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of the ideal Left and Right Turn frames to the tangent
and quadrant form.
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Fig 3 4 /1 1600
GET THE X AND Y DATA FOR THE FHAME. 11610

11615
CALCULATE DISTANCE FROM CURRENT
FRAME'S LOCATION TO INDEX FRAME'S 11620
LOCATION ON PLAN VIEW.
11625
CALCULATE YAW DIFFERENCE
BETWEEN CURRENT FRAME AND INDEX
FRAME. MAKE SURE TO KEEP RESULT IN 11630
RANGE OF +/- 180 DEGREES.
11635
TEST FOR SPECIAL CASES OF SLOPE
FOR THE LINE BETWEEN THE INDEX AND 1640
THE CURRENT. THEN CALCULATE SLOPE
IN THE MORE GENERAL CASE.
11645
TEST THE INDEXED POINT TO FIND IF IT
IS IN THE FRONT OR REAR FIELD OF .
VIEW (FOV) OF THE CURRENT FRAME,
IN THE RIGHTDIAG'S FOV, OR IN THE
LEFTDIAG'S FOV.
. 11655
CALCULATE WEIGHTED DISTANCE
RATING, BASED ON THE NEIGHBOR
RADIUS SET BY THE OPERATOR, 1660

WHICH DEFINES THE OPTIMAL DISTANCE
TO JUMP FORWARD OR BACKWARD
FROM THE CURRENT FRAME.
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Fig. 35 /11700

GET THE DIFFERENCE BETWEEN THE 11710
CAMERA FRAME'S X POSITION AND

THE OVERLAY OBJECT'S'S X POSITION.

11715

GET THE DIFFERENCE BETWEEN THE
CAMERA FRAME'S Y POSITION AND 11720

THE OVERLAY OBJECT'S'S Y POSITION.
11725

CALCULATE YAW ANGLE OF THE LINE
FROM THE CURRENT FRAME'S 11730

CENTER TO THE POINT OF INTEREST.
11735

IS THE YAW 11740
“VALUE FOR THE ANGLE
NO TO THE POINT TO BE DISPLAYED
WITHIN THE FIELD OF VIEW OF
THE CURRENT FRAME

11755 YES 11745

CALCULATE VERTICAL
DO NOT DISPLAY LINE BASED ON 11748

THE OBJECT YAW ANGLE.
' 11749
USE PITCH OF CURRENT

11760 FRAME TO CHOOSE A

POINT ON THE VERTICAL 11750
LINE FOUND ABOVE.

DISPLAY THE OBJECT.
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SPATIAL REFERENCED PHOTOGRAPHIC
SYSTEM WITH NAVIGATION
ARRANGEMENT

Matter enclosed in heavy brackets [ ] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

CROSS-REFERENCE TO RELATED
APPLICATION

This application 1s a continuation application of applica-
tion Ser. No. 08/894.,206, filed Jul. 30, 1997, now U.S. Pat.
No. 6,195,122, which 1s a 35 U.S.C. § 371 national stage
U.S. application corresponding to Patent Cooperation Treaty
application PCT/US96/01434, filed on Jan. 31, 1996, which
1s a continuation-in-part of U.S. patent application Ser. No.
08/383,4°71, filed on Jan. 31, 1995, which 1s hereby 1incorpo-
rated by reference. In particular, the 471 application con-
tains a more detailed description of the tracking data acqui-
sition unit control circuit 470 (1n ’471 application FIGS. 16
to 23 and the accompanying text) and exemplary program
listings (presented in the Appendices of the "471 application)
which may be of interest to those seeking a more detailed
understanding of the present invention.

FIELD OF THE INVENTION

This ivention relates to referencing, sorting, and display-
ing 1images 1n a three-dimensional system. More particularly,
it relates to a system having an image capturing device that
captures 1mages of objects together with spatial reference
information defining the absolute position of the 1image cap-
turing device and the relative position of the object relative
to that device. It also relates to 1image retrieval and display,
where the spatial reference information associated with each
image facilitates browsing through the images 1n an orga-
nized manner.

BACKGROUND OF THE INVENTION

The editing of films and video 1images, 1.e., to rearrange
action sequences, 1s well known. However, the movie and
video cameras used to capture the images that are later
edited do not store with those images any machine-
understandable record of image and camera position.
Accordingly, the edited films and videos permit one to view
the 1images 1 only one predetermined order, determined by
the editor. If some other ordering of the image presentation
1s desired, 1t must be achieved through a difficult manual
editing process.

A computerized, interactive editing process 1s described
in a doctoral thesis “Cognitive Space 1n the Interactive
Movie Map: An Investigation of Spatial Learning in Virtual
Environments”, by Robert Mohl, 1981, submaitted at MIT. In
a demonstration carried out using 1mages recorded at Aspen,
Colo., the viewer 1s permitted to select film clips taken by a
camera that 1s arranged to simulate driving down a street. At
cach intersection, the viewer chooses to turn left, turn right,
or to proceed straight ahead. The viewer thereby simulates
driving around streets 1n Aspen, Colo.

In other fields, it 1s known to gather, along with 1mages,
information concermng the position of the camera. Govern-
mental and private agencies use satellites and airplanes to
record 1mages ol positionally referenced data, such as land
features or clouds. Each image frame contains positional
references to the image tilt or plane of the camera. Present
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methods commonly either constrain the orientation of the
camera to a fixed position, 1.¢. up and down, or use features
captured 1n the 1mage frames to derive relative positions and
orientations of successive images when combining the
image Irames to form a map or the like.

Devices are known which combine images by matching
features common to each of two or more 1mages, 1.€. super-
1Imposing.

One aspect of the present mnvention 1s recording positional
data along with 1images. A number of methods are known
whereby one may locate an object and describe the position
ol an object relative to a positional reference. For example, a
magnetic device 1s known which can determine its position
and orientation within a known magnetic field. Satellite sys-
tems and radio signal triangulation can also be used to deter-
mine position precisely. Inertial position determination sys-
tems are also known and are widely used 1n inertial
navigational systems.

An object of this mvention 1s providing an image data
gathering device which encodes positional and/or spatial
information by capturing both camera position and camera
orientation nformation along with image data. This infor-
mation permits images to be joined or sequenced for viewing
without the distortions that can result from attempting to
match the edges of adjoining images together.

A Tfurther object of this invention 1s providing three-
dimensional image reconstruction of objects using frames
shot from different viewpoints and perspectives through the
provision of a triangulation reference.

Still another object of this invention 1s providing a camera
path map which allows 1mages to be selected based upon the
position and orentation of the camera from the map. For
example, an operator cam learn the location of an object1n a
film clip, such as an escalator. Images of the escalator may
then be quickly and automatically located by selecting other
frames which point to that same escalator from different
camera positions.

Another object of the mvention 1s providing a compact
and practical image and positional data recording system
which uses commonly available equipment. A system hav-
ing accelerometers mounted directly upon the recorder,
climinating the need for a restrained or gimballed platiorm,
permits greater freedom of motion for the recording device
as well as reduced cost and complexity.

Briefly described, the invention resides 1n a video camera
that 1s integrated with a tracking data acquisition unit con-
taining accelerometers and gimbal-mounted gyroscopes,
and optionally a rangefinder. As the operator of the video
camera moves about taking a motion picture of the
environment, a microprocessor and logic associated with the
accelerometers and gyroscopes senses all rotational motions
of the camera by means of sensors associated with the gim-
bals and senses all translational motions of the camera by
means of sensors associated with the accelerometers. And
the rangefinder provides information to the microprocessor
and logic concerning the distance from the camera to the
subject being photographed.

From data presented by these sensors, the microprocessor
and logic compute and generate a modulated audio signal
that 1s encoded with a continuous record of acceleration in
the X,Y and Z directions as well as with a continuous record
of the pitch, roll, and yaw of the camera and of the distance
to the subject. This audio tracking information data signal 1s
recorded on the audio track of the same video tape upon
which the video 1mages are being recorded by the camera. In
this manner, the video tape recording captures, along with
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the sequence of 1mages, the tracking data from which the
precise position of the camera, 1ts precise orientation, and
the position of the subject may later be computed.

Later on, the recorded audio tracking imformation data
and video data 1s played back into a computer. Images are
selected from the sequence of 1mages and are retained, 1n
compressed form, 1n a database. Each image 1s then linked to
computed positional information that defines, for each
image, the location and orientation of the camera and,
optionally, the distance to the subject and the subject loca-
tion. This positional information 1s derived through compu-
tation from the tracking information retrieved from the video
tape audio track, as will be explained below.

Next, special computer programs can aid an individual
using the computer in navigating through the images, using
the positional information to organize the images 1n ways
that make 1t easy for the user to browse through the images
presented on the graphics screen. Several such programs are
described below, and a complete description 1s presented of
a movie mapper program which presents the user with a plan
view and elevational views of the camera path plotted as a
graph alongside views of selected images, with the path
marked to show the position and orientation of the camera.
The user, by clicking at any point on this path with a com-
puter mouse, may instantly retrieve and view an 1image cap-
tured at the chosen point. Additionally, by clicking upon
diamonds and arrows and the like displayed as overlays
superimposed upon an 1mage, the user may command the
program to search for and find the nearest image which gives
a view rotated slightly to the left or right or which maintains
the same view but advances forward 1n the direction of the
view or backward. One may also jump forward and turn
simultaneously. A wider field of view may be assembled by
assembling automatically chosen images and aligning them
into a panorama. The user 1s thus enabled to navigate
through the 1images 1n the manner of navigating a boat to the
extent permitted by the nature and variety of the images 1n
the data base.

Further objects and advantages are apparent 1n the draw-
ings and 1n the detailed description which follows.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a rendering of the spatially referenced video
camera 100, which includes a tracking data acquisition unit
and modulator 103, a video camera 120 having a video cas-
sette recorder 130, a demodulation circuit 155, and a per-
sonal computer 185.

FIG. 2 1s a perspective drawing of the tracking data acqui-
sition unit and modulator 105.

FIG. 3 1s a block diagram showing the tracking sensors
and the microprocessor based tracking data acquisition unit
control circuit 470 according to the invention in the context
of the spatially referenced video camera 100.

FIG. 4 1s a data format diagram showing the tracking data
acquisition unit output packet format.

FIG. 5 15 a block diagram of the program system modules
that represent the major software components of the spa-

tially referenced camera system.

FIG. 6 1s a data flow diagram depicting the data flow
through the tracking data acquisition unit and modulator
105.

FIG. 7 1s a data flow diagram depicting the tracking and
video data flow from playback of the video cassette recorder
130, through the demodulation circuit 155, into the personal
computer 1835 under the control of the data entry and storage
program 305.
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FIG. 8 1s a data format diagram depicting alternative posi-
tional data record formats including the quaternion position

notation record format 715 and the direct angular notation
format 775.

FIG. 9 1s a block diagram of the tracking database to
positional database conversion program 310.

FIG. 10 1s a more detailed block diagram of the step
10006 1n FIG. 9.

FIG. 11 1s a more detailed block diagram of the step 1120
in FI1G. 10.

FIG. 12 1s a more detailed block diagram of the calculate
current position step 1214 i FIG. 11.

FIG. 13 15 a block diagram of an alternative method for
converting tracking data to position data.

FIG. 14 1s a more detailed block diagram of the write
position record step 1122 in FIG. 10.

FIG. 15 1s a block diagram of the tracking data acquisition
unit control circuit 470 illustrating 1n particular its electrical
interconnections to the remaining elements of the spatially
referenced video camera 100.

FIG. 16 1s a block diagram of the programs which control
the central processing unit 480 1n FIG. 15.

FIG. 17 1s an alternate embodiment of the invention 1llus-
trating use of the tracking data acquisition unit and modula-
tor 105 as a pointing and 1image retrieval device.

FIG. 18 illustrates the operation of the positional frame
retrieval program 330 1n which range information 1s added
so that all of the 1images viewing a selected object 3202 may
be located and retrieved, as a group.

FIGS. 19 to 25 and 28 to 31 are computer screen snapshot
views ol the screens generated by the movie mapper pro-
gram 325 in operation, mcluding presentations of the cap-
tured 1mages, of the path of the camera 1n plan and eleva-
tional views, and of various pop-down menus;

FIG. 26 1s a block diagram illustrating the structure of
program-generated objects 1n the movie mapper program
325 when 1t 1s 11 actual operation.

FIG. 27 1s an information flow block diagram of the
program-generated objects 1n the movie mapper program
325 1llustrating how they communicate.

FIGS. 32 to 35 are tlow chart representations of portions
of the movie mapper program 325.

DETAILED DESCRIPTION OF THE
EMBODIMENT

Reterring to the drawings and especially to FIG. 1, a spa-
tially referenced video camera 1s shown embodying the
present mvention and generally identified by the numeral
100. The spatially referenced video camera 100 includes a
tracking data acquisition unit 105 rigidly attached to a video
camera 120 having a built-in video cassette recorder 130. As
the spatially referenced video camera 100 1s operated, video
data from the video camera 120 and tracking data from the
tracking data acquisition unit 105 are recorded onto a video
cassette within the recorder 130. Once the desired record-
ings have been made, the mmformation 1s transferred to a
personal computer 185 for processing and display.

FIG. 3 presents a block diagram of the camera 100, 1llus-
trating 1ts individual hardware components and bow they are
interconnected by signal paths. The tracking data acquisition
unit control circuit 470 contains a data acquisition program
300 (FIG. 16), and the personal computer 185 contains a
number of computer programs. All of these programs, and
their data flow relationships, are shown in FIG. 5 which
illustrates the camera 100’s software components 1n over-
VIEW.

PREFERRED
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With reference to FIG. 5, the video data gathered by the
video camera 120 and the position and orientation data gath-
ered by the tracking data acquisition unit and modulator 1035
(under the control of the microcontroller data acquisition
program 300) are first stored on videotape. Later, they are
ted 1nto the personal computer 185. The two data streams are
captured by the tracking and video data entry and storage

program 305 and are stored, respectively, 1n a tracking data-
base 324 and 1n a video database 323.

Once safely stored within the personal computer 185, the
tracking database 324 1s reprocessed into a positional data-
base 322 by a tracking database to positional database con-
version program 310. Now the image retrieval programs
325, 330, and 335 may be called upon to search through the
positional database 322, to retrieve images from the video
database 323 based upon camera location, camera
orientation, and even object location, and to display the
images upon the face of the computer 185.

Tracing the data flow through the system components at a
more detailed level will explain the functionality of the pre-
terred embodiment of the spatially referenced camera.

First, the video camera 120 (FIG. 1) produces a standard
video signal that 1s recorded on the video track of a video
cassette by the camera’s video cassette recorder 130. Refer-
ring to FIG. 2, the tracking data acquisition unit 1035 contains
three orthogonally positioned translational accelerometers
435, 440, and 445; two orthogonally arranged gyroscopes
400 and 410; and a laser rangefinder 485. All six of these
sensors are rigidly mounted to an inertial platform 4185.
Referring to FIG. 3, a control circuit 470 polls the output
signals of these sensors and assembles tracking data frames
535 (FIG. 4) which describe the instantaneous, real time
orientation and translation acceleration experienced by the
spatially referenced video camera 100. A serial bit stream
comprised of these tracking data frames 1s modulated to pro-
duce an audio line level modulated tracking data signal 1135
which 1s fed into the audio input 125 of the video cassette
recorder 130 and recorded on the audio track of the video
cassette alongside the corresponding video information.

Second, the completed recording, stored on the video
cassette, 1s played back to the personal computer 185 on any
standard video cassette player or directly from the camera
120 (FIG. 1). The tracking data 1s demodulated by a
demodulator circuit 155 and i1s mput to the personal com-
puter 185 through a standard serial 1I/O senal port 175.
Simultaneously, the video data 1s input to the personal com-
puter 185 via a video digitizer input 180. Referring to FIG. 5,
a data entry and storage program 303 stores the tracking and
video data on the personal computer’s disk operating system
320 in a tracking database 324 and in a video database 323.
A second program 310 converts the tracking database 324
into a positional database 322.

Third, the set of three display programs 3235, 330, and 335
allow a user to view and select video frames based on the

relative position or absolute orientation of the camera.

Tracing the data flow through the individual parts of the
spatially referenced video camera 100 at the most detailed
level discloses how to build the preferred embodiment of the
invention.

Referring to FIG. 3, the tracking data acquisition unit 105
continuously measures the translational acceleration and
rotational orientation experienced by the spatially refer-
enced video camera 100. To achieve the most accurate mea-
surement of translational acceleration, three accelerometers
435, 440 and 445, such as SUNDSTRAND Model QA-700,

are positioned orthogonal to each other and are mounted on a
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stable 1nertial plattorm 415. The accelerometers measure
acceleration 1n each of three dimensions: accelerometer 435
measures acceleration 1n the X direction, accelerometer 445
measures acceleration in the Y direction, accelerometer 440
measures acceleration 1n the Z direction. Each accelerometer
outputs a voltage signal with an amplitude proportional to
the acceleration detected. A multi-channel analog to digital

converter 465, such as ANALOG DEVICES Model
ADY7716, receives each accelerometer’s output and gener-
ates a 24-bit numerical representation of the acceleration
experienced 1n each direction.

Two gyroscopes, such as GYRATION Model GE9100A,
a vertical gyroscope 400 and a directional gyroscope 410 are
also orthogonally mounted on the stable inertial platform
415 relative to each other. The vertical gyroscope 400,
aligned along the X or Y axis, measures yaw (rotation about
the Z axis), while the directional gyroscope 410, aligned
along the Z axis, measures both roll (rotation about the Y
axis) and pitch (rotation about the X axis). (The Y axis 1s
assumed to point 1n the direction of the camera.) The gyro-
scopes are dual gimballed electronic components that gener-
ate a pair of square wave signals which are locked out of
phase with respect to each other. The sequence of the rising
and falling edges of the square waves relative to each other
indicates the angular rotation about the gyroscope’s mea-

surement axis experienced by the spatially referenced cam-
cra 100. Quadrature decoders 450, 455, 460, such as

HEWLETT PACKARD Model HCTL2020, receive the
three paired square wave signal outputs of the gyroscopes
400, 410; and for each signal pair, they count the relative
sequence of rising and falling edges between the two square
wave signals to generate a 16-bit numerical representation of
the rotation experienced about each axis. An interrupt 1s gen-
crated following any change 1n these signals. This interrupt
causes a central processing unit 480 (FIG. 15) within the

tracking data acquisition unit 105 to capture the new status
of the counts within the decoders 450, 455, and 460.

The mertial plattorm 415 (FIG. 2) 1s connected to a post
425 that 1s threaded at one end 430 such that the entire data
acquisition unit 105 can be nigidly attached to the tripod
mounting hardware of a standard camcorder 120.

In addition to the accelerometers and the gyroscopes there
1s a control circuit 470 (FIGS. 2, 3, and 15) mounted to the
bottom of the 1nertial platform 415 (see FIG. 2). This micro-
controller based circuit (Z-WORLD SMARTBLOCK
Model SB-DEV-32) polls the quadrature decoders 450, 455,
460 and the analog to digital converter 465 1n sequence.
Referring to FIGS. 4 and 6, the respective data packets 500,
505, and 520 from each sensor and a frame 1dentification
pattern (530 or 550) are compiled to form the tracking data
frame 535 (or 540) as the first step 600 (FIG. 6) 1n the data
flow through the spatially referenced video camera 100. In
the next few steps, 6035, 610, 615, and 620, the data frame
resulting from the first step 600 1s broken 1nto 4-bit nibbles
which are encased within message byte having a “1” start bit
and three “0”” stop bits, as 1n “1XXXX000” where “XXXX”
1s the 4 bits of data. The message bytes are then subjected to
encoding (HARRIS Model HD-6409). The control circuit
transmits a continuous stream of the tracking data frames to
a modulator circuit 475 (FIGS. 3 and 15) that modulates the
data on to an audio line level signal. The nertial platform
415, the circuitry 420, the gyroscopes 400, 410 and the
accelerometers 435, 440, 445 are all contained within a case
107 (FIG. 1). The single output 110 from the case 107 pro-
duces an audio signal 115 containing the encoded bit stream
of acceleration and orientation data. The output of the track-
ing data acquisition control circuit 470 1s thus recorded to




US RE42,289 E

7

video tape alongside the corresponding video data signal
from the video camera 120.

The spatially referenced camera 100 can be configured
and used with a laser rangefinder 485 (FIG. 2), such as an
Acuity Research Inc. ACCURANGE Model 3000 1n addi-
tion to the video camera 120. In this configuration, the
instantaneous distance between the spatially referenced
camera 100 and a pmpointed location on the surface of an
object that 1s being recorded 1s also captured and stored as a

binary numerical representation of distance along with
tracking data from the other sensors. As shown in FIG. 4 at
540, range data derived from the rangefinder 485 1s
appended to the data frame and recorded to video tape along-
side the corresponding video data signal from the video
camera 120. (If the camera 120 1s of an “autofocus” design,
it may be possible to dertve a range signal from the camera’s
autofocus mechanism.)

The rangefinder 4835 (FIG. 2) 1s rigidly mounted to the
inertial platform 415 and generates a continuous serial data
output signal containing two alternating values. The
rangefinder 485 output signal RXA1 1s directly input to the
tracking data acquisition unit control circuit 470 as a serial
data signal. The first value contained 1n the signal output by
the rangefinder 485 1s a 24 bit numerical representation of
the distance between the precise spot on the surface of the
object being recorded and the spatially referenced camera
100. The second value 1s an 8 bit gray scale value that indi-
cates the reflectivity of the object’s surface at the measured
location. In this configuration, the control circuit 470 1s con-
figured to be interrupted by a signal from the quadrature
decoders 450, 455, & 460 whenever there 1s a change 1n the
inertial platform’s orientation detected by the gyroscopes
400 and 410. Upon detecting an interrupt signal, the control
circuit reads the range and reflectivity values presented seri-
ally by the rangefinder 485. In this alternative configuration,
a range data packet 520 (FIG. 4) 1s compiled along with the
accelerometer data packets 500 and the gyroscope data

packets 505 to form the tracking data frame with range data
as indicated at 540 1n FIG. 4.

Referring to FIG. 4, the tracking data frame format 535
output by the tracking data acquisition unit 105 1s essentially
comprised of two or three different kinds of packets: accel-
eration packets 500, gyroscopic packets 505 and optionally,
range packets 510. An acceleration packet 500 1s a 24 bit
value that represents the magnitude of an acceleration vector
in the X, Y or Z direction. A gyroscopic packet 505 1s a 16 bit
value that represents degree of pitch, roil or yaw. A range
packet 520 1s a 24 bit value plus an eight bit value. The 24 b1t
value 510 represents a range distance and the eight bit num-
ber 515 represents relative surface reflectivity 1n terms of a
gray scale value.

The format of a complete data frame 535 (without range
information) 1s composed of a frame 1dentification pattern
530, which 1s formed from three repetitions of the 16 bit
value O17F hex (at 525). This 1s followed by data: a 24-bit
acceleration value 1n the X direction 500A, a 16-bit pitch
value S05A, a 24-bit acceleration value in the v direction
5008, a 16-bit roll value 505B, a 24-bit acceleration value in
the Z direction 500C, and a 16-bit yaw value 505C. The
tracking data frame format with range information included
540 starts with a frame 1dentification pattern 350 composed
of three repetitions of the value 037F hex (at 345), followed
by a 24-bit acceleration value in the X direction 500A, an
8-bit delta (or incremental change) pitch value S05A, a
24-bit acceleration value 1n the Y direction 5008, an 8-bit
delta roll value 505B, a 24-bit acceleration value in the Z

direction 500C, an 8-bit delta yaw value 505C, and finally
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the range data 555 and a gray scale reflectivity value 560.
The records 540 containing range information are generated
whenever an interrupt from the decoders 450, 455, and 460
indicates that the camera orientation has changed.

Once the video tape 1s filled with modulated tracking and
video data, 1t 1s played back. The video output 1s directly

connected to a conventional video digitizer input 180, such
as the INTEL SMART VIDEO RECORDER, that 1s inserted

into the ISA, EISA, VESA, PCI, or other accessory port or
slot of the personal computer 185. As the video cassette 1s
played back on the video cassette player 130, the video digi-
tizer input 180 captures the video frames of the recorded
images and passes digitized video frame data on to the track-
ing and video data entry and storage program 305 shown 1n
FIG. 7. The audio output of the video cassette recorder 135
1s fed mto a demodulator circuit 1535 which converts the
modulated tracking data signal back into a serial bit-stream
of tracking data. The demodulation output 165 1s connected
to a conventional serial data mput port 175 of the personal
computer 1835. As the video cassette 1s played back on the
video cassette recorder 130, the demodulation circuit 155
converts the modulated tracking data signal into an RS-232
serial data signal which 1s read into the personal computer
185 by the tracking and video data entry and storage pro-

gram 303 through the serial port 175.

FIG. 7 shows the tracking and video data entry and stor-
age program 303 data flow diagram. The modulated tracking
data signal 145 from the audio output 135 of the video cas-
sette recorder 130 or 1s fed into the demodulator 155, where
the audio signal 1s demodulated 1nto a serial bit stream (step
640). The output of this process flows mto a manchester
decoder (step 645). Every other nibble following an 1nitial
leading one of the decoded bit stream 1s then serially trans-
mitted by the demodulator circuit 155 to the personal com-
puter’s serial port 175 (step 650). In the next step 655, the
personal computer receives the bit stream and encodes each
nibble as a ASCII hex digit 655. The ASCII digits are then

assembled 1nto lines of tracking data 660.

Simultaneously, the video signal 150 from the video out-
put 140 of the video cassette recorder 130 1s captured (step
680), and video frames are selected (step 685). Frame num-
bers are assigned to the selected video frames (step 690), and
at step 665 these frame numbers are concatenated to the lines
of tracking data to form tracking data lines. Finally, at step
675 a database of numbered tracking data lines i1s created

and 1s stored on the disk 1n a database file called the tracking
database 324.

At step 693, the video frame 1s fed into a video compres-
sion program, and the outputted compressed video frame 1s
concatenated or otherwise linked to the same video frame
number at 695. Finally, at step 700, a database of numbered
and compressed video frames 1s created and 1s stored on the

disk 1n a file that 1s called the video database 323.

The tracking and video data entry and storage program
305, residing on the personal computer 185, essentially
builds two related databases. The first 1s a tracking database
324 composed ol enumerated records containing the
orientation, the translational acceleration, and optionally the
range data originally generated by the tracking data acquisi-
tion unit 105. The second 1s a video database 323 composed
of enumerated records containing digitized and compressed
images of video frames captured from the video tape origi-
nally generated by the video camera 120.

Once all of the recorded tracking and video data are
stored, the personal computer 185 converts the tracking
database 324 into a positional database 322 via a software
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module called the tracking database to positional database
conversion program 310 (FIGS. 5 and 9).

In the preferred embodiment, an existing image capture
computer program 1s adapted for use to capture, compress,
and store selected 1images 1n the video database 323, as indi-
cated 1n steps 680, 685, 690, 695, and 700 of FIG. 7. This 1s a
conventional program for video capture that can capture and
store a video 1mage every Vioth or 4oth of a second or so
(whatever the human user of the system specifies). This pro-
gram 1s also capable of linking to and calling as a subroutine
a separate program which performs the steps 655, 660, 665,
670, and 675 1n FIG. 7 every Vioth or Aoth of a second,
passing to this separate program the index value into the
video database 323 that can later be used to find and retrieve
the most recently captured image. This index value is stored
in the tracking database 324 along with the associated track-
ing data extracted from the signal 170.

To implement the step 633, the computer 185 1s equipped
with a conventional, serial port interrupt driven program that
1s called upon automatically, whenever the serial mput port
176 recerves a serial byte of the tracking data signal 170, to
retrieve the byte from the serial port UART and to store the
byte 1n some form of circular buifer in RAM from which the
bytes may be readily retrieved.

Each time the step 660 1s performed (every Vioth or Y2oth
of a second or so), all the bytes currently in this circular
butler are retrieved, combined with historical data, and sepa-
rated from any partial data frame that 1s retained as historical
data. In this manner, several data frames 1n the format 1llus-
trated at 535 or 540 1n FI1G. 4 are retrieved from the circular
butifer, combined with the current image retrieval index sup-
plied by the image capture computer program, and stored in
the tracking database 324 (FIG. 5). Note that even though
not all of the video 1mage frames are normally retained,
every piece of tracking data information must be retained so
that the position and orientation of the inertial platform can
be computed by a “dead reckoning” process. Accordingly,
the same video 1mage number i1s typically combined with
several sets of tracking data information.

FIG. 5 1llustrates the creation of the positional database.
Numbered tracking data frames from the tracking database
324 are mput to the program 310 which, using well known
principles of Newtoman mechanics, converts the tracking
data lines into positional data records. The positional data
records are stored to the disk in a database file called the
positional database 322. The format of the positional data
records 1s dependent upon the method of conversion used in
the conversion program 310. As shown 1n FIG. 8, there are
two possible formats for the equivalent positional data. The
quaternion position notation record format 1s composed of
position number 720, video frame number 730, X displace-
ment from the origin 735, Y displacement from the origin
740, 7. displacement from the origin 745, and a unit vector
defined by an X component 755, a Y component 760, a Z
component 770 and a twist component 750. This data com-
pletely defines the position and orientation of the spatially
referenced video camera 100 with respect to the point of
origin. The other equivalent format 1s the direct angular
notation representation. It 1s composed of the position num-
ber 720, video frame number 730, X displacement from the
origin 735, Y displacement from the origin 740, Z displace-
ment from the origin 745, and angular coordinates Rx 780,
Ry 785 and Rz 790. These numeric values are separated by
space characters 723, as shown.

The details of the tracking database to positional database
conversion programs 310 are shown in FIG. 9.
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The program 310 begins at 1002 by imitializing the vari-
ables. Then at 1004, 1t opens the input tracking data file 324
(FI1G. 5), the output position file 322 (FIG. 5), and an alter-
ative output position file (not shown—this alternative file has
the orientation represented 1n quaternion form, rather than as
yaw, pitch, and roll values). At 1006, the data 1s retrieved,
processed, and placed 1n the output file.

r

T'he data processing steps 1006 are described 1n FIG. 10.

-

T'he program steps 1006 control the reading of the 1nput
file and enforce the formatting of the output file. In
particular, these steps bufler the position records in such a
manner that each record processed 1s complete even though
the mmput records may have been broken up, as described
above. In this manner, the program generates one and only
one output position record for each frame.

The program begins at 1110 by reading 1n a data frame. At
1114, 1f there are no more frames, then at 1130 the files are
closed and we are done. If a {frame 1s found, a data record 1s
retrieved from the frame at 1112. At 1118, 1f a record 1s
found, 1t 1s processed at 1120 and written out to the posi-
tional database 322 at step 1122. Whether or not a record 1s
found, program control continues at step 1124 where any
unprocessed residual data 1s prepared (or added to) the next
frame. Program control then returns to 1110 where the next
frame 1s read.

The data record processing routine 1120 1s described 1n
FIG. 11. Farst at 1210, a record 1s read and 1s corrected for
gyro counter overtlow. Since the pitch, roll, and yaw num-
bers are 16 -bit numbers that increase continuously if the
camera rotates, they will occasionally overflow to zero.
These numbers are thus converted into a 32 bit numeric for-
mat that never overtlows.

Next, the acceleration values are converted into a tloating
point form at step 1212. Gain and offset errors can be cor-
rected 1n this step. This routine also computes the magnitude
of the acceleration as the square root of the sum of the
squares of the three components.

Step 1214 calculates the current position from the accel-
eration data. With reference to FIG. 12, first we test the
magnitude to see 1f 1t 1s close to the gravitational constant
(step 1310). If so, and 11 this 1s the first time that this condi-
tion has been met (step 1312), then the current yaw reading
1s saved as the zero directional reference for the data. In any
case, at 1316, the gravity acceleration vector 1s used as a
vertical reference for the purpose of determining how tilted
the camera platiorm 1s. Valves of pitch and roll, PO and RV,
are computed which, when applied to the camera’s present
pitch and roll, give a level reference platiorm. The program
that performs this calculation 1s set forth below.

In the following short program, the values of acceleration
are “ac->p.I” for the y value of acceleration and *““ac->p.1”
for the X value of acceleration (the z value 1s not needed).
This program computes P and RO, and 1t acquires the 1ni-
tial yaw value as WQ.

// acquuire reference for pitch and roll gyros. Used to

// correct for G later

vold GetRollPitchZero YPosition AttitudeRecord * ac,
long double magnitude)

{

long double xmag, ymag, numAvg;
xmag=ac—:>p.I/magnitude;
ymag=ac—>p.l/magnitude;

numAvg=G0; // for backward average of all samples
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-continued

/f numAvg=1; // for no averaging
rref = —asimnl (ymag);
pref = asinl (xmag);
// average over all samples, equal weights for all
pO = ((p0 * (numAvg-1)) + (deg(pref)+ac—>a.p))/numAvg;
10 = ((10 * (numAvg-1)) + (deg(rrel)+ac—>a.r))/ numAvg;
if (GO == 1) // this one 1s the first

1
h

w0 = ac—>a.w; // 1nit to current yaw count

Acquisition of rd and pO values allows the definition of a
reference frame for integration in which the transformed X
and Y acceleration components have no contribution from
the gravitational force. X and Y 1n the reference frame are
perpendicular to the direction of the gravity vector, while Z
in the reference frame is parallel to the gravity vector.

GetRollPitchZero also averages PO and RO readings on
all subsequent calls after the first call to achieve better and
better estimates for these values.

At step 1320, since the only acceleration 1s that of gravity,
we assume that the camera 1s motionless, and we arbitrarily
set the velocity values 1n all three directions to zero. This
assumption holds because the camera 1s hand-held and 1is
never stable when the human carrier 1s 1n motion. If the
camera were mounted upon some conveyance that can move
very smoothly at a uniform velocity, then this assumption
would not hold, and some additional data indicating the
velocity of the camera would have to be recorded. In an
airplane or automobile, for example, the speedometer read-
ing or ground speed reading could be recorded to assume
that this algorithm functions properly.

Next, at step 1318, the current pitch, yaw, and roll are
transformed 1nto coordinates that indicate these parameters
relative to the newly-defined reference frame. This step 1318
1s always performed regardless of whether the magnitude of
the acceleration matches that of gravity.

To facilitate, the following computations, the yaw, pitch,
and roll values, which are presently referenced to a horizon-
tal plane, must be converted into what 1s called the quater-
nion form. This 1s a four dimensional vector with three
imaginary components and one real component. This 1s done
to facilitate the transformation of the acceleration values,
which are presently referenced to the tilted camera plane,
into valves referenced to the horizontal reference plane (just
defined, preparatory to integrating the acceleration values to
produce velocity and displacement values.

This calculation 1s performed by the following program.
In this program, the input variable 1s a record “Attitude-
Record” which contains yaw “w”, pitch “p”, and roll “r”.
The returned quaternion values are “s”, “17°, *7”, and “k”,
where “s” 1s the real value and the others are the imaginary

values.

// convert yaw,pitch,roll to quaternion form

void AttitudeQuaternion (AttitudeRecord * p,
QuaternionRecord * gcos)

{

long double cw,cp,cr,sw,sp,sr; /* sine and cosine */
long double rp, rw, 11;

long double trace, c[3]|3];

rw=rad(p—>w);

10

15

20

25

30

35

40

45

50

55

60

65

12

-continued

rp=rad(p—>p);
rr=rad(p——>r);
cw=cosl (1w);
cp=cosl (1p);
cr=cosl (1r);
sw=sinl (1w);
sp=sinl (1p);
sr=sinl (rr);
// use cosine matrix form for calculation
c[O[0]=ew*sp; ¢[O][1 J=sw*cp; [ O] 2 |=—sp;
c|1]O]=(-cr*sw) + (sr*sp*cw); c| 1|1 |=(cr*cw)* (sr¥sp™*sw);
¢| 12 |=sr¥ep;
c| 2| O)=(sr¥sw) + (cr¥sp*cw); c| 2| 1 |=(—sr¥*cw)+(cr¥sp™sw);
¢| 2] 2 |zer*ep;
trace=c|O][O] +c[1][1]+ ¢|2]2};
qcos—>s=sqrtl{1+trace)/2.;
qcos—=>1=(c[1]|2] - ¢[2][1 ])/(4.* qcos—>s);
qcos—=>=(c[2]]O] - ¢[O][2])/(4.* qcos—>s);
qcos—>k=(c|O]|1] - ¢[1]]O])/(4.* qcos—>s);

At step 1324, the acceleration vector 1s transformed from
the camera body coordinate frame into the stable reference
frame.

//rotate accel vector to platform coordinates

/fusing 1nverse quaternion

posqlnverse.q.s=posqFwd.q.s;
posqlnverse.q.1=—posqFwd.q.1;
posqlnverse.q.j=—posqFwd.q.j;
posqlnverse.q.k=—posqFwd.q.k;

QuaternionRotate (&pos->p.&posqlnverse.q,&prec);

In the above, the acceleration vector 1s represented by a three
component vector “&pos->". The four element quaternion
value (computed above) 1s “posqFwd.q.s”, “-17, -7, and

b -.1 2
“-k”. In the above routine, this quaternion value 1s first
mverted, giving “posqlnverse.q.s.”, etc. Next, this mverted
quatermion and the acceleration vector are passed to the
“QuaternionRotate” routine which returns the transformed
acceleration values 1n a vector “&prec”.

At step 1326, the integration of the transtformed accelera-
tion values 1s carried out as follows:
dx+=(prec.1)/G;
dz+=(prec.u)/G;
dy+=(prec.1)/G;

X+=dx;

y+=dy;

Z+=dz.
In the above routine, “dx™, “dy”, and “dz” are the velocity
values 1n the X, y, and z directions. “x”, “y”, and “z” are the

X5 Y,
distance values. The incoming acceleration values are
“prec.1” for the “x” axis acceleration, “prec.t” for the “y”
ax1is acceleration, and “prec.u” for the “z” axis acceleration.
Note that the acceleration values are normalized with respect
to the value of gravity.

The quaternion coordinate transformation process 1s car-
ried out by using two cross multiplications, and 1s 1llustrated

below:

//returns rotated vector 1n 1p

void QuaternionRotate (positionRecord *v,
QuaternionRecord *q,
PositionRecord *rp)

QuaternionRecord vq,q1,rq;
// quaternion multiplication q1 v q

// from the book.
/fqlis —1 -] -k...
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-continued

vq.s=0; vq.1=v—->1; vq.)=v—>1; vq.k=v——>u;
ql.s=q—>S;

ql.l=—q—>1;

ql.J=—q—>];

qr.k=—q——=>k;

QuaternionMultiply (&qi, &vq, &rqg);
QuaternionMultiply (&rq, q, &vq); //reissue vq
rp—>1=vq.1;

rp—>1=vq.j;
rp—>u=vq.k.

The incoming arguments to this function are a three-
dimensional vector “v” that 1s to be rotated and a four-
dimensional quaternion vector “q” that defines the rotation.
The three-dimensional vector “v™ 1s first transformed into a
four-dimensional vector “vp” with the fourth component

“vq.s” set to zero.

e M

First, an mverse “qi” 1s formed of the quaternion “q”.
Next, the mmcoming vector “vp” 1s quaternion multiplied by
the inverse quaternion vector “qi;”. The result of this multi-
plication “rq” 1s then quaternion multiplied by the quater-
nion vector “q1” Three components of the resulting vector,
which 1s returned as “vq”, are transierred back into the vec-
tor “rp”” which 1s returned as the transformed result.

The quaternion multiplication 1s defined by the following
program: void QuaternionMultiply (QuaternionRecord *q,
QuaternionRecord *s

3

}I{I')

QuaternionRecord

{
r—>s=(q—>8*s—>8)—(q—>1%s—>1)-(g—>|*s——>| ) -(—>k*s—>k);
r—>1=(q—>s*s—>1)+(q—>1%s—>8)+(q—>Fs—>k)-(q——=k™s—>]);
r—>j=(q—>8*s—>|)-(q—>1Fs—>k)+(q—>|*Fs—>=s )+ (q—>k*s—>1);
r—>k=(q——>s*s—>k)+(q——>1%s—>|)-(q——>=]Fs—>1)+(q—>k*s——>s).

h

The details of the step 1122 in FIG. 10 relating to the
writing out of a record 775 (FIG. 8) are set forth in FIG. 14.
At step 1402, 1f any frame numbers were skipped, at step
1122 a position record 1s generated and saved for each such
skipped frame. Since there are more acceleration records
than there are video frames, step 1408 tests to see 1f the
current frame number has already been written out as a posi-
tion record. If not, then a new position record 775 1s written
out at step 1410 along with the frame number. In any case, at

step 1412, the position record 1s saved for possible future use
il any frames were skipped (at step 1402 during a future

iteration).

In addition to writing out the records 775 (FIG. 8) into the
positional database 322 having the file name extension
“* TLA”, the preferred embodiment of the mnvention simul-
taneously writes out records of the type 7135 (FIG. 8) mnto a
separate positional database (not shown) having the file
name extension “*. TEL”. In this manner, two positional
databases are created, one speciiying camera attitude using
the direct angular notation format, and the other specifying
camera attitude using the quaternion notation format.

An alternative method of position estimation using the
inertial plattorm 1s now described. The accelerometer inputs
described above as the vector “pos” in the program
“acc2pos.c” 1s replaced by a vector of constant velocity as
shown 1n this program fragment:
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if (magnitude <« G + DELTA_ MAG//+DELTA
&& magnitude < G — DELTA_ MAG//-DELTA

)
1

// for velocity estimation method
/i dx =dy =dz=0;
pos—>p.1=0;

h

else

1

pos—>p.{=500; // assume motion 1s 1 direction
// camera 1s pointing
h

pos—>p.1=0; pos—>p.u=0;

This sets the velocity vector to one of two values, depending
upon the magnitude of instantanecous acceleration being
experienced. The vector component “pos->p.1I” 1s the com-
ponent pointing in the direction of the camera.

If the magnitude 1s below the threshold G+ or -DELTA__
MAG (the force of gravity plus or minus a small deviation,
determined by empirical measurement), the camera 1s
assumed to be at rest. If the magnitude 1s outside this range
the velocity 1s set to be the average velocity of a person
walking. The camera 1s pointed 1n the direction the operator
1s walking whenever the operator moves, and this velocity
vector 1s transformed using, the same quaternion as the
acceleration measurement above.

The velocity vector 1s rotated 1n the following code frag-
ment:

QuaternionRotate(&pos->p.&posqlnverse.q.&prec);

The position 1s then calculated by summing each resultant
component:

X—=prec.1;

y+=prec.1i;

Z+=prec.u;

The full text of the alternative “acc2pos.c” file 1s given 1n
Appendix F. This file 1s to be substituted for the “acc2pos.c”
file listed 1n Appendix B.

FIG. 13 shows the flow diagram for the alternate position
calculation method. FIG. 13 1s to be substituted for FIG. 12

in the program flow described above. In particular, the box 1n
FIG. 12 labeled 1324 1s replaced by a box 3380, and the box

labeled 1326 1s replaced by a box 3390.

In FIG. 13 box 3340 the absolute value of acceleration
magnitude 1s compared to that of gravity plus a constant
value. If the absolute value of the difference of these quanti-
ties 1s greater than zero, movement 1s 1ndicated. The forward
velocity component pos->p.11s then set to a velocity value of
“walking speed” 1n box 3330. Otherwise forward compo-
nent 1s set to 0 1n box 3360. In either case the left-rnght and
up-down components are set to 0 1 box 3370.

The velocity estimate 1s then transformed from platform
coordinates to reference coordinates 1n box 3380. The result-
ing transformed velocity 1s summed component-wise to pro-
duce the position estimate i box 3390.

These boxes m FIG. 13 are 1dentical to their counterparts

in FI1G. 12:

FIG. 13 box 3310 1s 1dentical

FIG. 13 box 3312 1s 1dentical to FIG. 12 box 1312.

FIG. 13 box 3314 1s 1dentical to FIG. 12 box 1314.

FIG. 13 box 3322 1s 1dentical to FIG. 12 box 1322.

Referring now to FI1G. 15, the hardwire circuitry portions
of the mvention are shown 1n block diagram form. FIG. 15
sets forth all of the significant signal interconnections
between the circuitry blocks.

As shown 1n FIG. 15, the heart of the tracking data acqui-
sition unit 105 1s a control circuit 470 which contains a cen-

to FIG. 12 box 1310.
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tral processing unit 480. This central processing unit, in the
preferred embodiment, 1s a Z-WORLD SMART BLOCK,
Model SB-DEV-32, programmable computer.

In FIG. 15, the central processing unit 480 provides
addressing signals 1502, data signals 1504, and control sig-
nals 1506 to a control logic 490. The control logic 490 con-
tains two programmable logic umts PALS which respond to
the signal from the CPU by generating all of the various
control signals that are needed to run the tracking data acqui-
sition unit 105.

The rangefinder 485 1s shown connected to the CPU 480
by means of two serial communication lines, an outgoing,
serial communication line TXA1 carrying commands from
the CPU 480 to the rangefinder 485, and a return serial com-
munication line RXA1 carrying serial information from the
rangefinder 485 back to the CPU 480. The rangefinder 485
returns gathered information periodically, at 1ts own rate of
speed. The CPU 480 formulates a range packet 520 (FIG. 4)
contaiming a 24 byte range value 510 and an 8 byte gray
scale value 515, and adds 1t to the telemetry stream of data.

The two gyroscopes, the directional gyroscope 400 and
the vertical gyroscope 410, are designed so that when they
are deprived of power, they return to rest positions with the
vertical gyroscope 410 having its axis vertically disposed
and with the directional gyroscope 400 having axis horizon-
tally disposed.

When the camera 100 1s placed 1nto operation, the central
processing unmt 480 causes the control logic 490 to generate
a GYRON signal and to feed 1t to a gyroscope regulated
power supply 420. In response, the gyroscope power supply
420 generates a plus 10 volt, regulated +GYRO signal which
feeds power to both of the gyroscopes 400 and 410. In
response, the gyroscope motors begin to spin so their axis
are stabilized and so that the gimbals associated with the
gyroscopes begin to generate pairs ol quadrature modulated
signals indicating the rotational motions of the tracking data
acquisition unit 105.

The directional gyroscope 400 generates two square wave
signals 1n quadrature as the platform 413 1s rotated about a
vertical axis to the left or to the right. These quadrature
signals, which may be called collectively the yvaw signal,
appear on the two wires DOA and DOB. These signals arise
from sensors associated with the gimbals within the gyro-
scope 400 1n response to rotation of the gimbals.

The vertical gyroscope 410 1s similarly equipped with two
sets of sensors associated with 1ts gimbals to generate pitch
and roll quadrature modulated signals. The pitch signal,
which appears on the two wires V1A and V1B, indicates the
rate at which the camera 100 i1s pointing more upwards
towards the ceiling or more downwards towards the floor.
The roll, signal which appears on two wires VOA and VOB,
indicates the rate at which the camera 1s tilting to one side or
to the other, away from or towards the vertical.

These quadrature modulated pairs of signals require brief
explanation. Assume for the moment that the camera 1is
being rotated horizontally from left to right. This will cause a
yaw signal to appear on the two wires DOA and D0B. Each
wire bears a square wave signal, and the square waves are at
quadrature with each other. This means that a negative going
transition of the first of the square wave signals 1s followed
by a negative going transition ol the second of the square
wave signals. Likewise, a positive going transition of the
first signal 1s always followed by a positive going transition
of the second signal. The speed of these transitions indicates
the speed with which the camera 1s being rotated from leit to
right. If the camera motion stops, then the signals remain
stationary until camera motion proceeds once again.
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If the direction of rotation 1s reversed, then again square
wave signals are generated—but this time in the opposite
phase of quadrature. Thus, 11 a left-to-right motion causes a
first signal to make 1ts transitions ahead of the second signal,
then a right-to-left motion will cause the second signal to
make its transitions ahead of the first signal. This 1s 1dentical
to the way in which the motion signals work in a mouse
pointing device of the type commonly used with digital com-
puters.

The pitch and roll signals, represented respectively by the
V1A-V1B and by the VOA-V0B signal lines, operate 1n a
manner identical to the yaw signal just described, with the
information being conveyed by quadrature modulated
square waves. The three pairs of quadrature modulated sig-
nals V1A, V1B, VOA, V0B, and D0A, D1B are fed into
respective quadrature decoders 450, 455 and 460. The
quadrature decoders 450, 455 and 460 are conventional
models, 1n this case Hewlett Packard Model No. HCTL
2020. The three accelerometers 435, 440, and 445 are shown
cach generating an analog accelerometer output signal SIGO,
SIG1, and SIG2 and also a temperature signal TEMPO,
TEMP1, and TEMP2. These signals flow into the multi-
plexer and A-to-D converter 465.

In the manner described above, the central processing unit
480 1s enabled to obtain data indicating the distance of the
subject from the rangefinder 48S; 1t 1s enabled to obtain
pitch, roll, and yaw data values from the vertical and direc-
tional gyroscopes 400 and 410: and it 1s enabled to obtain
data defining the instantaneous acceleration of the tracking
data acquisition unit 105 from the accelerometers 435, 440
and 445 1n all three coordinate directions. The CPU 480
continuously packages this information, as explained 1in
steps 600 to 615 in FIG. 6, into the frame data format that 1s
illustrated at 535 or 550 in FIG. 4. This frame data format
information 1s presented in parallel, one byte at a time, over
the data bus D0-D#é6 to shiit register and encoder 475.

The shift register and encoder 473 converts the signal into
a modulated serial tracking data signal which 1s presented
over the audio data line 1135 to the audio record input 125 of
the VCR 130.

To summarize the operation of the tracking data acquisi-
tion unit 105 as shown 1n FIG. 15, the central processing
until retrieves from the rangefinder 485 1n serial form an 8
bit gray scale value 515 and a 24 bit range value 510, as
shown 1 3520 in FIG. 4. It retrieves from the quadrature
decoders 450, 455, and 460 associated with the directional
and vertical gyroscopes 400 and 410 16 bit data values rep-
resenting the current pitch, roll, and yaw as stored within
counters within the quadrature decoders 450, 455 and 460. It
retrieves from the X, Y, and Z accelerometers 435, 445, and
440, 24-bit values representing the current instantaneous
acceleration to which the tracking and data acquisition unit
105 1s being subjected.

It then combines all of this information 1nto a packet, with
cach byte in the packet containing a “1” start bit, a nibble of
data, and three trailing “0” stop bits, with a 3 byte header 530
and 550 such as those shown at 533 or 540 1n FIG. 4. Each
packet thus begins with the frame ID pattern elements shown
at 525 or 545 as three bytes of information. This 1s followed
by the X acceleration data S00A, the pitch data S05A, theY
acceleration data 500B, the roll data 505B, the Z accelera-
tion data 500C, the yaw data 505C, the range data 355, and
the gray scale data 560, as shown in F1G. 4. This information
1s sent through to the shift register and encoder 475 and
appears as a modulated tracking data signal on the audio line
115 whaich 1s then recorded by the VCR 130 along with the

images tlowing from the video camera 120.




US RE42,289 E

17

Upon playback, the video signal 150 flows directly into
the personal computer 185. The modulated tracking data sig-
nal 145 flows to a demodulator 155. Following
demodulation, the unmodulated tracking data signal flows
over a signal line 170 to the PC 18S5.

FIG. 16 presents a block diagram view of the three pro-
grams that control the operation of the central processing
unit 480 shown 1n FIG. 15. Two of these programs 2402 and
2404 are interrupt driven, and the third program 2406 either
runs continuously, or it 1s called into operation periodically
by a timer triggered mterrupt or other similar mechanism.

The program 2406 begins at 2408 by 1nitializing the sys-
tem. Initialization includes such steps as turning on the
power supply 420 for the gyroscopes, programming and 1ni-
tializing the three quadrature decoders 450, 455, and 460,
and setting up the analog to digital converter (within the
block 465 1n FIG. 15).

Next, at 2050, data 1s gathered from the rangefinder 485.
At 2052, the analog to digital converter 1s commanded to
gather from the accelerometers 435, 445, and 440 the current
acceleration of the tracking data acquisition unit 105.

At step 2054, the above data, together with previously
stored values of yaw, roll, and pitch are combined 1nto a data
packet, with 4 bits of data per byte, as has been explained
above (steps 600, 605, 610, and 615 in FIG. 6; and see the
data formats presented in FI1G. 4).

At step 2056, the resulting data packet 1s placed into RAM
memory as a series of bytes to await transmission to the shift
register and encoder 475.

At step 2058, the interrupt driven program 2402 1s placed

into service to transmit the bytes of data to the shift register
and encoder 475.

At step 2060, the program 2406 tests to see 1f all of the
data bytes have been transmitted. Alternatively, the program
simply suspends itself until a fixed time interval has expired.
In either case, after transmission 1s completed or after the
expiration of the time interval, program control recom-
mences with step 2050.

The program 2406 thus continuously operates to assemble
data packets and to transmit them to the shift register and
encoder 475 where the data 1s modulated onto an audio sig-
nal suitable for recordation on the audio soundtrack of a

VCR.

The program 2402 1s an interrupt driven program placed
into operation by the interrupt signal INT1 every time the
shift register and encoder 475 successiully transmits a byte
of information. At 2062, this program simply sends a data
byte from RAM to the shiit register and encoder 4735 until
there are no more data bytes that remain to be transmaitted.
This interrupt driven routine frees up the program 2406 from
the time consuming task of continuously monitoring for
when to transmit the next byte of data.

The program 2404 1s also an interrupt driven program. It
1s placed into operation every time one of the three quadra-
ture decoders recetves a signal tluctuation from one of the
gyroscopes. In response to INT2, this program gathers pitch,
roll, and yaw values from the two gyroscopes and stores
them 1n RAM for later transmission at step 2064.

Three display programs are available for viewing the
information stored in the positional database.

The spatial database program 335 (FIG. 5) 1s controlled
by a three-dimensional navigation tool, such as the SUN
COM FLIGHT MAX JOY STICK, or any three-
dimensional, commercially available game control device.
Each frame 1s displayed, and the user 1s asked whether he
wants to select it. A database of frames selected for display 1s
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created. For each frame, a two-dimensional rectangle of
fixed size 1s drawn using the WORLD TOOL KIT 1n a per-

spective view of three-dimensional space. The rectangle 1s
displayed in the simulation space 1n the orientation specified
by the attitude of the camera positional frame record that
corresponds to the video frame. The rectangle 1s then tex-
tured with the video frame so the frames appear to float in
space before the user.

The movie mapper program 325 1s described in detail
below.

The positional frame retrieval program 330 allows the

user to 1dentify a region in space on the camera path using
the WORLD TOOLKIT. The program defines a rectangular
solid 1n space about each imaged object. The location of
cach 1tem 1maged 1s computed from the data in each record.
All the 1mage records where the location of the 1tem 1mage
falls outside of the rectangular solid for an item are
discarded, and all remaining records are displayed as a
movie view of the item from different perspectives. In
essence, all available frames showing the item or the volume
indicated are displayed sequentially, giving all the views
available of the desired item or volume.

The data tracking and acquisition unit and modulator 105
has 1llustratively been shown connected to a rangefinder,
receiving therefrom a serial data signal which 1s conveyed to
the central computer for possible use in a data retrieval sys-
tem. The positional frame retrieval program 330 uses this
range data to determine the position of imaged objects and to
retrieve all images containing a designated object, as con-
trasted with the movie mapper program technique of retriev-

ing 1mages based upon camera position and orientation
(described below).

For example, in FIG. 18, an object 3202 1s shown within a
camera path 3204 along which the camera orientation at the
moment of 1mage capture 1s indicated by vectors 3206. In
FIG. 18, the vectors shown connected by dotted lines 3208
to the object 3202 represent the capture of an 1mage of the
object 3202. Range information 1s also captured indicating
how far the object 3202 1s from the camera at each of these
points.

The range data 1s preserved 1n the positional database 322
for this embodiment of the invention. Accordingly, the
retrieval program 330, 1n response to a mouse click at the
position of the object, may locate all records 775 which,
from position, camera angle, and distance to subject, relate
to 1images of that object. These may be grouped nto an
object database and displayed as a video movie, as described
above.

In addition to a rangefinder, other devices may be attached
to the serial data input of the tracking data acquisition unit
and modulator 105, and data may be captured from these
other devices. For example, data may be captured from a gas
chromatograph or from a chemical sniffer. Sound may be
recorded from a microphone. Average light intensity may be
recorded from a photo cell. Infrared records of motion in the
vicinity may be recorded. Data may be gathered from sta-
tionary machinery or data collection devices, such as flow
meters or temperature sensors. Any type of data that has a
spatial reference may be gathered 1n this manner.

Another embodiment of the invention 1s shown i FIG. 17.
The computer 185 contains a positional database 322 estab-
lished previously, in accordance with the teachings set forth
above. The positional frame retrieval program 330 1s actively
retrieving 1mages from the databases 322 and displaying
them.
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In this embodiment, the tracking data acquisition unit and
modulator 105 1s not attached to the camera, but 1s attached
by a serial communicator tether 3102 (which could include a
radio linkage) directly to the serial port of the computer 185,
such that the tracking and video data entry and storage pro-
gram continuously accepts the data and stores 1t 1n the track-
ing database 324. The tracking data acquisition unit 1s thus
enabled to be used as a mouse pointing device for the posi-
tional frame retrieval program 330 to guide in the retrieval
and display of images—an 1nertial joystick.

The tracking database 324 may be on the hard disk as
previously, but preferably 1t 1s a RAM circular buifer that 1s
shared by the tracking database to positional database con-
version program 310. Alternatively, the tracking data values
may be sent as messages between the two programs runmng,
under Windows and subject to the standard Windows mes-
sage dispatcher (not shown). Both of the programs 305 and
310 can be simplified, since neither 1s dealing with video or
with frame numbers in this embodiment.

The tracking database to positional database conversion
program operates continuously, receiving tracking data con-
taining unnormalized acceleration and orientation data and
converting 1t into normalized position and orientation data,
and sending the resulting data directly to the positional
frame retrieval program 330, thereby causing the program
330 to update the display continuously 1n response to
manual movement of the tracking data acquisition unit and
modulator 105 through time and space.

As an alternative, two computers can be utilized. A first
portable computer (not shown) can be attached to the track-
ing data acquisitional unit and modulator 105 can contain
the program elements 305, 324, 310 and 330, shown 1n FIG.
17. This computer continuously computes the coordinates
and position of 1itself 1n time and space and broadcasts this
information by means of a radio LAN or senial port, for
example, to a stationary computer that contains the posi-
tional database 322. The stationary computer broadcasts
back the database information to the portable computer,
where 1t 1s displayed. In this manner, a virtual world can be
created where the one carrying around the portable computer
can view a universe that exists in virtual form on the disk and
that was recorded earlier at this or some other location.

As a third alterative, the tracking data acquisition unit and
modulator 105 in FIG. 17 can be equipped with a video
monitor recerving video signals from the computer 1835 (by
television transmission over a radio link, for example). Then
one may wander about with the television and tracking data
acquisition unit viewing a virtual reality derived from the
positional database 322.

The arrangement illustrated 1n FIG. 17 can also be used as
a three-dimensional pointing device for programs other than
the positional frame retrieval program. Any kind of three-
dimensional software program requiring the assistance of a
navigation tool having either three or six degrees of freedom
may be readily modified to accept the positional data records
generated at 3104 by the tracking data acquisition unit and
modulator 105.

Another embodiment of the mvention utilizes a movie
mapper 3235 (FIGS. 19 to 35) to assist the user 1n retrieving
and displaying the images. The program structure, defined
by a series of nested objects, 1s depicted 1n overview 1n FIG.
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26. The dynamics of event message transmission between
objects 1s depicted 1n FIG. 27, and the most important data
structures are in accordance with previously-described
FIGS. 5 and 8. The operation of the program, as seen by the
user, the window dynamics, and the program resources are
depicted 1n FIGS. 34 to 40 and 43 to 46, which disclose a
series of operating states and menus of the program.

The program 325 1s written 1n Microsoit C++ to run under
Microsoit Windows, Version 3.1. Some of the programs call
upon routines contained within the Microsoft Video For

1 Windows Development Kit, Version 1.1. All of the above
may be obtained from Microsofit Corporation, 1 Microsoit
Way, Redmond, Wash. 98052. The Media Control Interface
“MCIWind” 10944 (FIG. 26) from the Video For Windows
package 1s used to control the scrolling through the playback
of video 1mages within the AVI (audio video interleave)
video child window, MCIView 10940, described below.
Many of the array processing routines presented within the
program file TLA__FILE, as well as the vector, array, and
tensor allocation programs are taken from the book Numeri-
cal Recipes 1n C, 2nd Edition, by Press, Vetterling,
Teukolsky, Flannery (Cambridge University Press. 1992)
and from the program diskette that accompanies this book.
(These routines have been placed in the public domain by
the authors of the book).

With reference to FIGS. 19 to 26, and beginning with FIG.
19, when the user turns on the movie mapper 3235, a main
frame window 10100 opens up. The user first actuates the
File popdown menu and calls for the display of an AVI file (a
Microsoit Audio Video Interleave file). These files, in the
present version ol the invention, have file names with the
suifix “. AVI”. In all respects, these files correspond to all of
Microsoit’s specifications.

The program 325 opens up the selected “*. AVI” file. It
also looks for and attempts to open a telemetry file, contain-
ing the positional information, which has the same name and
the file name suffix “*'TLA”. The “*'TLA” file must be
prepared for this program by adding to the beginning of the
file a single line of text. The line 1s “HDR<tab ><last frame
number>"" where <tab> 1s the tab character, and <last {frame
number> 1s the first number on the last line of the file. If no
“* TLA” file 1s found, the system issues an error message
but permits one to browse through the “*.AVI” file 1n the
normal Microsoft manner. The program also looks for and
attempts to open an “*.M'TA” file for its own use 1n defining
overlay characteristics. An empty “*.MTA” file should be
supplied, since the program will 1ssue an error message and
quit 1f none 1s found. The File popdown menu contains the
usual list of Microsoit options, including Open AVI, Print,
Print Preview, Print Setup, Exit, and a numbered list of
recently opened AV files to facilitate recalling a file recently
opened.

The figures illustrate what happens when an AVI f{ile
BACK.AVI and 1ts corresponding telemetry file BACK.TLA
were successiully opened. Upon opening this file, the pro-
gram 325 causes a Video child window 10110 to be opened.,
displaying in this case a view of the back yard of a private
home. This video window 1s labelled at the top with
“BLACK.AVI—Video” to 1dentity both the file and the fact
that this 1s the child window. The child window 10110 pro-
vides controls that are standard Microsoit controls for scroll-
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ing through a sequence of video images. These include a
VCR-like control 10108. Clicking on this control starts the
video playback if 1t 1s stopped, and stops 1t 11 it 1s running.
The control 1s marked with a square when the video 1s
playing, and 1t 1s marked with a triangle (shown) when the
video 1s stopped. The Video popdown menu contains selec-
tions for changing the size of the video window to the origi-
nal size, half the original size, or double the original size. A
mouse-actuated slider control 10103 (FIG. 19) permits the
user to position the video playback to any frame of the tem-
poral video sequence. All of these functions are provided by
Microsoit’s utilities.

A View pulldown menu permits additional child windows
to be opened that relate to the position information. The
View menu provides the following options, which are

described below:
Triple MCI

Plan

FElevation
Yaw

Pitch
Roll
Orientation

Overlay Visibility

Toolbar

Status

Actuating the Plan command causes a plan view: XY
child window 10120 to open up, displaying the path 10123
over which the camera was moved during the process of
recording the sequential images. This window 1s labeled:
“BACK.AVI—Plan View: XY to 1dentily the file name as
well as the nature of the view. While not clearly visible in
FIG. 19, a large red dot 10128 1dentifies the precise position
along the path 10123 where the camera was positioned when
it recorded the image shown in the view window 10110.
Smaller red dots 10126 and 10127 identify side frames
which are shown to the left and right of the main frame when
the “Triple Mc1” View menu item 1s selected. Dark green
dots show the field of view (fov) of the camera 10129, giving
an 1ndication of the direction the camera 1s pointing. When
the “Play” button 10108 1s pushed to commence a sequential
playback of images, a series of red dots (again not clearly
shown 1n FIG. 19) indicate the camera’s track. These red
dots are spaced apart to produce a dotted line effect follow-
ing the path of the camera as 1t moves along the path 1 the X
and Y directions. The color of the remaining points along the
track 1s blue.

Activating the Elevation command causes an Elevational
View: X7 child window 10130 to open up, displaying the
camera path of movement as seen from the side, rather than
from the top. The display 1n all other respects 1s 1dentical to
the plan view display just described.

Activating the Yaw command causes a Yaw View child
window 10140 to open up, displaying the various yaw direc-
tions the camera assumed during the 1image recording pro-
cess. Yaw may be thought of as compass direction.

Likewise, activating the Pitch command causes a Pitch
View child window 10150 to open up, displaying pitch
directions in a fashion analogous to the Yaw View above.
Pitch 1s inclination of the camera 1n the vertical 1image plane,
that 1s looking up and down. In this example, the 1mages do
not vary significantly in pitch.
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Activating the Roll command opens a Roll View child
window 10160, displaying roll directions as above. Roll 1s
the tilt of the 1mage plane from side to side, or leaning.

By clicking twice upon a point on the camera path in any
of the child windows 10120, 10130, 10140, 10150, or
10160, the user may signal the program to switch to display-
ing the image closest to the point where the mouse pointer
was clicked and having the desired position, angle, or orien-
tation. This selection process provides a rapid method for
retrieving and positioning the video for playback based upon
the desired position of the camera when an 1mage was cap-
tured.

Activating the Orientation View command causes a child
window 10180 to open up, displaying the orientation of the
camera (pitch, roll, and yaw) graphically. Unfortunately, the
absence of colors 1n FIG. 19 makes the figure less than clear.
The positive Y direction 1s indicated by the line 10181, with
the negative Y direction indicated by the line 10182. Note
that the line 10181 indicating positive Y 1s Bold, to serve as a
reference line. The positive X direction 1s indicated by the
line 10185, and negative X 1s indicated by the line 10186, the
positive 7Z direction 1s indicated by the line 10188, and the
negative 7 direction 1s indicated by the line 10187.

The actual direction of the camera, when 1t captured the
image shown in the chuld window 10110, 1s indicated by the
line 10183, which appears half 1n red and half 1n blue in the
actual program display (and does not match the bold black
line 10189). The dotted line 10184 1s a projection of the
camera direction line 10183 onto the X-Y plane. As a
sequence of 1images 1s displayed 1n response to actuation of
the play control 10108, the red-blue line 10183 swings
about, indicating the orientation of the camera, and the dot-
ted line 10184 swings about below (or above) the line 10183
like a shadow at noontime on the equator.

Roll 1s represented by the ratio of blue and red portions of
the line 10183. If the roll value 1s zero, then the line 1s half
red and half blue. Roll 1n a clockwise direction increases the
blue, while roll 1n a counterclockwise direction increases the
red. A positive roll gives more red.

A toolbar containing push button controls (10141, 10142,
ctc.) appears 1n the window 10101 and may be selectively
displayed or hidden by actuating the Toolbar command 1n
the View pulldown menu. The push button 10141 1s an alter-
nate way to open a file. The push buttons 10142 and 101435
respectively wind to the first and the last frames, and the
push buttons 10143 and 10144 respectively move back and
forward by one frame at a time.

The push button 10146 zooms 1n, and the push button
10147 zooms out. These two push buttons control the por-
tion of the video path that 1s displayed by the Plan View and
Elevational View child windows 10120 and 10130, and the
orientations shown in the Yaw View, the Pitch View, and the
Roll View. To zoom 1n, and with reference to FIG. 19, the
user uses the mouse to position the cursor and then, with the
left mouse button held down, drags the cursor diagonally so
that a mouse-defined rectangle 10122 1s created within the
child window 10120. The user then clicks the zoom 1n push
button 10146. The Plan View: XY window’s contents are
then replaced by the contents of the marked rectangle,

expanded out to {ill the window (FIG. 28). The Elev View:
X7 window’s X axis 1s simultaneously zoomed, while the Z
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axis (vertical) 1s left as betfore. The points in the XY view
which were outside the rectangle 10122 are excluded from
the elevational view. Likewise, any angle not represented in
the selected set of points 1s excluded from the Yaw View, the
Pitch View, and the Roll View. This process may be repeated
as olten as desired, until only a few camera positions are
shown individually 1n the display.

The user may also create a rectangle within the Elev: XZ
window, 1f desired. When the zoom-1n push button 10146 1s
actuated, the selected rectangle fills the X7 window, and the
X axis of the XY window 1s zoomed in the X axis only.
Points not within the XZ selection rectangle are then
excluded from the elevational view.

The user may also create a rectangle 1n the Yaw View

window 10140, the Pitch View window 10150, or the Roll

View window 10160, 1f desired. When the zoom-in push
button 10146 1s actuated, the selected rectangle fills the
window, and the Yaw, Pitch, or Roll values displayed within

the selected rectangle expand to fill the display. Points 1n the
Plan View: XY window 10120 and the Yaw View window
10140 which do not have yaw, pitch, and roll values within

the resulting displayed Yaw View. Pitch View, and Roll View
windows are excluded from the Plan View window and Elev

X7 window.

Actuation of the zoom-out push button 10147 causes the
plan and elevational displays to return to their original
appearance (as shown i FIG. 19).

Actuating the Overlay Visibility . . . menu selection from
the View menu causes the display of an Overlay Visibility
dialog window 11110 (FIG. 29). The Overlay Visibility dia-
log lists five overlay items:—“Tombstones™ 11120,
“Entrances” 11130, “Exits” 11140, “Launch Pads” 11150,
and “Gnd (57 11160——cach of which may be selected for
display in the Video windows or the Plan View window. A
check box for each item 1s provided under the Video and
Plan columns of the dialog 11122, 11124, 11132, 11134,
11142, 11144, 11152, 11154, 11162. Check boxes under the
Video column 11170 control display of items in the Video
window 10110, while those 1n the Plan column 11180 con-
trol display of items in the Plan View window 10120. When
the check box has an X 1n 1t, any overlay 1tem of the corre-
sponding type which may appropriately be displayed
according to the current state of the program is displayed 1n
the Video or Plan View window. Likewise, removing the X
from the checkbox inhibits display of the corresponding line
item.

The Overlay 1tems listed above will be described later.

The final command 1n the View popdown menu 1s the
Status command, which hides or displays a status line at the
bottom of the window 10190 and which indicates such
things as the frame number and the X, Y, Z, Yaw, Pitch, and
Roll coordinates of the camera corresponding to the image
that 1s being displayed.

The Frame pop down menu displays the following
commands, all of which relate to simply positioning the
video as 1f 1t were a continuous video tape recording:

Home

Back

Forward

End

Additionally, the Frame pop down menu displays the fol-
lowing commands which have a special meaning:
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Loop Forward

Loop Backward
The Loop Forward and Loop Backward selections cause the
Video display to update with the next frame of video (Loop
Forward) or previous frame (Loop Backward) in temporal
sequence, continuously. Upon reaching the end of the video
sequence, the sequence continues playback with the frame at
the other end of the sequence, as though the video were
joined 1n a continuous loop of film. Frames not shown 1n the
Plan View window are skipped in the playback. Also, after
cach frame 1s shown, the Overlay Items appropnate to the
frame are rendered onto the video frame display. The Over-
lay Items are described below.

The Loop Forward function may alternatively be started
and stopped by striking the space bar. Each strike toggles the
Loop Forward function between the started and stopped
state.

The Action Menu has functions corresponding to the
Toolbar buttons Zoom In 10146 and Zoom Out 10147. It

also has tunctions corresponding to the Head Forward button
10148 and Head Back button 10149. Finally the Adjust
Parameters function brings up a dialog box 10310 (FIG. 21)
by which various parameters to be described later are
adjusted.

The Head Forward 10148 and Head Back 10149 buttons
and functions allow the user to move forward or back up
from the currently displayved frame. The Head Forward
frame and Head Back frame are shown as green dots 10123
and 10124 on the Plan View window, and as green rectangles
10420 and 10422 (FIG. 22) superimposed on the Video win-
dow. The Head Forward rectangle 10420 1s projected onto
the Video window and 1s superimposed on a spot on the
Video window which corresponds to its spatial location as
determined by the database. The Head Backward rectangle
10422 encloses the entire video area of the Video window.

The Head Forward frame 1s chosen by the program such
that when 1t 1s displayed the appearance to the user 1s that the
user has moved forward. This frame 1s selected 1n the follow-
ing manner. Search all the frames 1n the telemetry file (*.tla)
and determine which are within the front field of view angle
from the perspective of the current frame.

The front field of view 1s defined here. Define a ray with
its origin at the current frame’s x-y location and extending 1n
the direction of the yaw angle, called the centerline of the
frame. Define a pair of rays with the same origin, called left
and right lines of the frame, which make an angle with the
centerline specified by the user 1n the Action-Adjust Param-
cters dialog (FIG. 21) Field of View Angle +/— item 10312.
Define a Field of View (1ov) of the current frame between the
left and right lines of the frame. All frame points which lie
within the field of view are said to be frames within the
current frame’s field of view.

Of all the frames within the field of view (fov), determine
which are within an operator specified radius (the Action-
Adjust Parameters dialog Neighborhood Multiplier item

10320 (FIG. 21) times the Action-Adjust Parameters dialog,

Neighbor Radius 1item 10318 (FIG. 21) of the current frame
location and have a yaw angl

¢ that 1s within a specified
maximum angular difference from the yaw angle goal. Of
these candidate frames, find the frame that has the lowest
valued FovindexRating, defined as the sum of:
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1. the absolute angular difference between the yaw angles

of the current frame and the candidate frame, and

2. a weighted rating based on the distance of the xy loca-

tion of the candidate frame from any point on the neigh-
borhood circle around the current frame.

The weight given this distance error 1s proportional to the
value of the Action-Adjust Parameters dialog Selecting Side
Angles scroll bar item 10340 (FIG. 21). This allows the
operator to adjust the importance of the minimization of yaw
differences or distance from the circle.

Sometimes there 1s not an appropriate frame. In that case,
none are selected and no corresponding overlay 1s displayed.

The Head Back frame 1s calculated in an similar manner
to that used to the Head Forward frame with the exception
that this frame must lie 1n the rear field of view. The rear field
of view 1s a yaw angle range that can be found by retlecting
the front field of view angle range to the back of the current
frame. These fields of view are the same magnitude and face
in opposite directions. For the case of jumping backward, the
yaw angle goal 1s equal to the yaw angle of the current
frame.

The keyboard Up-arrow-key and letter I key also execute
the Head Forward function, the keyboard Down-arrow-key
and letter K key also execute the Head Back function.

The View menu-Triple Mci function causes the MClview
window to expand to include three video windows (FIG. 20).
The one 1n the center 1s the same. The left and right windows
contain frames of video selected from the data set on the
basis of their proximaity to the best theoretical frames to dis-
play both 1n x-y-z and in centerline. The frame on the left 1s
chosen so that 1ts centerline 1s close to twice the fov of the
center frame. Likewise the frame on the right 1s chosen so
that 1ts centerline i1s close to twice the fov of the center
frame, but in a direction to the right of the center frame’s
centerline. For example, if the fov 1s 30 degrees (meaning
that the lett line 1s 30 degrees less than the centerline and the
right line 1s 30 degrees greater than the centerline on a
compass), a left frame would be searched for in the database
with a center line of approximately 60 degrees less than the
centerline of the current frame.

If no frame 1s found that meets the criteria for selection,
no frame 1s displayed. If a frame has been chosen for the left
frame or the right frame, that frame 1s displayed within 1ts
own MClIwnd, located to the left or the right of the center
frame.

The left and right frames are aligned with the center
frames based on the fov and on the yaw and pitch values of
the centerlines of the frames. The fov defines a “pixel per
degree” displacement on the screen. For each degree the left
or right frame’s centerline disagrees with the predicted cen-
terline (center frame’s centerline plus or minus twice the
tov) the frame 1s shifted a corresponding number of pixels.
Likewise, the frame 1s shufted up or down by the pixel per
degree amount by which the frame’s pitch ditfers from the
center frame’s pitch.

The lett arrow key and the J key on the keyboard select a
new Irame for viewing. Imtially the frame selected 1s the
displayed left frame described above. The 0 through 9 keys
allow the selection of a frame (if one exists) which has a
centerline less than twice the fov angle. Pressing the 1 key
sets the goal centerline angle to the centerline angle of the
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current frame plus or minus 10 percent of twice the fov
angle. The 2 key similarly sets the goal centerline angle to 20
percent of twice the fov angle. The 0 key sets the goal cen-
terline angle to 100 percent of twice the fov angle. Note that
this setting yields the frame which precisely abuts the center
frame, since points on the edge of the center frame lie on a
vertical plane extending from the current point of view
which makes an angle of exactly “fov” degrees with the
current frame centerline.

An overlay item represents a point or area of interest of
the database as projected onto the current frame. Several
overlay item types are defined by the movie mapper pro-
gram. The overlay items which represent frames are the
jump forward rectangle 10420 (FIG. 22), the jump backward
rectangle 10422 (FIG. 22), the jump and turn left diamond
10424 (FIG. 22), the jump and turn right diamond 10426
(FI1G. 22), the turn left triangle 11210 (FIG. 30), and the turn
right triangle 11220 (FIG. 30). (See also 10220 1n FIG. 20
where the left-turn triangle 1s shown 1n the panoramic view.)

Additionally, one or more frames may be defined as
Entrance frames, marked on the Video Overlay window with
an Entrance item 11230 (FIG. 30). An Entrance frame 1s a
frame which 1s displayed as a result of the operator causing
the viewer program to access a frame indexed within an area
of the database known as an Exit area. The Exit area is
described below. Like the Jump Forward frame, for example,
the Entrance frame replaces the current frame 1n the video
display window. An entrance frame may be contained within
the same database which 1s currently being viewed, or may
be from a different database. An entrance frame may be
identified by the operator at any time by invoking the
Objects-Create Entrance dialog 11300 (FIG. 31). The cur-
rent frame 1s marked in the *.mta file associated with the
currently open database with the operator supplied tag

entered by the operator i the Entrance Name item 11320
(FI1G. 31) of the Objects-Create Entrance dialog 11300 (FIG.

31). The Frame Number 11310 (FIG. 31) 1s supplied by the

program when the dialog 1s invoked.

Three overlay 1tem types describe areas rather than points.
An Exit item marks an area of the Plan View containing
frames of the current database which when viewed will
cause the display of an associated Entrance frame. A Launch
Pad area item 10722 (FIG. 25) causes the execution of an
associated application program whenever a frame 1s dis-
played whose coordinates lie within the area defined for the
Launch Pad area.

An Exit area 1s defined by the operator’s actions:

The operator clicks on the Plan View window, holding the
left mouse button down and moving the pointer to another
point within the plan view window. This action creates a
rectangle drawn on the Plan View 10122 (FIG. 19). The
operator then mvokes the Objects-Create Exit dialog 10500
(FI1G. 23), and after filling 1n the dialog’s entries, clicks the
mouse on the OK button 10580 (FIG. 23). The dialog’s Des-
tination File item 10510 (FIG. 23) identifies the *.mta file
associated with the database containing the desired
Entrance, the named entrance which was defined by the pro-
cedure above. The Destination Name item 10520 (FIG. 23)
selects the tag for the desired Entrance frame which was
previously 1dentified using the procedure described above

for defining Entrance frames. Finally, the operator identifies
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the Exit area by entering an Exit name 1n the Exit Name 1tem
10530 (FIG. 23), and completes the dialog by clicking the
mouse on the OK button 10580 (FIG. 23).

A Launch Pad item 1s defined in a similar fashion. The
operator clicks and drags on the Plan View window as above,
and then invokes the Objects-Create Launch Pad dialog
10600 (FIG. 24). The operator fills 1n the Application File
item 10610 (FIG. 24) with the name of an application to
execute, the Command Line item 10620 (FIG. 24) with com-
mand line information 11 any, and gives the Launch Pad a
name 1n the Launch Pad Name 1tem 10630 (FI1G. 24).

Each of these overlay items 1s projected onto the current
video frame according to the overlay calculation code
described above.

The Window pop down menu provides conventional
Microsoit Windows window control functions that need not
be described here. The Help popdown menu also needs no
special explanation.

The object program structure of the movie mapper 325 1s
described 1n overview in FIG. 26, and the message paths
connecting these program object elements are shown 1n FIG.
277. Taken together, and 1n conjunction with the preceding
figures that illustrate the windows and program operation,
FIGS. 19 to 35 present a tull overview of the program 325.

The operating program 1s composed of a number of
objects each of which is an 1nstance of some class of objects.
These objects are represented by rectangles in FIGS. 26 and
277. Objects sometimes create subsidiary objects. When this
happens, the subsidiary objects are represented in FIG. 26 by
smaller rectangles contained within the larger object rect-
angles that gave rise to them. Each object has properties
which correspond to its particular class. Each object class
has a name, and the properties of the class are defined by
separate program listings for each class. To aid the reader 1n
pursuing these programs, FIG. 26 presents the hierarchical
arrangement of the objects that are present in the program
325 when 1t 1s actually operating. The class name of each
object appears within the rectangle for the object.

When the program commences operating, it first appears
as an object named CVidApp 10902 (FIG. 26). This object
then creates a frame window derived from the Microsoft
class CMainFrame 10905. This CMainkFrame object appears
on the screen as a large window frame 10100 (see FIG. 19)
that includes a menu bar, a tool bar, and a status line, as has
been described.

This CMainkFrame object next launches a child frame
derived from Microsoit’s CMDIChildWnd that 1s of the

class CMDITextWnd 10938. This object gives rise to a child
window that 1s modified from the Microsoft original 1n that
its title line (positioned above the window) may be dynami-
cally altered while the program is 1n operation.

This first child object launches within itself an instance of
the CMCIView 10940 object, which launches MCIWnd
10944 to display the sequence of video 1images.

The CMci1View object 10944 also launches a CMCIWnd
object 10950. The CMCIWnd object 10950 attaches 1itself to
the MCIWnd object 10944 so that Windows operating sys-
tem events come to the CMCIWnd 10950 object mstead of
being sent directly to the MCIWnd object 10944. In most
cases the CMCIWnd 10950 object merely forwards the
events to the MCIWnd object 10944. The CMCIWnd object
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10950 intercepts mouse events, so that 1t may sense operator
clicks on the overlay objects. The CMCIWnd object 10950
also 1ntercepts MCIWnd redraw requests, forwards these
requests to MCIWnd 10944 for video refresh, and then
redraws the overlay objects associated with the video frame
being displayed.

The CMc1View and MCIView objects are the lower-most
of the seven objects shown 1n FIG. 26 within the CMain-
Frame object 10905. Accordingly, the user sees upon the
screen a large window 10100 (FIG. 19) within which a small
window 10110 appears having video playback control
10108.

S1x more windows may be opened by the user through
activation of the View pop down menu, as has been
described. Each of these windows corresponds to an addi-
tional pair of nested objects which appear within the CMain-
Frame object 10905 shown 1n FIG. 26.

I1 the user opens the Plan View: XY window 10120 (FIG.
19), then the object CMDITextWnd 10906 containing the
object CPlanView 10920 1s created within the CMainFrame
object 10905, and this pair of objects together create the
child window shown at 10120 1n FIG. 19. If the user opens
the Elev View:X7Z window 10130, then the object CMDI-
TextWnd 10911 contaiming the object CElevView 10935 is
created within the CMainFrame object 10905, and this pair
ol objects together create the child window shown at 10130
in FI1G. 19. If the user opens the Orient View window 10180,
then the object CMDITextWnd 10914 containing the object
COrientView 10945 1s created within the CMainFrame
object 10905, and this pair of objects together create the
child window shown at 10180 1n FIG. 19.

If the user opens the Yaw View window 10140, then the
object CMDITextWnd 10918 containing the object CYaw-
View 10910 i1s created within the CMainkFrame object
10905, and this pair of objects together create the child win-
dow shown at 10140 1n FIG. 19.

I1 the user opens the Pitch View window 10195, then the
object CMDITextWnd 10923 containing the object CPitch-
View 10925 i1s created within the CMainFrame object
10905, and this pair of objects together create the child win-
dow shown at 10195 1n FIG. 19.

If the user opens the Roll View window 10160, then the
object CMDITextWnd 10923 containing the object CRoll-
View 10913 1s created within the CMainFrame object, and
this pair of objects together create the child window shown
at 10160 in FIG. 19.

As the user closes the windows, the corresponding pairs
of objects are destroyed.

The objects, once created, send messages back and forth
to each other over the paths illustrated 1n FIG. 27. The fol-
lowing discussion does not consider messages directed to
the window frames (to adjust the frame size, for example)
and to the child window {frame object instances
CMDITextWnd, which are not shown to simplity FIG. 27.

When the user “talks™ to the program, using the keyboard
or mouse, 1n general the user communicates with the active
window (1n the case of the keyboard) or the window that the
mouse 1s 1n (in the case of the mouse), selecting a different
active window by clicking within the window boundaries.
The nine windows shown in FIG. 19 to which the user
“talks” correspond to the ten objects numbered 10905,
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10910, 10915, 10920, 10925, 10935, 10940, 10944, 10945,
and 10950 1n FIGS. 26 and 27. So these ten objects recerve
messages from the user and must respond.

The central coordinating object 1s the document object,
which 1s an mnstance of CVidDoc 10927 which 1s derived
from the class Cdocument (a Microsoit class). This object
contains the key system variables that determine the state of
the system. Included, as illustrated in FIG. 27, are the name
of the file being processed, the number of the current frame
being displayed, the current zoom level, the minimum and
maximum values of coordinates that are used 1n the displays,
and an object 10909 which 1s an 1nstance of the class Tla__
File, which stores and manipulates the positional data. (The
minimum and maximum values of the coordinates are
derived from the file data itself as the extreme values found
within this object.)

If any window receirves a message that calls for adjust-
ment of one of the key system variables, that message 1s sent
immediately to the document object CVidDoc 10907. The
value of the key vanable 1s adjusted, and then the document
object 10907 broadcasts an “Update All Views” message
over the path 10980 to the MCIWnd child window object
10944, over path 10911 to object 10910, over path 10921 to
object 10920, over path 10926 to object 109235, over path
10916 to object 10915, over path 10936 to object 10935,
over path 10941 to object 10940, and over path 10946 to
object 10945. Each responds accordingly. The “Update All
Views” message contains a hint that says either:

1. Rewrite Everything, or

2. Just Do Current Frame.

The “rewrite everything” hint causes each window to be
redrawn completely. The “just do current frame™ hint causes,
for example, just one point to be changed from blue to red.

The individual window objects next commumnicate with
the document object 10907 over paths 10911, 10916, 10921,
10926, 10936, 10941, and 10946 and receive information
via paths 10912, 10917, 10922, 10927, 10937, 10942, and

10947 to learn of the new state of the system and to retrieve
from the document object 10907 whatever data they need to
update their respective windows. For example, 11 the user at
10902 clicks upon the “zoom out” push button 10146 (FIG.
19), this action 1s communicated to the object CMainkFrame
10905 associated with the outer window frame. The object
10905 communicates this message over the path 10904 to
the document object 10907. The Zoom Level variable 1s
updated within the object 10907, and an “Update All
Views—Rewrite Everything” message 1s broadcast over the
paths 10911, 10916, 10921, 10926, 10936, 10941, 10946,
and 10980 to the remaining objects, except for the CMci-
Wnd object 10950. This object receives its update messages
before they are sent to the MCIWnd object 10944, and are
re-routed by the operating system. Then each of the objects
10910, 10915, 10920, 10925, 10935, 10940, and 10945 must
send messages to the document object 10907 requesting all
of the positional information (from ““I'la_ File”) so that they
may repaint their plots of camera motion. They also request
the current frame number so that they can color the plot of
the current frame position red 1n color. The object 10944,
which simply needs to recompute and display the camera’s
orientation when capturing the current frame, simply
requests the current frame number and the positional data
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relevant to that one frame. The object 10944, after verifying
that the current frame value has not changed, simply does
nothing 1n this case.

Double clicking on the path 1n one of the windows 10110,
10120, 10130, 10140, 10150, 10160, and 10180 (FIG. 19)

causes one of the objects 10910, 10915, 10920, 10925,
10935, 10940, or 10945 to send a message to the document
object 10907 reporting a new value for the current frame
number. In response, the document object broadcasts over
the paths 10912, 10917, 10922, 10927, 10937, 10942,
10947, and 10981 the message “Update All Views—Rewrite
Everything ” to the objects 10910, 10915, 10920, 10925,
10935, 10940, 10944 and 10945. In response, the objects

10910, 10915, 10920, 10925, 10935, 10940, and 10945
redraw their plots totally, requesting the necessary data from

the document object 10907. The CMCIView object 10940,
after determiming, that the current frame had changed, would
request the display of the designated new frame by the MCI-
Wnd object from Microsoit 10944. That request i1s 1nter-
cepted by CMc1Wnd object 10950, which refreshes the over-
lay after the MCIWnd object 10944 finishes 1ts update.
When the user clicks upon one of the positioning controls
10142, 10143, 10144, or 10145 1n the tool bar (FIG. 19),

these actions are communicated over the path 10903 to the
CMainFrame object 10905 which, 1n a stmilar manner, sends
a frame update message over the path 10904 to the document
object 10907 and triggers a similar response to that just

described.

When the user activates the video controls within the child

window 10110 (FIG. 19) that contains the video 1mage, the
user 1s communicating directly with the Microsoit MCI-
Wind object 10944. This object updates the display of the
image as requested and sends a message 1indicating the new
frame number to the object CMCIView 10940. The object
10940 must then communicate this action to the document
object 10907 over the path 10942. In this case, 11 the MCI-
Wind viewer 1s playing the video as an animated display,

then the document object 10907 broadcasts a message over
the paths 10912, 10917, 10922, 10927, 10937, 10942,

10947, and 10980 “Update All Views—IJust Do Current
Frame.” Accordingly, the objects 10910, 10915, 10920,
10925, 10935, 10940, and 10945 need simply to request
information concerning the new current frame.

The program provides the facility of navigating through
the video database by selecting frames of data from the data-
base which represent translations and rotations from the
position of the current frame’s point of view. The program
searches the database for frames which best meet the
criteria, and the operator then selects one of these frames
using the keys or mouse as described above. The following
paragraphs describe the method the program uses to select
the best frame for each of the possible operator choices (turn
lett, turn right, jump forward, jump backward, jump forward
and simultaneously turn right, jump forward and simulta-
neously turn lett).

First, the program 1nitializes variables which are used to
keep track of the best entry found for each of the selections
above. Cw__slope 1s clockwise, and ccw__slope 1s counter-
clockwise. Fov i1s the slope data for the current frame. Leit-
Diag 1s the slope data for the frame to the left of the current
frame, 1ts centerline close to twice the fov counterclockwise
of the current frame’s centerline. RightDiag 1s the slope data
for the frame to the right of the current frame, 1ts centerline
close to twice the fov clockwise of the current frame’s cen-
terline.
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void Tla Flle::select_field of view(unsigned short current frame)

{

unsigned short fov_subset index = MIN FRAME COUNT;// index used w/ subset array
unsigned short subset index; // 1index used w/ data arrays

.Slope:Data Fav;
SlopeData LeftDiag;
SlopeData RightDiag;

float IndexCurrentSlope;

Int current_X = get X data{current frame); // get x coor for current frame

int current vy = get y data(current frame); // get y coor for current frame

int tndex x;  // X coor of point/frame under test of being in camera’s field of view
int index y;

BOOL same_location;  // true if indexed point and curreat point are same point or location

BOOL 1n_front_fov;  // true if indexed point is in the camera’s field of view at current pt

BOOL 1n_rear fov; // true 1f indexed point is in the current pt camera’s rear view
mirror's fov

BOOL in_left_diag;  // true if indexed point is in the left diagonal's range as seen from
current pt

BOOL in_nght _diag; // true if indexed point is in the right diageonal's range as seen from

current pt

// time saving combination used in side frame selection tradeoff
[/ m Selecting Tradeoff 1s 1 to 17

float DistanceGain = (float)(NEUTRAL_DIST_GAIN * m_Selecting Tradeoff /

DEFAULT . PRIORITY); /I ~1/8 to 2+

// calc slope of line of clockwise field of view limit within the xy plan (plan view)
Fov.cw_slope = get yaw data(current frame) - (m HorzFieldOfViewAngle / 2);

// calc slope of line of counterclockwise field of view limit within the xy plan (plan view)
Fov.ccw_slope = gat_yaw data(current_frame) + (m_HorzFizldOfViewAngle / 2);

CalcSlopeDala converts the cw_slope and ccw slope angles of the current frame to ths

tangent of the angles, with quadrant. (FIG. 33, step 11520)
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CalcSlopeData(&Fov); // calc variables used in testing slope limits. Means of testing if yaw
in bounds

// sets goal for side frame selection as fraction of
m_HorzEieldOfViewAngle
float TurnAngleGoal = m SideFrameGain * m_HorzFieldOfViewAngle;

// left is cew and TurnAngleGoal 15 added to turn left
/l right is cw and TurnAngleGoal is subtracted to turn right
if (TurnAngleGoal > m MaxHeadingAngle) // note this is a new use for
m MaxHeadingAngle
{
// want right most limit of left diag range to be left of current yaw
LeftDiag.cw slope = get yaw data(current frame) + TurnAngleGoal -
m MaxHeadingAngle;
// want left most limit of right diag range to be right of current yaw
RightDiag.ccw slope = get yaw data(current frame) - TurnAngleGoal +
m MaxHeadingAngle,
}

else

{

LeftDiag.cw_slope = get yaw_data(current_trame);
RightDiag.ccw slope = get yaw data{current frame);

]

[eftDiag.ccw_slope
m_MaxHeadingAngle;

RightDiag.cw slope = get yaw data(current_frame) - TurnAngleGoal -
m MaxHeadingAngle;

// note this is a new use for m MaxHeadingAngle
get yaw data(current frame) + TurnAngleGoal +

CalcSlopeData converts the cw_slope and ccw_slope angles of the LeftDiag and RightDiag to the

tangent of the angles, with quadrant. (FIG. 33, step 11530}

CalcSlopeData(&LeftDiag); // calc variables used in testing slope limits. Means of testing 17
yaw In bounds

CalcSlopeData(&RightDiag); // calc variables used in testing slope limits. Means of testing 1f
yaw in bounds

m_FovSubsetindexMax = NO_FRAMES;

float CurrentPointYaw = get yaw data(current frame); // use for finding most aligned fov pt
float IndexPointYaw;

float Cos_CurrentPointYaw = (float)cos(CurrentPointYaw * DEG_TO_RAD);

float Sin CurrentPointYaw = (float)sin(CurrentPointYaw * DEG_TO_RAD);

float xCurrentMinusindex; // diff in x between current pt and index pt
float yCurrentMinusindex; // diff in y between current pt and index pt

// 1n these rating, smaller 1s better
// used for selecting best frames to use for right and left mciwnds

float AdjIndexCurrentDistanceRating; // rating by distance from current point adj
for angle

float WeightedRadijusDistanceRating; /! rating by distance from neighbor hood
radius

float LeftindexRating; // measure of merit for indexed pt as lefit pt
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float RightIndexRating; // measure of merit for indexed pt as right pt
float FovindexRating; // measure of merit for indexed pt as fwd jump

pt

float FwdSmallestDisplayRating = HIGH_VALUE RATING; // best measure of merit for

fwd jump pt so far
float RearSmallestDisplayRating = HIGH VALUE RATING; // best measure of mert for

rear jump pt so far
float LeftSmallestDisplayRating = HIGH VAILLUE RATING; // best measure of ment for

left display pt so far
float RightSmallestDisplayRating = HIGH VALUE RATING; // best measure of ment for

right display pt so far
float LeftSmallestTurnRating = HIGH VALUE RATING; // best measure of ment for

left turn pt so far
float RightSmallestTurnRating = HIGH VALUE RATING; // best measure of ment for

right turn pt so far
float LeftSmallestDiagRating = HIGH VALUE RATING; // best measure of ment for

left diag turn pt so far
float RightSmallestDiagRating = HIGH _VALUE_RATING; // best measure of merit for

right diag turn pt so far

float DisplayYawAbsDiff; // abs diff in yaw of limit yaw + tnal display
pts

float TurnYawAbsDiff; /! abs diff in yaw of limit yaw + trial turn pts

float CurrentIndexYawAbsDiff; /] abs diff in yaw of current and index pts

float IndexCurrentYawDiff; /! signed diff in yaw of current and index pts

BOOL IndexYawToleftOfCurrentYaw; // is candidate frame’s yaw pointing to
left of current yaw

float DistanceSquared; /! square of distance betw index and current pts.

float NeighborRadiusSquared = m_ NeighborRadius * m NeighborRadius;

sqr of neighborhood radius

float MultipliedNeighborRadiusSquared // sqr of multiplied limit of neighborhood

radius

= m NeighborhcodMultiplier * m_NeighborhoodMultipler *
NeighborRadiusSquared,

The result variables are set to reflect the selection results when no frames are found. (FIG. 33,

step 11510)

m FovPtClosestinYaw = NO_FRAMES; /! no closest point

m_RearFovPtClosestinYaw= NO FRAMES; // no closest point

m_PtleftFOV = current_frame; /1 if find nothing better, show behind
current point

m_PtRightFOV = current frame; // if find nothing better, show behind
current point;

m_PtLeftTumn = current_frame; // if find nothing better, show over current
point; // no closest point

m_ PtRightTumn = current_frame; /! if find nothing better, show over current
point;

m PtleftDiag = NO FRAMES;

m_PtRightDiag = NO_FRAMES;
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float LeftFovPtYaw = CurrentPointYaw -+ m HorzFieldOfViewAngle; // don’t
worry if > 180’

float RightFovPtYaw
worry if < -180°

float Left2FovPtYaw = CurrentPointYaw + (2 * m HorzFieldOfViewAngle); // don’t

worry if > 180’
float Right2FovPtYaw = CurrentPointYaw - (2 * m_HorzFieldOfViewAngle); // don't

worry if < -180°

}

CurrentPointYaw - m HorzFieldOfViewAngle; // don't

float LeftTurmPtYaw = CurrentPoimntYaw + TurnAngleGoal; // don’t worry if
> 180°

float RightTurnPtYaw = CurrentPointYaw - TurnAngleGoal; /! don’t worry if
< 180°

Now iterate through all frames in the database. (FIG. 32, Steps 11430, 11450, and 11465) The

search may be limited to a subset of the all the frames in the database, if the operator has zoomed

in on one of the data windows (Plan View, Elev. View, Yaw View, Pitch View, Roll View).

unsigned short frame index;
if (m zoom subs~t_index_max != NO_FRAMES) /! If there are points 1n reg subset

{
for (subset index = MIN FRAME COUNT,;

subset index < = m zoom_subset_index_max; // do all pts in reg subset defined by

VIEWS
subset_index+ +

)
{

in_front fov = FALSE;
in_rear_fov FALSE,
in left diag = FALSE;
in right diag = FALSE;

frame index = get frame from zoom_subset(subset_index);
IndexPointYaw = get yaw data(frame index);

Get the X and Y data for the frame. (FIG. 34, step 11610) In this loop “index” is the mdex of the

frame being tested. “Current” is the index of the currently displayed frame.

tndex X = get X data(frame_index);
index_y = get y data(frame Index);

/! calc offset using normal X,y axes
xCurrentMinusindex = current_x - index x;
yCurrentMinusIndex = current_y - index_y;

Calculate distance from current frame's location to index frame's location on plan view. (FIG. 34.

step 11620)

DistanceSquared = (float)(xCurrentMinusindex*xCurrentMinusindex +
yCurrentMinusIndex*yCurrentMinusIndex);
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/! calc slope of line from current point to point under test (subset_index point)

// first prevent divide by zero
same_location = FALSE;

- -

Calculate yaw difference between current frame and index frame. Make sure to keep result in range

of +/- 180 degrees. (FIG. 34, step 11630)

IndexCurrentYawDiff = IndexPointYaw - CurrentPointYaw; // pos yaw is counter

clockwise
if (((IndexCurrentYawDiff > = 0) // 1f candidate’s yaw 1s closer to current pt’s yaw in

ccw dir
&& (IndexCurrentYawDiff <= 180) // but po wrap around that makes far really close

on other side

)
11 (IndexCurrentYawDiff < -180) // appears to be clockwise

// but does wrap around so makes big diff really close on
other side

)

{
IndexYawToleftOfCurrentYaw = TRUE:

}

else

{
IndexYawToleftOfCurrentYaw = FAILSE:

]

CurrentindexYawAbsDiff = (float)(fabs(CurrentPointYaw - IndexPointYaw));

/{ Cant be further apart than 180
1f (CurrentIndexYawAbsDiff > = 180)

{

CurrentlndexYawAbsDiff = 360 - CurrentindexYawAbsDift;

}

Test for special cases of slope for the line between the index and the current. The math calculation

causes an error if the slope 1s vertical. Then calculate slope in the more general case. (FIG. 34,

step 11640}

// 'you would think that checking index_X and index_y would catch this
// but the math 1s sometimes inexact evidently so explicitly check if same point
if (current frame == frame index)

/! two points are on exactly same spot. You cant see yourself in your field of view

IndexCurrentSlope = 0; /! s/b undefined, really.
same location = TRUE;

}

eise

{

if {index x == current_x)

{

if (lndex y > current y)

{
IndexCurrentSlope = MAX SLOPE;

)

else if (index y < current_y)
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!
IndexCurrentSlope = -MAX SLOPE;
;
else

{

// two points are on exactly same spot. You cant see yourself in your field of view

IndexCurrentSlope = 0; /! s/b undefined, really.
same Jocation = TRUE;
}

}

else // ok tc calc slope. no divide by zero

{

IndexCurrentSlope = ((float)index y - current_y) / (index_X - current_X);

j
}

Test the indexed point to find if it is in the front or rear field of view (fov) of the current frame,
in the RightDiag’s fov, or in the LeftDiag’s fov. Jump and turn right’s frame will be selected from
the RightDiag fov. Jump and turn left's frame will be selected from the LeftDiag fov. (FIG. 54,
step 11650)

// So, is the indexed point within the FRONT field of view of current point?

// Is it between the cw and ccw slope limits? If so, then in fov

// Note. Here X,y are data x,y, not display pixel x,y. First quadrant 1s pos X and pos y.
if ( 1ndex y > = current y)

{
if (index x > = current x) // index quadrant = FIRST _QUADRANT,
{ // slopes in this quadrant are positive. pos X/ pos y
if (( (Fov.ew quadrant == FIRST_QUADRANT) // both same quadrant
&& (IndexCurrentSlope > = Fov.cw _slope) // proper relationship
)
'} ( Fov.ew _quadrant == FOURTH_QUADRANT) // (IndexCurrentSlope > =
cxﬁ_slope) 1s automatic here
)
{
if (( Fov.ccw _quadrant == FIRST QUADRANT) // both same quadrant
&& (IndexCurrentSlope < = Fov.ccw slope) // proper relationship
)

Il (Fov.cew quadrant == SECOND_QUADRANT) // (IndexCurrentSiope <=

cw_slope) is automatic here

)

{
in front fov = TRUE,;

} /f cew
Y, I ew

/! see if in left diag yaw range
if (( (LeftDiag.cw _quadrant == FIRST QUADRANT) // both same quadrant
&& (IndexCurrentSlope > = LeftDiag.cw slope)// proper relationship
)

4 ( LeftDiag.ew quadrant == FOURTH QUADRANT) // (IndexCurrentSlopz
> = cw_slope) 1s automatic here

)

{
if (( (LefiDiag.ccw quadrant == FIRST QUADRANT) // both same quadrant
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&& (IndexCurrentSlope < = leftDiag.ccw_slope) // proper relationship
)
i (LeftDiag.cew_quadrant == SECOND_QUADRANT) // (IndexCurrentSlops
< = cw_slope) is automatic here
)
!
in_left diag = TRUE;
} /1 cow
} I ew

// see if in right diag yaw range
if (( (RightDiag.cw_quadrant == FIRST _QUADRANT) // both same quadrant

&& (IndexCurrentSlope > = RightDiag.cw_slope) // proper relationship
)
'} ( RightDiag.cw_quadrant == FOURTH_QUADRANT) // (IndexCurrentSlope
> = cw_slope) i1s automatic here
)
{
1f (( (RightDiag.ccw_quadrant == FIRST QUADRANT) // both same quadrant
&& (IndexCurrentSlope < = RightDiag.ccw_slope)// proper relationship
)

1 (RightDiag.ccw_quadrant == SECOND_QUADRANT) // (IndexCurrentSlope
< = ¢w_slope) 1s automatic here

)
{
in_right diag = TRUE;
} /] cew

} M ew

} /! if quadrant
else // {index x < current x) index_quadrant = SECOND QUADRANT;

{ // slopes io this quadrant are negative. neg x/ pos y
1t (( (Fov.cw_quadrant == SECOND_QUADRANT) // both same quadrant
&& (IndexCurrentSlope > = Fov.cw_slope) // greater than here means less
negative
)
i1 { Fov.ew quadrant == FIRST QUADRANT) // must be ok so far
)
{

if (( (Fov.ccw_quadrant == SECOND_ QUADRANT) // both same quadrant
&& (IndexCurrentSlope < = Fov.ccw slope) // less than here means more

negative
)
it (Fov.cew quadrant == THIRD QUADRANT) // must be ok
)
{
in_front fov = TRUE;
b /] cow
} o/ ew
/! see if in left diag yaw range
if (( (LeftDiag.cw_quadrant == SECOND_QUADRANT) // both same quadrant
&& (IndexCurrentSlope > = LeftDiag.cw_slope)// greater than here means less
negative
)
{1 ( LeftDiag.cw_quadrant == FIRST QUADRANT) // must be ok so far

{
)
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{
if (( (LeftDiag.ccw_quadrant == SECOND_QUADRANT) // both same quadrant

& & (IndexCurrentSlope < = leftDiag.ccw slope)// less than here means more
negative

)
11 (LeftDiag.cew_quadrant == THIRD QUADRANT) // must be ok
)

{

in_left diag = TRUE;

} [ cow
} M ow

// see if 1n nght diag yaw range
if (( (RightDiag.cw quadrant == SECOND_QUADRANT) // both same quadrant
&& (IndexCurrentSlope > = RightDiag.cw_slope) // greater than here meanps

less negative

)
( RightDiag.cw quadrant == FIRST QUADRANT) // must be ok so far

)
|

if (( (RightDiag.ccw _quadrant == SECOND_QUADRANT) // both same quadrant
&& (IndexCurrentSlope < = RightDiag.ccw slope) // less than bere means more

negative
)
‘1 (RightDiag.ccw guadrant == THIRD QUADRANT) // must be ok
)
{
in_right_diag = TRUE;
} [/ cew
} M ew
1 // else quadrant
}
else /! (index y < current y)
{
if (index x > = current_x) // index quadrant = FOURTH_QUADRANT,;
{ // slopes in this quadrant are negative. pos X/ neg 'y
if (( (Fov.cw quadrant == FOURTH_QUADRANT) // both same quadrant
&& (IndexCurrentSlope > = Fov.cw_slope) // greater than here means less
negative
)
11 (Fov.ew quadrant == THIRD QUADRANT)
)
{
if (( (Fov.ccw quadrant == FOURTH_QUADRANT) // both same quadrant
&& (IndexCurrentSlope < = Fov.ccw_slope) // less than here means more
negative
)

! { Fov.ccw quadrant == FIRST QUADRANT)
)

{

in front fov = TRUE;

Y/ cow
b/ ew

// see if in left diag yaw range
if (( (LeftDiag.cw quadrant == FOURTH_QUADRANT) // both same quadrant
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&& (IndexCurrentSlope > = LeftDiag.cw _slope) // greater than here means
less negative
)
1] (LeftDiag.cw quadrant == THIRD QUADRANT)
}
{

1f (( (LeftDiag.ccw quadrant == FOURTH QUADRANT) // both same quadrant
&& (IndexCurrentSlope < = LeftDiag.ccw_siope) // less than here means more

negative

)

|1 ( LeftDiag.ccw_quadrant == FIRST QUADRANT)
)

{

in left diag = TRUE;

} /] cow

y I ew

/! see if in right diag yaw range
1f (( (RightDiag.ew quadrant == FOURTH QUADRANT) // both same guadrant
&& (IndexCurrentSlope > = RightDiag.cw_slope) // greater than here means
less negative

)
¢ (RightDiag.cw_quadrant == THIRD_QUADRANT)
)

!
1f (( (RightDiag.ccw_quadrant == FOURTH QUADRANT) // both same quadrant

&& (IndexCurrentSlope < = RightDiag.ccw slope) // less than here means
more negative

)
i1 ( RightDiag.ccw_quadrant == FIRST QUADRANT)
)
{
in_right diag = TRUE;
b I cow
} M ew

b //1f quadrant
else  // (index_x < current_x)  index_quadrant = THIRD QUADRANT;

{ /] slopes in this quadrant are positive. neg x/ neg y
if (( (Fov.cw_quadrant == THIRD QUADRANT) // both same quadrant
&& (IndexCurrentSlope > = Fov.cw_slope) /! proper relationship
)
|| ( Fov.ew_quadrant == SECOND QUADRANT)
)
{
if (( (Fov.cew_quadrant == THIRD QUADRANT) // both same quadrant
&& (IndexCurrentSlope < = Fov.cew slope) // proper relationship
)
i (Fov.ccw_quadrant == FQURTH QUADRANT)
)
{
in_front fov = TRUE;
b /] cow
b/ ew

// sze 1f in left diag yaw range
1 (( (LeftDiag.cw _quadrant == THIRD QUADRANT) // both same quadrant
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&& (IndexCurrentSiope > = LeftDiag.cw_slope) // proper relationship

)
|1 ( LeftDiag.cw quadrant == SECOND QUADRANT)
)

{
if (( (LeftDiag.ccw quadrant == THIRD QUADRANT) /! both same quadrant

&& (IndexCurrentSlope <= LeftDiag.ccw_slope) // proper relationship

) |
(LeftDiag.ccw quadrant == FOURTH QUADRANT)

|
| |

)
!

in left diag = TRUE;

} /] cew

} [/ ew
// see if in right diag yaw range
if (( RightDiag.cw quadrant == THIRD QUADRANT) // both same quadrant
&& (IndexCurrentSlope > = RightDiag.cw slope) // proper relationship
)

i1 ( RightDiag.cw quadrant == SECOND QUADRANT)

{

if (( (RightDiag.cew quadrant == THIRD QUADRANT) // both same quadrant
&& (IndexCurrentSlope < = RightDiag.ccw slope) // proper relationship

)

!

(RightDiag.cew quadrant == FOURTH QUADRANT)

!
)
{
in right diag = TRUE;
Y 1/ cow
Y/ ew
} 1/ else quadrant

Calculate weighted distance rating, based on the neighbor radius set by the operator, which defines

the optimal distance to jump forward or backward from the current frame. (FIG. 34, step 11660)

WeightedRadiusDistanceRating = (float)(fabs(NeighborRadiusSquared - DistanceSquared)

* DistanceGain);

Test index point to see 1f it is better than the current candidate for the jump forward or jump

backward selection. (FIG. 32, step 11493)

1f (!same location) // indexed and current points are not at same X,y

FovindexRating = CurrentindexYawAbsDiff + WeightedRadiusDistanceRating;

/! find ereen dot’, jump forward pownt and find which pts are in forward

/! field of view subset
if (in_front fov) // 1f in field of view

{

// put this subset index point in further subset of points in field of view
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*(m_plovSubsetlndex + fov subset index) = *(m_pZoomSubsetIndex +
subset 1ndex);

fov_subset mdex+ +; // increment after using, get ready for loop
m_FovSubsetIndexMax+ +; // equal to highest index 1n this fov subset

if (m FovPtClosestinYaw == NO FRAMES) //1f we don’t have a current

champion
{ // add criterion of keeping inside twice the neighborhood radius

if ((MultipliedNeighborRadiusSquared > = DistanceSquared) // in the double hood
/I Use this point only if it is not too different from current point’s heading

// Note the first champ is closer to the current angle difference than max limit
&& (CurrentlndexYawAbsDiff < m MaxHeadingAngle)

)

{

m FovPtClosestinYaw = subset_index;

FwdSmallestDisplayRating = FovindexRating; // save for next candidate

cOmparison

;
}

glse // bave a valid champ

{

// if this fov pt has smaller total rating than defending champ

if ((FwdSmallestDisplayRating > FovIndexRating)
/! add criterion of keeping inside twice the peighborhood radius

&& (MultipliedNeighborRadiusSquared > = DistanceSquared) // in the hood
/! Use this point only if it is not too different from current point's heading
/! Note the first champ is closer to the current angle difference than max limit

&& (CurrentlndexYawAbsDiff < m MaxHeadingAngle)
)
{

m FovPiClosestInYaw = subset index; // save for next candidate
comparson
FwdSmallestDisplayRating = FovindexRating;
} // end if new champ beats old champ
} 7/ end else have a valid champ
}  // end jump forward point
else  // not in front fov

{

// So, i1s the indexed point within the REAR field of view of current point?
// Is it between the reverse cw and ccw siope limits? If so, then in rear fov
/! Note. Here x,y are data x,y, not display pixel x,y. First quadrant is pos x and

pos Y.
if ( index y > = current y)
1
if (index_x > = current_x) // index_quadrant = FIRST QUADRANT;
{ -
if ({ (Fov.rear cw _quadrant == FIRST QUADRANT) // both same quadrant
&& (IndexCurrentSlope > = Fov.cw_slope) /! proper relationship
)
' ( Fov.rear_cw _quadrant == FOURTH QUADRANT) // (-
IndexCurrentSlope > = rear cw_slope) is automatic here
)
!
\f (( (Fov.rear cew quadrant == FIRST QUADRANT) // both same guadrant
&& (IndexCurrentSlope < = Fov.cew_slope) // proper relationship

)
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|1 {Fov.rear_ccw_quadrant == SECOND_QUADRANT) // (-
IndexCurrentSlope < = rear ccw slope) i1s automatic here

)

{
in rear fov = TRUE;
} // cew
} /I ew
) // if quadrant
else // (index x < current x)  index quadrant = SECOND QUADRANT;
{
if (( (Fov.rear cw_quadrant == SECOND QUADRANT) // both same quadrant
&& (IndexCurrentSlope > = Fov.cw_slope) // proper relationship

)
Il { Fov.rear cw _quadrant == FIRST QUADRANT) // must be ok so far
)

{
if (( (Fov.rear ccw quadrant == SECOND QUADRANT) // both same quadrant
&& (IndexCurrentSlope < = Fov.ccw slope) // proper relationship
)
i | (Fov.rear ccw_quadrant == THIRD QUADRANT) // must be ok
)
{
in rear fov = TRUE;
} // cew
} M ocow

Y // else quadrant

}

else  // (index y < current y)

{
if (index_x > = current_x) // 1ndex _quadrant = FOURTH QUADRANT;
{
\f (( (Fov.rear cw_quadrant == FOURTH QUADRANT) // both same quadrant
&& (IndexCurrentSlope > = Fov.cw_slope) /! proper relationship

)
(Fov.rear cw _quadrant == THIRD QUADRANT)

| 1
| |
)
{
if (( (Fov.rear cew quadrant == FOURTH QUADRANT) // both same quadrant
&&: {IndexCurrentSlope < = Fov.ccw slope) /! proper relationship
)
|| ( Fov.rear ccw_quadrant == FIRST QUADRANT)
)
f
in_rear fov = TRUE;
.} 1 cew
} M ew
} /7 if quadrant
else  // (index_x < current x)  i1ndex quadrant = THIRD QUADRANT;
{

1f (( (Fov.rear cw quadrant == THIRD QUADRANT) // both same quadrant
&& (IndexCurrentSlope > = Fov.cw slope) /! proper relationship

)

11 { Fov.rear cw quadrant == SECOND QUADRANT)

)
{
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if (( (Fov.rear ccw _quadrant == THIRD QUADRANT) // both same quadrant
&& (IndexCurrentSiope < = Fov.ccw_slope) /! proper relationship

)
!l (Fov.rear ccw_quadrant == FOURTH_QUADRANT)
)
{
in rear fov = TRUE;
} /1 cow

y N ew
} /] else quadrant

)

// see if have new champion, find rear fov pt most aligned 1n yaw to current

frame
if (in_rear fov) /1 if in rear view field of view

\

if (m RearFovPtClosestlnYaw == NO_FRAMES) // 1f we don’t have a current
champien
{ // add criterion of keeping inside twice the neighborhood radius
if ((MultipliedNeighborRadiusSquared > = DistanceSquared) // 1n the double

hood
// Use this point only if it is not too different from current point's heading

// Note the first champ is closer to the current angle difference than max limit
&& (CurrentIndexYawAbsDiff < m_MaxHeading Angle)

)
1

m RearFovPtClosestinYaw = subset_index;
RearSmallestDisplayRating = FovIindexRating; // save for next candidate

comparison

}
}

else // have a valid champ

{

!/ if this rear fov pt has smaller total rating than defending champ

if {(RearSmallestDisplayRating > FovindexRating)
// add criterion of keeping inside twice the neighborhood radius

&& (MultipliedNeighborRadiusSquared > = DistanceSquared) // in the hood
{// Use this point only if it is not too different from current point's heading
// Note the first champ is closer to the current angle difference than max limit

&& (CurrentindexYawAbsDiff < m_MaxHeadingAngle)

)
{

m_RearFovPtClosestinYaw = subset_index;
RearSmallestDisplayRating = FovindexRating; [/ save for next candidate

comparison
} // end if new champ beats old champ
} 7/ end else have a valid champ

}  // end if in rear fov
} // end else not in front fov
} // end if not same iocation

if m FovPtClosestinYaw == current_frame) // s/b impossible but .....

{

AfxMessageBox("Tla File::select field of view() m_FovPtClosestinYaw ==

current frams");

}
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if (m_RearFovPtClosestinYaw == current_frame) // s/b impossible but .....

{

AfxMessageBox("Tla File::select field of view() m RearFovPtClose stInYaw ==
current frame”);

}

Test index point to see if it is better than the current candidate for the jump and turn right or jump

and turn left selection. (FIG. 32, step 11495)

f/ looking for side frame candidates
if ((NeighborRadiusSquared > = DistanceSquared) // in the hood

&& (lsame location) // and indexed and current points do not have identical x,y
location
)
{
// the trig is there to forgive offsst if the side frame is pointing in line w/ the offset
vector
//  running from the current center point to the side frame. This is because offsets
are less

/{ noticeable if there are 1n the direction 1n which you are looking. Move your
head forward
// and back like a pigeon. Some movement of objects but not as much as when

you move
//  your head left and right. Don’t want to forgive completely so put in a

mInimum.
AdjIndexCurrentDistanceRating
= (float)((fabs(xCurrentMinusindex * (fabs_quick cos(IndexPointYaw) + 0.2))
+ fabs(yCurrentMinusindex * (fabs quick sin(IndexPointYaw) 4+ 0.2))
)

* DistanceGain

)i

// do left displayed frame
if (IndexYawToleftOfCurrentYaw == TRUE)
{ ..
DisplayYawAbsDiff = (float)(fabs(LeftFovPtYaw - IndexPointYaw));
// Cant be further apart than 130
if (Display YawAbsDiff > = 360)
\

Display YawAbsDiff -= 360;

}

else if (DisplayYawAbsDiff > = 180)

{
DisplayYawAbsDiff = 360 - DisplayYawAbsDiff;

}
/! within neighborhood, within constrained subset m MaxHeadingAngle
/1 if this pt is closer in yaw and in distance to goal than defending champ
LeftindexRating = DisplayYawAbsDiff + AdjIndexCurrentDistanceRating;

if (LeftSmallestDisplayRating > LeftIndexRating)

{

/! 1f 15 actually pointing to the correct sidz but not too far

out
if (Left2FovPtYaw <= 180) // nothing weird

{
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if ((IndexPointYaw > CurrentPointYaw)
&& (Left2FovPtYaw > = IndexPointYaw)

)
{

// convert from subset index to frame
m_PtLefiFOV = frame index;
LeftSmallestDisplayRating = LeftlndexRating;// save it as benchmark

)

;
else // weird range split by +/-180 line

{
iIf ((IndexPointYaw > CurrentPomtYaw)

|1 (Left2FovPtYaw > = IndexPointYaw + 360)

)
{
// convert from subset index to frame
m PtleftFOV = frame index;
L eftSmallestDisplayRating = LeftIndexRating;// save 1t as benchmark
j

j
}

Test index point to see if it is better than the current candidate for turn left turn or right tum
selection. (FI1G. 32, step 11495)

// now choose the left turn frame
TumYawAbsDiff = (float)(fabs(LeftTurnPtYaw - IndexPointYaw));
// Cant be further apart than 180
if (TurmYawAbsDiff > = 360)

{
TumYawAbsDiff -= 360;

)
else if (TurmYawAbsDift > = 180)
\
TurnYawAbsDiff = 360 - TurnYawAbsDiff;
}

// within neighborhood, within constrained subset m MaxHeadingAngle
/7 if this pt is closer in yaw and in distance to goal than defending champ
LeftindexRating = TurnYawAbsDiff + AdjlndexCurrentDistanceRating;
if (LeftSmallestTumRating > LeftlndexRating)
{
// 1f 1s actually pointing to the correct side but not too far

out
if (Left2FovPtYaw <= 180) // nothing weird

{

if ((IndexPointYaw > CurrentPointYaw)
&& (Left2FovPtYaw > = IndexPointYaw)

)
1
1
// convert from subset index to frame

m PtleftTum = frame index;
LeftSmallestTurnRating = IeftindexRating;// save it as benchmark
}

}
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else // weird range split by +/-180 Line

{
if ((IndexPointYaw > CurrentPointYaw)

Il (Left2FovPtYaw > = IndexPointYaw + 360)

)
{

/! convert from subset index to fraxme
m PtleftTum = frame_index;
LeftSmallestTurnRating = leftindexRating;// save 1t as benchmark

}
}

j

) /] end if IndexYawToLeftOfCurrentYaw
else /! on index yaw is to the right of the current yaw

{
/! do right displayed frame
DisplayYawAbsDiff = (float)(fabs(RightFovPtYaw - IndexPointYaw)),
/! Cant be further apart than 180
if (DisplayYawAbsDiff > = 360)
{

DisplayYawAbsDiff -= 360;

)
else if (DisplayYawAbsDiff > = 180)

{
DisplayYawAbsDiff = 360 - DisplayYawAbsDiff;

;

// within neighborhood, within constrained subset m_ MaxHeadingAngle
// if this pt is closer in yaw and in distance to goal than defending champ
RightIndexRating = DisplayYawAbsDiff + AdjlndexCurrentDistanceRating;
if (RightSmallestDisplayRating > RightIlndexRating)

// if is actually poiating to the correct side but not too far out

if (Right2FovPtYaw > = -180) /{/ nothing weird
{
if ((IndexPointYaw < CurrentPointYaw)
&& (Right2FovPtYaw < = IndexPointYaw)

)
{

// convert from subset index to frame
m_PtRightFOV = frame index;
RightSmallestDisplayRating = RightIndexRating;// save 1t as benchmark

j
]
else /! weird range split by +/-180 line
{

if (IndexPointYaw < CurrentPointYaw)
'l (Right2FovPtYaw < = IndexPointYaw - 360)

)
f
/{ convert from subset index to frame
m PtRightFOV = frame index;
RightSmallestDisplayRating = RightIndexRating;// save 1t as benchmark
}
}

} // end if m_PtRightFOV
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// now choose the right turn frame
TurnYawAbsDiff = (float)(fabs(RightTurmPtYaw - IndexPomtYaw));

/! Cant be further apart than 180
1f (TurnYawAbsDiff > = 360)

{

TumYawAbsDift -= 360;

}

else 1f (TurnYawAbsDiff > = 180)

{

TurnYawAbsDiff = 360 - TurnYawAbsDiff;

}

// within neighborhood, within constrained subset
// 1f this pt is closer in yaw and in distance to goal than defending champ

RightIndexRating = TurnYawAbsDiff + AdjIndexCurrentDistanceRating;
If (RightSmallestTumRating > RightIndexRating)

{
// 1f 1s actually pointing to the correct side but not too far out
if (Right2FovPtYaw > = -180) // nothing weird
{
if ((IndexPointYaw < CurrentPointYaw)
&& (Right2FovPtYaw < = IndexPointYaw)

)
{

// convert from subset index to frame

m PtRightTum = frame index;
RightSmallestTurnRating = RightIndexRating;// save it as benchmark
}

}

else | /! weird range split by +/-180 line

{

if ((IndexPointYaw < CurrentPointYaw)
| 1 (Right2FovPtYaw < = IndexPointYaw - 360)

)
!

/{ convert from subset index to frame
m_ PtRightTum = frame index;
RightSmallestTurnRating = RightlndexRating;// save it as benchmark

}
}

}  // end if m PtRightTurn

} /! end if not IndexYawTol eftOfCurrentYaw
} /! end if within neighborhood radius

Test mdex point to see if it is better than the current candidate for turn left frame or right frame

display in Triple Mci display mode. (FIG. 32, step 11495)

if (1n_left diag) /f if 1n range
{
/Il now choose the left diag frame
TumYawAbsDiff = (float)(fabs(LeftTurmPtYaw - IndexPointYaw));
// Cant be further apart than 180
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if (TurnYawAbsDiff > = 360)

{
TornYawAbsDiff -=  360;

}
else if (TurnYawAbsDiff > = 180)

{
TurnYawAbsDiff = 360 - TurnYawAbsDiff;

]
LeftindexRating = TurnYawAbsDiff + WeightedRadiusDistanceRating;

if ((m PtlLeftDiag == NO_FRAMES) //if we don’t have a current champion
// or if this pt is closer in yaw and in distance to goal than defending champ

|| (LeftSmallestDiagRating > LeftindexRating)
)

{
// the absolute standards
if (MultipliedNeighborRadiusSquared > = DistanceSquared) // in the double hood

// Use this point only if it is not too different from turn point’s heading
// Note the first champ is closer to the current angle difference than max limit

&& (TurnYawAbsDiff < m MaxHeadingAngie)
)

d
// convert from subset index to frame
m_PtleftDiag = frame 1ndex;
LeftSmallestDiagRating = LeftIndexRating; // save it as bepchmark

}
]

}  // end if in diag range
if (in_right_diag) // if in range

{
// now choose the left diag frame
TurnYawAbsDiff = (float)(fabs(RightTurnPtYaw - IndexPointYaw));

// Cant be further apart than 180
if (TurnYawAbsDitf > = 360)

!
TumYawAbsDiff -= 360;
;
else if (TurnYawAbsDift > = 180)
{
TumYawAbsDiff = 360 - TurnYawAbsDaff;

}

RightIndexRating = TurnYawAbsDiff + WeightedRadiusDistanceRating;

if ((m PtRightDiag == NO_FRAMES) //1f we don’t have a current champion
// or if this pt is closer in yaw and in distance to goal than defending champ

l! (RightSmallestDiagRating > RightIndexRating)
) .
{
// the absolute standards
if (MultipliedNeighborRadiusSquared > = DistanceSquared) // in the double hood

// Use this point only if it is not too different from turn point’s heading
// Note the first champ is closer to the current angle difference than max fimit

&& (TurnYawAbsDiff < m MaxHeadingAngle)
)

// convert from subset index to frame
m PtRightDiag = frame_index;
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RightSmallestDiagRating = RightlndexRating; // save it as benchmmark

)
}

}  // end if in diag range

} // end for
if (m_PtleftFOV == NO FRAMES)
{
AfxMessageBox("Tla_File::select field of view() m_PtLeftFOV == NO FRAMES"):

}
if (m_PtRightFOV == NO FRAMES)

{
AfxMessageBox("Tla_File::select field of view() m_PtRightFOV == NO FRAMES");

;

if (n_FovPtClosestinYaw !|= NO FRAMES)  // if picked a point
{

if (get_frame from zoom subset(m FovPtClosestinYaw) = = current frame) // s/b
impossible but ., ...

{
Athdessachax("T]a_File::select“ﬁeld_of_view() m FovPtClosestinYaw ==

current frame");

j
j

} // end if not m_zoom subset index max
return;

}

Ihe overlay window relates points and areas in the geometric space defined by the
camera’s movements to points and areas within a particular video frame. Geometric points and
areas within the geometric space are projected to the camera’s image plane using the following
formula (In this code fragment the calculation is done for a Tombstone type overlay, but the
calculation is the same for any overlay object.):

First, get the difference between the camera frame's x position and the overlay object's's
x posttion. (FIG. 35, step 11710)

numerater = -(m_pDoc->m mta file.m Tombstone{index].XCtr
- m_pDoc->m tla file.get x data(ThisWndsFrame)
);

Next, get the difference between the camera frame’s y position and the overlay object’s y position.

(FIG. 35, step 11720)

denomunator = (m_pDoc->m_mta file.m Tombstonz[index].YCtr
- m_pDoc->m tla file.get y data(ThisWndsFrame)

);
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Calculate yaw angle of the line from the current frame’s center to the point of interest. (FIG. 35,
step 11730)

/! calc angle of line from current point to this active tombstone
if (denominator != 0)  // don’t divide by 2zero

{

yawFrameToOverlay = (float)(RAD TO DEG * atanZ(numerator, denomuinator)),

;

else // depom is zero

{
// make ratio of num/denom big via a small denominator but aveid div by zero

yawlFrameToOverlay = (float}f{RAD TO DEG * atan2(numerator,
SMALL ARBITRARY FLOAT));

;

Test to see if the yaw value for the angle to the point to be displayed 1s within the field of view
of the current frame. (FIG. 33, step 11740)

/7 1f 1n limuts, calc differential yaw, scale and display bar
if (((YawLimuts == NORMAL LIMITS)
&& ((yawkrameToOverlay > = yawMinFov) && (yawFrameToOverlay < =
vawMaxFov)) // note &&

)
|1 ((YawLimits == WRAPPED LIMITS)
&& ((yawFrameToQOverlay > = yawMinFov) || (yawFrameToOverlay < =
yawMaxFov)) // note ||
)

)
{

If 1t 15 withun the limits, calculate the offset from the middle pixel to the vertical line of pixels
corresponding to the object’s yaw angle relative to the current frame’s yaw angle. (FIG. 33, step

11748)

xPixel = (nt)(xMidPixel + (xScale * tap(DEG TO RAD * (yawCurrentPt -
yawEFrameToOverlay))));

Finally, the pitch of the current frame is used to choose a point on the vertical line determined

above. The calculation for CalcOverlayMarkers is described below. (FIG. 33, step 11750)

pitchFrameToOverlay = |

CalcOverlayMarkers(&MarkerHalfWidth,
&MarkerHalfHeight,
m_pDoc->m mta file.m_Tombstone[index). X Ctr,
m_pDoc->m mia file.m Tombstone[index]}. YCtr,
ThisWndskrame

)i

This program segment calculates the point on the vertical line determined by yaw angle from the

current frame's centerline at which to project an X,y coordinate onto the current video frame. I
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presumes that the photographed space 1s planar and is not inclined with respect to the gravitational

normal. It uses a Cameratieight setting, adjustable by the operator via the Action-Adjust Parameters

dialog Camera Height Above Floor entry 10316 (FIG. 21).

// calculate angle between horizon and line from camera (at m pDoc-

>m tla file.m CameraHeight off flat floor)
/! to a particular overlay marker. Flat floor assumes z doesn’t change too much.

float CMc1Wnd::CalcOverlayMarkers(int *pHalfWidth, int *pHalfHeight, int xCtrZone, int
yCtrZone,

{
float AngleHonzonToMarkerOnFloor;

double XYDistance:

unsigned short ThisWndsFrame)

//d=x"2+ y"2
XYDistance = ( xCtrZone - (double)(m_pDoc->m tla_file.get x data(ThisWndsFrame)))
*( xCtrZone - (double)(m_pDoc->m tla file.get x data(ThisWndsFrame)))
+
( yCtrZone - (double)(m_pDoc->m tla_file.get y data(ThisWndsFrame)))
*( yCtrZone - (double)(m pDoc->m_tla_file.get y data(ThisWndsFrame)));

1f (XYDistance <= 0)
{
TRACE("CMc1Wad::CalcOverlayMarkers, bad XYDistance after sqrt()/n");
AfxMessageBox("CMciWnd::CalcOverlayMarkers, bad XY Distance before sqrt()/n");
return O;

}
else 1f (XYDistance == ()

{
XYDistance = (double)SMAILL ARBITRARY FLOAT; // let’s not divide by zero.

}

else

{

/! take square root
XYDistance = sqrt(X YDistance);
)

// for this part of calc, 1gnore pitch of camera, assume level
// calc angle between horizon and line from camera to center of dropped avi

AngleHonzonToMarkerOnFloor
= (float)(RAD_TO_DEG > atan?(m_pDoc->m tla file.m CameraHeight,
A Y Distance));

float SizeAdj = (float)(10 * m_pDoc->m _tla_file.m_CameraHeight / XYDistance);

*pHalfWidth = (int)(MAX_MARKER WIDTH * SizeAd));
*pHalfHeight = (int)(MAX_MARKER _HEIGHT * SizeAd));

if (*pHalfWidth < MIN MARKXER WIDTH)

{
*pHalfWidth = MIN_MARKER_ WIDTH:
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)

else if (*pHalfWidth > MAX MARKER WIDTH)

{
*pHalfWidth = MAX_MARKER WIDTH:

)

If (*pHalfHeight < MIN MARKER HEIGHT)
{
*pHalfHeight = MIN MARKER HEIGHT;

}
else if (*pHalfHeight > MAX MARKER HEIGHT)

{
*pHalfHeight = MAX_MARKER_HEIGHT;

;

return AngleHorizonToMarkerOnFloor;
}
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While the preferred embodiment of the invention has been
described, 1t will be understood that numerous modifications
and changes will occur to those skilled in the art. It 1s there-
fore intended by the appended claims to define the true scope
of the invention.

What 1s claiamed as new and desired to be secured by
Letters Patent of the United States 1s:

1. A spatially referenced photographic system compris-
ng:

a data base containing plural images of objects and also
containing information corresponding to said images
defining the position at which each 1mage was origi-
nally viewed and the orientation of the image with
respect to that position,

image presentation and navigation means for displaying
the 1mages to a user and for facilitating the user in
navigating among said images by receiving spatial
movement commands from the user, as idicated by
said spatial movement commands;

wherein said 1mage presentation and navigation means
includes means for displaying, along with an 1mage, a
view of the camera path and an indication of the camera
position and orientation when the 1image was recorded,

wherein camera position and orientation 1s indicated by a
mark on the path oniented as the camera 1s oriented to
point where the camera was pointing; and

wherein the view 1s a plan view and wherein the mark
bears an indication thereon of the vaw angle of the
camera.

2. A spatially referenced photographic system compris-

ng:

a data base containing plural images of objects and also
containing information corresponding to said 1mages
defining the position at which each 1mage was origi-
nally viewed and the orientation of the image with
respect to that position;

image presentation and navigation means for displaying
the 1mages to a user and for facilitating the user in
navigating among said images by receirving spatial
movement commands from the user, as indicated by
said spatial movement commands;

wherein said 1mage presentation and navigation means
includes means for displaying, along with an 1mage, a
view of the camera path and an indication of the camera

position and orientation when the 1image was recorded;
and

wherein a mark appears 1n said image of a location asso-
ciated with another image such that the user may signal
a desire to navigate forward to view said another image
in a simple manner.

3. A spatially referenced photographic system in accor-
dance with claim 2 wherein the path also bears an indication
of the location of said another 1mage.

4. A spatially referenced photographic system compris-
ng:

a data base containing plural images of objects and also
containing information corresponding to said images
defining the position at which each 1mage was origi-
nally viewed and the orientation of the image with
respect to that position;

image presentation and navigation means for displaying
the 1mages to a user and for facilitating the user in
navigating among said images by receiving spatial
movement commands from the user, as mdicated by
said spatial movement commands; and
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wherein said 1image presentation and navigation means
provides the user with navigation controls for moving
backward, in response to the actuation of which con-
trols said means selects an 1mage captured at a gener-
ally backward camera position having an orientation
similar to that of an 1mage the user 1s currently viewing.

5. A spatially referenced photographic system compris-

ng:

a data base contaiming plural images of objects and also
containing information corresponding to said images
defining the position at which each 1mage was origi-
nally viewed and the orientation of the image with
respect to that [positions] position;

image presentation and navigation means for displaying
the 1mages to a user and for facilitating the user 1n
navigating among said i1mages by receiving spatial
movement commands from the user, as indicated by
said spatial movement commands; and

wherein said 1mage presentation and navigation means
provides the user with navigation controls for rotating
left or right, 1n response to the actuation of which con-
trols said means selects an 1image captured at a gener-
ally left-rotated or right-rotated camera position having
a position [fore-, aft-,] forward, backward, and side-to-
side similar to that of an 1mage the user 1s currently
viewing.

6. A spatially referenced photographic system in accor-
dance with claam 5 wherein the image which the user is
currently viewing bears marks indicating lett and right pos-
sible rotations which thereby indicate the general location of
the viewpoint of said image captured at said generally lett-
rotated or right-rotated camera positions.

7. A spatially referenced photographic system 1n accor-
dance with claim 6 wherein the user signals a desire to move
generally left or right by mouse clicking on said indicating
marks.

8. A spatially referenced photographic system compris-
ng:

a data base contaiming plural 1images of objects and also
containing information corresponding to said images
defining the position at which each image was origi-
nally viewed and the orientation of the image with
respect to that position;

image presentation and navigation means for displaying
the 1mages to a user and for facilitating the user in
navigating among said images by receiving spatial
movement commands from the user, as mdicated by
said spatial movement commands; and

wherein said image presentation and navigation means
provides the user with navigation controls for moving
forward and simultaneously rotating to the left or to the
right, 1n response to the actuation of which controls said
means selects an image captured at a generally forward
camera position having an angular orientation rotated
to the left or to the right of that of an 1mage the user 1s
currently viewing.

9. A spatially referenced photographic system compris-

ng:

a data base containing plural 1mages of objects and also
containing information corresponding to said images
defining the position at which each 1image was origi-
nally viewed and the orientation of the image with
respect to that position;

image presentation and navigation means for displaying
the 1mages to a user and for facilitating the user in
navigating among said images by receiving spatial
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movement commands from the user, as indicated by
said spatial movement commands;

said 1mage presentation and navigation means providing
the user with navigation controls, 1n response to the
actuation of which controls said presentation and navi-
gation means selects an 1mage captured at a position
generally shifted from that of an image the user 1s cur-
rently viewing, as indicated by the user actuation of
said controls.

10. A spatially referenced photographic system compris-
Ing:
at least one data base containing images of objects and
information corresponding to the images, the informa-
tion defining a position at which a vespective image was
captured and at least a yaw orientation of the respec-
tive image with rvespect to the position, wherein the
information is derived from camera position and ovien-
tation information automatically recovded substantially
simultaneously with vecording of the respective image;

a computing device in communication with the at least
one data base, the computing device configured to pro-
vide images for display via an interface corresponding
to the images of objects and to provide for display with
the images for display via the interface a plan view of a
camera path corresponding to the images and an indi-
cation of a position at which a displaved image was
captured and a yvaw orientation of the displaved image
with vespect to that position;

the computing device configured to receive spatial move-
ment commands via the interface, the computing device
configured to be in communication with a selection pro-
gram operable to retrieve images from the at least one
data base in response to the spatial movement com-
mands and to provide the retrieved images, the plan
view, the indication of the position at which a displayed
image was captured, and the yaw ovientation of the
displaved image for display via the interface.

11. The spatially veferenced photographic system of claim
10 wherein the indication comprises a designation on the
plan view of the camera path.

12. The spatially veferenced photographic system of claim
10 wherein the computing device is configured to provide
designated positions for which corresponding images are
available and to receive spatial movement commands
including selection of a designated position via the interface
in response to which the selection program is configured to
retrieve an image from the data base capturved at a position
corresponding to a selected designated position for display
via said interface.

13. The spatially veferenced photographic system of claim
10 wherein the computing device is configured to provide
navigation controls overlaved on the displaved image,
wherein the computing device is configured to provide
images in response to receiving spatial movement com-
mands via the navigation contrvols, the images captured at
one or movre positions generally shifted from that of a prior
displayved image portion as indicated by the spatial move-
ment commands.

14. The spatially rveferenced photographic system of claim
10 wherein the computing device is configured to provide
navigation controls overlaved on the displaved image,
wherein the computing device is configured to provide
images in vesponse to receiving spatial movement com-
mands via the navigation controls, the images captured at a
same position as a priov displaved image and having a yaw
orientation rotated left or vight of the prior displaved image
as indicated by the spatial movement commandes.
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15. The spatially veferenced photographic system of claim
10 wherein the computing device is configured to provide
navigation controls overlaved on the displaved image,
wherein the computing device is configured to provide
images in response to receiving spatial movement com-
mands via the navigation controls, the images captured at a
position generally shifted forward or backward from a prior
displaved image and having a vaw orientation rotated left or
right of the prior displaved image as indicated by the spatial
movement commands.

16. The spatially referenced photographic system of claim
10 wherein the computing device is configured to provide
navigation controls overlaved on the displaved image,
wherein the computing device is configured to provide
images in vesponse to receiving spatial movement com-
mands via the navigation controls, the images captured at a
same position as a prior displayed image and having a pitch
orientation votated upward or downward of the prior dis-
plaved image as indicated by the spatial movement com-
mands.

17. The spatially referenced photographic system of claim
10 wherein the computing device is configured to provide
interactive zoom in and zoom out controls overlayed on the
displaved image, wherein the computing device is configured
to provide images in response to veceiving zooming com-
mands via the zoom in and zoom out controls via the
interface, the images captured at a same position as a prior
displaved image and depicting a closer or further away field
of view than that of the prior displaved image as indicated by
the zooming commands.

18. The spatially rveferenced photographic system of claim
10 wherein the computing device is configured to provide via
the interface multiple images aligned in a panorama to pro-
vide a wider field of view.

19. The spatially referenced photographic system of claim
10 wherein the computing device is configured to provide
one orv movre launch pad controls and to receive control sig-
nals in vesponse to selection of at least one of the one or
movre launch pad controls, wherein the computing device is
configured to execute an associated application program in
response receiving the control signals.

20. The spatially veferenced photographic system of claim
10 wherein the computing device is configured to provide an
overlay item projected as a rvegion onto the displaved image
via the interface, the overlay item comprising an indication
of a point or area of interest on the displayved image with
respect to which one or more associated images are
available, wherein the computing device is configured to
provide a new image corresponding to the overlay item in
response to receiving signals indicating selection of the
region.

21. The spatially veferenced photographic system of claim
10 wherein the computing device is configured to provide an
overlay item projected onto the plan view, the overlay item
comprising an indication of a point or area of intevest with
respect to which one or more associated images are
available, wherein the computing device is configured to
provide a new image corresponding to the overlay item in
response to receiving signals indicating selection of the
overlay item.

22. A spatially referenced photographic system compris-
Ing:

at least one data base containing images of objects and

information corresponding to the images, the informa-
tion defining a position at which a respective image was
captured and at least a yaw orientation of the rvespec-
tive image with rvespect to the position, wherein the
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information is derived from camera position and orien-
tation information automatically recovded substantially
simultaneously with vecording of the respective image;

a computing device in communication with the data base,
the computing device configured to receive spatial
movement commands and provide the images in
response to rveceiving the spatial movement commands;

wherein the computing device is configured to provide,
along with a provided image, navigation controls at
least for rotating left or right, the computing device
configured to provide in vesponse to veceiving spatial
movement commands via the navigation controls a
selected image captured at a position genervally shifted
from that of the provided image, as indicated by the
spatial movement commands,

wherein the computing device is configured to provide in
response to actuation of the navigation controls for
rotating left or right a selected image captured at a
generally left-rotated or vight-rotated camera position
having a position forward, backward, and side-to-side
similar to that of the provided image.

23. The spatially referenced photographic system of claim
22 wherein the computing device is configured to provide,
along with the provided image, a view of the camera path
and an indication of the position and yaw orientation of the
provided image.

24. The spatially veferenced photographic system of claim
22 wherein the computing device is configured to provide,
along with the provided image, navigation controls for mov-
ing forward and simultaneously rotating to the left or to the
right, the computing device configured to provide in
response to actuation of the navigation controls a selected
image capturved at a genervally forward camera position hav-
ing an angular ovientation rotated to the left or to the vight
of that of the provided image.

25. The spatially referenced photographic system of claim
22 wherein the computing device is configured to provide,
along with the provided image, navigation controls for mov-
ing backward, the computing device configured to provide in
response to actuation of the navigation controls a selected
image captured at a generally backward camera position
having an orientation similar to that of the provided image.

26. The spatially rveferenced photographic system of claim
22 wherein the provided image includes designations indi-
cating left and right possible rotations corresponding to a
general location of a viewpoint of an image captured at
generally left-rotated or vight-rotated camera positions.

27. The spatially referenced photographic system of claim
26 wherein the computing device is configured to provide the
image captured at gemerally left-rotated or vight-rotated
camera positions in response to receiving signals indicating
selection of one of the designations.

28. The spatially referenced photographic system of claim
22 wherein the computing device is configured to provide,
along with the provided image, navigation controls for mov-
ing forward and simultaneously rotating to the left or to the
right, the computing device configured to provide in
response to the actuation of the navigation controls an
image capturved at a genervally forward camera position hav-
ing an angular ovientation rotated to the left or to the vight
of the provided image.

29. The spatially referenced photographic system of claim
22 wherein the computing device is configured to provide
multiple images for display via the interface aligned in a
panorvama to provide a wider field of view.

30. The spatially referenced photographic system of claim
22 wherein the computing device is configured to provide an
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overlay item projected as a region onto the provided image
via the interface, the overlay item comprising an indication
of a point or area of interest on the provided image with
respect to which one or more associated images are
available, wherein the computing device is configured to
provide a new image corresponding to the overlay item in
response to receiving signals indicating selection of the

region.

31. The spatially veferenced photographic system of claim
22 wherein the computing device is configured to provide an
overlay item projected onto a plan view of a camera path,
the overlay item comprising an indication of a point or area
of interest with respect to which one or more associated
images are available, wherein the computing device is con-
figured to provide a new image corresponding to the overlay
item in response to receiving signals indicating selection of
the overlay item.

32. The spatially veferenced photographic system of claim
22 wherein the computing device is configured to provide
one orv movre launch pad controls and to receive control sig-
nals in rvesponse to selection of at least one of the one or
movre launch pad controls, wherein the computing device is
configured to execute an associated application program in
response receiving the control signals.

33. A spatially referenced photographic system compris-
Ing.:

a data base containing images of objects and information
corresponding to the images, the information defining a
position at which a rvespective image was captured and
at least a vaw orientation of the respective image with
respect to the position;

a computing device in communication with the data base,
the computing device configured to receive spatial
movement commands and provide images for display
corresponding to the images of objects in vesponse to
receiving the spatial movement commands;

wherein the computing device is configured to provide for
display, in combination with a displayved image of the
images for display, a plan view of a camera path corre-
sponding to the displayved image and an indication on
the plan view of a position and yaw orientation corre-
sponding to the displaved image.

34. The spatially referenced photographic svstem of claim
33 wherein the computing device is configured to provide,
along with the displaved image, navigation controls for mov-
ing forward and simultaneously rotating to the left ov to the
right, the computing device configured to provide in
response to actuation of the navigation controls a selected
image capturved at a genervally forward camera position hav-
ing an angular ovientation rotated to the left or to the vight
of that of the displayed image.

35. The spatially veferenced photographic system of claim
34 wherein the computing device is configured to provide,
along with the displayed image, navigation controls for mov-
ing backward, the computing device configured to provide in
response to actuation of the navigation controls a selected
image captured at a generally backward camera position
having an orientation similar to that of the displayed image.

36. The spatially veferenced photographic system of claim
35 wherein the computing device is configured to provide,
along with the displaved image, navigation controls for
rotating left ov vight, the computing device configured to
provide in vesponse to actuation of the navigation controls
for rotating left or vight an image captured at a genervally
left-rotated or vight-rotated camera position having a posi-
tion forward, backward, and side-to-side similar to that of
the displayed image.
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37. The spatially veferenced photographic system of claim
36 wherein the displayed image includes designations indi-
cating left and right possible rotations corresponding to a
general location of a viewpoint of an image captured at
generally left-rotated or vight-rotated camera positions.

38. The spatially rveferenced photographic system of claim
37 wherein the computing device is configured to provide the
image captured at gemerally left-rotated or vight-rotated
camera positions in response to receiving signals indicating
selection of one of the designations.

39. The spatially referenced photographic system of claim
36 wherein the computing device is configured to provide,
along with the displayed image, navigation controls for mov-
ing forward and simultaneously rotating to the left or to the
right, the computing device configured to provide in
response to the actuation of the navigation controls an
image capturved at a genervally forward camera position hav-
ing an angular ovientation rotated to the left or to the vight
of the displaved image.

40. The spatially referenced photographic system of claim
39 wherein the computing device is configured to provide
multiple images aligned in a panorvama to provide a wider
field of view.

41. The spatially referenced photographic system of claim
36 wherein the computing device is configured to provide an
overlay item projected as a region onto the displayed image,
the overlay item comprising an indication of a point or area
of interest on the displayed image with rvespect to which one
or movre associated images are available, wherein the com-
puting device is configured to provide a new image corre-
sponding to the overlay item in response to veceiving signals
indicating selection of the region.

42. The spatially referenced photographic system of claim
41 wherein the computing device is configured to provide an
overlay item projected onto the plan view, the overlay item
comprising an indication of a point or area of intevest with
respect to which one or more associated images are
available, wherein the computing device is configured to
provide a new image corresponding to the overlay item in
response to receiving signals indicating selection of the
overlay item.

43. The spatially rveferenced photographic system of claim
33 wherein the computing device is configured to provide
one or more launch pad controls and to rveceive control sig-
nals in vesponse to selection of at least one of the one or
movre launch pad controls, wherein the computing device is
configured to execute an associated application program in
response rveceiving the control signals.

44. A spatially veferenced photographic system compris-

Ing:

a data base containing images of objects and information

corresponding to the images, the information defining a

position at which a respective image was captured and

at least a vaw orientation of the respective image with

respect to the position, wherein the information is

derived from camera position and orientation informa-

tion automatically recovded substantially simulta-
neously with vecording of the respective image;

a computing device in communication with the data base,
the computing device configured to receive spatial
movement commands and provide images for display
corresponding to the images of objects in rvesponse to
receiving the spatial movement commands via an inter-
face;

wherein the computing device is configured to provide an
overlay item projected onto a displayed image, the
overlay item comprising a selectable indication of a
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point or area of intervest for a displayved image of the
images for display with vespect to which one ov more
associated images arve available for display in response

to selection of the overlay item; and

wherein the computing device is configured to provide,
along with the displayed image, navigation controls for
rotating left or vight, the computing device configured
to provide in response to actuation of the navigation
controls for votating left or vight an image captured at a
generally left-rotated or vight-rotated camera position
having a position forward, backward, and side-to-side
similar to that of the displayved image.

45. The spatially referenced photographic svstem of claim
44 wherein the overlay item comprises a frame, wherein the
computing device is configured to provide a new image cor-
responding to the overlay item in response to receiving sig-
nals indicating selection of the frame.

46. The spatially rveferenced photographic system of claim
44 wherein the computing device is configured to provide a
designation on at least one of the displaved image and the
plan view of a position at which the displayed image was
captured and a yaw orientation of the displaved image with
respect to that position.

47. The spatially veferenced photographic system of claim
44 wherein the computing device is configured to provide,
along with the displayed image, navigation controls for mov-
ing forward and simultaneously rotating to the left or to the
vight, the computing device configured to provide in
response to actuation of the navigation controls a selected
image captured at a genervally forward camera position hav-
ing an angular ovientation rotated to the left or to the vight
of that of the displayed image.

48. The spatially veferenced photographic system of claim
44 wherein the computing device is configured to provide,
along with the displaved image, navigation controls for mov-
ing backward, the computing device configured to provide in
response to actuation of the navigation controls a selected
image captured at a generally backward camera position
having an orvientation similar to that of the displayed image.

49. The spatially referenced photographic svstem of claim
44 wherein the displaved image includes designations indi-
cating left and right possible rotations corresponding to a
general location of a viewpoint of an image captured at
generally left-rotated or right-rotated camera positions.

50. The spatially rveferenced photographic system of claim
49 wherein the computing device is configured to provide the
image captured at generally left-rotated or vight-rotated
camera positions in response to receiving signals indicating
selection of one of the designations.

51. The spatially veferenced photographic system of claim
44 wherein the computing device is configured to provide,
along with the displaved image, navigation controls for mov-
ing forward and simultaneously rotating to the left or to the
right, the computing device configured to provide in
response to the actuation of the navigation controls an
image captured at a generally forward camera position hav-
ing an angular orientation rotated to the left or to the right
of the displayed image.

52. The spatially veferenced photographic system of claim
44 wherein the computing device is configured to provide
multiple images aligned in a panorvama to provide a wider

field of view.

53. The spatially veferenced photographic system of claim
44 wherein the computing device is configured to provide a
plan view overlay item projected as a region onto a plan
view displayved in combination with the displayed images,
the plan view overlay item comprising an indication of a
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point or area of intervest on the plan view with respect to
which one or more associated images ave available, wherein
the computing device is configured to provide a new image
corresponding to the plan view overlay item in response to
receiving signals indicating selection of the region.

54. The spatially referenced photographic system of claim
44 wherein the computing device is configured to provide a
new image corresponding to the overlay item in response to
receiving signals indicating selection of the overlay item.

55. A method comprising:

capturing images of objects,

recording camera position and orientation information
automatically and substantially simultaneously with
capturing the images of objects;

stoving in at least one data base the images of objects and
information corresponding to the images, the informa-
tion defining a position at which a rvespective image was
captured and at least a yaw ovientation of the respec-
tive image with rvespect to the position, wherein the
information is derived from the camera position and
orientation information substantially simultaneously
with capturing the images of objects;

providing via an interface for simultaneous display

images for display corresponding to the images of

objects and a plan view of a camera path correspond-
ing to the images for display from the data base with a
computing device in communication with the database;

the computing device providing for display on at least one
of a displayed image of the images for display or the
plan view an indication of the position at which the
displaved image was captured.

56. The method of claim 35, said computing device pro-
viding an indication of the yaw orientation of the displayed
image.

57. The method of claim 53, the computing device provid-
ing designated portions of the plan view and retrieving and
providing an image from the data base captured at a position
corresponding to a selected designated position for display
via said interface in vesponse to veceiving signals indicating
selection of the selected designated position.

58. The method of claim 55, the computing device provid-
ing navigation controls overlayved on the displaved image
and providing images in response to receiving spatial move-
ment commands via the navigation controls, the images cap-
tured at a position genervally shifted from that of a prior
displaved image as indicated by the spatial movement com-
mands.

59. The method of claim 55, the computing device provid-
ing navigation controls overlayved on the displaved image
and providing images in response to rveceiving spatial move-
ment commands via the navigation controls, the images cap-
tured at a position genervally shifted from that of a prior
displayved image portion as indicated by the spatial move-
ment commands.

60. The method of claim 55, the computing device
providing, along with the provided image, navigation con-
trols for moving forward and simultaneously rotating to the

left or to the right and providing in response to actuation of

the navigation controls a selected image capturved at a gen-
erally forward camera position having an angular orienta-
tion votated to the left or to the vight of that of the provided
image.

61. The method of claim 55, the computing device
providing, along with the provided image, navigation con-
trols for moving backward and providing in response to
actuation of the navigation controls a selected image cap-
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tured at a generally backward camera position having an
orientation similar to that of the provided image.

62. The method of claim 55, the computing device
providing, along with the provided image, navigation con-
trols for rotating left or right and providing in vesponse to
actuation of the navigation controls for rotating left or right
an image captured at a genervally left-rotated ov vight-
rotated camera position having a position fore-, aft-, and
side-to-side similar to that of the provided image.

63. The method of claim 55, the computing device provid-
ing on the displayed image designations indicating left and
right possible votations corresponding to a geneval location
of a viewpoint of an image captured at generally left-rotated
or right-rotated camera positions.

64. The method of claim 63, the computing device provid-
ing the image captuved at generally left-rotated or rvight-
rotated camera positions in vesponse to rveceiving signals
indicating selection of one of the designations.

65. The method of claim 55, the computing device
providing, along with the provided image, navigation con-
trols for moving forward and simultaneously votating to the
left or to the vight and providing in response to the actuation
of the navigation controls an image captured at a generally

forward camera position having an angular orientation

rotated to the left or to the right of the provided image.
66. The method of claim 535, the computing device provid-
ing multiple images aligned in a panorvama to provide a

wider field of view.
67. The method of claim 53, the computing device provid-

ing an overlay item projected as a rvegion onto the provided
image via the interface, the overlay item comprising an indi-
cation of a point or area of interest on the provided image
with respect to which one or more associated images are
available, and also providing a new image corresponding to
the overlay item in rvesponse to rveceiving signals indicating
selection of the region.

68. The method of claim 53, the computing device provid-
ing an overlay item projected onto the plan view, the overlay
item comprising an indication of a point or area of intevest
with respect to which one or more associated images are
available, and also providing a new image corresponding to
the overlay item in rvesponse to veceiving signals indicating
selection of the overlay item.

69. A spatially referenced photographic system compris-
Ing:

a data base containing plural images of objects and also
containing information corrvesponding to said images
defining the position at which each image was origi-
nally captured and at least the yaw orientation of the
image with vespect to that position, wherein rvecovded
information from which said position and yvaw orienta-
tion information may be determined was automatically
recovded substantially simultaneously with the record-
ing of the image;

image presentation and navigation means for displaying
the images to a user and for facilitating the user in
navigating among said images by receiving spatial
movement commands from the user, as indicated by
said spatial movement commands;

wherein said image presentation and navigation means
includes means for displayving, along with an image, a
view of the camera path and an indication of the cam-
era position and yaw orientation when the image was
recorded;

wherein the view is a plan view and the camera position
and yvaw orientation is indicated by a mark on the path
oriented as the camera was oriented to point where the
camera was pointing when the image was recorded.
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70. A spatially referenced photographic system compris-
Ing.:
a data base containing plural images of objects and also
containing information corresponding to said images
defining the position at which each image was origi-
nally captured and at least the vaw orientation of the
image with respect to that position, wherein recovded
information from which said position and vaw orienta-
tion information may be determined was automatically
recovded substantially simultaneously with the record-
ing of the image;
image presentation and navigation means for displaying
the images to a user and for facilitating the user in
navigating among said images by receiving spatial
movement commands from the user, as indicated by
said spatial movement commands;

wherein said image presentation and navigation means
includes means for displaving, along with an image, a
view of the camera path and an indication of the cam-
era position and yaw orientation when the image was
recorvded: and

wherein a mark appears in said image of a location asso-
ciated with another image such that the user may signal
a desive to navigate forward to view said another image
in a simple manner.

71. A spatially referenced photographic system in accor-
dance with claim 70 wherein the path also bears an indica-
tion of the location of said another image.

72. A spatially veferenced photographic system compris-
Ing:
a data base containing plural images of objects and also
containing information corresponding to said images
defining the position at which each image was origi-
nally captured and at least the yvaw orientation of the
image with vespect to that position, wherein recorded
information from which said position and vaw orienta-
tion information may be determined was automatically
recovded substantially simultaneously with the record-

ing of the image;

image presentation and navigation means for displayving

the images to a user and for facilitating the user in
navigating among said images by receiving spatial
movement commands from the user, as indicated by
said spatial movement commands; and

wherein said image presentation and navigation means
provides the user with navigation controls for moving
backward, in response to the actuation of which con-
trols said means

selects an image captured at a genervally backward cam-
era position having an orientation similar to that of an
image the user is curvently viewing.
73. A spatially veferenced photographic system compris-
Ing:
a data base containing plural images of objects and also
containing information corrvesponding to said images
defining the position at which each image was origi-
nally captured and at least the vaw orientation of the
image with respect to that position, wherein recovded
information from which said position and vaw orienta-
tion information may be determined was automatically
recovded substantially simultaneously with the record-
ing of the image;
image presentation and navigation means for displaying
the images to a user and for facilitating the user in
navigating among said images by receiving spatial
movement commands from the user, as indicated by
said spatial movement commands; and

wherein said image presentation and navigation means
provides the user with navigation controls for rotating
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left or vight, in vesponse to the actuation of which con-
trols said means selects an image captuved at a gener-
ally left-rotated or vight-rotated camera orientation
having a position forward, backward, and side-to-side
similar to that of an image the user is curvently viewing.

74. A spatially rveferenced photographic system in accor-
dance with claim 73 wherein the image which the user is
currently viewing bears marks indicating left and vight pos-
sible rotations which therveby indicate the general location of
the viewpoint of said image captured at said genervally left-
rotated or vight-rotated camera positions.

75. A spatially referenced photographic system in accor-
dance with claim 74 wherein said indicating marks permit
the user to signal a desirve to move generally left or vight by
mouse clicking on said indicating marks.

76. A spatially referenced photographic system compris-
Ing:
a data base containing plural images of objects and also
containing information corresponding to said images
defining the position at which each image was origi-
nally captured and at least the yaw orientation of the
image with vespect to that position, wherein recovded
information from which said position and yaw orienta-
tion information may be determined was automatically
recovded substantially simultaneously with the record-

ing of the image;

image presentation and navigation means for displaying

the images to a user and for facilitating the user in
navigating among said images by receiving spatial
movement commands from the user, as indicated by
said spatial movement commands; and

wherein said image presentation and navigation means
provides the user with navigation controls for moving
Jorward and simultaneously rvotating to the left or to the
vight, in response to the actuation of which controls
said means selects an image captured at a generally
Jorward camera position having an angular ovientation
rotated to the left or to the right of that of an image the
user is currvently viewing.

77. A method comprising:

providing for display from a computing device images
from a data base containing plural images of objects
and also containing information corresponding to the
images defining a position at which individual images
were originally captuved and at least a yaw orientation
of the individuals images with respect to that position,
wherein rvecovded information from which the position
and vaw orientation information can be determined
was automatically recovded substantially simulta-
neously with rvecording of the image;

Jfacilitating navigation among the images provided for dis-
play by providing for display with the images naviga-
tion controls at least for votating left and vight and
receiving spatial movement commands via the naviga-
tion controls;

selecting an image captured at a position generally
shifted from that of a previously provided image as indi-
cated the spatial movement commands;

providing for display with the navigation controls the
image captured at a position genervally shifted from that
of the previously provided image;

providing for display in response to receiving spatial
movement commands for rvotating left or rvight a
selected image captured at a generally left-rotated or
right-rotated camera position having a position
Jorward, backward, and side-to-side similar to that of
the previously provided image.
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