USOORE42444E
(19) United States
a2y Reissued Patent (10) Patent Number: US RE42,444 E
Smith et al. 45) Date of Reissued Patent: Jun. 7, 2011
(54) METHOD FOR MANAGING RESOURCES IN (56) References Cited

A RECONFIGURABLE COMPUTER HAVING

PROGRAMMABLE LOGIC RESOURCES u.s. PAIENTDOCUMENTS

5,068,823 A 11/1991 Robinson
WHERE AUTOMATICALLY SWAPPING 5.128.871 A * 7/1992 SChIMitZ w.ooooooooooooro. 716/17
CONFIGURATION DATA BETWEEN A 5,134,884 A 8/1992 Anderson
5,142,625 A * 8/1992 Nakarcooevvvivinnns, 710/260
SECONDARY STORAGE DEVICE AND THE 5442792 A 21605 Chun
PROGRAMMABLE LOGIC RESOURCES 5,469,003 A 11/1995 Kean
5,535,342 A 7/1996 TaYIOI:
(75) Inventors: Stephen J. Smith, L.os Gatos, CA (US); 5,935,406 A % 771996 Kolchinsky ...cooovveniie 712/10
: : 5,541,849 A 7/1996 Rostoker et al.
Timothy J. Southgate, Woodside, CA 5542 998 A 2/1906 Madurawe
(US) (Continued)
(73) Assignee: Altera Corporation, San Jose, CA (US) FOREIGN PATENT DOCUMENTS
EP 0419 105 3/1991
(21) Appl. No.: 12/322,325 (Continued)
(22) Filed: Jan. 30, 2009 OTHER PUBLICATIONS
Related U.S. Patent Documents Stroy et al. “Inter-Domain Movement of Functionality as a
: ‘ Repartitioning Strategy for Hardward/Software Co-Design™ Journal
Relssu§ of: of Systems Architecture, Elsevier Science Publishers BYV.,
(64) Patent No.: 7,171,548 Amsterdam, NL, vol. 43, No. 1/05, pgs. 87-98 Mar. 1, 1997
[ssued: Jan. 30, 2007 X000679758.

Filed: Sep. 19,2003

U.S. Applications:
(63) Continuation of application No. 09/443,971, filed on
Nov. 19, 1999, now Pat. No. 6,658,564, (57) ABSTRACT

Primary Examiner — Suresh K Suryawanshi
(74) Attorney, Agent, or Firm — Ropes & Gray LLP

(60) Provisional application No. 60/109,142, filed on Nov. A reconfigurable computer system based on programmable
20. 1998. logic 1s provided. A system design language may be used to

write applications. The applications may be automatically
partitioned into software components and programmable

(51) Int. Cl. logic resource components. A virtual computer operating sys-
Goot 9/00 (20006.01) tem may be provided to schedule and allocate system
GOol’ 3/00 (2006.01) resources. The virtual computer operating system may
(52) U.S.CL 713/1: 713/100- 710/ include a virtual logic manager that may increase the capa-
o T ’ s bilities of programmable logic resources in the system.
(58) Field of Classification Search 713/1
See application file for complete search history. 20 Claims, 8 Drawing Sheets

SPECIFICATION IN -
SYSTEM DESIGN LANGUAGE
24 (FUNCTIONS & CONSTRAINTS) 76
—x 2=~ v | ~RESOURCE LIBRARY
@-- PARTITIONER Jet{ (CPU, MEMORY, PLD,
S COMMUNICATION)

78 J
, SOFTWARE |_[INTERFACE FUNCTIONS AARDWARE) 80!
199 ./~ FUNCTIONS (COMMUNICATION & FUNCTIONS |
PARAMETER PASSING) |

‘ HLL COMPILER | 86
82
o THREADS
DEVELOPMENT a8
TOOLS

A il Tl |

RUN-TIME 1L, VIRTUAL COMPUTER OPERATING SYSTEM
ENVIRONMENT (KERNEL SERVICES INCLUDE VIRTUAL MEMORY & VIRTUAL LOGIC)

94

PHYSICAL

: ———
srcHmectue |[oru | [P0] [wewory) [wo |
p-

T I Al 0 e ey

US RE42,444 E
Page 2

U.S. PATENT DOCUMENTS

5,579,530 A * 11/1996 Solomonetal. 710/35
5,684,980 A 11/1997 Casselman
5,705,938 A * 1/1998 Keanccoccovvvviiiiinninn, 326/39
5,761,484 A * 6/1998 Agarwaletal. 716/16
5,819,064 A 10/1998 Razdan et al.
5,822,570 A 10/1998 Lacey
5,835,734 A 11/1998 Alkalaj et al.
5,859,878 A * 1/1999 Phillipsetal. 375/316
5,946,219 A * 8/1999 Masonetal. 716/16
5,966,534 A 10/1999 Cooke et al.
5,968,161 A * 10/1999 Southgate 712/37
5,999990 A * 12/1999 Sharritetal. 710/8
6,011,740 A * 1/2000 Trimberger 365/221
6,044,211 A 3/2000 Jain
6,068,823 A * 5/2000 Sanchezetal. 423/235
6,085317 A * 7/2000 Smithc.ocovviiininn, 713/1
6,219,149 Bl 4/2001 Kawata et al.
6,219,628 Bl 4/2001 Kodosky et al.
6,219,785 B1* 4/2001 Smithccooocvviviiniinnnn, 713/1
6,226,776 Bl 5/2001 Panchul et al.
6,282,627 B1* 82001 Wongetal. 712/15
6,457,173 Bl 9/2002 Gupta et al.
6,477,683 B1 11/2002 Killian et al.
6,510,546 B1* 1/2003 Blodgetcoeeeeiinnnnn. 716/16
6,608,638 Bl 8/2003 Kodosky et al.
6,625,797 Bl 9/2003 Edwards et al.
6,658,564 B1 12/2003 Smith et al.
6,745,160 Bl 6/2004 Gupta et al.

2002/0100032 Al 7/2002 Metzgen

2002/0124238 Al 9/2002 Metzgen

FOREIGN PATENT DOCUMENTS

EP 0419 105 A2 3/1991
EP 419105 A2 * 3/1991
EP 0445 913 9/1991
EP 0445913 A2 9/1991
EP 0 759 662 2/1997
EP 0759 662 A2 2/1997
EP 0801351 A2 10/1997
EP 0 801351 10/1997
EP 801351 A2 * 10/1997
EP 0 829 812 3/1998
EP 0829 812 A2 3/1998
GB 1 444 034 7/1976
JP 03-214370 9/1991
JP 08-305547 11/1996
JP 09-218781 8/1997
JP 10-171645 6/1998
WO WO 94/10627 5/1994
WO WO 97/09930 3/1997
WO WO 97/13209 4/1997
WO WO 98/031102 7/1998
WO WO 00/31652 6/2000
WO WO 00/38087 6/2000
WO WO 00/63719 10/2000
OTHER PUBLICATTONS

Edwards et al. “Acceleration of Software Algorithms Using Hard-
ware/ Software Co-Design Techniques™ Journal of Systems Architec-

ture, Elsevier Science Publishers BV., Amsterdam, NL>, vol. 42, No.

9/10, pgs. 697-707, XP0006434835.

Edwards et al. “Hardware/software partitioning for performance
enhancement” pgs. 2-5, Jan. 1, 1995, XP006529055.

Ernst et al. “The Cosyma Environment for Hardware/Software
Cosynthesis of Small Embedded Systems” Microprocessors and

Microsystems, IPC Business Press Ltd. London, GB vol. 20, No. 3
May 1, 1996 pp. 159-166, XP0O00590927.

Parkinson et al. “Profiling in the ASP Codesign environment™ Sys-
tems Synthesis, 1995, Proceedings of the Eighth International Sym-
posium on Cannes, France Sep. 13-15, 1995, Los Alamitos, CA,
USA, IEEE pp. 128-133, XP010192178.

M Wazlowski et al., “Prism-II Complier and Architecture,” IEEE,
1993, pp. 9-16.

David Wo et al., “Compiling to the gate Level for a Reconfigurable
Co-Processor,” IEEE, 1994, pp. 147-154.

Christian Iseli et al., “A C++ compiler for FPFA custom execution
units synthesis,” IEEE, 1995, pp. 173-179.

Ian Page, “Constructing Hardware-Software Systems from a Single
Description,” Journal of VLSI Signal Processing, vol. 12, No. 1, Jan.
1996, pp. 87-107.

M.D. Edwards, J. Forrest—“Software acceleration using program-
mable hardware devices,” Jan. 1996, p. 55-63.

Tsuyoshi Isshiki et al., “Bit-Serial Pipeline Synthesis aand Layout for
Large-Scale Configurable Systems,” IEEE, 1997, pp. 441-446.
Michael J. Wirthlin and Brad L. Hutchings—*“Improving Functional
Density Using Run-Time Circuit Reconfiguration,” Jun. 1998, p.
247-256,

Electronik, De, Franzis Verlag GmbH— MIT Programmierbarer
Logik Verherrated,” Mar. 31, 1998, vol. 47, No. 7, p. 38.

Bernardo Kastrup et al., “ConCISe: A Complier-Driven CPLD-
Based Instruction Set Accelerator,” IEEE, 1999, pp. 92-101.

“List of FPGA-based Computing Machines,” Steve Guccione,
<http:// www.10.com/.about.guccione//HW.sub.--list. html>, Last
updated Mar. 31, 1999.

Timothy J. Callahan et al., ““The Garp Architecture and C Complier,”
IEEE, Apr. 2000 pp. 62-69.

IBM, “Programmable Manual Cable Assembly Board,” IBM Tech-
nical Disclosure Bulletin, vol. 31, No. 12, May 1989, pp. 306-309.
Nanya, “Asynchronous VLSI System Design,” ASP-DAC *98 Tuto-
rials, Feb. 10, 1998, Yokohama, Japan.

Nanya et al. “Scalable-Delay-Insensitive Design: a high-perfor-
mance approach to dependable asynchronous systems,” Proceedings
of International Symposium on Future of Intellectual Integrated
Electronics, Mar. 1999, pp. 1-10.

Tsukasa Yamauchi et al., “SOP: A Reconfigurable Massively Parallel
System and Its Control-Data-Flow based Compiling Method,” NEC
Laboratory, pp. 148-156, IEEE 1996.

Luc Semeria et al., “SpC; Synthesis of Pointers in C Application of
Pointer Analysis to the Behavioral Synthesis from C,” 1998, pp.
340-346.

Joao M.P. Cardoso et al., “Marco-Based Hardware Compilation of

Java™ Bytecodes into a Dynamic Reconfigurable Computing Sys-
tem,” IEEE, 1999, pp. 2-11.

* cited by examiner

US RE42,444 L

Sheet 1 of 8

Jun. 7, 2011

U.S. Patent

SHOLIINNOD
O/1

0¢

gl

O/1

dla

9l

dO

did

¢

vl

p Il

JIV0T

dld

Yol

AGOMLIN LOINNODHILNI

NVd

HOWIN AGONIN

7l 3 1ILVITOA-NON

Ol

US RE42,444 L

Sheet 2 of 8

Jun. 7, 2011

U.S. Patent

gt

9t

49

Ct

0t

¢ Il

(" WIA "W SNIVINOD TaNyIH)
T3INYIN WILSAS ONILYHIO NNY % V0T

153174135 NO-43aMOd NNY 3 V0T

539IA44S O/l JISYE QVOT

AJON3N 3TLYTIOA-NON WOHL ¥IDOVYNYIN dYHLS-1008 QYO

NO-43MOd W31SAS

& Ol

Sd3AIbMA 301A3A

US RE42,444 L

Sheet 3 of 8

! SOIHAVYO W3LSAS F1i4

(SH-ON)
NG I

(IdY-0A) FOV4HILNI WYHOONd NOILYOIIddY

Jun. 7, 2011

4%

SO-OA) W3LSAS ONILYHIdO H3LNdWOD TYNLYIA
Oy

U.S. Patent

US RE42,444 E

Sheet 4 of 8

Jun. 7, 2011

U.S. Patent

N3LSAS NI NOILONNZ 40 FONVYAHO443Id HOLINOW 991

NILSAS OLNI NOILONNA NILSAS OLNI NOILONNA
40 NOILYINIWIIdWI WS QYO 40 NOILYINIWIIdWI MIH QYO

09} ¢9l

&(L3IW 39 1SN
INIWIHINDIY
__DE(_I_:

J 18V VAV

HL1QIMANYE
=> INJW3IHINO3Y
H1QIMAONYS
M/H

F1aVIIVAY
H1JIMANYS

=> INJWIHIND3Y
LAIMANVE WS

2%’

INJWIHINOIY HLAIMANVYE ONISSI00dd WS ANV M/H NOILONNA ILYINO T

961

¢

S

P9l

dOddd 140d3Y

v Old

|

0S1

=]

-

3 061 981 08

<

=

” 304N0S Ty 304N0SIY 304N0S3Y | ve Il
= 31907 90T 1907

3 18VINNYEO0Yd 3 18VNNYYO0dd 3 1aVININVE90dd

o NXO0T8 N\ * - |Z2007d 08}
S V.1¥Q NOILYHNOIANOD
g 40 1 %0074
—
’ 00T RVMTIVH
= eMolg

3 d
Q | ¥0078 NOILYOITddY 404 ¥1¥d m MOV 1AF
~ NOILYANOIINOD 40 SHI078
-
-

SNOILONNJ
JIVMOYVH

18l

U.S. Patent

US RE42,444 L

Sheet 6 of 8

Jun. 7, 2011

U.S. Patent

¢ 10018
v.ivQd

NOILYENOIINOD

d5 9l

3041053y
J1D01T
3 18VNIAVHOO¥d

1 X00'18
vV1iv(

NOILYENDIINOD

US RE42,444 L

Sheet 7 of 8

Jun. 7, 2011

U.S. Patent

JIYMALVYH

- T T T T T T T T T T T N
| o))! AHOWIN ad ndd || 3™¥NLOTLIHONY
| | 1VOISAHd
_ (D1907 WNLYIA 3 AYOWIW TWNLHEIA IANTONI STDIAYIS TINYIN) _ INJANOYIANZ
NILSAS ONILYYIdO ¥ILNAWOD TvnLaia [« | JNIL-NNY
. S
Bl el el pelie eyl
| 76 (S3SS3HAAY ¥ILIWVHYL AONY NOILONNS 3ATOSTY) | |
| HINNIT _ 1001
| 88 | LNIWD0T13A30
| CSavauHL > Y,
| = |
| 08 MTUINOOTH | | | 9 Ol
| . (ONISSYd HILINWAHV |
| SNOILONNA % NOILYOINNWWOO) SNOILONNA 26!
|

SNOILONNS 30V4d3LNI IHVYML40S
B
|
MINOILILYV é _
| ¢l

(SINIVHLSNOD 2 SNOILONNA)
JOVNONYT NOISIA WILSAS
NI NOILYOI4193dS

(NOILYOINNWIWOD
'Q1d ‘'AYOW3N ‘Nd?)
AYYE8I7 304N0SIY

9.
0L

US RE42,444 L

Sheet 8 of 8

Jun. 7, 2011

U.S. Patent

_ 26! g}
o)) AHOWIN ! _ NdO 7
_ 3N LOILIHOYY

o WOISAHd
0z1 ~| (01907 TWNLAIA B ASOWIW WWNLYIA JANTONI SIOIAYIS TINYIN) Bt
NILSAS ONILYHIHO HILNAWOD TYNLHIA d
771 S1001
A Vel INIWdOT3A3Q
431IdWOD 1aH |~ 02! 4371dWOD TTH
9l | .
oL . 94

43 1IdWOD
____l—OI__- Ol—! ___I—l—I:

JOVNONYT __._.._I__ NI JOVNONY1 ., TIH. NI JOVNONVYT . TTH. NI
SNOILONNG JHVMAIVH SNOILONNS FOVJIH3LNI SNOILONNS FJdYMLI0S

147 Chi 0Lt

US RE42,444 E

1

METHOD FOR MANAGING RESOURCES IN
A RECONFIGURABLE COMPUTER HAVING
PROGRAMMABLE LOGIC RESOURCES
WHERE AUTOMATICALLY SWAPPING
CONFIGURATION DATA BETWEEN A

SECONDARY STORAGE DEVICE AND THE
PROGRAMMABLE LOGIC RESOURCES

Matter enclosed in heavy brackets |] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

This application 1s a continuation of U.S. patent applica-
tion Ser. No. 09/443 971, filed Nov. 19, 1999, now U.S. Pat.
No. 6,638,564, which claims the benefit of U.S. provisional
patent application No. 60/109,142, filed Nov. 20, 1998.

BACKGROUND OF THE INVENTION

This invention relates to programmable logic device tech-
nology, and more particularly, to computer systems 1n which
programmable logic 1s reconfigured to optimize the ability of
the system to handle a given application.

The only programmable element in a conventional com-
puter architecture 1s the microprocessor. The microprocessor
1s manufactured with a fixed instruction set that cannot be
customized for specific applications. The microprocessor 1s
flexible 1n that 1t can run virtually any software-implemented
function of an application. The speed of execution of a given
function, however, 1s generally substantially slower when
implemented to execute on a microprocessor. This 1s because
soltware-implemented functions must be fairly complex to
accommodate the microprocessor’s generic mstruction set.

With conventional computer architectures, software will
typically only run on a limited range of platforms. If an
application engineer decides to write an application to be run
on a given microprocessor, the instruction set the application
engineer may use 1s limited to the one permanently resident
on the microprocessor. The application engineer must there-
fore select whether an application 1s better suited for a hard-
ware platform or a software platform. Although software
platforms are often preferred due to the inflexibility and net-
ficiency of hardware-based systems, in many cases, the
generic instruction set resident on a microprocessor results 1n
inadequate performance for a particular type of soltware
application. For example, graphics-intensive applications
usually require hardware that i1s specifically suited for the
particular graphical elements of the application, such as 3-D
rendering. In order to circumvent the difficulties associated
with programming for a hardware platform, engineers turn to
software, which 1n many cases greatly reduces the applica-
tion’s speed.

Recently, the notion of a reconfigurable computer based on
programmable logic devices has been proposed. The goal of
a reconfigurable computer 1s to increase performance over a
conventional computer by providing parallelism and rapid
execution times through the use of customizable hardware.
Increased tlexibility can be achieved by using programmable
logic devices, because the logic of such devices may be recon-
figured by loading new configuration data into the devices.
This allows the reconfigurable computer to provide a large
number of instruction sets, rather than a single instruction set
for a conventional computer. A greater number of functions

5

10

15

20

25

30

35

40

45

50

55

60

65

2

may be provided using a fixed amount of hardware 1f the
computer uses reconfigurable logic.

It 1s an object of the present invention to provide improved
reconiigurable computers based on programmable logic
devices that may be reprogrammed to optimize the ability of
the computer to handle a given application.

SUMMARY OF THE INVENTION

This and other objects of the invention are accomplished 1n
accordance with the principles of the present invention by
providing a reconfigurable computer system based on pro-
grammable logic.

An application engineer developing an application for the
reconfigurable computer need not be concerned with the
details of which resources are available on that computer. A
hardware abstraction 1s used that 1s based on the size of a
single programmable logic device or a subset of a program-
mable logic device. When an application i1s compiled, the
functions of the application that are implemented 1n hardware
are partitioned 1nto blocks containing configuration data that
are the same size as a programmable logic device or smaller.

The reconfigurable computer system 1s modular and scal-
able. If more hardware resources are added, system perfor-
mance increases. It 1s not necessary to recompile the applica-
tion to obtain the benefit of the increased performance.

The reconfigurable computer system allows both hardware
and software implementations of a function to exist simulta-
neously during run-time. A virtual computer operating sys-
tem 1s used to select which implementation to run depending
on the resources that are available at run-time. Software
development tools may be provided that allow an application
engineer to use a high-level language to develop both a hard-
ware 1mplementation and a software implementation for an
application that may be executed on a reconfigurable com-
puter system using programmable logic resources. These
tools may include a partitioner that automatically partitions a
specification written 1n a system design language made up of
functions and constraints into software functions and hard-
ware functions. The software functions and hardware func-
tions may be compiled into threads and programmable logic
resource configuration data, respectively. The threads and
configuration data may be used by the virtual computer oper-
ating system at run-time to execute the application.

The reconfigurable computer system provides mecha-
nisms for an application engineer to specily performance
requirements for an application. For example, a graphics
application may require a particular throughput 1n terms of
the number of polygons that may drawn on a display screen
per unmit time. If 1t 1s required that a million polygons be drawn
per second, for example, the application engineer may
specily to the virtual computer operating system that the
function that draws the polygon must complete 1ts operation
in one microsecond.

The virtual computer operating system has the capability to
monitor the performance of applications (as well as their
individual functions) running within the system and has the
capability to reallocate more resources to a particular appli-
cation or to an mdividual function to ensure that 1t meets 1ts
performance requirements. The virtual computer operating
system may also determine whether to execute the software
version or the hardware version of a particular function
depending on the performance of the system at the time the
function 1s to be executed. For example, if the polygon draw-
ing function 1s scheduled to execute at the same time as
another computationally intensive application 1s executing,
the dynamic profiling being performed by the virtual com-

US RE42,444 E

3

puter operating system may take this into consideration when
determining resource allocation and whether to use the sofit-
ware version of the polygon drawing function or the hardware
version of the polygon drawing function.

A virtual computer operating system 1s provided that allo-
cates the functions of the application among the program-
mable logic resources. The virtual computer operating system
may include a virtual computer kernel services component.
The virtual computer kernel services component may include
various resource managers including a virtual logic resource
manager.

During run-time, 1f a particular reconfigurable computer
system has a virtual operating system with virtual logic capa-
bilities, the virtual logic manager may control the swapping,
ol programmable logic configuration data and application
state information between programmable logic resources and
a secondary storage device. This allows reconfigurable com-
puter systems with limited resources to implement complex
applications.

Further features of the invention, 1ts nature and various
advantages will be more apparent from the accompanying
drawings and the following detailed description of the pre-
terred embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of an 1llustrative reconfigurable
computer system in accordance with the present invention.

FIG. 2 1s a flow chart of illustrative steps mvolved in the
boot process of a reconfigurable computer 1n accordance with
the present invention.

FIG. 3 1s a block diagram of 1llustrative operating system
kernel services for a reconfigurable computer 1n accordance
with the present invention.

FI1G. 4 1s a flow chart of illustrative steps used by the virtual
computer operating system to load a function mnto a reconfig-
urable computer 1n accordance with the present invention.

FIG. 5A 1s a schematic diagram showing how the virtual
computer operating system may take an application that 1s
designed for unit hardware and may allocate one or more
programmable logic resources 1n the computer system to the
functions of the application in accordance with the present
invention.

FIG. 3B i1s a schematic diagram showing how a program-
mable logic resource may be allocated to multiple functions
in accordance with the present invention.

FI1G. 6 1s a block diagram of an illustrative soitware devel-
opment tlow for a reconfigurable computer 1n accordance
with the present invention.

FIG. 7 1s a block diagram of an illustrative simplified
soltware development flow for a reconfigurable computer 1n
accordance with the present invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

A schematic diagram showing a high-level view of an
illustrative reconfigurable computer system in accordance
with the present invention 1s shown 1n FIG. 1. The hardware
resources 1n reconfigurable computer system 5 imnclude a cen-
tral processing unit (CPU) 16, which may be implemented in
a programmable logic device, an actual microprocessor, or a
combination of such elements, a memory 12, input/output
(I/0) devices 18 (which may be based on a programmable
logic device or other suitable device), and an interconnect
network 22.

10

15

20

25

30

35

40

45

50

55

60

65

4

A programmable logic device typically includes an array of
programmable logic regions, a routing structure, input and
output regions, memory regions and a configuration store
(1.e., memory for storing the configuration data that 1s used to
configure the logic components in the programmable logic
regions). The logical functions performed by a programmable
logic device are determined by the configuration data stored
in the configuration store and the connection of the configu-
ration store to the logic regions, the routing structure, the
input and output regions, and the memory regions. The con-
figuration store may be based, for example, on static random-
access memory which may be written to, in-circuit, an essen-
tially unlimited number of times. Alternatively, a device, such
as an erasable programmable read-only memory device,
external to the programmable logic device may be used as a
configuration store 1n place of the internal static random
access memory of the programmable logic device. Any other
memory or storage device that 1s capable of being written to
a substantial number of times may be used if desired. The
logical function performed by a programmable logic device
may therefore be modified in-circuit numerous times. An
example of a suitable programmablelogic device 1s the FLEX
EPF10K 50 device from Altera Corporation of San Jose, Calif.
This type of programmable logic device 1s merely 1llustrative.
Any other suitable type of programmable logic device may be
used 1n system S 1f desired. If desired, programmable logic
devices may support partial reconfiguration of the configura-
tion store or multiple configuration stores.

Non-volatile random access memory 10 may be used to
store in1tialization information. When power 1s first applied to
a reconfigurable computer system, the mitialization informa-
tion may be used to mitialize the computer. This process 1s
known as “boot-strapping.”

The memory devices used for computation may be ran-
dom-access memory devices 12. These may be formed from
static or dynamic 1ntegrated circuit memory technology. The
choice of static or dynamic memory technology may be made
based on the desired computational function to be performed
by the memory device. Static random-access memory devices
have {faster access times than dynamic random-access
memory but use more transistors per storage cell, and are
therefore more expensive to manufacture for an equivalent
storage density. The combination of access time, density and
cost are factors 1in determining the preferred memory tech-
nology for a given computational function.

The interconnect network 22 may be formed by wires (e.g.,
a bus) connecting each of the physical resources together. The
interconnect network topology may also be formed using
programmable logic devices or using programmable inter-
connect devices which may allow the topology to be dynami-
cally reconfigured. The topology may then be optimized for a
particular computational function. Examples of potential net-
work topologies are mesh, full or partial crossbar, cliques,
hyper-cubes, and distributed or shared memory hierarchies.

The I/0 connections 20 may be formed by wires coupling
the reconfigurable computing array to external devices such
as a keyboard, a visual display, mass storage devices such as
a hard disk drive, or to a computer network comprising other
reconiigurable, or non-reconfigurable, computer systems.

If desired, programmable logic devices may be used to
implement combinatorial or sequential logic functions for
logic device 14, microprocessor functions for microprocessor
16, or I/O functions for I/O interface 18. Some of these
functions, such as the microprocessor functions, may be
implemented 1n fixed-hardware, 11 desired.

The expansion of such a system may involve the addition of
more programmable logic devices. As programmable logic

US RE42,444 E

S

devices are added to the system, the processing power
increases. Scalability and modularity allow an increase 1n the
programmable logic device resources to result 1n an increase
in the performance of the system.

Memory 12 may support a memory hierarchy for executing
applications and system programs and data. Applications and
system programs may include microprocessor code and pro-
grammable logic device configuration data.

A programmable logic device may be configured to form
an application-specific I/O device 18 which may be required
only for the duration of the application. These devices may
use protocols such as Ethernet protocols, small computer
systems 1nterface (SCSI) protocols, peripheral component
interconnect (PCI) protocols, video driver protocols, etc.

The interconnect network 22 may be used to provide the
following functions: a programmable logic device configura-
tion bus, an application memory bus and an I/O bus. Each bus
may function independently. The programmable logic device
configuration bus may be used to configure each program-
mable logic device 1n the system. Depending upon the pro-
grammable logic device configuration addressing mode, this
data may be simultaneously broadcast to a group of program-
mable logic devices or to an individual programmable logic
device. The application memory bus may allow the system to
torm a shared or distributed memory system with the array of
programmable logic devices. The I/O bus may connect a
programmable logic device to an external I/0O device.

The information in the non-volatile memory device 10 may
be used to boot-strap the system as shown 1n FIG. 2. When
power 1s first applied to the system 1n step 30, neither the
programmable logic devices nor the random access memory
12 used for computation retain information from previous
configurations. The purpose of the information stored 1n the
non-volatile memory 10 1s to load a boot-strap manager (step
32). The boot-strap manager may, in turn, load basic /O
services (BIOS) 1n step 34, load and run a power-on self-test
diagnostic program in step 36, and load and run an operating
system kernel 1n step 38.

The boot-strap instructions stored in the non-volatile
memory 10 may be executed on a computational resource
during step 36. This resource may be a dedicated micropro-
cessor, a programmable logic device configured as a micro-
processor, a combination of a microprocessor and a program-
mable logic device partially configured as a microprocessor,
or a programmable logic device logic circuit. 1T the resource
1s a dedicated microprocessor, the non-volatile memory 10
will simply contain the microprocessor instructions required
to complete the boot-strap process. I a programmable logic
device needs to be configured as a microprocessor, then the
non-volatile memory 10 may contain programmable logic
device configuration data and microprocessor instructions.
Otherwise, the non-volatile memory 10 may contain pro-
grammable logic device configuration data for a logic circuit
which may or may not require additional program instruc-
tions to complete the boot-strap process.

The final boot-strap process 1s to load an operating system
kernel. The loading process may involve loading instructions
for a microprocessor implemented using a programmable
logic device, or may mnvolve loading the configuration data
for a programmable logic device. Whichever arrangement
used—microprocessor and nstructions or logic circuit with
or without instructions—the operating system may be
referred to as the virtual computer operating system (VC-
OS).

[lustrative components of the virtual computer operating,
system are shown 1n FIG. 3. The virtual computer operating
system 40 of FIG. 3 may provide the basic services that

10

15

20

25

30

35

40

45

50

55

60

65

6

traditional operating systems offer in terms of run-time man-
agement. In addition the virtual computer operating system
supports services for system 3 related to using programmable
logic resources.

The virtual computer operating system includes run-time
management tools that ensure that the functions of a given
application can be executed. For example, the run-time man-
agement functions ensure that functions and timing con-
straints specified at the system design level are satisfied.

Conventional operating systems such as Microsoft Win-
dows N schedule functions to be executed on the available
resources in conventional computer systems at run-time. The
resources 1n such a conventional computer system are allo-
cated dynamically at run-time depending upon application
program requirements and resource availability. Each
resource has a resource manager, such as a virtual memory
manager which 1s responsible for the allocation of physical
memory. The most common resource managers 1n conven-
tional operating systems are a file system manager, a graphics
manager, an I/O manager (to handle mass storage access or
simple I/0 devices such as a keyboard or mouse), a network
manager, and a virtual memory manager.

In accordance with the present invention, virtual computer
operating system 40 includes an application program inter-
face 44 that provides an interface between the virtual com-
puter operating system 40 and applications written for the
virtual computer operating system 40. Virtual computer oper-
ating system 40 also includes kernel services 42 that provide
resource management functions. Each resource in the system
may have a resource manager. For example, file resources
may be handled by file system manager 46. Graphics
resources may be handled by graphics manager 47, 1/O
resources may be handled by I/O manager 48, network
resources may be handled by network manager 50, and virtual
memory resources may be handled by virtual memory man-
ager 52. A reconfigurable computer system may have virtual
logic, which may be managed by a virtual logic manager 54
that handles requests that are made by applications to access
the limited programmable logic resources 1n system 5.

Conventional operating systems rely on virtual memory to
overcome limited random-access memory constraints. Vir-
tual memory may use secondary storage devices (such as
hard-drives) to temporarily handle run-time data that would
otherwise typically be stored 1n a primary storage device
(such as random-access memory). As functions and data are
requested by an application, the operating system determines
whether the requested data i1s currently stored in virtual
memory, and 11 1t 1s, replaces the data 1n the physical memory
for other applications with the functions and data currently
being requested from virtual memory.

The virtual logic manager of the present invention, how-
ever, 1s responsible for the run-time allocation of program-
mable logic devices. The virtual logic manager satisfies the
run-time requirements of various applications’ requests for
functions that are to be implemented 1n programmable logic.
An application may request that more functions be 1mple-
mented using programmable logic devices than there are
programmable logic devices to handle such requests. The
virtual logic manager must therefore manage the run-time
swapping ol functions to be implemented in programmable
logic.

Conventional virtual memory managers make a relatively
small amount of physical memory appear to an application as
a relative large amount of logical memory. This 1s achieved by
the run-time swapping of memory pages in and out of physi-
cal memory to and from a secondary storage (usually a local
hard disk drive). With virtual logic manager 54 of the present

US RE42,444 E

7

invention, a relatively small amount of physical program-
mable logic devices may be made to appear to an application
as a relative large amount of logical programmable logic
devices. This 1s achieved by using virtual logic manager 54 to
perform run-time swapping ol programmable logic device
configuration data and state information in and out of pro-
grammable logic device configuration memory (1.€., the con-
figuration store) to and from a secondary storage device (usu-
ally a local hard disk drive).

The process of loading a function for execution in the
system 1s shown 1n FIG. 4. This process 1s used to select the
best implementation of the function (either software or hard-
ware) to be used at the time the function 1s executed.

The available hardware processing bandwidth of the sys-
tem and the available software processing bandwidth of the
system 1s determined at step 150. The software processing
bandwidth may be calculated from the amount of time all of
the microprocessors in the system are 1dle and are not execut-
ing functions. The hardware processing bandwidth may be
calculated on the basis of the number of unused program-
mable logic resources 1n the system along with the amount of
time the used programmable logic resources are not process-
ing data.

The required hardware processing bandwidth for the func-
tion and the required software processing bandwidth for the
function are determined at step 152. These requirements may
be specified by the application engineer as an absolute
requirement or it may be specified based on the performance
of the system when executing a small additional function
supplied alongside the function to be executed. This small
function may be executed at step 152 and the system’s per-
formance may be measured.

At step 154, 1t 1s determined whether the required software
processing bandwidth 1s less than the bandwidth available in
the system. I1 the required soiftware processing bandwidth 1s
less than the bandwidth available in the system, then the
soltware implementation 1s loaded onto the system to be run
on a microprocessor at step 160. This choice 1s made because
the software implementation will use less system resources
than the hardware implementation.

If the software processing bandwidth 1s not adequate then
the hardware implementation 1s evaluated at step 156. It the
available hardware bandwidth 1s acceptable, then the function
1s loaded onto the system to be executed directly on a pro-
grammable logic resource at step 162. I 1t was determined at
step 156 that the available hardware bandwidth 1s not accept-
able, and further determined at step 158 that the performance
requirement was “hard,” meaning the performance require-
ment must be satisfied, then an error message 1s reported to
the user and the loading of the function (and 1t’s parent appli-
cation) must be abandoned at step 164. If the requirement was
not “hard,” then the function i1s loaded anyway at step 162 and
runs at a reduced performance level.

After either implementation of a function has been loaded
into the system (using normal means for determining which
functions are of lower priority and unloading these lower
priority functions 1f necessary), the performance of the func-
tion 1n the system 1s monitored at step 166. The priority given
to the function for system processing bandwidth will be pro-
portional to the differences between the required bandwidth
and the actual bandwidth being realized.

Whenever a new function 1s scheduled for resource alloca-
tion by the priority management process, the first step taken
by the resource allocation routine of the virtual computer
operating system 1s to determine whether a resource exists
that can satisiy the constraints of the function. If such a
resource exists, then the resource 1s allocated to the function.

10

15

20

25

30

35

40

45

50

55

60

65

8

If not, a suitable candidate must be found from the existing
pool of physical resources using a suitable replacement
policy. For example, 11 1t 1s determined that there are insudfi-
cient programmable logic resources available to be reconfig-
ured to perform a given function of an application, the virtual
computer operating system may be used to ensure that the
given function 1s implemented using hardware resources that
do not need to be reconfigured (e.g., a dedicated micropro-
cessor or a programmable logic device configured to perform
as a CPU). The virtual computer operating system may ensure
that a suitable software version of the function was provided
by the application engineer before attempting to run the func-
t1on on a miCroprocessor.

Subject to function constraints, suitable replacement poli-
cies which may be used include first-in-first-out, least-re-
cently-used, or least-frequently-used. An extreme case might
be an on-demand swap of the first suitable resource when the
run-time management system detects a high priority function
such as a real-time interrupt handling process.

With regard to resource allocation and scheduling, run-
time resource management by operating systems for conven-
tional computer architectures involves the use of various tech-
niques for CPU scheduling. Having a computer system
handle applications (as well as individual functions under the
same application) on a one-by-one basis can be extremely
inefficient. Depending on the task being processed at any
given ftime, resources can become tied up while other
resources are idle. The result 1s a very slow computer. In
response, the concept of CPU scheduling was gradually
adopted by most conventional operating systems.

CPU scheduling in conventional computer systems
involves allocating resources and scheduling the order in
which all functions are processed by the system. The goal of
CPU scheduling 1s to create a stable multitasking environ-
ment. This environment 1s created by algorithmaically allocat-
ing CPU resources based on a combination of factors such as
prioritization, function idleness due to 1/O delays, or any
other factors that may be used 1in determining the order 1n
which functions are processed. For example, 11 a micropro-
cessor 1s handling a function that reaches a point at which 1t
has to wait for a user input, a conventional operating system’s
CPU scheduling feature may provide another function with
an opportunity to use the microprocessor’s resources (as well
as other available system resources) until the user mnput 1s
available. When the user input 1s available, the first function
may regain the resources 1t had relinquished when 1t caused
an 1dleness 1n the system.

In accordance with the present mvention, 1n a reconfig-
urable computer system where programmable logic devices
are either fully or partially configured as one or more micro-
processors, the function of a scheduling system takes on a
somewhat different role than that of a conventional CPU
scheduling system. Whereas conventional CPU scheduling
allocates microprocessor resources to functions, programs-
mable logic device scheduling allocates programmable logic
resources (ol which there may be several) to functions. The
programmable logic resources do not necessarily have to be
programmed to be a microprocessor, but may be programmed
to perform any function desired, such as I/O functions, graph-
ics Tunctions, network functions, etc. The purpose of such a
feature 1n a reconfigurable computer’s operating system 1s to
help manage the various tasks being processed simulta-
neously among a group of programmable logic resources. In
a conventional computer’s operating system, 1n contrast, the
purpose of a CPU scheduling feature i1s primarily to reduce
microprocessor idleness due to the high demand for process-
ing power by the various tasks being active at any given time.

US RE42,444 E

9

A typical scheduling system for a reconfigurable computer
may use a time-multiplexing system in which programmable
logic resources may be allocated to application functions.
This may involve switching between different functions at
predetermined time intervals. Notable exceptions include
real-time nterrupts and I/0 functions.

If resources become 1dle 1n a reconfigurable computer sys-
tem and no functions are scheduled for immediate allocation,
then function prefetching can help to minimize the time cost
associated with programmable logic resource configuration
overhead as the programmable logic resource can be loaded
with the configuration data before the function 1s required.

This time cost associated with loading a programmable
logic device may be on the order of milliseconds with pres-
ently available programmable logic devices. If desired, the
time required to configure a programmable logic device may
be reduced (e.g., to the order of nanoseconds) by using
increased pipelining and parallelism on the device.

A reconfigurable computer system based on a group of
programmable logic resources therefore has the benefit of
having relatively large processing capabilities, because the
number of programmable logic resources used 1n the system
may be relatively large. In a reconfigurable system, if more
processing power 1s needed, one simply needs to add more
programmable logic devices onto the interconnect network.
An application need not necessarily be recompiled after add-
ing more programmable logic devices to the system, because
the run-time manager will automatically detect and incorpo-
rate the new hardware 1n the run-time performance specifica-
tion. All of these devices may then be controlled and kept
track of using the virtual computer operating system.

The minimum and maximum function performance goals
set by the software designer may determine the next function
to be scheduled for resource allocation. In addition, the pri-
orities of the fTunctions currently executing may also be used
in the determination of the next function to be scheduled.

Another feature of the present ivention 1s the ability to
defragment the programmable logic devices. In conventional
computers, storage devices such as hard drives may be
defragmented to avoid the problems that occur as resources
on the drive are continually allocated and deallocated. A
region of deallocated space on a conventional hard drive may
not be sufficiently large to be reallocated to a function that
requires a larger contiguous space. In accordance with the
present invention, programmable logic defragmentation may
be used to defragment the partial configuration of a single
programmable logic device. This allows many small preallo-
cated areas of programmable logic to be relocated to make a
larger working region of programmable logic available. This
involves reallocating the configuration data for certain
switches to different portions of the programmable logic to
accommodate desired programmable logic device functions.

Another aspect of the present invention relates to software
development. The software development process 1s a critical
part of using any computing system. It 1s important to have
capabilities for performing complex functions and creating
intricate interfaces with which a user may interact with the
computing system. Most conventional development tools
include high level programming languages such as JAVA,
C++, ADA, LISP, COBOL, VISUAL BASIC, as well as oth-
ers. In order to maintain consistency during the software
development process, high level languages for the recontig-
urable computer system may be designed using the principles
of conventional high-level programming languages.

An application typically includes multiple functions. For
example, a graphics-intensive application may use certain
functions for rendering surfaces and may use other functions

10

15

20

25

30

35

40

45

50

55

60

65

10

for ray tracing. The virtual computer operating system allo-
cates programmable logic device resources to the functions of
the application.

A unit hardware abstraction may be used. That 1s, an appli-
cation engineer need not worry about how many program-
mable logic device resources any particular system runming
the application has. Rather, an abstraction may be made that
all of the resources are available, subject to a minimum
resource requirement of at least one programmable logic
device.

This 1s shown 1 FIG. 5A. Hardware functions 181 are
compiled by HDL compiler 180 based on a umt hardware
abstraction (1.e., the assumption that the hardware description
language for the application 1s being compiled into blocks of
configuration data that will be implemented in one program-
mable logic resource or a subset of one programmable logic
resource, represented as unit of hardware 182). Unit hardware
182 may be, for example, a single programmable logic device
or a part of a single programmable logic device. HDL com-
piler 180 provides VC-OS 184 with configuration data in the
form of blocks of configuration data where each block {its into
one unit hardware 182. VC-OS 184 allocates programmable
logic device resources to the blocks (that make up functions,
which 1n turn, make up the application) as needed.

In the example of FIG. SA, VC-OS 184 has allocated
programmable, logic resource 186 to block 1 of the applica-
tion, has allocated programmable logic resource 188 to block
2 of the application, . . . and has allocated programmable logic
resource 190 to block n of the application. Logic resources
such as logic resources 186, 188, and 190 may each be based
on a single programmable logic device, may each be based on
a portion of a programmable logic device, may each be based
on a combination of such device arrangements, or may each
be based on any other suitable logic resources. HDL compiler
180 may compile applications based on a consistent unit
hardware abstraction even though the resources to be allo-
cated may change from system to system or may change at
run time 1n any given system. The virtual logic manager may
swap blocks of configuration data 1n a particular program-
mable logic resource if such resources are limited. Further-
more, as shown i1n FIG. 5B, the VC-OS may allocate one
programmable logic device resource to multiple blocks of
configuration data.

The process of compiling a high-level design specification
or algorithm and executing 1t on a reconfigurable hardware
architecture 1s detailed in FIG. 6. A specification (algorithm)
70, a set of constraints 74, and a resource library 76 are
provided to software development tools 192 as inputs. The
specification may be written 1n a system design language. In
the specification, the application engineer need only write an
application using the tools provided by the system design
language. The application engineer need not take 1nto account
a soltware version and a hardware version of the functions
written 1n the system design language. A partitioner 72 may
then partition the specification 70 into software functions 78
and hardware functions 80. This 1s done so that the functions
may be run entirely in software (e.g., on a microprocessor),
run entirely in hardware (on a programmable logic device), or
run in a combination of both. Both a software implementation
and a hardware implementation may be generated for each
functional partition because the decision to run a preferred
partition implementation may be delayed until run-time. A
system design language profiler may also be run on the sys-
tem design language code to analyze critical paths and assign
partitions.

The partitioning phase may have to take constraints 74 into
account. There are two generic types of constraints 74. First,

US RE42,444 E

11

the functional boundaries of the system design language
specification 70 may have timing relationships within func-
tions and there may be a concurrent or sequential constraint
between functions. Second, cost functions may be associated
with using hardware resources 1n the resource library 76. The
resource library 76 contains details about each available hard-
ware resource (generally this includes microprocessors,
memory, and programmable logic devices). These can
include computation rate, latency, and response time of a
resource or cost functions o time (usually for software imple-
mentations), area (usually for hardware implementations), or
communication (overhead in both time and area).

Constraints may be defined as “hard” constraints that must
be met. An example of a hard constraint is a constraint involv-
ing a real-time I/O or interrupt process. Constraints may also
be defined as “soft” constraints. An example of a soft con-
straint 15 a constraint related to arithmetic functions 1n a
spreadsheet. It 1s not critical that these arithmetic functions
get performed within a particular time, but the faster these
functions are executed, the more convenient it would be to use
the application.

The resource library 76 describes properties for each type
of resource. For example, a microprocessor may have prop-
erties such as a particular instruction set and a data-path
width, a memory may have a particular data-path width, and
a programmable logic device may have a particular logic
capacity and an I/O count. The partitioning tool 72 takes
properties from the resource library 76 and constraints 74 into
account, but may not take mto account how many resources
there are of each resource within a given system. It 1s the
responsibility of the run-time resource managers to map func-
tional partitions into available hardware resources on-de-
mand from an executing application.

Once the system design language specification 70 1s parti-
tioned into software functions 78 and hardware functions 80,
interface functions 86 may be synthesized to allow param-
cters to be passed between these functions. These interface
functions 86 may be software methods for writing parameters
to hardware functions 80 that are memory-mapped, or this
could imnvolve instantiating a hard-disk interface circuit into a

programmable logic device to enable the archive of a file
system.

It 1s not necessary to have both software and hardware
versions of all of the functions. An application engineer may
write all functions for both software and hardware, some for
both, or strictly for one or the other. It may be desirable,
however, to have both versions in order to give the operating,
system flexibility 1n choosing an optimal set of functions and
implementations.

After partitioning to functions, each component in soft-
ware and hardware must be mapped into the physical imple-
mentation technology. This involves compiling software
functions 78 into threads 88 using a high-level language com-
piler 82 and hardware functions 80 into configuration patterns
90 using a hardware description language compiler 84. Vari-
ous optimization and reduction techniques may be applied at
this stage, such as constant propagation (both arithmetic and
geometric), strength reduction (e.g. a+a=2 * a—this would
remove a potentially costly multiply stage), pipelining, or
resource sharing.

The final executable code 1mage (generated by a linker 92
which resolves software and hardware function and param-
cter addresses), includes a main function and dynamically-
linked functions all of which may be executed in software or
hardware or a combination of both. These functions and the

10

15

20

25

30

35

40

45

50

55

60

65

12

constraints 74 generated by the system design language par-
titioner 72, are inputs to the virtual computer operating sys-
tem 94.

Alternatively, a user may simplify the design flow by par-
titioning the specification manually nto soitware compo-
nents and hardware components as illustrated 1n FIG. 7. This
flow would assume no functional timing constraints (because
it 1s not written 1n the system design language). If desired,
constraints may be taken into account. The main flow of
control may be executed on a microprocessor 130 (or a pro-
grammable logic device programmed to be a microproces-
sor), which may call functions resident in programmable
logic 132.

Algorithm functions, targeting either a microprocessor 130
or a programmable logic device 132, may be written 1n a
high-level language 114 and translated to a hardware descrip-
tion language using a high-level language to hardware
description language compiler 118 for the functions to be
implemented 1n a programmable logic device 132. Interface
functions 112 necessary to pass parameters between the soft-
ware and hardware functions are also specified in the high-
level language.

The high-level language compiler 116 compiles software
functions 110 and creates threads 122 that are linked with the
configuration data 126 from the hardware description lan-
guage compiler 120 1n the linker 124. These functions may
then be used by the virtual computer operating system 128.

Depending on available resources, the application engi-
neer’s instructions, and constraints, the virtual computer
operating system may determine (either during run-time or
during soitware compilation) whether the software 1mple-
mentation, the hardware implementation, or a combination of
both will be used to run a particular application. This allows
for extremely efficient processing since functions that are
better suited to run on software are run using soiftware,
whereas those functions that are better suited for program-
mable logic device hardware are run using programmable
logic resources.

The foregoing 1s merely 1llustrative of the principles of this
invention and various modifications can be made by those
skilled in the art without departing from the scope and spirit of
the mvention.

What 1s claimed 1s:

1. A method for managing resources 1n a reconfigurable
computer that contains programmable logic resources that are
reconfigurable to optimize the ability of the computer to
handle a given application comprising;:

automatically swapping configuration data between a sec-

ondary storage device and the programmable logic
resources during programmable logic resource alloca-
tion using a virtual logic manager, wherein the second-
ary storage device 1s a mass storage device.

2. The method defined 1n claim 1 wherein the reconfig-
urable computer includes a central processing unit imple-
mented on at least one programmable logic device and pro-
grammable logic coupled to the central processing unit,
wherein the programmable logic 1s reconfigurable to opti-
mize the ability of the computer system to handle a given
application.

3. The method defined 1n claim 1 wherein the reconfig-
urable computer includes a central processing unit 1mple-
mented on a microprocessor and programmable logic
coupled to the central processing unit, wherein the program-
mable logic 1s reconfigurable to optimize the ability of the
computer system to handle a given application.

4. The method defined 1n claim 1 wherein the reconfig-
urable computer includes a central processing unit that 1s

US RE42,444 E

13

partially implemented on a microprocessor and that 1s par-
tially implemented on a programmable logic device and pro-
grammable logic coupled to the central processing unit,
wherein the programmable logic 1s reconfigurable to opti-
mize the ability of the computer system to handle a given
application.

5. The method defined 1n claim 1 wherein the automatically
swapping configuration data between the secondary storage
device and the programmable logic resources comprises
automatically swapping configuration data between a hard
disk drive and the programmable logic resources.

6. The method defined in claim 1 wherein the automatically
swapping configuration data between the secondary storage
device and the programmable logic resources comprises
automatically swapping configuration data between the sec-
ondary storage device and programmable logic device con-
figuration memory.

7. The method defined 1n claim 1 further comprising auto-
matically swapping state information between the secondary
storage device and the programmable logic resources during
programmable logic resource allocation using the virtual
logic manager.

8. The method defined 1n claim 1 wherein the reconfig-
urable computer 1s scalable with respect to the programmable
logic resources.

9. A method for optimizing the ability of a computer com-
prising programmable logic resources to execute a given
application, the method comprising:

during run-time of the application, automatically deter-
mining an available programmable logic resource
bandwidth: and

during run-time of the application, based at least in part on
the available programmable logic vesource bandwidth,
automatically swapping configuration data between a
memory device and at least one of the programmable
logic resources to recomfigure programmable logic
resources.

10. The method of claim 9 whervein the automatically
reconfiguring is performed by a virtual computer operating
system.

11. A reconfigurable computer system comprising:

at least one programmable logic resource;

a secondary storage device coupled to the at least one
programmable logic resource, wherein the secondary
storage device is a mass storvage device; and

a central processing unit coupled to the at least one pro-
grammable logic resource and the secondary storage

10

15

20

25

30

35

40

45

14

device, wherein the processor is configured to automati-
cally swap configuration data between the secondary
storage device and the at least one programmable logic
resource during programmable logic resource alloca-
tion using a virtual logic manager.

12. The system of claim 11 wherein the central processing
unit is at least partially implemented on the at least one
programmable logic resource.

13. The system of claim 11 wherein the central processing
unit is at least partially implemented on a microprocessor.

14. The system of claim 11 wherein the central processing
unit is partially implemented on a microprocessor and is
partially implemented on the at least one programmable logic
resource.

15. The system of claim 11 wherein the secondary storage
device is a hard disk drive.

16. The system of claim 11 wherein the at least one pro-
grammable logic resource comprises configuration memory,
and wherein the configuration data is swapped between the
configuration memory and the secondary storage device.

17. The system of claim 11, wherein the central processing
unit is further configured to automatically swap state infor-
mation between the secondary storvage device and the at least
one programmable logic resource during programmable
logic resource allocation using the virtual logic manager.

18. The system of claim 11, wherein the reconfigurable
computer is scalable with respect to the programmable logic
resources.

19. A system for optimizing the ability of a computer to
execute a given application, the system comprising:

at least one programmable logic vesource;

a memory device coupled to the central processing unit and

to the at least one programmable logic vesource; and

a central processing unit configured to:

during run-time of the application, automatically deter-
mine an available programmable logic resource
bandwidth; and

during run-time of the application, based at least in part
on the available programmable logic resource band-
width, automatically swap configuration data
between the memory device and the at least one pro-
grammable logic resource to veconfigure the at least
one programmable logic resource.

20. The system of claim 19 wherein a virtual computer
operating system runs on the central processing unit.

	Front Page
	Drawings
	Specification
	Claims

