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(57) ABSTRACT

A system and method are disclosed for generating a robust
model of a system that selects a modeling function. The
modeling function has a set of weights and the modeling
function has a complexity that 1s determined by a complexity
parameter. For each of a plurality of values of the complexity
parameter an associated set of weights of the modeling func-
tion 1s determined such that a training error 1s minimized for
a traiming data set. An error for a cross validation data set 1s
determined for each set of weights associated with one of the
plurality of values of the complexity parameter and the set of
weights associated with the value of the complexity param-
cter 1s selected that best satisfies a cross validation criteria.
Thus, the selected set of weights used with the modeling
function provides the robust model.

2 Claims, 4 Drawing Sheets
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1
ROBUST MODELING

Matter enclosed in heavy brackets [ ] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

FIELD OF THE INVENTION

The present mmvention relates generally to a learming
machine that models a system. More specifically, a robust
modeling system that determines an optimum complexity for
a given criteria 1s disclosed. The robust model of a system
strikes a compromise between accurately {itting outputs 1n a

known data set and effectively predicting outputs for
unknown data.

BACKGROUND OF THE INVENTION

A learning machine 1s a device that maps an unknown set of
mputs (X, X,, ... X ) which may be referred to as an mput
vector to an output Y. Y may be a vector or Y may be a single
value. Appropriate thresholds may be applied to Y so that the
input data 1s classified by the output Y. When'Y 1s a number,
then the process of associating Y with an mput vector 1s
referred to as scoring and when Y 1s thresholded into classes,
then the process of associating Y with an mput vector 1s
referred to as classification. A learning machine models the
system that generates the output from the mput using a math-
ematical model. The mathematical model 1s trained using a
set of inputs and outputs generated by the system. Once the
mathematical model 1s traimned using the system generated
data, the model may be used to predict future outputs based on
given 1nputs.

A learning machine can be trained or using various tech-
niques. Statistical Learning Theory by Vladmir Vapnik, pub-
lished by John Wiley and Sons, ©1998, which 1s herein incor-
porated by reference for all purposes, and Advances 1n Kernel
Methods: Support Vector Learning) published by MIT Press
©1999, which 1s herein incorporated by reference for all
purposes describe how a linear model having a high dimen-
sional feature space can be developed for a system that
includes a large number of mput parameters and an output.

One example of a system that may be modeled 1s electricity
consumption by a household over time. The output of the
system 1s the amount of electricity consumed by a household
and the 1nputs may be a wide variety of data associated with
empirical electricity consumption such as day of the week,
month, average temperature, wind speed, household income,
number of persons in the household, time of day, etc. It might
be desirable to predict future electricity consumption by
households given different inputs. A learning machine can be
trained to predict electricity consumption for various mputs
using a training data set that includes sets of input parameters
(input vectors) and outputs associated with the input param-
cters. A model trained using available empirical data can then
be used to predict future outputs from different inputs.

An 1mmportant measure of the effectiveness of a trained
model 1s 1ts robustness. Robustness 1s a measure of how well
the model performs on unknown data after training. As amore
and more complex model 1s used to fit the training data set, the
aggregate error produced by the model when applied to the
entire training set can be lowered all the way to zero, i1f
desired. However, as the complexity or capacity of the model
increases, the error that 1s experienced on input data that 1s not
included in the training set increases. That 1s because, as the
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model gets more and more complex, 1t becomes strongly
customized to the training set. As 1t exactly models the vagar-
ies of the data 1n the training set, the model tends to lose 1ts
ability to provide useful generalized results for data not
included 1n the training set. FIG. 1A illustrates a model that 1s
complex but 1s not robust. The output of the model 1s 1llus-
trated by trace 102. Trace 102 passes very close to all of the
data points shown, which are included in the training set.
However, because of the complex nature of curve 102, 1t 1s
unlikely to successtully approximate the output Y for values
of X that are not in the training set.

FIG. 1B 1s a graph illustrating a model that 1s very robust,
but does not provide as good a fit as the model shown m FIG.
1A. Curve 104 does not pass as close to the data points in the
training set shown as Curve 102 did in FIG. 1A. However,
Curve 104 1s more robust because future data points shown as
circles are closer to Curve 104 than to Curve 102. In general,
there 1s a tradeoll between providing a better and better fit for
the points included 1n a traiming data set and the likelihood of
a good it for other data points not included in the training data
set. The ability of the model to provide a good {it for data
points not included 1n the training set 1s determined by the
model’s robustness. The question of how to determine an
appropriately complex model so that the tradeotl between a
good {it of the training set and robustness 1s the subject of
considerable research.

For example, U.S. Pat. No. 5,684,929 (heremafter the
“’929 patent”) 1ssued to Cortes and Jackel illustrates one
approach to determining an appropriate complexity for a
model used to predict the output of a system. Cortes and
Jackel teach that, if data 1s provided 1n a training set used to
train a model and a test data set used to test the model, then an
approximation of the percentage error expected for a given
level of complexity using a training set of infinite size can be
accurately estimated. Based on such an estimate, Cortes and
Jackel teach that combining such an estimate with other esti-
mates obtained for different levels of capacity or complexity
models can be used so that the error decreases asymptotically
towards some minimum error E_. Cortes and Jackel then
describe 1ncreasing the complexity of the modeling machine
until the diminishing gains realized as the theoretical error for
an infinite training set 1s asymptotically approached decrease
below a threshold. The threshold may be adjusted to indicate
when further decrease 1n error does not warrant increasing the
complexity of the modeling function.

For very large training sets where the error on the test data
set and the training data set both approximate the error on an
infinite training set, this approach 1s useful. Generally, as
complexity increases, the error decreases and 1t 1s reasonable
to specily a mimmimum decrease in error below which it 1s not
deemed worthwhile to further increase the complexity of the
modeling function. However, the technique taught by Cortes
and Jackel does not address the problem of the possible
tradeoll 1n error for new data that results 1n error actually
increasing as the modeling function complexity increases. By
assuming that the training set 1s very large or perhaps infinite,
il necessary, the 929 patent assumes that the error asymp-
totically reaches a minimum. That 1s not the case for finite
data sets and therefore the phenomenon of reduced robust-
ness with increased complexity should be addressed 1n prac-
tical systems with limited training data. What 1s needed 1s a
way ol varying the capacity or complexity of a modeling
function and determining an optimum complexity for mod-
cling a given system.

FIG. 2 1s a graph 1llustrating how the error for a training
data set and the error for data not included in the training set
behave as the complexity of a model dertved using the train-




US RE42,440 E

3

ing data set increases. Curve 200 shows that as the complexity
or capacity of the modeling function increases, the aggregate
error calculated when comparing the output of the model to
the output provided 1n the training data set for the same mputs
decreases. In fact, the difference between the output of the
model and the data provided 1n the training set can be reduced
to zero 1f a sulliciently complex modeling function 1s used.
Curve 202 1llustrates the error determined by the difference
between the output of the model and real output data obtained
for inputs not included in the tramning set. As the complexity
of the model increases, the error at first decreases until it
reaches a minimum and then begins to increase. This result 1s
caused by an overly complex model becoming excessively
dependent on the vagaries of the training set. This phenom-
enon 1s referred to as over-traiming and results 1n a complex
model that 1s a very good fit of the traiming data but 1s not
robust.

Again, the tradeoll between {it and robustness as the com-
plexity of a model increases suggests the desirability of find-
ing an optimal level of complexity for amodel so that the error
of the model when applied to future input data may be mini-
mized. However, a simple and effective method of deriving an
optimally complex model has not been found. What 1s needed
1s a method of determining a model that has optimum or
nearly optimum complexity so that when the best {it possible
given the optimum complexity 1s achieved for the training set,
the model tends to robustly describe the output of the system
for mputs not included in the traiming set. Specifically, a
method of varying the complexity of a model and predicting,
the performance of a model on future unknown inputs to the
system 1s needed.

SUMMARY OF THE INVENTION

A robust model 1s generated using a technique that opti-
mizes the complexity of the model based on data obtained
from the system being modeled. Data 1s split into a training
data set and a generalization or cross validation data set. For
a given complexity, weights are determined so that the error
between the model output and the training data set 1s mini-
mized. A degree of complexity i1s found that enables weights
to be determined that best minimize some measure of error
between the model output or best accomplish some goal that
1s related to the cross validation data. The degree of complex-
ity 1s measured by a complexity parameter, Lambda. Once the
optimum complexity has been determined, weights for that
complexity may be determined using both the training data
set and the generalization data set.

In one embodiment, a polynomaial function is used to model
a system. The coelficients of the polynomial are determined
using data 1n a tramning set with a regression method used to
mimmize the error between the output of the model function
and the output data 1n the training set. A regularization coet-
ficient 1s used to help calculate the weights. The regulariza-
tion coellicient 1s also a measure of the complexity of the
modeling function and may be used as a complexity param-
cter. By varying the complexity parameter and checking a
criteria defined for comparing the output of the model and
data 1n a cross validation set, an optimum complexity param-
cter may be derived for the modeling function.

It should be appreciated that the present invention can be
implemented in numerous ways, including as a process, an
apparatus, a system, a device, a method, or a computer read-
able medium such as a computer readable storage medium or
a computer network wherein program instructions are sent
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4

over optical or electronic communication lines. Several
inventive embodiments of the present invention are described
below.

In one embodiment, a method of generating a robust model
of a system 1ncludes selecting a modeling function having a
set of weights wherein the modeling function has a complex-
ity that 1s determined by a complexity parameter. For each of
a plurality of values of the complexity parameter an associ-
ated set of weights of the modeling function 1s determined
such that a training error 1s minimized for a traiming data set.
An error for a cross validation data set 1s determined for each
set of weights associated with one of the plurality of values of
the complexity parameter and the set of weights associated
with the value of the complexity parameter 1s selected that
best satisfies a cross validation criteria. Thus, the selected set
ol weights used with the modeling function provides the
robust model.

In one embodiment, a method of generating a robust model
of a system 1ncludes selecting a modeling function having a
set of weights wherein the modeling function has a complex-
ity that 1s determined by a complexity parameter. For each of
a plurality of values of the complexity parameter, an associ-
ated set of weights of the modeling function 1s determined
such that a training error 1s minmimized for a traiming data set.
A cross validation error for a cross validation data set 1s
determined for each set of weights associated with one of the
plurality of values of the complexity parameter. An optimal
value of the complexity parameter 1s determined that mini-
mizes the cross validation error and an output set of weights
of the modeling function using the determined optimal value
of the complexity parameter and an aggregate training data
set that includes the training data set and the cross validation
data set 1s determined such that an aggregate training error 1s
minimized for the aggregate training data set. The output set
of weights used with the modeling function provides the
robust model.

In one embodiment, a robust modeling engine includes a
memory configured to store a training data set and a cross
validation data set. A processor 1s configured to select a mod-
cling function having a set of weights. The modeling function
has a complexity that 1s determined by a complexity param-
eter. For each of a plurality of values of the complexity param-
eter, the processor determines an associated set of weights of
the modeling function such that a training error 1s mimmized
for a training data set. The processor determines an error for
a cross validation data set for each set of weights associated
with one of the plurality of values of the complexity param-
cter and selects the set of weights associated with the value of
the complexity parameter that best satisfies a cross validation
criteria. An output 1s configured to output the set of weights
associated with the value of the complexity parameter that
best satisfies a cross validation criteria.

These and other features and advantages of the present
invention will be presented 1n more detail in the following
detailed description and the accompanying figures which
illustrate by way of example the principles of the mnvention.

BRIEF DESCRIPTION OF THE DRAWINGS

The present mvention will be readily understood by the
tollowing detailed description in conjunction with the accom-
panying drawings, wherein like reference numerals designate
like structural elements, and 1n which:

FIG. 1A 1illustrates a model that 1s complex but 1s not
robust.
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FIG. 1B 1s a graph 1llustrating a model that 1s very robust,
but does not provide as good a fit as the model shown 1n FIG.
1A.

FIG. 2 1s a graph 1illustrating bow the error for a training,
data set and the error for data not included 1n the training set
behave as the complexity of a model derived using the train-
ing data set increases.

FIG. 3 1s a flowchart 1llustrating a process for determining,
an optimum Lambda and outputting a model based on that
optimum Lambda.

FIG. 4 1s a block diagram illustrating a system used to
generate a robust model as described above.

DETAILED DESCRIPTION

A detailed description of a preferred embodiment of the
invention 1s provided below. While the invention 1s described
in conjunction with that preferred embodiment, 1t should be
understood that the mvention 1s not limited to any one
embodiment. On the contrary, the scope of the invention 1s
limited only by the appended claims and the invention
encompasses numerous alternatives, modifications and
equivalents. For the purpose of example, numerous specific
details are set forth 1n the following description in order to
provide a thorough understanding of the present invention.
The present imvention may be practiced according to the
claims without some or all of these specific details. For the
purpose of clarity, details relating to technical material that 1s
known 1n the technical fields related to the mvention has not
been described 1n detail in order not to unnecessarily obscure
the present invention 1n such detail.

The Regularization Function and Lambda

Using empirical data to derive an optimally robust model
will now be described 1n detail. It should be noted that the
output of such a robust model can be used 1n a raw form as a
score, or the output can be converted to a classification using
thresholds. For example, output above a certain electricity
usage threshold level could be classified as high and output
below that level could be classified as low. Errors 1n the output
ol the learning machine can be evaluated either 1in terms of the
number ol misclassifications or in terms of the difference
between the model output and actual usage. Using raw values
1s referred to as scoring and using classifications 1s referred to
as classification.

In general, a system may be described 1n terms of an output
Y and various inputs X1,X2, . . . , XN such that Y=F(X1,

X2, ... ,XN), where F 1s some unknown function of X1,
X2, ..., XN. Tomodel the system, the inputs are first mapped
into a high dimensional feature space. Depending on the
function used by the model, new attributes may be dertved
from the mputs. For example, various cross products and
squares such as X1° or X1*X2 may be generated. For the
purpose of example, an embodiment using a polynomial of
degree 2 across the input attributes will be described. In other
embodiments, different degree polynomials are used. Other
types ol functions may be used as well.

After starting with inputs X1,X2, ... ,XN, a set of attributes
can be defined. For example, using a polynomial of degree 2,
the number of attributes 1s N such that N=n(n+3)/2+1. The
attributes include all of the squares and cross products of the
inputs, and a bias constant Z0. The model dertved for the input
data 1s obtained 1n the form Y=w0*Z0+w1*Z14+w2*72+ . . .
+wN*ZN, where each wi 1s a weight that 1s derived for the
model. In the new feature space of (Z20,71,72, . . ., ZN), the
model 1s linear 1n attributes Z1. Empirical data 1s used to train
the model and derive the weights.
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One way of dertving the weights 1s to use the least squares
method on a set of traiming data comprising outputs Y1 and
attributes (711,721, . . . , ZNi1) derntved from inputs X1,
X21, . .. ,XN1 to dertve weights w that minimize the error
between the model output Y'1 and the empirical system out-
puts Y1. The least squares method 1s described in Numerical
Recipes 1n C Second Edition by Press et al published by
Cambridge University Press ©1997, which 1s herein incorpo-
rated by reference.

A model of the form described above may be the basis of a
support vector machine. In support vector regression, low
dimensional input data 1s mapped 1nto a high dimensional
feature space via a nonlinear mapping and linear regression 1s
used 1n the high dimensional feature space. Linear regression
in the high dimensional feature space corresponds to nonlin-
car regression in the low dimensional input space.

The problem of deriving the weights for a support vector
machine 1s described 1n detail in Advances 1in Kernel Meth-
ods: Support Vector Learning, which was previously incor-
porated by reference. Dertving the weights w 1s accomplished
by mimimizing the sum of the empirical risk Remp(1) and a
complexity term ||w||* which determines the complexity of the
model.

Remp(1) 1s an error term that 1s defined as follows:

Remp(H)=({ (Yu-({(j*Zijlj=0, .. . ,NH?li=1,... L}

A regularization function Rreg(1) 1s dertved by adding a
regularization coelficient to Remp(1).

Rreg(f)=Remp (D)+Lamba*||w|[*, where Lamba is a con-
stant to be specified. This allows the error to be minimized.
This mathematical technique for deriving the weights wi
using aregularization coetlicient 1s referred to as ridge regres-
sion. In the case where Remp(H)=({(Yi-({wj*Zijlj=0, . . .,
NYY?li=1,...,L}, fora given Lamba, it is possible to compute
the exact solution (w0, . . . , wN) by computing the partial
derivatives of Remp(1) in w0, ..., wN.

For the mmmimum of Remp(1), the partial derivatives are
equal to zero. This yields N+1 linear equations 1n N+1 vari-
ables that can be solved by inverting a symmetric (N+1, N+1)
matrix. A Cholevsky algorithm as 1s described in Numerical
Recipes in C, which was previously incorporated by refer-
ence, 1S used 1n one embodiment to 1nvert the matrix so that
the weights that minimize the regularization function are
determined.

Thus, amodel can be described that models a system using
weights that are derived by minimizing a regularization func-
tion. The regularization function includes an error term Remp
(1) and a regularization coellicient. The error term shown
aboveis dertved from the polynomial least square error. Other
error terms may be used. The regularization coetlicient con-
strains the ability of the polynomial least square error to be
minimized by increasing the regularization function when
large weights are used.

Lambda 1s a nonzero term that 1s required to solve the
above equations for w0, . . . , wN. Lambda also has an
important interpretation. Referring back to Equation 1,
Lambda 1s multiplied by the sum of the squares of the weights
m. As Lambda becomes larger the regularization term
increasingly penalizes models that have large weights. Sig-
nificantly, Lambda determines the complexity of the model
that 1s derived from a given set of training data. Another way
of stating this 1s that increasing Lambda decreases the VC
dimension of the model. The VC dimension, as described in
Statistical Learning Theory, which was previously incorpo-
rated by reference 1s a measure of the complexity of the
modeling function. Thus, changing Lambda controls the
complexity of the model. It should be noted that, 1n general, 1t
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need not be true (and 1n fact 1s not true) that the VC dimension
decreases monotonically with an increase in Lambda. Rather,
we say that Lambda enforces the VC dimension. That i1s, the
VC dimension generally decreases as Lambda increases, but
not necessarily 1n a monotonic manner.

As Lambda increases, the weights derived from a given
training data set become smaller. If Lambda 1s infinite, the
weights converge to 0 and the model reduces to a single
constant, the average of the training outputs. In the terminol-
ogy of support vector regression, it is said that the w” term
enforces the flatness of the feature space and Lambda controls
the flatness of the feature space. Lamba 1s also referred to as
a regularization constant.

Example Data Set

Atthis point it 1s useful to consider an example with 2 input
attributes 1n the original attribute space using a polynomial of
degree 2 to model the system. There are 2 input attributes X1
and X2, and 1n the high dimensional feature space, there are 6
attributes 70, 71, 72, 73, 74, 75 (here, N=5).

Considering an example with 15 lines of data, the data 1s
first divided 1nto two sets. The first 10 lines of data are the
training set and the next 5 lines are used as the cross-valida-
tion set.

a
<
2

Traimning 64

_24
_24
12
~14
29

21

18
47
12
47

08

Validation

O o0 NO 0 P b otn Sy B ND o= P = LD
o o N T N N TR R T B (N T U B N N T N T SN o N & o

The attributes 721, 72, 73, 74, 75 are computed by normal-

1zing X1 and X2, to get X1N and X2N with zero mean, and
variance equals to 1. Then we compute:
70=1
Z1=X1N
72=X2N
Z3=X1N-?
74=X2N"

Z5=X1N*X2N
Accordingly, the target Y 1s normalized to get YN.

Z1 Z2 Z3 Z4 25 YN
Traimning

-0.70 1.87 0.49 3.50 -1.31 1.62
-1.37 0.90 1.88 0.81 -1.23 0.19
-0.36 —-0.06 0.13 0.00 0.02 0.06
-1.37 —-1.03 1.88 1.06 1.41 —-0.63
-0.02 —-1.03 0.00 1.06 0.02 —-0.63

1.33 —-0.06 1.77 0.00 —-0.08 -0.32
-1.03 —-0.55 1.06 0.30 0.57 -0.37

0.31 —-1.03 0.10 1.06 -0.32 -0.76
-0.02 0.42 0.00 0.18 0.01 0.52
-1.03 0.42 1.06 0.18 -0.43 0.14
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-continued
Z1 Z2 Z3 74 Z5 YN
Validation

—0.36 0.42 0.13 0.1% 0.15 0.44
(.99 —-1.03 (.98 1.06 -1.02 -1.22
1.33 —0.06 1.77 (),00 —0.08 —0.32
(.99 —-1.03 (.98 1.06 -1.02 -1.22
1.33 1.87 1.77 3.50 2.49 2.49

The model has the form:

YN=w0+w1*Z14+wW2*Z2+wW3* 23+ wdaA* Z4+W5* 7.5

The data set 1s separated 1nto a training data set and a cross
validation data set. In this example, the first 10 lines of data
are used for training and the last 5 lines are used for cross
validation.

Using the data shown,

Rreg(f)=

(1.62-0.70*w1+1.87*W2+0.49*w3+3.50*wd—
1.31%*w5)"2

+(0.19-1.37*W1+0.90*w2+1.88*w3+0.81 *wd—
1.23%*w5)"2

+(0.06-0.36*w1-0.06*w2+0.13*w3+0.00*wd-+
0.02%w5)"2

+(=0.63-1.37*w1-1.03*w2+1.88*w3+1.06* w4+
1.41%*w5)"2

+(=0.63-0.02*w1-1.03*w2+0.00*w3+1.06* w4+
0.02%w5)"2

+(=0.32+1.33*w1-0.06*w2+1.77*w3+0.00*wd—
0.08%w5)"2

+(=0.37-1.03*w1-0.55*w2+1.06*w3+0.30*wd+
0.57*w5)"2

+(=0.76+0.31*w1-1.03*w2+0.10*w3+1.06*wd—
0.32%w5)"2

+(0.52-0.02%w1+0.42*w2+0.00%w3+0. 18 *wd—
0.01*w5)"2

+(0.14-1.03*w1+0.42*w2+1.06*w3+0.18 *wd—
0.43*w5)"2

+Lambda*(w0?+w1Z4+w22+w32+wd +w5°)=

Rreg(f)+Lambda*||[Wp? Equation 1

For any given nonzero Lambda, e.g. from 107 to 10*, there
will be a minimum for the quadratic definite positive (sum of
positive terms, hence definite positive for any nonzero
Lambda) for Rreg(1) in W=(w0, wl, w2, w3, wd, w5).

This gives a vector W 1or every Lambda and the model 1s
expressed by:

YN=wO0+w1*Z14+w2*Z2+wW3*Z3+wd* Z4+w5* 7.5

The remainder of the data set shown below 1s then used to
select an optimum Lambda. The output of the model 1s com-
pared to the output specified 1n the validation set for each
input. A goal 1s defined for the comparison and a search 1s
performed by varying Lambda to determine an optimum
value of Lambda that best achueves the goal. Selecting an
optimum Lambda 1s described 1n further detail below.
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Z.1 72 Z3 74 Z5 YN
Validation
-0.36 0.42 0.13 0.18 -0.15 0.44
0.99 —1.03 0.98 1.06 -1.02 -1.22
1.33 -0.06 1.77 0.00 -0.08 -0.32
0.99 —1.03 0.98 1.06 -1.02 -1.22
1.33 1.87 1.77 3.50 2.49 2.49

In different embodiments, the goal can be 1n various forms.
For example the goal can be to mimmize the number of
misclassifications on the verification set by the model. The
goal may also be to minimize the sum of the squares of the
errors. Using this goal and searching for an optimum Lambda

using the Brent method, Lambda=0.1. Once the optimum
Lamba 1s obtained, the entire data set can be used to derive
wl, wl, w2, w3, w4, w3. The resulting model fits the entire
data set as well as possible for the given lambda selected to
maximize robustness.

Selecting an Optimum Lambda

The weights wi shown above may be derived by minimiz-
ing the regularization function for a griven Lambda. Next, a
technique will be described for determining an optimum
value of Lambda.

Lambda 1s optimized using the data set aside as the cross-
validation data set separate from the training data set. The
cross validation set 1s used to determine or learn the best value
of Lambda for the model. As described above, increasing
Lambda 1n general lowers the VC dimension of the model.
The best Lambda, and therefore the best VC dimension, 1s
determined by a process of selecting different values of
Lambda, dertving an optimum sets ol weights for each
lambda, and then evaluating the performance of the resulting
model when applied to the traiming data set. In different
embodiments, different criteria are used to evaluate the per-
formance of the model corresponding to each Lambda.

For example, in the embodiment illustrated above, the sum
of the squares of the differences between the model outputs
and the cross validation data set outputs for corresponding
inputs 1s minimized. Different values of Lambda are selected
and a search 1s made for the Lambda that best achieves that
goal. That value of Lambda 1s adopted as the best Lambda for
the criteria selected. Minimizing the sum of the squares of the
differences between the model outputs and the cross valida-
tion data set outputs is referred to as a goal or a criteria for
selecting Lambda. In other embodiments, other criternia are
used. For example, minimizing the absolute value of the
differences between the model outputs and the cross valida-
tion data set outputs may be the goal or minimizing the
maximum difference between the model outputs and the
cross validation data set output may be the goal. Any criteria
may be defined and a search for an optimum Lambda for
maximizing or minimizing the criteria can be performed. Any
suitable search method for finding an optimum Lambda may
be used. In one embodiment, a Newton type minimization
method 1s used to find the best Lambda for the given critena.
Other methods are used in other embodiments, such as the
Brent method used above.

In general, as Lambda increases, the error between the
model output and the training data set increases because the
complexity of the model 1s constrained. However, the robust-
ness of the model increases as Lambda increases. Selecting a
value of Lambda by minimizing an error criteria defined for
the cross validation set results 1n a Lambda with a good trade
off between {it and robustness.
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10

Thus, the steps for deriving a model based on a set of data
described above include dividing the set of data into two sets,
a training set and a cross-validation set. For a given Lambda,
a best Remp(1) on the learning set 1s dertved using the regu-
larized least square method, with Lamba being the strength of
the regularization (this 1s sometimes referred to as the vistam-
boire effect). This yields a model 1n the form:

Y=w0+wl1*Z1+ ... +wN*2ZN

A criteria for evaluating the model 1s selected and the
model 1s evaluated using the criteria and the cross-validation
set. The criteria can be the sum of the squares of the errors for
cach sample 1n the cross validation data set or any other
criteria that may be desired. In some embodiments, highly
specialized criteria are defined based on a specific goal that
may be deemed desirable for the model.

For example, 1n one embodiment, the goal that 1s defined
for the purpose of optimizing Lambda 1s maximizing the
“lift” determined by a “lift curve™ for the data 1n the cross
validation set. A lift curve 1s used by direct marketers to
determine how effective a selection of certain members of a
population has been 1n terms of maximizing some character-
istic of the users (e.g. net sales or total customer value). The
lift compares the performance of the selected group com-
pared to the expected performance of a randomly selected
group and a group selected by a “wizard” having perfect
knowledge. Thus, the criteria for selecting Lambda and opti-
mizing the robustness of the model may be very specifically
adapted to a specific application of the model.

Once a critenia 1s selected, Lambda 1s optimized for the
criteria. It should be noted that, for different criteria, the
optimization may be either maximizing a defined parameter
(such as lift) or minimizing a defined parameter (such as a
type of error).

In some embodiments, once an optimal Lambda 1s
selected, a final model 1s retramned using the optimum
Lambda. The retraining 1s done by using both the training
data set and the cross validation data set to determine the final
set of weights m.

FIG. 3 1s a flowchart 1llustrating a process for determining,
an optimum Lambda and outputting a model based on that
optimum Lambda. The process starts at 300. In a step 310, the
data 1s split into a training set and a cross validation set. As
described above, the training set 1s used to determine a model
with the best fit for the training set for a given Lambda. The
cross validation set 1s used to evaluate the robustness of
different models based on different Lambdas. After the datais
split into the training set and the cross validation set, a search
1s made to determine the best Lambda.

Inastep 312, afirst Lambdais selected. Then, in a step 314,
the best fit to the training set 1s found for the selected Lambda.
The best fit 1s found using a selected type of model. As
described above, one such model may be a polynomial for
which determining the best {it means determining the poly-
nomial coellicients or weights for each of the terms in the
polynomial. In other embodiments, other types of modeling
functions are used. As described above, Lambda for a poly-
nomial 1s the regularization coelflicient. In other embodi-
ments, the Lambda 1s a parameter that similarly controls the
complexity or VC dimension of the model. In a step 316, the
best fitmodel determined 1n step 314 1s evaluated according to
a specified criteria using the cross validation set. The criteria
specified may be a general criteria such as minimizing the
error or the sum of the squared area between the output of the
model and the outputs specified in the cross validation set. In
other embodiments, as described above, highly specialized
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criteria or goals may be specified such as maximizing the lift
curve for the model applied to the cross validation set.

In a step 318, the performance of the model according to
the criteria 1s compared to other results for other Lambdas. If,
as a result of the comparison, 1t 1s determined that the opti-
mum [.ambda has been found, then control 1s transferred to a
step 322. If the optimum Lambda has not been found, then
control 1s transferred to a step 320 where the next Lambda 1s
determined and then control 1s transferred back to step 314. In
different embodiments, different methods of selecting Lamb-
das to check and deciding when an optimum Lambda has
been found are used. In general, a search 1s made for an
optimum Lambda that satisfies the criteria and the search 1s
complete when the search method being used determines that
improvements in performance gained by selecting other
Lambdas fall below some threshold. The threshold may be set
in a manner that makes an acceptable tradeotl between speed
and how precisely an optimum Lambda 1s determined.

Once the optimum Lambda 1s found in step 322, the model
1s recomputed 1n a similar manner as 1s done 1n step 314 using
all of the data (i.e., both the data 1n the training set and the data
in cross validation set). Next, in a step 324, the model 1s
output. Along with outputting the coetlicients or other param-
cters that specity the model, Lambda may also be output
along with various metrics that evaluate the performance of
the model. Such metrics may include measures of the error
between the outputs derived from the model and the outputs
specified 1n the data set. Performance may also be indicated
by the number of misclassifications occurring for the entire
data set. The process then ends at 326.

FIG. 4 1s a block diagram illustrating a system used to
generate a robust model as described above. A processor 400
implements the methods described above. A memory 414
stores the data set and model parameters. An input interface
410 recerves input data and specifications of the type of model
to be used, the type of error to be minimized when {itting the
training data set, and the goal or criteria to be used to evaluate
the performance of the models generated using the cross
validation data set. An output interface 416 outputs the robust
model, along with metrics used to evaluate the performance
of the robust model.

Although the foregoing invention has been described 1n
some detail for purposes of clarity of understanding, 1t will be
apparent that certain changes and modifications may be prac-
ticed within the scope of the appended claims. It should be
noted that there are many alternative ways of implementing
both the process and apparatus of the present mvention.
Accordingly, the present embodiments are to be considered as
illustrative and not restrictive, and the invention is not to be
limited to the details given herein, but may be modified within
the scope and equivalents of the appended claims.

What 1s claimed 1s:

1. A computer-implemented method of generating a robust
model of a system comprising:

selecting a modeling function having a set of weights,

wherein the modeling function has a complexity that 1s
determined by a complexity parameter;

receiving, via an input interface, model specification data

of the modeling function for each of a plurality of values
of the complexity parameter],];

retrieving a training data set from a memory;

determining an associated set of weights of the modeling

function such that a training error is minimized for [a}
the training data set;

determining an error for a cross validation data set for each

set of weights associated with one of the plurality of
values of the complexity parameter; and
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selecting the set of weights associated with a value of the
complexity parameter that best satisfies a cross valida-
tion criterial;], whereby the selected set of weights used
with the modeling function provides the robust model,

wherein the cross validation criteria comprises maximiz-
ing lift for the data in the cross validation set; and

outputting the set weights via an output interface.

[2. A method of generating a robust model of a system as
recited 1n claim 1 wherein the training error i1s calculated
using a training error criteria that 1s a function of a difference
between training output values associated with training input
values determined from the training data set and output values
determined from the modeling function and the associated set
of weights applied to the training input values.}

[3. A method of generating a robust model of a system as
recited 1n claim 1 wherein the complexity parameter affects
how the training error is minimized.]

[4. A method of generating a robust model of a system as
recited 1n claim 3 wherein the complexity parameter causes
the training error to be decreased for sets of weights that are
more complex.]

[5. A method of generating a robust model of a system as
recited 1n claim 4 wherein the complexity of a modeling
function having a set of weights 1s determined by squared
weights of said set.}

[6. A method of generating a robust model of a system as
recited 1n claim 1 wherein the complexity parameter 1s a
regularization factor.}

[7. A method of generating a robust model of a system as
recited 1n claim 1 wherein the complexity parameter controls
an amount of noise that 1s added to input data of the training
set.]

[8. A method of generating a robust model of a system as
recited 1n claim 1 wherein the modeling function 1s a first
order polynomial.]

[9. A method of generating a robust model of a system as
recited 1n claim 1 wherein the modeling function 1s a second
order polynomial.]

[10. A method of generating a robust model of a system as
recited 1n claim 1 wherein the modeling function 1s a second
order polynomaial that includes cross products between 1nput
values.}

[11. A method of generating a robust model of a system as
recited in claim 1 wherein the plurality of values of the com-
plexity parameter are selected to best satisiy the cross vali-
dation criteria using a Newtonian minimization scheme.]

[12. A method of generating a robust model of a system as
recited in claim 1 wherein the plurality of values of the com-
plexity parameter are selected to best satisiy the cross vali-
dation criteria using a Brent method.}

[13. A method of generating a robust model of a system as
recited in claim 1 further including separating an empirical
data set into a training data set and a cross validation data set. ]

[14. A method of generating a robust model of a system as
recited 1n claim 1 wherein a threshold 1s applied to an output
ol the robust model to classily a set of inputs that generated
the output of the robust model.]

[15. A method of generating a robust model of a system as
recited in claim 1 wherein the training error for a training data
set having input elements and output elements 1s defined as a
sum of squared differences between said output elements and
outputs of the modeling function associated with correspond-
ing ones of said input elements.}

[16. A method of generating a robust model of a system as
recited 1in claim 1 wherein the training error for a training data
set having input elements and output elements 1s defined as a
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sum of differences between said output elements and outputs
of the modeling function associated with corresponding ones
of said input elements.]

[17. A method of generating a robust model of a system as
recited 1in claim 1 wherein the training error for a training data
set having input elements and output elements 1s defined as a
maximum difference between output elements of the training,
data and outputs of the modeling function associated with
corresponding ones of said input elements.}

[18. A method of generating a robust model of a system as
recited 1n claim 1 further including normalizing the training,
data.}

[19. A method of generating a robust model of a system as
recited in claim 1 further including splitting a set of data into
a training data set and a cross validation training set.}

[20. A method of generating a robust model of a system as
recited 1n claim 1 further including recalculating the set of
weights using both the training data set and the cross valida-
tion data set.]

[21. A method of generating a robust model of a system as
recited 1n claim 1 wherein the cross validation criteria 1s
maximizing lift.]

[22. A method of generating a robust model of a system as
recited 1n claim 1 wherein the cross validation criteria 1s
mimmizing a measure of error between the robust model and
the cross validation set.}

[23. A method of generating a robust model of a system
comprising;

selecting a modeling function having a set ol weights

wherein the modeling function has a complexity that 1s
determined by a complexity parameter;

for a each of a plurality of values of the complexity param-

cter, determining an associated set of weights of the
modeling function such that a training error 1s mini-
mized for a training data set;
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determiming a cross validation error for a cross validation
data set for each set of weights associated with one of the
plurality of values of the complexity parameter;

determining an optimal value of the complexity parameter
that minimizes the cross validation error; and

determining an output set of weights of the modeling func-
tion using the optimal value of the complexity parameter
and an aggregate training data set that includes a training,
data set and the cross validation data set such that an
aggregate training error 1s minimized for the aggregate
training data set; and

whereby the output set of weights used with the modeling
function provides the robust model.}

24. A robust modeling engine comprising:

a memory configured to store a training data set and a cross
validation data set;

an input interface configured to receive model specifica-
tion data of a modeling function;

a processor configured to:
select a modeling function having a set of weights,

wherein the modeling function has a complexity that
1s determined by a complexity parameter;

for each of a plurality of values of the complexity param-
cter, determine an associated set of weights of the
modeling function such that a training error 1s mini-
mized for a training data set;

determine [an error] a quantity for a cross validation data
set for each set of weights associated with one of the
plurality of values of the complexity parameter; and

select the set of weights associated with the complexity
parameter that best satisfies a cross validation criteria;
and

an output interface configured to output the set of weights

associated with the value of the complexity parameter

that best satisfies a cross validation criteria, wherein the

cross validation criteria comprises maximizing lift.
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