information 1s stacked.

FI1G. 10 1s a logical circuit diagram of a circuit structure of
the call hit counter 360. As shown 1n the figure, the call hit
counter 360 has a latch of K bits sufficient for holding the
number of 1maginary entries and outputs a value held by this
latch as a CALL_HIT_CTR signal. The latch 1s set to O at the
time of imitialization and incremented by one every time a call
hit signal from the branch history 310 1s turned ON and
decremented by one every time a call instruction flag from the
branch reservation station 150 1s turned ON.

FI1G. 11 1s a logical circuit diagram of a decoder section of
the call hit counter 360. As shown in the figure, the CALL_
HIT_CTR signal outputted from the call hit counter 360 1s
decoded by the decoder to turn ON one of CTR_EQ_0 to
CTR_EQ_m 31gnals For example, 11 a value of the CALL_
HIT_CTR signal 1s 0, CTR_EQ_0 1s turned ON and, if the
value 1s m, CTR_E(Q_m 1s turned ON.

The return hit table 370 1s a device that holds bits indicating,
validity of entries in the imaginary return address stack X
corresponding thereto. Each bit of the return hit table 370 has
an 1nitial value O, which changes to 1 when an imaginary entry
corresponding thereto 1s used for prediction. In addition, a bit
corresponding to an oldest imaginary entry 1s shifted out
every time the execution of the call instruction 1s completed.

FI1G. 12 1s a logical circuit diagram of a circuit structure of
the return hat table 370. As shown 1n the figure, the return hat
table 370 holds information of m bits XH1 to XHm, and
values of the respective bits are controlled by XH1_SET to
XHm_SET signals. For example, the 1-th bit XHj 1s controlled
by an XHj_SET signal. This XHj_SET signal 1s turned ON
when a return hit signal from the branch history 310 1s ON and
all bits from a bit next to the j-th bit of the return hit table 370
to a bit indicated by the call hit counter 360 have a value 1 or
when a value of the call hit counter 360 1s 5.

FI1G. 13 1s a logical circuit diagram of a circuit structure of
an output section of the return hit table 370. As shown 1n the
figure, a USE_ X signal outputted from the return hit table 370
1s turned ON when any one of bits from a least significant bit
of the return hit table 370 to a bit indicated by the call hit
counter 360 has a value 1.

The return stack pointer 380 1s a device that holds entries in
the return address stack that should be used when a return

instruction 1s detected. More specifically, when values held
by the return stack pointer 380 are 000, 001,010, and 011, this

means that entries STKO0, SKT1, STK2, and STK3 in the
return address stack 220 should be used, respectively. Note
that, when a valid entry 1s present in the return address stack
X 340, branch prediction 1s performed using information held
by the return address stack X 340 regardless of a value held by
the return stack pointer 380.

FI1G. 14 1s a logical circuit diagram of a circuit structure of
the return stack pointer 380. As shown 1n the figure, the return
stack pointer 380 has a latch consisting of three bits <2:0>and
outputs a value held by thus latch asa RTN_STK_PTR signal.
A value of the latch 1s 000 1n an 1n1tial state and 1s incremented
by one every time a call instruction flag from the branch
reservation station 150 1s turned ON and 1s decremented by

5

10

15

20

25

30

35

40

45

50

55

60

65

16

one every time a return nstruction flag from the branch res-
ervation station 150 1s turned ON. In addition, the value of the
latch 1s decremented by one every time a call hit signal from
the branch history 310 1s turned ON and i1s incremented by
one every time a return hit signal from the branch history 310
1s turned ON.

FIG. 15 15 alogical circuit diagram of a decoder section of
the return stack pointer 380. As shown in the figure, a
RTN_STK_PTR signal outputted from the return stack
pointer 380 1s decoded by the decoder to turn ON any one of
PTR_EQ_000 to PTR_EQ_111 signals. More specifically,
when a value of the RTN_STK_PTR signal 1s O to 3, the
PTR_EQ_000 to PITR_EQ 011 signals are turned ON,
respectively, and when a value of the RTN_STK_PTR signal
1s negative, the PTR_EQ_111 signal 1s turned ON.

Note that, when entries 1n the return address stack 320
increases, the number of bits of the latch of the return stack
pointer 380 i1s increased to a width enough for specifying
those entries.

The return address selection circuit 391 1s a circuit that
selects an appropriate address of a branch destination based
on information of the return address stack 320, the return
address stack X 340, and the return stack pointer 380 and
sends the address to the output selection circuit 392.

The output selection circuit 392 1s a circuit that selects
appropriate branch information from plural pieces of branch
information and sends the branch information to the mstruc-
tion fetch control unit 110. More specifically, when the
branch history 310 detects a return instruction, 1 address
information has been sent from the return address selection
circuit 391, the output selection circuit 392 sends the address
as an address of a return destination of the return instruction.
Otherwise, the output selection circuit 392 sends an address
sent by the branch history 310 as an address of a return
destination of the return nstruction.

FIG. 16 1s a logical circuit diagram of circuit structures of
the return address selection circuit 391 and the output selec-
tion circuit 392. As shown i the figure, when an
X_TOP_VALID signal indicating validity of a top entry in the
return address stack X340 1s ON, 1t a USE_ X signal outputted

from the return hit table 370 1s ON, an X_TOP_SEL signal 1s

turned ON and indicates that an address of a return destination
of a return instruction should be acquired from the return
address stack X340.

In addition, when the [X_TOP_VALID] USE X signal is
not ON, 1T an entry in the return address stack 320 indicated by
the return stack pointer 380 1s valid, any one of STK0_SEL to
STK3_SEL signals corresponding to the entry 1s turned ON
and 1ndicates that an address of a return destination of a return
instruction should be acquired from the return address stack
320.

Two or more of the X _TOP_SEL signal and the
STKO_SEL to STK3_SEL signals are never turned ON
simultaneously, and a first selector equivalent to the return
address selection circuit 391 outputs a content of an entry

corresponding to an ON signal to a second selector as a
branch prediction result. When none of the X_TOP_SEL

signal and the STK0_SEL to STK3_SEL signals are not ON,
output to the second selector 1s not performed.

If any one of the X_TOP_SEL signal and the STK0_SEL to
STK3_SEL signals 1s ON and a return hit signal from the
branch history 310 1s ON, the second selector equivalent to
the output selection circuit 392 outputs an address, which 1s
outputted from the first selector, to the instruction fetch con-
trol unit 110 as a branch prediction result. In other cases, the

US RE42,466 E

17

second selector outputs an address outputted from the branch
history 310 to the instruction fetch control umt 110 as a
branch prediction result.

Note that, when branch prediction fails, the return address
stack 320, the return address stack X 340, the call hit counter
360, the return hat table 370, and the return stack point 380 are
reset to an 1nitial state.

In the explanation according to the present embodiment,
the respective bits of the return hit table 370 are initialized at
a value 0 and the value 1s changed to 1 at the time of detection
of areturn instruction. However, the bits may be imitialized at
a value 1 and the value may be changed to 0 at the time of
detection of a return instruction. A structure of the return hit
table 370 1n such a case will also be explained.

FIG. 17 1s a logical circuit diagram of a circuit structure of
the return hit table 370. As shown 1n the figure, the return hit
table 370 holds information of m bits XH1 to XHm, and
values of the respective bits are controlled by XH1_SET to
XHm_SET signals. For example, a jth-bit XHj 1s controlled
by the XHj_SET signal.

If a call hit signal from the branch history 310 1s turned ON,
this XHj_SET signal 1s turned OFF when a value of the call hit
counter 360 at that point 1s j-1 to change a value of a bit
corresponding thereto of the return hit table 370 to O. In other
words, when the call hit signal from the branch history 310 1s
turned ON, a value of a bit, which the call hit counter 360
indicates anew, 1s updated to O.

If a return hit signal from the branch history 310 1s turned
ON, the XHj_SET signal 1s turned ON when all bits with
values 1n the call hit counter 360 at that point more significant
than 1 have a value 1 to change a value of a bit corresponding
thereto of the return hit table 370 to 1. In other words, when
the return hit signal from the branch history 310 1s turned ON,
a value of a most significant bit, a value of which in the return
hit table 370 1s O, 1s updated to 1.

In this way, the respective bits of the return hit table 370
take a value 0 only when a valid value 1s present 1n entries in
the imaginary return stack X corresponding thereto and takes
a value 1 1n other cases.

FIG. 18 1s a logical circuit diagram of an output section of
the return hit table 370. As shown 1n the ﬁgure a USE_X
signal outputted from the return hit table 370 1s turned ON
when at least one bit, which does not take a value 1, 1s present
in all the bits of the return hit table 370. When a bit, which
does not take a value 1, 1s present in the return hit table 370,
this means that a valid value 1s present in the entries in the
imaginary return stack X.

Next, an operation of the branch predicting apparatus
according to the present embodiment will be explained with a
case 1n which the mstruction stream in FIG. 6 1s executed as
an example. FIG. 19A to 19L are explanatory diagrams for
explaining the operation of the branch predicting apparatus
according to the present embodiment. Note that, 1n the expla-
nation of the present embodiment, a system for initializing,
respective bits of a return hit table with a value 0 1s used.

FIG. 19A 15 a scene 1n which a call instruction 1s detected
in the address A. A+8 1s stored 1n X-TOP at the top of the
return address stack X as an address of a return destination
and a value of the return stack pointer 1s decremented by one
to —1. In addition, a value of the call hit counter 1s decre-
mented by one to 1.

Here, when 1t 1s assumed that a return instruction in the
address C 1s detected by the branch history, since a bit with a
value 0 1s present between a least significant bit of the return
hit table and a bit indicated by the call hit counter, a value
stored 1n X-TOP that 1s a valid latest entry 1n the return
address stack X, that 1s, A+8 1s acquired as a branch prediction

10

15

20

25

30

35

40

45

50

55

60

65

18

result. A+8 1s a correct address as a branch destination of the
return mstruction 1n the address C.

FIG. 19B shows a scene after the return instruction 1s
detected in the address C. A pop operation 1s performed 1n the
return address stack X according to the detection of the return
instruction to discard information in X-TOP. In addition, the
value of the return stack pointer 1s incremented by one to 0. In
the return hit table, a value of a bit of XH1 indicated by the call
hit counter changes to 1, and the return hit table stores the fact

that an 1maginary entry corresponding thereto has been used.
FIG. 19C shows a scene 1 which execution of the call

instruction in the address A 1s subsequently completed. In

response to the completion of the execution of the call instruc-
tion, the address A+8 of a return destination 1s stored 1n SKTO0
at the top of the return address stack and the value of the return
stack pointer 1s incremented by one to 1. In addition, the value
of the call hit counter 1s decremented by one to 0. In the return
hit table, a shift operation 1s performed to discard the least
significant bit.

FIG. 19D shows a scene in which a call instruction 1s
subsequently detected in the address D. In response to the
detection of the call instruction, an address D+8 of a return
destination 1s stored 1n X-TOP at the top of the return address
stack X and the value of the return stack pointer 1s decre-
mented by one to 0. In addition, the value of the call hit
counter 1s incremented by one to 1.

FIG. 19E shows a scene 1 which a call instruction 1s
subsequently detected in the address F. In response to the
detection of the call instruction, an address F+8 of a return
destination 1s pushed to the return address stack X and the
value of the return stack pointer 1s decremented by one to 1.
In addition, the value of the call hit counter 1s incremented by
one to 2.

FIG. 19F shows a scene in which a call instruction 1s
subsequently detected in the address H. In response to the
detection of the call instruction, an address H+8 of a return
destination 1s pushed to the return address stack X. However,
since both two entries have already been filled, old informa-
tion D+8 1s pushed out and disappears. In this way, in the
return address stack X, H+8 1s stored in X-TOP and F48 1s
stored 1n X-NXT. In addition, the value of the return stack
pointer 1s decremented by one to -2 and the value of the call
hit counter 1s incremented by one to 3.

Here, when 1t 1s assumed that a return instruction 1n the
address I 1s detected by the branch history, since a bit with a
value 0 1s present between a least significant bit of the return
hit table and a bit indicated by the call hit counter, a value
stored 1n X-TOP that 1s a valid latest entry 1n the return
address stack X, that 1s, H+8 1s acquired as a branch predic-
tion result. H+8 1s a correct address as an address of a branch
destination of the return instruction in the address J.

FIG. 19G shows a scene after the return instruction 1s
detected 1n the address J. A pop operation 1s performed 1n the
return address stack X according to the detection of the return
instruction and information in X-NX'T 1s moved to X-TOP. In
addition, the value of the return stack pointer 1s incremented
by one to —1. In the return hit table, a value of a bit of XH3
indicated by the call hit counter changes to 1, and the return
hit table stores the fact that an 1imaginary entry corresponding
thereto has been used.

Here, when 1t 1s assumed that a return instruction in the
address K 1s detected by the branch history, since a bit with a
value 0 1s present between the least significant bit of the return
hit table and a bit indicated by a call hit counter, a value stored
in X-TOP that 1s a valid latest entry in the return address stack
X, that 1s, F+8 1s acquired as a branch prediction result. F+8 1s

US RE42,466 E

19

a correct address as an address of a branch destination of the
return istruction 1n the address K.

FIG. 19H shows a scene after the return mstruction 1s
detected in the address K. A pop operation 1s performed in the
return address stack X according to the detection of the return
instruction to discard information 1n X-TOP. In addition, the
value of the return stack pointer 1s incremented by one to 0. In
the return hit table, a bit of XH3 indicated by the call hit
counter already has a value 1, a value of a bit of the next XH?2
changes to 1, and the return hit table stores the fact that an
imaginary entry corresponding thereto has been used.

Here, when 1t 1s assumed that a return instruction in the
address L 1s detected by the branch history, since a bit with a
value 1 1s present between the least significant bit of the return
hit table and a bit indicated by the call hit counter, it 1s
attempted to acquire address information from X-TOP that 1s
a latest entry 1n the return address stack X. However, since
information 1s not present in X-TOP already, address infor-
mation cannot be acquired. In this case, since a correct
address of a branch destination cannot be acquired even 1f
address information 1s acquired from the return address stack,
a predicted value of the branch history 1s adopted as a predic-
tion result.

If the branch history can predict a correct address, branch
prediction will be successtul. Whereas branch prediction
always fails 1n the scene i FIG. 7H that shows the same
instruction execution state, in the branch prediction system
according to the present embodiment, 1t 1s possible to signifi-
cantly improve accuracy of branch prediction by performing
branch prediction using the branch history.

FIG. 191 shows a scene after the return instruction 1s
detected in the address L. A pop operation 1s performed 1n the
return address stack X according to the detection of the return
instruction. In addition, the value of the return stack pointer 1s
incremented by one to 1. Since the bit of XH3 and the bit of
HX2 already take a value 1 1n the return hit table, a value of a

it of the next XH1 changes to 1, and the return hit table stores
the fact that all the imaginary entries have been used.

If the execution of the call mstruction in the address D 1s
completed before the return instruction in the address L 1s
detected, accuracy of branch prediction 1s further improved.
Since the execution of the return nstruction 1n the address C
1s required to be completed to complete the execution of the
call instruction 1n the address D, 1t 1s assumed that the execu-
tion of the return mstruction 1n the address C 1s completed in
the scene of FIG. 19H.

FI1G. 19] shows a scene in which the execution of the return
instruction 1n the address C 1s completed 1n the state 1n FIG.
19H. In response to the completion of the execution of the
return instruction, a pop operation is performed in the return
address stack to discard a content of SKT0 at the top. In
addition, the value of the return stack pointer 1s decremented
by one to -1.

FIG. 19K shows a scene 1n which the execution of the call
instruction in the address D i1s subsequently completed. In
response to the completion of the execution of the call instruc-
tion, the address D+8 of a return destination 1s stored 1n SKT0
at the top of the return address stack and the value of the return
stack pointer 1s incremented by one to 0. In addition, the value
of the call hit counter 1s decremented by one to 2. In the return
hit table, a shift operation 1s performed to discard the least
significant bit.

Here, when 1t 1s assumed that a return instruction in the
address L 1s detected by the branch history, since a bit with a
value O 1s not present between the least significant bit of the
return hit table and a bit indicated by the call hit counter, the
value stored in SKTO that 1s an entry in the return address

10

15

20

25

30

35

40

45

50

55

60

65

20

stack indicated by the return stack pointer, that 1s, D+8 1s
acquired as a branch prediction result. D+8 1s a correct
address as an address of a branch destination of the return
instruction 1n the address L.

In this way, if the execution of the call istruction 1s com-
pleted promptly, 1t 1s possible to perform branch prediction
highly accurately without increasing the number of entries in
the return address stack X with the branch prediction system
according to the present embodiment.

FIG. 19L shows a scene after the return instruction 1s
detected 1n the address L. According to the detection of the
return instruction, a pop operation 1s performed 1n the return
address stack X. In addition, the value of the return stack
pointer 1s mncremented by one to 1.

As described above, according to the second embodiment,
validity of entries 1n the imaginary return address stack X 1s
managed by the management table consisting of a small num-
ber of bits. Thus, it 1s possible to perform branch prediction
highly accurately while holding down the number of entries
in the actual return address stack X.

Note that, 1n the explanation according to the present
embodiment, bits 1n the return hit table are used 1n order from
a least significant bit. However, the bits do not have to be used
in this way. For example, 1t 1s also possible to use the bits 1n
order from a most significant bit and to use the bits like a
stack.

In the branch prediction system explained in the second
embodiment, a bit of a management table for imaginary
entries 1s updated with detection of a return instruction as an
opportunity. However, it 1s also possible to update a bit of a
management table for imaginary entries with detection of a
call mstruction as an opportunity. According to the a third
embodiment of the present invention, a branch prediction
system for updating a bit of a management table for imaginary
entries with detection of a call instruction as an opportunity
will be explained.

FIG. 20 1s an explanatory diagram for explaining an outline
of the branch prediction system according to the third
embodiment. As shown 1n the figure, in the branch prediction
system according to the present embodiment, an X valid table
and a call hit counter are used.

The X valid table 1s a table for managing validity of respec-
tive entries 1n an imaginary return address stack X. Each bitof
the return hit table corresponds to one entry 1n the imaginary
return address stack X and takes 0 as an 1nitial value. It a bit
has a value 0, this indicates that an 1maginary entry corre-
sponding thereto 1s mvalid, and 11 a bit has a value 1, this
indicates that an 1maginary entry corresponding thereto is
valid.

In the X valid table, a value 1 1s set 1n order from a least
significant bit XV1 every time a call mstruction 1s detected
and a bit with a most significant value 1 is reset to a value 0
every time a return instruction is detected. In addition, a value
of the least significant bit 1s discarded by a shift operation
every time execution of the call instruction 1s completed. This
1s because, when the execution of the call instruction 1s com-
pleted, since an address of a return destination of the return
instruction 1s stored 1n a return address stack, entries in the
imaginary return address stack X are made unnecessary.

Since the X valid table only has to have one bit for each
entry of the imaginary return address stack X, 1t 1s possible to
mount the X valid table at extremely low cost. For example,
when an address length 1s assumed to be 64 bits, 1f eight
entries are provided in the actual return address stack X, total
512 (64x8) bits are required. However, the X valid table
requires only 8 bits.

US RE42,466 E

21

The call hit counter takes O as an 1nitial value and 1s 1incre-
mented by one every time a call instruction 1s detected and
decremented by one every time execution of the call mstruc-
tion 1s completed. Therefore, a value of the call hit counter
indicates the number of call instructions that have been
detected by the branch history but execution of which has not
been completed, that 1s, the number of entries in the 1magi-
nary return address stack X 1n which the value 1s stored.

FIG. 20 indicates that the value of the call hit counter 1s 5,
there are five call instructions, execution of which has not
been completed by the execution unit, and addresses of return
destinations of return instructions corresponding to those call

instructions are stored 1n five entries 1n the imaginary return
address stack X.

The return 1nstructions corresponding to some of those call
instructions may have already been detected by the branch
history. In an example 1n FI1G. 20, third and fifth call instruc-
tions are pertinent to such call mstructions, and values of bits
in the X valid table corresponding to the call instructions are
0. When a return instruction 1s detected and an entry 1s made
unnecessary, a bit corresponding to the entry 1s held in the X
valid table to hold an order for shift-out at the time when the
execution of the call mstruction 1s completed.

It 1s assumed that the actual return address stack X includes
only two entries because of limitation on cost or the like. In
this return address stack X, an address of a return destination
of a return instruction 1s pushed when a call instruction 1s
detected, and a content of a latest entry 1s discarded by a pop
operation when a return instruction 1s detected. When a call
instruction 1s detected 1n a state 1n which all the entries are
filled, a content of an oldest entry 1s pushed out and discarded.

In the example 1n FIG. 20, since three valid entries are
present 1n the imaginary return address stack X but only two
entries are present in the actual return address stack X, a
content of an oldest entry 1s pushed out. However, since a
record 1n the X valid table indicates that three entries should
be originally present 1n the return address stack X, 1t 1s pos-
sible to prevent an address of a branch destination from being
acquired by mistake from the return address stack as in the
case of FIGS. 7 and 8 according to the second embodiment.

In the branch prediction system according to the present
embodiment, when a return instruction i1s detected by the
branch history, if a value of the call hit counter 1s 1 or more,
the X valid table 1s checked. Then, 11 at least one bit having a
value 1 1s present among all the bits, a value of a highest bit
with a value 1 1s changed to O, and a content of a latest entry
in the actual return address stack X 1s acquired to set the
content as a branch prediction result.

When address information has been discarded by pushout,
all entries 1n the return address stack X may have been invali-
dated. In this case, since 1t 1s impossible to perform branch
prediction using the return address stack X and the return
address stack, a prediction result by the branch history 1is
adopted as a branch prediction result.

If a bit having a value 1 1s not present 1in the X valid table at
all, since all the entries 1n the imaginary return address stack
X have been used, an address of a return destination 1s
acquired from the return address stack according to the return
stack pointer.

As described above, in the branch prediction system
according to the present embodiment, validity of the respec-
tive entries in the imaginary return address stack X 1s man-
aged by the X valid table. Thus, even when the number of
entries 1n the actual return address stack X 1s not enough, 1t 1s
possible to perform branch prediction while keeping high
accuracy.

10

15

20

25

30

35

40

45

50

55

60

65

22

FIG. 21 1s a block diagram of the structure of the branch
predicting apparatus according to the present embodiment.
Since components from the mstruction fetch control unit 110
to the address generation reservation station are the same as
those according to the first embodiment, explanations thereof
are omitted.

A branch predicting apparatus 400 includes a branch his-
tory 410, a return address stack 420, a return address arith-
metic circuit 430, a return address stack X 440, a return
address arithmetic circuit 450, a call hit counter 460, an X
valid table 470, a return stack pointer 480, a return address
selection circuit 491, and an output selection circuit 492.

The branch history 410, the return address stack 420, the
return address arithmetic circuit 430, the return address stack
X 440, the return address arithmetic circuit 450, the return
stack pointer 480, the return address selection circuit 491, and
the output selection circuit 492 correspond to and have the
same functions as the branch history 310, the return address
stack 320, the return address arithmetic circuit 330, the return
address stack X 340, the return address arithmetic circuit 350,
the return stack pointer 380, the return address selection
circuit 391, and the output selection circuit 392 according to
the second embodiment, respectively.

The call hit counter 460 1s a device that keeps information
on an entry 1n the imaginary return address stack X corre-
sponding to the X valid table 470 up to which address infor-
mation 1s stacked. As shown in FIG. 10 according to the
second embodiment, the call hit counter 460 has a latch of K
bits suilicient for holding the number of 1imaginary entries and
outputs a value held by this latch as a CALL_HIT_CTR
signal. The latch 1s set to O at the time of 1mtialization and
incremented by one every time a call hit signal from the
branch history 410 1s turned ON and decremented by one
every time a call instruction flag from the branch reservation
station 150 1s turned ON.

As shown 1n FIG. 11 according to the second embodiment,
a CALL_HIT_CTR signal outputted from the call hit counter
460 1s decoded by the decoder to turn ON one of CTR_EQ_0
to CTR_EQ_m signals. For example, 11 a value of the CALL_
HIT_CTR signal 1s zero, CTR_EQ_0 1s turned ON and, 1f the
value 1s m, CTR_EQ_m 1s turned ON.

The X valid table 470 1s a device that holds bits indicating,
validity of entries in the imaginary return address stack X
corresponding thereto. Each bit of the X valid table 470 has an
initial value 0. A value of the bit 1s set to 1 when a value 1s
stored 1n an 1maginary entry corresponding thereto and 1s
reset to 0 when a return mstruction 1s detected and a value of
an 1maginary entry corresponding thereto 1s used for predic-
tion. In addition, a bit corresponding to an oldest imaginary
entry 1s shifted out every time execution of the call instruction
1s completed.

FIG. 22 1s a logical circuit diagram of a circuit structure of
the X valid table 470. As shown in the figure, the X valid table
470 holds information of m bits XV1 to XVm, and values of
the respective bits are controlled by XV1_SET to XVm_SET
signals. For example, the j-th bit XV7 1s controlled by an
XV1_SET signal.

If a call hit signal from the branch history 410 1s turned ON,
this XVj1_SET signal 1s turned ON when a value of the call hit
counter 460 at that point 1s j-1 and changes a value of a bit
corresponding thereto of the X valid table 470 to 1. In other
words, when the call hit signal from the branch history 410 1s
turned ON, a value of a bit, which the call hit counter 460
indicates a new, 1s updated to 1.

If a return hit signal from the branch history 410 1s turned
ON, the XV_SET signal 1s turned OFF when all bits with

values 1n the call hit counter 460 at that point more significant

US RE42,466 E

23

than 1 have a value O and changes a value of a bit correspond-
ing thereto of the X valid table 470 to a value 0. In other
words, when the return hit signal from the branch history 410

1s turned ON, a value of a most significant bit, which1s 1 in the
X valid table 470, 1s updated to O.

In this way, the respective bits of the X valid table 470 take
a value 1 only when a valid value 1s present 1n entries in the
imaginary return stack X corresponding thereto and takes a
value O 1n other cases.

FI1G. 23 1s a logical circuit diagram of an output section of
the X valid table 470. As shown 1n the figure, a USE_X si1gnal

outputted from the X valid table 470 1s turned ON when at

least one bit, which takes a value 1, 1s present 1n all the bits of
the X valid table 470. When a bit, which takes a value 1, 1s

present 1n the X valid table 470, this means that a valid value
1s present 1n the entries in the imaginary return stack X.

Note that, when branch prediction fails, the return address
stack 420, the return address stack X 440, the call hit counter
460, the X valid table 470, and the return stack point 480 are
reset to an 1nitial state.

Next, an operation of the branch predicting apparatus
according to the present embodiment will be explained with a
case 1n which the instruction stream 1n FIG. 6 according to the
second embodiment 1s executed as an example. FIGS. 24 A to
241 are explanatory diagrams for explaining the operation of
the branch predicting apparatus according to the present
embodiment. Note that, according to the present embodi-
ment, 1t 1s assumed that all bits of the X valid table are set to
a value O at the time of 1nitialization.

FIG. 24 A 1s a scene 1n which a call instruction 1s detected
in the address A. A+8 1s stored 1n X-TOP at the top of the
return address stack X as an address of a return destination
and a value of the return stack pointer 1s decremented by one
to —1. In addition, a value of the call hit counter 1s incremented
by one to 1, and a value 1 1s set in XV1 of the X valid table
indicated by the call hit counter.

Here, when 1t 1s assumed that a return instruction in the
address C 1s detected by the branch history, since a bit with a
value 1 1s present 1in the X valid table, a value stored in X-TOP
that 1s a valid latest entry in the return address stack X, that 1s,
A+8 1s acquired as a branch prediction result. A+8 1s a correct
address as a branch destination of the return 1nstruction in the
address C.

FIG. 24B shows a scene after the return mstruction 1s
detected in the address C. A pop operation 1s performed 1n the
return address stack X according to the detection of the return
mstruction to discard information 1n X-TOP. In addition, the
value of the return stack pointer 1s incremented by one to 0. In
the X valid table, a value of a bit of XH1 indicated by the call
hit counter changes to 1, and the X valid table stores the fact
that an imaginary entry corresponding thereto has been used.

FIG. 24C shows a scene 1n which execution of the call
instruction in the address A 1s subsequently completed. In
response to the completion of the execution of the call instruc-
tion, the address A+8 of a return destination 1s stored 1n SKT0
at the top of the return address stack and the value of the return
stack pointer 1s incremented by one to 1. In addition, the value
of the call hit counter 1s decremented by one to 0. In the X
valid table, a shift operation 1s performed to discard a least
significant bit.

FIG. 24D shows a scene in which a call instruction 1s
subsequently detected in the address D. In response to the
detection of the call instruction, an address D+8 of a return
destination 1s stored in X-TOP at the top of the return address
stack X and the value of the return stack pointer 1s decre-
mented by one to 0. In addition, the value of the call hit

10

15

20

25

30

35

40

45

50

55

60

65

24

counter 1s incremented by oneto 1, and a value 1 1s set in XV1
of the X valid table indicated by the call hit counter.

FIG. 24E shows a scene 1 which a call instruction 1s
subsequently detected in the address F. In response to the
detection of the call instruction, an address F+8 of a return
destination 1s pushed to the return address stack X and the
value of the return stack pointer 1s decremented by one to 1.
In addition, the value of the call hit counter 1s incremented by
one to 2, and a value 1 1s set in XV2 of the X valid table
indicated by the call hit counter.

FIG. 24F shows a scene in which a call instruction 1s
subsequently detected in the address H. In response to the
detection of the call instruction, an address H+8 of a return
destination 1s pushed to the return address stack X. However,
since both two entries have already been filled, old informa-
tion D+8 1s pushed out and disappears. In this way, in the
return address stack X, H+8 1s stored in X-TOP and F+8 1s
stored 1n X-NXT. In addition, the value of the return stack
pointer 1s decremented by one to -2 and the value of the call

hit counter 1s incremented by one to 3, and a value 1 1s set in
XV3 of the X valid table 1indicated by the call hit counter.

Here, when it 1s assumed that a return instruction in the
address I 1s detected by the branch history, since a bit with a
value 1 1s present in the X valid table, a value stored 1n X-TOP
that 1s a valid latest entry 1n the return address stack X, that 1s,
H+8 1s acquired as a branch prediction result. H+8 1s a correct
address as an address of a branch destination of the return
instruction 1n the address J.

FIG. 24G shows a scene after the return instruction 1s
detected in the address J. A pop operation 1s performed in the
return address stack X according to the detection of the return
instruction and information in X-NXT 1s moved to X-TOP. In
addition, the value of the return stack pointer 1s incremented
by one to —1. In the X wvalid table, a value 1 of a most
significant bit XV 3 changes to 0, and the X valid table stores
the fact that an 1maginary entry corresponding thereto has
been used.

Here, when it 1s assumed that a return instruction in the
address K 1s detected by the branch history, since a bit with a
value 1 1s present 1in the X valid table, a value stored in X-TOP
that 1s a valid latest entry in the return address stack X, that 1s,
F+8 1s acquired as a branch prediction result. F+8 1s a correct
address as an address of a branch destination of the return
instruction 1n the address K.

FIG. 24H shows a scene after the return instruction 1s
detected 1n the address K. A pop operation 1s performed in the
return address stack X according to the detection of the return
mstruction to discard information in X-TOP. In addition, the
value of the return stack pointer 1s incremented by one to 0. In
the X valid table, a value 1 of a most significant bit XV?2
changes to 0, and the X valid table stores the fact that an
imaginary entry corresponding thereto has been used.

Here, when it 1s assumed that a return instruction in the
address L 1s detected by the branch history, since a bit with a
value 1 1s present in the X valid table, 1t 1s attempted to acquire
address information from X-TOP that 1s a latest entry in the
return address stack X. However, since information 1s not
present in X-TOP already, address information cannot be
acquired. In this case, since a correct address of a branch
destination cannot be acquired even 11 address information 1s
acquired from the return address stack, a predicted value of
the branch history 1s adopted as a prediction result.

I1 the branch history can predict a correct address, branch
prediction will be successtul. Whereas branch prediction
always fails in the scene i FIG. 7H according to the second
embodiment that shows the same instruction execution state,
in the branch prediction system according to the present

US RE42,466 E

25

embodiment, it 1s possible to significantly improve accuracy
of branch prediction by performing branch prediction using
the branch history.

FIG. 241 shows a scene after the return instruction 1s
detected in the address L. A pop operation 1s performed 1n the
return address stack X according to the detection of the return
instruction. In addition, the value of the return stack pointer 1s
incremented by one to 1. In the X valid table, a value 1 of a
most significant bit XV1 1s changes to 0, and the X valid table
stores the fact that all the imaginary entries have been used.

Note that, although not explained here, as 1n the case of the
second embodiment, 1 execution of a call instruction 1s com-
pleted promptly, accuracy of branch prediction by the branch
prediction system according to the present embodiment 1s
turther improved.

As described above, according to the third embodiment,
validity of entries 1n the imaginary return address stack X 1s
managed by the management table consisting of a small num-
ber of bits. Thus, it 1s possible to perform branch prediction
highly accurately while holding down the number of entries
in the actual return address stack X.

As 1t 1s seen 1f FIGS. 12 and 22 are compared, the branch
prediction system according to the present embodiment can
realize advantages, which are the same as those explained
according to the second embodiment, with a more simple
mechanism.

Note that, in the explanation according to the present
embodiment, bits 1n the X valid table are used 1n order from a
least significant bit. However, the bits do not have to be used
in this way. For example, 1t 1s also possible to use the bits 1n
order from a most significant bit and to use the bits like a
stack. In addition, 1t1s also possible to reverse ON/OFF of bits
from that according to the present embodiment.

According to the present mnvention, when a valid entry 1s
present 1n the second return address stack, an address of a
branch destination 1s acquired from the second return address
stack regardless of a value of the return stack pointer. Thus,
there 1s an effect that 1t 1s possible to acquire address nfor-
mation stored 1n the first return address stack and the second
return address stack 1n an approprate order to perform highly
accurate branch prediction.

Furthermore, according to the present invention, when plu-
ral valid entries are present in the second return address stack,
valid address information stored last in the second return
address stack 1s acquired. Thus, there 1s an effect that it 1s
possible to perform highly accurate branch prediction even
when there are plural call instructions that have been detected
by the branch history but execution of which has not been
completed.

Moreover, according to the present invention, an address of
a branch destination 1s acquired from the first return address
stack when valid address information i1s not stored in the
second return address stack. Thus, there 1s an eftect that 1t 1s
possible to acquire address information stored in the first
return address stack and the second return address stack 1 an
appropriate order to perform highly accurate branch predic-
tion.

Furthermore, according to the present invention, a predic-
tion result of the branch history 1s used when valid address
information 1s not stored in the first and the second return
address stacks. Thus, there 1s an effect that it 1s possible to
acquire address information stored 1n the first return address
stack and the second return address stack and information of
the branch history in an approprate order to perform highly
accurate branch prediction.

Moreover, according to the present invention, validity of an
entry 1 an imaginary second return address stack 1s managed

10

15

20

25

30

35

40

45

50

55

60

65

26

by the call-instruction-state holding unit. Thus, there 1s an
cifect that 1t 1s possible to perform branch prediction highly
accurately while holding down the number of entries in an
actual second return address stack.

Furthermore, according to the present invention, the num-
ber of call instructions, information on which is held by the
call-instruction-state holding unit, 1s held 1n the counter.
Thus, there 1s an effect that 1t 15 possible to simplily a mecha-
nism of the call-instruction-state holding unit.

Moreover, according to the present invention, 1t 1s judged
whether valid address information 1s stored in the second
return address stack based on imnformation stored in the call-
instruction-state holding unit. Thus, there 1s an effect that 1t 1s
possible to acquire address information stored in the first
return address stack and the second return address stack and
information of the branch history in an appropriate order to
perform highly accurate branch prediction.

Furthermore, according to the present invention, validity of
an entry 1n the imaginary second return address stack 1s man-
aged by a management table consisting of a small number of
bits. Thus, there 1s an effect that 1t 1s possible to perform
branch prediction highly accurately while reducing the num-
ber of entries in the actual second return address stack to
control an 1ncrease 1n cost.

Moreover, according to the present imvention, various
kinds of information for branch prediction are initialized
when the branch prediction fails such that the branch predic-
tion 1s not continued based on wrong information. Thus, there
1s an effect that i1t 1s possible to perform branch prediction
highly accurately.

Although the invention has been described with respect to
a specific embodiment for a complete and clear disclosure,
the appended claims are not to be thus limited but are to be
construed as embodying all modifications and alternative
constructions that may occur to one skilled in the art which
tairly fall within the basic teaching herein set forth.

What 1s claimed 1s:

1. A branch predicting apparatus that performs a branch
prediction 1n a pipeline processor, the branch predicting appa-
ratus comprising;

a branch history that stores execution history information
of branch instructions including a call instruction and a
return instruction, and searches through the execution
history information to predict presence of a branch
istruction and a branch destination corresponding to
the branch 1nstruction;

a first return address stack that stores, when an execution of
a call instruction of a subroutine 1s completed, address
information of a return destination of a return 1nstruction
corresponding to the call instruction;

a second return address stack that stores, when presence of
a call mstruction of a subroutine 1s predicted by the
branch history, address information of a return destina-
tion of a return instruction corresponding to the call
instruction; and

an output selecting unit that selects, when presence of a
return instruction 1s predicted by the branch history, it
address information 1s stored in the second return
address stack, the address information stored 1n the sec-
ond return address stack as a result of the branch predic-
tion, and outputs the address information selected,

wherein the second return address stack expels an oldest
piece of address mnformation when an execution of any
one of the call instructions 1s completed.

2. The branch predicting apparatus according to claim 1,

wherein when the branch prediction fails, all contents of the
second address stack are erased.

US RE42,466 E

27

3. The branch predicting apparatus according to claim 1,
wherein when the presence of the return instruction 1s pre-
dicted by the branch history, 1f a plurality of pieces of address
information are stored 1n the second return address stack, the
output selecting unit selects valid address information stored
in the second return address stack last, as the result of the
branch prediction, and outputs the valid address information
selected.

4. The branch predicting apparatus according to claim 1,
wherein when the presence of the return instruction 1s pre-
dicted by the branch history, 1f the address information 1s not
stored 1n the second return address stack, the output selecting
unit selects the address information stored 1n the first return
address stack, as the result of the branch prediction, and
outputs the address information selected.

5. The branch predicting apparatus according to claim 1,
wherein when the presence of the return instruction 1s pre-
dicted by the branch history, if the address information 1s
stored 1n neither of the first return address stack and the
second return address stack, the output selecting unit selects
a prediction result of the branch history as the result of the
branch prediction, and outputs the prediction result selected.

6. The branch predicting apparatus according to claim 1,
turther comprising a call-instruction-state holding unit that
holds a state of a call mstruction including information on
whether an execution of the call instruction, of which the
presence 1s predicted by the branch history, 1s completed, and
information on whether a branch prediction of a return
instruction corresponding to the call instruction 1s completed.

7. The branch predicting apparatus according to claim 6,
wherein when the branch prediction fails, all contents of the
call-instruction-state holding unit are erased.

8. The branch predicting apparatus according to claim 6,
turther comprising a counter that holds number of call
instructions for which the call-instruction-state holding unit
holds the state.

9. The branch predicting apparatus according to claim 8,
wherein when the branch prediction fails, all contents of the
counter are erased.

10. The branch predicting apparatus according to claim 6,
wherein when the presence of the return instruction is pre-
dicted by the branch history, if 1t 1s found by the call-instruc-
tion-state holding unit that a call instruction, of which the
presence 1s predicted by the branch history but an execution 1s
not completed, and that a branch prediction of a correspond-
ing return nstruction i1s not completed, 1s present, the output
selecting unit selects the address information stored 1n the
second return address stack as the result of the branch predic-
tion, and outputs the address information selected.

11. The branch predicting apparatus according to claim 10,
wherein when the presence of the return instruction 1s pre-
dicted by the branch history, if 1t 1s found by the call-instruc-
tion-state holding unit that a call instruction, of which the
presence 1s predicted by the branch history but an execution 1s
not completed, and that a branch prediction of a correspond-
ing return nstruction 1s not completed, 1s present, and 1f the
address information 1s not stored in the second return address
stack, the output selecting unit selects a prediction result of
the branch history as the result of the branch prediction, and
outputs the prediction result selected.

12. The branch predicting apparatus according to claim 6,
wherein when the presence of the return instruction 1s pre-
dicted by the branch history, if 1t 1s found by the call-instruc-
tion-state holding unit that a call instruction, of which the
presence 1s predicted by the branch history but an execution 1s
not completed, and that a branch prediction of a correspond-
ing return instruction 1s not completed, 1s not present, the

10

15

20

25

30

35

40

45

50

55

60

65

28

output selecting unit selects the address information stored 1n
the first return address stack as the result of the branch pre-
diction, and outputs the address information selected.

13. The branch predicting apparatus according to claim 12,
wherein when the presence of the return instruction 1s pre-
dicted by the branch history, if 1t 1s found by the call-instruc-
tion-state holding unit that a call instruction, of which the
presence 1s predicted by the branch history but an execution 1s
not completed, and that a branch prediction of a correspond-
ing return instruction 1s not completed, 1s not present, and 1f
the address information 1s not stored 1n the first return address
stack, the output selecting unit selects a prediction result of
the branch history as the result of the branch prediction, and
outputs the prediction result selected.

14. The branch predicting apparatus according to claim 6,
wherein the call-instruction-state holding unit holds the state
of the call mstruction, of which the presence 1s predicted by
the branch history, by switching a bit on and off for each
instruction.

15. The branch predicting apparatus according to claim 14,
wherein when the presence of the call instruction 1s predicted
by the branch history, the call-instruction-state holding unit
adds one bit that 1s an object of management, and sets a value
of the bit to “0”,

when the presence of the return instruction 1s predicted by

the branch history, the call-instruction-state holding unit
changes a value of a latest bit having a value “0”” to “1”
from among the bits that are objects of management, and
when an execution of any one of the call instructions 1s
completed, the call-instruction-state holding unit
removes an oldest bit from the objects of management.
16. The branch predicting apparatus according to claim 14,
wherein
when the presence of the call instruction 1s predicted by the
branch history, the call-instruction-state holding umnit
adds one bit that 1s an object of management, and sets a
value of the bit to “17,

when the presence of the return instruction 1s predicted by
the branch history, the call-instruction-state holding unit
changes a value of a latest bit having a value “1” to “0”
from among the bits that are objects ol management, and

when an execution of any one of the call instructions 1s
completed, the call-instruction-state holding unit
removes an oldest bit from the objects of management.

17. The branch predicting apparatus according to claim 14,
wherein

the call-instruction-state holding unit sets values of all bits

possessed to “0” at a time of 1mtialization,
when the presence of the call instruction 1s predicted by the
branch history, the call-instruction-state holding umnit
adds one bit that 1s an object of management, and sets a
value of the bit to “17,

when the presence of the return instruction 1s predicted by
the branch history, the call-instruction-state holding unit
changes a latest bit having a value *“1”” to *“0” from among,
the whole bits, and

when an execution of any one of the call instructions 1s

completed, the call-instruction-state holding unit
removes an oldest bit from the objects of management.

18. The branch predicting apparatus according to claim 14,
wherein

the call-instruction-state holding unit sets values of all bits

possessed to “17, at a time of initialization,

when the presence of the call instruction 1s predicted by the

branch history, the call-instruction-state holding umnit
adds one bit that 1s an object of management, and sets a
value of the bit to “0”,

US RE42,466 E

29

when the presence of the return instruction 1s predicted by
the branch history, the call-instruction-state holding unit
changes a latest bithaving a value “0” to “1” from among
the whole baits, and

when an execution of any one of the call nstructions 1s
completed, the call-instruction-state holding unit
removes an oldest bit from the objects of management.

19. A branch predicting method of performing a branch
prediction in a pipeline processor, the branch predicting

method comprising:

predicting presence ol a branch instruction and a branch
destination corresponding to the branch instruction
using a branch history that stores execution history
information of branch instructions including a call
instruction and a return instruction;

a first storing including storing, when presence of a call
instruction of a subroutine is predicted at the predicting,

10

15

30

address imnformation of a return destination of a return
instruction corresponding to the call instruction 1n a
storing unit;

a second storing including storing, when an execution of a
call 1nstruction of a subroutine 1s completed, address
information of areturn destination of a return instruction
corresponding to the call instruction 1n the storing unit;

an output selecting including:
selecting, when presence of a return instruction 1s pre-
dicted at the predicting, 1f the address information 1s
stored at the second storing, the address information
stored at the first storing as a result of the branch
prediction, and
outputting the address mnformation selected; and
expelling an oldest piece of address information from the
second return address stack when an execution of any
one of the call instructions 1s completed.

% o *H % ex

	Front Page
	Drawings
	Specification
	Claims

