USO0RE42396E
(19) United States

a2 Relssued Patent (10) Patent Number: US RE42.396 E
Hills 45) Date of Reissued Patent: May 24, 2011
(54) METHOD OF DETERMINISTIC GARBAGE 6,799,191 B2 * 9/2004 Agesenetal. 707/206
COLLECTION 7,469,324 B2 * 12/2008 Teneetal. 711/159
7,584,232 B2 * 9/2009 GUO .covrvviiiiniiiininnenen, 707/206

(75) Inventor: Theodore S. Hills, Lambertvile, NJ (US) 2001/0037412° Al 1172001 Miloushev et al.
2006/0155791 A1 * 7/2006 Teneetal. 707/206
(73) Assignee: Tallgie Data HOldingS LLCj LaS Vegasj 2007/0203960 Al * 8/2007 GUO covvivrieieeeiirnennnnens 707/206

NV (US) OTHER PUBLICATIONS

(21) Appl. No.: 11/286,439

(22) Filed: Novw. 23, 2005
Related U.S. Patent Documents

Reissue of:
(64) Patent No.: 6,654,773

Issued: Nov. 25, 2003

Appl. No.: 09/794.846

Filed: Feb. 27, 2001
(51) Int.CL.

GOooF 17/30 (2006.01)
(52) US.CL ... 707/813; 711/170; 711/E12.009;

707/817

(58) Field of Classification Search 707/206,

707/813, 817, 999.206; 711/170, E12.01,
711/E12.009, E12.011, E12.012

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

4,755,939 A 7/1988 Watson

4,775,932 A * 10/1988 Oxleyetal. 707/206
5,398,334 A 3/1995 Topka et al.

5,652,883 A 7/1997 Adcock

5,799,185 A * §8/1998 Watanabe 707/206
5,848,423 A 12/1998 Ebrahim et al.

5,900,001 A 5/1999 Wolczko et al.

5,903,899 A 5/1999 Steele, Jr.

5,960,087 A * 9/1999 Tribble et al. 713/167
6,094,664 A * 7/2000 Ungarcocovvinivinennn. 707/206
6,144,965 A * 11/2000 Oliver ...coooevvivvivvinninnnn 707/100
6,421,690 B1 * 7/2002 Kiurk, III ...ccevveennn....... 707/206
6,473,773 B1 * 10/2002 Chengetal. 707/200
6,487,563 Bl * 11/2002 Houldsworth 707/206

“D Programming Language”—Digital Mars, 1999-2002.
Horstmann, Cay S. “Memory management and smart point-

ers.” In C++ Report, 5,3 (Mar./Apr. 1993), 28-34. New York:
101 Communications, 1993.

* cited by examiner

Primary Examiner—Lesliec Wong
(74) Attorney, Agent, or Firm—Schwabe, Willlamson &
Wyatt, P.C.

(57) ABSTRACT

A garbage collection method that distinguishes between
local objects and managed objects, and between an ordinary
pointer to an object, an owning pointer to an object, and a
non-owning pointer to an object 1s presented. Ordinary
pointers point only to local objects, and owning and non-
owning pointers point only to managed objects. Managed
objects have attributes including a count of the number of
owning pointers referring to them, and a linked list of non-
owning pointers referring to them. Managed objects only
possess non-owning pointers. Only an invocation of a sub-
routine within a thread can possess an owning pointer. Using
this method, when an mvocation exits, its exit code gives up
ownership of all objects 1t owned. When an object 1s no
longer reachable from any owning pointer, either directly, or
indirectly through non-owning pointers, the object 1s 1imme-
diately de-allocated. By implementing data structures and
methods to support owning pointers, non-owning pointers,
and managed objects, and by enforcing rules regarding the
use of ordinary pointers, owning pointers, and non-owning
pointers, efficient and deterministic garbage collection 1s
achieved, memory leaks and dangling pointers are
climinated, and objects containing circular references to
cach other are not a source of memory leaks.

40 Claims, 4 Drawing Sheets

U.S. Patent May 24, 2011 Sheet 1 of 4 US RE42.,396 E

1

0..1

F1G. 1

U.S. Patent May 24, 2011 Sheet 2 of 4 US RE42.,396 E

pRef =
pRef->pNaxtRef

FIG. 2

US. P
atent May 24, 2011 Sheet 3 of 4 US RE42.396 E
301 |

FIG. 3

U.S. Patent May 24, 2011 Sheet 4 of 4 US RE42.,396 E

401

US RE42,396 E

1

METHOD OF DETERMINISTIC GARBAGE
COLLECTION

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

A portion of the disclosure of this patent document con-
tains material which 1s subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-

tion by anyone of the patent document or the patent
disclosure, as 1t appears 1n the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

BACKGROUND OF THE INVENTION

This invention relates generally to programming of digital
computers, and, more specifically, to memory management
and garbage collection.

There are presently two broad approaches to memory
management: (1) programmer memory management where
programmers are responsible for writing explicit program
code to de-allocate memory for the storage of objects no
longer needed by a program; and (2) automatic memory
management where the de-allocation of memory 1s done
automatically, after the system determines that objects are no
longer needed.

If memory management 1s automatic, there 1s no room left
for programmer errors in memory management, which result
in memory leaks, dangling pointers, or both.

A memory leak occurs when a program fails to de-allocate
an object which 1t no longer needs. The accumulation of
such unneeded objects during the execution of a program
can lead to an unnecessary exhaustion of memory available
for executing the program, end a resultant program abortion.

A dangling pointer reflects the converse mistake in
memory management. This occurs when program code 1s
executed which de-allocates an object while pointers to 1t
still exist 1n an executing program. If some portion of code
attempts to use the de-allocated object through a pointer 1t
still possesses, the result 1s unpredictable and usually errone-
ous.

Automatic memory management removes the possibility
of either of these errors. There 1s therefore an increase 1n the
expectation of the reliability of a program executed with
automatic memory management, over one executed with
programmer-controlled explicit memory management.
There 1s a significant labor savings 1n developing software
for a system that supplies automatic memory management,
since memory management mistakes are difficult to dis-
cover. However, automatic memory management systems do
exact a toll 1n the efficiency of the programs using them, as 1s
discussed below.

Many garbage collection methods have been proposed,
the purpose of all of which 1s to discover, automatically and
in as little processing time as possible, what objects 1n a
program’s memory are no longer needed by a program, so
that those objects can be de-allocated and their storage
reclaimed. Some of these garbage collection methods have
significant processing overhead, which reduces the desir-
ability of these methods and even precludes them from being
used 1n certain applications (such as high-speed real-time
systems). Thus, 1t 1s desirable that automatic memory man-
agement be as eflicient as possible, to allow the broadest
range of applicability.

Many garbage collection systems are constructed so as to
suspend the normal execution of a program at random

10

15

20

25

30

35

40

45

50

55

60

65

2

intervals, 1n order to find and delete objects 1n memory that
are no longer needed. A program executed with such a gar-
bage collection system can never be depended on to run in
exactly the same manner as any prior execution, even given
all of the same operating conditions and mputs. Determin-
1sm 1s lost.

Determinism 1s important for real-time applications
where physical processes outside a computer controlling
them are occurring at a fixed rate. The soltware controlling
such computers must be able to guarantee that 1t will respond
to external events within known time limits. Under such
circumstances, the use of a non-deterministic garbage col-
lection mechanism may be precluded.

One approach to garbage collection uses reference count-
ing. In this method, each object has a property attached to 1t
called its reference count, which 1s merely the number of
objects that possess a pointer to that object. Clearly, when an
object’s reference count becomes zero, it may safely be
de-allocated.

It 1s fairly simple and somewhat efficient to manage a
reference count for an object, but the method has a signifi-
cant limitation involving circular references. Suppose a pro-
gram allocates objects A and B, stores a reference to A 1n B,
and stores a reference to B 1n A. Now, even it all other
references to the objects A and B are deallocated, A and B
would each have a reference count of 1, indicating their
references to each other. Thus, A and B would never be
de-allocated, and this represents a memory leak.

BRIEF SUMMARY OF THE INVENTION

The above-discussed and other drawbacks and deficien-
cies of the prior art are overcome or alleviated by a garbage
collection method of the present invention. The garbage col-
lection method distinguishes between local objects and man-
aged objects, and between an ordinary pointer to an object,
an owning pointer to an object, and a non-owning pointer to
an object. Ordinary pointers may point only to local objects,
and owning and non-owning pointers may point only to
managed objects. Managed objects have attributes including
a count of the number of owning pointers referring to them,
and a linked list of non-owning pointers referring to them.
Managed objects may only possess non-owning pointers.
Only an mvocation of a subroutine within a thread can pos-
sess an owning pointer. Using this method, when an invoca-
tion exits, 1ts exit code gives up ownership of all objects 1t
owned. When an object 1s no longer reachable from any
owning pointer, either directly, or indirectly through non-
owning pointers, the object 1s immediately deallocated.

By implementing data structures and methods to support
owning pointers, non-owning pointers, and managed
objects, and by enforcing rules regarding the use of ordinary
pointers, owning pointers, and non-owning pointers, eifi-
cient and deterministic garbage collection 1s achieved,
memory leaks and dangling pointers are eliminated, and
objects containing circular references to each other are not a
source ol memory leaks.

The present invention 1s embodied 1n software preferably
written using an object-oriented programming language. It 1s
also embodied 1in multi-threaded environments, multi-
process environments, and as part of a persistence manage-
ment system. It 1s embodied as an intrinsic part of a pro-
gramming language. It may also be used to access POSIX®-
compliant file systems.

The garbage collection method of the present mvention
has the following and other advantages over prior art gar-
bage collection methods, some of which are essential for

US RE42,396 E

3

real-time applications. It 1s deterministic. A given graph of
managed objects, owning pointers, and non-owning pointers
will always be destroyed at the same point 1n a program, on
every run of that program under the same conditions. Given
these characteristics, a program never will be pre-empted
randomly while a garbage collector cleans up memory. The
cost of memory management, and the timing of its
execution, can always be directly dertved from the program.
It de-allocates as early as possible, so total memory con-
sumption 1s always the minimum possible. Destruction 1s
guaranteed before termination of the program. In an object-
oriented 1mplementation, destruction will call an object’s
destructor to release any resources 1n use by the object,
which may include resources other than memory. An object-
oriented programming system incorporating the present
invention can guarantee that the destructor of every object
will be called as soon as the abject 1s no longer reachable by
the program.

The above-discussed and other features and advantages of
the present invention will be appreciated and understood by
those skilled in the art from the following detailed descrip-
tion and drawings.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING

Referring now to the drawing wherein like elements are
numbered alike in the several FIGURES:

FIG. 1 1s a Unified Modeling Language (UML) static
class diagram depicting the static relationships between the
classes Invocation, OwningPointer, ManagedObject, and
NonOwningPointer, in accordance with the present inven-
tion;

FIG. 2 1s a flowchart of the reachable() function of the
ManagedObject class;

FI1G. 3 1s a flowchart of the nullity() method of the Own-
ingPointer class; and

FI1G. 4 15 a flowchart of the nullify() method of the Non-
OwningPointer class.

DETAILED DESCRIPTION OF THE INVENTION

The present invention specifies an invocation, an owning,
pointer, a non-owning pointer, and a managed object. In the
preferred embodiment, these are modeled using statements
ol an object-oriented programming language as classes with
the names Invocation, OwningPointer, NonOwningPointer,
and ManagedObject, respectively. FIG. 1 shows these
classes using the graphical symbols of the Unified Modeling
Language (UML), as defined by Rumbaugh, James, Ivar
Jacobson, and Grady Booch, “The Unified Modeling Lan-
guage Reference Manual,” Reading, Mass., Addison-
Wesley, 1999, which 1s incorporated herein by reference.

An 1nvocation 1s an invocation of a subroutine within a
thread of a process of a system. An invocation ceases to exist
when 1t 1s exited. An owning pointer 1s a pointer from an
invocation to a managed object that establishes an ownership
relationship between the invocation and the managed object.
The owner of an owning pointer owns the managed object to
which 1t points. A non-owning pointer 1s a pointer from an
owner to a managed object that does not establish an owner-
ship relationship between the owner and the managed object.
The owner of a non-owning pointer does not own the man-
aged object to which 1t points. Only owning and non-owning
pointers may point to managed objects, and owning and non-
owning pointers may only point to managed objects. Own-
ing pointers may only exist as local objects 1n mmvocations,

10

15

20

25

30

35

40

45

50

55

60

65

4

and must be destroyed when their invocations exit. Owning
pointers may not exist as members of managed objects. Non-
owning pointers may exist as local objects 1n invocations, or
as members by composition of managed objects. Both own-
ing and non-owning pointers have semantics very similar to
ordinary pointers. Both can reference either exactly one
object, or no objects at all when 1n the null state. Both can be
altered to reference various objects at various times, and/or
be set to the null state. Both can be de-referenced to access

the referenced object.

Ownership 1s a relationship between an object and an
owner that governs the lifetime of the object, where the
object may not be destroyed except by its sole or final owner,
and may not outlive its sole or final owner. An owner 1s an
invocation or a managed object that owns other objects. An
invocation owns all of its local objects, and owns all of the
managed objects referenced by owning pointers that 1t owns
as local objects. A managed object owns all of 1ts local
objects; that 1s, all of the members of which 1t 1s composed.
A local object 1s an object that 1s not a managed object. It 1s
allocated 1n such a way that 1t will not outlive the invocation
or managed object that created it. Ordinary pointers may
only exist as local objects, and must be destroyed when their
owners are destroyed. Only ordinary pointers may point to
local objects, and ordinary pointers may only point to local
objects. An ordinary pointer 1s neither an owning pointer nor
a non-owning pointer.

A managed object 1s an object that has been allocated 1n
such a way that the garbage collection method described
herein can be applied to it. It 1s of interest to allocate an
object as a managed object 11 it could potentially outlive the
invocation that created it, and/or it references to 1t could
outlive the ivocation that created 1t. Managed objects must
be allocated 1n such a way that they may live longer than the
invocation which allocates them, but local objects may be
allocated 1n such a way that they cannot live longer than the
invocation which allocates them. For instance, in the pre-
ferred embodiment, invocations use a stack data structure for
local objects, such that local objects are popped from the
stack upon exit of an mvocation. Managed objects may not
be allocated on such a stack, but local objects may be allo-
cated on such a stack. Alternatively, local objects may be
allocated on a heap or other data structure also containing
managed objects, but this does not cause local objects so
allocated to become managed objects. As soon as an owner
creates a managed object, an owning or non-owning pointer
must reference 1t. Once a managed object exists, more own-
ing and non-owning pointers may point to i1t. A managed
object 1s reachable 1f there 1s at least one owning or non-
owning pointer owned by and local to an invocation which
can reach the object through that pointer, either directly
through that pointer, or indirectly through non-owning
pointers 1n other managed objects accessible through that
pointer. The design of the garbage collection method
described herein 1s such that a managed object will exist as
long as 1t 1s reachable, and will be destroyed as soon as 1t 1s
no longer reachable. When a managed object 1s destroyed,
all non-owning pointers to it, 1f any, are nullified. To nullity a
pointer 1s to set 1t to the null state, such that it references no
objects. A pointer that 1s i the null state can be referred to as
a null pointer. The destruction of a managed object may 1n
turn cause other managed objects to become unreachable.
This condition consequently requires that those managed
objects be destroyed as well.

To destroy an object means to both finalize and
de-allocate an object. Destruction 1s the process of destroy-
ing an object. To finalize an object means to set all of 1ts

US RE42,396 E

S

members to a final state, in which de-allocation of the object
can be done correctly, with no leaks of memory or other
resources. The terms destroy and destruction are commonly
used 1n object-oriented systems. In the present invention,
certain methods must be executed immediately before the
de-allocation of managed objects. In a preferred embodi-
ment of the mvention an object-oriented programming lan-
guage system 1s employed, wherein the methods that must
be executed immediately before the destruction of objects 1s
implemented 1n the destructor methods of managed objects.

Referring now to FIG. 1, a class Invocation 101 1is
abstract, and represents an invocation, to which instances of
a class OwningPointer 102 and a class NonOwningPointer
104 may be local. Although not represented in FIG. 1, Invo-
cation 101 has a destructor, which on exit of an invocation
destroys all of the objects which it owns. In an object-
oriented programming language system, this 1s the normal
destruction of local objects that occurs when an nvocation
exits. This includes the destruction of OwningPointers 102,
NonOwningPointers 104, and ordinary pointers that are
local to the mvocation that i1s exiting. The destruction of
Owning Pointers 102 and NonOwningPointers 104 1s dis-
cussed below.

OwningPointer 102 represents an owning pointer. Own-
ingPointer 102 has only one attribute and that 1s an ordinary
pointer pOwned to a Managed Object 103. A method
operator=() of OwningPointer 102 (i.e., the assignment
operator) allows the value of another 1nstance of Owning-
Pointer 102 to be copied to the current instance of Owning-
Pointer 102. An overloaded operator=() may also be defined

as a member of OwningPointer 102 that allows the current
instance to be set to refer to the referent of an 1nstance of
NonOwningPointer 104. The method nullity() of Owning-
Pointer 102 causes the current mstance of OwningPointer
102 to enter the null state, such that it ceases to reference any
ManagedObject 103. Its algorithm 1s given 1n more detail
below. Although not represented i FIG. 1, OwningPointer
102 has a destructor.

In FIG. 1, class ManagedObject 103 represents a managed
object. ManagedObject 103 has a count of 1ts direct owners
nOwners, which 1s the count of 1instances of OwmngPointer
102 that refer to 1it. ManagedObject 103 has an ordinary
pointer pFirstRef that 1s the head of a singly linked list to
instances of class NonOwningPointer 104 that refer to Man-
agedObject 103. This singly linked list 1s important 1n the
garbage collection method, as will be described below. Man-
agedObject 103 has a Boolean flag bNodeVisited, used to
prevent endless loops when traversing the singly linked list.
ManagedObject 103 has a Boolean flag bInDestructor, used

to prevent infinite recursion when destroying ManagedOb-
ject 103.

A function owned() of ManagedObject 103 returns true 1f
and only 1f member nOwners of the current instance of Man-
agedObject 103 1s not zero. A Tunction reachable() of Man-
agedObject 103 returns true 1f either owned() returns true, or
if the member plirstRet of the current instance of Manage-
dObject 103 1s not null, and at least one of NonOwning-
Pointers 104 on the list headed by the pFirstRef has a pRe-
terrer referencing an nstance of ManagedObject 103 whose
reachable() function returns true. The algorithm of the func-
tion reachable() 1s presented 1n greater detail below.

A method possess() 1s called on an instance of Manage-
dObject 103 by OwningPointer 102 when 1ts value 1s set to
refer to that mstance. The method does nothing more than
increases nOwners by 1. A method disown() 1s called on an
instance ol ManagedObject 103 by OwningPointer 102

10

15

20

25

30

35

40

45

50

55

60

65

6

when 1ts value was set to refer to that instance, but 1s
changed so that 1t no longer points to that instance. The
method does nothing more than decreases nOwners by 1.

A method addRef() 1s called on an instance of Manage-
dObject 103 by NonOwningPointer 104 when its value 1s set
to refer to that instance. The method links the instance of
NonOwningPointer 104 that called it into the singly linked
list headed by 1ts attribute pfirstRef A method removeRel{()
1s called on an 1nstance of ManagedObject 103 by NonOwn-
ingPointer 104 when its value was set to refer to that
instance, but 1s changed so that 1t no longer points to that
instance. The method unlinks the mstance of NonOwning-
Pointer 104 that called 1t from the singly linked list headed
by 1ts attribute pFirstRetf Although not represented in FIG. 1,
ManagedObject 103 has a destructor.

In FIG. 1, class NonOwningPointer 104 represents a non-
owning pointer. An ordinary pointer pReferrer that 1s a mem-
ber of NonOwningPointer 104 points to the instance of class
ManagedObject 103 containing NonOwningPointer 104 by
composition. It 1s needed 1n order to interrogate the instance
of ManagedObject 103 to find whether it 1s reachable. An
ordinary pointer pReferent that 1s a member of NonOwning-
Pointer 104 points to the instance of class ManagedObject
103 to which NonOwningPointer 104 refers. The ordinary
pointer pReferent 1s the one used when NonOwningPointer
104 1s de-referenced. An ordinary pointer pNextRet 1s part
of the singly linked list of ordinary pointers to the instance of
ManagedObject 103 indicated by pReferent. All of the Non-
OwningPointers 104 on the list point to the same instance of
ManagedObject 103; that 1s, they all have the same value for
pReferent.

These attributes enable a reachable() function to work.
They also allow instances of NonOwningPointers 104 to be
nullified when their referent (indicated by pReferent) 1s
destroyed. A method operators=() of NonOwningPointer
104 (1.e., the assignment operator) allows the value of
another instance of NonOwningPointer 104 to be copied to
the current instance of NonOwningPointer 104. An over-
loaded operator ()=may also be defined as a member of
NonOwningPointer 104 that allows the current instance to
be set to refer to the referent of an instance of Owning-
Pointer 102. A method nullify() of NonOwningPointer 104
causes the current instance of NonOwningPointer 104 to
enter the null state, such that it ceases to reference any Man-
agedObject 103. Its algorithm 1s given 1n more detail below.
Although not represented 1n FIG. 1, NonOwningPointer 104
has a destructor.

A smgly linked list of NonOwningPointers 104, together
with ManagedObjects 103 that possess these pointers by
composition, form a directed graph that may contain cycles.
This 1s the problem of circular references encountered in the
prior art. In order to traverse this graph to determine whether
any ManagedObject 103 1s reachable from Invocation 101,
cach node visited must be marked, so that in following a
cycle 1n the graph, an endless loop does not occur. To that
end, a bNodeVisited Boolean attribute of ManagedObject
103 15 set to true before interrogating 1ts list of NonOwning-
Pointers 104, and set to false upon completion. If, during a
traversal of the graph, ManagedObject 104 1s found with
bNodeVisited true, it 1s treated as a non-reachable node. This
will be seen 1n the algorithm presented below.

Referring to FIG. 2, a flowchart of a reachable() function
of ManagedObject 103 class 1s generally shown. Execution
begins at a terminator symbol 201. The reachable() function
tests 202 the owned() function of the current instance of

class Managed Object 103. If the owned() function returns

US RE42,396 E

7

true, meanming the nOwners member of the current instance 1s
non-zero, the reachable() function returns true 203, indicat-
ing to the caller that the current instance of class Manage-
dObject 103 is reachable. In this case, the instance 1s reach-
able because 1t has one or more owners. If the owned()
function returns false, meaning the nOwners member of the
current 1nstance 1s zero, the reachable() function tests 204
the bNodeVisited member of the current instance. If this 1s
true, then the reachable() function has been recursively
invoked by an earlier invocation of the reachable() function
on the same instance of class ManagedObject 103. This can
happen when there are cycles 1n the graph of references
between instances of class ManagedObject 103. In order to
avold infinite recursive calls to the reachable() function, the

reachable() function immediately returns false 2085.

It the bNodeVisited member of the current instance 1s
false, then the reachable() function sets it to true 206, to
prevent infinite recursive calls of the reachable() function as
just described. The reachable() function then sets a new
local variable, an ordinary pointer pRef, to the value of the
member pFirstRel of the current instance 207. From this
point on, a variable pRef indicates the current node on the
singly linked list whose head 1s pointed to by pFirstRef. It
the list 1s empty, pRet will be null.

The reachable() function next tests pRet 208. If 1t 1s null,
then the list 1s empty. The reachable() function sets member
bNodeVisited to false 209, and returns false to a caller 210,
indicating that the current instance of class ManagedObject
103 1s not reachable. In this case, the instance 1s not reach-
able because i1t has no owners, and no other NonOwning-
Pointers 104 refer to 1t.

If pRef 1s not null, the reachable() function tests pRet-
>pReferrer 211. If pRef->pReferrer 1s null, then the referrer,
that 1s, the owner of the instance of NonOwmngPointer 104
indicated by pRet, 1s an mnvocation. Since this NonOwning-
Pointer 104 1s owned by an imnvocation, ManagedObject 103
to which 1t refers by pReferent 1s reachable by that invoca-
tion. The reachable() function sets bNodeVisited to false
212, and returns true 213.

If pRef->pReferrer 1s not null, then the referrer 1s Man-
agedObject 103 indicated by pRef->pReferrer; that 1s, Man-
agedObject 103 that owns by composition NonOwning-
Pointer 104 indicated by pRel. The reachable function
invokes pRef>p-Referrer->reachable() 214. If the
reachable() function so invoked returns true, then the
reachable() function of the current instance sets bNodeVis-
ited to false 212, and returns true to the caller 213, indicating
that the current instance of class ManagedObject 103 1s
reachable. In this case, the istance 1s reachable, even though
it has no owners, because ManagedObject 103 has been
tound which refers to 1t and which 1s 1tself reachable.

If the reachable() function returns false, then the
reachable() function of the current instance sets local vari-
able pRef to the value of pNextRef in the current node
pointed to by pRef 215. After thus assignment, either pRef
points to the next node on the linked list, or, if the previous
value of pRetf pointed to the last node on the list, pRef 1s null.
The reachable() function of the current instance then loops
to test pRef again 208. If 1t 1s null, then the end of the list has
been reached. The reachable() function sets member bNode-
Visited to false 209, and returns false to the caller 210, indi-
cating that the current instance of class ManagedObject 103
1s not reachable. In this case, the instance 1s not reachable
because 1t has no owners, and other NonOwningPointers 104
refer to 1t, but none of them are reachable.

If pRet 1s not null, the reachable() function of the current
instance continues with the test indicated by box 211 on the

10

15

20

25

30

35

40

45

50

55

60

65

8

flowchart, as described above. This loop terminates when
either a reachable node 1s found or the end of the singly
linked list 1s reached, as described above.

The nullity() method can be mvoked on any instance of
OwningPointer 102, and will cause the destruction of Man-
agedObject 103 to which 1t refers 11 that ManagedObject 103
becomes unreachable. Referring to FI1G. 3, a flowchart of the
nullify() method of class OwmngPointer 102 1s generally
shown. Execution begins at the terminator 301. The method
tests the attribute pOwned 302. IT it 1s null, then there 1s
nothing for the nullify() method to do, and so 1t exits 307.

I1 the pOwned attribute 1s not null, then 1t refers to some
instance of ManagedObject 103. The nullify() method
invokes the disown() method 303 of that ManagedObject
103. It then interrogates the same instance of ManagedOb-

ject 103 indicated by pOwned, to determine whether 1t 1s still
recachable 304. If ManagedObject 103 1s no longer

reachable, the nullify() method destroys it 305. Whether

reachable or not, the nullity() method sets pOwned to null
306, and exits 307.

The nullity() method 1s mvoked by other methods of
OwningPointer 102 under the following conditions: upon
destruction of an OwningPointer 102; and 11 an assignment
method 1s called, and the ManagedObject 103 to which the
OwningPointer 102 currently refers 1s not the same as the
one to which 1t will refer after the assignment method com-
pletes. By this means, whenever an OwningPointer 102
ceases to point to a ManagedObject 103, that ManagedOb-
ject 103 1s tested to see if 1t 1s st1ll reachable and 11 1t 1s not,
that ManagedObject 103 1s destroyed.

The nullity() method can be mvoked on any instance of
NonOwningPointer 104, and will cause the destruction of
the ManagedObject 103 to which it refers 11 that Manage-
dObject 103 becomes unreachable. Referring to FIG. 4, a
flowchart of the nullify() method of class NonOwning-
Pointer 104 1s generally shown. Execution begins at the ter-
minator 401. The method tests the attribute pRetferent 402, IT
it 1s null, then there 1s nothing for the nullify() method to do,
and so 1t exits 408.

If the pReferent attribute 1s not null, then it refers to some
instance of ManagedObject 103. The nullify() method sets a
new local vaniable, localpRet, to the value of pReferent, and
sets pReferent to null 403. This prevents infinite recursive

calls to nullify() on the same mstance of NonOwningPointer
104.

The nullity() method then calls the removeRet() method
404 of ManagedObject 103 indicated by localpRet, to
remove the current instance of NonOwningPointer 104 from
that ManagedObject’s singly linked list of referrers. It then
interrogates the same 1nstance of ManagedObject 103 1ndi-
cated by localpRef, to determine whether 1t 1s 1n 1ts
destructor, by testing its attribute bInDestructor 405. If true,
the nullify() method exits 408. If Managed Object 103 1s 1n

its destructor, there 1s no need to destroy 1t.

If ManagedObject 103 1s not 1n its destructor, the nullity()
method tests to see 11 1t 1s still reachable 406. If the Manage-
dObject 103 1s no longer reachable, the nullify() method
destroys 1t 407. In either case, the nullify() method exits

408.

The nullity() method 1s mvoked by other methods of
NonOwningPointer 104 under the following conditions:
upon destruction of a NonOwningPointer 104; and 1f an
assignment method 1s called, and the ManagedObject 103 to
which the NonOwningPointer 104 currently refers 1s not the
same as the one to which i1t will refer after the assignment
method completes. By this means, whenever a NonOwning-

US RE42,396 E

9

Pointer 104 ceases to point to a ManagedObject 103, that
ManagedObject 103 1s tested to see 1 1t 1s still reachable and
if 1t 1s not, that ManagedObject 103 1s destroyed.

By virtue of an object-oriented programming system, a
NonOwningPointer 104 that 1s a member by composition of
ManagedObject 103 1s only destroyed when ManagedObject
103 of which 1t 1s a member 1s about to be destroyed. By
calling nullity(), the destruction of NonOwningPointer 104
may cause other ManagedObjects 103 to become
unreachable, and therefore cause their destruction. In order
to prevent erroneous recursive destruction of ManagedOb-
ject 103 containing the current NonOwningPointer 104 by
composition, the destructor of the NonOwningPointer 104
sets that ManagedObject’s bInDestructor attribute to true
betore 1t calls the nullity() method, and sets it to false upon
return.

When an instance of class ManagedObject 103 1s
destroyed, 1ts destructor i1s invoked. The destructor sets
Boolean attribute bInDestructor to true, then walks the list of
NonOwningPointers 104 whose head 1s pointed to by the
attribute pFirstRef, and mmvokes the nullity() method on
cach pointer encountered. As a result, the destruction of an
object of class ManagedObject 103 causes all NonOwning-
Pointers 104 which reference it to be nullified. Upon
completion, the destructor sets Boolean attribute bInDe-
structor to false.

The nullification of a NonOwningPointer 104 can result in
ManagedObject 103 becoming unreachable, and 1f this
occurs, ManagedObject 103 1s destroyed by the nullify()
method of NonOwningPointer 104, as described above. The
Boolean attribute bInDestructor prevents the erroneous
recursive destruction of ManagedObject 103. The destruc-
tion of ManagedObject 103 may result 1n the destruction of
NonOwningPointers 104 1t may contain to other objects,
which may result in the further destruction of ManagedOb-
jects 103 11 they become non-reachable.

It 1s preferred to prohibit ordinary pointers from referenc-
ing managed objects, because the mechanisms described
above cannot be implemented on them. The present mven-
tion preserves the ivariant in the system that every managed
object 1s reachable or there are no managed objects. Upon
creation, every managed object 1s reachable by the 1mvoca-
tion that created 1t. When an invocation exits, its owning and
non-owning pointers are destroyed. As explained above, the
destruction of such a pointer causes the system to determine
whether the managed object to which it pointed 1s still reach-
able. I 1t 1s not, the system destroys the managed object, and
any other managed objects that were reachable solely
through 1t. Thus, all managed objects existing at any time in
the system are guaranteed to be reachable. It can be seen
from the above that, 1t all non-reachable managed objects
are immediately destroyed, no memory leaks occur.

It 1s desirable to resolve the prior art problem of dangling
pointers, which 1s where a pointer to a managed object may
continue to exist after the object 1s de-allocated. It will be
noted that an owner can explicitly destroy a managed object,
if 1t 1s the sole direct owner at that time. The garbage collec-
tion method described herein solves the problem of dangling
pointers, by guaranteeing that, when a managed object 1s
destroyed, all non-owning pointers to 1t are nullified.

While the preferred embodiment uses a singly linked list
of NonOwningPointers, other data structures, such as a dou-
bly linked list or a hash table of pointers, may be used with-
out departing from the spirit and scope of the invention.
Also, a mechanism to defer the destruction of an object
found to be no longer reachable may be employed; such 1s

5

10

15

20

25

30

35

40

45

50

55

60

65

10

within the scope of the invention, as the object 1s found to be
no longer reachable as soon as that condition is true.

Mechanisms embodying methods of the present invention
are incorporated into a programming language. Software
which organizes free memory as a heap allocates extra bytes
at the beginning of each requested allocation block, to save
the attributes of a managed object as described above. The
three types of pointers described above are intrinsic to the
programming language. The programming language
enforces the rules described above regarding the use of
pointers with regard to managed objects.

The above description implicitly assumes that all of the
managed objects, and the invocations which create them, are
running in the same single thread of control. The above
mechanism 1s implemented for a free store (usually a heap)
shared by multiple threads of control within a single process,
as follows. A single synchronizing lock accessible to all
threads of the process serializes allocation operations within
the shared free store. If an object 1s to be made accessible by
multiple threads, the object 1s allocated and managed within
the shared free store as follows. When a managed shared
object 1s allocated, 1t 1s associated with 1ts own synchroniz-
ing lock. All operations on a managed shared object, includ-
ing the operations described above and other user-defined
operations 11 any, whether invoked by owning or non-owning
pointers, or mvoked by other code, are senalized on that

lock.

Objects not shared by multiple threads are allocated 1n a
free store accessible to only one thread. Neither that free
store nor managed objects allocated within 1t has synchro-
nizing locks. As previously stated, this 1s implicitly assumed
in the prior description. Access to these objects 1s more
ellicient, since locking and serialization 1s not necessary.

The above description also implicitly assumes that all of
the managed objects, and the mvocations which create them,
are running in the same process. The above mechanism 1s
implemented for a free store (usually a heap) shared by mul-
tiple processes using shared memory, as follows. A single
synchronizing lock, accessible to all processes of the system,
serializes allocation operations within the shared memory. It
an object 1s to be made accessible by multiple processes, the
object 1s allocated and managed within the shared memory
as follows. When a managed shared object 1s allocated, 1t 1s
associated with 1ts own synchronizing lock. All operations
on a managed shared object, including the operations
described above and other user-defined operations if any,
whether mvoked by owning or non-owning pointers, or
invoked by other code, are serialized on that lock.

Objects not shared by multiple processes are allocated 1n a
free store accessible to only one process. The objects may be
allocated 1n a free store accessible by multiple threads or 1n a
free store accessible by a single thread, as described above.

The mechanism as extended for multi-processing 1s
implemented for a system that persists (saves) objects
between 1nvocations of a process, as follows. An eternal sys-
tem 1s some entity that exists outside any process of the
system, for example an object persistence system, that 1s
deemed to have a lifetime longer than that of any managed
object allocated within any process of the system. The eter-
nal system incorporates owning pointers and non-owning
pointers as described above. It an object 1s owned by the
cternal system, or 1s reachable by the eternal system, then 1t
persists. As soon as an object 1s no longer reachable from the
cternal system, it 1s destroyed.

POSIX®-compliant file systems are defined by “IEEE/
ANSI Std 1003.1, 1996 Edition: Information Technology—

US RE42,396 E

11

Portable Operating System Interface (POSIX&)—Part 1:
System Application: Program Interface (API)
| C Language |”, which 1s incorporated herein by reference.
The present 1invention mat be utilized to access POSIX®-
compliant file systems.

In the POSIX® file system, a file persists as long as 1t 1s
reachable from the root directory, and 1s destroyed as soon as
it 1s no longer reachable from the root directory and no pro-
gram has 1t opened for access. A file 1s made reachable by
storing a <name, mode> pair as an entry 1n a directory, where
the directory 1s either the root directory or a directory reach-
able from the root directory, and an 1node 1dentifies the file.
A directory 1s 1tsell a special kind of file. A POSIX®-
compliant file system allows multiple named directory
entries to reference the same node number. According to the
POSIX® specification, as soon as the last directory entry
referencing a file’s mode 1s removed, the file itself 1s
destroyed, unless the file 1s currently open by one or more
programs, in which case destruction 1s deferred until the last
program closes the file. When a program opens a file, the
operating system gives to the program a file handle that rep-
resents 1ts access to that file.

Classes derived from the classes described earlier are
implemented to wrap corresponding aspects of POSIX®-
compliant file systems as follows. Files are represented 1n
programs as instances of a class denived from the class Man-
agedObject. Methods of the derived class implement file
system operations such as reading and writing, but do not
support opening, closing, creating, or destroying files. These
are supported through a subclass of OwningPointer, as will
be seen below.

A class dertved from OwningPointer represents file
handles. An instance of the derived class that 1s not null
represents a file that i1s currently opened by the program
containing the mstance. The creation of a non-null 1nstance
includes the opening of a file. The derived class contains
methods to create non-null pointers that correspond to the
functions specified by POSIX®-compliant file systems for
creating new files and opening existing files. The nullifica-
tion of an instance of the derived class includes the closing
of the corresponding file. The copying of an instance of the
derived class causes the duplication of the file handle 1t con-
tains.

Note that no class derived from NonOwningPointer 1s
defined to represent directory entries 1 programs. This 1s
unlike the mechanisms described earlier. However, this
restriction 1s no way affects the utility of the invention, as
such restriction arises from the specification of POSIX®-
compliant file systems, and a more versatile mechanism such
as 1s possible 1n memory-resident objects 1s of no value 1n
this case.

In like manner, the present invention may also be used to
enable access to systems similar to POSIX®-compliant file
systems.

As described above, the present invention can be embod-
ied in the form of computer-implemented processes and
apparatuses for practicing those processes. The present
invention can also be embodied 1n the form of computer
program code contaiming instructions embodied in tangible
media, such as tloppy diskettes, CD-ROM’s, hard drives, or
any other computer-readable storage medium, wherein,
when the computer program code 1s loaded into and
executed by a computer, the computer becomes an apparatus
for practicing the invention. The present invention can also
be embodied in the form of computer program code, for
example, whether stored 1n a storage medium, loaded into

10

15

20

25

30

35

40

45

50

55

60

65

12

and/or executed by a computer, or transmitted over some
transmission medium (embodied 1n the form of a propagated
signal propagated over a propagation medium), such as over
clectrical wiring or cabling, through fiber optics, or via elec-
tromagnetic radiation, wherein, when the computer program
code 1s loaded into and executed by a computer, the com-
puter becomes an apparatus for practicing the invention.
When implemented on a general-purpose microprocessor,
the computer program code segments configure the micro-
processor to create specific logic circuits.

While preferred embodiments have been shown and
described, various modifications and substitutions may be
made thereto without departing from the spirit and scope of
the mmvention. Accordingly, it 1s to be understood that the
present invention has been described by way of 1llustrations
and not limitations.

What 1s claimed 1s:

1. A garbage collection method comprising;:

providing ordinary pointers to point only to local objects,
said local objects are objects that must expire before
invocations that create them;

providing owning and non-owning pointers to point only
to managed objects, said managed objects are objects
that may outlive invocations that create them:;

determining whether said managed objects are reachable
from at least one of said owning pointers;

destroying or marking for destruction at least one of said
managed objects when said at least one of said man-
aged objects 1s un-reachable through said at least one of
said owning pointers or said at least one of said non-
owning pointers; and

nullifying said non-owning pointers pointing to said at
least one of said managed objects when said at least one
of said managed objects 1s destroyed or marked for
destruction.
2. The method of claim 1 wherein said determining
whether said managed objects are reachable from said at
least one of said owning pointers comprises:

determining whether said managed objects are reachable
from said at least one of said owning pointers through
said at least one of said owning pointers or at least one
of said non-owning pointers.

3. The method of claim 1 further comprising;:

defining classes of said owning and non-owning pointers.
4. The method of claim 3 further comprising:

restricting use of said classes according to rules of a pro-
graming language.
5. The method of claim 1 wherein any one of said invoca-
tions comprises a subroutine 1vocation.
6. The method of claim 1 further comprising:

sharing said managed objects with multiple threads of
control within a single process; and

accessing a shared memory allocation pool serialized by a
lock accessible by said threads, said managed objects
that are shared are allocated to said shared memory
allocation pool, said lock controlling access to said
managed objects that are shared.

7. The method of claim 6 further comprising;:

defining classes of said owning and non-owning pointers;
and

restricting use of said classes according to rules of a pro-
gramming language.
8. The method of claim 1 further comprising;:

sharing said managed objects with multiple processes
within a single system; and

US RE42,396 E

13

accessing a shared memory allocation pool serialized by a
lock accessible by said processes, said managed objects
that are shared are allocated to said shared memory
allocation pool, said lock controlling access to said
managed objects that are shared.

9. The method of claim 8 further comprising:

defining classes of said owning and non-owning pointers;
and

restricting use of said classes according to rules of a pro-
gramming language.
10. The method of claim 1 utilized with a POSIX®-
compliant file system.
11. A storage medium encoded with machine-readable
code, the code including mstructions for causing a computer
to implement a method of garbage collection comprising:

providing ordinary pointers to point only to local objects,
said local objects are objects that must expire before
invocations that create them:

providing owning and non-owning pointers to point only
to managed objects, said managed objects are objects
that may outlive invocations that create them;

determining whether said managed objects are reachable
from at least one of said owning pointers;

destroying or marking for destruction at least one of said
managed objects when said at least one of said man-
aged objects 1s un-reachable through said at least one of
said owning pointers or said at least ore of said non-
owning pointers; and

nullifying said non-owning pointers pointing to said at
least one of said managed objects when said at least one
of said managed objects 1s destroyed or marked for
destruction.

12. The storage medium of claim 11 wherein said deter-

mimng whether said managed objects are reachable from
said at least one of said owning pointers comprises:

determining whether said managed objects are reachable
from said at least one of said owning pointers through
said at least one of said owning pointers or at least one
ol said non-owning pointers.
13. The storage medium of claim 11 wherein the method
turther comprises:

defiming classes of said owning and non-owning pointers.
14. The storage medium of claim 13 wherein the method
turther comprises:

restricting use of said classes according to rules of a pro-
gramming language.
15. The storage medium of claim 11 wherein any one of
said 1nvocations comprises a subroutine ivocation.
16. The storage medium of claim 11 wherein the method
turther comprises:

sharing said managed objects with multiple threads of
control within a single process; and

accessing a shared memory allocation pool serialized by a
lock accessible by said threads, said managed objects
that are shared are allocated to said shared memory
allocation pool, said lock controlling access to said
managed objects that are shared.

17. The storage medium of claim 16 wherein the method

turther comprises:

defining classes of said owning and non-owning pointers;
and

restricting use of said classes according to rules of a pro-
gramming language.

10

15

20

25

30

35

40

45

50

55

60

65

14

18. The storage medium of claim 11 wherein the method
further comprises:

sharing said managed objects with multiple processes
within a single system; and

accessing a shared memory allocation pool serialized by a
lock accessible by said processes, said managed objects
that are shared are allocated to said shared memory
allocation pool, said lock controlling access to said
managed objects that are shared.

19. The storage medium of claim 18 wherein the method

turther comprises:

defining classes of said owning and non-owning pointers;
and

restricting use of said classes according to rules of a pro-

gramming language.

[20. A signal propagated over a propagation medium, the
signal encoded with code, the code including instructions for
causing a computer to implement a method of garbage col-
lection comprising:

providing ordinary pointers to point only to local objects,

said local objects are objects that must expire before
invocations that create them;

providing owning and non-owning pointers to point only
to managed objects, said managed objects are objects
that may outlive invocations that create them:;

determiming whether said managed objects are reachable
from at least one of said owning pointers;

destroying or marking for destruction at least one of said
managed objects when said at least one of said man-
aged objects 1s un-reachable through said at least one of
said owning pointers or said at least one of said non-
owning pointers; and

nullifying said non-owning pointers pointing to said at
least one of said managed objects when said at least one
of said managed objects 1s destroyed or marked for
destruction.]

[21. The signal propagated over the propagation medium
of claim 20 wherein said determining whether said managed
objects are reachable from said at least one of said owning
pointers comprises:

determining whether said managed objects are reachable
from said at least one of said owning pointers through
said at least one of said owning pointers or at least one
of said non-owning pointers.]
[22. The signal propagated over the propagation medium
of claim 20 wherein the method further comprises:

defining classes of said owning and non-owning pointers.]
[23. The signal propagated over the propagation medium
of claim 22 wherein the method further comprises:

restricting use of said classes according to rules of a pro-

gramming language.]

[24. The signal propagated over the propagation medium
of claim 20 wherein any one of said invocations comprises a
subroutine invocation.]

[25. The signal propagated over the propagation medium
of claim 20 wherein the method further comprises:

sharing said managed objects with multiple threads of
control within a single process; and

accessing a shared memory allocation pool serialized by a
lock accessible by said threads, said managed objects
that are shared are allocated to said shared memory
allocation pool, said lock controlling access to said
managed objects that are shared.]

US RE42,396 E

15

[26. The signal propagated over the propagation medium
of claim 25 wherein the method further comprises:

defiming classes of said owning and non-owning pointers;
and

restricting use of said classes according to rules of a pro-
gramming language.]
[27. The signal propagated over the propagation medium
of claim 20 wherein the method farther comprises:

sharing said managed objects with multiple processes 10

within a single system; and
accessing a shared memory allocation pool serialized by a

lock accessible by said processes, said managed objects
that are shared are allocated to said shared memory

allocation pool, said lock controlling access to said =
managed objects that are shared.]

[28. The signal propagated over the propagation medium

of claim 27 wherein the method further comprises:

defiming classes of said owning and non-owning pointers; »q
and

restricting use of said classes according to rules of a pro-
gramming language.]

29. A method of garbage collection in computer memory,

25

the method comprising:

pointing by a processor one or more owning pointers or
non-owning pointers, or a combination therveof, to one
or more managed objects, the managed objects being
created in the computer memory during a first
invocation, and capable of outliving one or more subse-
quent invocations,

30

determining by the processov, whether at least one or
movre of the managed objects is veachable from at least

one of the owning pointers; and 33

marking by the processor, for destruction at least one of
the managed objects if one or more of the managed
objects is unveachable through at least one or more of
the owning pointers or the non-owning pointers.

30. The method as claimed in claim 29, further compris-
ing pointing by the processor, one or more ordinary pointers
to one or movre local objects, the local objects configured to
be able to expire before invocations that created the local
objects expire.

31. The method as claimed in claim 29, further compris-
Ing:

nullifving by the processor, one or more of the non-owning

pointers pointing to one ov movre of the unreachable
managed objects if one or more of the unreachable
managed objects is destroved or marked for
destruction, or a combination theveof.

32. The method as claimed in claim 29, further compris-
Ing:

destroving by the processor, at least one of the managed

objects if one or more of the managed objects is
unreachable through at least one ov more of the owning
pointers ov the non-owning pointers.

33. The method as claimed in claim 29, wherein determin-
ing comprises determining whether the managed objects are
reachable from at least one of the owning pointers through
at least one of the owning pointers or at least one of the
non-owning pointers.

34. The method as claimed in claim 29, furthery compris-
Ing:

defining by the processor, classes of the owning pointers

or the non-owning pointers, or a combination therveof.

40

45

50

55

60

65

16

35. The method as claimed in claim 29, further compris-
Ing:
defining by the processor, classes of the owning pointers

or the non-owning pointers, or a combination thereof,
and

restricting by the processor, at least in part, one or more
uses of the classes according to one or movre rules of a
programming language.
36. The method as claimed in claim 29, wherein one or
movre of the invocations comprises a subroutine invocation.
37. The method as claimed in claim 29, further compris-
Ing:
sharing by the processor, the managed objects with one or
morve threads of control within a single process; and

accessing by the processor, a shaved memory allocation
pool serialized by a lock, the lock being accessible by
the one or more threads, managed objects that are
shaved being allocable to the shaved memory allocation
pool, wherein the lock is configured to control access to
one or movre of the managed objects that are shaved.

38. The method as claimed in claim 29, further compris-

Ing.

sharing by the processor, the managed objects with one or

morve threads of control within a single process;

accessing by the processor, a shared memory allocation
pool serialized by a lock, the lock being accessible by
the one or more threads, managed objects that are
shaved being allocable to the shaved memory allocation
pool, wherein the lock is configured to control access to
one ov movre of the managed objects that ave shaved;

defining by the processor, one or more classes of the own-
ing pointer or the non-owning pointers, or a combina-
tion thereof; and

restricting by the processor, at least in part, one or more
uses of the classes according to one or movre rules of a
programming language.
39. The method as claimed in claim 29, further compris-
Ing.
sharing by the processor, said managed objects with one
or movre processes within a single system; and

accessing by the processor, a shared memory allocation
pool serialized by a lock, the lock being accessible by
one or movre of the processes, managed objects that are
shaved being allocable to the shaved memory allocation
pool, wherein the lock is configured to control access to
one ov movre of the managed objects that ave sharved.

40. The method as claimed in claim 29, further compris-

Ing:

sharing by the processor, said managed objects with one

or movre processes within a single system,

accessing by the processor, a shared memory allocation
pool serialized by a lock, the lock being accessible by
one or movre of the processes, managed objects that are
shaved being allocable to the shaved memory allocation
pool, wherein the lock is configured to control access to
one or move of the managed objects that ave shared;

defining by the processor, one or more classes of the own-

ing pointers or the non-owning pointers, ov a combina-
tion thereof; and

restricting by the processor, at least in part, one or more

uses of the classes according to one or movre rules of a
programming language.

41. The method of claim 29, whevein the pointing, deter-

mining and marking are performed in conjunction with a

POSIX®-compliant tyvpe file system.

US RE42,396 E

17

42. A computer memory management system, COmprising:
means for storing one or move managed objects; and

means for maintaining one orv more owning pointers or
one or more non-owning pointers, or a combination

thereof, being capable of pointing to one or movre of the
managed objects;

wherein one or movre of the owning pointers ov one or
more of the non-owning pointers, or a combination
thereof, is configured to point to one or more of the
managed objects;

said one or more managed objects are configured to be
able to be destrvoved if one or more of the managed
objects is unreachable through one or move of the own-
ing pointers or the non-owning pointers;

wherein the managed objects ave capable of outliving one
or movre invocations that created the managed objects.
43. The computer memory management system as claimed
in claim 42, further comprising:

means for maintaining one ov more ovdinary pointers
configured to point to one or more local objects,
wherein the local objects are configured to be able to
expire before invocations that created the local objects
expire.

44. The computer memory management system as claimed
in claim 42, wherein one or movre of the owning pointers or
the non-owning pointers, or a combination thereof, are con-
figured to be able to be nullified if one or more of the
unveachable managed objects is destroved or marked for
destruction, ov a combination theveof.

10

15

20

25

18

45. The computer memory management system as claimed
in claim 42, further comprising means for one ov movre invo-
cations configured to access one ov more of the managed
objects.

46. The computer memory management system as claimed
in claim 42, further comprising one or movre subroutines
configured to access one or move of the managed objects.

47. The computer memory management system as claimed
in claim 42, further comprising a shaved memory allocation
pool serialized by a lock, wherein the lock is configured to be
accessed by one or movre threads of control within a process,
wherein one ov movre of the managed objects are allocable to
the shared memory allocation pool, and wherein the lock is
configured to control access to one or more of the managed
objects that arve shared.

48. The computer memory management system as claimed
in claim 42, further comprising means for accessing a
shaved memory allocation pool serialized by a lock, wherein
the lock is configured to be accessible by one or more
processes, wherein one or movre of the managed objects are
allocable to the shared memory allocation pool, and the lock
is configured to control access to one or more of the man-
aged objects that are shared.

49. The computer memory management system as claimed
in claim 42, further comprising a POSIX®-compliant type

file system configure to utilize one ov move of the managed

objects.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : RE42,396 E Page 1 of 1
APPLICATION NO. : 11/286439

DATED : May 24, 2011

INVENTOR(S) . Hills

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Title page, item (75), under “Inventor”, in Column 1, Line 1, delete “Lambertvile,” and
Insert -- Lambertville, --.

Column 12, lines 4748, in Claim 4, delete “programing™ and insert -- programming --.

Column 13, line 29, in Claim 11, delete “ore” and 1nsert -- one --.

Signed and Sealed this
Eleventh Day of October, 2011

. F - - . - -
-- .-.- -. b . -- ‘. .--
. " i . 1 - PR . . - - -
. - . : - - N, AT -
!, . . - - e . A n . . u-
.L; . . e e . L F

_ A
- ' - -
" . N T .
. " - . [g
- dh . . \
: .
. .- A .

David J. Kappos
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

