USOORE42169E
(19) United States
a2 Relssued Patent (10) Patent Number: US RE42,169 E
Weber 45) Date of Reissued Patent: Feb. 22, 2011
(54) METHOD, APPARATUS, AND COMPUTER 5,864,852 A 1/1999 Luotonen
PROGRAM PRODUCT FOR EFFICIENT 5,892,914 A 4/1999 Pitts
SERVER RESPONSE GENERATION USING (Continued)
INTERMEDIATE STATE CACHING
FOREIGN PATENT DOCUMENTS
(75) Inventor: Jay C. Weber, Menlo Park, CA (US)
WO WO 99/03047 *1/1999
(73) Assignee: Rehle Visual Communications LLC, %8 WO ggigggg 5 éﬁggg
Las Vegas, NV (US) WO 99/05619 2/1999
WO 90/17227 4/1999
(21) Appl. No.: 11/318,395 WO WO 99/17227 Al * 8/1999
WO PCT/US00/09820 2/2000
22) Filed: Dec. 22, 2005
(22) Hile - OTHER PUBLICATIONS
_ Related U.S. Patent Documents Official Action 1 European Application No. 00937517.1
Reissue of: dated May 11, 2003, 5 pages.
(64) Patent No.: 6,671,719 Response to Official Action 1n European Application No.
Issued: Dec. 30,2003 00937517.1 dated Sep. 28, 2005, 17 pages.
Appl. No.: 10/251,176 Summons to attend oral proceedings pursuant to Rule 115(1)
Filed: Sep. 20, 2002 EPC for European Application No. 00937517.1 dated Jul. 2,

U.S. Applications:

(62) Division of application No. 09/318,493, filed on May 25,
1999, now Pat. No. 6,513,062,

(51) Int.Cl.

GO6IF 15/167 (2006.01)
(52) US.ClL e, 709/216
(58) Field of Classification Search 709/217-229

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,452,447 A 9/1995 Nelson et al.

5,511,208 A 4/1996 Boyles et al.

5,682,514 A 10/1997 Yohe et al.

5,737,523 A 4/1998 Callaghan et al.

5,740,370 A 4/1998 Battersby et al.

5,787.470 A 7/1998 DeSimone et al.

5,793,966 A * 8/1998 Amstemnetal. 709/203
5,826,253 A 10/1998 Bredenberg

5,852,717 A 12/1998 Bhide et al.

2000

\

2040
¢ NC Rl hashes t0 YES
| intar (d)?
|_URI Rewrite mapping | ~_ 2050 descriptor (¢

I URI Descriptor creation |- 2060

| Request Headar parsing |

NO

2010, 9 pages.
Search Report for International Application No. PCT/
US2000/009820 dated Jun. 5, 2002, 2 pages.

Written Opinion for International Application No. PCT/
US2000/009820 dated Aug. 2, 2002, 2 pages.

* cited by examiner

Primary Examiner—Krisna Lim

(57) ABSTRACT

Disclosed 1s a system for improving server efficiency by
caching intermediate states encountered in generating
responses to requests. The results of a mapping from an
external name for a resource to an internal name for the
resource may be cached as may the response header lines, or
the body of the response message. In another disclosed
aspect, candidates for intermediate state caching are selected
from plain and small files. When the resource mmvolves the
product of an executable, another aspect involves delaying
parsing request headers until necessary and then only pars-
ing the headers required for generating the response.

88 Claims, 3 Drawing Sheets

\ . 2010

/ Request /- . 2020
:

[Request URI extraction] - - 2030

2220

<

2210
d

NG 9150

[20

NO

‘EP?D
Plainfile?
ES

YES sp7s
Y V,
l Small?

| Openfile |~

Ogpen file
] 2090 2170
IHead file into d.body |~ Headers writing |~
I 2100 | -
| d.header bullding. |~ ~ Read file
T .
Writa file
— 1

{ Run executable [+

21

v
@D |
o

' d.hodﬂ_y wrlting

[Dynamic headers |~
wri:ing

d.headers writing

—{ " Openfile |—

US RE42,169 E

Page 2
U.S. PATENT DOCUMENTS 6,240,461 B1 5/2001 Cieslak et al.
6,243,719 Bl 6/2001 Ikuta et al.

5,933,849 A 8/1999 Srbljic et al. 6,243,760 Bl 6/2001 Armbruster et al.
6,003,082 A 12/1999 Gampper et al. 6,286,043 Bl * 9/2001 Cuomo etal. 709/223
6,023,726 A 2/2000 Saksena 6,298,356 Bl 10/2001 Jawahar et al.
6,078,929 A 6/2000 Rao 6,324,685 B1 11/2001 Balassanian
6.085.234 A 7/9000 Pitts et al. 6,330,561 BT 12/2007 Cohen et al.
6,128,655 A 10/2000 Fields et al. 0,330,006 BL - 12/2001 " 1.ogue et al.
6,128,701 A 10/2000 Malcolm et al 6,393,422 BL - 5/2002 " Wone
149, | _ _ * 6,397,246 B1 5/2002 Wolfe
6,82,127 Bl 1/2001 CI'OIllIl, III et al. 6,442,601 B1 /20072 Gampper et al.
6,185,598 Bl 2/2001 Farber et al. 6,490,625 Bl 12/2002 Islam et al.
0,185,608 Bl 2/2001 Hon et al. 6,505,241 B2 1/2003 Pitts
6,209,048 Bl 3/2001 Woldloooiiiiiiininnnn.n, 710/62 6,507,867 B1 * 1/2003 Holland et al. 709/219
6,212,565 Bl 4/2001 Gupta 6,519,646 B1 * 2/2003 Guptaetal. 709/229

SFHNLONYLS VI1VA HO1dIHISIA 14N

US RE42,169 E

4H30V3H AQ0g
JSNO4S3H dSN0OdS3Y
J3HIVI 03HOVO
0091 00SG |
ot v
5 m
= . . . m
” 13NN m m m oSh|
viva m m m avh
-S1apeay, japng
< 08¥1 ——:Apoq, IETTH[]
o GLP1 ™ lug|siapeay Jul
5 0¢1 - lug|Apog jut
© G3b | - ‘aleujeulajul Buins

agpr >~ -30A1 (81qein0axa ‘a|yured) Wnua
GGyl —--PayIRd uesjooq

Ol
/coo_

U.S. Patent

US RE42,169 E

Sheet 2 of 3

Feb. 22, 2011

U.S. Patent

— 3|1j uddQ
1C1C
ON _aaum
061¢
o~ a)l) peay ~

081¢ 00lc

YAV SIA ~{ DBunum siapesy Apoq’p oju1 3|l peay
0L1¢ 060¢

31} uadQ ~ 9l uadg

ON 0802

oviz (pu3) 50 g3
1129X3 UNY

SIA
<[e
P ON o
ON 22]

\)_
0512 gy buisied 1apeay)sanbay 0
/- 090z —~_| U01ea.d 101d11dsaq 4N

Bunium

Siapeay} dIWweuiQ TP BT

2 paLjaed Apog

091 ¢

; patjoey’
SIx ¢P38tjaedp

0ccc

0602 buiddew 31MaY [HN

Z(p) 10}duIISaE

0] Salsey |y ON

0v0c

0€07 <~ ‘ L0I}oBIIX3 {HN 1Sanbay /
000¢
020~/ 1sanbay_/
010z (US>

US RE42,169 E

Sheet 3 of 3

Feb. 22, 2011

U.S. Patent

£ 9l

G8OE

FOVHOLS
¢.—<o

= A TN
- =
]

o my
i .

a B w

e wm s s w
Al B s Ym W

- ek R s s wy My S dm
- e o = iy am i we wk

- e I o A i B

i & W E 5 B
e O P gy W aa
kW

- e W g,
- ar Wik = e k|
- e Wy ds @
i M SR R w

0tOt

000t

0S0t

060€
080€
=T
HHOM13N VLVQ AV1dSIQ
LNALAO/LANI
AHOW3IN H0SS3I04d
020

Q4Y08AIM

010t

§208

ain

9vHO1S

JAIHQ
VIGdn

0.0¢

US RE42,169 E

1

METHOD, APPARATUS, AND COMPUTER
PROGRAM PRODUCT FOR EFFICIENT
SERVER RESPONSE GENERATION USING
INTERMEDIATE STATE CACHING

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

This application 1s a divisional of U.S. patent application 10

Ser. No. 09/318,493, filed May 25, 1999, now U.S. Pat. No.
6,513,062 1ssued Jan. 28, 2003.

FIELD
Features of the invention relate generally to server perfor- =
mance improvements and, more particularly, to performance
improvements based on elimination of repeated processing.
BACKGROUND
20

A server recerving numerous requests for resources within
a brief period of time must be highly efficient 1n generating
responses 11 the server 1s going to fulfill the requests within
an acceptable period of time. One illustrative context where
this problem arises 1s in connection with Enhanced lelevi- 4
sion (“ETV”). In the E'TV context, typically a video produc-
tion 1s distributed to numerous client applications. The video
production has associated with it one or more enhancing
resources that may be selected by a viewer of the video
production. Conventionally, the enhancing resources are -,
made available to the viewer by including an 1dentifier of the
resource 1n the video production. The viewer’s client
platform, e.g., a set-top box or computer, extracts the
resource 1dentifier and provides an indication to the viewer
that enhancing resources are available. It the viewer selects
the resource, a request 1s sent with the client application
resident 1n the viewer’s client platform. Frequently in the
ETV context, numerous client applications each send
requests contemporaneously. This aspect 1s typically present
when, for mstance, the video production 1s broadcast and ,,
cach viewer becomes aware of the availability of the enhanc-
ing resource from the broadcast video production virtually
simultaneously. It would thus be desirable for operators of
servers recerving numerous simultaneous requests for server
eificiency to be improved. 45

Unfortunately, conventional servers are not highly efli-
cient. For instance, when a conventional HTTP server].}
receives a request for a uniform resource 1dentifier (‘URI’) 1t
first parses the request, then parses header lines in the
request. Next, the HT'TP server applies a rewrite mapping s
process that transforms an external name for the resource (in
the URI) to an internal name used for locating the resource
and generating the response. Conventional modules for per-
forming the rewrite mapping are powerful and flexible, but
obtain this power and flexibility only through computational 55
expense. After the HI'TP server dernives an internal name of
the resource 1t must generate the response (by retrieving the
associated file and/or running executable code) as well as
generating headers for the response. If a request for the same
resource, were to arrive at the server an 1nstant later, a con- ¢
ventional server would repeat the foregoing steps. In a con-
text where there are numerous simultaneous requests for the
same set ol resources, conventional server processing 1s
needlessly redundant and 1netfficient.

Another type of conventional server 1s a caching proxy 65
server. A caching proxy server 1s a conventional server
which stores locally (or at least more locally) to a client

2

certain resources that are requested from hosts on a data
network, typically the internet. In this way a caching proxy
server reduces response time by reducing or eliminating
time lags imtroduced by having to retrieve the resource from
a remote host, that may only be available through a slow or
congested network connection. However, the caching proxy
server does not reduce that component of total response time
that 1s attributable to processing at the sever; a conventional
caching proxy must flow through all of the intermediate
states as any other server in generating a response. For
example, a caching proxy server retains the inetficiencies of
a conventional HT'TP server 1in redundantly performing the
mapping {rom an external name to an internal name for
repeatedly-requested resources. Indeed, where delays 1n
response time are introduced not from network lags, but
from the sheer request volume at the server, a caching proxy
server may provide no noticeable benefits to the user what-
SOEVeT.

Accordingly, 1t would be desirable for there to be a means
for reducing redundant processing in serving repeated
requests for a resource.

SUMMARY

In order to provide these and other objectives, one aspect
ol the present mnvention are methods for efficiently generat-
ing responses for repeated resource requests. An exemplary
method 1ncludes: receiving a first request for a first resource;
deriving intermediate state information used in generating a
first response to the first request and caching the intermedi-
ate state information. Then when a second request 1s
received, retrieving the intermediate state information; and
generating a second response to the second request using the
intermediate state information. Illustrative examples of what
the intermediate state information may comprise include: an
internal name corresponding to the first resource and a type
of the first resource; the first resource; or a plurality of
response header lines for the first resource.

Another aspect of the present invention are apparatuses,
such as programmed computing hardware, configured for
cificiently generating responses for repeated resource
requests. An exemplary apparatus includes: a request
receiver configured for receiving a first request for a first
resource; a request handler configured for deriving interme-
diate state information used in generating a {irst response to
the first request; a cache storing the intermediate state infor-
mation; and a request handler configured for retrieving the
intermediate state information and further configured for
generating a second response to the second request using the
intermediate state mnformation. This apparatus may operate,
for 1instance, with similar types of intermediate state infor-
mation as the forgoing methods.

A still further illustrative method includes: receiving a
first request for a first resource, the first request comprising a
resource 1dentifier and request modifying information; deter-
mining whether generating a response for the first request
requires parsing the request modifying information; and, i
not, generating the response without parsing the request
moditying information. An illustrative apparatus includes: a
request recerver configured for recerving a first request for a
first resource, the first request comprising a resource identi-
fier and request moditying information; a response generator
configured for generating a response to the first request and
further configured for determiming whether generating the
response requires parsing the request modifying informa-
tion; and a request moditying information parser configured
to parse request modilying information only when the

US RE42,169 E

3

response generator determines generating the response
requires parsing the request modifying information.

Yet another aspect of the present ivention are computer
programs products comprising a computer-readable medium
having computer readable 1nstructions encoded thereon for
cilicient server response generation using intermediate state
caching. The computer-readable 1nstructions are able to con-
figure computing machinery to carrying on methods 1n
accordance with the invention, or to configure an apparatus
in accordance with the mvention. So configured, computing
machinery provides structural elements for performing func-
tions 1n accordance with the invention.

In accordance with the forgoing, a summary of an illustra-
tive embodiment may be provided: an HT'TP server 1s modi-
fied to carry out the invention; when an HT'TP Request Mes-
sage (comprising a URI) arrives, the server determines if a
URI descriptor has already been cached. If not, one 1s gener-
ated. If the request i1s for a small, plain file, the file and
response headers are cached and read out to generate the
response. If the response 1s for an executable, the headers in
the Request Message are parsed and the executable gener-
ates the response. When a second request arrives for the
resource, the server can consult and locate the cached URI
descriptor and read out the cached response headers and
body. As will be appreciated with reference to the detailed
description, illustrative embodiments of the invention obtain
eificiencies such as, but not limited to: eliminating parsing of
headers 1n requests until necessary and then only parsing the
required headers; caching the costly mapping between an
external and internal name for a resource and eliminating
redundant processing in repeated requests; caching response
headers and body and eliminating redundant processing in
repeated requests.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features, aspects, and advantages of the
present invention will become better understood with regard
to the following description, appended claims, and accompa-
nying drawings where:

FIG. 1 depicts a cache data architecture in accordance
with an illustrative embodiment;

FIG. 2 1s a flow diagram of a method for eflicient server
response generation using intermediate state caching in
accordance with an illustrative embodiment; and

FIG. 3 depicts a computer system capable of being config-
ured to embody aspects of the imvention 1n accordance with
an 1llustrative embodiment.

DETAILED DESCRIPTION
Description of Figures

FIG. 1 depicts a cache data architecture 1000 1n accor-
dance with an illustrative embodiment of the invention. The
cache data architecture 1000 may be used to store informa-
tion from intermediate states 1n generating a response to a
request for a resource. When another similar request 1s
received, the response may be more efficiently generated by
retrieving the mtermediate state information from the cache
data archutecture 1000 rather than regenerating the imterme-
diate state information. Generation and use of the cache data
architecture 1000 will be discussed in greater detail in con-
nection with FIG. 2 below.

The 1llustrative cache data architecture 1000 includes a
hash table 1100 comprising a number of ‘buckets’ (denoted
“B” 1n FIG. 1 for some positive integer, B, chosen
conventionally). Associated with each bucket are a set of
URI Descriptor data structures entered in the hash table

10

15

20

25

30

35

40

45

50

55

60

65

4

1100 for storage and retrieval. Illustratively, shown are a first
URI Descriptor data structure 1200, a second URI Descrip-
tor data structure 1300, and an N URI Descriptor data
structure 1400. The composition of the URI Descriptor data
structures is illustrated in callout 1450 from the N URI
Descriptor data structure 1400.

In this illustrative embodiment, the N” URI Descriptor
data structure 1400 comprises a first variable 1455 indicat-
ing whether the resource 1s cached, a second variable 1460
enumerating the type of file associated with the resource, a
third variable 1465 comprising an internal name for the
resource associated with the URI, a fourth variable 1470
comprising a length of the resource associated with the URI,
a fifth variable 1475 comprising a length of headers for the
response, a sixth variable 1480 referencing a cached
response body 1500, and a seventh variable 1485 referencing
a cached response header 1600.

One of skill in the art will appreciate that this particular
data arrangement 1s merely 1illustrative, that others may be
used, that the others may include or exclude variable(s) with-
out departing from the scope and spirit of the present inven-
tion or this illustrative embodiment, and that data structures
accomplishing analogous data-organizing functions may be
used 1n numerous programming environments, irrespective
of whether a given language supports the data types 1llus-
trated.

The cached response body 1500 and the cached response
header 1600 are preferably stored 1n random access memory.
Conventional systems may swap memory to mass storage,
and such systems may also be used. More generally, any
storage system proving suitably rapid access should be oper-
able with features of the invention.

FIG. 2 depicts a tlow diagram, of an ‘efficient response
generation’ method 2000 1n accordance with an 1illustrative
embodiment. To more concisely describe FIG. 2 reference
will be made to one particular instance of a URI Descriptor
data structure, mnemomnically “d”, similar to the N URI
Descriptor data structure 1400. In this illustrative
embodiment, steps of this method are performed by a server
process, for instance a suitably modified version of the
Apache HTTP server (available [from <http://
www.apache.org> and] in many commercial products). The
particular server application 1s not fundamental, and others
may be used without limitation, on vaniants of POSIX-like
operating systems, WINDOWS operating systems from
Microsoit Corp. of Redmond, Wash., or other operating sys-
tems.

Process flow 1nitiates at a “start” terminal 2010 and contin-
ues to recerve a ‘request’ data block 2020. In this illustrative
embodiment, the ‘request’ data block 2020 1s a Request
Message 1n accordance with the Hypertext Transier Protocol
(“HTTP”). However, as one of skill in the art will appreciate,
other embodiments of the mvention could work with other
communication protocols and the particular protocol 1s not
fundamental. In accordance with the draft HI'TP/1.1
(available from t2e World Wide Web Consortium [at <http://
www.w3c.org>] and the MIT Laboratory for Computer Sci-
ence 1 Cambridge, Mass.), a Request Message comprises: a
Request Line and zero or more Message Headers. A compli-
ant Request Line comprises the URI and, 1n practice, typi-
cally several Message Headers are included 1n a Request
Message that provide request modilying information, for
instance as set forth 1 the HT'TP protocol.

Next, a ‘request URI extraction’ process 2030 extracts the
URI from the Request Line and process tlow continues to a
‘URI hashes to descriptor’ decision process 2040. Using a
conventional case-insensitive hash function, the ‘URI hashes

US RE42,169 E

S

to descriptor’ decision process 2040 hashes the URI recerved
from the ‘request’ data block 2020 for a lookup operation 1n
the hash table 1100. (One of skill will appreciate that use of a
hash table 1s not fundamental; other data models could be
used; preferably, the data model provides O(1) speed for
lookup 1ndependent of the size of data set.) If the URI 1s not
found 1n the hash table 1100, the ‘URI hashes to descriptor’
decision process 2040 exits through 1ts ‘no’ branch and pro-
cess flow continues to a ‘URI rewrite mapping’ process
2050.

The ‘URI rewrite mapping’ process 20350 performs a
translation from the URI to an internal name for the resource
associated with the URI. Typically the internal name 1s a
location 1n the filesystem of the hardware running the server
process. However, the URI may also map to, for instance,
debugging information, a directory listing, or one of several
default internal names of the server process. When Apache 1s
used, the mod__rewrite uniform resource 1dentifier rewriting,
engine may be used, and analogously functioning modules
may be used with other servers, 11 desired. Typically, the
flexible mapping from the URI to an internal name involves
relatively computationally expensive parsing and extraction.
Appreciable efficiencies may be obtained by caching the
results of this mapping so that it need not be repeated for
succeeding requests for the same resource. When the inter-
nal name for the resource has been determined, process flow
then continues to a ‘URI descriptor creation’ process 2060.

The ‘URI descriptor creation” process 2060 uses the URI
and the internal name to create a URI Descriptor data struc-
ture that will, 1 part, cache the mapping performed by the
‘URI rewrite mapping’ process 2050. The ‘URI descriptor
creation’ process 2060 creates a copy of the URI Descriptor
data structure 1n the hash table 1100, sets the first variable
1455 indicating the resource 1s cached, sets the second vari-
able 1460 indicating the type of file, and the third variable
1465 1indicating the internal name for the resource.

Process tlow continues to a ‘plainfile’ decision process
2070 and a ‘small” decision process 2075 that determine
whether the resource 1s a candidate for caching. In some
variations of this illustrative embodiments two criteria must
be met for the resource to be cached. First, the resource must
be a plain file, and second the file must be ‘small.’ In
variations, response headers can be cached even when the
resource 1s not, for instance, 11 the resource 1s not ‘small’.

In some illustrative embodiments, a resource 1s a plain file
if 1t does not require running executable code to generate a
response, although other criteria could also be used. It the
‘plainfile’ decision process 2070 determines the resource 1s a
plainfile, 1t exits through its ‘yes’ branch and process flow
continues to the ‘small” decision process 2075. Whether a
file 1s “small’ for the purposes of this 1llustrative embodiment
1s a function of the caching policy, the server architecture,
and the memory architecture of the hardware running the
server process. First, the caching policy determines the num-
ber of files to cache. Some preferred embodiments use a
FIFO cache with a fixed size of 20 files, although many other
caching policies are within the level of ordinary skill 1n the
art and could be used as well. It will be appreciated, that the
more complex the collection of resources frequently
requested from the server, the more desirable 1t becomes to
have a cache with a greater fixed size; analogously, the less
complex, the smaller the fixed size may be set. Second, the
server architecture determines the number caches that need
to be stored. A typical server running in a POSIX-like
environment, €.g., Apache v.1.3.6 running under SOLARIS
v. 2.7, will have several concurrently-executing request han-
dling processes each with an independent address space. If

10

15

20

25

30

35

40

45

50

55

60

65

6

cach request handling process stores 1ts own cache 1n 1ts own
address space, then there are as many caches as there are
request handling process. Another typical situation 1s where
a server runs 1n a multithreaded environment. In this
instance, several concurrently executing request handling
processes can share a common address space. A single cache
can be stored in the common address space and accessed by
all request handling processes (suitably synchronized).
Third, the amount of physical memory available for cache(s)
on the machine executing the server process provides an
upper bound. Considering these factors, a size for a ‘small’

file may be determined as follows:

M
t = —— where

N-C

f = Size of a ‘small’ file
M = Memory available for cache(s)
N = The number independent caches

C = Number of files per cache

It will be apparent to one skilled 1n the art that other cache
polices will give rise to differing ways to make similar deter-
minations and for conventional cache policies, 1t 1s within
the ordinary skall in the art to suitably ascertain which files
are desirable to cache.

IT the ‘small’ decision process 2075 determines the
resource 1s ‘small’, 1t exits through its ‘yes” branch and pro-
cess flow continues to an ‘open file’ process 2080 that opens
the file associated with the resource. Next a ‘read file 1nto
d.body” process 2090 reads the file associated with the
resource 1nto the buffer referenced by the sixth variable
1480, ¢.g, 1t creates the cached response body 1500, and
assigns a value to the fourth variable 1470 of the length of
the file associated with the resource. Process flow continues
to a ‘d.headers building’ process 2100 that constructs the
response headers. In embodiments that use the HTTP
protocol, the response 1s a Response Message 1n accordance
with the HTTP protocol and the response headers generally
provide information about the server and about further
access to the resource 1dentified by the request. The ‘d.head-
ers building” process 2100 also reads the constructed
response headers into the bulfer referenced by the seventh
variable 1485, e.g, the cached response header 1600, and
assigns a value to the fifth variable 1475 of the length of the
response headers. This substantially completes generation of
the response and storage of intermediate state information in
the URI Descriptor data structure.

This done, the response can be transmitted to the client
and a ‘d.headers writing” process 2110 begins communicat-
ing the response by writing the response headers from the
cached response header 1600 referenced by the seventh vari-
able 1485. In some 1nstances, not all headers for the response
can be cached and must be created dynamically at the time
of transmitting the response, for instance the current date
and time. A ‘dynamic headers writing” process 2120 contin-
ues communicating the response to the client by writing any
response headers that need to be created at the time of gen-
erating the response.

Next, a ‘body cached’ decision process 21235 determines
whether the body of the resource 1s cached. In some
variations, response headers are cached while the body of
the resource 1s not. This may occur, for instance, when the
resource 1s not a small file. In other instances, 1t may be
desirable only to cache response headers. The ‘body cached’
decision process 2125 determines whether the body 1s

US RE42,169 E

7

cached. I1 so, the ‘body cached’ decision process 2125 exits
through 1ts ‘yes’ branch and a ‘d.body writing” process 2130
completes communicating the response by writing the
response body from the cached response body 1500 refer-
enced by the sixth variable 1480 in the URI Descriptor data
structure. Process flow completes through an ‘end’ terminal
2140.

If the ‘body cached’ decision process 2125 determines the
body 1s not cached, 1t exits through 1ts ‘no” branch and pro-
cess tlow continues an ‘open file’” process 2127 that opens
the file associated with the resource for reading, a ‘read file’
process 2180 that reads the resource, and a ‘write file” pro-
cess 2190 that completes the response by writing the
resource. Process flow then completes through the ‘end’ ter-
minal 2140.

Returning to the ‘small” decision process 2075, when the
resource 1s not ‘small’, the ‘small” decision process 2075
exits through its ‘no’ branch and the response 1s generated.
Response generation begins with an ‘open file” process 2160
that opens the file associated with the resource for reading.
Next, a ‘headers writing’ process 2170 generates and writes
the response headers and the ‘read file’ process 2180 reads
the resource. Then, the ‘write file” process 2190 completes
the response by writing the resource. Process tlow then com-
pletes through the ‘end’ terminal 2140.

In varations where response headers are cached even
when the resource itself 1s not, for instance when the
resource 1s not ‘small’, the ‘headers writing” process 2170
may also perform the function of caching the response head-
ers. This may occur as was described above with reference to
the ‘d.headers building’ process 2100.

Returming to the ‘plainfile’ decision process 2070, if it
determines the resource 1s not a plain file, the ‘plainfile’
decision process 2070 exits through 1ts ‘no’ branch and pro-
cess tlow continues to a ‘run executable’ process 2200. The
‘run executable” process 2200 executes the instructions, e.g.
servlet, script, database query, etc., responsible for generat-
ing the response. The ‘run executable’ process 2200 interacts
with a ‘header parsing’ process 2210 that parses those head-
ers from the request received 1n the ‘request’ data block 2020
that are necessary for generating the response. It will be
apprecmted that the request headers are only parsed when
the ‘run executable’ process 2200 1s entered, and then only
those headers are parsed that are required by the particular
instructions responsible for generating the response. Elimi-
nating unnecessary parsing of headers from the request
appreciably reduces the average computational overhead
necessary for response generation. When the ‘run execut-
able’ process 2200 completes generation of the response, 1t
outputs the response for transmission to the client and pro-
cess flow completes through the ‘end’ terminal 2140.

Now returning to the ‘“URI hashes to descriptor’ decision
process 2040, 11 the URI from the ‘request’ data block 2020
1s found when a lookup 1s performed 1n the hash table 1100,
the ‘URI hashes to descriptor’ decision process 2040, exits
through its ‘yes’ branch. This occurs when a second (or later)
request for a given resource occurs (and the URI Descriptor
data structure associated with the resource has not already
been displaced from the cache). Process tlow continues to an
‘d.cached’ decision process 2220. The ‘d.cached’ decision
process 2220 consults the first varniable 1455 in the URI
Descriptor data structure to determine whether the resource
associated with the request URI 1s cached. 11 the resource 1s
cached, the ‘d.cached’ decision process 2220 exits through
its ‘yes’ branch to the ‘d.headers writing” process 2110 and
the ‘dynamic headers writing” process 2120 that write the
cached headers, as well as any dynamically-created headers

10

15 «

20

25

30

35

40

45

50

55

60

65

8

for the response. Next, the ‘body cached’ decision process
2125 determines whether the body of the response 1s cached
and process tlow continues to the ‘open file” process 2127 or
the ‘d.body writing” process 2130, to generate the body of
the response, as previously descrlbed Process tlow then
completes through the ‘end’ terminal 2140.

If the ‘d.cached’ decision process 2220, determines that
the resource associated with the request URI 1s not cached, 1t
exits through 1ts ‘no’ branch and process tflow continues to a
‘plain file’ decision process 2150. I the ‘plain file” decision
process 2150 determines the resource 1s not a plain file, 1t
exits through 1ts ‘no’ branch and process flow continues to
the ‘run executable’ process 2200 and continues as was pre-
viously described. If the ‘plain file’ decision process 21350
determines the response 1s a plain file, 1t exits through 1ts
yes’ branch and process flow continues to the ‘open file’
process 2160 and the response 1s generated as was previ-
ously described.

FIG. 3 depicts a computer system 3000 capable of
embodying aspects of the mvention. The computer system
3000 comprises a microprocessor 3010, a memory 3020 and
an 1mput/output system 3030. The memory 3020 1s capable
ol being configured to provide a data structure 3040, such as
the cache data architecture 1000, which may contain data
mampulated by the computer system 3000 when embodying
aspects of the mnvention. Further 1llustrated 1s a media drive
3070, such as a disk drive, CD-ROM drive, or the like. The
media drive 3070 may operate with a computer-usable stor-
age medium 3073 capable of storing computer-readable pro-
gram code able to configure the computer system 3000 to
embody aspects of the invention. The mput/output system
3030 may also operate with a keyboard 3050, a display
3060, a data network 3080 such as the internet or the like
(through an appropriate network interface), a mass data stor-
age 3085, and a pointing device 3090. As illustrated, the
computer system 3000 1s general-purpose computing
machinery. As one of skill recognizes, programmed 1nstruc-
tions may configure general purpose computing machinery
to embody structures capable of performing functions 1n
accordance with aspects of the mvention. Special purpose
computing machinery comprising, for example, an applica-
tion specific integrated circuit (ASIC) may also be used. One
skilled 1n the art will recognize, numerous structures of pro-
grammed or programmable logic capable of being config-
ured to embody aspects of the invention. In some 1llustrative
embodiments, the computer system 3000 1s an UltraSPARC
workstation from Sun Microsystems of Mountain View,
Calif., that runs the SOLARIS operating system (also from
Sun) and the Apache HTTP (web) server application.

All documents, standards, protocols, and draft protocols
referred to herein are incorporated herein by this reference in
their entirety.

The present mvention has been described 1n terms of fea-
tures illustrative embodiments. To fully described the fea-
tures of the present ivention, embodiments were selected
that fully illustrated the features of the invention. However,
one skilled in the art will understand that various
modifications, alterations, and elimination of elements may
be made without departing from the scope of the invention.
Accordingly, the scope of the invention 1s not to be limited to
the particular embodiments discussed herein, but should be
defined only by the allowed claims and equivalents thereof.

What 1s claimed 1s:

1. A computer-implemented method for efficiently gener-
ating responses for repeated resource requests comprising;

recerving a first request for a first resource, said first
request comprising a resource identifier and request
moditying mformation;

US RE42,169 E

9

determining whether generating a response for said first
request requires parsing said request modifying nfor-
mation; and, 1 not,

generating said response without parsing said request

modifying information.

2. The computer-implemented method of claim 1 wherein
the request modifying information includes request headers.

3. The computer-implemented method of claim 1 wherein
generating the response for the first request requires parsing
said request modifying information 11 the request 1s gener-
ated by executing 1nstructions.

4. The computer-implemented method of claim 3 wherein
parsing the request moditying mnformation includes parsing
only a subset of the request modifying information neces-
sary for generating the request.

5. The computer-implemented method of claim 3 wherein
the executing the mstructions comprises executing a servlet.

6. The computer-implemented method of claim 3 wherein
the executing the mstructions comprises executing a script.

7. The computer-implemented method of claim 3 wherein
the executing the instructions comprises executing a data-
base query.

8. Apparatus comprising a processor, a memory, a net-
work interface, and a file system, programmed instructions
configuring said apparatus to accept connections in order to
service requests by sending responses thereto, said apparatus
turther configured with programmed instructions compris-
ng:

a request recerver configured for recerving a first request

for a first resource, said first request comprising a
resource 1dentifier and request modifying information;

a response generator configured for generating a response
to said first request and further configured for determin-
ing whether generating said response requires parsing
said request modilying information; and

a request modifying information parser configured to
parse request modilying information only when said
response generator determines generating said response
requires parsing said request modifying information.

9. The apparatus of claim 8 wherein the response genera-
tor configured to determine that generating the response
requires parsing 1 the response generator to generate the
response by executing instructions.

10. The apparatus of claim 8 wherein the request modity-
ing information parser configured to parse only a subset of
the request modifying information necessary for generating,
the response.

11. The apparatus of claim 8 wherein the request modity-
ing information includes request headers.

12. The apparatus of claim 9 wherein the instructions 1s a
servlet.

13. The apparatus of claim 9 wherein the instructions 1s a
database query.

14. The apparatus of claim 9 wherein the instructions 1s a
script.

15. A computer program product comprising a non-
transitory computer-readable medium having computer
readable 1nstructions encoded thereon for reducing parsing,
of request modifying information, comprising][;]-

computer program instructions configured to cause a com-
puter to receive a first request for a first resource, said
first request comprising a resource identifier and
request modifying information;

computer program instructions configured to cause a com-
puter to determine whether generating a response for
said first request requires parsing said request modify-
ing information; and

10

computer program instructions configured to cause a com-
puter to generate said response without parsing said
request modifying information if generating said
response does not require parsing said request modify-
5 ing information.
16. A computer-implemented method for efficiently gener-
ating responses for vepeated vesource vequests comprising:

receiving a first request for a first vesource, said first
request including a resource identifier and one or more

10 paramelers;
determining whether genervating a vesponse for said first
request requires parsing said one ov more parvameters,
and, if not,
generating said response without parsing said one or
15 more parameters.
17. The method of claim 16, wherein said first request is
an H1T'1P request.

18. The method of claim 16, wherein said first request
corresponds to a request for an enhanced television
20 resource.

19. The method of claim 16, wherein said resource identi-
fier is an URI.

20. The method of claim 16, wherein said one or more
parameters include one or more vequest headers.

21. The method of claim 16, wherein said determining is
based at least in part on whether generating a response for
said first vequest vequives running executable code.

22. The method of claim 16, wherein determining is based
at least in part upon cached information indicative of a file
tvpe of said first resource.

23. The method of claim 16, further comprising parsing
said one ov move pavameters if said parsing is vequirved to
generate said vesponse for said first vequest.

24. The method of claim 16, further comprising executing
code as a part of generating said response for said first
request.

25. The method of claim 24, wherein said code is a serviet.

26. The method of claim 24, wherein said code is a script.

27. The method of claim 24, whevein said code is a data-
base query.

28. The method of claim 24, wherein said method further
comprises parsing one or move request headers in said first
request if vesponding to said first request requires running
executable code.

29. The method of claim 28, wherein only those request
headers in said first request necessary to genervate said
response for said first vequest arve parsed.

30. The method of claim 16, wherein said generating
includes using cached information.

31. The method of claim 16, wherein said generating
includes using said resource identifier to determine that
information vesponsive to said first vequest is cached.

32. The method of claim 31, wherein said determining
whether information responsive to said first vequest is
cached includes using said vesource identifier to access a
hash table.

33. The method of claim 31, wherein said generating
includes accessing a cached mapping of said resource iden-
tifier to a second identifier.

34. The method of claim 33, wherein said second identifier
is indicative of a location of said first vesource.

35. The method of claim 31, wherein said generating
includes accessing cached debugging information associ-
ated with said first resource.

36. The method of claim 31, wherein said generating
includes accessing cached divectory listing information cor-
responding to said first vesource.

25

30

35

40

45

50

55

60

65

US RE42,169 E

11

37. The method of claim 31, wherein said generating
includes accessing a cached body of said first resource.

38. The method of claim 37, wherein said generating
includes dynamically generating headers corresponding to
said first vesource.

39. The method of claim 31, wherein said generating
includes accessing cached headers corresponding to said
fivst vesource.

40. The method of claim 39, wherein said generating
includes accessing a non-cached body of said first vesource.

41. The method of claim 16, wherein said generating
includes determining that information vesponsive to said
first vequest for said first resource is not cached.

42. The method of claim 41, wherein said determining that
information vesponsive to said first vequest is not cached
includes using said vesource identifier to access a hash
table.

43. The method of claim 41, wherein said generating
includes mapping said resource identifier to a second identi-

fier.
44. The method of claim 43, wherein said second identifier

is indicative of a location of said first resource.

45. The method of claim 44, further comprising caching
said second identifier.

46. The method of claim 41, wherein said generating
includes accessing debugging information associated with
said first vesource.

47. The method of claim 46, further comprising caching
said debugging information.

48. The method of claim 41, wherein said generating
includes accessing divectory listing information correspond-
ing to said first resource.

49. The method of claim 48, further comprising caching
said directory listing information.

50. The method of claim 41, wherein said generating
includes accessing a body of said first resource.

51. The method of claim 50, wherein said generating
includes generating one ov more response headers.

52. The method of claim 50, further comprising caching
said body of said first resource.

53. The method of claim 51, further comprising caching
one or more of said response headers.

54. The method of claim 41, further comprising caching
information used in genervating said response for said first
request.

55. The method of claim 41, further comprising determin-
ing whether to cache information used in generating said
response for said first request.

56. The method of claim 55, wherein said caching is per-
Jormed according to a caching policy that is based at least in
part on a file type of said first resource.

57. The method of claim 55, wherein said caching is per-
Jormed according to a caching policy that is based at least in
part of the size of said first vesource.

58. An apparatus configured to genervate vesponses for
repeated resource vequests, said apparatus cOomprising:

a network interface configured to veceive a first vequest
for a first vesource, said first vequest including a
resource identifier and one or more parameters;

wherein said apparatus is configured to determine
whether generating a rvesponse to said first request

requives parsing said one ov move parameters, and, if

not, said apparatus is configured to generate said
response to said first vequest without parsing said one
oF more parameters.

59. The apparatus of claim 58, wherein said first vequest is

an H11P request.

10

15

20

25

30

35

40

45

50

55

60

65

12

60. The apparatus of claim 58, wherein said first request
corresponds to a request for an enhanced television
resource.

61. The apparatus of claim 58, wherein said resource

identifier is an URI.

62. The apparatus of claim 58, wherein said one or more

parameters include one or more vequest headers.

63. The apparatus of claim 38, further comprising a
cache, and wherein said apparatus is configured to deter-
mine whether information rvesponsive to said first vequest is
located in said cache.

64. The apparatus of claim 63, wherein said cache is con-

figured to store a mapping of said vesource identifier to a

second identifier.

65. The apparatus of claim 64, wherein said second iden-
tifier is indicative of a location of said first vesource.

66. The apparatus of claim 64, wherein said apparatus is
a server, and wherein said second identifier is indicative of
an internal name of said first resource on said server.

67. A server configured to concurrently execute a plurality

of request handling processes, wherein each of said plurality
of request handling processes is configured to receive

requests for rvesources located on said server, each of said
received requests including a vesource identifier and one or

movre associated pavameters;

wherein each of said plurality of rvequest handling pro-
cesses is configured to determine whether generating
responses for each of said received requests requires
parsing said one or movre associated parameters, and, if
not, each of said plurality of request handling processes
is configured to generate responses to said received
requests without parsing said one or more associated
paramelers.

68. The server of claim 67, wherein each of said plurality
of request handling processes has an independent addvess
space including a cache.

69. The server of claim 67, wherein said received requests
include an HT'TP request.

70. The server of claim 67, wherein said received requests
include a request for an enhanced television resource.

71. The server of claim 67, wherein said veceived requests
include a resource identifier that is an URI.

72. The server of claim 67, wherein said rveceived requests
include one or more parameters that ave request headers.

73. The server of claim 67, wherein each cache corre-
sponding to said plurality of request handling processes is
configured to store information rvespomnsive to received
resource requests.

74. The server of claim 73, wherein said stored informa-
tion includes mappings of first identifiers to secondary
identifiers, wherein said first identifiers are included in said
resource vequests veceived by said server.

75. The server of claim 74, wherein said secondary iden-
tifiers are indicative of locations of vesources on said server.

76. The server of claim 67, wherein said plurality of
request handling processes sharve a common independent
address space including a cache.

77. The server of claim 76, wherein said rveceived requests
include an HTTP request.

78. The server of claim 76, wherein said received requests
include a request for an enhanced television resource.

79. The server of claim 76, wherein said received requests
include a resource identifier that is an URIL

80. The server of claim 76, wherein said received requests
include one or move parvameters that are vequest headers.

81. The server of claim 76, wherein the cache is config-
ured to store information rvesponsive to received resource
requestis.

US RE42,169 E
13 14

82. The server of claim 81, wherein said stoved informa- computer program instructions configured to cause a

tion includes mappings of first identifiers to secondary computer to generate said vesponse without parsing
identifiers, wherein said first identifiers are included in said

resource requests received by said server.
83. The server of claim 82, wherein said secondary iden- 5
tifiers are indicative of locations of vesources on said server.

84. A computer program product comprising a non-

said one or more parameters if generating said
response does not require parsing said one or more
paramelers.

85. The computer program product of claim 84, wherein

transitory computer-readable medium having computer said first request is an HTTP request.
readable instructions encoded thereon, comprising: 86. The computer program product of claim 84, wherein
computer program instructions configured to cause a 10 said first request is a vequest for an enhanced television
computer to receive a first vrequest for a first resource, resource.
said first vequest comprising a vesource identifier and §87. The computer program product of claim 84, wherein
one or more parameters, said resource identifier is an URI
computer program instructions configured to cause a 88. The computer program product of claim 84, wherein

computer to determine whether generating a response 15 said one or more parameters include request headers.
Jor said first vequest requires parsing said one or more
parameters; and £ % % kK

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : RE42,169 E Page 1 of 1
APPLICATION NO. : 11/318395

DATED . February 22, 2011

INVENTOR(S) . Weber

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 9, line 23, 1n Claim 8, delete “Apparatus” and insert -- An apparatus --.

Signed and Sealed this
Fifth Day of July, 2011

.......

- - .
% = 4 .
1 - PR . . - - -
- - - = = B - ... a
- . a - . . -
- - " a - . L] Y . -
. - oe ok - . B - =
PR [254
. . . -
e

David J. Kappos
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

