USOORE42214E
(19) United States
a2 Relssued Patent (10) Patent Number: US RE42.214 E
Goyal et al. 45) Date of Reissued Patent: Mar. 8, 2011
(54) PROVIDING QUALITY OF SERVICE 5,263,147 A 11/1993 Franciscoetal. 395/425
GUARANTEES TO VIRTUAL HOSTS 5,325,530 A 6/1994 Mohrmann
(76) Inventors: Pawan Goyal, Mountain View, CA (US); (Continued)
Xun Wilson Huang, Palo Alto, CA FOREIGN PATENT DOCUMENTS
%I S); ?jl:;nw%s?l;{ Keshiglfl, Mountain P 64007 145 1/1086
1ew, CA (US); Rosen Sharma, WO WO 99/39261 8/1999
Mountain View, CA (US)
(Continued)
(21) Appl. No.: 11/956,246 OTHER PUBLICATIONS
(22) Filed: Dec. 13, 2007 Boehm, B., “Managing Software Productivity and Reuse,”

(Under 37 CFR 1.47)

Related U.S. Patent Documents

IEEE Computer, vol. 32, No. 9, Sep. 1999, 3 pages.
Duetsch, P. and Grant, C.A., “A Flexible Measurement Tool
for Software Systems,” Information Processing (Proc. of the

IFIP Congress), 1971, pp. 320-326.

&le Su;;[i:m No - 6.976.258 Edjlali, G. et al., “History—based Access Control for Mobile
Tesued: N];ec i 3. 2005 Cogle,,” Fifth'ACM Conference on Computer and Communi-
Appl. No.: 00/ 4-52,38 6 cation Security, Nov. 3-5, 1998, 19 pages.
Filed: Nov. 30, 1999 (Continued)
(51) Int. Cl. Primary Examiner—I1 B Zhen
GO6F 9/455 (2006.01) Assistant Examiner—Abdullah Al Kawsar
GO6F 9/46 (2006.01) (74) Attorney, Agent, or Firm—Perkins Coie LLP
Gool’ 15/16 (2006.0:h) (57) ABSTRACT
Gool’ 15/173 (2006.01)
A method facilitates providing appropriate quality of service
(52) US.CL ..o, 718/104; 718/1; 718/100; guarantees to a plurality of virtual hosts on a single physical
718/102: 709/201:; 709/203; 709/219; 709/226 host computer. A server application program and 1ts child
(58) Field of Classification Search 718/1, processes service communication requests made to the plu-

718/100, 101, 102, 103, 104, 105; 709/201-203, rality of virtual hosts. Quality of service parameters associ-

709/216-219, 225, 226 ated with the virtual hosts are stored. Communication

See application file for complete search history. requests made to a specific one of the virtual hosts are

detected. The quality of service parameters associated with

(56) References Cited the specific virtual host are obtained. Operating system

resources are utilized to guarantee, to a child process of the

U.S. PATENT DOCUMENTS server application program, a quality of service according to

3,577,624 A 4/1968
4,177,510 A 12/1979
5,189,667 A 2/1993
5,212,793 A 5/1993
5,220,160 A 7/1993
5,249,290 A 9/1993

17 13 O ~—]
Request i MPUTER MEMORY 103 p 117
‘ Address— 201 . |
Client L Server Application 107 Virtual Host
| Computer Program Quality of

~128 | Service Program

Responses

Y Association Tables{— 307

the obtained quality of service parameters associated with
Nelson et al. , : [h C ation b he Vi [h
Appell etal. ..ooooo........ 364/200 the virtua | ost‘. ommunication between the Vll"[l.lc‘.il ‘ost
Esaki et al. and the client 1s allowed to proceed, the communication
Donica et al. being managed by the child process.
Waldron et al.
Heizer 25 Claims, 7 Drawing Sheets

PHYSICAL HOST COMPUTER 101

Copies of Pointers |- 203

—_—_ e s i oy el bl el oA S — ey Sy e s ——— -

US RE42214 E

Page 2
U.S. PATENT DOCUMENTS 0,154,776 A 11/2000 Martin
6,154,778 A 11/2000 Koistinen et al.

5,437,032 A 7/1995 Wolf et al. 6,161,139 A 12/2000 Win et al.
5,528,753 A 6/1996 Fortin 6,167,520 A 12/2000 Touboulcccoveuurnn... 713/200
5,572,680 A 11/1996 Ikeda et al. 6,172,981 Bl 1/2001 Cox et al.
5,584,023 A 12/1996 Hsu 6,189.046 Bl 2/2001 Moore et al.
5,603,020 A 2/1997 Hashimoto et al. 395/616 6,192,389 Bl * 2/2001 Aultetal.ooo......... 709/101
5,623,492 A 4/1997 Teraslinna 6,192,512 Bl 2/2001 CRESS wvvveeeereeeecrerereraannn. 717/5
5,636,371 A 6/1997 YU eevveeeeeeeeeeeeeeeeeeen, 395/500 6,230,203 Bl 5/2001 Koperda et al
5,640,595 A * 6/1997 Baugheretal. 710/10 6.240.463 Bl * 5/2001 Benmohamed et al. 700/738
5,692,047 A 11/1997 McManiscovvvvennnnn.n. 380/4 6,247.057 Bl 6/2001 Barrera, III
5,706,097 A 1/1998 Schelling et al. 358/296 6259.699 Bl 7/2001 Opalka et al.
5,706,453 A 1/1998 Cheng et al. 6,266,678 B1 7/2001 McDevitt et al.
5,708,774 A 1/1998 Boden 6,269,404 Bl 7/2001 Hart et al.
5,719,854 A 2/1998 Choudhury et al. 6,279,039 Bl 82001 Bhat et al.
53,727,203 A 3/1998 Hapner et al. 6,279,040 B1 * 82001 Maetal.cooovern.n..... 709/231
5,742,772 A * 4/1998 Sreenan 709/226 6,282,581 Bl * 8/2001 Mooreetal. ..oovuvr....... 709/316
5,748,614 A 5/1998 Wallmeier 6,282,703 Bl 82001 Meth et al.
5,752,003 A 5/1998 Hart 6,286,047 Bl 9/2001 Ramanathan et al.
5,761,477 A 6/1998 Wahbe et al. 395/406 A 6.298.479 Bl 10/2001 Chessin et al.
5,764,880 A 6/1998 Ault et al. 6,308,216 B1 * 10/2001 Goldszmidt et al. 709/236
5,781,550 A 7/1998 Templin etal. 370/401 6,314,558 Bl 11/2001 Angel et al.
5,799,173 A 8/1998 Gossler et al. 6,327,622 B1 12/2001 Jindal et al.
5,809,527 A 9/1998 Cooperet al. 711/133 6336.138 Bl 1/2002 Caswell et al.
5,828,893 A 10/1998 Wiedetal.oeeeee...... 395/800 6351775 Bl 2/2002 Yu
5,838,686 A 11/1998 Ozkan 6,353,616 Bl 3/2002 Elwalid et al.
5,838,916 A 11/1998 Domenikos et al. 395/200.49 6.363.053 Bl 3/2002 Schuster et al.
5,842,002 A 11/1998 Schnureretal. 395/500 6,370,583 B1 * 4/2002 Fisheretal. 709/238
5,845,129 A 12/1998 Wendorfetal. 395/726 6381.228 Bl 4/2002 Prieto, Jr. et al.
5,850,399 A 12/1998 Ganmukhi et al. 6,385,638 Bl * 5/2002 Baker-Harvey 709/107
5,860,004 A 1/1999 Fowlow et al. 6,389,448 B1 5/2002 Primak et al.
5,864,683 A 1/1999 Boebert et al. 6,393,484 Bl 5/2002 Massarani
5,889,956 A 3/1999 Hauser et al. 6,425,003 Bl 7/2002 Herzog et al.
5,889,996 A 3/1999 Adams 6,430,622 Bl 82002 Aiken, Jr. et al.
5,892,968 A 4/1999 Iwasaki et al. 6,434,631 Bl * 82002 Brunoetal.cevoun...... 710/6
5,905,730 A 5/1999 Yang et al. 6,434,742 Bl 8/2002 Koepele, Jr.
5,905,859 A 5/1999 Holloway et al. 6,438,134 B1 82002 Chow et al.
5,913,024 A 6/1999 Greenetal. 395/186 6,442,164 Bl /2002 Wu
5,915,085 A 6/1999 Koved ...ccoovviinninnne. 395/186 6,449,647 Bl * 9/2002 Colby et al. oooovovvv.... 700/276
5,915,095 A 6/1999 Miskowiec 6,449.652 Bl 9/2002 Blumenau et al.
5,918,018 A 6/1999 Gooderum et al. 395/200.55 6,457,008 Bl 0/2002 Rhee et al.
5,920,699 A 7/1999 Bare 6,463,454 Bl * 10/2002 Lumelsky etal. 718/105
5,933,603 A 8/1999 Vahalia et al. 6,463,459 Bl 10/2002 Orr et al.
5,937,159 A 8/1999 Meyers et al. 395/187.01 6,466,985 Bl * 10/2002 Goyaletal. 709/238
5,944,795 A * §/1999 Civanlar 709/227 6,470,398 Bl 10/2002 Zargham et al.
5,956,481 A 9/1999 Walsh etal. 395/186 6,487,578 B2 * 11/2002 Ranganathan 709/104
5,961,582 A 10/1999 Gaines 6,487,663 Bl 11/2002 Jaisimha et al.
5978373 A 11/1999 Hoff et al. 6,490,670 B1 12/2002 Collins et al.
5,982,748 A 11/1999 Yin et al. 6,499.137 B1 12/2002 Hunt
5,987,524 A 11/1999 Yoshida et al. 6,529,950 B1 3/2003 Lumelsky et al.
5,991,812 A 11/1999 Srinivasan 6,542.167 Bl 4/2003 Darlet et al.
5,999,963 A * 12/1999 Bruno etal. 709/104 6,553,413 Bl 4/2003 Tewin et al.
6,016,318 A 172000 Tomoike 6,578,055 Bl 6/2003 Hutchison et al.
6,018,527 A 1/2000 Yin et al. 6,578,068 Bl 6/2003 Bowman-Amuah
6,023,721 A 2/2000 Cummings 709/201 6,580,721 Bl 6/2003 Beshai
6,038,608 A 3/2000 Katsumata 6,647,422 B2 * 11/2003 Wesinger et al. 709/228
6,308,609 Bl * 3/2000 Geulencoeeeeu.... 709/250 6.658.571 Bl 12/2003 O’Brien et al.
6,047,325 A 4/2000 Jain et al. 6,691,312 B1 2/2004 Sen et al.
6,055,617 A 4/2000 Kingsbury 6,725,456 B1 * 4/2004 Brunoetal. 718/102
6,001,349 A 5/2000 Cotle et al. 6,760,775 Bl * 7/2004 Anerousis et al. 709/238
6,065,118 A 5/2000 Bulletal.cceeen...... 713/200 6779.016 Bl 82004 Aziz etal.
6,075,791 A 6/2000 Chiussi et al. 6,820,117 B1 11/2004 JOONSON ..eeeeeeeeeeeeennn.. 709/223
6,075,938 A 6/2000 Bugnion etal. 395/500.48 6,968,389 Bl * 11/2005 Menditto et al. 709/233
6,078,929 A 6/2000 Rao 6,981,029 Bl * 12/2005 Menditto et al. 709/217
6,078,957 A 6/2000 Adelman et al. 2003/0061338 Al 3/2003 Stelliga
6,086,623 A * 7/2000 Broome etal. 703/26
6,092,178 A 7/2000 Jindal et al.
6,094,674 A * 7/2000 Hattori et al. 709/203 OTHER PUBLICATIONS
6,101,543 A 8/2000 Alden et al. | _
6.108.701 A 2/2000 Davies et al. Erlington, U. and Schneider, F. B., “SASI Enforcement of
6,108,759 A 8/2000 Orcuttetal. ...oooe........ 711/173 Security Policies: A Retrospective,” Proc. New Security
6,122,673 A 9/2000 Basak et al. Paradigms Workshop, Apr. 2, 1999, pp. 1-17.

US RE42214 E
Page 3

Evans, D. and Twyman, A., “Flexible Policy—Directed Code
Safety,” Proc. of 1999 IEEE Symposium on Security and
Privacy, Oakland, CA, May 9-12, 1999, pp. 1-14.

Fraser, T. et al., “Hardening COTS Software with Generic
Software Wrappers,” Proc. of 1999 IEEE Symposium on
Security and Privacy, 1999, 135 pages.

Goldberg, I. et al., “A Secure Environment For Untrusted
Helper Applications (Confining the Wily Hacker),” Proc. of
the Sixth USENIX UNIX Security Symposium, San Jose,
CA, Jul. 1996, 14 pages.

Goldberg, R. P., “Survey of Virtual Machine Research,”
IEEE Commuter Jun. 1974, pp. 34-33.

Pandey, R. and Hashii, B., “Providing Fine—Grained Access

Control For Mobile Programs Through Binary Editing,”
Technical Report TR98 08, University of Califorma, Davis,

CA, 1998, pp. 1-22.

Saltzer, J., H. and Schroeder, M. D., The Protection of Infor-
mation in Computer Systems, [online|, 1973, [retrieved on
Apr. 2, 2002]. Retrieved from the Internet: <URL: http://
www.cs.virgima.edu~evans/cs5351/saltzer/ html>.

Wahbe, R., et al., “Efficient Software-Based Fault Isola-
tion,” Proc. of the Symposium on Operating System Prin-
ciples, 1993, 14 pages.

Keshav, S., Arn Engineering Approach to Computer Net-
working: ATM Networks, the Internet, and the lelephone
Network, Reading, MA, Addison—Wesley, 1997, pp. vii—xi,
85-113, 209-355, 395444,

Stevens, R. W., UNIX Network Programming vol. I Net-
working APIs: Sockets and XTI, Upper Saddle River, NI,
Prentice Hall, 1998, pp. v—x1v, 29-53, 85110, 727-760.
Tanenbaum, A. S. and Woodhull, A. S., Operating Systems.
Design and Implementation, Upper Saddle River, NI, Pren-
tice Hall, 1997, pp. vii—x1v, 1-46, 401-454.

Rubmni, A., LINUX Device Drivers, Sebastopol, CA,
O’Reilly & Associates, Inc., 1998, pp. v—x, 13-40.

Goyal, P, et al., “A Hierarchical CPU Scheduler for Multi-
media Operating Systems,” Proceedings of the Second Sym-
posium on Operating Systems Design and Implementation

(OSDI’96), Seattle, WA, Oct. 1996, 15 pages.

Laurie, B. and Laurie, P., Apache The Definitive Guide,
Sebastopol, CA, O’Reilly & Asssociates, Inc., Feb. 1999, pp.
v—vii1, 43-74.

Aho, A. V. and Allman J. D., Principles of Complier Design,
Reading, MA, 1977 pp. vii—x, 359-362, 519-322.

Jonsson, J., “Exploring the Importance of Preprocessing
Operations 1n Real-Time Multiprocessor Scheduling,” Proc.
of the IEEE Real-Time Systems Symposium—Work—in—
Progress session, San Francisco, CA, Dec. 4, 1997, pp.
31-34.

Huang, X. W. et al., “The Entrapid Protocol Development
ENvironment,” Proceedings of IEEE Infocom ’99, Mar.
1999, nine pages.

Duifield, N.G., et al., “A Flexible Model for Resource Man-
agement 1n Vlrtual anate Networks,” Computer Communi-
cation Review Conference, Computer Communication,

ACM SIGCOMM 99 Conference, Cambridge, MA, Aug.
30, 1999—Sep. 3, 1999, pp. 95-108.
Campbell, A. T. and Keshav, S., “Quality of Service 1n Dis-

tributed Systems,” Computer Communications 21, 1998, pp.
291-293.

Bach, M. 1., The Design of the Unix® Operating System,
New Dehli, Prentice—Hall of India, 1989, pp. v—x, 19-37/.

McDougall, R., et al., Resource Management, Upper Saddle
River, NI, Prentice—Hall, 1999, pp. 11—x1x, 135-191.

Goyal, P. et al., “Start—time Fair Queuing: A Scheduling

Algorithm for Integrated Services Packet Switching Net-
works.” Proceedings of ACM SIGCOMM ’96, San Fran-

cisco, Ca, Aug. 1996, 14 pages.

Janosi, T., “Notes on ‘A Hierarchical CPU Scheduler for
Multimedia Operating Systems’ by Pawan Goyal, Xingang
Guo and Harrick Vin,” [online], [retrieved on May 8, 2000].
Retrieved from the internet: <URL: http://cs.cornell.edu/
Info/Courses/Spring—97/CS614/goy.html>.

Goyal, P., “Packet Scheduling Algorithms for Integrated Ser-

vices Networks,” PhD Dissertation, University ol Texas,
Austin, TX, Aug. 1997.

Corbato, F. I. et al., “An Experimental Timesharing System,”
Proceedings of the American Federation Of Information
Processing Societies Spring Joint Computer Conference,

San Francisco, CA, May 1-3, 1962, pp. 335-344.

Ritchie, D. M., “The Evolution of the Unix Time—Sharing
System,” AT&'T Bell Laboratories Technical Journal 63, No.
6, Part 2, Oct. 1984, (originally presented 1979), 11 pages.

Bhatti, N.; Friedrich, R. “Web server support for tiered ser-
vices.” Network IEEE, vol. 13, Issue 5, pp. 64-71, Sep./Oct.
1999.

Rusling, D.A., Processes, [online], [retrieved on Dec. 7,
1999]. Retrieved from the Internet: <cebaf.gov/~saw/linux/
tlk—html/node44.html> 2 pages.

Rusling, D.A., Linux Processes, [online], [retrieved on Dec.
7, 1999]. Retrieved from the Internet: <.cebaf.gov/~saw/
linux/tlk—html/node45 html> 2 pages.

Rusling, D.A., Identifiers, [online], [retrieved on Dec. 7,
1999]. Retrieved from the Internet: <.cebaf.gov/~saw/linux/
tlk—html/node46.html> 1 page.

Rusling, D. A., Scheduling, [online], [retrieved on Dec. 7,
1999]. Retrieved from the Internet: <.cebaf.gov/~saw/linux/
tlk—html/node47.html> 1 page.

Rusling, D.A. Scheduling in Multiprocessor Systems, [on-
line], [retrieved on Dec. 7, 1999]. Retrieved from the Inter-
net: <.cebat.gov/~saw/linux/tlk—html/node48.html> 1 pp.

Rusling, D.A., Files, [online], [retrieved on Dec. 7, 1999].
Retrieved from the Internet: <.cebaf.gov/~saw/linux/

tlk—html/node49.html> 2 pages.

Rijsinghani, A., RFC 1624, May 1994, |online], [retrieved
Feb. 2, 2000], Retrieved from the Internet: <.fags.org/rfcs/
ric1624 html> pp. 1-3.

Plummer, D.C., An Fthernet Address Resolution Protocol—
or—Converting Network Protocol Addresses to 48.bit Ether-
net Address for Transmission on Ethernet Hardware, Nov.
1982, |online], [retrieved on Jan. 17, 2000}, Retrieved from
the Internet: <.msg.net/’kadow/answers/extras/ric/

ric826.txt> pp. 1-8.

Mallory, T. and Kullberg, A., RFC 1141, Jan. 1990 [online].
[retrieved Feb. 2, 2000], Retrieved from the Internet: <.faq-
s.org/rics/ric1141.html> 2 pages.

Egevang, K. and Francis P., RFC 1631, May 1994 [online],
[retrieved Feb. 2, 2000], Retrieved from the Internet: <.faq-
s.org/rics/ric1631.html> 8 pages.

Janosi, T., “Notes on ‘A Hierarchical CPU Scheduler for
Multimedia Operating Systems’ by Pawan Goyal, Xingang
Guo and Harrick Vin,” [online], [retrieved on May 8, 2000].

Retrieved from the internet: </cs.cornell.edu/Info/Courses/
Spring—97/CS614/goy.html> 3 pages.

Goyal, P., “Packet Scheduling Algorithms for Integrated Ser-

vices Networks,” PhD Dissertation, University ol Texas,
Austin, TX, Aug. 1997, pp. 1-2009.

US RE42214 E
Page 4

Saltzer, J.H. and Schroeder, M. D., The Protection of Infor-
maiton in Computer Systems, 1973, [online], [retrieved on
Apr. 2, 2002]. Retrieved from the Internet:
<cs.virginia.edu~evans/cs351/saltzer/.html> 75 pages.
Symbol Table, 1998.[online], [retrieved on Apr. 4, 2003],
Retrieved on Apr. 4, 2003]| Retrieved from the internet:
216.239.33.100/search?qg=cache:e ASXk8qC__—AC:www.
caldera.com/developers/gabi1/1998-04-29/ch4.s..., pp. 1-3.

Mitra, Debasis et al., “Hierarchical Virtual Partitioning:
Algorithms for Virtual Private Networking,” Bell Labs Tech-
nical Journal, Spring 1997, [online], Retrieved from the
internet: </cm.bell-labs.com/cm/ms/who/mitra/papers/
globe.ps> 8 pages.

* cited by examiner

US RE42,214 EE

Sheet 1 of 7

Mar. 8, 2011

U.S. Patent

lllllllllllllllllllll _
apo) 102lgo)|
Lely
ey | [PIEL 100N <\
Q0INIBS e 9JIBS __ G0L sa
joKmenD |21, WILSAS blt
| ONHVYHIJO JLLL

ISOH [BNUIA PIIU |
GLL 7 o11senbay

et

$533014

PIYO
PIy}

g601 —f sse20d4

pIuD
pUOJIS

621 ..rmwm..conmmm

ISOH |BNUIA pUOIAS
Grp/ O1isanbay

eLL -

giil
$S32014

PIYD

S9SU00SaY

weiboig ao1usg _—

10 Ayenp

pInduion

oLl 1enLI weiboid
OH IFTEA uonedday JaAIaS welo
1511
[LL L0l SOL ANOWIW M31NdWOD 1SOH [enuIA 15114 ViLL
GLL - 011sanbay
101 ¥3LNdWOD 1SOH T¥IISAHd o1
=~ 00L

s
4 [
- ¢ 9l
%
T | pree——————————————————eeeeeeeeeeeeeeeeeeee
m 9p0D 1991q0
- pauasuy|
3|qBLRA KAl
LOc SWEN |2307
ajqe | JO1IA,

1dnLay

a|qe} uonaun 4 Ll
RPBUWeR4 10820y
™~
= tll
gl
,_w G0c
|- [R EES I 1 .
2 ur{ GOL W31SAS SNILVHId0
JoII0g 501 6OLy 60L
m t0¢ jo Ado) 601 ~{Ssa20id 5593014 | 155320id| [SS2201d meco%mm
Q PI) [eee PIIYD bel
om UIN puo3a§
- welboid adneg
jo AuenD
weiboiy RINAWO)
BOH IEMEA 0L uonexddy san3S Wwal)
oz ~ssanpy |
[l 0L AYOWIW3LNGWOD | | Osamed o
ELl

LOE ¥I1NdNOD 1SOH TYIISAHJ

U.S. Patent

¢ Il

US RE42,214 EE

| 2poQ 10| |

|

_ ST

|

_ a|qe | JO1I9A “

_ dnuayuy |
- " SJALIO] |
= | |
- |
S _
_—
7 _
_ £02
=
-3
x S9SU00SAY
= weibod 3G

jo Ayenp
1SOH [BNUIA L0l uonedddy Jonssg
LLL £0L AMOW3W ¥3LNAWOD O11sanbay

c1) -

LOL ¥ILNAWOD 1SOH TVIISAHd

U.S. Patent

LLL

US RE42,214 EE

Sheet 4 of 7

Mar. 8, 2011

U.S. Patent

v Ol

o[qe] uoIeIdossy
Adon) jojduosaq 914
~ Jojdudsaq aji4

6V

3|GB . UOHEI0SSY

SS820id PIudD
— weiboigq uonedyddy

LGV

8|2 UOIRIN0SSY
JBUURBYD) UORRIIUNWLLIOY
~ weiboig uoijediiddy

Geb

L0E S318YL NOILYIDOSSY

Jv Ol

18 LIy
joddeip | | Jaddeip
304 1dad0oy

121 3009 193r80 G31H3SNI

334

LonouN4

jeddeip
pesy

£0Y L0
Jaddesp | Liaddeip
}104 10800y
0} 0}

G2l SHILINIOd Q31HISN

US RE42,214 EE

Sheet S of 7

Mar. 8, 2011

U.S. Patent

h\ G0L W31SAS ONILVY3IdO
rF————— = — — ——— e — o ———— — — L — — — o —— - 1
|
alge; | - 9poJ 18igQ “
3IIBS -I palasul _
jo AmenD 171 bel
_
05 9|qe] OB/ |
uonoun4| juonound dnuaiy| “
350]) peay SJIlod _
WwISAS | { walshg jB)ng peay Payasuj |l ez |
w |
llllllll _]
$131Ul0d J0 Ssaidon
He 10S —~§ sbej4 pes
 SBeigpeoy 59014
Piyd
weibosd 83nag _ oot
jo Ayenp
<ou 1en weiboig
IO [ENUA [OL uonedddy seniag
Wmsmz UIBLIOQ
LLL £0L AYOWIW y31LNdwo0 | |05 " avsisanbay - &
— — gLl

LOL¥3LNDNOD 1SOH TWIISAHJ

US RE42,214 EE

Sheet 6 of 7

Mar. 8, 2011

U.S. Patent

J9 Ol

S09 Ec

Jaddeip Jaddeip
950|) peey

12} 3009 193r80 Q31H3SN

g9 OI3

£09

uoIUNJ
3s0|)

Ol

uonIuUN4
peay
01

€0¢ SHILNIOJ 40 S31d0D

V9 DI

G2l SH3LINIOd Q3LH3SNI

L Ol

US RE42,214 EE

- SOL WALSAS ONIL3dO

jobeuepy
32IAJBG

jo Auenp

(el

wiaybuy weutilivnr ulipiiie L ke L " l

I~ e e o o — — — — _——
=
-
|
e
9
$S3901d
— PIYO
= sasuodsay
N J
o0 6CL
= 9jqe]
S 92IAJBS weibo.g 1BIndwon)
jo Aygenpy uonedlddy JenRg i
GLL _~1S0H [eNUIA |
/0L sLL7 01 s159nbay
E0L AHOW3W 33LNdWNOD ELL- .
101 ¥3LNN0D 1SOH WIISAHd
¥~ 00L

U.S. Patent

US RE42,214 E

1

PROVIDING QUALITY OF SERVICE
GUARANTEES TO VIRTUAL HOSTS

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

CROSS-REFERENCE 10 RELATED
APPLICATIONS

This patent application is a reissue application for com-

monly assigned U.S. Pat. No. 6,976,258, issued from U.S.
patent application Ser. No. 09/452, 286, filed on Nov. 30,

1999, which is incorporated by reference hervein in its
entirety.

BACKGROUND

1. Field of Invention

The present ivention relates generally to guaranteeing
appropriate quality of service to virtual processes executing
on multitasking operating systems, and specifically in one
embodiment to guaranteeing quality of service to virtual
hosts servicing client requests to multiple network addresses
on a single physical host computer.

2. Background of Invention

With the popularity and success of the Internet, server
technologies are of great commercial importance today.
Typically, a server program executing on a single physical
host computer services client requests made to a single net-
work address allocated to the host. However, using Trans-
mission Control Protocol (TCP) and other transport
protocols, a server application executing on a single physical
host can be programmed to process requests made to mul-
tiple network addresses. Such functionality 1s known as vir-
tual hosting.

To enable virtual hosting, more than one network address
1s assigned to a single physical host computer. A server pro-
gram executing on the host opens a communication transport
channel (socket) and allows receipt of 1ncoming communi-
cations targeted for any of the multiple network addresses
assigned to the host. Accepting a communication request by
a server executing TCP 1s a three step process that comprises
waiting for the communication request from a client, send-
ing an acknowledgment signal to the client, and receiving a
return acknowledgment signal from the client. This three
step process 1s called “three way handshaking™ and 1s a fea-
ture of TCP communication. While accepting a communica-
tion request, a server 1s unable to execute other tasks. Thus, a
server cannot wait for one mcoming communication request
and simultaneously service a separate communication
request. However, multiple communication requests made to
a plurality of network addresses associated with a single
physical host require simultaneous service. For this reason, a
virtual host server typically accepts the communications
requests 1tself and creates child processes to service the
requests.

Two known methods exist for utilizing child processes to
service communication requests. The most common
involves accepting the communication request by the server,
and then generating (forking) a child process to service it.
While the child process services the request made by the
client and transmuts it to the client, the server 1s free to accept
the next communication request, perhaps from another cli-
ent. As soon as the server accepts a request, the server gener-
ates a new child process, which services the request and then

10

15

20

25

30

35

40

45

50

55

60

65

2

terminates. This method of virtual hosting, know as “fork
alter accept,” 1s widely used today.

Another method of virtual hosting comprises generating,
by the server, a plurality of child processes. The number of
chuld processes created reflects a desired maximum number
ol communication requests to service simultaneously. Each
child process proceeds to accept a communication request.
Thus, each child waits for an incoming communication
computer, services it, and proceeds to wait for a next request.
While a child process 1s servicing a request 1t cannot be
waiting for another request, but this 1s allowable because
other child processes are waiting for incoming requests.
Where all the child processes are busy servicing requests,
the maximum desired number of requests 1s being serviced,
and no more can be accepted until one of the child processes
finishes servicing a request and begins waiting for a new
one. This method, called “fork before accept,” 1s known and
used today, although less commonly than “fork after accept.”

Both virtual host systems that utilize the fork before
accept method and those that utilize the fork after accept
method can be name-based as well as address-based. As
described above, 1n an address-based virtual host system,
cach virtual host 1s 1dentified by a separate network address
assigned to a single, physical host. In contrast, in a name-
based virtual host system, each virtual host 1s 1dentified not
by a network address, but instead by a domain name. Mul-
tiple domain names can be assigned to a single address.
Thus, multiple virtual hosts, each identified by a unique
domain name, can all be assigned to a single network
address. The single network address to which the multiple
domain names are assigned 1s assigned to the single, physi-
cal host. Communication requests to a name-based virtual
host are made to a domain name, not to a network address.
As with address-based virtual host systems, all virtual hosts
map to a single physical host.

A virtual host system simulates multiple hosts by servic-
ing client requests made to any of the multiple network
addresses or domain names. This 1s desirable, because pro-
viding a unique physical host for each network address or
domain name 1s expensive and inetficient. Hosting services
are often provided commercially by an Internet Service Pro-
vider (ISP). Without virtual hosting, an ISP would have to
provide a separate physical host computer with a unique
network address for every customer that purchases host ser-
vices. Often, a customer purchasing host services from an
ISP will neither require nor be amenable to paying for use on
an entire host computer. Generally, only a fraction of the
processing power, storage, and other resources of a host
computer will be required to meet the needs of an individual
customer.

Virtual hosting allows an ISP to utilize one physical host
computer to provide commercial host services to multiple
customers, thereby creating a virtual host server. Fach and 1s
provided with resources on the single, physical host
computer, eifectively sharing the host with other customers.
A client computer requests data from a specific customer’s
host by targeting communication requests to the appropnate
network address (or domain name). By utilizing the fork
betore accept method or the fork after accept method, the
virtual host server can service requests to multiple network
addresses or domain names. Thus, the functionality of
numerous hosts 1s provided by a single physical host
computer, servicing requests made to a plurality of network
addresses and domain names by multiple customers.

One shortcoming with virtual hosting as 1t exists today 1s
the 1nability to allocate appropriate amounts of computer

US RE42,214 E

3

resources of the physical host to servicing client requests
made to specific virtual hosts, and hence to specific custom-
ers. Where an ISP provides host services to multiple custom-
ers on a single physical computer, 1t 1s desirable to allot to
cach virtual host a specific amount of computer resources
appropriate to the needs of the customer, and preferably
based upon the amount paid for the services. For example,
suppose two customers purchase host services from an ISP.
The first customer 1s a large corporation providing financial
services to thousands of clients internationally. The financial
services host requires a great deal of storage space, as well as
prompt response time to all client requests. Of course, the
first customer 1s willing to compensate the ISP appropriately
for providing such a level of host services. The second cus-
tomer 1s a sole proprietorship that sells floral arrangements
locally. The second customer has a very limited budget, but
only requires minimal computer resources. Clearly, 1t 1s
desirable for the ISP to allocate different percentages of the
system resources to the two separate virtual hosts provided
by the ISP for the two separate customers. However, this 1s
not possible with conventional virtual hosting techniques.

Multitasking operating systems such as UNIX {facilitate
specification of resource allocation to multiple concurrent
processes. The operating system can be instructed as to how
to allocate resources to different processes. System
resources can be allocated to processes as a percentage of
resources available (for example, the operating system may
be 1nstructed to allocate twenty percent of the central pro-
cessing unit cycles to process A and two percent to process
B), or as specific numbers of units (for example, the operat-
ing system may be 1nstructed to allocate X cycles per second
to process A and Y cycles per second to process B). Such
specification of resource allocation 1s called a guarantee of
quality of service.

A server, which 1s a process, executing on a dedicated
physical host services client requests for a single network
address (physical host) only. Thus, quality of service can
simply be set for the server to the quality of service appropri-
ate for the host. A virtual host server services numerous
client requests for multiple virtual hosts. A single virtual
host server provides host services for a plurality of custom-
ers all of whom may require different quality of service.
Although 1t would be possible to set a single quality of ser-
vice for the virtual host server, no single quality of service 1s
appropriate for all of the virtual hosts. Because the appropri-
ate quality of service for different virtual hosts 1s different,
providing a single quality of service for all virtual hosts 1s
undesirable. As detailed above, ISP’s utilize single service
application programs to provide virtual hosting services to
multiple customers with varying business needs and bud-
gets. It would be desirable for an ISP to be able to make
appropriate quality of service guarantees to different cus-
tomers purchasing virtual host services. However, conven-
tional virtual host systems can provide only the same quality
of service for all virtual hosts supported by the server. With
existing virtual host systems, an ISP cannot provide one
quality of service to the international financial services cor-
poration of the example given above, and another to the local
florist. The ISP either must provide each customer with the
same quality of service, which 1s undesirable, or provide
cach customer with a separate physical host, which 1s mefli-
cient and expensive for the ISP, as many customers do not
require the resources of a dedicated host computer. What 1s
needed 1s a virtual host system that provides appropnate
quality of service guarantees for each virtual host.

Virtual host systems are being utilized today by ISP’s and
other providers of host services. As explained above, it

10

15

20

25

30

35

40

45

50

55

60

65

4

would be desirable for existing ISP’s providing virtual host
systems to be able to provide appropnate quality of service
guarantees to multiple virtual hosts. However, many such
ISP’s would not want to replace their existing virtual host
system with one that could provide such guarantees, even 11
such a system were available. Upgrading a virtual host sys-
tem 1s a time consuming and complicated process, often
involving costly down time and high labor expenses. It
would be desirable to have a system to allow existing users
to provide appropriate quality of service guarantees to mul-
tiple virtual hosts, without having to upgrade or replace their
existing virtual host systems.

SUMMARY OF INVENTION

The present invention allows providers of virtual host ser-
vices to make appropriate quality of service guarantees to
multiple virtual hosts. In one embodiment, the present inven-
tion executes as a virtual host quality of service application
program on the same physical host computer as an existing
virtual host server. The application program modifies the
operating system of the host computer to include a quality of
service table comprising appropriate quality of service
parameters for all virtual hosts. Then, object code 1s mserted
into the operating system. The object code comprises com-
puter instructions to obtain quality of service parameters for
a particular virtual host from the table, and to set the quality
ol service for the virtual host according to these parameters.
Once the object code 1s 1nserted, system calls to the operat-
ing system pertaining to communications between one of the
virtual hosts and a client are intercepted. The system calls
are intercepted by replacing a pointer 1n an operating system
function table with a pointer to the mserted object code, so
that when a system call 1s made, the inserted object code 1s
executed rather than the system call. The object code obtains
quality of service parameters for the selected virtual host
from the quality of service table, and the appropriate quality
of service 1s guaranteed to the virtual host. Virtual host sys-
tems utilize child processes of a parent server application to
manage communications between a virtual host and a client.
Theretore, the 1mserted object code can guarantee the appro-
priate quality of service to the virtual host by setting the
quality of service guarantees for the child process managing
the communication between the virtual host and the client.
After the quality of service guarantees are set, the communi-
cation between the virtual host and the client proceeds.

The present invention works for all types of virtual host-
ing systems, including both those that utilize the fork before
accept method and those that utilize the fork after accept
method. To set quality of service guarantees for a virtual host
system utilizing the fork before accept method, system calls
that establish a communication channel between a client and
a select one of the virtual hosts are intercepted. These system
calls are made by child processes of the server application.
The present mvention then guarantees quality of service
approprate for the virtual host to the child process that made
the mtercepted system call. Once the quality of service 1s
guaranteed, the child process that made the system call man-
ages the communication between the virtual host and the
client.

Guaranteeing quality of service to virtual hosts of a sys-
tem utilizing the fork after accept method 1s similarly facili-
tated. In a system utilizing the fork after accept method, a
communication channel 1s established by the server applica-
tion prior to generation of a child process to service a com-
munication request. At the time a communication channel 1s
established, 1t 1s unknown what child process will service
that communication channel. Therefore, under these

US RE42,214 E

S

circumstances, the virtual host quality of service application
program 1intercepts system calls, made by child processes,
that transport data through already established communica-
tion channels. When such a system call 1s made, the virtual
host quality of service program determines the virtual hostto 53
which the client 1s communicating via the channel. Appro-
priate quality of service 1s then guaranteed to the child pro-
cess that made the intercepted system call. The child process
then proceeds to manage communication between the virtual
host and the client. 10

The present invention also guarantees appropriate quality
ol service to name-based virtual hosts. Clients make com-
munication requests to name-based virtual hosts by passing,
a domain name to the virtual host server. The domain name
is then stored in a communication buffer utilized for commu- 15
nications between the server and the client. The virtual host
quality of service program intercepts system calls that trans-
port data through commumnication channels. When such a
system call 1s made, the communication buflfer being used to
transport data through the channel is parsed. By parsing the 2Y
bufter, the domain name to which the client 1s communicat-
ing 1s 1solated, and hence the virtual host associated with the
communication 1s identified. Quality of service guarantees
appropriate for the virtual host are then set for the child
process that made the system call. That child process pro- 2°
ceeds to manage the communication between the virtual host
and the client.

In all of the above described embodiments, the present
invention allows providers of virtual host services to make
appropriate quality of service guarantees to multiple virtual
hosts without upgrading or replacing existing virtual host
systems.

30

In another embodiment, the present invention comprises a
stand along virtual host system that sets appropriate quality
ol service guarantees for all virtual hosts. In such an
embodiment, the present invention 1s 1n the form of a server
application program. Unlike other embodiments of the
present invention, 1n order to utilize this embodiment provid-
ers of virtual host services must upgrade their virtual host
system.

35

40

In this embodiment, the virtual host server program stores
in computer memory a table including appropnate quality of
service guarantees. The server program then receives all cli-
ent requests for communication with virtual hosts. When
utilizing the fork after accept method, the server first
receives a client request to communicate with a virtual host,
and then creates a child process to manage communication
between the virtual host and the client. Next, the server
obtains the quality of service parameters associated with the
virtual host, and guarantees, to the child process, the quality
of service approprate for the virtual host.

When utilizing the fork before accept method, the server
first creates, a plurality of child processes to manage com-
munication requests made to virtual hosts by clients. When 55
the server recetves a communication request made to a select
one of the virtual hosts by a client, the server obtains the
quality of service parameters associated with the virtual
host, and guarantees the associated quality of service to the
chiuld process that will manage the communication. 60

As here summarized, the present invention makes appro-
priate quality of service guarantees to a plurality of virtual
hosts comprising a single server application program. Of
course, the present mvention can also be utilized to make
appropriate quality of service guarantees to a plurality of 65
virtual processes of any nature comprising a single applica-
tion program.

0
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram illustrating a high level over-
view ol a system for setting quality of service guarantees for
virtual hosts 1n accordance with one embodiment of the
present 1nvention.

FIG. 2 1s a block diagram 1llustrating a system for setting,
quality of service guarantees for virtual hosts of a virtual
hosting system that utilizes a fork before accept method.

FIG. 3 1s a block diagram 1llustrating a system for setting,
quality of service guarantees for virtual hosts of a virtual
hosting system that utilizes a fork after accept method.

FIG. 4A, FIG. 4B, FIG. 4C, and FIG. 4D are block dia-
grams 1llustrating, in greater detail, select features depicted
in FIG. 3. FIG. 4A 1illustrates pointers inserted into the oper-
ating system. FIG. 4B 1llustrates copies of pointers to oper-
ating system calls saved to computer memory. FI1G. 4C 1llus-
trates the content of object code inserted mnto the operating
system. FIG. 4D 1illustrates the content of association tables.

FIG. 5 1s a block diagram 1llustrating a system for setting,
quality of service guarantees for virtual hosts of a name-
based virtual hosting system according to one embodiment
ol the present invention.

FIG. 6A, FIG. 6B, and FIG. 6C are block diagrams
illustrating, 1n greater detail, select features depicted 1n FIG.
5. FIG. 6A 1illustrates pointers inserted into the operating
system. FIG. 6B 1illustrates copies of pointers to operating
system calls saved to computer memory. FIG. 6C illustrates
the content of object code inserted nto the operating system.

FIG. 7 1s a block diagram 1llustrating an embodiment 1n
which the present invention comprises a stand alone virtual
host system.

DETAILED DESCRIPTION OF THE PR.
EMBODIMENTS

(L]
By

ERRED

System Overview

FIG. 1 presents a high level overview of a system for
setting quality of service guarantees for virtual hosts in
accordance with a preferred embodiment of the present
invention. A single, physical host computer 101 contains
computer memory 103, conventional processor(s), network-
ing 1nterfaces, and input/output devices (not shown). An
operating system 105, a virtual host server application pro-
gram 107, and a plurality of child processes 109 of the server
application program 107 reside 1n the computer memory
103. For purposes of example, FIG. 1 illustrates three child
processes 109 of the virtual host server application program
107: a first child process 109A, a second child process 109B,
and a third child process 109C. It 1s to be understood that
more or fewer child processes 109 can reside in the com-
puter memory 103 as desired.

Client computers 111 send requests 113 to a plurality of
virtual hosts 115 which are supported by the server 107. All
such requests are received by the server application program
107 and are processed by the child processes 109. For pur-
poses of example, FIG. 1 illustrates three client computers
111 (client computer 111A, client computer 111B, and client
computer 111C), each making separate requests 113 to a
separate virtual host 115. It 1s to be understood that more or
tewer client computers 111 can make more or fewer requests
113 to more or fewer virtual hosts 115. It 1s to be understood
that the clients 111 are typically remote from the server 107
and physical host computer 101.

A virtual host quality of service application program 117
executes 1n the computer memory 103 of the physical host

US RE42,214 E

7

computer 101. The virtual host quality of service application
program 117 inserts a quality of service parameter table 119
and object code 121 into the operating system 105 1n the
computer memory 103. Additionally, the virtual host quality
of service application program 117 inserts, into the interrupt
vector table 123 of the operating system 105, a pointer 125
to the object code 121. The object code 121 reads the quality
ol service parameter table 119, and calls the quality of ser-
vice manager 127 of the operating system 105 to set appro-
priate quality of service guarantees for the virtual hosts 115
serviced by the virtual host server application program 107.
The virtual hosts 115 then transmit responses 129 to the
client computers 111. The features and functionality

depicted 1n FIG. 1 are described 1n detail below.

Providing Quality of Service Guarantees to Network
Address-Based Virtual Host Systems
I. Virtual Host Systems Utilizing the Fork Before Accept
Method

FI1G. 2 1llustrates a virtual host application program 117
for providing quality of service guarantees to virtual hosts
115 of a server program 107 that utilizes the fork before
accept virtual hosting method. As explained previously, cli-
ents 111 make requests 113 to specific virtual hosts 115. In a
network address-based system, a virtual host 115 1s 1denti-
fied by a network address 201. In other words, clients 111
transmit communication requests 113 to individual network
addresses 201. Multiple network addresses 201 are assigned
to the single, physical host computer 101, and communica-
tion requests thereto are serviced by the virtual host server
program 107.

A virtual host server 107 that utilizes the fork before
accept virtual hosting method generates a plurality of child
processes 109, each of which waits for an incoming commu-
nication request 113. When a child process 109 receives a
request 113, the child process 109 establishes a communica-
tion channel between itsellf and the requesting client 111.
The child process 109 proceeds to use the communication
channel to service the request 113 that was made by the
client 111 to the network address 201.

During the time that the child process 109 services the
communication request 113 to the specific network address
201, 1t 1s desirable for the child process 109 to be guaranteed
a specific quality of service according to parameters for the
virtual host 115 with which the network address 201 1s asso-
ciated. For this reason, the present invention detects when a
chiuld process 109 1s accepting a communication request 113,
and sets quality of service guarantees for the child process
109 based on parameters for the network address 201 to
which the request 113 1s directed. When the child process
109 finishes a communication session initiated by a request
113 to a specific network address 201, the child process 109
closes the established communication channel and waits for
another mcoming request 113. The next request 113 the
chuld process 109 receives may be directed to a different
network address 201 and hence may require that different
quality of service parameters be set for the child process
109. Therefore, the present invention detects when the child
process 109 establishes a communication channel to service
the new request 113 and proceeds to request approprate
quality of service guarantees for the target network address
201.

In the embodiment of the present mvention depicted in
FIG. 2, a virtual host quality of service application program
117 executes 1n the computer memory 103. The quality of
service program 117 inserts a quality of service parameter
table 119 into the operating system 105 of the host computer
101. The quality of service table 119 contains quality of

10

15

20

25

30

35

40

45

50

55

60

65

8

service parameters for each network address 201 associated
with one of the virtual hosts 113 serviced by the virtual host
server 107. The quality of service program 117 utilizes tech-
niques known 1n the art to insert the table 119 into the oper-
ating system 105. In a preferred embodiment, the present
invention dynamically links a module to an operating system
kernel, which the kernel 1s active. The module 1s preferably
in the form of object code comprising an empty quality of
service table 119, and subroutines to add, modity, and delete
quality of service parameters for different virtual hosts. The
quality of service application program 117 then calls the
appropriate subroutine to add the quality of service param-
cters for the virtual hosts 115 serviced by the server program
107. The quality of service program 117 utilizes the subrou-
tines to add, modity, and delete quality of service parameters
as desired. In alternative embodiments, the module contains
additional subroutines, or only a subset of the subroutines
listed above. In one alternative embodiment, the table 119 1s
first filled with quality of service parameters and then linked
to kernel as a module. In an alternative embodiment, the
quality of service table 119 1s stored outside of the operating
system 105 1n computer memory 103.

The quality of service program 117 also inserts object
code 121 into the operating system 105. Preferably, the
object code 1s dynamically linked to the operating system
kernel as a module. The contents and execution of the object
code 121 are discussed in detail below. In an alternative
embodiment, the object code 121 resides outside of the oper-
ating system 105 1n computer memory 103. The quality of
service program 117 makes a copy 203 of an internal operat-
ing system pointer to the operating system function that 1s
called to establish a communication channel. In an alterna-
tive embodiment, the copy 203 1s made by a module linked
to the operating system kernel. In the UNIX operating
system, this function 1s the operating system accept function
203, as pictured 1n FIG. 2. The copy 203 of the pointer to the
system accept function 203 1s stored 1n conventional com-
puter memory 103. In another embodiment, the copy 203 of
the pointer 1s stored in the operating system 105.

It 1s to be understood that the name of the system function
that 1s called to establish a communication channel can vary
from operating system to operating system. The present
invention 1s not limited to any specific operating system, or
to any specific operating system function name.
Furthermore, some operating systems include more than one
function that establishes a communication channel. Embodi-
ments of the present mvention targeted for such operating
systems create copies 203 of the pointers to all such operat-
ing system functions.

The pointer to the system accept function 205 1s located 1n
the operating system 103 interrupt vector table 123. It 1s to
be understood that the term “interrupt vector table” as used
herein denotes an area in operating system memory 1n which
are stored the addresses of operating system functions
(system calls). In the UNIX operating system, this part of the
operating system 1s called the “interrupt vector table,” and
that term 1s used 1n this specification. Other operating sys-
tems employ different terminology to denote the same sys-
tem component. An interrupt vector table by any other name
1s st1ll within the scope of the present invention.

The quality of service program 117 replaces the pointer to
the system accept function 205 with a pointer 125 to the
inserted object code 121, such that when the system accept
function 205 1s called, the inserted object code 121 1s
executed 1nstead. In another embodiment, this pointer
replacement 1s executed by a module linked to the operating
system 105 kernel. Executing alternative code when a sys-

US RE42,214 E

9

tem call 1s made comprises intercepting the system call. The
steps of mserting object code 121 into the operating system
105, making a copy 203 of an operating system pointer, and
replacing the operating system pointer with a pointer 125 to
the mserted object code facilitate interception of a system
call.

When a call 1s made to the system accept function 205, the
operating system 1035 uses the pointer 125 1n the interrupt
vector table 123 to execute the object code 121. The object
code 121 first utilizes the saved copy 203 of the pointer to
the system accept function 203 to call the system accept
function 205. The system accept function 205 executes,
thereby establishing the communication channel. When the
accept Tunction 205 terminates, the object code 121 contin-
ues to execute. The object code 121 determines 1f the com-
munication channel that was established 1s to one of the
network addresses 201 associated with one of the virtual
hosts 115 serviced by the server program 107. Preferably,
this determination 1s made by reading an operating system
variable 207 that identifies the network address 201 associ-
ated with the communication channel. In UNIX, this system
variable 207 1s called “local__name,” and 1s set by the accept
function 205. In other operating systems the variable 207 1s
denoted by a different name. Alternative embodiments of the
present mnvention utilize other methods to determine the net-
work address 201 to which the communication channel was
established, for example reading a return value of a system
function, polling a system communication manager, or other
similar mechanisms as desired.

Where the communication channel that was established 1s
not to one of the network addresses 201 associated with one
of the virtual hosts 115, the object code 121 simply exits.
The channel will not be used for communication to a virtual
host 115, and thus no quality of service guarantees need to
be made by the present invention. Where the communication
channel 1s to one of the network addresses 201 associated
with one of the virtual hosts 115, the object code 121
requests, from the operating system 1035, an approprate
quality of service guarantee for the process that called the
system accept function 205.

To set the quality of service guarantees, the object code
121 reads the quality of service table 119, and locates the
quality of service parameters for the virtual host 115 associ-
ated with the network address 201 to which the communica-
tion channel was established. The object code 121 then calls
the operating system quality of service manager 127 to
request an appropriate quality of service guarantee to the
chiuld process 109 that called the system accept function 205.
The appropriate quality of service to guarantee 1s that speci-
fied by the quality of service parameters for the virtual host
115 to which the communication channel has been estab-
lished. Once the quality of service guarantee has been
requested, the object code 121 exits, and the child process
109 sends a response 129 to the client 111 via the established
communication channel. Communication between the client
111 and the virtual host 115 proceeds over the communica-
tion channel. The communication 1s managed by the child
process 109, which has been guaranteed appropriate quality
of service.

II. Virtual Host Systems Utilizing the Fork After Accept
Method

FIG. 3 1llustrates a virtual host application program 117
for providing quality of service guarantees to virtual hosts
115 of a server program 107 that utilizes the fork after accept
virtual hosting method. As explained previously, communi-
cation requests 113 to specific network addresses 201 are
made by client computers 111 and are serviced by the virtual

10

15

20

25

30

35

40

45

50

55

60

65

10

host server program 107. A virtual host server 107 that uti-
lizes the fork after accept virtual hosting method accepts a
communication request 113, establishes a communication
channel between the client computer 111 and the network
address 201, and then generates a child process 109. The
chuld process 109 uses the communication channel created
by the server 107 to service the request 113 that was made by
the client 111 to the network address 201. During the time
that the child process 109 services the communication
request 113 to the specific network address 201, 1t 1s desir-
able for the child process 109 to be guaranteed quality of
service according to parameters for the virtual host 115 with
which the network address 201 1s associated.

In the embodiment of the present imnvention depicted 1n
FIG. 3, a virtual host quality of service program 117
executes 1n the computer memory 103. The quality of ser-
vice program 117 inserts a quality of service parameter table
119 and object code 121 1nto the operating system 105 of the
host computer 101, in the manner described above. As
described above, preferably the object code 1s dynamically
linked to the operating system kernel as a module. The con-
tents and execution of the object code 121 are discussed in
detail below.

The quality of service program 117 makes copies 203 of
multiple internal operating system pointers to operating sys-
tem functions. In an alternative embodiment, the copies 203
are made by a module linked to the operating system kernel.
The present invention makes copies 203 of the pointers to
the following operating system functions: system functions
to establish a communication channel (for example, the
UNIX accept function) 205, system functions to generate a
chuld process (for example, the UNIX fork function) 301,
system functions to copy a file or a file descriptor (for
example, the UNIX dup and dup2 functions), and system
functions to read data from a file (for example, the UNIX
read function). The copies 203 of the pointers to the system
functions are preferably stored in conventional computer
memory 103. Alternatively, the copies 203 are stored in the
operating system 103.

It 1s to be understood that the names of the relevant system
functions can vary from operating system to operating sys-
tem. The present mvention 1s not limited to any specific
operating system, or to any specific operating system func-
tion names. Furthermore, some operating systems include
more than one function which performs the above described
functionality. Embodiments of the present invention targeted
for such operating systems create copies 203 of the pointers
to the appropriate operating system functions. For purposes
of example, this specification refers to the system accept
function 205, the system fork function 301, the system dup
function 303, and the system read function 305, as depicted
in FIG. 3. It 1s to be understood that references to the system
accept function 205 apply to all system functions to establish
a communication channel, references to the system fork
function 301 apply to all system functions to generate a child
process, references to the system dup function 303 apply to
all system functions to copy a file or to copy a file descriptor,
and references to the system read function 305 apply to all
system functions to read data from a file or to read data from
a communication channel.

The pointers to the above listed system functions are
located 1n the operating system 105 interrupt vector table
123. The quality of service program 117 replaces the point-
ers with pointers 125 to inserted object code 121, such that
when a targeted system function 1s called, inserted object
code 121 1s executed 1nstead. In an alternative embodiment,
the replacement 1s executed by a module linked to the oper-

US RE42,214 E

11

ating system kernel. The embodiment of the present mven-
tion depicted 1n FIG. 3 intercepts the system accept function
205, the system fork function 301, the system dump function
303 and the system read function 305.

When a call 1s made to an intercepted function 205,
inserted object code 121 executes. This 1nserted object code
121 1s called as a wrapper. For example, the accept wrapper
1s the mnserted object code 121 that executes when the system
accept function 205 1s called. FIG. 4C 1llustrates the content
of the mserted object code 121 in the embodiment of FIG. 3.
The object code 121 contains an accept wrapper 417, a fork
wrapper 419, a dup wrapper 421, and a read wrapper 423.
FIG. 4A 1illustrates pointers 125 inserted into the interrupt
vector table: a pointer 401 to the accept wrapper 417, a
pointer 403 to the fork wrapper 419, a pointer 405 to the dup
wrapper 421, and a pointer 407 to the read wrapper 423.
FIG. 4B 1llustrates the copies 203 of pointers: a copy of the
pointer 409 to the system accept function 205, a copy of the
pointer 411 to the system fork function 301, a copy of the
pointer 413 to the system dup function 303, a copy of the
pointer 413 to the system read function 303.

Returming to FIG. 3, whenever a process establishes a
communication channel, the accept wrapper 417 executes.
The accept wrapper 417 first utilizes the saved copy of the
pointer 409 to the system accept function 2035 to call the
system accept function 205. The system accept function 205
executes, thereby establishing the communication channel.
When the accept function 2035 terminates, the accept wrap-
per 417 continues to execute. The accept wrapper 417 deter-
mines 11 the communication channel that was established 1s
to one of the network addresses 201 associated with one of
the virtual hosts 115 serviced by the server program 107. As
described above, this determination 1s preferably made by

reading an operating system variable 207 that identifies the
network address 201 associated with the communication
channel.

Where the communication channel that was established 1s
not to one of the network addresses 201 associated with one
of the virtual hosts 115, the accept wrapper 417 exits. The
channel will not be used for communication to a virtual host
115, and thus no quality of service guarantees need to be
made by the present mvention. Where the communication
channel 1s to one of the network addresses 201 associated
with one of the virtual hosts 115, the present invention
requests an appropriate quality of service guarantee for the
child process 109 that will manage the communication.
Because the child process 109 has not yet been generated by
the server application 107, the present invention stores select
information 1n a set of association tables 307. The informa-
tion stored will allow the present invention to later identify
the child process 109 managing the communication, and set
appropriate quality of service for that child process 109.
Preferably, the association tables 307 reside 1n conventional
computer memory 103. In alternative embodiments, the
association tables are inserted into the operating system 105.
FIG. 4D illustrates the content of one embodiment of the
association tables 307. Preferably, there are three association
tables: an application program-communication channel
association table 425, an application program-child process
association table 427, and a file descriptor-file descriptor
copy association table 429.

Returming to FIG. 3, the accept wrapper 417 1solates an
identifier of the process that established the communication
channel. Preferably, the identifier comprises an operating
system 105 assigned process identification (PID) of the pro-
cess that called the accept function 205. The accept wrapper
417 also 1solates an 1dentifier of the communication channel

10

15

20

25

30

35

40

45

50

55

60

65

12

itself. In UNIX, as well as in many other operating systems,
a communication channel (socket) 1s 1dentified by a file
descriptor. Embodiments of the present invention targeted
for such operating systems 1solate the file descriptor associ-
ated with the communication channel. Other operating sys-
tems employ alternative mechanisms to 1identily a communi-
cation channel, and corresponding embodiments to the
present invention isolate appropriate identifiers accordingly.

The present invention stores, in the application program-
communication channel association table 425, the process
identifier, the file descriptor (or alternatively other identifier)
assoclated with the communication channel, and the net-
work address 201 to which the communication channel was
established. Thus, the application program-communication
channel association table 425 contains, for each communica-
tion channel established to one of the network addresses 201
associated with one of the virtual hosts 115, a record that a
specific process established a specific communication chan-
nel between a client 111 and a specific network address 201.

Once these associations are stored, the accept wrapper 417
exits.

Recall that a virtual host server 107 that utilizes the fork
alter accept method will, after establishing a communication
channel between a client 111 and a virtual host 115, generate
a child process 109 to manage the communication. When-
ever any application generates a child process 109, the fork
wrapper 419 executes. The fork wrapper 419 first uses the
copy of the pointer 403 to the system fork function 301 to
call the system fork function 301. The system fork function
301 executes and generates a child process 109. When the
system fork function 301 exits, the fork wrapper 419 contin-
ues to execute. The fork wrapper 419 stores, 1n the applica-
tion program-child process association table 427, the pro-
cess 1dentification (or alternative identifier) for the
application program that called the system fork function
301, as well as the process identification (or alternative
identifier) for the generated child process 109. Thus, the
application program-child process association table 427
contains associations between all application programs and
all child processes 109 thereof.

Whenever any process copies a file, or a descriptor of a
file, the dup wrapper 421 executes. The dup wrapper 421
utilizes the copy of the pointer 413 to the system dup func-
tion 303 to execute the system dup function 303. The system
dup function 303 executes and creates a copy of a file (or a
copy of a file descriptor). When the system dup function 303
exits, the dup wrapper 421 continues to execute. The dup
wrapper 421 stores, 1n the file descriptor-file descriptor copy
association table 429, the association between the file
descriptor of the file copied by the system dup function 303
and the file descriptor of the copy thereol. Where only a file
descriptor was copied by the system dup function 303, the
dup wrapper 421 stores the association between the source
file descriptor and the copy of the source file descriptor.
Thus, for every copied file descriptor, the file descriptor-file
descriptor copy association table 429 contains an association
between the original file descriptor and the copy thereof.

Whenever a process calls the system read function 305,
the read wrapper 423 executes. The read wrapper 423 checks
the association tables 307 to determine whether the process
that called the system read function 305 1s a child process
109 of an application program that established a communi-
cation channel to a virtual host 115. To make this
determination, the read wrapper 423 first checks the applica-
tion program-child process association table 427 to deter-
mine 1f the process that called the system read function 3035
1s a child process 109 of another process. If the process that

US RE42,214 E

13

called the system read function 3035 1s a child process 109,
the read wrapper 423 checks the application program-
communication channel association table 425 to determine 1f
the parent process established a communication channel to a

network address 201 associated with one of the virtual hosts
115.

If the process that called the system read function 305 is a
chuld process 109 of a parent process that established a com-
munication channel to a virtual host 115, the read wrapper
423 determines 1f the child process 109 called the system
read function 305 1n order to read from the communication
channel to the virtual host 115 established by the parent

process. To make this determination, the read wrapper 423
compares the file descriptor that the system read function
305 was called to read from with the file descriptor, in the
application program-communication channel association
table 425, associated with the communication channel estab-
lished by the parent process to the virtual host 115.

If the file descriptor of the read function 305 is not 1denti-
cal to the file descriptor associated with the communication
channel, the read wrapper 423 checks the file descriptor-file
descriptor copy association table 429 to determine whether
the file descriptor 1s a copy of the file descriptor associated
with the communication channel. Recall that the file
descriptor-file descriptor copy association table 429 contains
associations between all file descriptors and copies thereof.
The read wrapper 423 examines the table to determine
whether the file descriptor 1s a copy of another file
descriptor, and 11 so whether the source file descriptor 1s the
descriptor associated with the communication channel to the
virtual host 115 established by the parent process.

If the file descriptor 1s the descriptor of the communica-
tion channel (or a copy thereotf) the read wrapper 423 exam-
ines the application program communication channel asso-
ciation table 425 to determine to which network address 201
the communication channel was established by the server
program 107.

If the process that called the system read function 303 1s
not a child process 109 of an application program that estab-
lished a communication channel to a virtual host 115, or 1f
the process 1s not reading from the communication channel
to a virtual host 115 established by the parent process, the
read wrapper 423 uses the copy of the pointer 415 to the
system read function 305 to call the system read function
305, which proceeds to execute. If, on the other hand, the
process that called the system read function 305 1s a child
process 109 of an application program that established a
communication channel to a virtual host 115, and the pro-
cess 1s reading from the communication channel to a virtual
host 115 established by the parent process, the read wrapper
423 proceeds to set appropriate quality of service guarantees
tor the chuld process 109.

To set the quality of service guarantees, the read wrapper
423 reads the quality of service table 119, and locates the
quality of service parameters for the virtual host 115 associ-
ated with the network address 201 to which the communica-
tion channel was established. The read wrapper 423 then
calls the quality of service manager 127 to request an appro-
priate quality of service guarantee to the child process 109
that called the system read function 305. Once the quality of
service guarantee has been requested, the read wrapper 423
utilizes the copy of the pointer 413 to the system read func-
tion 305 to call the system read function 305. The system
read function 305 proceeds to read data from the communi-
cation channel. Then, the child process 109, which has been
guaranteed appropriate quality of service, continues to man-
age communication between the client 111 and the virtual
host 115 over the communication channel.

10

15

20

25

30

35

40

45

50

55

60

65

14

It 1s to be understood that 1n various embodiments of the
present invention, the quality of service application program
117 intercepts not only the system read function 305, but
other system functions that transport data through a commu-
nication channel. For example, different embodiments inter-
cept a system write function, a system transport function,
and other such functions as desired. The present invention
includes 1n 1ts scope mtercepting any system function which
transports data through a communication channel, and pro-
ceeding to set quality of service parameters for a chuld pro-
cess 1n the manner detailed above 1n the description of 1nter-
cepting the system read function 305.

Providing Quality of Service Guarantees to Name-
Based Virtual Host Systems

FIG. 5 illustrates a virtual host application program 117
for providing quality of service guarantees to virtual hosts
115 of a name-based virtual hosting system. As explained
previously, 1n a name-based system a virtual host 115 1s
identified not by a network address 201, but instead by a
domain name 500. Thus, clients 111 transmit communica-
tion requests 113 to mdividual domain names 500. Multiple
such domain names 500 are assigned to the single, physical
host computer 101, and communication requests thereto are
serviced by the virtual host server program 107.

In the embodiment of the present invention depicted 1n
FIG. 5, a virtual host quality of service application program
117 executes 1n the computer memory 103 of the single,
physical host computer 101. As i1n the embodiments of
FIGS. 2 and 3, the quality of service program 117 inserts a
quality of service parameter table 119 into the operating
system 105 of the host computer 101. In the embodiment of
FIG. 5, the quality of service table 119 contains quality of
service parameters for each domain name 500 associated
with one of the virtual hosts 1135 serviced by the virtual host
server 107. As 1n the embodiments of FIGS. 2 and 3, the
quality of service program 117 also inserts object code 121
into the operating system 105. The nature of this object code
121 1s explained 1n detail later 1n this specification. As in the
embodiments of FIGS. 2 and 3, the quality of service table
119, the object code 121, or both are alternatively stored 1n
conventional computer memory 103.

The quality of service program 117 makes copies 203 of
multiple internal operating system pointers to operating sys-
tem functions. The program 117 makes copies 203 of point-
ers to the following operating system functions: the system
functions to read data from a file (for example, the UNIX
read function) and the system functions to close a file (for
example, the UNIX close function). The copies 203 of the
pointers to the system functions are preferably stored in con-
ventional computer memory 103. Alternatively, the copies
203 of the pointers are inserted into the operating system
105. As explained above, it 1s to be understood that alterna-
tive embodiments of the present invention create copies 203
of pointers to other operating system functions as desired.

The pointers to the above listed system functions are
located 1n the operating system 105 interrupt vector table
123. The quality of service program 117 (or alternatively a
module linked to the operating system kernel) replaces the
pointers with pointers 123 to inserted object code 121, such
that when a targeted system function 1s called, inserted
object code 121 1s executed instead. The embodiment of the
present ivention depicted in FIG. 5 intercepts the system
read function 305, and the system close function.

When a call 1s made to an intercepted function 205,
inserted object code 121 executes. As explained earlier 1n

US RE42,214 E

15

this specification, this inserted object code 121 1s known as a
wrapper. FIG. 6C illustrates the content of the inserted
object code 121 1n the embodiment of the present invention
depicted 1n FIG. 5. The mnserted object code contains a read
wrapper 423 and a close wrapper 605. FIG. 6 A 1llustrates the
pointers 125 inserted into the interrupt vector table 123: a
pointer 407 to the read wrapper 423 and a pointer 601 to the
close wrapper 605. FIG. 6B illustrates the copies 203 of
pointers: a copy of the pointer 415 to the system read func-
tion 305 and a copy of the pointer 603 to the system close
function 507.

Returning to FIG. 5, whenever a process calls the system
read function 305, the read wrapper 423 executes. The read
wrapper 423 uses the copy of the pointer 415 to the system
read function 305 to call the system read function 305. The
system read function 305 executes and reads data from a file
descriptor. When the system read function 305 terminates,
the read wrapper 423 resumes execution. The read wrapper
423 proceeds to determine 1f appropriate quality of service
has already been guaranteed for the process that called the
system read function 305. To make this determination, the
read wrapper 423 examines a plurality of read flags 501,
which may be stored 1n conventional computer memory 103
or inserted 1nto the operating system 105. Each read flag 501
contains an identifier ol a process (preferably a PID), an
identifier of a communication channel (preferably a file
descriptor), and an indication (flag) of whether quality of
service has been guaranteed to the 1identified process for ser-
vicing communication via the channel. The read wrapper
423 examines the read tlags 501 to determine whether appro-
priate quality of service has already been set for the combi-
nation of the process that called the read function 423 and
the file descriptor from which that process 1s attempting to
read data. If quality of service has already been set, the read
wrapper 423 simply exits. On the other hand, 1f quality of
service has not been set, the read wrapper 423 determines 11

the process 1s servicing a virtual host 115.

To so determine, the read wrapper 423 parses a read butler
503 returned by the system read function 305. The read
buffer 503 contains the name 505 of the file (or file
equivalent, such as communication channel) from which the
system read function 305 read data. The read wrapper 423
1solates this name 5035 and compares 1t to the domain names
500 of the virtual hosts 115. If the name 505 1s not a domain
name 500 of a virtual host 115, the read wrapper 423 exits.
The system read function 305 was not called to read data
across a communication channel between a client 111 and
virtual host 115, so the read wrapper 423 need not set quality
ol service for the process that called the read function 305.
However, 1f the name 505 from the read bufter 503 1s the
domain name 500 of a virtual host 115, the read wrapper 423
must set quality of service guarantees for the process that

called the read function 305.

To set the quality of service guarantees, the read wrapper
423 reads the quality of service table 119, and locates the
quality of service parameters for the virtual host 115 associ-
ated with the name 505 from the read butfer 503. The read
wrapper 423 then calls the quality of service manager 127 to
request an appropriate quality of service guarantee to the
process 109 that called the system read function 305. The
read wrapper 423 then exits. The process 109 which called
the system read function 305, which has been guaranteed
appropriate quality of service, continues to manage comimu-
nication between the client 111 and the virtual host 15 over
the communication channel. It 1s to be understood that, as
explained above, various embodiments of the present mnven-
tion 1ntercept various system calls that perform i1dentical or
similar tasks.

10

15

20

25

30

35

40

45

50

55

60

65

16

Whenever a process calls the system close function 507,
the close wrapper 6035 executes. The close wrapper 605 uses
the copy of the pointer 603 to the system close function 507
to call the system close function 507. The system close func-
tion 507 executes and closes the file. When the system close
function 507 terminates, the close wrapper 605 resumes
execution. The close wrapper 6035 checks the plurality of
read flags 501 for a tlag concerning the combination of the
process that called the close function 507 and the file
descriptor of the file that the process 1s attempting to close. If
there 1s no read tlag 501 for the combination, the close wrap-
per 605 simply exits. The combination i1s not one pertaining
to virtual host 115 communication, and the close wrapper
605 need not adjust the read tlags 501. On the other hand, 1T a
read flag 501 exists for the combination, the close wrapper
605 modifies 1t to indicate that quality of service has not
been set for the combination. This 1s useful because the pro-
cess that called the close function 507 may later utilize the
same file descriptor to manage communication between a
client 111 and a different virtual host 115, requiring a differ-
ent quality of service guarantee. Thus, 1t 1s useful that the
read flag 501 indicates quality of service 1s not set.

Providing Quality of Service Guarantees to Virtual
Host Systems by a Stand Alone Server Application

Program

FIG. 7 illustrates an embodiment 1n which the present
invention comprises a stand alone virtual host system 700
that sets appropriate quality of service guarantees for the
virtual hosts 115 which it services. In the embodiment of
FIG. 7, the present invention 1s 1n the form of a server appli-
cation program 107 executing in the computer memory 103
of a stand alone host computer 101. The server program 107
stores a quality of service table 119 in computer memory
103. The table 119 contains quality of service parameters for
all of the virtual hosts 1135 serviced by the system. All client
111 requests 113 for communication with virtual hosts 115
are received by the server program 107.

When utilizing the fork after accept method, the server
program 107 first recetves a client 111 request 113 to com-
municate with a virtual host 115 and then creates a child
process 109 to manage communication between the virtual
host 115 and the client 109. Next, the server program 107
obtains the quality of service parameters associated with the
virtual host 115 from the quality of service table 119. The
server application program 107 then calls the operating sys-
tem quality of service manager 127 to request an appropriate
quality of service guarantee for the child process 109. The
chuld process 109 proceeds to manage the communication
between the client 111 and the virtual host 115.

When utilizing the fork before accept method, the server
program 107 first creates a plurality of child processes 109 to
manage communication requests 113 made to virtual hosts
115 by clients 111. When the server program 107 receives a
communication request 113 made to a select one of the vir-
tual hosts 115 by a client 111, the server program 107
obtains the quality of service parameters associated with the
virtual host 115 from the quality of service table 119. The
server program 107 then calls the operating system quality
of service manager 127 to request an appropriate quality of
service guarantee for the child process 109. The child pro-
cess 109 proceeds to manage the communication between
the client 111 and the virtual host 115.

It 1s to be understood that the present mmvention 1s not
limited to guaranteeing appropriate quality of service to a
plurality of virtual hosts. The present invention can be uti-

US RE42,214 E

17

lized to make appropriate quality of service guarantees to a
plurality of virtual processes of any nature.

What 1s claimed 1s:

1. A computer-implemented method for providing a qual-
ity of service guarantee to a child process of an application
program, wherein the application program and its child pro-
cess service requests made to a plurality of network
addresses, a network address indicating a virtual host, a vir-
tual host comprising a virtualized server application pro-
gram the method comprising:

storing a quality of service parameter associated with a
network address;

intercepting a system call, made by the child process, that

establishes a communication channel between a client

and the network address, wherein intercepting the sys-

tem call comprises:

saving a copy of a first pointer, which Points to object
code of the system call; and

replacing the first pointer with a second pointer, which
points to different object code, such that making the
system call causes the different object code to
execute; and

enabling communication between the network address
and the client, the communication being managed by
the child process;
wherein execution of the different object code comprises:

using the saved copy of the first pointer to transfer execu-
tion to the intercepted system call, thereby establishing
a communication channel;

determining that the established communication channel
1s to one of the plurality of network addresses serviced
by the application program and 1ts child process;

obtaining a quality of service parameter associated with
the network address; and

utilizing an operating system resource to request a
guarantee, to the child process, of a quality of service
according to the obtained quality of service parameter.

2. A computer-implemented method for providing a qual-

ity of service guarantee to a child process of an application
program, wherein the application program and its child pro-
cess service requests made to a plurality of network
addresses, a network address indicating a virtual host, a vir-
tual host comprising a virtualized server application
program, the method comprising:

storing a quality of service parameter associated with a
network address;

intercepting a system call which establishes a communi-
cation channel between a client and the network
address:

allowing establishment of the communication channel;

storing an 1ndicator of an association between an applica-
tion program that made the intercepted system call, the
established communication channel, and the network
address:

intercepting a system call which creates a child process;
allowing creation of the child process;

storing an indicator of an association between an applica-
tion program that made the intercepted system call and
the created child process;

intercepting a system call which creates a copy of a file
descriptor;

allowing creation of the copy of the file descriptor;

storing an indicator ol an association between the file
descriptor and the created copy of the file descriptor;

5

10

15

20

25

30

35

40

45

50

55

60

65

18

intercepting a system call which transports data through a
communication channel;

determining, by examining the stored association
indicators, that an application that made the intercepted
system call 1s a child process of a parent application
that established a commumnication channel to one the
network address:

determining, by examining the stored association
indicators, that the communication channel through
which the intercepted system call transports data 1s the
communication channel established by the parent
application to the network address;

obtaining the quality of service parameter associated with
the network address:

utilizing an operating system resource to request a
guarantee, to the child process that called the inter-
cepted system call, of a quality of service according to
the obtained quality of service parameter associated
with the network address; and

allowing data to be transported through the communica-

tion channel.

3. The method of claim 2 wherein storing the quality of
service parameter associated with the network address com-
prises modilfying an operating system to include a quality of
service parameter table comprising the quality of service
parameter associated with the network address.

4. The method of claim 3 wherein modifying the operat-
ing system comprises linking a module to an operating sys-
tem kernel, the module comprising the quality of service
parameter table.

5. The method of claim 2 further comprising;:

saving a copy of a first pointer, which points to object
code of the system call to intercept; and
wherein intercepting the system call comprises replacing the
first pointer with a second pointer, which points to different
object code, such that making the system call causes the
different object code to execute.

6. The method of claim 5, wherein the intercepted system
call comprises a system call which establishes a communica-
tion channel between a client and a network address, and
wherein execution of the different object code comprises:

allowing establishment of the communication channel by
using the saved copy of the first pointer to transier
execution to the intercepted system call; and

storing an association between the application program
and the established communication channel by storing,
1n an association table, an entry indicating an associa-
tion between a process identification number of the
application program that made the system call, a file
descriptor describing the established communication
channel, and the network address to which the channel
was established.

7. The method of claim 5, wherein the intercepted system
call comprises a system call which creates a child process,
and wherein execution of the different object code com-
Prises:

allowing creation of the child process by using the saved

copy of the first pointer to transfer execution to the
intercepted system call; and

storing an association between the application program
that called the system call and the created child process
by storing, 1n an association table, an entry indicating
an association between a process 1dentification number
of the application program that made the system call
and a process 1dentification number of the created child
process.

US RE42,214 E

19

8. The method of claim 5 further comprising inserting the
different object code 1nto the operating system.

9. The method of claim 7 wherein inserting the different
object code 1nto the operating system comprises linking a
module to an operating system kernel, the module compris-
ing the different object code.

10. A computer-readable medium storing a computer pro-
gram product for providing a quality of service guarantee to
a child process of an application program, wherein the appli-
cation program and 1ts child process service requests made
to a plurality of network addresses, a network address 1ndi-
cating a virtual host, a virtual host comprising a virtualized
server application program, the computer program product
comprising:

program code for storing a quality of service parameter

associated with a network address:

program code for intercepting a system call, made by the

chuld process, that establishes a communication chan-

nel between a client and the network address, wherein

the program code for intercepting the system call com-

Prises:

program code for saving a copy of a first pointer, which
points to object code of the system call; and

program code for replacing the first pointer with a sec-
ond pointer, which points to different object code,
such that making the system call causes the different
object code to execute; and

program code for enabling communication between the
network address and the client, the communication
being managed by the child process;
wherein the different object code comprises:

program code for using the saved copy of the first pointer
to transfer execution to the intercepted system call,
thereby establishing a communication channel;

program code for determining that the established com-

munication channel 1s to one of the plurality of network

addresses serviced by the application program and 1ts

child process:

program code for obtaining a quality of service param-
eter associated with the network address; and

program code for utilizing an operating system
resource to request a guarantee, to the child process,
ol a quality of service according to the obtained qual-
ity of service parameter.

11. A computer-readable medium storing a computer pro-
gram product for providing a quality of service guarantee to
a child process of an application program, wherein the appli-
cation program and 1ts child process service requests made
to a plurality of network addresses, a network address 1ndi-
cating a virtual host, a virtual host comprising a virtualized
server application program, the computer program product
comprising;

program code for storing a quality of service parameter

associated with a network address:

program code for mtercepting a system call which estab-
lishes a communication channel between a client and
the network address:

program code for allowing establishment of the communi-
cation channel;

program code for storing an indicator of an association
between the application program that made the inter-
cepted system call, the established communication
channel, and the network address;

program code for intercepting a system call which creates
a child process;

10

15

20

25

30

35

40

45

50

55

60

65

20

program code for allowing creation of the child process;

program code for storing an indicator of an association
between an application program that made the inter-
cepted system call and the created child process;

program code for intercepting a system call which creates
a copy of a file descriptor;

program code for allowing creation of the copy of the file
descriptor;

program code for storing an indicator of an association
between the file descriptor and the created copy of the
file descriptor;

program code for itercepting a system call which trans-
ports data through a communication channel;

program code for determining, by examining the stored
association indicators, that an application that called
the intercepted system call 1s a child process of a parent
application that established a communication channel
to the network address:

program code for determining, by examining the stored
association indicators that the communication channel
through which the intercepted system call transports
data 1s the communication channel established by the
parent application to the network address;

program code for obtaining the quality of service param-
eter associated with the network address:

utilizing an operating system resource to request a guaran-
tee to the child process that called the intercepted sys-
tem call, of a quality of service according to the
obtained quality of service parameter associated with
the network address; and

program code for allowing data to be transported through

the communication channel.

12. The computer-readable medium of claim 11 wherein
the program code for storing the quality of service parameter
associated with the network address comprises program
code for modifying an operating system to include a quality
ol service parameter table comprising the quality of service
parameter associated with the network address.

13. The computer-readable medium of claim 12 wherein
the program code for moditying the operating system com-
prises program code for linking a module to an operating
system kernel, the module comprising the quality of service
parameter table.

14. The computer-readable medium of claim 11 wherein
the computer program product further comprises

program code for saving a copy of a first pointer, which
points to object code of the system call to mtercept; and

wherein the program code for intercepting the system call
comprises program code for replacing the first pointer
with a second pointer which points to different object
code, such that making the system call causes the dii-
ferent object code to execute.

15. The computer-readable medium of claim 14 wherein
the intercepted system call comprises a system call which
establishes a communication channel between a client and a
network address, and wherein the different object code com-
Prises:

program code for allowing establishment of the communi-

cation channel by using the saved copy of the first
pointer to transier execution to the intercepted system
call; and

program code for storing an association between the
application program and the established communica-
tion channel by storing 1n an association table an entry
indicating an association between a process 1dentifica-

US RE42,214 E

21

tion number of the application program that made the
system call, a file descriptor describing the established
communication channel, and the network address to
which the channel was established.

16. The computer-readable medium of claim 14, wherein
the intercepted system call comprises a system call which
creates a child process, and wherein the different object code
COmMprises:

program code for allowing creation of the child process by
using the saved copy of the first pointer to transfer
execution to the intercepted system call; and

program code for storing an association between the
application program that called the system call and the
created chuld process by storing, 1n an association table,
an enfry indicating an association between a process
identification number of the application program that
made the system call and a process 1dentification num-
ber of the created child process.

17. The computer-readable medium of claim 14 wherein
the computer program product further comprises program
code for inserting the different object code 1nto the operating
system.

18. The computer-readable medium of claim 17 wherein
the program code for inserting the different object code 1nto
the operating system comprises program code for linking a
module to an operating system kernel, the module compris-
ing the different object code.

19. A system for providing a guality of service guarantee
to a child process of an application program, wherein the
application program and its child process service requests
made to multiple network addresses, a network addvess indi-
cating a virtual host, the virtual host comprising a virtual-
ized server application program, the system comprising.:

ad Processor,

a storing component that stoves a quality of service
parameter associated with a network address;

a component that intercepts a system call, made by the
child process, that establishes a communication chan-
nel between a client and the network address, wherein
intercepting the system call comprises:

a communication component that saves a copy of a first
pointer that points to object code of the system call,
replaces the first pointer with a second pointer that
points to different object code such that making the
system call causes the different object code to execute
and enables communication between the network
address and the client, the communication being
managed by the child process;

wherein when the different object code executes, it uses the
saved copy of the first pointer to transfer execution to the

10

15

20

25

30

35

40

45

22

intercepted system call, thereby establishing a communica-
tion channel, determines that the established communication
channel is to one of the multiple network addrvesses serviced
by the application program and its child process, obtains a
quality of service parameter associated with the network
address, and utilizes an operating system resource to request
a guarantee of a quality of service accorvding to the obtained
quality of service parameter.

20. The system of claim 19 whevein the stoving component
modifies an operating system to include the quality of service
parameter table comprising the quality of service parameter
associated with the network address when it storves the qual-
ity of service parameter associated with the network
address.

21. The system of claim 19 wherein the different object
code establishes the communication channel by using the
saved copy of the first pointer to transfer execution to the
object code of the system call and stoves an association
between the application program and the established com-
munication channel by storing, in an association table, an
entry indicating an association between a process identifica-
tion number of the application program that made the sys-
tem call, a file descriptor describing the established commu-
nication channel, and the network address to which the
channel was established.

22. The system of claim 19 wherein the system call creates
a child process and wherein when the different object code
executes, it enables creation of the child process by using the
saved copy of the first pointer to transfer execution to the
object code of the system call and stoves an association
between the application program that called the system call
and the created child process by storing, in an association
table, an entry indicating an association between a process
identification number of the application program that made
the system call and a process identification number of the
created child process.

23. The system of claim 19 further wherein the different
object code is added to an operating system in which the
communication component operates.

24. The system of claim 19 further wherein the different
object code is a module that is linked to a kernel of an
operating system in which the communication component
operales.

25. The system of claim 19 wherein the different object
code is a module that is linked to a kernel of an operating
system in which the communication component operates and
the module includes the quality of service parvameter table.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : RE42,214 E Page 1 of 2
APPLICATION NO. : 11/956246

DATED : March 8, 2011

INVENTOR(S) : Goval et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page

Title page, item (56), under “Other Publications”, Line 3, delete “Duetsch,” and
Insert -- Deutsch, --.

Page 2, item (56), under “U.S. Patent Documents™, Line 55, delete 6,308,609 B1” and
Insert -- 6,038,609 B1 --.

Page 2, item (56), under “Other Publications”, Line 1, delete “Erlington,” and
insert -- Erlingsson, --.

Page 3, item (56), under “Other Publications”, Line 12, delete “Commuter, Jun. 1974,
pp. 34-35.” and 1nsert -- Computer, Jun. 1974, pp. 34-45. --.

Page 3, item (56), under “Other Publications”, Line 38, delete “Implementation™ and
insert -- Implementations --.

Page 3, item (56), under “Other Publications™, Line 41, delete “Asssociates,” and
Insert -- Associlates, --.

Page 3, item (56), under “Other Publications™, Line 42, delete “v-vii,” and
Insert -- v-viil, --.

Page 3, item (56), under “Other Publications”, Line 43, delete “Allman” and
insert -- Ullman --.

Page 3, item (56), under “Other Publications”, Line 51, delete “ENvironment,” and
Insert -- Environment, --.

Signed and Sealed this
Ninth Day of August, 2011

.......

% = 4 .
1 - PR . . - - -
- - - = = B - ... a
- . a - . . -
- - " a - . L] Y . -
. - oe ok - . B - =
PR [254
. . . -
e

David J. Kappos
Director of the United States Patent and Trademark Office

CERTIFICATE OF CORRECTION (continued) Page 2 of 2
U.S. Pat. No. RE42,214 E

Page 3, item (56), under “Other Publications™, Line 62, delete “New Dehl1,” and
Insert -- New Delhi, --.

Page 3, item (56), under “Other Publications”, Lines 2-3, delete “Networks.” and
Insert -- Network,” --.

Page 3, item (56), under “Other Publications”, Line 4, delete “Ca,” and
nsert -- CA, --.

Page 3, item (56), under “Other Publications”, Line 24, delete “<cebat.” and
Insert -- <.cebaft. --.

Page 3, item (56), under “Other Publications”, Line 45, delete “48.bit” and
nsert -- 48 bit --.

Page 4, item (56), under “Other Publications”, Lines 1-2, delete “Informaiton™ and
Insert -- Information --.

Column 17, lines 9-10, m Claim 1, delete “program the method” and insert -- program, the method --.
Column 17, line 18, in Claim 1, delete “Points™ and insert -- points --.
Column 18, line 6, 1n Claim 2, delete “to one’” and insert -- to --.

Column 19, line 3, in Claim 9, delete ““claim 7°° and insert -- claim & --.

Column 20, line 47, in Claim 14, delete “comprises™ and insert -- comprises: --.

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

