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(57) ABSTRACT

This 1invention relates to the creation of dictionary functions
for the encoding of video signals using matching pursuit
compression techniques. After an 1nitial set of reference dic-
tionary 1mages 1s chosen, training video sequences are
selected, and motion residuals are calculated. High energy
portions ol the residual images are extracted and stored
when they match selection criteria with the reference dictio-
nary. An energy threshold 1s used to limit the number of
video signal “atoms” encoded for each frame, thus avoiding
the encoding of noise. A new dictionary 1s then synthesized
from the stored portions of the 1mage residuals and the origi-
nal reference dictionary. The process can then be repeated
using the synthesized dictionary as the new reference dictio-
nary. This achieves low bit rate signals with a higher signal-
to-noise ratio than have been previously achieved.
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DICTIONARY GENERATION METHOD FOR
VIDEO AND IMAGE COMPRESSION

Matter enclosed in heavy brackets [ ] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

FIELD OF THE INVENTION

This mvention relates to the creation of dictionary func-
tions for the encoding of video sequences 1n matching pur-
suit video compression systems. More particularly, this
invention presents a method for generating a dictionary for
encoding video sequences from a set of patterns extracted, or
learned from training input video sequences. When the
learned dictionary 1s used to encode video sequences, 1t pro-
duces low bit rate signals with a higher signal-to-noise ratio.

BACKGROUND OF THE INVENTION

Recent developments in computer networks, and the
demand for the transmission of video imformation over the
Internet, have inspired many innovations in video signal
encoding for compressed transmission. Of the highest prior-
ity 1s the ability to produce a signal at the destination which
1s the best match to the original as possible, 1.e. the one with
the largest signal-to-noise ratio and represented by the
smallest number of bits.

To this end, several decomposition techniques have been
developed and will be known to those skilled 1n the art. In
these techniques, once a particular frame has already been
transmitted, the information required to transmit the suc-
ceeding frame can be minimized if the new frame 1s divided
into a motion vector signal, characterizing how a set of pix-
¢ls will translate intact from the first frame to the succeeding
frame, and a residual signal, which describes the remaining
difference between the two frames. By transmitting only the
motion vector and the residual, a certain amount of data
compression 1s achieved.

The residual itself can be transmitted even more elfi-
ciently 11 both ends of the transmission line contain pattern
dictionaries, also called libraries, of primitive 1image
clements, or functions. By matching the residual (or portions
thereol) to patterns 1n the dictionary, the receiver (which also
contains a copy of the dictionary) can look up the required
clement when only the i1dentifying code for the dictionary
clement 1s transmitted, further reducing the amount of data
that needs to be transmitted to reconstruct the image. This 1s
a technique called Matching Pursuit (IMP). This was origi-
nally applied to the compression of still images, as has been
discussed by S. Mallet and Z. Zhang, “Matching pursuits
with time-irequency dictionaries™, in IEEE Transactions on
Signal Processing Vol. 41(12), pp. 3397-3415 (1995), and
has been applied to video processing as well, as described by
R. Neil, A. Zakhor, and M. Vetterl1, “Very low bit rate video
coding using matching pursuit”, in Proceedings of the SPIE
Vol. 2308, pp 47-60 (1994), and A. Zakhor and R. Neit, in
U.S. Pat. No. 3,669,121 “Method and Apparatus for Com-

pression of Low Bit Rate Video Signals”.

The creation of dictionary functions which are well
matched to describe practical video residuals 1s therefore of
paramount importance for high fidelity video transmission.
Simple sets, such as Gabor functions, can be used with good
results. However, there 1s a need to provide the best possible
image fidelity with the most eflicient dictionary, and there 1s
therefore a need to improve on the compression eificiency
achieved using the Gabor functions.
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2
SUMMARY OF THE INVENTION

In this mvention, we provide a method for creating a dic-
tionary for matching pursuit video encoding not from an
abstract set of patterns, but dertved (or learned) from a set of
training video sequences. In particular, an algorithm similar
to those used 1n vector quantization (VQ) 1s used to adapt
and update an 1nitial trial dictionary to best match the residu-
als found 1n the set of training 1mages. We have found that
using standard video benchmarks as training signals to syn-
thesize a new dictionary can lead to a general improvement
in video signal-to-noise ratios of 0.2—0.7 dB when compared
to the results from a simple Gabor set.

Vector quantization 1s basically a two step 1terative proce-
dure where a dictionary of vectors 1s learned from input
vectors by splitting them 1nto partitions according to a mini-
mum distortion measure, and re-computing the dictionary
vectors (also called code vectors) as the centroids of the
different partitions. This 1s not a new topic, as can be seen 1n
Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector

quantizer design”, in IEEE Transactions on Communica-
tions Vol. 28(1), pp 84-95 (January, 1980).

However, to apply these algorithms to the problem of
video compression, the basic algorithms must be adapted.
Vector quantization typically divides an image into tiles of
fixed pixel sizes, and looks for the best match 1n the dictio-
nary for each of the tiles. Previously published variations
have included stochastic relaxation methods (K. Zegar, J.
Vaisey, and A. Gersho, “Globally optlmal vector quantizer
design by stochastic relaxation in IEEE Transactions on
Signal Processing Vol 40(2), pp 310—322 (1992)) the use of
a deterministic annealing approach (K. Rose, E. Gurewitz,
and G. C. Fox, “Vector quantization by deterministic
annealing”, in IEEE Transactions on Information Theory
Vol. 38(4) pp 1249-1257, (1992)), and fuzzy sets (N. B.
Karayiannis and P. I. Pai, “Fuzzy algorithms for learning
vector quantization”, in IEEE Transactions on Neural Net-
works Vol 7(3) pp 1196—-1211 (1996)). All have been func-
1 have high

tional to some degree, but are time consuming and
computational overhead.

In our mnvention, we do not use a fixed tiling for coding of
residual 1mage pixels, but instead 1dentily sets of pixels for
comparison to the dictionary 1n which both the center of the
set of pixels and the dimension can vary. The selection of the
portions of the image to be evaluated are based on the mea-
sure “energy’”’, present 1n the image pixels. Our modification
to vector quantization also introduces a time-decreasing
threshold to decide which partitions should stay in the learn-
ing process, and which should be replaced. New partitions
are obtained by splitting large partitions into two subsets. We
have found this approach to be fast, and leads to near optimal

results.

Although we have applied this method to encoding video
sequences, the techniques of our invention can also be
applied to the compression of still images, and to other com-
pression techniques that use dictionaries but that are not
classically defined as matching pursuit compression
schemes.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a block diagram of a matching pursuit video
system.

FIG. 2 shows a flow chart of dictionary creation according,
to the method of the present invention.

FIG. 3 shows a tlow chart of dictionary synthesis accord-
ing to the method of the present invention.
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FIG. 4 1llustrates variation in the partition size relaxation
function used 1n one embodiment of the imvention.

FIG. 5 shows a representation of a portion of the functions
in the learned dictionary generated according to one embodi-
ment of the mvention.

FI1G. 6 1llustrates the ranked usage of the Gabor functions
in matching pursuit video encoding.

FIG. 7 1llustrates the ranked usage of the learned dictio-
naries of one embodiment of this invention 1n matching pur-
suit video encoding.

FI1G. 8 illustrates the signal to noise ratio for encoding the
test sequence Mobile for a learned dictionary according to
one embodiment of the mvention and for the use of a Gabor
set.

DETAILED DESCRIPTION OF THE INVENTION

This 1nvention relates to the creation of dictionaries for
compressing video, and 1n particular matching pursuit (MP)
video encoding systems. An 1llustration of an MP wvideo
compression scheme 1s shown 1n FIG. 1. Motion compensa-
tion 1s 1dentified and encoded by the motion compensator 30,
and the residual signal 1s then “matched” by a pattern
matcher 60 to one of several functions 1n the pattern dictio-
nary 80. This residual signal 1s then coded as an “atom™ and
sent to the receiver, along with the motion vector, through
the transmission channel 24. Upon receipt, the “atom” 1s
decoded and the matched pattern 1s retrieved from a local
copy of the pattern library 81. The final video signal 1s recre-
ated by recombining the decoded motion vector and the
retrieved library pattern.

An example of a dictionary for this kind of video com-
pression system 1s the set of Gabor functions. These have
been described by C. DeVleeschouwer and B. Macq, “New
Dictionaries for matching pursuits video coding”, in Pro-
ceedings of the ICIP 98 (1998) and by R. Neil and A.
Zakhor, “Dictionary approximation for patching pursuit
video coding”’, Proceedings of the ICIP 2000 (2000). There
are a number of drawbacks to the Gabor functions, however,
notably that the heuristics are not systematic, and atoms
from Gabor functions tend to introduce small oscillations 1n
the reconstructed signal.

In this 1nvention, we develop a method to generate a dic-
tionary using motion compensated residuals obtained from a
set of training sequences, and adapt the learning scheme to
the characteristics of matching pursuit. The 1nitial dictionary
can be a set of Gabor functions, or other functions derived
from other sources.

The overall sequence of operations 1s 1llustrated i FIG. 2.
After an 1nitial reference dictionary 225 and a set of training,
images 205 have been selected, a residual for one of the
images 1s generated in step 200. Step 210 loads the residual
image. The high energy portions (i1.e. portions where the
changes are greater than a predetermined threshold) are
identified 1n step 220. Regions of varying dimension, cen-
tered around the high energy portions of the residual are
compared to elements in the reference dictionary 225 for the
best match 1n step 230. When a match 1s found, the next step
240 extracts the matched portion of the residual and a copy
of that portion of the residual, called a pattern, 1s stored as an
clement 1n a set of collected patterns 235.

If the extraction process has not automatically removed
the high energy residual, step 244 explicitly does so. The
remaining portion of the residual 1s then evaluated 1n step
250 for other high energy portions, and these again com-
pared to the reference dictionary by repeating steps 2302350
until all high energy portions are matched. Once the selected
residual has been exhausted, step 260 tests whether there are
other residual images in the training sequence to examine,
and 11 there are steps 210 through 260 are repeated.
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4

Then, the new dictionary 275 1s synthesized 1n step 270
from the 1mitial dictionary 2235 and the set of collected pat-
terns 235 using mathematical algorithms updating dictio-
nary code vectors. The process can then be repeated again
for turther refinement with the new, synthesized dictionary
2775 replacing the original reference dictionary 225.

Details from the synthesizing step are illustrated in FIG.
3. A set of inner products between the collected patterns 235
and the elements of the nitial dictionary 225 are calculated
in step 300, and the elements of the collected pattern set 235
are divided mto two sets, 310 and 320, depending on
whether the sign of the imner product is positive or negative.
An updated code vector for the new dictionary 1s then calcu-
lated from these two subsets in step 330 using a calculation
weighted by the energy of the pattern. The updated code
vector 1s typically normalized and then entered into the new
dictionary 275.

In more detail, this learning scheme 1s similar to algo-
rithms developed for vector quantization (VQ). VQ 1s an
iterative algorithm that learns a given number of vectors,
called hereafter code-vectors, from a set of mput vectors,
also called patterns, according to a pre-defined distortion
measure.

Each iteration has two fundamental processing steps:

1. Partition the set of patterns.

2. Update the code-vectors 1n order to minimize the total
distortion 1n each partition.

The algornthm ends when a predefined stopping criterion,
such as a maximum allowed overall distortion, 1s met.

MP uses the inner product to match the different dictio-
nary functions to the residuals and to select the different
atoms used to encode the original signal. We have therefore
chosen to use an inner product based distortion measure 1n
our 1nvention, since this metric will later define how well a
learned dictionary function matches a residual. Let S =R* be
a set of M normalized training patterns of dimension Kk,
X={1, ... N} the set of all code-vector indices, and n the
iteration number. The energy w, of the i” pattern is com-
puted before normalization for later use during the code-
vector updating step.

We define the following distortion measure between a
normalized pattern x,&S and the j”” normalized code-vector
X,

J":.”:

[1]

de (X, Xjn) = 1 = [<x4, Xj 5>

where <¢,*> 15 the inner product. The distortion 1s equal to
1 when x; and X, are orthogonal and equal to O when they
are 1dentical.

A partition S, , 1s a set of patterns having minimum distor-
tion with respect to a given code-vector X, ;:

Sj?H={XI‘ES\d{'?'} (X X

i:Xj?n

)gdi'?'}(xf?ﬁfﬂ)? VIEX} [2]

and

S = Usjﬁn

1eX

S xMS,=0 [4]

V=1 and with 1,1EX
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The updated code-vector ijﬁERk 1s obtained by minimiz-
ing the total distortion o, , n S, :

Ojn = Z de (X, Xjp) =< Z de (X, X)VX E R* [3]

Kl'ES'

jo1 KiES'

J-11

Since both x; and X, , are normalized, the following
L,-norm distortion measure can be used instead ot Equation

[1]:

6]

P P 2
sz (Xi, Kj,n) — ”Kj,n — Ki“

P

My T
= (Xjn — %) Xjn — %)

T

=2-2%,X;

= 2(1 — <X, ij,n})

provided all inner products are positive.

To achieve this, we let each pattern have two equivalent
versions: the original and its negative, 1.e. X, and —x.. This 1s
possible because Equation [ 1] uses the absolute value of the
inner product. We then define Sjﬁ(*) and Sjﬁ(‘) as sets of
patterns 1n S, having respectively positive and negative
inner product with X,

SV US.T =S5, [7]

Sj,n(ﬂ ﬂ Sj,n(_) — @ |8]

Once both subsets are computed, we can use equation [6]
instead of [ 1] by taking the negative value of the inner prod-
uct for each pattern 1n Sjﬁ('). Those skilled in the art waill
realize that Lagrange multipliers can be used for the minimi-
zation of equation [ 5] with the distortion measure defined in
Equation [6], and this leads to the following weighted aver-
age update equation:

%]

E - Wik

_I_ —_
A Xl'E j.n KiESE,H)
X — —
J-n+1 Z w; Z w;
XiES(—H KI'ES{_)

J-11 J-1b

This 1s the algorithm used 1n the synthesizing step 330 of
FIG. 3. More weight 1s given to high energy patterns 1n
Equation [9] since it is essential to first encode high energy
structures present in the motion compensated error. The
code-vectors are normalized after being updated.

The algorithm described so far usually converges to a
local mimimum. In our mnvention, we put a constraint on the
partition size according to a monotonically decreasing func-
tion of the iteration number. Partitions smaller than the value
given by this function are eliminated. In order to keep the
same number of centroids, a randomly selected partition 1s
split 1nto two, with larger partitions being more likely to be
selected than smaller ones. The following exponential
threshold function 1s used 1n our simulations:

M

Oihresh = %exp{— M_D}

[10]

where M 1s the 1teration number, M, 1s a constant scalar that
controls the time necessary to converge to the final solution,
N 1s the number of code-vectors, and
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n [11]

1s the weighted size of the pattern space.

In this mvention, £2 need not be used in every iteration,
and 1t can be beneficial to set the value of €2 to O for many of
the 1teration steps. We have typically used the total number
of 1terations M to be 20, and use a non zero value for €2 1n
every fourth iteration. This 1s illustrated 1n FI1G. 4. While this
approach 1s of low complexity, 1t has shown to be robust, and
to lead to near-optimal results.

The extraction of training patterns ifrom the motion
residuals 1s an important aspect of the invention. The entire
residual cannot be learned by our system since the high
energy content 1s sparsely distributed. Only regions in the
residual where one or several dictionary functions are
matched are taken into account. These regions are typically
designated to be square with varying dimensions that
encompass the entire high energy region, but other dimen-
sions could be used as well. The patterns used to learn new
functions are extracted from a set of tramning sequences
encoded with an initial reference dictionary. One example of
a set that can be used for the reference dictionary 1s the set of
Gabor functions. Each time a high energy portion of a
residual 1mage 1s matched to a dictionary function, the
underlying pattern 1s extracted. A square window with a
fixed size, centered on the matched region, can be used,
although windows of other geometries will be apparent to
those skilled in the art. Using this approach, only high
energy regions of the residual are separated to become pat-
terns used for the training.

Finally, once a new dictionary has been learned, the train-
ing sequences are encoded with this new dictionary 1n order
to produce usage statistics. These statistics are then used to
compute the Huffman codes necessary to encode the atom
parameters for the test sequences.

DESCRIPTION OF A REDUCTION TO
PRACTICE

We have implemented software written in ANSI C on a
Silicon Graphics Onyx computer to test and demonstrate the
capabilities of this invention. To begin, a dictionary must be
chosen as an 1nitial reference dictionary. We chose the dic-
tionary h30, as previously described by R. Neil and A.
Zakhor, 1n “Dictionary approximation for matching pursuits
video coding”, published in the Proceedings of the ICIP
2000. This dictionary contains 400 separable Gabor func-
tions and 72 non-separable Gabor functions. The number of
functions learned 1n our simulations 1s therefore always 472.

Three dictionaries are learned, each one supporting a dif-
ferent number of pixels. The regions of support 1n this case
were chosen to be 9x9, 17x17, and 35x35. In order to obtain
a large training set, we collected 17 high motion video
sequences of 30 frames each from outside the standard
MPEG sequences. Many short sequences were used to allow
as many different sequences as possible to be part of the
training set while maintaining the total number of traiming
patterns at a reasonable level, 1 our case around 120,000.
The MPEG sequences are kept for the test phase, because
they can be easily compared to other techniques for which
simulation results are available in the literature.

We also apply a threshold to the energy of the residual to
control the bit-rate during learning. The threshold 1s set
empirically, 1n order to match as precisely as possible the
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bit-rates suggested for the different MPEG sequences and
avold encoding noise for low energy regions. Finally, usage
statistics are used to reduce the size of the learned dictionary
from 3x472=1416 down to 472, the number of patterns 1n
the 1nitial dictionary.

A subset of the learned dictionary i1s shown in FIG. 5.
After statistical pruning, it contains 116 functions from the

35x35 dictionary (24.47%), 169 functions from the 17x17
dictionary (35.65%), and 189 functions from the 9x9 dictio-
nary (39.88%). Most of these functions have therefore a
small region of support. In general, they are well centered,
oriented, limited 1n si1ze, and modulated. We therefore expect
that the learned functions can be easily and efficiently
approximated with functions of low complexity for fast
implementation. The fact that the learned functions have a
coherent structure 1s a very good result, given that learning
schemes providing functions of such a “quality” are difficult
to establish, in computer vision applications in general.

The ranked usage statistics of all functions 1n h30 and in
the learned dictionary are plotted in FIG. 6 and FIG. 7. These
distributions show that the learned dictionary gives almost
equal importance to all functions. In that sense, our learning
scheme 1s very ellicient.

The learned dictionary is evaluated with 6 QCIF test
sequences: Foreman, Coast, Table tennis, Container, Mobile,
and Stefan. In all stmulations, 1n order to guarantee similar
bit-rate between h30 and our newly designed dictionary, we
use the bit trace corresponding to h30 runs to control the
bit-rate of our designed dictionary, even though this could
potentially lower its performance. A PSNR plot for the
sequence Mobile 1s shown in FIG. 8, and the performance
results are summarized in TABLE 1. These results show that
learning new dictionaries improves PSNR performances
especially at higher bit-rates, since at low bit-rates most of
the bit budget 1s spent on the motion vectors.

TABLE 1

Signal to noise ratios for 6 test sequences, using h30 and
dictionaries according to the present invention.
In all cases, and improved SNR is achieved.

PSNR with  PSNR with new
Sequence kbps fps  h30[dB] dictionary |dB | Gain [dB]
Foreman 112.6 30 33.05 33.49 0.44
Foreman 62.5 10 32.89 33.07 0.18
Coast 156.0 30 32.11 32.59 0.48
Coast 81.5 10 31.94 32.19 0.25
Table tennis 59.5 30 33.28 33.55 0.27
Table tennis 47.6 10 22.16 33.27 0.11
Container 35.2 30 33.38 33.8 0.42
Container 17.3 10 33.22 33.46 0.24
Mobile 313.3 30 27.87 28.53 0.66
Stefan 313.3 30 29.74 30.3 0.56

The time required to run a complete set of learning simu-
lations 1s around 4 days on a Silicon Graphics Onyx com-
puter. The reasons are (a) the large number of patterns
extracted from the training sequences for the learning phase,
1.¢. around 120,000 patterns of size 35x35, (b) the successive
training cycles necessary to prune the original dictionary
from 1416 to 472 functions, and (¢) the computation of the
Huffman codes for the different atom parameters, such as
position, amplitude, and label. The test phase requires addi-
tional computation time as well. It 1s expected that these run
times can be reduced by further tuning of the algorithms and
optimization of the software.

This presents one of many examples of a reduction to
practice for the invention, but 1its presentation here 1s not
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meant to imply that this 1s the only or even the optimal result
that can be eventually achieved using this invention. Possible
variations would be to design dictionaries for different
classes of video sequences such as animations, high motion
sports, head and shoulders, and so forth, using sequences
from those individual classes. We expect that improvements
can be made 1n the approximation of the dictionary functions
that leads to an efficient implementation as well.

i

The previous descriptions of the invention and specific
embodiments are presented for illustration purposes only,
and are not intended to be limiting. Modifications and
changes may be apparent and obvious to those skilled 1n the
art, and it 1s intended that this imvention be limited only by
the scope of the appended claims.

We claim:

1. A method for creating a dictionary for video
compression, comprising:

[(a)] designating an initial reference dictionary of func-
tions [,] stored in a memory;

[(b)] designating a set of video sequences to be used as
training sequences|.];

[(c)] calculating [the] a motion residual image for at least
one of the frames of a video sequence from the set of
video sequences].];

[(d)] determining an energy threshold for evaluating the
residual imagel.];

[(e)] evaluating the residual image for portions above the
energy threshold;

[(f)] comparing a first high energy portion of the residual
image to at least one function in the reference

dictionaryl[.];

[(2)] extracting the first high energy portion of the residual
image|.].

[(1)] storing the extracted high energy portion of the
residual image [.] in the memory; and

[(5)] synthesizing, using a processing device, the dictio-
nary from the stored high energy portion of the residual
image[, in which the step of synthesizing comprises] by
dividing the extracted high energy portions into at least
two subsets based on an 1nner product calculation, and
calculating an updated dictionary pattern from the ele-
ments 1n the two subsets.

2. The method of claim 1, [in which the step of] wherein

the calculating further comprises:

E - Wik

(+)
S XIES-I’H 1 .]?H
Xjn+l = — -
’ 2 Wi 2 O
_elt) )
= . KlESj,n

3. The method of claim 1, further comprising[the steps
of]-
[(k)] revising the residual imagel,], and

[(1)] repeating [steps (£)-(1)] the comparing, extracting,
and storing for at least a second high energy portion of
the residual image, after [said] #2e first high energy
portion has been extracted.

4. A dictionary for use in video compression, [said] tke

dictionary having been generated by:

[(a)] designating an initial reference dictionary of
functionsl|.],

[(b)] designating a set of video sequences to be used as
training sequences|.],
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[(c)] calculating the motion residual image for at least one
of the frames of a video sequence from the set of video
sequencesl.];

[(d)] determining an energy threshold for evaluating the
residual imagel.];

[(e)] evaluating the residual image for portions above the
energy threshold;

[(£)] comparing a first high energy portion of the residual
image to at least one function in the reference

dictionaryl[.];

[(2)] extracting the first high energy portion of the residual
image]|,];

[(1)] storing the extracted high energy portion of the
residual imagel,];

[(5) synthesis] synthesizing from the stored high energy
portion of the residual image, [in which] wherein the
[step of synthesis] synthesizing comprises dividing the
extracted high energy portions into at least two subsets
based on an inner product calculation, and calculating
an updated dictionary pattern from the elements in the
two subsets.

5. The [method] dictionary of claim 4, [in which the step

of] wherein the calculating further comprises.

(+) ()
. - X E . KIES_],II
-n+1 = —
2 W 2 W
(+) (—)
XiESj,I] KiESj,ﬂ

6. The [method] dictionary of claim 4, wherein the gener-
ating further [comprising the steps of] comprises:
[(k)] revising the residual imagel.], and
[(D] repeating [steps (1)-(1)] the comparing, extracting,
and storing for at least a second high energy portion of
the residual image, after [said] #ke first high energy
portion has been extracted.

7. A video encoding system [containing] comprising a
dictionary generated by:

[(a)] designating an initial reference dictionary of
functions|.],

[(b)] designating a set of video sequences to be used as
training sequences|.];
[(c)] calculating the motion residual image for at least one

of the frames of a video sequence from the set of video
sequences].],

[(d)] determining an energy threshold for evaluating the
residual imagel.];

[(e)] evaluating the residual image for portions above the
energy threshold;

[(£)] comparing a first high energy portion of the residual
image to at least one function in the reference

dictionaryl[.];

[(2)] extracting the first high energy portion of the residual
imagel.].

[(1)] storing the extracted high energy portion of the
residual imagel.]; and

[(5) synthesis] synthesizing from the stored high energy
portion of the residual image, [in which the step of
synthesis] wherein the synthesizing comprises dividing
the extracted high energy portions into at least two sub-
sets based on an 1nner product calculation, and calculat-
ing an updated dictionary pattern from the elements 1n
the two subsets.
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8. The [method] video encoding system of claim 7, [in
which the step of] wherein the calculating comprises.

El (o X4 EI (X4

(_+

XiESJ n X ESE_H)
X; = — .
J,n+1
2 Wi 2 Wi
(+) (—)
XiESj,H KiESj,H

9. The [method] video encoding system of claim 7, [fur-
ther comprising the steps of] wherein the dictionary is fur-
ther generated by:

[(k)] revising the residual imagel,], and

[(D] repeating [steps (£)-(1)] the comparing, extracting,
and storing for at least a second high energy portion of
the residual image, after [said] #:e first high energy
portion has been extracted.

10. A machine readable medium [, upon which are stored]
having instructions [to generate a dictionary for video com-
pression according to the method comprising steps of] stored
thereon that are executed by a processing device causing the

processing device to perform operations comprising.

[(a)] designating an initial reference dictionary of
functionsl.];

[(b)] designating a set of video sequences to be used as
training sequences|.];

[(c)] calculating the motion residual image for at least one
of the frames of a video sequence from the set of video
sequences|.],

[(d)] determining an energy threshold for evaluating the
residual imagel.];

[(¢)] evaluating the residual image for portions above the
energy threshold,

[(f)] comparing a first high energy portion of the residual
image to at least one function in the reference

dictionaryl,];

[(2)] extracting the first high energy portion of the residual
image|.,].

[(1)] storing the extracted high energy portion of the
residual imagel.]; and

[(5) synthesis] synthesizing from the stored high energy
portion of the residual image, [in which the step of
synthesis]| wherein the synthesizing comprises dividing
the extracted high energy portions into at least two sub-
sets based on an 1nner product calculation, and calculat-
ing an updated dictionary pattern from the elements 1n
the two subsets.

11. The [method] machine readable medium of claim 10,

[in which the step of] wherein the calculating comprises:

E - Wik

(_+

) XiES_]?n xi= J,n
Xin+l = —
J 2 W 2 Wi
(+) (—)
XiESj,H KiESj,H

12. The [method] machine readable medium of claim 10,
further comprising [the steps of]:

[(k)] revising the residual imagel,], and

[(1D)] repeating [steps (£)-(1)] the comparing, extracting,
and storing for at least a second high energy portion of
the residual image, after [said] #:e first high energy
portion has been extracted.
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13. A video system comprising:
a memory,

a processor configured to:

calculate a residual image from at least one frame in a
video sequence;

identify a high energy portion of the rvesidual image
above a predetermined threshold;

match regions of varving dimension centered about the
high energy portion of the residual image with ele-
ments in an initial dictionary;,

extract the matched vegion from the rvesidual image;

store the matched region in the memory as a pattern;

repeat the calculate, identify, match, extract, and store
for other residual images in other frames of the video
sequence until all high energy portions in the other
residual images ave matched;

synthesize an updated dictionary according to the ini-
tial dictionary and the stored patterns;

calculate a set of inner products between the stored
patterns and elements in the initial dictionary;,

divide the stoved patterns in at least two sets of patterns
and the elements in the initial dictionary into at least
two sets of elements responsive to a sign of a corre-
sponding one of the inner products; and

calculate code vectors for the updated dictionary
according to the at least two sets of patterns and the
at least two sets of elements.

14. The video system of claim 13 wherein the processor is

further configured to:

replace the initial dictionary with the updated dictionary.
13. The video system of claim 13 wherein the processor is
Jurther configured to:

update code vectors of the updated dictionary; and

replace the initial dictionary with the updated dictionary
after the update.

16. The video system of claim 13 wherein the processor is
Jurther configured to:

calculate the code vectors for the updated dictionary
according to an energy of at least one of the stored
patierns.

17. A video system comprising:

a storage means,
a processing means configured to.
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calculate a vesidual image from at least one frame in a
video sequence;

identify a high energy portion of the rvesidual image
above a predetermined threshold;

match regions of varving dimension centered about the
high energy portion of the residual image with ele-
ments in an initial dictionary;

extract the matched region from the residual image;

stove the matched rvegion in the storage means as a
paliern;

repeat the calculating, identifving, matching,
extracting, and stoving for other vesidual images in
other frames of the video sequence until all high
energy portions in the other residual images are
matched:;

synthesize an updated dictionary responsive to calcu-
lating at least one metric between the stored patterns
and elements in the initial dictionary;

calculate a set of inner products between the stored
patterns and elements in the initial dictionary;

divide the stoved patterns in at least two sets of patterns
and the elements in the initial dictionary into at least
two sets of elements responsive to a sign of corre-
sponding one of the inner products; and

calculate code vectors for the updated dictionary
according to the at least two sets of patterns and the
at least two sets of elements.

18. The video system of claim 17 wherein the processing
means is further configured to:

replace the initial dictionary with the updated dictionary.
19. The video system of claim 17 wherein the processing
means is further configured to:

update code vectors of the updated dictionary; and
replace the initial dictionary with the updated dictionary

dfter the updating.

20. The video system of claim 17 wherein the processing
means is further configured to:

calculate the code vectors for the updated dictionary

according to an energy of at least one of the stored
patierns.
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