(19) United States

12 Reissued Patent
Kato

(10) Patent Number:
45) Date of Reissued Patent:

USOORE42406E

US RE42.406 E
May 31, 2011

(54) MULTI-RESOLUTION GEOMETRY

(75) Inventor: Saul S. Kato, San Francisco, CA (US)

(73) Assignee: Sugarloaf Acquisitions, LL.C, Los
Altos, CA (US)

(21) Appl. No.: 11/091,003

(22) Filed: Mar. 25, 2005

(Under 37 CFR 1.47)
Related U.S. Patent Documents

Reissue of:

(64) Patent No.: 6,538,652
Issued: Mar. 25, 2003
Appl. No.: 10/076,888
Filed: Feb. 15, 2002

U.S. Applications:
(63) Continuation of application No. 09/243,099, filed on
Feb. 2, 1999, now Pat. No. 6,421,051.

(60) Provisional application No. 60/089,794, filed on Jun.

18, 1998.

(51) Int.CL
GO6T 17720 (2006.01)
Go6T 17/00 (2006.01)

(52) US.CL .., 345/423; 345/428
(58) Field of Classification Search None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,428,717 A * 6/1995 Glassner 345/423
5,715,38 A * 2/1998 Ohshima etal. 345/428
5,870,307 A * 2/1999 Hulletal. 700/182
5,886,702 A * 3/1999 Migdaletal. 345/423
5,903,272 A 5/1999 Otto
5,929,860 A * T7/1999 Hoppeocoevvvvvvvrivvnnnnn, 345/419
5,963,209 A * 10/1999 Hoppeoocevvvvvvvivvnnnnn,s 345/419
(Continued)
Vertex List

FOREIGN PATENT DOCUMENTS
EP 0784 295 A2 7/1997

(Continued)

OTHER PUBLICATIONS

Hoppe. Progressive Meshes. Proceedings of the 23rd Annual Con-

ference on Computer Graphics and Interactive Techniques. 1996. pp.
99-108.*

(Continued)

Primary Examiner — Daniel F Hajmk

(74) Attorney, Agent, or Firm — Sterne, Kessler, Goldstein
& Fox P.L.L.C.

(57) ABSTRACT

A system, method, and apparatus 1s disclosed for creating a
three-dimensional visual representation of an object having
multiple resolutions by retrieving a vertex list for the object,
determining a collapse order for the vertices identified 1n the
vertex list, reordering the vertices identified in the vertex list
responsive to the determined collapse, order, and creating a
vertex collapse list responsive to the collapse order, where the
vertex collapse list specifies, for a target vertex, a neighbor
vertex to collapse to. The vertex list may comprise 3D coor-
dinates of vertices without referring to other vertex attributes
or, 1n alternate embodiments, the vertex list may refer to other
vertex attributes such as colors or normals. A runtime man-
ager 1s disclosed which dynamically manages the polygon
counts for objects and frames based upon the location, veloc-
ity, and area of the object. Polygon counts are also adjusted
based upon a target frame rate and a target polygon count. A
system 1s also disclosed for continuous transfer of data across
a remote connection in which different levels of resolution are
transmitted individually.

33 Claims, 16 Drawing Sheets

Cellapse Path

{(3enerator
180

Collapse List

- [Deaterminer
184

M

Y

Collapse Value
Analyzer
188

y

Collapse Path
Comparator and

Memory -
194

—

Data Source
195

Selector
192

US RE42,406 E
Page 2

U.S. PATENT DOCUMENTS

5,966,133 A 10/1999 Hoppe
5,966,140 A * 10/1999 Popovicetal. 345/441
6,009,435 A 12/1999 Taubin et al.
6,018,347 A 1/2000 Willis
6,031,548 A 2/2000 QGueziec et al.
6,046,744 A * 4/2000 Hoppeccooovevvvviiinnnnn, 345/419
6,108,006 A * 82000 Hoppeceevvvvveeriinnnn, 345/423
6,130,673 A 10/2000 Pull: et al.
6,137,492 A 10/2000 Hoppe
6,139,433 A * 10/2000 Miyamoto etal. 463/32
6,169,549 Bl 1/2001 Burr
6,175,365 B1* 1/2001 GuezieCoovvvnvinnn.n. 345/419
6,184,897 B1* 2/2001 Gueziecetal. 345/440
6,198,486 Bl 3/2001 Junkins et al.
6,256,041 Bl 7/2001 Deering
6,262,737 B1* 7/2001 Lietal.c.cc.cooooiiinnin, 345/419
6,285,372 Bl 9/2001 Cowsar et al.
6,307,551 B1* 10/2001 Gueziecetal. 345/419
6,362,833 B2 3/2002 Trika
6,396,490 B1* 5/2002 Gorman 345/419
6,414,683 Bl1* 7/2002 GuezieCc.c..ooo.n. 345/428
6,421,051 Bl 7/2002 Kato
6,426,750 B1* 7/2002 Hoppecooooeeeenrnnn 345/428
6,529,207 Bl 3/2003 Landau et al.
6,538,652 B2 3/2003 Kato
6,611,267 B2 8/2003 Migdal et al.
6,750,864 Bl 6/2004 Anwar
6,771,261 B2 8/2004 MacPherson
6,825,839 B2 11/2004 Huang et al.
6,879,324 B1* 4/2005 Hoppeooovvvvvienrnn, 345/423
6,940,505 Bl 9/2005 Savine et al.
6,982,715 B2 1/2006 Isenburg

2002/0130867 Al 9/2002 Yang et al.

2004/0012587 Al 1/2004 Mech

2004/0249617 A1 12/2004 Lau et al.

FOREIGN PATENT DOCUMENTS

EP 99111741 12/1999
JP 05-290145 A 11/1993
JP 09-231401 A 9/1997
JP 10-198823 A 7/1998
JP 11-086032 A 3/1999
JP 11-144089 A 5/1999
JP 11-209685 8/1999
OTHER PUBLICATTONS

Funkhouser et al. Adaptive Display Algorithm for Interactive Frame
Rates During Visualization of Complex Virtual Environments. Pro-
ceedings of the 20th Annual Conference on Computer Graphics and

Interactive Techniques. 1993. pp. 247-254.*

Hoppe et al. Surface Reconstruction from Unorganized Points. Pro-
ceedings of the 19th Annual Conference on Computer Graphics and
Interactive Techniques. 1992. pp. 71-78.*

Hoppe et al. Mesh Optimization. Proceedings of the 20th Annual
Conference on Computer Graphics and Interactive Techniques. 1993.
pp. 19-26.*

Lindstrom et al. Real-Time, Continuous Level of Detail Rendering of

Height Fields. Computer Graphics Proceedings. Annual Conference
Series. Aug. 4, 1996. pp. 109-118.*

Schroeder et al. Decimation of Triangle Meshes. Computer Graphics.
1992. pp. 65-70.*
Turk. Re—Tiling Polygonal Surfaces. Computer Graphics. Jul. 1992.

pp. 55-64.*
Garland et al. Surface Simplification Using Quadric Error Metrics.
Computer Graphics Proceedings. Annual Conference Series. Aug.

1997. pp. 209-216.%*
Wang et al. Shape Simplification of Free-Form Surface Objects for
Multi-Scale Representation. Oct. 1996. pp. 1623-1628.*

Klein, Reinhard, “Multiresolution representations for surfaces
meshes,” Wilhelm-Schickard-Institut, GRIS, Universitat Tubingen,
Germany, http://www.gris.uni-tuebingen.de, document generated
Sep. 30, 1998, translation initiated Jul. 23, 1997, 21 pages.

Bremer, P.-T et al., “A Multi-resolution Data Structure for Two-
dimensional Morse-Smale Functions™, U.S. Department of Energy,
University of Califormia, Lawrence Livermore National Laboratory,
Aug. 1, 2003, 11 pages.

Schmalstieg, Dieter et al., “Smooth Levels of Detail,” vrais, 1997
Virtual Reality Annual International Symposium (VRAIS ’97), 1997.
http://do1.1eeecomputersociety.org/10.1 109/ VRAIS.1997.583039,
pp. 12-19.

Erikson, Carl, “Polygonal Simplification: An Overview,” Depart-
ment of Computer Science, CB#3175, Sitterson Hall, UNC-Chapel
Hill, Chapel Hill, NC 27599-3175, pp. 1-22, 1996.

Kato, Saul S., U.S. Appl. No. 60/089,794, filed Jun. 18, 1998.
Paulo Cignoni, Claudio Montani, Enrico Puppo, and Roberto
Scopigno, “Multiresolution Representation and Visualization of Vol-
ume Data,” IEEE Transactions on Visualization and Computer
Graphics, vol. 3, No. 4, Oct.-Dec. 1997, pp. 352-369.

Kwang Man Oh and Kyu Ho Park, “A Vertex Merging Algorithm for
Extracting a Variable-Resolution Isosurface from Volume Data,”
1995 IEEE International Conference on Systems, Man and Cyber-
netics, US, New York, Oct. 22, 1995, pp. 3543-3548.

European Search Report, dated Jan. 21, 2002, from European Patent
Appln. No. 99111741.7-2218, 2 pages.

Japanese Office Action, dated Jun. 23, 2009, from Japanese Patent
Appln. No. 11-209683, 3 pages.

European Search Report, Jan. 21, 2002, 2 pages.

S. Wang, R. Takamatsu, M. Sato, H. Kawarada, “Shape Simplifica-
tion of Free-Form Surface Objects for Multi-Scale Representation,”
Oct. 14, 1996, pp. 1623-1628.

Peter Lindstrom, David Koller, William Ribarsky, Larry F. Hodges,
Nick Faust, and Gregory A. Turner, “Real-Time, Continuous Level of
Detail Rendering of Height Fields,” Computer Graphics Proceed-
ings, Annual Conference Series, 1996, Aug. 4, 1996, pp. 109-118.
H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, W. Stuetzle, “Mesh
Optimization”, Computer Graphics Proceedings, Annual Confer-
ence Series, 1993, Aug. 1-6, 1993, pp. 19-26.

M. Garland, P. Heckbert, “Surface Simplification Using Quadratic
Error Metrics”, Computer Graphics Proceedings, Annual Confer-
ence Series, 1997, Aug. 3-8, 1997, pp. 209-216.

W. Schroeder, J. Zarge, W. Lorensen, “Decimation of To angle
Meshes,” Computer Graphics, Jul. 26-31, 1992, pp. 65-70.

G. Turk, “Re—Tiling Polygonal Surfaces,” Computer Graphics, Jul.
26-31, 1992, pp. 55-64.

H. Hoppe, “Progressive Meshes”, (printed from http://www.re-
search.microsoft.com/research/graphics/hoppe).

* cited by examiner

U.S. Patent May 31, 2011 Sheet 1 of 16 US RE42.406 E

Disk
124

Vertex List Generator Module 138
Collapse Path Determiner Module 142

Collapse Value Analyzer Module 146
Collapse Path Selector Module 150

Vertex Collapse List 154
Vertex Lists 158

Processor
104

118

Display Input Device ROM
120 18 12

Developer User
%6 || 170

FIG. 1A

U.S. Patent May 31, 2011 Sheet 2 of 16 US RE42.406 E

Vertex List

Collapse Path

Determiner
184

(Generator
180

Collapse Value

Analyzer
188

Collapse Path
Comparator and
Selector

Collapse List
Memory
194

192

Data Source
196

FIG. 1B

U.S. Patent

May 31, 2011 Sheet 3 of 16

Retrieving a Vertex List
200

Determining a Collapse
Order

204

Reordering the Vertices
208

Creating a Vertex Collapse
List
212

FIG. 2A

US RE42,406

U.S. Patent May 31, 2011 Sheet 4 of 16 US RE42,406 E

US RE42,406

Sheet Sof 16

May 31, 2011

U.S. Patent

_

)
- |
oWy
_
!
_
_

V2

U.S. Patent May 31, 2011 Sheet 6 of 16 US RE42,406 E

(&

Determine a Set of
Collapse Paths

Select a Next Vertx
to be Collapsed
32

300

I Select a Collapse Path

Associate a Collapse

from the Set of Collapse Priority to the
Paths Selected Vertex
304 326

Collapse the Next "
Vertex
328

Compute Visual Distribution

Factors for Selected
Collapse Path

308

Determine a Collapse
Value for Selected

Collapse Path
312

There More Than
One Vertex Remaining?

332

Yes

No

Are
There More

Collapse Paths?
316

Yes

Compare Collapse Values
to Determine Collapse
Path Causing Least

Visual Distortion
320

FIG. 3

U.S. Patent

300

May 31, 2011 Sheet 7 of 16

NO

Yes

Select a Target Vertex
400

Receive Input Specifying
Maximum Number of
Neighbor Vertices

404

Identify a Neighbor
Vertex
408

Determine Collapse Path
Between Target Vertex

and Neighbor Vertex
412

Has
Maximum Number
Been Reached?
416

Yes

There More Vertices?

NO

US RE42,406

FIG. 4

U.S. Patent May 31, 2011 Sheet 8 of 16 US RE42,406 E

s Collapse

Path Within a Threshold

Distance from Previous
Collapse Path?
900 "

Select Next NO

Collapse Path
504

Yes

308

FIG. 5

U.S. Patent May 31, 2011 Sheet 9 of 16 US RE42,406 E

&,

Compute Area Change

308~y

600

Compute Angular Deviation
004

Compute Local Volume

Change
608

FIG. ©

U.S. Patent May 31, 2011 Sheet 10 of 16 US RE42,406 E

&)

Receive Input Specifying
Priority Weight and Factor
to be Applied to

700

312~y

Muitiply Specified Factor
by Priority Weight
704

Combine Factors to Obtain
Collapse Value
708

FIG. 7

U.S. Patent May 31, 2011 Sheet 11 of 16 US RE42.406 E

204 —,

Detennie Set of Collapsed Paths
800
Display Object
804

Select a Collapsed Path
808
erform a Collapse
812
Dispiay Collapsed Object
816

- Does
Input Select Path?
~_ 80

Yes

Associate a Collapsed Priority to
Selected Collapsed Path and Vertex
824

FIG. 8

U.S. Patent May 31, 2011 Sheet 12 of 16 US RE42.406 E

Yes

Select a
Collapsed Path

Are
There More Collapsed
Paths?
908

900

Does ™
Coliapsed Path
~ Yes Collapse a Vertex in the

Minimum Vertex
Set?
904

NO

&,

FIG. 9

U.S. Patent May 31, 2011 Sheet 13 of 16 US RE42,406 E

Perform a Collapse on Object
1000

Store Extended Vertex information
for Each Collapse Level

1004

IS a

Coliapse Level
Requested?

1008

IS
Collapse Level
Greater Than Current
Collapse Level?
1012

Collapse Vertices No

1016

Yes

Add Vertices
1020

FIG. 10

U.S. Patent May 31, 2011 Sheet 14 of 16 US RE42.406 E

Perform a Collapse on Object
1100

Store Vertex Information

for Each Collapse Level
1104

Analyze Object to Determine

a Collapse Level
1108

1S
Collapse Level
Requiring a Higher
Resolution?
1112

Collapse Vertices NO

116

Yes

Add Vertices to Object
1120

FIG. 11

U.S. Patent May 31, 2011 Sheet 15 of 16 US RE42,406 E

Determine Velocity of Object
1200

Compare Velocity to Collapse-level/
Velocity Table
1204

Subtract No

Greater Collapse
Level Required?

Polygons
1240

Yes

Add Polygons Determine Projected Area of Object
1236 1208

Compare Projected Area to
Collapsed Level/ Projected Area
1212

Determine Number of Polygon
Being Displayed
1216

Compare to a Predefined Target
Number of Polygons

1220

.
.

232
232
232

Determine Frame Rate
1224

Compare to a Predened
Frame Rate

1228

.

FIG. 12

U.S. Patent

May 31, 2011 Sheet 16 of 16

Receive Request for Transfer
of Data
1300

Send Minimal Resolution Version
of Object to Requester
1304

Send Packet of Information

Comprising Data to Create
a Next Righer Resolution
of the Object
1308

s the

Target or Maximum
Resolution Met?

1312

NoO

Yes

FIG. 13

US RE42,406

US RE42,406 E

1
MULTI-RESOLUTION GEOMETRY

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a continuation of U.S. patent applica-
tion Ser. No. 09/243,099, filed on Feb. 2, 1999, which claims
priority under 35 U.S.C. §119(e) from U.S. provisional patent
application serial No. 60/089,794, filed on Jun. 18, 1998.

DESCRIPTION OF THE RELATED ART

1. Field of the Invention

This invention relates to the field of generating three-di-
mensional graphics; more specifically, to the field of gener-
ating multiple resolutions of an object in a three-dimensional
environment.

2. Background of the Invention

Realistic three-dimensional object rendering for use in
games and other software applications has been the goal for
soltware and hardware makers in the computer industry for
years. However, numerous problems prevent the achievement
of realistic three-dimensional object rendering on a typical
user’s home computer.

Three-dimensional graphics use polygons to create the
object to be rendered. These polygons are created and
manipulated to portray curvature and details of the object.
Themore polygons used to create an object, the more detailed
and realistic an object will appear. However, the more poly-
gons used to create an object, the more computations required
to render the object, thus slowing down the speed at which the
object 1s rendered. Thus, there 1s a tradeotl from the develop-
er’s standpoint between speed and realism.

The resolution of this problem 1s not easy. As most users do
not have the latest, most powertul personal computer, the
developer must design the objects for the lowest common
denominator 11 the developer wants to reach the greatest num-
ber of potential users for the product. Thus, the developer
must assume the user’s processor 1s slow and 1s therefore
capable of only rendering a small number of triangles per
second. Therefore, the developer, when making the tradeotl
described above, must favor the speed side of the equation,
and design objects with fewer triangles than 1f faster
machines were being used by all users. This solution, how-
ever, pleases neither the user with a low-end computer nor the
user with the high-end computer. The user with the low-end
computer will most likely still have images which are slow
and choppy, because the developers are unwilling to com-
pletely sacrifice realism, and the user with a high-end com-
puter will have 1mages which appear artificial and robotic
because the application 1s not designed to take advantage of
the high-end machine’s greater processing power. In fact, on
some high-end systems, the application will be too fastto play
or interact with because the polygon count 1s too low.

Another problem facing the developer 1s the fact that the
same object requires more detaill when closer to the screen
than 1t requires 11 1t 1s 1n the background. When an object 1s
closer to the screen, the angles and straight edges of the
polygons comprising the object can be seen more clearly. At
this point, more polygons are needed to smooth the angles and
continue the realistic rendering of the object. However, the

10

15

20

25

30

35

40

45

50

55

60

65

2

most detailed version of the object cannot always be used to
render the object because the application will require too

much computing power to quickly and smoothly render
images on the screen. In order to achieve smooth 3D anima-
tion, the processor must render 3D objects at 20 to 60 frames
per second. If too many polygons are used for each object,
thus providing the necessary realism for the object when 1t 1s
close to the screen, then the processor will not be able to
achieve the above minimum frame rate required for smooth
rendering.

One solution to allow realistic rendering of three-dimen-
sional objects while also limiting the number of polygons on
the screen 1s to use Level of Detail mapping. Level of Detail
mapping provides different levels of resolutions of an object
based upon the distance of the object to the screen. In order to
create the different levels of detail, the developer must create
different versions of the object for each level required. Typi-
cally, only three or four levels are used because storage of
multiple versions of each object to be rendered can consume
too much of the user’s system resources.

There are several drawbacks to the level of detail method-
ology. First, this method has a large impact on system
resources, as described above. Each object now requires three
or four times more storage space than previously required to
store each version of the object. Each level requires a separate
vertex list as well as a separate data structure. Second, when
transitioning from one level to another, an effect known as
object popping occurs. The higher detailed version of an
object 1s abruptly rendered as the object moves towards the
screen, and “pops” out at the viewer, ruining the 3D immer-
stve qualities of the application. The level of detail method
also requires extra authoring of each version of the object,
requiring more time from the developer. Level of Detail also
does not address the lowest common denominator problem
described above. The highest level of detail of each object
must be created 1n consideration of the user with an inetficient
computer who will be using the application. Thus, the highest
level of detail cannot contain too many polygons or the image
will appear slow and choppy on the low-end user’s computer.
Again, this image will also appear angular and robotic on the
high-end user’s computer, as 1t does not take advantage of the
high-end computer’s greater processing power.

SUMMARY OF THE INVENTION

In accordance with the present invention, an apparatus,
system, and method 1s disclosed for producing realistic ren-
dering of a 3D object while minimizing the use of user system
resources and maximizing fidelity without sacrificing speed.
The mvention produces a continuous level of detail of an
object using vertex merging responsive to the location of the
object on the screen and other factors, thus eliminating the
object popping effect. As the object moves towards the back-
ground, and therefore requires less polygons 1n order to pro-
vide a realistic rendering, vertices of the object are merged
together 1n a manner designed to cause the least visual dis-
tortion. As the vertices are merged, polygons within the object
are eliminated, thus lowering the polygon count of the object
continuously as 1t moves farther and farther away from the
screen. As an object moves towards the screen, vertices are
added to the object, adding polygons to the object and thus
providing a more realistic representation of the object as 1t
grows close to the user and fine details become necessary.
Thus, at any given moment, every object on the screen only
has as many polygons as 1s required to provide a realistic
rendering of the object. No polygons are being unnecessarily
drawn, and thus optimum use 1s being made of the user’s

US RE42,406 E

3

system. No object-popping elfects are created as polygons are
added or removed from the object on a continual basis based

on the object’s movement in the 3D environment.

Additionally, the invention requires only one version of the
object to be authored and stored on the user’s system, thus
mimmizing the impact on system resources. One vertex list 1s
used which preferably specifies the highest level of detail, and
the system 1n accordance with the present invention 1s able to
then generate the continuous level of detail of the object for
display on the screen. Also, the system advantageously
increases and decreases the resolution of the objects on the
fly. Thus, as only the current level of detail being displayed 1s
stored, minimal use of memory 1s required. By storing certain
mimmum information which i1s determined prior to run-time
to guide the resolution changes, the resolution changing 1s
performed at run time at optimal speed. Another benefit of the
present invention 1s 1ts ability to allow a developer to tweak
the vertex merging in accordance with the developer’s own
preferences. Finally, the invention automatically adjusts the
amount of polygons 1n a screen responsive to the capabilities
of auser’s system, providing an optimal image for every user.
In one embodiment, the invention monitors the system to
determine the frame rate at which the frames are being ren-
dered, and adjusts the total amount of polygons allowable on
the screen at one time accordingly.

Additionally, a target frame rate may be set, which allows
the user to specity the speed at which the scenes should be
rendered. The present invention then dynamically adjusts the
total amount of polygons to ensure the frame rate 1s main-
tained. Alternatively, the invention allows a polygon count to
be specified, and then ensures that this amount of polygons 1s
always on the screen, regardless of the frame rate.

In a preferred embodiment, a three-dimensional visual rep-
resentation of an object having multiple resolutions 1s created
by retrieving a vertex list for the object, determining a col-
lapse order for the vertices identified in the vertex list, reor-
dering the vertices 1dentified 1n the vertex list responsive to
the determined collapse order, and creating a vertex collapse
list responsive to the collapse order, where the vertex collapse
list specifies, for a target vertex, a neighbor vertex to collapse
to. The vertex list may comprise 3D coordinates of vertices
without referring to other vertex attributes or, in alternate
embodiments, the vertex list may refer to other vertex
attributes such as colors or normals.

More specifically, 1 a preferred embodiment, the collapse
order of the object 1s determined by determining an optimal
collapse path from the set of collapse paths, computing visual
distortion factors for the selected collapse path, determining a
collapse value for the selected collapse path, repeating for
cach path 1n the set of collapse paths, comparing the collapse
values to determine a collapse path causing a least visual
distortion to the object, selecting a next vertex to be collapsed,
collapsing the object along the selected path, and repeating
until a mimimum resolution level 1s attained.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1a 1s a block diagram of a preferred embodiment of a
computer system in accordance with the present invention.

FIG. 1b 1s a block diagram of a preferred embodiment of a
modular distributed architecture computer system 1n accor-
dance with the present invention.

FI1G. 2a illustrates an overview of a preferred embodiment
as ol creating a collapse order list in accordance with the
present invention.

FIG. 2b 1llustrates a first instance of an object prior to
having a vertex collapsed.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 2c¢ illustrates the object of FIG. 2b after having a
vertex collapsed 1n accordance with the present invention.

FIG. 2d illustrates an object at a lower resolution.

FIG. 2¢ 1llustrates the object of FIG. 2d with a vertex
added.

FIG. 3 1s a more detailed diagram of a preferred embodi-
ment of determining a collapse order 1n accordance with the
present invention.

FIG. 4 1s a more detailed diagram of a preferred embodi-
ment of determining a set ot collapse paths 1n accordance with
the present invention.

FIG. 5 1s a more detailed diagram of a preferred embodi-
ment of selecting a collapse path 1n accordance with the
present invention.

FIG. 6 1s a more detailed diagram of a preferred embodi-
ment of computing visual distribution factors 1n accordance
with the present invention.

FIG. 7 1s a more detailed diagram of a preferred embodi-
ment of determining a collapse value for a selected collapse
path in accordance with the present invention.

FIG. 8 illustrates an alternate embodiment of a preferred
embodiment of determining a collapse order in accordance
with the present invention.

FIG. 9 illustrates an alternate embodiment of determining,
a set of collapse paths 1n accordance with the present mven-
tion.

FIG. 10 1s a flow chart 1llustrating a preferred embodiment
of the runtime manager in accordance with the present inven-
tion.

FIG. 11 1s an alternate embodiment of the runtime manager
in accordance with the present invention.

FIG. 12 1llustrates embodiments of analyzing the optimal
collapse level of an object in accordance with the present
ivention.

FIG. 13 illustrates an embodiment of the present invention
for use 1n the remote transier of data.

DETAILED DESCRIPTION OF THE PR.
EMBODIMENTS

(L]
By

ERRED

FIG. 1 a illustrates a preferred embodiment of a computer
system 100 1n accordance with the present invention. System
100 1s typically implemented on a computer system 100 such
as a personal computer having an Intel Pentium™ processor
and running the Windows™ 935 operating system from
Microsolit Corporation. ROM 112 1s read-only memory for
storing data having unvarying functionality. Disk 124 stores
data of which immediate access 1s not required, for example,
the operating system module, databases, and other modules.
In a one embodiment, as used by a developer 166, disk 124
stores a vertex list generator module 138, a collapse path
determiner module 142, a collapse value analyzer module
146, a collapse path selector module 150, vertex lists 158 and
a collapse list 154. In an embodiment used by auser 170, disk
124 stores applications, run time manager 162, and collapse
lists 154. When access to the stored modules 1s required, the
modules are moved to RAM 108, which stores data of which
more immediate access 1s required. A display 120 and input
device 116 are connected to the processor 104 through bus
118 and allow a user 170 or a developer 166 to interact with
the modules stored in disk 124.

In FIG. 1b, a distributed architecture implementing a pre-
terred embodiment of the present mnvention 1s 1llustrated. A
vertex list generator 180, comprising an application specific
integrated circuit (ASIC) coupled to a memory, generates
vertex lists 158. The vertex lists 158 are transmitted to a
collapse path determiner 184 which determines collapse

US RE42,406 E

S

paths from the received vertex lists 158. The collapse path
data 1s transmitted to a collapse value analyzer 188, which
analyzes the collapse path data to determine collapse values
for each collapse path. These values, along with the paths
themselves, are transmitted to the collapse path selector 192,
which selects a collapse path from the list of vertices which,
if the object 1s collapsed along the selected path, causes the
least visual distortion to a viewer watching the collapse. This
selected path 1s stored in the collapse list memory 194, and the
new set of vertices 1s generated by the vertex list generator
138 responsive to the selected collapse path. The system
continues to generate and select collapse paths until the vertex
list generator no longer has any vertices remaining from
which to generate a list, and the processing of the system 1s
thus complete. The final collapse list 1s transmitted from the
collapse list memory to the processor 104 of the developer’s
computer 100.

The data source 196 stores the original vertex list for pro-
cessing. Data sources include the application requesting the
object modeling, or a secondary source which stores objects
requiring modeling 1n accordance with the present mnvention.
In one embodiment, the modules 138, 142, 146, 150 are
implemented as a set of Field Programmable Gate Arrays, and
are programmed to perform the separate functions described
above. By compartmentalizing the separate functions 1n a
distributed architecture, faster and more robust processing 1s
achieved.

FIG. 2a illustrates the processing of a preferred embodi-
ment of the present invention for generating collapse orders.
A vertex list 158 1s retrieved 200. Typically, vertex lists 158
are provided by the developer 166 for each object the devel-
oper 166 would like to have modeled. The vertex list 158 may
contain 1ndices 1mto a 3D coordinate map, or the vertex list
158 may i1ndex into other maps, such as texture maps, or
normal maps. The vertex list 158 1s usually “cleaned” prior to
being processed. Typically, vertex lists 158 may specily tri-
angles having edges close to one another but which do not
actually overlap. Without performing any cleaning opera-
tions, these close edges cause the triangles they are apart of to
be considered as two separate polygons, which may cause
holes or cracks to appear at lower resolutions of the model.
Thus, the system looks for redundant vertex data 1n the vertex
list and eliminates the redundancies.

The vertex list 158 may specily a maximum set of vertices
used 1n the object, or a maximum and a minimum set of
vertices in the object. The minimum set of vertices 1s specified
by the developer 166 to define a minimum quality level the
object may not be collapsed beyond. As more vertices are
collapsed 1n an object, the less realistic the object appears 1
examined closely. Therefore, for some objects the developer
166 may decide that there 1s a point beyond which the object
1s no longer recognizable as 1ts true shape, even though the
object at that point 1s very small on the screen and therefore
does not require many polygons to specily suflicient detail.
For these objects, the developer 166 specifies a minimum set
of vertices to which the object may be collapsed. The system
identifies these vertices during 1ts processing, and does not
collapse those vertices 1n the object. The vertex list 158 may
also specily a nested set of vertex sets that represent progres-
stvely lower resolutions of the object. In this case the system
generates a collapse list that interpolates between the nested
vertex sets.

After the vertex listhas been retrieved, the system proceeds
to determine 204 a collapse order. The collapse order of an
object [is] specifies the order in which individual vertices are
merged 1nto other vertices. Vertices are collapsed along col-
lapse paths, with the goal of causing the least visual distortion

10

15

20

25

30

35

40

45

50

55

60

65

6

possible for the object. For example, as shown in FIG. 2b, an
object 1s shown having multiple vertices, three of which are
specified as V1, V2, and V3. If the system 1n accordance with
the present invention determines that the first collapse path 1s
to collapse V1 to V2, the object as shown 1n FIG. 2c¢ results.
The object 1n FIG. 2¢ has less polygons to render than the
object in FIG. 2b. Thus, the object 1n FIG. 2¢ 15 of lower
resolution than the object 1n FI1G. 2b, and should be displayed
when the object 1s located closer to the background or due to
other factors described 1n greater detail below, when added
resolution 1s most likely to go unnoticed by the user 170. By
displaying a version of the object which contains less poly-
gons while 1t 1s closer to the background, the processor 1s able
to devote more time to process objects which are closer to the
foreground. This allows the objects 1n the foreground to have
higher polygon counts without impacting on the frame rate.

After determining a collapse order for the object, the vertex
list 158 1s reordered 208 into the order specified by the col-
lapse order. The vertex to be collapsed first 1s identified and
the other vertices are sequenced accordingly based on their
collapse priority. The system advantageously minimizes 1ts
footprint 1n memory by using the existing vertex list 158,
instead of using another construct to store this information.
Next, the system creates 212 a vertex collapse list 154. This
list specifies the vertex to which the target vertex 1s to be
collapsed; alternatively, the list specifies the vertices to which
to connect an added vertex. When collapsing vertices in an
object to achieve a lower resolution, the system may simply
climinate vertices as ordered 1n the vertex list until the desired
resolution 1s obtained. However, 1n order to increase the reso-
lution of the object by adding vertices, more information 1s
needed. In each case, a correct triangle list must be generated
by the system at the desired resolution. The triangle list speci-
fies connectivity information regarding all of the triangles
which must be rendered to achieve a given resolution.

For example, as shown in FIG. 2d, an object 1s 1n a first,
lower resolution state. In FIG. 2e, a vertex 1s added to the
object to increase the number of polygons and thereby
increase the resolution of the object. However, as 1s shown,
without more information, the system does not know which
vertices to connect to the new vertex. Thus, more information
1s stored 1n a vertex collapse list 154. The vertex collapse list
154 stores the connectivity information for the neighbor ver-
tices to which each vertex 1s connected. In the example of
FIGS. 2d and 2e, the vertices to which to connect V1 are also
specified 1n the vertex collapse list 154, and thus the system
knows the correct edges to draw. Using the connectivity infor-
mation, a correct triangle list 1s generated for each resolution.
In a preferred embodiment, the information regarding the two
lists 154, 158 are stored i1n the same location to optimize
processing. The term list 1s used descriptively, as arrays and
other data structures are preferably used to store the collapse
information.

FIG. 3 1s a more detailed diagram of a preferred embodi-
ment of determining a collapse order 1n accordance with the
present invention. First, a set of collapse paths 1s determined
300. A set of collapse paths 1dentifies every possible collapse
path between each vertex and every other vertex to which 1t 1s
connected, at the current resolution of the object. Thus, in the
object of FIG. 2b, there are 11 vertices (V1-V11). For V2,
four potential collapse paths (C1, C2, C3, C4) may be 1den-
tified.

Next, a collapse path from the set of collapse paths is
selected 304. Visual distortion factors are computed 308 for
the selected collapse path. Visual distortion factors are mea-
surements of the effect of a given collapse on the object. Some
collapse paths will have a much greater visual effect on the

US RE42,406 E

7

user than others. For example, 1 V1 1s collapsed to V2, the
object will appear to shrink noticeably 1n width. However, 11
V8 is collapsed to V11, the object will not appear as distorted
to the user. The system preferably captures these distinctions
by computing several visual distortion factors, including area
change, angular deviation, and local volume change,
described in greater detail below.

Each collapse path 1s given 312 a collapse value as a func-
tion of the computed visual distortion factors for that path.
The collapse value 1s preferably a weighted combination of
the visual distortion factors for the path. Weighting the dif-
terent factors allows the developer 166 to specity the impor-
tance of the factors as applied 1n the particular application
being developed.

The system determines 316 whether there are more col-
lapse paths. If there are more collapse paths, a next path 1s
selected 304 and the process described above 1s repeated. It
there are no more collapse paths, the system compares the
collapse values of the collapse paths to determine 220 a
collapse path which causes the least visual distortion to the
object.

The vertex to be collapsed 1s 1dentified 324 responsive to
the determined collapse path, and a collapse priority 1s
assigned 326 to the vertex to be used upon reordering the
vertex list. The object 1s collapsed 328 along the collapse
path. The system determines 332 1if there are more than one
vertex not in the minimum point set remaining. I there are
not, the system then moves to reordering the vertex list 158. IT
there are more than.one vertex remaining, the system repeats
the above process, treating the collapsed object as a new
object to be processed. The system processes the object until
a set of collapse paths are determined which cause the least
visual distortion to the object, and reduce the object from a
maximum resolution to a minimum resolution. For each col-
lapse path stored, the vertices to which the target vertex is
connected, and the change 1n connectivity as expressed by the
triangle list are stored. When the vertex 1s added to the object,
this allows the system to know which other vertices are con-
nected to the added vertex by which triangles. This informa-
tion 1s stored i1n the vertex collapse list 154, as described
above.

FI1G. 4 1llustrates an alternate embodiment of the method of
determining a set of collapse paths. A target vertex 1s selected
400. Any one of the existing vertices of the object may be
selected; order does not matter. Next, an input 1s received 404
which specifies the maximum of neighbor vertices to examine
for each vertex. This allows a developer 166 to control the
processing time ol the system. By limiting the number of
neighbor vertices which may be examined by the system for
cach vertex, the system does not have to perform as many
calculations.

Next, a neighbor vertex 1s identified 408. A neighbor vertex
1s a vertex connected along an edge to the target vertex. A
neighbor vertex would include any vertex directly connected
to the target vertex, as well as any vertex which 1s connected
to the target vertex through another vertex or vertices. As can
be 1magined, this list may grow very large if every vertex 1s
processed. However, as described above, a maximum number
of neighbor vertices may be specified to minimize processing.

Afteri1dentifying a neighbor vertex, a collapse path 1s deter-
mined 412 between the target vertex and the neighbor vertex.
The system determines 416 whether the maximum number of
collapse paths have been reached. If it has, the system deter-
mines 420 whether there are more vertices. It there are more
vertices, the collapse paths for the other vertices are computed
as described above. It there are no more vertices, the system
selects 304 a collapse path from the set of collapse paths.

10

15

20

25

30

35

40

45

50

55

60

65

8

FIG. 5 1llustrates one embodiment of selecting a collapse
path. In this embodiment, processor computations are mini-
mized by limiting the number of collapse paths which are to
have collapse values. For the first iteration through the object,
collapse values are computed for every collapse path. After
collapse path 1s selected, the object 1s collapsed along the
path. A new set of collapse paths are generated as described
above. However, 1n this 1teration, collapse values are gener-
ated for those collapse paths which are within a predefined
distance from the collapse path which was previously used to
collapse the object. Many collapse paths will remain the same
after the previous collapse, and their collapse values, 1.¢., the
objective measurement of the visual impact of their collapse
on the object, will also remain the same.

For example, 1n FIG. 2b, 11 C1 1s chosen to be the collapse
path, the FIG. m 2c¢ results. The collapse value for the path
between V8 and V11 may remain the same 1n the two versions
ofthe object because the vertices around V8 and [V1] V11 are
not atfected by the collapse o1 C1. Therefore, there 1s no need
to recompute the collapse value for the V8-V11 path. By not
computing the visual distortion factors for every collapse path
after [very] every collapse, the computations of the system are
greatly minimized, and the processing becomes much faster.

Thus, as shown 1 FIG. 5, the system determines 3500
whether a collapse path 1s within a threshold distance from the
previous collapse path. The threshold may be preset or
defined by the developer 166. The developer 166 may experi-
ment with different thresholds to maximize accuracy while
minimizing computations. If the collapse path 1s within the
threshold, the system computes 308 visual distortion factors
for the collapse path. If the collapse path 1s not within the
threshold, the existing collapse value 1s continued to be used
as the value for that path, and a next path 1s selected.

FIG. 6 1llustrates three visual distortion factors preferably
computed 1n accordance with the preferred embodiment of
the present invention. First, the area change of the object 1s
computed 600 1n response to collapsing the object along the
selected collapse path. The area change of the object 15 com-
puted by computing the surface area of the object prior to the
collapse, and then computing the surface area of the object
aiter the collapse. Subtracting the difference between the two
areas indicates the eflect on the surface area of the object
performing the collapse will have. Next, the angular deviation
1s computed 604 1in response to collapsing the object along the
collapse path. Angular deviation measures the effect on the
local curvature of the object the collapse will have. The sys-
tem calculates normals of the triangles of which the vertex 1s
a part. Points which represent high curvature are more impor-
tant to the visual appearance of an object. Thus, these points
are assigned a measure which lowers their collapse priority.
Third, the local volume change 1s computed 608 in response
to the collapse. A pyramid 1s created from the target vertex,
using the target vertex as the apex of the pyramid. The base of
the pyramid 1s the triangle formed by three consecutive neigh-
bor vertices. A sequence of these pyramids 1s constructed
from successive triples ol neighbor vertices, and their volume
1s summed. The volume of the object 1s determined, the target
vertex 1s collapsed along the collapse path, and the volume 1s
computed again. The change in volume 1s used as an 1ndica-
tion of the aflect on the visual appearance of the object.
Calculating pyramidal “local volume” change 1s much faster
than calculating the “true” volume of an object, and more
accurately accounts for the topology of an object. Other mea-
sures of visual distortion known to those of ordinary skill 1n
the art may also be used 1n accordance with the present
invention. Statistical measures of error such as surface devia-
tion can also be used to compute visual distortion.

US RE42,406 E

9

FIG. 7 1llustrates an alternate embodiment of determining,
a collapse value for the selected collapse path. In this embodi-
ment, the system receirves 700 an mnput from the developer
166 specitying a priority weight for the different factors. The
system multiplies 704 the factors by the specified priority
weights, and then combines 708 the factors to obtain a col-
lapse value. Allowing the developer 166 to specily the
weights allows more creative control for the developer 166.
The developer 166 may decide that the object 1s very spiky,
and therefore the angular deviation factor should be given the
highest priority. The developer 166 would then specity a high
weight for the angular deviation factor. Those collapses
which have a large angular deviation factor would be priori-
tized lower for collapsing. If an object represents an organic
shape, the local volume factor becomes more important. A
developer 166 would specily a higher weight for the local
volume factor, and those collapse having a great effect on
local volume would be prioritized lower. If the developer 166
does not specily weights, default values which evenly weight
the factors are used. In one embodiment, the developer 166 1s
able to increase the speed of the processing of the system by
climinating factors from consideration. For example, the
developer 166 may determine that local volume change 1s not
relevant to a specific object. The developer 166 then specifies
that local volume change should not be computed for this
object. The system 1s then able to process the object much
faster.

FI1G. 8 1llustrates an alternate embodiment of the determin-
ing a collapse order step 204. This embodiment allows the
developer 166 to “tweak” the collapse order interactively. As
the visual distortion of an object 1s essentially a subjective
determination, the present invention beneficially allows the
developer 166 to itroduce their subjective preferences into
how the object 1s collapsed. First, the set of collapse paths 1s
determined 800 as described above. Then, the object 1s dis-
played to the user at the current resolution level. If this was the
first iteration, the object would be at the maximum resolution
level. The system selects a collapse path randomly from the
set of collapse paths, and the object 1s collapsed. The system
displays the collapsed object to the developer 166, and the
developer 166 can see the etfect of the collapse on the object.
If the developer 166 approves of the collapse, the developer
166 sclects the path. If the system receives 820 an input
selecting the path, the system associates a collapse priority for
the path based on the number of paths which have already
been selected. If the developer 166 does not approve of the
collapse, a next collapse path 1s selected and the process 1s
repeated.

In one embodiment, collapse values are calculated for each
path and the paths are prioritized as described above. The path
designated to be collapsed first 1s chosen as the first path to be
collapsed and displayed to the developer 166. If the developer
166 selects this path, the path retains its priority. A new set of
collapse paths 1s generated and the highest prioritized path
from the new set selected for display to the developer 166. If
the developer 166 does not select the path, the next highest
prioritized path 1s selected and displayed to the developer
166. Of course, the developer 166 may specily at any time a
particular path the developer 166 sees 1n the object the devel-
oper 166 wants collapsed. Such a selection by the developer
166 overrides any previous prioritization by the system.

FI1G. 9 illustrates an embodiment of the present invention in
which a minimum vertex set 1s specified by the developer 166
prior to computing collapse paths. A minimum vertex set, as
described above, 1s a set of vertices which the developer 166
does not want collapsed. Thus, as shown 1n FIG. 9, after a
collapse path 1s selected 900, the system determines whether

10

15

20

25

30

35

40

45

50

55

60

65

10

the collapse path collapses a vertex specified 1n the minimum
vertex set. If the vertex 1s on the minimum vertex set, the
collapse path 1s not selected.

In another embodiment, texture maps are indexed by the
vertices. Texture maps provide texture for the mapped area,
giving an object a realistic appearance. Textures for different
triangles may be quite different. Therefore, when a triangle 1s
collapsed, the system must determine the aifect of the loss of
the texture of the triangle on the appearance of the object.
Vertices which are on the edges of texture discontinuities are
not collapsed, because of the affect the collapse will have on
the appearance of the object. Thus, when collapse paths are
selected, the vertices in the path are examined to determine 11
they are located on the edge of a texture discontinuity. If they
are, the collapse path 1s not selected.

FIG. 10 illustrates the run-time manager of the present
ivention. The run-time manager performs the adding and
subtracting of polygons to and from the object as required
during the real-time execution of the application. The run-
time manager works 1n conjunction with the graphics system
of the computer and the application program for which the
objects have been processed. Upon 1nitiating the application,
the manager collapses 1000 the objects referenced in the
application. The manager stores 1004 extended vertex col-
lapse mnformation for each collapse level of the objects 1n a
table. Extended vertex collapse mformation 1s the informa-
tion stored in the vertex collapse list 154 specitying what
vertex the each collapsing vertex will collapse to, as well as
which triangles need to be eliminated from the model. By
storing the extended vertex collapse information 1n the table,
the processor 1s able to more quickly add and subtract poly-
gons because the processor simply has to access the table to
determine which vertices and triangles to add, subtract, or
re-index and does not have to perform any demanding com-
putations.

In one embodiment, the extended tables for each object are
already created 1n the development stage, and the tables are
simply loaded into data memory for easy access when the
application 1s initiated. The runtime manager awaits a request
from the application for a collapse level from an object. The
original appearances of each object are represented 1n a
default resolution. When the application or the graphics pro-
gram requests 1008 an increased or decreased resolution from
the runtime manager, the runtime manager determines 1012
whether the requested resolution requires a collapse level
greater than the current collapse level of the object. The
current collapse level 1s known because the current collapse
level of the object 1s the only version of the object which 1s
stored 1n memory. If the requested resolution requires a
greater collapse level for the object, vertices are added to the
object 1n accordance with the vertex collapse information 1n
the table until the requested collapse level 1s met. This con-
tinuous addition of vertices provides for a smooth rendering
of the object, and eliminates the object-popping problem
discussed above. Similarly, if the requested resolution
requires a collapse level which 1s less than the current col-
lapse level, vertices are collapsed 1016 until the proper reso-
lution of the object 1s achieved. The table allows for instan-
taneous addition and subtraction of polygons to the object
upon request. The table also allows for a minimal memory
footprint by the present invention as entire versions of the
objects are not required to be stored. The continual addition or
subtraction of polygons to an object eliminates the object-
popping artifacts. Thus, 1n accordance with the present inven-
tion, an eflicient, high-speed object modeling process 1s dis-
closed which provides multiple levels of resolution while
minimizing resource use.

US RE42,406 E

11

FIG. 11 illustrates an alternate embodiment of the runtime
manager 1n which objects are analyzed to determine a col-
lapse level. In this embodiment, the object 1s collapsed 1100
and vertex mnformation is stored 1104 for each collapse level,
as described above. However, 1n this embodiment, the object
1s analyzed 1108 to determine an optimal collapse level. It the
manager determines 1112 the optimal collapse level requires
a higher resolution, vertices are added 1120 to the object. If
the optimal level requires a lower resolution than the current
resolution, vertices are collapsed 1116.

FI1G. 12 1llustrates several methods for analyzing the opti-
mal collapse level of an object. One or all of these methods
can be used 1in accordance with the present invention to deter-
mine an optimal collapse level. First, the velocity of the object
1s determined 1200. The velocity of an object 1s determined
by measuring the distance an object moved between the cur-
rent frame and the last frame, and dividing by the time elapsed
between frames. Alternatively, velocity 1s calculated by mea-
suring distance traveled over several of the most recently
rendered frames and dividing by the total elapsed time of the
rendering of the whole recent frame sequence. Next, the
determined velocity 1s compared to a table which maps
velocities of the object to collapse levels. This table may be
specifically designed for a given object, or may be a global
table which provides general correlations between velocity
and collapse level. As an object increases 1n speed, it requires
less resolution to render 1t realistically, as motion tends to blur
the finer details 1n an object. Therefore, the object’s current
velocity 1s compared to the table to determine what resolution
it requires at that speed. If the manager determines 1232 that
the resolution required 1s a collapse level greater than its
current collapse level, more polygons are added 1236 as
described above. If the resolution the object requires 1s less
than the resolution provided by the current collapse level,
polygons are subtracted 1240 away. Thus, the runtime man-
ager dynamically manages the resolution of the object to
provide optimal fidelity while minimizing the use of process-
Ing power.

The projected area of an object 1s another factor which 1s
used by the runtime manager to determine an optimal col-
lapse level for an object. The projected area of an object 1s the
arca which the object will occupy as rendered on the display.
The greater the projected area of an object, the higher the
resolution that 1s required. The system determines 1208 the
current projected area of the object, and compares 1212 the

projected area to a table which correlates projected area and
collapse levels. The polygon count i1s then adjusted 1232
accordingly.

The present invention also provides for global polygon
count management. In this embodiment, the user selects a
target polygon count for each frame. In this embodiment, the
system determines 1216 the number of polygons currently
being displayed i1n a frame. The total number of polygons
displayed 1n a frame may be calculated by determining which
objects are on screen and totaling the number of polygons 1n
cach object, or by having the renderer keep an internal tally of
how many triangles it drew on screen in one frame. This
number 1s compared 1220 to the predefined target polygon
count. If the runtime manager determines 1232 that the cur-
rent polygon count 1s less than the target polygon count, more
polygons are added 1236. If the current polygon count 1s
greater than the target polygon count, polygons are subtracted
1240 away. The determination of which objects to add and
subtract polygons to and from may be made in a number of
ways. Polygons may be added and removed uniformly to and

5

10

15

20

25

30

35

40

45

50

55

60

65

12

from all polygons. Alternatively, objects may be individually
analyzed and polygons added and subtracted on an individual
basis.

Alternatively, the user 170 1s able to select a target frame
rate. The manager determines 1224 a current frame rate by
monitoring the processor clock and determining how long 1t 1s
taking to render frames. The current frame rate 1s then com-
pared 1228 to the target frame rate. If runtime manager deter-
mines 1232 that the current frame rate 1s faster than the target
frame rate, polygons are added 1236 to the frame to slow the
frame rate down. If the current frame rate 1s slower than the
target frame rate, polygons are subtracted 1240 from the
frame to speed the frame rate up. Thus, the runtime manager
allows for dynamic global polygon management requiring
minimal input from the user 170. This management process
allows the present invention to be platform universal, as i1f the
ivention 1s used on a system with a slower processor, the
target frame rate or polygon count may be set lower, and the
benelits described above are still provided. However, a sys-
tem with a faster processor can be set to have a higher frame
rate or polygon count, and the higher processing power of the
system 1s maximized by the present invention.

The present invention may also be used to transmit data
through remote connections, as illustrated 1n FIG. 13. When
receiving data over a remote connection, for example, the
Internet, a user 170 1s often waiting for data to download
before a requested object may be displayed. In accordance
with the present invention, upon requesting an object over a
remote connection, the minimum vertex set, or the lowest
collapse level of an object 1s transmitted to the user 170. This
minimal resolution version of the object requires less data to
represent, and therefore 1s transmitted much faster to the user
170. Then, the additional collapse levels are sent serially to
the user 170 to increase the resolution of the object to its
maximum resolution. As each collapse level typically adds
only a few polygons, each collapse level 1s also transmitted
very quickly. This method allows the user to receive a mini-
mal version of the object very quickly, and then a full reso-
lution later in time. If the user 170 does not require a full
resolution of an object, the user 170 does not have to wait for
unnecessary data (higher resolution data) to be transmitted
before the user 170 can see the object. Even 1f the user 170
requires a higher resolution short of the maximum resolution,
the present invention transmits the higher resolutions i pack-
cts which allows the user 170 to view the object in a shorter
period of time than 1t would take to wait for the entire maxi-
mum resolution version of the object to download.

As shown 1n FIG. 13, a request 1s recerved 1300 for an
object across aremote connection. Responsive to this request,
a minimal resolution of the object 1s sent 1304 to the
requester. This minimal resolution of the object 1s the lowest
resolution of the object which may be displayed and still
accurately describe the object. If a minimal vertex set of the
object has been specified by the developer 166, this set1s used
as the minimal resolution to be sent. Next, a packet of infor-
mation which comprises the vertices required to increase the
collapse level of the object to a next higher resolution 1s sent
1308. This information comprises the vertices and the con-
nections required to increase the resolution of the object, as
described 1n detail above. Then, the system determines 1312
whether a maximum resolution or target resolution has been
sent. If the packet which comprises the information required
to increase the resolution of the object to 1ts maximum reso-
lution has been sent, the system knows the maximum resolu-
tion has been achieved. Alternatively, a target resolution may
be specified by the user 170 in requesting the download of the
object. The target resolution option allows the user to opti-

US RE42,406 E

13

mize the time required for the data transier to meet the user’s
fidelity needs. If the user 170 does not require a maximum
resolution of an object, the user can so specily, and only an
intermediate resolution of the object 1s sent. This option 1s
beneficial if, for example, the user 170 1s 1 a hurry to view
objects other than the one being downloaded, or the user 170
has a computer which 1s not capable of viewing high resolu-
tions. I the target or maximum resolution has not been met,
another packet 1s sent to the user 170. Once the target 1s met,
the data transmission 1s complete.

What is claimed 1s:

1. A method for creating a three-dimensional visual repre-
sentation of an object [having multiple resolutions], compris-
ing [the steps of]:

[retrieving coordinates of vertices for the object:]

determining, using a processing device, a collapse order

for [the] vertices [identified in the] of a vertex list for the
object, across all levels of detail of the object,
[reordering] ordering the vertices [identified] in the vertex
list responsive to the determined collapse order;

creating, using the processing device, a vertex collapse list
responsive to the collapse order, [where] wherein the
vertex collapse list specifies, for [a] each: target vertex, a
neighbor vertex of the object to which the target vertex
[collapse to | collapses, for at least one level of detail of
the object, and wherein each vertex collapse operation
at a respective level of detail collapses a vespective
target vertex to a neighbor vertex divectly connected to
the target vertex at the respective level of detail;

specifving a level of detail at which the object is to be
rendered;
[using the vertex collapse list and a level of detail to iden-
tify at least one display vertex of the object;] and

rendering [the display vertex to produce] a three-dimen-
stonal visual representation of the object at the specified
level of detail using the vertex list and the vertex collapse
list.

2. The method of claim 1 wherein determining the collapse
order comprises [the steps of]:

determining a set of collapse paths available at a level of

detail,

[selecting a collapse path from the set of collapse paths;]

computing a visual distortion [factor] factors for [the

selected] each collapse path in the set of collapse paths;,
and

responsive to the computed visual distortion factors, deter-

mining a collapse value for [the selected] each collapse
path in the set of collapse paths|.

repeating selecting a collapse path, computing visual dis-

tortion factors, determining a collapse value for each
collapse path;

selecting a next vertex to be collapsed as a vertex having a

collapse path causing the least visual distortion to the
object;

collapsing the next vertex to be collapsed along the corre-

sponding collapse path; and

repeating the above steps until a minimum resolution level

is attained].

3. [The] A method [of claim 2 wherein] for creating a
three-dimensional visual representation of an object at a
selected level of detail, comprising:

determining, using a processing device, a collapse ovder

Jor vertices of the object, comprising.

determining a set of collapse paths;

computing a visual distortion [factors comprises the
steps of] factor for each collapse path in the set of
collapse paths, including:

10

15

20

25

30

35

40

45

50

55

60

65

14

computing an area change factor for [the selected]
each collapse path;

computing an angular deviation factor for [the
selected] each collapse path; and

computing a local volume change factor for [the
selected] each collapse path; and

responsive to the computed visual distortion factors,

determining a collapse value for each collapse path in

the set of collapse paths;

ordering the vertices in a vertex list vesponsive to the

determined collapse ovder,
creating, using the processing device, a vertex collapse list
responsive to the collapse ovder, where the vertex col-
lapse list specifies, for a target vertex, a neighbor vertex
of the object to which the target vertex collapses;

specifving a level of detail at which the object is to be
rendered; and

rendering a three-dimensional visual representation of the

object at the specified level of detail using the vertex
collapse list.

4. The method of claim 3 wherein [the] computing an area
change factor for each collapse path further comprises:

computing an area of the object after collapsing [the] a first

target vertex along [the] a first collapse path; and
subtracting the computed area from an area of the object
prior to the collapse.

5. The method of claim 3 wherein [the] computing a vol-
ume change factor for [the selected] eack collapse path com-
Prises:

computing a volume of the object after collapsing [the] a

first target vertex along [the] a first collapse path; and
subtracting the computed volume from a volume of the
object prior to the collapse.

6. The method of claim 5, wherein [the step of] computing
a volume further comprises:

selecting the first target vertex to be an apex for a pyramid;

forming a base of the pyramid from a triangle connecting,

three consecutive neighbor vertices to the first target
vertex;

computing a volume of the pyramid;

constructing a next pyramid {from a next set of three con-

secutive neighbor vertices;

computing a volume of the next pyramid;

repeating the constructing a next pyramid and computing a

volume [steps] for all unique three consecutive neighbor
vertex sets; and

summing the volumes of the pyramids to obtain a volume

of the object.

7. The method of claim 2 further comprising [the step of]
receiving an input [from a user] specifying a priority weight
for [a] the visual distortion factor, and [the] wherein deter-
mining a collapse value [step further] comprises|, responsive
to the computed wvisual distortion factors and priority
weights,] determining a collapse value [for the selected col-
lapse path] that is responsive to the priority weight.

[8. The method of claim 2 wherein, responsive to collaps-
ing the next vertex to be collapsed along the corresponding
collapse path, collapse paths local to the next vertex are
identified and the computing visual distortion factors for the
selected collapse path and the determining a collapse value
for the selected collapse path steps are repeated only for the
local collapse paths.}

9. The method of claim 2 wherein determining a set of
collapse paths [further] comprises:

selecting a first target vertex;

[receiving input specifying a maximum number of neigh-

bor vertices for a target vertex;}

US RE42,406 E

15

identifying a number of neighbor vertices, responsive to
[the] a received input; and

determining a plurality of collapse [path] paths responsive
to coordinates of the first target vertex and [an identified
neighbor vertex;

repeating the determining step for all] #2e identified num-

ber of neighbor vertices];

repeating the selecting a target vertex, identifying, deter-

mining, and repeating steps for a plurality of vertices].

[10. The method of claim 2 further comprising the steps of:

responsive to selecting a collapse path, displaying the

object prior to collapsing the object along the selected
path;

collapsing the object along the specified path;

displaying the object after being collapsed along the speci-

fied path;

responsive to recerving an input selecting the collapse path,

storing the collapse path and corresponding vertex on
the collapse order list as the next vertex to be collapsed.]

11. The method of claim 1, further comprising receiving an
input specifying a set of [minimum] vertices, and [the}
wherein determining the collapse order [step further] com-
prises determining a collapse order 1n which the specified set
of [minimum] vertices are not collapsed.

12. The method of claim 1 wherein multiple resolution
levels of the object exist, further comprising [the steps of]:

[ordering the resolution levels from highest to lowest reso-

lution;}
selecting a [highest] resolution level for collapsing; and
[the] wherein determining a collapse order [step] com-
prises determining a collapse order for vertices of the
[highest] selected resolution level], wherein vertices in
the next lowest resolution level are not collapsed; and

repeating the selecting and determining steps for each reso-
lution level].
13. The method of claim 1 wherein [the] eac of the verti-
ces of the object includes vertex coordinates [are] and asso-
ciated [with] vertex attributes.
14. The method of claim [2] / 3 wherein each of the vertices
[have coordinates in a] %as texture map[, further comprising
the steps of] coordinates, and the vendering comprises:
[responsive to a selected collapse path] collapsing a first
vertex into a second vertex [to create a new vertex], and
assigning the texture map coordinates of the second
vertex [to] prior to collapsing the first vertex into the
second vertex as the texture map coordinates of the
second vertex dfter collapsing the first vertex into the
[new] second vertex];

responsive to the first and second vertex being on an edge
of a texture discontinuity, identitying the collapse path
as a collapse path not to be used].

15. The method of claim [2] / 3 wherein each of the vertices
[have coordinates in a] zas normal map[, further comprising
the steps of] coordinates, and the vendering comprises:

[responsive to a selected collapse path] collapsing a first

vertex into a second vertex [to create a new vertex], and
assigning the normal map coordinates of the second
vertex [to] prior to collapsing the first vertex into the
second vertex as the normal map coovdinates of the
second vertex dfter collapsing the first vertex into the
[new] second vertex.

16. The method of claim [2] / 3 wherein each of the vertices
[have coordinates in a] Zzas color map[, further comprising the
steps of] coordinates, and the vendering step comprises:

[responsive to a selected collapse path] collapsing a first

vertex into a second vertex [to create a new vertex], and
assigning the color map coordinates of the second vertex

10

15

20

25

30

35

40

45

50

55

60

65

16

[to] prior to collapsing the first vertex into the second
vertex as the color map coordinates of the second vertex
after collapsing the first vertex into the [new] second
vertex[; and

responsive to the first and second vertex being on an edge

of a color discontinuity, identifying the collapse path as
a collapse path not to be used].

17. A method for displaying an object, [wherein a vertex
list and a neighbor list 1s stored for the object, and vertices 1n
the vertex list are identified by a collapse priority and the
neighbor list identifies the path of a collapse for the vertices,]
comprising [the steps of]:

performing, using a processing device, a collapse of the

object responsive to [the] a vertex list and a neighbor list

Jor the object,

wherein vertices in the vertex list for the object are
arranged in a collapse priority, across all levels of
detail of the object,

wherein the neighbor list specifies, for each target vertex
in the vertex list, a neighbor vertex of the object to
which the target vertex collapses, for at least one level
of detail of the object, and wherein each vertex col-
lapse operation at a respective level of detail col-
lapses a respective target vertex to a neighbor vertex
dirvectly connected to the target vertex at the vespec-
tive level of detail, and

wherein following the collapse the object is in a first
collapse level,

storing [vertex], in memory associated with the processing

device, information [for each collapse level] relating to
the collapse, wherein the [vertex] information indicates
which vertices [exist in] of the object exist in [the] a
second collapse level [immediately higher and lower]
having at least one more vertex than the [current] first
collapse level and in a thivd collapse level having at least
one fewer vertex than the first collapse level,

[receiving input requesting a collapse level for the object;]

responsive to [the requested] a request for a collapse level

requiring [a higher resolution] more vertices than [a
current] the first collapse level, automatically adding
[vertices to] a vertex from the vertex list for the object
responsive to the vertex list and #%e stored [vertex] infor-
mation;

responsive to [the requested] a request for a collapse level

requiring [a lower resolution] fewer vertices than [a cur-
rent] the first collapse level, automatically collapsing
[vertices] a vertex in the vertex list [of] for the object
responsive to the vertex list and #4e stored [vertex] infor-
mation; and

automatically rendering the vertices in the vertex list for

each requested collapse level to produce a three-dimen-
stonal visual representation of the object.

18. The method of claim 17 [further comprising the step of]
wherein stoving information rvegarding the collapse includes:

storing [extended collapse information, wherein the

extended collapse information includes] triangle con-
nectivity information for [the] at least some of the ver-
tices.

19. A method for displaying an object, [wherein a vertex
list and a neighbor list 1s stored for the object, and vertices 1n
the vertex list are i1dentified by a collapse priority, and the
neighbor list identifies the path of a collapse for the vertices,]
comprising [the steps of]:

[performing a collapse of the object responsive to the ver-

tex list and neighbor list;]

US RE42,406 E

17

storing [vertex] in memory information [for each collapse

level, wherein the vertex information] regarding a col-

lapse of the object,

wherein the object includes a vertex list and a neighbor
[ist,

wherein vertices in the vertex list ave arranged in a
collapse priority, across all vesolutions of the object,

wherein the neighbor list specifies, for each target vertex
in the vertex list, a neighbor vertex of the object to
which the target vertex collapses, for at least one
resolution of the object, and wherein each vertex col-
lapse operation at a vespective vesolution of the object
collapses a respective target vertex to a neighbor
vertex directly connected to the target vertex at the
respective resolution of the object, and

wherein the information indicates which vertices of the
vertex list exist in the object [in the] az a collapse level
immediately higher and lower than [the] a current
collapse level of the object;

analyzing the object using a processing device to deter-

mine [a] the current collapse level of the object; and

responsive to [the determined collapse level] a determi-
nation requiring the object to be rendered at a rveso-
[ution higher than a resolution of the current collapse
level, adding [vertices to] a vertex from the vertex list
for the object responsive to the [vertex list and] stored
[vertex] information; and

responsive to [the determined collapse level] a determi-
nation requiring the object to be vendered at a reso-
[ution lower than the resolution of the current col-
lapse level, collapsing [vertices] a vertex in the vertex
list for the object responsive to the [vertex list and]
stored [vertex] information; and

automatically rendering the vertices 1n the vertex list for

the vequired resolution to produce a three-dimensional
visual representation of the object.

20. The method of claim 19 wherein [the step of] analyzing
the object [further] comprises:

determining a velocity of the object; and

determining a projected area of the object.

21. The method of claim [20] /9 wherein [the step of]
analyzing the object [further] comprises:

determining the number of polygons currently being dis-

played;

comparing the determined number of polyvgons to a pre-

defined target number of polygons; and

responsive to a determination that the number of polygons

currently being displayed [being] is less than the pre-
defined target number, adding [polygons to the object] a
vertex from the vertex list for the object.

22. The method of claim 19 wherein [the step of] analyzing
the object [further] comprises:

determining a current frame rate;

comparing the current frame rate to a predefined frame

rate; and

responsive to a determination that the current frame rate

[being] is less than the predefined frame rate, collapsing
[vertices in the object] a vertex in the vertex list for the
object.

23. A method for transferring [data across a remote con-
nection, in a system in which a minimal resolution of] an
object [is stored and separate packets of information compris-
ing data for creating higher resolutions of the object are
stored], comprising [the steps of]:

receiving as input to a processing device a request for a

transmission of [an] tke object [to be displayed] ar a
target resolution version of the object;

10

15

20

25

30

35

40

45

50

55

60

65

18

transmitting, using the processing device, via a remote
connection, a mimimal resolution version of the object
[responsive] in response to receiving the [received]
request; and
selectively transmitting, using the processing device, via
the remote connection, a separate, successive packet of
information [comprising data for creating a] comprising
the vertices requirved to increase a collapse level of the
object to a respective, predetermined, next higher reso-
lution version of the object in response to a respective
determination that the target resolution version of the
object has not been met|;
determiming whether a target resolution of the object has
been met; and
responsive to a target resolution of the object not being met,
repeating the transmitting a packet of information com-
prising data for creating a next higher resolution version
of the object stepl].
24. The method of claim 2, wherein computing a visual
distortion factor comprises:
computing an avea change factor for each collapse path;
computing an angular deviation factor for each collapse
path; and
computing a local volume change factor for each collapse
path.
25. The method of claim 24, wherein computing an area
change factor for each collapse path further comprises:
computing an arvea of the object after collapsing a first
target vertex along a first collapse path; and
subtracting the computed area from an area of the object
prior to the collapse.
26. The method of claim 24, wherein computing a volume
change factor for each collapse path comprises:
computing a volume of the object after collapsing a first
target vertex along a first collapse path; and
subtracting the computed volume from a volume of the
object prior to the collapse.
27. The method of claim 26, wherein computing a volume

Jurther comprises:

selecting the first target vertex to be an apex for a pyramid;

forming a base of the pyramid from a triangle connecting
three consecutive neighbor vertices to the first target
veriex;

computing a volume of the pyramid;

constructing a next pyramid from a next set of three con-

secutive neighbor vertices;

computing a volume of the next pyramid,

repeating the constructing a next pyramid and computing a

volume for all unique three consecutive neighbor vertex
sets: and

summing the volumes of the pyramids to obtain a volume of

the object.

28. The method of claim 23, further comprising:

storing the minimal vesolution version of the object and the

separate packets of information in memory.

29. The method of claim 23, wherein the target vesolution
version of the object is intermediate of the minimal vesolution
version of the object and a maximum resolution version of the
object.

30. A method for creating a three-dimensional visual vep-
resentation of an object, comprising:

determining, using a processing device, a collapse ovder

Jor vertices of the object, wherein said determining the
collapse ovder comprises:
determining a set of collapse paths available at a level of
detail, including:
selecting a first target vertex;

US RE42,406 E

19

identifying a number of neighbor vertices, responsive
to a received input; and
determining a plurality of collapse paths responsive
to coordinates of the first target vertex and the
identified number of neighbor vertices;
computing a visual distortion factor for each collapse
path in the set of collapse paths; and
responsive to the computed visual distortion factors,
determining a collapse value for each collapse path in
the set of collapse paths;
orvdering the vertices of the object in a vertex list vesponsive
to the determined collapse order;
creating, using the processing device, a vertex collapse list
responsive to the collapse order, wherein the vertex col-
lapse list specifies, for each target vertex, a neighbor
vertex of the object to which the target vertex collapses,
for at least one level of detail of the object, and wherein

each vertex collapse operation at a respective level of

detail collapses a respective target vertex to a neighbor
vertex divectly connected to the target vertex at the
respective level of detail;

specifving a level of detail at which the object is to be

rendered: and

automatically vendering a three-dimensional visual vepre-

sentation of the object at the specified level of detail
using the vertex list and the vertex collapse list.

31. An apparatus for creating a three-dimensional visual
representation of an object, comprising:

a processing device configured to:

determine a collapse ovder for vertices of a vertex list for
the object, across all levels of detail of the object,

order the vertices in the vertex list vesponsive to the
determined collapse order;

create a vertex collapse list responsive to the collapse
order, wherein the vertex collapse list specifies, for
each target vertex, a neighbor vertex of the object to
which the target vertex collapses, for at least one level
of detail of the object, and wherein each vertex col-
lapse operation at a vespective level of detail col-
lapses a vespective target vertex to a neighbor vertex
dirvectly connected to the target vertex at the respec-
tive level of detail;

receive input specifying a level of detail at which the
object is to be rendered; and

responsive to the rveceived input, vender a three-dimen-
sional visual vepresentation of the object at the speci-
fied level of detail using the vertex list and the vertex
collapse list.

32. A non-transient computer-readable storvage medium
having stoved thereon computer executable instructions,
execution of which by a processing device causes the process-
ing device to perform operations for creating a three-dimen-
sional visual vepresentation of an object, the operations com-
prising:

determining a collapse ovder for vertices of a vertex list for

the object, across all levels of detail of the object;
ordering the vertices in the vertex list responsive to the
determined collapse ovder;

creating a vertex collapse list vesponsive to the collapse

order, wherein the vertex collapse list specifies, for each
target vertex, a neighbor vertex of the object to which the

target vertex collapses for at least one level of detail of

the object, and wherein each vertex collapse operation
at a rvespective level of detail collapses a respective
target vertex to a neighbor vertex divectly connected to
the target vertex at the respective level of detail;

10

15

20

25

30

35

40

45

50

55

60

65

20

specifying a level of detail at which the object is to be
rendered: and

rendering a three-dimensional visual representation of the
object at the specified level of detail using the vertex list
and the vertex collapse list.
33. An apparatus for creating a three-dimensional visual
vepresentation of an object, comprising:
a processing device configured to:
determine a collapse ovder for vertices of the object,
including:
determining a set of collapse paths available at a level
of detail, including:
selecting a first target vertex;
identifving a number of neighbor vertices, respon-
sive to a received input; and
determining a plurality of collapse paths vespon-
sive to coordinates of the first target vertex and
the identified number of neighbor vertices;
computing a visual distortion factor for each collapse
path in the set of collapse paths; and
responsive to the computed visual distortion factors,
determining a collapse value for each collapse
path in the set of collapse paths;
ovder the vertices of the object in a vertex list responsive
to the determined collapse order;
create a vertex collapse list responsive to the collapse
order, wherein the vertex collapse list specifies, for
each target vertex, a neighbor vertex of the object to
which the target vertex collapses, for at least one level
of detail of the object, and wherein each vertex col-
lapse operation at a rvespective level of detail col-

lapses a respective target vertex to a neighbor vertex
dirvectly connected to the target vertex at the vespec-
tive level of detail;

receive input specifving a level of detail at which the
object is to be rendered; and

in vesponse to the received input, automatically vender a
three-dimensional visual vepresentation of the object
at the specified level of detail using the vertex list and
the vertex collapse list.

34. A non-transitory computer-readable storage medium
having stored therveon computer executable instructions,
execution of which by a processing device causes the process-
ing device to perform operations for creating a three-dimen-
sional visual representation of an object, the operations com-

prising:

determining a collapse order for vertices of the object,
wherein said determining the collapse order comprises:
determining a set of collapse paths available at a level of
detail, including:
selecting a first target vertex;
identifving a number of neighbor vertices, responsive
to a received input; and
determining a plurality of collapse paths responsive
to coordinates of the first target vertex and the
identified number of neighbor vertices;
computing a visual distortion factor for each collapse
path in the set of collapse paths; and
responsive to the computed visual distortion factors,
determining a collapse value for each collapse path in
the set of collapse paths;
ordering the vertices of the object in a vertex list vesponsive
to the determined collapse order;
creating a vertex collapse list responsive to the collapse
ovder, wherein the vertex collapse list specifies, for each
target vertex, a neighbor vertex of the object to which the
target vertex collapses, for at least one level of detail of
the object, and wherein each vertex collapse operation
at a rvespective level of detail collapses a respective

US RE42,406 E

21

target vertex to a neighbor vertex divectly connected to
the target vertex at the respective level of detail;

specifving a level of detail at which the object is to be
rendered: and

automatically vrendering a three-dimensional visual vepre-
sentation of the object at the specified level of detail
using the vertex list and the vertex collapse list.

22

35. The method of claim I, wherein, in said determining a
collapse ovder, each vertex of the object has a fixed coordinate

offset relative to each other vertex of the object across all
levels of detail of the object.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : RE42,406 E Page 1 of 1
APPLICATION NO. : 11/091003

DATED : May 31, 2011

INVENTOR(S) . Kato

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Title page, item (57), under “Abstract”, in Column 2, Line 6, delete “collapse,” and insert
-- collapse --.

Column 13, line 43, in Claim 2, delete “[factor] factors™ and insert -- [factors] factor --.

Signed and Sealed this
Eleventh Day of October, 2011

. F - - . - -
-- .-.- -. b . -- ‘. .--
. " i . 1 - PR . . - - -
. - . : - - N, AT -
!, . . - - e . A n . . u-
.L; . . e e . L F

_ A
- ' - -
" . N T .
. " - . [g
- dh . . \
: .
. .- A . .

David J. Kappos
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

