(19) United States

12y Reissued Patent

(10) Patent Number:

USOOREA42153E

US RE42,153 E

Hubbard et al. 45) Date of Reissued Patent: Feb. 15, 2011
(54) DYNAMIC COORDINATION AND CONTROL 4,699,513 A 10/1987 Brooks et al.
OF NETWORK CONNECTED DEVICES FOR (Continued)
LARGE-SCALE NETWORK SITE TESTING
AND ASSOCIATED ARCHITECTURES FOREIGN PATENT DOCUMENTS
(76) Inventors: Edward A. Hubbard, 3105 Scarlet Oak EP 0883313 V/1998
_ WO WO0-2001014961 3/2001
CV, Round Rock, TX (US) 78665-8802; WO WO2001073545 10/2001
Krishnamurthy Venkatramani, 9925
Brightling Ln, Austin, TX (US) OTHER PUBLICATIONS
78750-3874; David P. Anderson, Space _ _ _ _ _
Sciences Laboratory University of Brian Hayes, “Computing Science: Collective Wisdon,”
California, Berkeley, Berkeley, CA (US) American Scientist, Mar.—Apr. 1998.*
94720; Ashok K. Adiga, 10417 Canyon -
Vista Way, Austin, TXg(US) 78726-1}520; (Continued)
Greg D. Hewgill, 10 Stenness Ave, Primary Examiner—Michael Won
Somerfield, Christchurch (NZ), 8024;
Jeff A. Lawson, 12601 Oro Valley Tri, (57) ABSTRACT
Austin, TX (US) 787297300 Dynamic coordination and control of network connected
(21) Appl. No.: 12/462,600 devices within a distributed processing platform 1s disclosed
(22) Filed: Aug. 6, 2009 for 'large-scale network site t;sting, or ‘for' other distribu:[ed
(Under 37 CFR 1.47) projects. For network site testing, the distributed processing
' system utilizes a plurality of client devices which are run-
_ Related U.S. Patent Documents ning a client agent program associated with the distributed
Reissue of: computing platform and which are running potentially dis-
(64) Patent No.: 7,254,607 tinct project modules for the testing of network sites or other
Issued: Aug. 7, 2007 projects. The participating client devices can be selected
Appl. No.: 10/186,266 based upon their attributes and can recerve test workloads
Filed: Jun. 27, 2002 from the distributed processing server systems. In addition,
(63) Continuation-in-part of application No. 09/834,785, filed on the client devices vl send and peeelve poll communications
Apr. 13, 2001, and a continuation-in-part of application No. that may bZUSEd gur H):g Fﬁocess_ln% Of;[_he_’tpr V) e?‘[i[lo ?n;[r _Oblﬂ
Continued manage and coordinate the project activities of the distrib-
(60) Provisional applicagion No. 60/)368,871, filed on Mar. 29, me(_l devices. Ifde?,lred, a separate poll Server system tail be
2007 dedicated to handling the poll communication and coordina-
(51) Int.CL tion and control operations with the participating distributed
GO6F 15/16 (2006.01) devices during test operations, thereby allowing other server
tasks to be handled by other distributed processing server
(52) US.CL ...l 709/203; 709/201; 709/203; systems. Once the tests are complete, the results can be com-
709/224; 709/226 municated from the client devices to the server systems and
(58) Field of Classification Search 709/202, can be reported, as desired. Additionally, the distributed pro-
709/203, 224, 226, 201, 205 cessing system can 1dentify the attributes, including device
See application file for complete search history. capabilities, of distributed devices connected together
through a wide variety of communication systems and net-
(56) References Cited works and utilize those attributes to organize, manage and
U.S PATENT DOCUMENTS distribute project workloads to the distributed devices.
4,669,730 A * 6/1987 Small ...l 273/138 66 Claims, 9 Drawing Sheets

100
[cusTomer F—'52 ¥

108 ’/IO4
S . 4
COEnT SYSTEMS | SERVER
cySTEM | 118 19 15 SYSTEMS
s 114 CLIENT SYSTEM
120 CAPABILITIES 124
g%ﬁ% NET WORK S
{INCENTIVES 126
: \'IIZ lee 7 _
CLIENT 16 _STHER
06
SYSTEM SYSTEMS

US RE42,153 E

Page 2

(63)

(56)

Related U.S. Patent Documents

09/794,969, filed on Feb. 27, 2001, now abandoned, and a
continuation-in-part of application No. 09/648,832, filed on
Aug. 25, 2000, now Pat. No. 6,847,995, and a continuation-
in-part of application No. 09/602,983, filed on Jun. 23, 2000,
now Pat. No. 6,963,897, and a continuation-in-part of appli-
cation No. 09/603,740, filed on Jun. 23, 2000, now aban-
doned, and a continuation-in-part of application No. 09/539,
106, filed on Mar. 30, 2000, now Pat. No. 6,891,802, and a
continuation-in-part of application No. 09/539,428, filed on
Mar. 30, 2000, now abandoned, which 1s a continuation-in-
part of application No. 09/539,448, filed on Mar. 30, 2000,
now abandoned.

References Cited

U.S. PATENT DOCUMENTS
4,815,741 A * 3/1989 Smallcocevvviinninnin... 273/138
4,818,064 A 4/1989 Youngquist et al.
4,839,798 A 6/1989 Eguchi et al.
4,893,075 A 1/1990 Diuerker, Jr.
4,987,533 A 1/1991 Clark et al.
5,056,019 A * 10/1991 Schultzetal. 364/405
5,031,089 A 4/1994 Takashima
5,332,218 A * 7/1994 Lucey ...ccovivviiiinininnnnn. 273/138
5,402,394 A * 3/1995 Turski ..coooovvviininninnnnnn, 368/10
5,483,444 A 1/1996 Heintzeman et al. 364/401
5,594,792 A 1/1997 Chouraki et al.
5,598,566 A 1/1997 Pascuccretal. 395/750
5,655,081 A 8/1997 Bonnell etal. 395/200.32
5,659,614 A 8/1997 Bailey, 111
5,703,949 A * 12/1997 Rosenccoocvvvvnvnnnn.n. 380/21
5,740,231 A 4/1998 Cohn et al.
5,740,549 A * 4/1998 Rellyetal. 705/14
5,761,507 A * 6/1998 Govett ..cvvvviiininninnnn.. 718/101
5,768,504 A 6/1998 Kellsetal. 395/187.01
5,768,532 A 6/1998 Megerian
5,790,789 A 8/1998 Suarez
5,793,964 A 8/1998 Rogers et al.
5,802,062 A * 9/1998 Gehanietal. 370/465
5,806,045 A 9/1998 Biorge et al.
5,815,793 A * 9/1998 Ferguson 455/3.1
5,826,261 A 10/1998 Spencer
5,826,265 A * 10/1998 Van Huben etal. 707/8
5,832.411 A 11/1998 Schatzmann et al.
5,842,219 A * 11/1998 High, Jr. etal. 707/103
5,848415 A 12/1998 Guck
5,862,325 A * 1/1999 Reedetal. 395/200.31
5,881,232 A 3/1999 Cheng et al.
5,884,072 A * 3/1999 Rasmussen 395/600
5,884,320 A 3/1999 Agrawal et al.
5,887,143 A * 3/1999 Saitoetal.ccocvnen.n. 395/200
5,893,075 A * 4/1999 Plainfield et al. 705/14
5,803.905 A * 4/1999 Mainetal.ccooo....l. 705/11
5,907,619 A 5/1999 Davis
5,900,540 A * 6/1999 Carteretal. 305/182.02
5911,776 A 6/1999 Guck
5,916,024 A * 6/1999 Von Kohormn 463/40
5,918,229 A * 6/1999 Davisetal.coovvenenne.n.. 707/10
5,921,865 A * 7/1999 Scagnellietal. 463/17
5,937,192 A * &/1999 Martincc.coevvinnennen.. 395/705
5,953,420 A 9/1999 Matyas, Ir. et al.
5,958,010 A * 9/1999 Agarwaletal. 709/224
5,964,832 A * 10/1999 KiISOT .evvivvriiriininninnnnn. 709/202
5,966,451 A ™ 10/1999 UtSUMI .covvvvrvinninnnnnnn.n. 380/49
5,970,469 A * 10/1999 Scroggieetal. 705/14
5,970,477 A * 10/1999 Rodencovvvvvinnnnnn.... 705/32
5,978,594 A * 11/1999 Bonnell etal. 395/837
5,987,506 A * 11/1999 Carteretal. 709/213
6,003,065 A * 12/1999 Yanetalccocceonnin. 709/201

6,003,083
6,009,455
6,014,634
6,014,712
0,024,640
6,026,474
0,052,584
6,052,785
0,058,393
6,061,660
6,005,046
6,070,190
6,076,105
0,078,953
0,094,654
6,098,091
6,112,181
0,112,225
0,112,243
0,112,304
6,115,713
0,128,644
0,131,067
0,134,532
0,135,646
0,138,155
0,148,335
0,148,377
0,151,684
6,167,428
0,189,045
0,191,847
0,208,975
6,211,782
0,212,550
0,249,836
0,253,193
0,203,358
0,308,203
0,334,126
0,336,124
6,345,240
6,347,340
0,356,929
6,370,510
6,370,560
0,374,254
0,377,975
0,389,421
6,393,014
6,415,373
0,418,462
6,421,781
0,434,594
6,434,609
0,438,553
0,463,457
6,473,805
6,477,565
0,499,105
0,505,246
0,516,338
6,516,350
6,546,419
0,570,870
0,574,605
0,574,628
0,587,866
6,601,101
6,604,122
0,615,166

Vi gV i Y S RV g Vi G S P g e i g

velive v le-No-NooRovRoe oo v Ree e Ho-Noo oo oo loelve o Moo Noo Moo loeloe e v oo Noo Moo oo loe v Boe - No-NooNoo oo lv e lo lve

o T B

12/1999
12/1999
1/2000
1/2000
2/2000
2/2000
4/2000
4/2000
5/2000
5/2000
5/2000
5/2000
6/2000
6/2000
7/2000
8/2000
8/2000
8/2000
8/2000
8/2000
9/2000
10/2000
10/2000
10/2000

10/2000
10/2000

* 11/2000
* 11/2000
* 11/2000

12/2000
2/2001
2/2001
3/2001
4/2001
4/2001
6/2001
6/2001
7/2001

10/2001

12/2001
1/2002
2/2002
2/2002

3/2002
4/2002
4/2002
4/2002
4/2002

5/2002
5/2002
7/2002
7/2002
7/2002
8/2002
8/2002
8/2002
10/2002
10/2002
11/2002
12/2002
1/2003
2/2003
2/2003
4/2003

5/2003
6/2003
6/2003
7/2003
7/2003
8/2003
9/2003

Daviesetal. 709/226
Dovle .oocoviiiiiiiiniinnnn.. 709/201
Scroggie et al. 705/14
Islam et al.

Walkeretal. 463/17
Carteretal.cvvvnnnnn.. 711/202

Harvey et al.
Linetal.c.eiel. 713/201

Meier et al. 707/10
Eggleston et al. 705/14

Feinberg et al.

Repsetal. 709/224
Wolffetal. 700/223
Vaid et al.

Van Huben et al.
Kisor
Shearetal. 705/1
Kraftet al. 709/202
Downs et al. 709/226
Clawsonc.coveeeneen... 713/156
Pascuccietal. 707/10
Nozaki

(Girerd et al.

[Lazarus et al.

Kahn et al.

Davis et al.

Haggard et al. 709/224
Carteretal. 711/147
Alexanderetal. 714/4
Ellis

(O’Shea

Melendez et al.

Bull et al.

Sandelman et al.

Segur

Downs et al.

(inter et al.

[eeetal. ..cooovevnnn...... 718/100
[tabashi et al.

Nagatomo et al.

Alam et al.

Havens

Coelho et al.

(Gall et al.

McGovern et al.

Robertazzi et al.

Cochranetal. 707/102
Florman

Hawkins et al.

Daly et al.

Peters et al.

KU crveriieneieeeinneannees 709/201
Fox et al.

Wesemann

Humphrey

Yamada

Armentrout et al. 709/201
[Lewis

Daswani et al.

Yoshiura et al.

[.andsman et al.

[Landsman et al.

Lumelsky et al.

Humpleman et al.

Berstis

Sanders et al. 705/8
Kahn et al.
Modi et al.
Lee et al.
Nilsson
(Guheen et al.

................. 718/105

US RE42,153 E
Page 3

6,643,291 B1 11/2003 Yoshihara et al.
6,643,640 B1 11/2003 Getchius et al.
6,654,783 B1 11/2003 Hubbard
6,714,976 B1 * 3/2004 Wilsonetal. 709/224
6,757,730 Bl 6/2004 Berardin
6,775,699 Bl 8/2004 Delucaetal. 709/224
6,792,455 Bl 9/2004 DeLlucacetal. 709/224
6,847,995 Bl 1/2005 Hubbard et al.
6,871,223 B2 * 3/2005 Drees .oocovviviiviiniinninnnn 709/223
6,891,802 Bl 5/2005 Hubbard
6,963,897 B1 11/2005 Hubbard
7,003,547 Bl 2/2006 Hubbard
7,020,678 Bl 3/2006 Hubbard
7,082,474 Bl 7/2006 Hubbard
7,136,857 B2 * 11/2006 Chenetal. ...c.ccoovvvvvvnnnnn.... 1/1
7,143,080 B2 11/2006 Petras et al.
2001/0029613 A1 10/2001 Fernandez et al.
2002/0010757 Al 1/2002 Granik et al.
2002/0018399 Al 2/2002 Schulze et al.
2002/0019584 Al 2/2002 Schulze et al.
2002/0019725 Al 2/2002 Petite
2002/00658064 Al 5/2002 Hartsell et al.
2002/0133593 Al 9/2002 Johnson et al.
2002/0188733 A1 12/2002 Collins
2002/0194251 A1 12/2002 Richter
2002/0198957 A1 12/2002 Amyadi
2004/0098449 Al 5/2004 Bar-Lavi et al.
2007/0011224 Al 1/2007 Mena
2009/0132649 Al 5/2009 Hubbard
2009/0138551 Al 5/2009 Hubbard
2009/0164533 Al 6/2009 Hubbard
2009/0171855 Al 7/2009 Hubbard
2009/0216641 Al 8/2009 Hubbard
2009/0216649 Al 8/2009 Hubbard
2009/0222508 Al 9/2009 Hubbard
Al

2010/0036723 2/2010 Hubbard

OTHER PUBLICATIONS

Steve Lawrence, et al., “Accessibility of information on the
web,” Nature, vol. 400, pp. 107-109, Jul. 1999 *

Steve Lawrence, et al., “Searching the World Wide Web,”
Science, vol. 280, pp. 98—100, Apr. 3, 1998.%

Steve Lawrence, et al., “Context and Page Analysis for
Improved Web Search,” IEEE Internet Computing, pp.
3846, Jul.—Aug. 1998.%*

Vasken Bohossian, et al., “Computing 1n the RAIN: A Reli-
able Array of Independent Nodes,” California Institute of
Technology, Sep. 24, 1999.*

“A White Paper: The Economic Impacts of Unacceptable

Web—Site Download Speeds,” Zona research, Inc., pp. 1-17,
Apr. 1999 %

Peter J. Sevcik, “The World—Wide—Wait Status Report,”
Northeast Consulting Resources, Inc., Global Internet—Per-
formance Conference, Oct. 14, 1999 *

“White Paper: Max, and the Objective Measurement of Web
Sites,” WebCriteria, Version 1.00, pp. 1-11, Mar. 12, 1999 %
Renu Tewar, et al., “Design Considerations for Distributed
Caching on the Internet,” pp. 1-13, May 1999.%
“Measuring and Improving Your E—Commerce Web Site

Performance with Keynote Perspective,” Keynote Systems,
pp. 1-15, Mar. 29, 2000.*

Sullivan, et al., “A New Major SETI Project Based On
Project Serendip Data and 100,000 Personal Computers,”
Proc. of the Fifth Intl Coni on Bioastronomy IAU Colloq
No. 161, pp. 729-734, 1997.%

Caronmi, et al., “How Exhausting 1s Exhaustive Search?”
RSA Laboratories” CryptoBytes, vol. 2, No. 3, pp. 2-6,
Jan.—Mar. 1997 %

Bricker, et al., “Condor Technical Summary,” Computer Sci-

ences Dept., University of Wisconsin, Version 4.1b, pp.
1-10, Jan. 28, 1992.%

Fields, “Hunting for Wasted Computing Power—-New Soft-
ware for Computing Networks Puts Idle PC’s to Work,”
1993 Research Sampler, Umversity ol Wisconsin, pp. 1-5,
1993 *

Anderson, et al., “SETI@home: Internet Distributed Com-
puting for SE'TI,” A New Era 1n Bioastronomy, ASP Confer-

ence Series, vol. 213, pp. 511-517, 2000.*

Bowyer, et al., “Iwenty Years of Serendip, the Berkeley
SE'TI FEffort: Past Results and Future Plans,” Astronomical

and Biochemical Origins and the Search for Life in the Uni-
verse, pp. 667-676, 1997.%

Litzkow, et al., “Condor—A Hunter of Idle Workstations,”
The 8” International Conf. on Distributed Computing Sys-

tems, pp. 104-111, 1988.%

Hamidzadeh, et al., “Dynamic Scheduling Techniques for
Heterogeneous Computmg Systems,” Concurrency: Practice
and Experience, vol. 7(7), pp. 633-6352, 1995.*

Grimshaw, et al., “The Legion Vision of a Worldwide Virtual
Computer,” Communications of the ACM, vol. 40, No. 1, pp.

39-45, 1997.%

Catlett, et al., “Metacomputing,” Communications of the
ACM, vol. 35, No. 6, pp. 44-52, 1992.*

Foster, et al., “Globus: A Metacomputing Infrastructure
Toolkat,” The International Journal of Supercomputer Appli-
cations and High Performance Computing, vol. 11, No. 2,

pp. 115-128, 1997.*

Mutka, et al., “The Available Capacity of a Privately Owned
Workstation Environment,” Performance Fvaluation 12

(1991) pp. 269-284.*

Sullivan, et al., “A New Major SETI Projet Based on Project
Serendip Data and 100,000 Personal Computers,” Astro-
nomical and Biochemical Origins and the Search for Life in
the Universe, 5” International Conference on Bioastronomy,

IAU Colloquium No. 161, pp. 729-734, 1996.%

Gelernter, “Domesticating Parallelism,” IEEE Computer,
Aug. 1986, 19(8), pp. 12-16.%

Goldberg, et al.,
Helper Applications—Confining the Wily Hacker,
USENIX Security Symposium, pp. 1-13, 1996.*

distributed.net: The fastest computer on Earth: Feb. 8, 1999,

http://web.archive.org/web/19990221230033/http://distrib-
uted. ™

London et al., “Popcorn—A Paradigm for Global-Comput-
ing”’, Thesis Umversny Jerusalem, Jun. 1998.%

Takagi H. et al., “Ninflet: a migratable parallel objects

framework using Java™, Java for High—Performance Net-
work Computing, Syracuse NY, USA, Feb. 1998, vol. 10,
No. 11-13, pp. 1063—-1078.%*

Waldspurger, C.A. et al., “Spawn: a distributed computa-

tional economy” IEEE Transactlons on Software Engineer-
ing, IEEE Inc., NY, US, Feb. 1992, vol. 18, No. 2, pp.

103—-117.%

Neary, M. O., et al., “Javelin: Parallel computing on the
internet” Future Generations Computer Systems, Elsevier

Science Publishers, Amsterdam, NL, Oct. 1999, vol. 15, No.
5—6, pp. 661-664.*

Foster, Ian et al., “The Physiology of the Gnid,” This 1s a

Draft document and continues to be revised. Version Feb. 17,
2002 .*

“A Secure Environment ftor Untrusted
v 61‘k

US RE42,153 E
Page 4

Douceur, John R. et al., “A Large—Scale Study of File—Sys-
tem Contents,” Microsoft Research, Redmond, WA 98052,
May 1999 %

Bolosky, William J. et al., “Feasibility of a Serverless Dis-
tributed File System Deployed on an Existing Set of Desktop
PCs,” Microsoft Research, Redmond, WA 98052, Jun.
2000.*

Regev, Or1; Economic Oriented CPU Sharing System for the
Internet; Master of Science i Computer Science thesis;
Institute of Computer Science; The Hebrew University of

Jerusalem; Jul. 1998.*

May, Michael; Idle Computing Resources as Micro—Curren-
cies—Bartering CPU Time for Online Content; AACE Web-
Net99; Oct. 25-30, 1999.%

May, Michael; Distributed RC5 Decryption as a Consumer
for Idle—Time Brokerage; DCW99 Workshop on Distrib-
uted Computer on the Web; Jun. 21-23, 1999 *

May, Michael; Locust—A Brokerage System for Accessing
Idle Resources for Web—Computing; Proceedings of the 25%
Euromicro Conference; vol. 2, pp. 466-473; Sep. 8-10,
1999 *

Huberman, Bernardo A., et al.; Distributed Computation as

an Economic System; Journal of Economic Perspectives;
vol. 9, No. 1; pp. 141-152; Winter 1993.%

Havyes, Brian “Computing Science: Collective Wisdom”,
Retrieved from: <http://www.americanscientist.org/issues/

1d.3341,y.0,no.,content.true,page. 1,css.print/issue.asp>on
Dec. 3, 2009, American Scientist, (Mar. 1998), 3 pages.

Lawrence, Steve et al., “Accessibility of Information on the
Web”, Nature, vol. 400, (Jul. 1999), pp. 107-109.

Lawrence, Steve et al., “Searching the World Wide Web”,
Science, vol. 280, Available at <www.sciencemag.org>,

(Apr. 3, 1998), pp. 98-100.

Lawrence, Steve “Context and Page Analysis for Improved
Web Search™, IEEE Internet Computing, vol. 2, No. 4, Avail-
able at <http://www.neci.nj.nec.com’homepages/lawrence/
papers/search—1c98/>, (Jul. 1998), 11 pages.

Vasken, Bohossian et al., “Computing in the Rain: A reliable
array ol independent nodes™, California Institute of lechnol-
ogy, (Sep. 24, 1999).

“A White Paper: The economic impacts of Unacceptable
Web—Site Download Speeds™, Research Inc.,(Apr. 1999)
1-17.

Sevcik, Peter J., “The world Wide Wait Status Report”,
Northeast consulting resources, Inc.; Global Internet Per-
formance Conference, (Oct. 14, 1999).

Henry, Shannon “Putting Idle computers to Work”, The
Washington Post, (Jun. 15, 2000), 3 pages.

Shmulik, London “POPCORN-A Paradigm for Global—
Computing”’, Master of Computer Science thesis, supervised
by Prof. Noam Nisan, Institute of Computer Science, The
Hebrew University of Jerusalem, (Jun. 1998), 94 pages.
“GIMPS Finds First Million—Digit Prime, Stakes Claim To
$50,000 EFF Award”, (Jun. 1999), 3 pages.

“Final Office Action”, U.S. Appl. No. 10/68,210, (May 26,
2009), 12 pages.

“Notice of Allowance”, U.S. Appl. No. 09/8347835, (Jul. 15,
2009), 4 pages.

“Non—Fial Office Action”, U.S. Appl. No. 10/687,210,
(Nov. 235, 2009), 20 pages.

“Non—final Office Action”, U.S. Appl. No. 09/834,785,
(Dec. 28, 2009), 8 pages.

“Final Office Action”, U.S. Appl. No. 09/834,785, (Jun. 24,
2010), 9 pages.

“Non Final Office Action”, U.S. Appl. No. 10/687,210, (Jun.
24, 2010), 21 pages.

“Advisory Action”, U.S. Appl. No. 09/834,7835, (Sep. 21,
2010), 3 pages.

* cited by examiner

US RE42,153 E

Sheet 1 0of 9

Feb. 15, 2011

U.S. Patent

SIINS3Y _ S171NS3Y |
SW3LSAS| 2€l mu:j_m&,qu acs | SHEALAS
SIALNIONI | N3LSAS LNZTD ac)
IN3IT2 % o
| SIW31SAS H3AH3S
SAYOTHEOM | S1203royd
MHYWHON3E o e
PEl~ OGNV 103r0ug o514 1914
SWILSAS
o101 HIHLO . WALSAS
911 IN3ITD
921] SIAILNION]
R 2
52| S31LI118VYdYD
NILSAS IN3IID - ,
SWILSAS 0 o 81— _um.mﬁ_m._rw o
43835 SWILSAS v
501~ \ 5| | ¥3WOLSND |
001

U.S. Patent Feb. 15, 2011 Sheet 2 of 9 US RE42,153 E

1512 1519
TASK WORK 1504
MODULE | [UNIT 2708 270C
- CLIENT| |CLIENT
1I5I0| | USER CORE
RS ERrace 1502 |AGENT |- |AGENT

e

- COMMUNICATION 1506
1568 INTERFACE 1518

S | ' 1520

1508 15|16 —270A

' SRR SR
COMMUNICATION INTERFACE [~1922
1528 - 1524 1526

SERVER
CONTROL

SWEEPSTAKES
ENGINE

CLIENT
STATISTICS

A
1596] ICONTROL

TASK MODULE
AND WORK

UNIT MANAGER

ADVERTISING
MANAGER

SECURITY SUBSYSTEM AND INTERFACE

1530 15324 1534 536 1538
1546 . |04J
1564 DATABASE SYSTEMS 1544
\IOO
1554

WEB INTERFACE
1550

TASK
DEVELOPER

SUBSYSTEM

1548
CLIENTS
SUBSYSTEM

F1G. 1C

1552

ADVERTISERS
SUBSYSTEM

1562

-156 0

U.S. Patent Feb. 15, 2011 Sheet 3 of 9 US RE42,153 E

304

: CAPABILITY
CONTROL VECTORS DATABASE

628 630 632

620

624

WORKLOAD DATABASE

646 >o2
640+~ wLi | [wear] -+ - - m

648
642 wLi2 | {wLez]”. WLNZ
654

650 656
644 WLIN | [wLaN WLNN
600
i T s
IDENTIFY | CAPABILITY | SEND
CLIENT | SCHEDULING | ARl Ty
SYSTEM | WORKLOADS COHEDUL E b
cAPABILITY |(612 | BASED ON 614

VECTORS VECTORS WORKLOADS

-F1G. 2B

US RE42,153 E

Sheet 4 of 9

Feb. 15, 2011

U.S. Patent

Ve Ol
ﬁ wu.bam_mh-hq i ..w.u.,»:mdm._.._.«i | S31AQINL LY
N 13S HL1IM ¢ 13S H1IM | L3S H1IM

SIWILSAS
IN3I'1O

SINILSAS
IN3I1O

SWILSAS
IN3I1D

g202| "TAYA
95021
202!
V02|
98021 8902
ol 61| ;
“T~48 H3dW01SND
, u J —N —
| SWILSAS V80211 r0Yd | | AQV [—1-V¥902!
‘ 4IAY3S
| | ¥3WoLsno | /f/foom_
b0 - vasi—

US RE42,153 E

Sheet S of 9

Feb. 15, 2011

U.S. Patent

0355300d4dd Sl
133rodd YO

ONISILYIAQY
ddNOL3SMND

0355300V 14V
SALNGldLl LV

[ATA

 S31N9IdLlV

Q381534

S1237135
d3N0LSN2

0Gcl

US RE42,153 E

Sheet 6 of 9

Feb. 15, 2011

U.S. Patent

US RE42,153 E

Sheet 7 0of 9

Feb. 15, 2011

U.S. Patent

O
N

335N 404
03 HHdWQOD

S11NS3Y
INILS3L 311S

0cL

e ——— e P ——

| LN3S S11NnS3Y
ONILS3L 31IS

"—-—-n——-—-- -

80L

V0O 1XHd0M
ONILS3L

3131dW0D |

SLINIID

ANILSAS
d3Ad3S OL

SIWILSAS

43H10 HLIM
10VddLNI

US RE42,153 E

M wcﬁ.{nwihkd
alS
YL PInSI7
. ' ISYRYy Ly |
m 392 7 YvYoimdory | |
Z L'S £\S O2e _ A .ruw ;..,r G 19flwen NCELY WY 0 3NT
- . d NS Q=
_ . A SLnSH _1>3foyd L73L03d
m E w e ~ 1 .
‘; =N AR AL 4y u&i&i
: NQE LY WY 04N e -
WALSAS gD ﬂ 20 \aS
W\l
s\g hol

NJIONLAN HYNOyH L
SNOTLA YT N WWNOT 04

W3LSAS LNIATID

U.S. Patent

US RE42,153 E

Sheet 9 of 9

Feb. 15, 2011

U.S. Patent

= 2. ey
' SYILTIM YY)
Tod YNy 7¢O

‘13 L A4TT0\N

NOT LY WYo o
1 OH S ¥NS
2TWY N AG 3VTA0Td

19

ANzl Lyls L
S USrT? No

CAS3. FlwrNT

(SINTL U520 g TNy
1IYLS YoTEEd Tod)
SYALAWwIYg 532 yny

N HILZINT gnids
a L3068y 9y |

SOWSEY LS3L {SS

el

W shS W37}
UINTLEIDOITLIYY Yot
SAMNY T™ILY 1o7as

.Nmm SLINY nyott
JLHIN NN

US RE42,153 E

1

DYNAMIC COORDINATION AND CONTROL
OF NETWORK CONNECTED DEVICES FOR
LARGE-SCALE NETWORK SITE TESTING
AND ASSOCIATED ARCHITECTURES

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

This application 1s a continuation-in-part application of

the following applications: application Ser. No. 09/539,448
entitled “CAPABILITY-BASED DISTRIBUTED PARAL-

LEL PROCESSING SYSTEM AND ASSOCIATED
METHOD),” now abandoned application Ser. No. 09/339,

428 entitled “METHOD OF MANAGING DISTRIBUTED
WORKLOADS AND ASSOCIATED SYSTEM,” and appli-
cation Ser. No. 09/539,106 entitled “NETWORK SITE
TESTING METHOD AND ASSOCIATED SYSTEM,”
which was filed on Mar. 30, 2000, now U.S. Pat. No. 6,891,

802 and which 1s hereby incorporated by reference 1n its
entirety. This application 1s also a continuation-in-part appli-
cation of the following application: application Ser. No.
09/603,740 entitled “METHOD OF MANAGING WORK-
LOADS AND ASSOCIATED DISTRIBUTED PROCESS-
ING SYSTEM,” now abandoned and application Ser. No.
09/602,983 entitled “CUSTOMER SERVICES AND
ADVERTISING BASED UPON DEVICE ATTRIBUTES
AND ASSOCIATED DISTRIBUTED PROCESSING
SYSTEM.,” now U.S. Pat. No. 6,963,897 each of which was
filed on Jun. 23, 2000, and each of which 1s hereby incorpo-
rated by reference in 1ts entirety. This application 1s also a

continuation-in-part application of the following applica-
tion: application Ser. No. 09/648,832 entitled “SECURITY

ARCHITECTURE FOR DISTRIBUTED PROCESSING
SYSTEMS AND ASSOCIATED METHOD,” which was
filed on Aug. 25, 2000, now U.S. Pat. No. 6,847,995 and
which 1s hereby incorporated by reference in its entirety.
This application 1s also a continuation-in-part application of

the following co-pending application: application Ser. No.
09/794,969 entitled “SYSTEM AND METHOD FOR

MONITIZING NETWORK CONNECTED USER BASES
UTILIZING DISTRIBUTED PROCESSING SYSTEMS,”
which was filed on Feb. 27, 2001, and which 1s hereby incor-
porated by reference 1n 1ts entirety. This application is also a
continuation-in-part application of the following co-pending

application: application Ser. No. 09/834,785 entitled
“SOFTWARE-BASED NETWORK ATTACHED STOR-

AGE SERVICES HOSTED ON MASSIVELY DISTRIB-
UTED PARALLEL COMPUTING NETWORKS,” which
was filed on Apr. 13, 2001, and which 1s hereby incorporated
by reference 1n its entirety. The present application also
claims priority to the following co-pending U.S. provisional

patent application: Provisional Application Ser. No. 60/368,
871 that 1s entitled “MASSIVELY DISTRIBUTED PRO-

CESSING SYSTEM ARCHITECTURE, SCHEDULING,

UNIQUE DEVICE IDENTIFICATION AND ASSOCI-
ATED METHODS.” which was filed Mar. 29, 2002, and

which 1s hereby 1nc0rp0rated by reference 1n 1ts entirety.

TECHNICAL FIELD OF THE INVENTION

This 1nvention relates to distributing project workloads
among a multitude of distributed devices and more particu-
larly to techniques and related methods for managing, facili-
tating and implementing distributed processing 1n a network
environment. This invention 1s also related to functional,
quality of server (QoS), and other testing of network sites
utilizing a distributed processing platiorm.

10

15

20

25

30

35

40

45

50

55

60

65

2
BACKGROUND

Network site testing 1s typically desired to determine how
a site or connected service performs under a desired set of

test circumstances. Several common tests that are often
attempted are site load testing and quality of service (QoS)
testing. Quality of service ((QoS) testing refers to testing a
user’s experience accessing a network site under normal or
various other usability situations. Load testing refers to test-
ing the load a particular network site’s infrastructure can
handle 1n user interactions. An extreme version of load test-
ing 1s a denial-of-service attack, where a system or group of
systems intentionally attempt to overload and shut-down a
network site. Co-pending Application Ser No. 09/539,106
entitled “NETWORK SITE TESTING METHOD AND
ASSOCIATED SYSTEM,” (which 1s commonly owned by
United Devices, Inc.) discloses a distributed processing sys-
tem capable of utilizing a plurality of distributed client
devices to test network web sites, for example, with actual
expected user systems. One problem associated with net-
work site testing 1s the management, control and coordina-
tion of the distributed devices participating in the network
site testing project.

SUMMARY OF THE INVENTION

The present mnvention provides architectures and methods
for the dynamic coordination and control of network con-
nected devices for network site testing and other distributed
computing projects. For the network site testing, the distrib-
uted processing system utilizes a plurality of client devices
that run client agent programs which are associated with a
distributed computing platform and which are running one
or more possibly distinct project modules for network site
testing or other projects. The participating client devices
receive project workloads unit from the distributed process-
ing server systems. Poll communications between the client
systems and the server systems are used during processing of
the distributed project to control, manage and coordinate the
activities of the distributed devices in accomplishing the
project goal, such as network site testing. If desired, a sepa-
rate poll server system can be dedicated to handle the poll
communications and coordination and control operations
with the participating distributed devices during test
operation, thereby allowing other server tasks to be handled
by other distributed processing server systems. Once the
tests are complete, the results can be communicated from the
client devices to the server systems and can be reported, as
desired. Additionally, the distributed processing system can
identity the attributes of distributed devices connected
together through a wide variety of communication systems
and networks and utilize those attributes to organize, man-
age and distribute project workloads to the distributed
devices.

DESCRIPTION OF THE DRAWINGS

It 1s noted that the appended drawings illustrate only
exemplary embodiments of the invention and are, therefore,
not to be considered limiting of 1ts scope, for the invention
may admit to other equally effective embodiments.

FIG. 1A 1s a block diagram for a distributed processing
system having client capability and incentive features,
according to the present mvention.

FIG. 1B 1s a block diagram for mnformation flow among,
customer systems, server systems and client systems,
according to the present invention.

FIG. 1C 1s a block diagram of an alternative representa-
tion for a distributed processing system, according to the
present invention.

US RE42,153 E

3

FIG. 2A 1s a block diagram for a server system according,
to the present mnvention, including a control system, a work-
load database, and a database of client capabilities balancing
vectors.

FIG. 2B 1s a functional block diagram for client capabili-
ties balancing of workloads according to the present inven-
tion.

FIG. 3A 1s a block diagram of a distributed processing
system that allows customers to select client system
attributes, according to the present invention.

FIG. 3B 1s a block tlow diagram for client system attribute
selection, according to the present invention.

FIG. 4A 1s a block diagram for a distributed processing
system, according to the present invention, including
example network sites on which site testing 1s to be

conducted, such as load testing and/or quality-of-service
(QoS) testing.

FIG. 4B 1s a functional block diagram for site-testing,
according to the present invention.

FIG. SA 1s a block diagram for a dynamic coordination
and control architecture for network site testing, according
to the present invention.

FIG. 5B 1s a flow diagram for dynamic coordination and
control processing that can be utilized as part of network site
testing, according to the present invention.

DETAILED DESCRIPTION OF THE INVENTION

The present mvention provides a dynamic coordination
and control architecture for network site testing within a
distributed processing platform that utilizes a plurality of
network-connected client devices. The client systems are
configured to run a client agent program and project mod-
ules for the testing of network sites or other distributed
project activities. In addition to project work units, these
client devices can recerve poll communications that are used
during project operations to control, manage and coordinate
the project activities of the distributed devices. In addition, 1T
desired, a separate poll server system can be dedicated to
handling the poll communications and coordination and
control operations with the participating distributed devices
during test operation, thereby allowing other server tasks to
be handled by other distributed processing server systems.
Once the tests are complete, the results can be collected and
reported.

Example embodiments for the coordination and control

architecture of the present invention, including a poll server,
are described with respect to FIGS. 5A and 5B. First,

however, with respect to FIGS. 1A, 1B, 1C, 2A, 2B, 3A, 3B,
4A and 4B example distributed computing environments,
network site testing and attribute or capability based device
selection are described. Such distributed computing environ-
ments utilizing network-connected computing devices are
described 1n more detail in co-pending applications 1denti-
fied and incorporated by reference above.

As described 1n the co-pending applications, distributed
processing systems according to the present invention may
identily the capabilities of distributed devices connected
together through a wide variety of communication systems
and networks and then utilize these capabilities to accom-
plish network site testing objectives of the present mnvention.
For example, distributed devices connected to each other
through the Internet, an intranet network, a wireless
network, home networks, or any other network may provide
any of a number of useful capabilities to third parties once
their respective capabilities are identified, organized, and

10

15

20

25

30

35

40

45

50

55

60

65

4

managed for a desired task. These distributed devices may
be connected personal computer systems (PCs), internet
appliances, notebook computers, servers, storage devices,
network attached storage (NAS) devices, wireless devices,
hand-held devices, or any other computing device that has
uselul capabilities and 1s connected to a network 1n any man-
ner. The present mnvention further contemplates providing an
incentive, which may be based 1n part upon capabilities of
the distributed devices, to encourage users and owners of the
distributed devices to allow the capabilities of the distributed
devices to be utilized 1n the distributed parallel processing

system of the present invention.

The number of usable distributed devices contemplated
by the present invention 1s preferably very large. Unlike a
small local network environment, for example, which may
include less than 100 interconnected computers systems, the
present invention preferably utilizes a multitude of widely
distributed devices to provide a massively distributed pro-
cessing system. With respect to the present invention, a mul-
titude of distributed devices refers to greater than 1,000 dif-
ferent distributed devices. With respect to the present
invention, widely distributed devices refers to a group of
interconnected devices of which at least two are physically
located at least 100 miles apart. With respect to the present
invention, a massively distributed processing system 1s one
that utilizes a multitude of widely distributed devices. The
Internet 1s an example of a interconnected system that
includes a multitude of widely distributed devices. An 1ntra-
net system at a large corporation 1s an example of an inter-
connected system that includes multitude of distributed
devices, and 1 multiple corporate sites are involved, may
include a multitude of widely distributed devices. A distrib-
uted processing system according to the present imnvention
that utilizes such a multitude of widely distributed devices,
as are available on the Internet or 1n a large corporate
intranet, 1s a massively distributed processing system
according to the present invention.

Looking now to FIG. 1A, block diagram 1s depicted for a
distributed parallel processing system 100 according to the
present invention. The network 102 1s shown having a cloud
outline to indicate the unlimited and widely varying nature
of the network and of attached client types. For example, the
network 102 may be the Internet, an internal company
intranet, a local area network (LAN), a wide area network
(WAN), a wireless network, a home network or any other
system that connects together multiple systems and devices.
In addition, network 102 may include any of these types of
connectivity systems by themselves or in combination, for
cxample, computer systems on a company intranet con-
nected to computer systems on the Internet.

FIG. 1A also shows client systems 108, 110 . . . 112
connected to the network 102 through communication links
118, 120 . . . 122, respectively. In addition, server systems
104, other systems 106, and customer systems 152 are con-
nected to the network 102 through communication links 114,
116 and 119, respectively. The client system capabilities
block 124 1s a subset of the server systems 104 and repre-
sents a determination of the capabilities of the client systems
108, 110 . . . 112. These client system capabilities, which
may be stored 1n a capabilities database as part of the server
systems 104, may be used by the server systems 104 to
schedule project workloads, such as a database workload as
turther discussed below, for the client systems 108, 110 . . .
112. The incentives block 126 1s also a subset of the server
systems 104 and represents an incentive provided to the
users or owners of the clients systems 108, 110 . . . 112 for
allowing capabilities of the clients systems 108, 110 .. . 112

US RE42,153 E

S

to be utilized by the distributed processing system 100.
These client system incentives, which may be stored 1n an
incentives database as part of the server systems 104, may be
used by the server systems 104 to encourage client systems
to be utilized for objectives of the distributed processing
system.

It 1s noted that the client systems 108, 110 and 112 repre-
sent any number of systems and/or devices that may be
identified, organized and utilized by the server systems 104

to accomplish a desired task, for example, personal com-
puter systems (PCs), internet appliances, notebook
computers, servers, storage devices, network attached stor-
age (NAS) devices, wireless devices, hand-held devices, or
any other computing device that has useful capabilities and
1s connected to a network 1n any manner. The server systems
104 represent any number of processing systems that pro-
vide the function of identifying, organizing and utilizing the
client systems to achieve the desired tasks.

The incentives provided by the incentives block 126 may
be any desired incentive. For example, the incentive may be
a sweepstakes 1n which entries are given to client systems
108, 110 . . . 112 that are signed up to be utilized by the
distributed processing system 100. Other example incentives
are reward systems, such as airline frequent-flyer miles, pur-
chase credits and vouchers, payments of money, monetary
prizes, property prizes, iree trips, time-share rentals, cruises,
connectivity services, Iree or reduced cost Internet access,
domain name hosting, mail accounts, participation 1n signifi-

cant research projects, achievement of personal goals, or any
other desired incentive or reward.

As 1ndicated above, any number of other systems may
also be connected to the network 102. The element 106,
therefore, represents any number of a variety of other sys-
tems that may be connected to the network 102. The other
systems 106 may include ISPs, web servers, university com-
puter systems, and any other distributed device connected to
the network 102, for example, personal computer systems
(PCs), mternet appliances, notebook computers, servers,
storage devices, network attached storage (NAS) devices,
wireless devices, hand-held devices, or any other connected
computing device that has useful capabilities and 1s con-
nected to a network 1n any manner. The customer systems
152 represents customers that have projects for the distrib-
uted processing system, as turther described with respect to
FIG. 1B. The customer systems 152 connect to the network

102 through the communication link 119.

It 1s noted that the communication links 114, 116, 118,
119, 120 and 122 may allow for communication to occur, 1f
desired, between any of the systems connected to the net-
work 102. For example, client systems 108, 110 . .. 112 may
communicate directly with each other 1n peer-to-peer type
communications. It 1s further noted that the communication
links 114, 116, 118, 119, 120 and 122 may be any desired
technique for connecting into any portion of the network
102, such as, Ethernet connections, wireless connections,
ISDN connections, DSL connections, modem dial-up
connections, cable modem connections, fiber optic
connections, direct T1 or T3 connections, routers, portal
computers, as well as any other network or communication
connection. It 1s also noted that there are any number of
possible configurations for the connections for network 102,
according to the present invention. The client system 108
may be, for example, an individual personal computer
located 1n someone’s home and may be connected to the
Internet through an Internet Service Provider (ISP). Client
system 108 may also be a personal computer located on an
employee’s desk at a company that 1s connected to an 1ntra-

10

15

20

25

30

35

40

45

50

55

60

65

6

net through a network router and then connected to the Inter-
net through a second router or portal computer. Client sys-
tem 108 may further be personal computers connected to a
company’s intranet, and the server systems 104 may also be
connected to that same intranet. In short, a wide variety of
network environments are contemplated by the present
invention on which a large number of potential client sys-
tems are connected.

FIG. 1B 1s a block diagram for an information tlow 150
among customer systems 152, server systems 104 and client
system 134, for an example distributed processing system
environment. The server systems 104, as discussed above,
may 1nclude any number of different subsystems or
components, as desired, including client system capabilities
block 124 and incentives block 126. The server systems 104
send project and benchmark workloads 130 to client systems
134. A benchmark workload refers to a standard workload
that may be used to determine the relative capabailities of the
client systems 134. A project workload refers to a workload
for a given project that 1s desired to be completed. Client
systems 134, as discussed above, may be any number of
different systems that are connected to the server systems
104 through a network 102, such as client systems 108,
110 . .. 112 in FIG. 1A. The client systems 134 send results
132 back to the server systems 104 after the client systems
134 complete processing any given workload. Depending,
upon the workload project, the server systems 104 may then
provide results 156 to customer systems 152. The customer
systems 152 may be, for example, an entity that desires a
grven project to be undertaken, and 11 so, provides the project
details and data 158 to the server systems 104.

It 1s noted, therefore, that the capabilities for client sys-
tems 108, 110 . . . 112 may span the entire range of possible
computing, processing, storage and other sub-systems or
devices that are connected to a system connected to the net-
work 102. For example, these subsystems or devices may
include: central processing units (CPUs), digital signal pro-
cessors (DSPs), graphics processing engines (GPEs), hard
drives (HDs), memory (MEM), audio sub-systems (ASs),
communications subsystems (CSs), removable media types
(RMs), and other accessories with potentially useful unused
capabilities (OAs). In short, for any given computer system
connected to a network 102, there exists a variety of capa-
bilities that may be utilized by that system to accomplish its
direct tasks. At any given time, however, only a fraction of
these capabilities are typically used on the client systems

108, 110 ... 112.

As indicated above, to encourage owners or users of client
systems to allow their system capabilities to be utilized by
control system 104, an incentive system may be utilized.
This incentive system may be designed as desired. Incen-
tives may be provided to the user or owner of the clients
systems when the client system 1s signed-up to participate 1n
the distributed processing system, when the client system
completes a workload for the distributed processing system,
or any other time during the process. In addition, incentives
may be based upon the capabilities of the client systems,
based upon a benchmark workload that provides a standard-
1zed assessment of the capabilities of the client systems, or
based upon any other desired critena.

Security subsystems and interfaces may also be included
to provide for secure interactions between the various
devices and systems of the distributed processing system
100. The security subsystems and interfaces operate to
secure the communications and operations of the distributed
processing system. This security subsystem and interface
also represents a variety of potential security architectures,

US RE42,153 E

7

techniques and features that may be utilized. This security
may provide, for example, authentication of devices when
they send and recerve transmissions, so that a sending device
verifies the authenticity of the receiving device and/or the
recerving device verifies the authenticity of the sending
device. In addition, this security may provide for encryption
of transmissions between the devices and systems of the
distributed processing system. The security subsystems and
interfaces may also be implemented 1n a variety of ways,
including utilizing security subsystems within each device
or security measures shared among multiple devices, so that
security 1s provided for all interactions of the devices within
the distributed processing system. In this way, for example,
security measures may be set 1n place to make sure that no
unauthorized entry 1s made 1nto the programming or opera-
tions of any portion of the distributed processing system

including the client agents.

FIG. 1C 1s a block diagram of an alternative representa-
tion for a distributed processing system 100, according to the
present vention. Server systems 104, database systems
1546 and web interface 1554 are coupled together through
communication links 1540, 1542 and 1544. The web inter-
face 1554 includes clients subsystem 1348, task developer
subsystem 1550, and advertisers subsystem 1552, and may
include other subsystems as desired. The database systems
1546 1nclude workload (WL) information 308, client capa-
bility vector information 620, and any other stored informa-
tion as desired. Server systems include various modules and
subsystems, including database interface 1332, web server
1536, task module and work unit manager 1530, client sta-
tistics module 1534, advertising manager 1538, task module
version/phase control subsystem 1528, sweepstakes engine
1524, server control subsystem 1526, and communication
interface 1522. It 1s noted that 1n the embodiment of a dis-
tributed processing system 100 as depicted in FIG. 1C, the
three primary operations for the server systems 104, data-
base systems 1546 and web interface 1554 are directed to
managing, processing and providing an intertace for client
systems, customer tasks, and customer advertising.

As discussed above, each client system includes a client
agent that operates on the client system and manages the
workloads and processes of the distributed processing sys-
tem. As shown 1n FIG. 1C, each of the client agents 270A,
270B . .. 270C communicates with the server systems 104
through communication links 1516, 1518 . . . 1520, respec-
tively. As discussed above, any number of different tech-
niques and architectures may be utilized to provide these
communication links. In the embodiment as shown 1n FIG.
1C with respect to client agent 270A, each client agent
includes a base distributed processing system component
1506 and a separate project or workload component 1504,
As depicted, a communication interface 1508, a core agent
module 1502, and a user interface 1510 make up the base
distributed processing system component 1506. The task
module 1512 and the work unit 1514 make up the separate
project or workload component 1504. The task module 1512
operates on top of the core agent module 1502 to provide
processing ol each project work unit 1514. It 1s noted that
different or additional modules, subsystems or components
may be included within the client agent, as desired. For
example, a personal computer screen saver component may
be part of the base distributed processing system component
1506 or the separate project or workload component 1504.

Also as discussed above, security subsystems and inter-
faces may be included to provide for secure interactions
between the various devices and systems of the distributed
processing system 100. As depicted in FIG. 1C, a security

10

15

20

25

30

35

40

45

50

55

60

65

8

subsystem and interface 1560 1s imterconnected with the
server systems 104, the database systems 1546, the web

interface 1554, and the client agents 270A, 2708 . . . 270C.
These interconnections are represented by lines 1566, 1564,
1562, and 1568, respectively. The security subsystem and
interface 1560 operates to secure the communications and
operations of the distributed processing system. This secu-
rity subsystem and interface 1560 also represents a variety of
potential security architectures, techniques and features that
may be utilized. This security may provide, for example,
authentication of devices when they send and receive
transmissions, so that a sending device verifies the authentic-
ity of the receiving device and/or the receiving device veri-
fies the authenticity of the sending device. In addition, this
security may provide for encryption of transmissions
between the devices and systems of the distributed process-
ing system. The security subsystem and interface 1560 may
also be implemented 1n a variety of ways, including utilizing
security subsystems within each device or security measures
shared among multiple devices, so that security 1s provided
for all interactions of the devices within the distributed pro-
cessing system. In this way, for example, security measures
may be set 1n place to make sure that no unauthorized entry
1s made into the programming or operations ol any portion
of the distributed processing system including the client
agents 270A, 2708 .. . 270C.

In operation, client systems or end-users may utilize the
clients subsystem 1548 within the web interface 1554 to
register, set user preferences, check statistics, check sweep-
stakes entries, or accomplish any other user interface option
made available, as desired. Advertising customers may uti-
lize the advertisers subsystem 1352 within the web interface
1554 to register, add or modily banner or other
advertisements, set up rules for serving advertisements,
check advertising statistics (e.g., click statistics), or accom-
plish any other advertiser interface option made available, as
desired. Customers and their respective task or project devel-
opers may utilize the task developer subsystem 1550 to
access mformation within database systems 1546 and mod-
ules within the server systems 104, such as the version/phase
control subsystem 1528, the task module and work unit man-
ager 1530, and the workload information 308. Customers
may also check project results, add new work units, check
defect reports, or accomplish any other customer or devel-
oper interface option made available, as desired.

Advantageously, the customer or developer may provide
the details of the project to be processed, including specific
program code and algorithms that will process the data, 1n
addition to any data to be processed. In the embodiment
shown 1n FIG. 1C, this program code takes the form of a task
module 1512 within the workload, while the data takes the
form of work unit 1514. These two portions make up the
project or workload component 1504 of each client agent
270. For a given project, the task module 1512 will likely
remain relatively constant, except for version updates,
patches or phase modifications, while the work unit 1514
will likely change each time processing of the data that 1t
represents 1s completed. The project or workload component
1504 runs in conjunction with the base distributed process-
ing system component 1506. When a different customer or
project 1s started on a given client system, the project or
workload component 1504 will typically be replaced, while
the base distributed processing system component 1506 will
likely remain relatively constant, except for version updates,
patches or other modifications made for the distributed pro-
cessing system.

Information sent from the server systems 104 to the client
agents 270A, 270B . . . 270C may include task modules, data

US RE42,153 E

9

for work umits, and advertising information. Information
sent from the client agents 270A, 2708 . . . 270C to the
server systems 104 may include user information, system
information and capabilities, current task module version
and phase information, and results. The database systems
1546 may hold any relevant information desired, such as
workload information (WL) 308 and client capability vec-
tors (CV) 620. Examples of information that may be stored
include user information, client system information, client
platform information, task modules, phase control
information, version information, work units, data, results,
advertiser information, advertisement content, advertise-
ment purchase information, advertisement rules, or any
other pertinent information.

FIG. 2A 1s a block diagram for a server system 104
according to the present imvention, including a control sys-
tem 304, a workload database 308, and a database of capa-
bility vectors 620. The workload database 308 includes a
variety of sets of workload projects WL1, WL2 . .. WLN.
For each workload project, there may be multiple workload
units. For example, workload project WL1 includes work-
load units WL11, WL12 . . . WLIN, as represented by ele-
ments 640, 642 .. . 644, respectively. Similarly, workload
project WL2 includes workload units WL21, WL22 . . .
WL2N, as represented by elements 646, 648 . . . 650, respec-
tively workload project WLN includes workload units
WLNI1, WLN2 ... WLNN, as represented by elements 652,

654 . .. 656, respectively.

It may be expected that different workload projects WL1,
WL2 . . . WLN within the workload database 308 may
require widely varying processing requirements. Thus, in
order to better direct resources to workload projects, the
server system may access various system vectors when a
client system signs up to provide processing time and other
system or device capabilities to the server system. This capa-
bility scheduling helps facilitate project operation and
completion. In this respect, the capability vector database
620 keeps track of any desired feature of client systems or
devices 1n capability vectors CBV1, CBV2 . .. CBVN, rep-
resented by elements 628, 630 . . . 632, respectively. These
capability vectors may then be utilized by the control system
304 through line 626 to capability balance workloads.

This capability scheduling according to the present
invention, therefore, allows for the efficient management of
the distributed processing system of the present mvention.
This capability scheduling and distribution will help maxi-
mize throughput, deliver timely responses for sensitive
workloads, calculate redundancy factors when necessary,
and in general, help optimize the distributed processing
computing system ol the present invention. The following
TABLE 1 provides lists of capability vectors or factors that
may be utilized. It 1s noted that this list 1s an example list,
and any number of vectors or factors may be i1dentified and
utilized, as desired.

TABL.

1

(L]

Example Client Capability Vectors or Factors

1. BIOS Support: a.
b. ACPI C.

BIOS Type (brand)
S1,S82, 83, and S4
sleep/wake states

d. DI1,D2and D3 ACPIdevice e. Remote Wake Up Via
states Modem

f. Remote Wake Up Via g, CPU Clock control
Network

h. Thermal Management control 1. Docked/Unlocked state

control

10

15

20

25

30

35

40

45

50

55

60

65

L.

10

TABLE 1-continued

Example Client Capability Vectors or Factors

APM 1.2 support

Resume on Alarm, Modem
Ring and LAN

Full-On power mode
Stand-by mode

Video Logic Power Down

Sound Chip Power Down

2. CPU Support:

b.
d.
f.

h.
].
I,

11.

MMX 1nstruction set

WNI instruction set

Other processor dependent
instruction set(s)

Raw FPU performance

CPU L1 instruction cache size

CPU speed (MHz/GHz .. .)

Processor Serial Number

3. Graphic Support

b. Type of Connection Device
(brand of hardware)

d. Speed of connection

f. Round trip packet time of
connection

h. Automatic connection support
(ves/no)

j. Broadband type (brand)

7. Memory

b. Type of memory supported
(EDO, SDRAM, RDRAM,
etc.)

d. Amount of free memory

f. Total available virtual

b. # of graphics engines

d. OpenGL support

f. Color depth supported

h. MPEGI/II encode assist

1. Rendering type(s) supported

I. True Color Rendering

n. Texture Cache

p. Anti-aliasing support

r. Texture Decompression

t. Mip-Mapping

v. Bump mapping

X. Texture lighting

Zz. Reflection support

4. Storage Support

b. Storage Type (fixed,
removable, etc.)

d. Freespace

f. Seek time

h. SMART capable

5. System
b.

k.

IT1.

%

A re e 0 PO

® .0 0 3

=

d.

Hotkey support

Password Protected Resume
from Suspend
APM/Hardware Doze mode
Suspend to DRAM mode
HDD, FDD and FDC
Power Down

Super [/O Chip Power
Down

CPU Type (brand)

SIMD instruction set
3DNow instruction set

Raw integer performance

CPU 1.1 data cache size

CPU L2 cache size
System bus
(MHz/GHz. ..) speed
supported

CPUID

Graphics type (brand)
Memory capacity

Direct3D/DirectX support
MPEG 1/II decode assist

OS support

Single-Pass Multitexturing
support

Triangle Setup Engine
Bilinear/Trilinear Filtering
Texture Compositing
Perspectively Correct
Texture Mapping
Z-buffering and Double-
bufiering support

Fog effects

Video texture support
Shadows support

Storage Type (brand)
Total storage capacity

Throughput speed
User dedicated space for

current

System Type (brand)

System form factor (desktop, portable, workstation, server, etc.)
6. Communications Support

MEMmory size

8. Operating System

b.

Version of operating system

9. System application software

b.

d.

Version of software

Health of software operation

d.

C.

Type of Connection (brand
of ISP)

Hardware device
capabilities

Latency of connection
Number of hops on
connection type

Dial-up only (ves/no)

Broadband connection type
(DSL/Sat./Cable/T1/Intra-
net/etc.)

Type of memory error con-
nection (none, ECC, etc.)
Amount of total memory

Current virtual memory size

Type of operating system
(brand)

Health of operating system
Type of software loaded
and/or operating on system
Software features

enabled/disabled

US RE42,153 E

11

FIG. 2B 1s a functional block diagram for capabilities
determination and scheduling operation 600 for workloads
in a distributed processing system according to the present
invention. Initially, various vectors are identified for which
capability information 1s desired in the “1dentily client sys-
tem capability vectors™ block 602. Following line 612, the
server systems 104 then capability balances workloads
among client systems 108, 110 and 112 based upon the capa-
bility vectors 1n the “capability scheduling workloads based
on vectors” block 604. Then the capabilities scheduled
workloads are sent to the client systems for processing in the

“send capability scheduled workloads™ block 606.

This capability scheduling and management based upon
system related vectors allows for efficient use of resources.
For example, utilizing the operating system or software
vectors, workloads may be scheduled or managed so that
desired hardware and software configurations are utilized.
This scheduling based upon software vectors may be helptul
because different solitware versions olten have different
capabilities. For example, various additional features and

services are included in MICROSOFT WINDOWS "98 as
compared with MICROSOFT WINDOWS °95. Any one of
these additional functions or services may be desired for a
particular workload that 1s to be hosted on a particular client
system device. Software and operating system vectors also
allow for customers to select a wide variety of soltware con-
figurations on which the customers may desire a particular
workload to be run. These varied software configurations
may be helptul, for example, where soltware testing 1s
desired. Thus, the distributed processing system of the
present invention may be utilized to test new soltware, data
files, Java programs or other software on a wide variety of
hardware platforms, software platforms and software ver-
sions. For example, a Java program may be tested on a wide
proliferation of JREs (Java Runtime Engines) associated
with a wide variety of operating systems and machine types,
such as personal computers, handheld devices, etc.

From the customer system perspective, the capability
management and the capability database, as well as informa-
tion concerming users of the distributed devices, provide a
vehicle through which a customer may select particular
hardware, soiftware, user or other configurations, in which
the customer 1s interested. In other words, utilizing the mas-
stvely parallel distributed processing system of the present
invention, a wide variety of selectable distributed device
attributes, including information concerning users of the dis-
tributed devices, may be provided to a customer with respect
to any project, advertising, or other information or activity a
customer may have to be processed or distributed.

For example, a customer may desire to advertise certain
goods or services to distributed devices that have certain
attributes, such as particular device capabilities or particular
characteristics for users of those distributed devices. Based
upon selected attributes, a set of distributed devices may be
identified for receipt of advertising messages. These mes-
sages may be displayed to a user of the distributed device
through a browser, the client agent, or any other software
that 1s executing either directly or remotely on the distrib-
uted device. Thus, a customer may target particular machine
specific device or user attributes for particular advertising
messages. For example, users with particular demographic
information may be targeted for particular advertisements.
As another example, the client agent running on client sys-
tems that are personal computers may determine systems
that are suffering from numerous page faults (1.e., through
tracking operating system health features such as the number
of page faults). High numbers of page faults are an 1ndica-

10

15

20

25

30

35

40

45

50

55

60

65

12

tion of low memory. Thus, memory manufacturers could
target such systems for memory upgrade banners or adver-
tisements.

Still further, 11 a customer desires to run a workload on
specific device types, specific hardware platforms, specific
operating systems, etc., the customer may then select these
features and thereby select a subset of the distributed client
systems on which to send a project workload. Such a project
would be, for example, 11 a customer wanted to run a first set

of stmulations on personal computers with AMD ATHLON
microprocessors and a second set of simulations on personal
computers with INTEL PENTIUM III microprocessors.
Alternatively, 1f a customer 1s not interested 1n particular
configurations for the project, the customer may simply
request any random number of distributed devices to process
its project workloads.

Customer pricing levels for distributed processing may
then be tied, 1f desired, to the level of specificity desired by a
particular customer. For example, a customer may contract
for a block of 10,000 random distributed devices for a base
amount. The customer may later decide for an additional or
different price to utilize one or more capability vectors 1n
selecting a number of devices for processing its project.
Further, a customer may request that a number of distributed
devices be dedicated solely to processing its project work-
loads. In short, once device attributes, including device capa-
bilities and user information, are identified, according to the
present invention, any number of customer offerings may be
made based upon the device attributes for the connected dis-
tributed devices. It 1s noted that to facilitate use of the device
capabilities and user information, capability vectors and user
information may be stored and organized in a database, as
discussed above.

Referring now to FIG. 3A, a block diagram depicts a dis-
tributed processing system 1200 that allows customers to
select client system attributes, such as device capabilities
and user characteristics, according to the present invention.
In this embodiment, the network 102 1s depicted as the Inter-
net to which server systems 104, customer 152A, customer
1528, and client systems 1202A, 1202B . . . 1202C are
connected. These systems are connected through communi-
cation links 114, 119A, 1198, 1204A, 12048 . . . 1204C,
respectively. As noted above, these communication links
may include any of a wide variety of devices and/or commu-
nication techniques for allowing a system to interface with
other connected systems.

As shown 1n FIG. 3 A, and as discussed above, the custom-

ers 152A and 152B may desire to send information or
projects, such as advertisements (ADV) 1206A and 12068

and/or projects (PROJ) 1208A and 1208B, to groups of cli-
ent systems that have particular or selected capabilities. The
number of different groups of client systems 1s as varied as
the capability and user data available for those client sys-
tems. The client systems 1202 A represent client systems that
include a first set (Set 1) of desired attributes. The client
systems 1202B represent client systems that include a sec-
ond set (Set 2) of desired attributes. And the client systems
1202C represent client systems that include a Nth set (Set N)
of desired attributes. Once attributes are selected, the client
systems with those attributes may be accessed as desired by
customers 152A and 152B. For example, customer 152A
may send 1ts advertisement to client systems 1202B. Cus-
tomer 152B may send its advertisement to client systems
1202A. The project 1208A from customer 152A may be
processed by client systems 1202C. And the project 1208B
from customer 152B may be processed by client systems
1202B. It 1s noted, therefore, that any combination of desired

US RE42,153 E

13

attributes, such as device capabilities and user
characteristics, may be 1dentified and utilized to satisiy cus-
tomer objectives, whether those objectives be advertising,
project processing, or some other desired objective.

FIG. 3B 1s a block flow diagram for client system attribute
selection, according to the present invention. In the embodi-
ment shown, process 1250 begins with the customer select-
ing desired attributes 1 block 1252. Next, client systems
with selected attributes are accessed 1n block 1254. And,

then 1n block 1256, the customer objective, such as advertis-
ing or project, 1s processed by the client system. Control of
this process 1250 may be provided by the server systems
104, it desired, such that the customer interfaces with the
server systems 104 to select device attributes and then the
servers systems 104 access the client systems. Alternatively,
the server systems 104 may simply provide the customer
with a list of contact information (e.g., IP addresses) for the
client systems, so that the customer may directly access the
client system, for example, 1n providing advertisements to
the users of the client systems. It 1s further noted that other
control techniques may also be used to 1dentity and access
client systems with particular desired device capabilities,
user characteristics, or other device attributes, according to
the client system attribute selection method of the present
ivention.

FIG. 4A 1s a block diagram for a distributed processing
system 100 according to the present ivention, including
example network sites 106 A and 1068 on which site testing
1s to be conducted, such as load testing and/or quality-oi-
service (QoS) testing. FI1G. 4A 1s similar to FIG. 1A except
that other systems 106 1n FIG. 1A has been represented in
the embodiment of FIG. 4A with network sites 106 A and
106B. Communication line 116 A between the network 102
and the network site 106 A represents a interaction by one
client system 108, 110 and 112. Communication lines 116B,
116C and 116D represent interactions by more than one cli-
ent system 108, 110 and 112.

Site testing 1s typically desired to determine how a site or
connected service performs under any desired set of test
circumstances. With the distributed processing system of the
present 1mvention, site performance testing may be con-
ducted using any number of real client systems 108, 110 and
112, rather than simulated activity that 1s currently available.
Several tests that are commonly desired are site load tests
and quality of service (QoS) tests. Quality of service (QoS)
testing refers to testing a user’s experience accessing a net-
work site under normal usability situations. Load testing
refers to testing what a particular network site’s infrastruc-
ture can handle 1n user mteractions. An extreme version of
load testing 1s a denial-of-service attack, where a system or
group of systems intentionally attempt to overload and shut-
down a network site. Advantageously, the current invention
will have actual systems testing network web sites, as
opposed to simulated tests for which others 1n the industry
are capable and which yield mmaccurate and approximate
results.

Network site 106B and the multiple interactions repre-
sented by communication lines 1168, 116C and 116D are
intended to represent a load testing environment. Network
site 106A and the single interaction 116 A 1s indicative of a
user 1nteraction or QoS testing environment. It 1s noted that
load testing, QoS testing and any other site testing may be
conducted with any number of iteractions from client sys-
tems desired, and the timing of those interactions may be
manipulated and controlled to achieve any desired testing
parameters. It 1s further noted that periodically new load and
breakdown statistics will be provided for capacity planning.

10

15

20

25

30

35

40

45

50

55

60

65

14

FIG. 4B 1s a functional block diagram for a site-testing
operation 700 according to the present invention. Initially,
client systems 108, 110 and 112 receive workloads that 1den-
tify testing procedures and parameters 1n the “clients receive
testing workload” block 702. Following line 714, the client
systems 108, 110 and 112 access the site being tested and

perform the testing in block “clients interact with other sys-
tems” block 704. Next, following lines 716 and 718, the
client systems 108, 110 and 112 complete the site testing
workload tasks, get the results ready for transmission, and
send those results back to the system server 104 1n “clients
complete testing workload” block 706 and “site testing
results sent to server system” block 708. Control passes
along line 720 to *“site testing results compiled for use” block
710 where the server system formats and/or compiles the
results for use by the network site. For example, the site
testing results may be utilized determining modifications
that need to be made to the network site to handle peak
volume activities.

FIGS. SA and 5B provide example details of a dynamic
coordination and control architecture for network site testing
and an associated example procedure. Projects for which the
present mvention 1s particularly useful, include projects,
such as network site testing, in which the customer may
desire the activities and processing of the client systems to
be scheduled, coordinated and controlled in time with
respect to each other and may desire dynamic changes to
these timing relationships during the test or project opera-
tions. For example, one such scheduled execution (schedex)
project could be a project request to process a single
workunit on a large number of clients in a particular time
range. This scheduled operation can also include dynamic
coordination and control of the client systems actively par-
ticipating 1n the project, including dynamically controlling
the number of active client systems during the project opera-
tion. The participating client systems can be cued 1n advance
by downloading the project task module and workunit files
for the task, and some client systems can be designated
on-hold 11 an increase in the number of active client systems
1s ultimately desired. In addition, i1 client systems are taken
out of active participation, these client systems can be added
to the pool of on-hold client systems that can be tapped it
increases 1n active clients systems are desired later 1n the
project operations. To control the activities of the client
systems, the client systems can be configured to communi-
cate with or poll the server systems at specified time inter-
vals to receive operational mstructions in poll response com-
munications from the server systems. In such a scheme,
there can be considered two basic types of scheduled execu-
tion requests:

Polling. Clients poll the server with a given frequency.
The server instructs them to start or stop running the
module and can provide other istructions as part of the
polling response communications. The number of cli-
ents running the module can be adjusted dynamically
during the life of the project.

Non-polling. All cued clients start running the module.
The start times can be based on a specified distribution
specified over a “startup period.” Examples of distribu-
tions that might be specified are umiform, random, Pois-
son. If the startup period has zero duration, the cued
clients are started simultaneously.

It 1s noted that more complicated schemes could be
implemented, 1f desired. It 1s also noted that although this
dynamic coordination and control architecture 1s particularly
usetul for 1 supporting website quality of service and load
testing, this architecture can more generally be utilized for
other projects, 11 desired.

US RE42,153 E

15

Looking first to FIG. 5A, an example embodiment 1s
depicted 1n which the server systems 104 include a poll
server 502 and a control server 504. In this embodiment, the
poll server 502 operates to off-load poll communication and
project coordination and control tasks from the control
server 504. As discussed above, the control server 504 can be
one or more server systems that perform the server functions
of the distributed processing system. The poll server 502 can
also be one or more server systems that perform the poll
communication and project coordination and control tasks.
The server systems 104, including poll server 302 and con-
trol server 504, also include a security interface 506 through
which the server systems 104 communicate with the client
systems as shown by communication link 114. These com-
munications include poll communications between the
server systems 104 and the clients systems that are sent and
received through the network 102. It 1s noted that as
depicted, the security interface 1s common to both the poll
server 302 and the control server 504; however, a security
interface could be included as a particular feature of each
server system, 1I desired. The particular security features
implemented can depend upon the desired level of security,
and the security features can be different for different types
of communications that are sent and received through the
security iterface 506.

As discussed above, the server systems 104 can be con-
nected to and configured to utilize a variety of databases, as
desired. These databases can also store information, as need,
that 1s related to the dynamic coordination and control of
tasks and results data. In the embodiment of FIG. 5A, one of
the databases 1s a separate, dedicated poll database 501 that
1s provided to store data usetul for poll communications and
coordination and control operations associated with the cli-
ent systems. And this poll database 501 can be configured to
communicate primarily with the poll server 502. These data-
bases also include a client system information database 5185,
a workload database 308 and a results database 510, each
coupled to the control server 504. The client system infor-
mation database 3515 includes a capabilities database 620, a
user information database 517 and a database 519 for any
other desired attribute of the distributed devices being used
as client systems of the distributed computing platform. As
also discussed above, this information can be utilized 1n the
processing ol a wide variety of projects and to organize,
manage, schedule and assign project operations among the
plurality of client devices that are part of the distributed
processing system, as well as 1n selecting the particular cli-
ent systems that are desired to participate 1n project activi-
ties. It 1s noted that the databases depicted 1n FI1G. SA are just
one example. Other databases could be provided, and the
organization of the of data stored in the databases and 1n
which database particular data 1s stored can be modified and
configured, as desired. It 1s also noted that although the data-
bases in FI1G. SA are shown to be connected to the poll server
502 or the control server 504, these connections could be
changed, and the databases could also be shared by the poll
server 502 and the control server 504, 11 such configurations
were deemed desirable. Still further, information from data-
bases connected to either the poll server 502 or the control
server 504 can be communicated to the other through the
communication link 503, along with any other desired inter-
actions between the server systems that make up the server
systems 104.

The poll server 502 1s provided to allow the control server
504 to off-load much of its management tasks for site testing
activities during operation of the tests on the participating
client systems. As shown in the example embodiment of

10

15

20

25

30

35

40

45

50

55

60

65

16

FIG. SA, the control server 504 can provide setup informa-
tion to the client systems through the security interface 506
and receive back the completed results of the network site
testing from the client systems. The control server 504 can
transier test processing information to the poll server 502
along commumnication link 503, which can also be used as
desired for other communications between the poll server
502 and the control server 504. In this way, the control server
504 can be viewed as providing dispatch services for the
dynamic coordination and control operations. The poll
server 502 can then operate to handle most, or 1f desired all,
ol the test operation needs of the client systems as they per-
form the scheduled execution tasks. As shown, the poll
server 502 communicates project control information to the
client systems through security interface 506 and receives
project related information back from the client systems. It 1s
noted that the functionality of the poll server 502 could be
combined with the functionality of the control server 504, 1f
desired. However, this combination may lead to reduced per-
formance and inefliciencies in the overall distributed com-
puting platform. It 1s also noted that final result data from the
client systems could be reported to the poll server 502 for
compilation, interpretation, report generation, analysis or
other desired processing, and the poll server 502 could then
provide the result data and/or the results of any processing of
this result data to the control server 504 or an any other
desired system or entity, such as, for example, to a project
developer or project coordinator through the control inter-
face 509.

The project information and project control information
can take any of a variety of forms depending upon the nature
of the project being run and the nature of the management
and scheduling control desired. For example, as part of the
initial project setup or control information provided to the
client systems, the client systems can be given poll
parameters, such as a poll period, a test start time and a test
end time. The poll period refers to information that deter-
mines when the client system will communicate with the
poll server 502. For example, the poll period information can
define a regular time interval, scheduled times or defined
times-at which the client systems communicate with the poll
server 502 to provide project information such as status of
the project on the client system, partial result data, local
clock mnformation, or any other desired project related data
or information, that may be utilized by the poll server 502 to
help manage and coordinate the project operations of the
various different client systems. I the poll period 1s zero, the
client system can simply run the project from its start time to
finish time without polling the poll server 502. The poll
server 502 can send back information such as clock synchro-
nization information, project instructions, poll period
changes, or any other desired instructions or information, as
desired to manage and coordinate the activities of the client
systems conducting the project processing.

A control intertace 509 can also be provided. The control
interface 509 allows someone formulating and running a
project to communicate through link 511 with the control
server 504 and the poll server 502. And the control interface
509 can provide a variety of functional controls and informa-
tion to a user of the interface, such as coordination tools,
project overview information, project processing status,
project snapshot information during project operations, or
other desired information and/or functional controls. For
example, with respect to a network site testing project, a
tester can use this itertace 509 to create the test scripts that
are included within the work units that are sent to client
systems participating in the test and could set and adjust the

US RE42,153 E

17

poll parameters that are to be used by each client system.
The control interface 509 1s also used over the duration of
the test to view dynamic snapshot information about the
current state of the test, including the load on the system, and
to use this information to modity test activities such as the
number of active clients participating 1n the test. The broken
line 507 represents a demarcation between the servers 502
and 054 and the mterface 509. It 1s noted that the interface
509 could take any of a variety of forms and that the inter-
face 509 can be remote or disconnected from the server sys-
tems 104 (which in FIG. 5A include poll server 502 and
control server 504). For example, the mterface 509 could be
a web interface that allows test parameters, test script infor-
mation and test operations to be created, implemented and
modified on the control server 504 and the poll server 502.
Procedures that may be accomplished with this interface 509
are Turther described below. It 1s also noted that a security
interface could be provided between the control interface
509 and the poll server 502 and control server 504, such that
the communications through link 511 would have to travel
through the security intertface. The functionality of this secu-
rity interface could be combined with the security interface
506, 1f desired.

FIG. 5B provides an example embodiment for poll proce-
dures 350 that could be utilized to provide coordination and
control of the client systems during processing operations
for network site testing projects running on the distributed
computing platform. Initially, 11 desired, the attributes of the
client systems that are to participate in the project can be
selected 1n block 551 by the customer, project developer or
project coordinator. The distributed device or client system
attributes, such as device capabilities and user
characteristics, can include a wide variety of attributes,
including such attributes as geographic location of the users
and their systems, client system device type (including
brand), operating system type (including brand), ISP
(including brand), TCP/IP routing paths used for Internet
communications, or any other capability, characteristic,
teature, component, quality or 1item of interest relating to the
distributed devices and their users. For example, with
respect to the ISP and routing information and a network site
testing project, 1t may be desirable to select client systems so
as to test various communication routing or packet routing
paths to the site under test. It 1s noted that the selection of
one or more groups of client systems based upon their
attributes 1s also discussed above. It 1s also noted that the
coordination and control of the project, as discussed below,
can be conducted utilizing this attribute information for
selection, coordination and control of the client systems to
be utilized for processing a desired distributed processing,
project.

Looking back to FIG. 5B, 1n block 552, the work units are
communicated to the client systems. In block 3554, initial
poll and test parameters for test operation are setup by being,
communicated to the client systems. These parameters can
include any of a wide variety of test operation, platiorm
operation and/or project related settings, including items
such as poll periods, test start times and test end times. Prior
to the mitiation of testing, these communications can also
occur between the client systems and the poll server 502
and/or the control server 504 to transier local and global
date/time/clock information so that the activities of the client
systems can be synchronized. Next, in block 336, the client
systems 1nitiate the site testing at the designated start times.
It 1s noted that the start times could be difierent for different
client systems. In block 558, the test programs operate on the
client systems to process the work units, thereby performing

10

15

20

25

30

35

40

45

50

55

60

65

18

the site testing project. It the poll period 1s set at zero for a
given client system, that systems continues to run the test
without polling the poll server 502. In decision block 560,
the client agent running the test project code determines 1
the test end time has been reached. In “NQO,” then the client
system continues to run the test. If “YES,” then the tests are
ended 1n block 566. Test results are then reported 1n block
568.

If the poll period 1s greater than zero, then the client agent
running the test project code will poll the poll server 502 at
periodic intervals. The poll communications that are
received from the client systems 1n block 562 can include a
wide variety of information, as desired. These client system
communications, for example, can provide information
about the current project operations of the client systems and
partial test results for the project. In response to the poll
communications from the client systems, the poll server 502
can modily test, load and poll parameters as desired in block
564 to manage, control and coordinate the test activities of

the client systems. In decision block 560, the determination
1s made whether the test end time has been reached. In
“NQO.” then the test continues in block 558. If “YES,” then
the test ends 1n block 566. Test results can then be reported,
for example, by being sent from the client systems to the
control server 504 for compilation and further processing, as
desired. The final results can be stored 1n a results database
510 and can be provided to the customer that requested or
sponsored the site testing project. It 1s noted that the “load”
parameter includes the load on the site under test (SUT), and
a change to the load could 1include increasing or decreasing
the number of client systems active in the test project. It 1s
also noted that the poll period can be relatively simple, such
as a regular time interval at which the client system commu-
nicates with the poll server 502. And the poll period could be
more complicated, such as a time 1nterval that changes based
upon some condition or criteria, or a communication that
occurs alter a certain event or events during the test
processing, such as each time a test routine 1s completed. In
other words, any of a variety of procedures or algorithms
could be utilized, as desired, to set the polling activity of the
client systems, and each client system could be set to have
unmque polling instructions.

FIG. 5B also includes blocks 561, in which dynamic snap-
shot information for the project can be provided, for
example, for review by a tester or project coordinator, and
block 563, in which desired modifications can be received.
These blocks 561 and 3563, for example, may represent
operations that mnvolve interactions with a tester or project
coordinator through the control interface 509 of FIG. 5A, as
discussed above. The poll communications recerved 1n block
562 are used to form the dynamic snapshot information of
current test operations and that 1s usable by a project coordi-
nator to determine what modifications, 1t any, the project
coordinator desires to be made through the poll response to
the client systems 1n block 564. With respect to a site testing
project, for example, the snapshot information can include
current test results and load information for the site under
test (SUT). This snapshot information can then be reviewed
by the tester to determine if any adjustments are desired,
such as changing the SUT load by adding or removing client
systems that are actively participating 1n the test operations.
In other words, the tester can view the dynamic snapshot
information, which 1n part characterizes the current load on
the test system, and use 1t to dynamically alter the load on
the SUT by increasing or decreasing the number of active
clients via a control interface 509. In addition, 1f desired,
controls could be put in place to automatically modify the

US RE42,153 E

19

test, load and/or poll parameters depending upon the snap-
shot shot information or other poll communication informa-
tion. It 1s also noted that information from the SUT itself can
be received by the server systems and provided, as part of the
dynamic snapshot information 1n block 561, such that in-test
data form the SUT itself can be reviewed by a tester or
project coordinator.

As stated above, 1n one example operation, a goal of the
poll server 502 and control server 504 1s to coordinate a
multitude of clients interconnected over the Internet (or
other unbounded network) to conduct a project such as load
testing a web site. Some advantageous features of this design
are the ability to select clients for the load test based on
client characteristics, capabilities, components and
attributes, and the ability to dynamically alter the number of
active clients actively participating in the test. This 1s an
improvement on the prior techniques where the client sys-
tems were typically simulated on a small number of test
machines, leading to less accurate results. Other coordinated
applications that can use this method of control include mea-
suring the quality of service ((QoS) of a site under test.

As shown 1 FIG. 5A, the components of the poll server
architecture can include the set of remote network-
connected clients 108, 110 . . . 112, a dispatch or control
server 504 which schedules work to client machines, and a
poll server 502 that handles periodic communications from
client machines. In this poll server architecture, the follow-
ing example procedure steps can be used as part of the poll
procedures 350 and associated network site load test
operations, as discussed above.

1. Dynamic coordination and control of a load test 1s 1niti-
ated by sending a create command to the server with
information about the time, duration, size and type of
the test. The following parameters are specified:

a. Start and end time of the test. The start time 1s usually
specified at some time 1n the future.

b. Test script to be run by each client. The scripts can be
identical or can be randomized to represent the
behavior of several web users.

c. Specification of number and mix of clients desired.
The mix of clients can be based on client geography,
machine type, or bandwidth.

d. Initial number of clients to run

2. The server attempts to cue clients for the load test based
on the specified mix. All cued clients are sent the fol-
lowing 1information:

a. Start and end time of the test

b. Test script to be run

c. Poll interval, the interval between successive times
when the client contacts (polls) the poll server.

3. A control interface or web console 509 1s used by the
person or developer conducting the test to set param-
cters for the test and view dynamic statistics as the test
Progresses.

4. After the requested or required number of clients has
been cued, the test 1s ready to begin. At the specified
start time, all cued clients contact the poll server for
instructions. The poll server 502 tracks the state of each
client and 1s able to estimate the total number of clients
available, and the number of clients currently running
the test script.

5. The target number of running clients can be modified
dynamically during the test. A typical usage would be
to start the test with a small number of running clients,
and then gradually increase the number of running
clients, thus increasing the load on the web site. The

10

15

20

25

30

35

40

45

50

55

60

65

20

poll server attempts to adjust the number of running
clients to match the target. If the target 1s increased, the
poll server would instruct additional clients to join 1n
the test. To stop the test, the target number of runming
clients 1s set to zero. The polling mechanism also
allows the system to recover from client failures during
a test. In this case, the poll server can detect a client
failure and activate another client to take its place 1n the
test.

6. The client passes dynamic results to the poll server
during each poll. The dynamic statistics include
throughput, hits per second and errors found. These
statistics are combined to give a snapshot view of the
current performance of the web site under test. This
snapshot information can be used by the tester to
modily the test parameters (number of active clients,
poll interval, etc.) or even to stop the test 1f the desired
load level has been reached.

7. Upon completion of the test, all participating clients
send back detailed statistics from the test, which are
aggregated and presented to the person conducting the
test.

This coordinated testing architecture could be used for
other network site testing operations. For example, it can be
used for quality of server (QoS) testing, where the typical
goal 1s to be able to measure response times at Internet con-
nected desktops 1n order to gauge the user experience when
browsing a website (e.g., the site under test (SUT)). The
number of active clients selected for QoS testing 1s typically
much smaller than the number for load testing, but the
selected active clients are typically spread across the net-
work (e.g., geographically, and by ISP). Fach client periodi-
cally runs a project workload script making HI'TP com-
mands to one or more websites and measures the response
times from each. These summarized results are returned to
the poll server 502 which aggregates results across all active
clients and generates reports for each website being tested.
The active clients 1n this case typically do not, by
themselves, add significant load to the SUT. The load on the
SUT 1s the normal load generated by browsing on the Inter-
net. The active clients are merely providing performance
measurement data at a wide variety ol points across the
Internet, and their results tend to provide a true reflection of
what a person browsing on his desktop would see when
interacting with the SUT. For example, QoS testing can
identily performance bottlenecks over time by geography,
ISP, machine type, system type or related other possible fac-
tors. For example, a website might be able to determine that
response times at night to machines within a major ISP are
much longer than the mean response time.

There are a number of advantageous that are provided by
the poll server architecture of the present mvention. For
example, where the network 1s the Internet, 1t 1s expected
that the set of clients on the Internet are non-dedicated
resources. Thus, there 1s desirably a mechanism to keep
track of the current state of each client system. This task 1s
difficult to accomplish 1n an efficient and reasonable manner
by the dispatch or control server alone, which 1s also respon-
sible for scheduling distributed computing work to all other
clients 1n the distributed computing network. One method
for getting the state of a client machine 1s to have a listening
port on the client, which 1s queried by the server to get status
information. In other words, istead of the polling by the
client system to the poll server as indicated above, the poll
server could initiate contact to each client system. However,
due to the reluctance of information technology managers,
individual PC owners, and others who control client systems

US RE42,153 E

21

to have open ports on their machines, the alternative where
the client system periodically communicates with the poll
server to sends summary status information and to receive
test instructions 1s likely a method that 1s more widely
acceptable. It 1s noted that the poll server 502 and the
dispatch/control server 504 can each be one or more server
systems that operate to perform desired functions in the
dynamic coordination and control architecture. It 1s also
again noted that the poll server 502 and control server 504
could be combined 1f desired into a single server system or
set of systems that handles both roles. However, this would
likely lead to a more 1netficient operation of the overall dis-
tributed processing system.

As discussed above, a poll server 502 can be used to ofl-
load the polling connections from the main server 504. (The
poll requests can be short, unencrypted, unauthenticated,
single-turnaround requests from the client agent running on
cach client system.) Without the separate poll server, there
are communication requirements that would likely reduce
the performance of the distributed computing platform, for
example, the number of database queries that can be handled
at a given time and the number of connected client systems
at a given time. This architecture of the present invention
helps to improve performance by offloading the work of
handling agent poll requests to another server. It 1s noted,
however, that the present invention could still be utilized
without offloading the polling functions, 11 this were desired.
In general, the polling server 502 can be designed to open a
single connection to a database to retrieve mformation about
active schedex records. Periodically, the poll server 502 can
use this database connection to refresh and update current
running count information. On each agent poll request, the
poll server 502 uses data structures in memory to determine
whether the client system should start, stop, or terminate.

The client systems can make the polling connection to the
server using TCP. However, UDP could be utilized to reduce
the overhead inherent in TCP connection establishment. IT
the agent has a proxy configured, however, then UDP will

ikely not work. Otherwise, UDP could be tried, and 1f no
response were received, TCP could be used as a fall back
communication protocol. When the agent recetves a new
schedex record, one of the attributes can be the address of a
polling server where the client will send poll requests. If this
1s not specified, the agent can fall back to using the main
server address. It 1s noted, however, that 1n the latter case a
different port would preferably be utilized on the main
server, because the polling server function 1s best viewed as
a separate process from the main server function.

In a more-generalized environment, where the server sys-
tems include multiple dispatch servers, each responsible for
a different set of project applications, the poll server could
have a broader function of tracking outstanding messages for
delivery to clients the next time they contact the poll server.
Periodic polling by a client systems can improve the respon-
stveness of the system. For example, 11 the person conduct-
ing the test stops a project currently running on the distrib-
uted computing system, the poll server can obtain a list of all
client systems processing work on behalf of the project and
its workloads and can instruct these client systems to stop
the currently executing workload and return to the dispatch
server to get a new piece of work. In addition, high priority
jobs entering the system can be immediately serviced by
having the poll server draft clients from a client system
resource pool by 1ssuing a preempt call to the client at the
next poll. This preempt call would preempt all pending work
being done by the client system and would start operation of
the high priority job on the selected client systems.

10

15

20

25

30

35

40

45

50

55

60

65

22
EXAMPLE IMPLEMENTATION DETAILS

-

Io further describe the dynamic coordination and control
architecture of the present invention (referred to below 1n
relation to a scheduled execution (schedex) project),
example polling procedures, poll communications, 1nitial-
1zation parameters, test parameters, management, coordina-
tion and control procedures and associated function calls are
now discussed.

A scheduled execution (schedex) project can also have
associated with 1t a variety of polling and related test param-
cters. For example, the following attributes can be provided:

poll__period__sec—How {frequently (in seconds) clients
should poll the server while they are runming. This
determines how long until control actions take effect
(see below). Zero for a non-polling execution.

IDs—task and workunit IDs
startup__start_ time—The beginning of the startup period.

-

startup__end_ time—The end of the startup period
(defined only for a non-polling execution).

end_ time—The end of the execution period. Any clients
still running at this time will be gracefully terminated.

nhosts_ cue—How many hosts to cue. NOTE: the server
attempts to choose hosts that are likely to be running
during the execution period, but not all of them actually
will be. So the maximum number of running hosts may
be less than this.

nrunning__target—how many hosts should run the mod-
ule (defined only for a polling execution).

state—The example states are “being edited”, “activated”,
“running”’, and “completed”.

A scheduled execution project can further define client
type quotas for the number of cued client systems possessing
particular attribute values. The attribute types can include
any of a variety of client capabilities, attributes and compo-
nents as discussed above, for example, with respect to per-
sonal computers, the attributes can include geographic loca-
tion such as country, device operating system, and
downstream bandwidth. The client system type quotas can
be used to limit the client systems to which the server sys-
tems distribute the scheduled execution project. For each
quota, the server system can maintain a counter of the num-
ber of client systems with that attribute that have been cued
so far to participate 1n the particular scheduled execution
project. Client systems can be considered 1n a non-
deterministic order. For each client system, the UD server
checks whether the counters for the client systems particular
attributes are less than the corresponding quotas. If so, the
scheduled execution project 1s cued on that client system.
These selection parameters can be used to accomplish vari-
ous goals. Some examples are provided below.

For example, suppose that the number of client systems
(or hosts) to cue 1s 1000, such that nhosts_ cue=1000.

If the tester wants at least 50% of the hosts to be from
Canada, the following could be used:

<attr__type="“country”, value=*Canada”, quota=1000=

<attr__type="“country”, value="*"", quota=500>

If you want exactly 50% each from Canada and Poland,
use

<attr__type="country”, value=*Canada”, quota=500>

<attr__type="“country”, value=*Poland”, quota=300>

<attr__type="“country”’, value="*"", 0>

If, 1n addition, you want only Windows computers, use

<attr__type="“country”, value=*Canada”, quota=500>

<attr__type="“country”, value=*Poland”, quota=500>
<attr__type="“country”, value="*"", quota=0>

US RE42,153 E

23

<attr__type="08", value="W1in95”, quota=1000>

<attr__type="“0S", value="Win98”, quota=1000=

<attr__type="“0S", value="W1inN'1", quota=1000>
<attr__type="“0S", value="*", quota=0>

It 1s noted that the above parameter system may not able to
express some requirements, such as a requirement that at
least 25% of the clients are from one country and at least
25% are from another. However, 1f desired, additional execu-
tion parameters could be added to provide such capability. It
1s also noted that client system type quotas discussed above
may be designed such that they affect the set of hosts on
which the scheduled execution project 1s cued and not the
hosts on which the project actually runs. For example, client
systems could be chosen to run the scheduled execution
project essentially randomly, so the properties of the set of
running hosts will generally approximate those of the set of
cued hosts; however, they may not match exactly. There may
be exceptions, for example, 1f the scheduled execution
project 1s scheduled at a time when most hosts in Poland are
turned off, the fraction of running Polish hosts may be
smaller than desired.

The control or console interface 509, which can be an
Internet web 1nterface, can be configured to allow a variety
of tasks, including (1) create, edit and activate a scheduled
execution project, (2) to control a scheduled execution
project while 1t 1s running by viewing and adjusting the num-
ber of clients running the scheduled execution project (if
polling by client systems 1s implement, these adjustments
will likely have a certain lag time associated with the poll
period until they go 1nto effect), and (3) to mark a scheduled
execution project as “completed” to stop operation on all
running clients. Alternatively, the same operations are avail-
able as HI'TP RPCs (Remote Procedure Calls).

The scheduled execution architecture of the present inven-
tion lends 1tself to a variety 1 implementations. Example
implementation and operation details are provided below
with respect to function calls and operations that may be
utilized to realize the present invention.

Create a schedex

<schedex_ create>

<task name="fo0”/>

<schedex_ name value="{00"/>

<phase value="“1"/>

<wuld value="23"/>

<startup__start_ time value="*123456"/>

<startup_ end_ time value="*12345"/>

<end_ time value="12345"/>

<poll__period value="44"/>

<nhosts_ cue value="123"/>

<quota attr__type="country” value="Poland” quota="100""/>
<quota attr__type="country” value="United States™ quota="100"/>
<quota attr__type="country” value="Any” quota="100"/>
<quota attr_ type="08"" value="Win95” quota="100"/>
<quota attr__type="08"" value="WinNT” quota="100""/>
<quota attr_ type="08"" value="Macintosh quota="100""/>
<quota attr__type="downstream__bandwidth” value="0__30000"

quota="100"/>

<quota attr__type="downstream__bandwidth” value="30000__100000”

quota="“100"/>
<quota attr_type="downstream__bandwidth” value=*100000_"
quota="“100"/>

</create_ schedex>

It 1s noted that this 1s an example operation to creates and
activate a scheduled execution project for a given task.
Times are given in seconds. The return value “status™ 1is
“OK” 11 the operation succeeded, else a description of the
eITor.

10

15

20

25

30

35

40

45

50

55

60

65

24

Set number of running clients

<schedex nhosts set>»
<task name="100""/>
<schedex name=""100”"/>
<nhosts value="55"/>
</schedex nhosts set>

It 1s noted that this operation requests a change 1n the num-
ber of clients running the scheduled execution project. If
client system polling 1s utilized, 1t will typically take up to
“poll__period” seconds for this target to be reached. If the
number 1s increased, additional clients (cued but not yet
running) are started. If the number 1s decreased, the applica-
tion 1s gracefully terminated on some hosts, creating a result
file on each host. If the application 1s later started on the host,
additional result files will be created.

Terminate a schedex

<schedex_ terminate>
<task name="fo0”’/>
<schedex name="fo0”"/>
</schedex_terminate>

It 1s noted that the scheduled execution project 1s gracetfully
terminated on all hosts. In this example, no further opera-
tions on the scheduled execution project are allowed. The
transier of result files to the server systems 1s started.

Get schedex status

Request:
<schedex__ status>
<task name="fo0”"/>
<schedex name="foo”/>
</schedex__ status>
Reply:
<schedex__ status>
<status value="0OK”/>
<nhosts cued value="*234"/>
<nhosts_ running value="234"/>
<nhosts__available value="234"/>
</schedex__ status>

It 1s noted that this operation returns the number of client
cued to run the scheduled execution project, the number cur-
rently running 1t, and the number of clients available to run 1t
(1.e. that are actively polling the server). The latter two num-
bers arc defined only for a scheduled execution project
where client system polling 1s utilized
Scheduled Execution (Schedex) Protocol

Regular (<request>) RPCs can include the following item

in both requests and replies.

<schedex>
1d=n
taskid=n
wlid=n
startup_ start time=n
startup_ end_ time=n
end_ time=n
</schedex>

The client tells the server what schedex workloads are
currently cued. The server gives the client new schedex
workloads to cue.

US RE42,153 E

25

Clients with a cued, active polling schedex periodically
make the following RPC:

request:

<schedex_ poll_ request>
schedexid=n
hostid=n
running=n

</schedex_ poll_ request>

reply:

<schedex_ poll__reply>

- <schedex__start> |

- <schedex__stop> |

- «schedex__terminate> |

</schedex_ poll_ reply>

It 1s noted that <schedex_ stop/> tells the client to stop a
running schedex, <schedex__ start/> tells the client to start a
cued schedex, and <schedex_ terminate/> says to stop a
schedex 11 running and delete 1t.
Database

The schedex table, 1n addition to the schedex attributes,
can 1nclude the following:

struct SCHEDEX {

int ncued; // how many hosts are cued
int nrunning_ target; // how many hosts we want to be running };

The schedex host table stores hosts on which the sche-
dex 1s cued.

struct SCHEDEX HOST {
int hostid;
int schedexid;
double poll__deadline; // if don’t get a poll RPC before this
time,
// assume host is not running

int 1s__running; // whether host is running app module };

(It 1s noted that the number of running clients can be
found by counting the number of records with “running” set.
The schedex — quota table stores quoas:

struct SCHEDEX HOST {
int 1d;
int schedexid;
int attr_type;
char value| 64]
int quota;
int ncued;

Server

The server maintains in-memory copies of the schedex
and schedex_quota tables.

GLOBALS::check_schedex(CLIENT__CONN&cc)

When the server handles a <request> RPC, and there 1s a
schedex with ncued <nhosts_ cue, and the host 1s of eligible
type and not barred by user preferences from runmng the
schedex, and doesn’t already have an overlapping schedex,
and no quotas are exceeded, the server sends the host that
schedex. It the schedex is polling, it creates a schedex_ host
record. It updates and reloads the schedex and schedex__
quota entries.

10

15

20

25

30

35

40

45

50

55

60

65

26
CLIENT__CONN::handle_ schedex_ poll()

When a <schedex_ poll__request> RPC 1s received, the
server looks up the schedex_ host record. If not found it
returns a <schedex__terminate> (this should never happen).
If the client 1s running this module, and number of running
hosts 1s more than nrunning target, the server returns a
<schedex_ stop> and clears the running field in the
schedex_ host record. Similarly, i1f the client 1s not running,
this module and the number of running hosts 1s less than
nrunning__target, the server returns a <schedex__start> and

sets the running field 1n the schedex host record. In any
case 1t updates the “last poll time™ field 1n the DB.

GLOBALS::schedex_ timer()

Each server periodically enumerates all server_ host
records with the “running” flag set and “poll deadline”
<now—poll period, and clears the “runming” flag. When a
schedex end_ time 1s reached each server changes the state
to “ended” and clears the “running” flag of all schedex__host
records. It 1s noted that 1n principle the above tasks can be
accomplished by one server, but it may be better for all serv-
ers to do them.

Client

The client stores a list of pending schedex workloads 1n
memory and 1n the core state file. It also may have variables,
such as:

int schedex__active;

int schedex_ polling;

SCHEDEX active__schedex;

int schedex_ running;

double schedex_ timer;
// 11 polling: when to send next RPC
// 1f nonpolling: when to start

When a polling schedex becomes active, the client sets the
polling timer randomly in the interval [now . . , now+
polling_ period].

INSTANCE::schedex_ timer func()

The client maintains a polling timer for each active poll-
ing schedex. When this reaches zero, 1t sends a poll RPC. If
the schedex remains active, 1t resets the timer. When a non-
polling schedex becomes active, the client picks a start time
randomly 1n the startup period. When the end time of a sche-
dex 1s reached, the client stops 1t (if running) and removes 1t
from the data structure. If no other cued schedex references
the same workunit, 1t removes the workunit.

Data Structures

The polling server maintains a list of “active” schedex
records and the current number of hosts running that schedex
task:

struct SchedexPollInfo {

SCHEDEX schedex;

int running_hosts; // this should he moved nto the database SCHEDEX
record

SchedexHostList *host list;

I

This list 1s indexed by schedex identification. Schedex
records will be added and removed infrequently, but there
will be one lookup on this table per poll request.

The SchedexHostList 1s a list of hosts that are currently
running the schedex task. The list consists of records con-
taining the following information:

US RE42,153 E

27

struct SchedexHostInfo {
int hostid;
time_ t poll_ deadline;
bool i1s__ running;

1

This list 1s indexed by host 1dentification. Hosts will be
added once during the lifetime of the schedex task, and
removed en masse at the end of the schedex. There will be
one lookup on this table per poll request.

Poll Requests

Each poll request contains the following information:
Schedex 1d

Host 1d

Agent’s 1s_ running tlag

Each poll response can contain zero or one of the follow-
ing commands:

<schedex_ start>—-tells the agent to start running the
schedex task.

<schedex__stop>—-tells the agent to stop running the
schedex task, but continue to poll.

<schedex__terminate>—tells the agent to stop running the
schedex task, remove the schedex record, and no longer
poll.
Operation
On each poll request, the server performs the following

sequence of operations:

Look up schedex id in list of schedexes.
If not found then
Look up schedex record 1n database
If not found then
Return <schedex terminate> command
End if
Add schedex record to list of schedexes
Set the running hosts to O
End if
If the current time 1s past the schedex end time then
Return <schedex_ terminate> command
End if
Look up the host id in the list of hosts for this schedex
If not found then
// see note below about validating host 1d
Add host record to host list
Set 1s__running to the agent’s is__running
End if
Update the poll__deadline to the current time plus the grace period
multiplier (2 or 3) tumes the poll__period
If agent 1s_ running != our is__running then
Set our 1s__running flag to the same as the agent 1s__running
Adjust out running hosts count up or down one as necessary
End if
If not 1s_ running and running hosts < nrunning_target then
Set our 1s__running true
Increment running hosts
Return <schedex_ start>
Else if 1s_ running and running hosts > nrunning target then
Set our 1s__running false
Decrement running_ hosts
Return <schedex_ stop>
End if
Return empty response

An invariant after this operation 1s that the runming count
for the schedex should match the number of host records
where the 1s__running flag is set.

The poll server also runs a background process that peri-
odically performs (every 10 seconds or perhaps more often)
the following operations:

5

10

15

20

25

30

35

40

45

50

55

60

65

28

For each schedex in the schedex list

Read the schedex record from the database to obtain the current

nrunning_ target

If the current time is past the schedex end time
Remove the entire schedex host line
Else
For each host in the schedex host list
If the current time is past the poll__deadline then
Set 1s__running to false
Decrement running hosts
End if
End for

End if
Update the running hosts in the database schedex record

End for

If the schedex poll server crashes, recovery i1s performed
by loading all the schedex records from the database
where the current time 1s greater than or equal to the
start time, but less than the end time. These records will
contain the running hosts count from the last periodic
update. This procedure should happen every time the
server 1s started, so there 1s no need to detect whether
the previous run of the server crashed or not.

Further modifications and alternative embodiments of this

invention will be apparent to those skilled in the art 1n view
of this description. It will be recognized, therefore, that the
present mvention 1s not limited by these example arrange-
ments. Accordingly, this description i1s to be construed as
illustrative only and 1s for the purpose of teaching those
skilled 1n the art the manner of carrying out the invention. It
1s to be understood that the forms of the invention herein
shown and described are to be taken as the presently pre-
ferred embodiments. Various changes may be made 1n the
implementations and architectures for database processing.
For example, equivalent elements may be substituted for

t
t

hose 1llustrated and described herein, and certain features of
e invention may be utilized independently of the use of

other features, all as would be apparent to one skilled in the
art alfter having the benefit of this description of the mven-
tion.

What 1s claimed 1s:
1. A method of providing dynamic coordination of distrib-

uted client systems in a distributed computing platform,
comprising;

providing at least one server system coupled to a network;

providing a plurality of network-connected distributed cli-
ent systems, the client systems having under-utilized
capabilities and running a client agent program to pro-
vide workload processing for at least one project of a
distributed computing platiorm:;

utilizing the server system to distribute workloads for the
at least one project to the client systems and to distrib-
ute 1itial project and poll parameters to the client sys-
tems;

receving poll communications from the client systems
during processing of project workloads by the client
systems, wherein a dynamic snapshot information of
current project status 1s provided based at least 1n part
upon the poll communications;

analyzing the poll communications to determine whether
or not to make one or more modification to the initial
project and poll parameters, wherein the modifications
to the initial project and poll parameters utilize the
dynamic snapshot information to determine whether to
change how many client systems are active in the at

US RE42,153 E

29

least one project, and 1 a fewer number 1s desired,
including within a polling response communications a
reduction 1n the number of actively participating
clients, and 11 a greater number 1s desired, adding client
systems to active participation in the at least one
project;

sending the poll response communications to the client

systems to modily the initial project and poll param-
cters depending upon one or more decisions reached 1n
the analyzing step; and

repeating the receiving, analyzing and sending steps to

dynamically coordinate project activities of the plural-
ity of client systems during project operations.

2. The method of claim 1, wherein the 1imitial project and
poll parameters comprise a poll period setting for each client
system that determines when the client system will poll the
Server system.

3. The method of claim 2, wherein the poll period setting
for a plurality of the client systems are the same.

4. The method of claim 1, whereir in the poll communica-
tions ifrom the client systems comprise current project status
information.

5. The method of claim 1, wherein the client systems par-
ticipating in [a] tke at least one project are assigned as active
client systems and on-hold client systems, such that the
active client systems actively process the project workloads
and the on-hold client systems form an on-hold pool of client
systems that are capable of being added to active participa-
tion.

6. The method of claim 5, wherein the client systems
added to active participation 1n the at least one project are
selected from the on-hold pool, and wherein client systems
removed from active participation in the at least one project
are added to the on-hold pool.

7. The method of claim 1, wherein the network comprises
the Internet.

8. The method of claim 1, wherein the at least one project
comprises network site testing and the dynamic snapshot
information comprises current load on a network site under
test (SUT).

9. The method of claim 1, wherein the at least one server
[ststem] system comprises at least one control server and
least one poll server system, the poll server system operating
to handle the poll communication with the client systems.

10. The method of claim 1, wherein the at least one
project comprises network site testing.

11. The method of claim 10, wherein the site testing 1s
quality of service testing, or load testing, or and demal of
service testing [to], arnd wherein site testing is applied to
testing content delivery from a network site.

12. The method of claim 10, wherein the 1nitial test and
poll parameters comprise a test start time, test slop time and
poll period information.

13. The method of claim 1, further comprising identifying
attributes for the client systems, storing the attributes 1n a
database, and utilizing the attributes to select the client sys-
tems for participation in the at least one project.

14. The method of claim 13, wherein the attributes com-
prise device capabilities for the client systems.

15. The method of claim 13, wherein the network com-
prises the Internet, wherein the at least one project com-
prises network site testing, and wherein the attributes com-
prise geographic location of the client system, type of device
for the client systems or operating used by the client sys-
tems.

16. The method claim 13, wherein the network comprises
the Internet, wherein the at least one project comprises net-

10

15

20

25

30

35

40

45

50

55

60

65

30

work site testing, and wherein the attributes comprise ISP
information (Internet Service Provider) for the client sys-
tems [or], arnd routing information to a site under test for the
client systems.

17. The method of claim 1, wherein one of the at least one
projects comprises network site testing, and wherein the
method further [comprising] comprises transferring a core
agent module and a site testing project module to the client
system, the site testing project module being capable of
operating on the core agent module to process site testing
workloads.

18. A distributed computing platform having dynamic
coordination capabilities for distributed client systems pro-

cessing project workloads, comprising;

a plurality of network-connected distributed client
systems, the client systems having under-utilized capa-
bilities;

a client agent program configured to run on the client
systems and to provide workload processing for at least
one project of a distributed computing platform; and

at least one server system configured to communicate
with the plurality of client systems through a network
to provide the client agent program to the client
systems, to send 1nitial project and poll parameters to
the client systems, to recerve poll communications from
the client systems during processing of the project
workloads, wherein a dynamic snapshot information of
current project status 1s provided based at least 1n part
upon the poll communications from the client systems,
to analyze the poll communications utilizing the
dynamic snapshot information to determine whether to
change how many client systems are active in the at
least one project, wherein if a fewer number 1s desired,
including within a poll response communications a
reduction 1n the number of actively participating
clients, and 11 a greater number 1s desired, adding client
systems to active participation in the at least one
project within a poll response communications, the
server system repeatedly utilizing the poll communica-
tions and the poll response communications to coordi-
nate project activities of the client systems during
project operations.

19. The distributed computing platform of claim 18,
wherein the 1nitial project and poll parameters comprise a
poll period setting that determines when the client system
will poll the server system.

20. The distributed computing platform of claim 19,
wherein the poll period settings for a plurality of the client
systems are the same.

21. The distributed computing platform of claim 18,
wherein the poll communications from each client comprise
identification, project status information and current poll
period setting information.

22. The distributed computing platform of claim 18, fur-
ther comprising a poll database configured to store poll
related information about each client system.

23. The distributed computing platform of claim 22,
wherein the at least one server system comprises at least one
control server and at least one poll server system, the poll
server system being coupled to the poll database and being
configured to handle the poll operations of the client sys-
tems.

24. The distributed computing platform of claim 23,
wherein one of the at least one projects comprises a network
site testing project.

25. The distributed computing platform of claim 24,
wherein the client agent program comprises a core agent

US RE42,153 E

31

module and a site testing project module, the site testing
project module being capable of operating on the core agent
module to process site testing workloads.

26. The distributed computing platform of claim 24,
wherein the initial project and poll [information] parameters
comprises a test start time, a test stop time and poll period
information.

27. The distributed computing platform of claim 23, fur-
ther comprising a control interface configured to [communi-
cation] communicate with the server system, the control
interface allowing coordination of the client system partici-
pating 1n the network site testing project.

28. The distributed computing platform of claim 27,
wherein the poll server 1s configured to provide dynamic
snapshot information through the control mterface and to
receive modifications to the [network testing] initial project
and poll parameters for ongoing project operations.

29. The distributed computing platform of claim 28,
wherein the modifications are configured to include modifi-
cations to how many client systems are active 1n the network
site testing project.

30. The distributed computing platform of claim 29,
wherein the client systems participating in [a] the at least
one project are assigned as active client systems and on-hold
client systems, such that the active client systems actively
process the project workloads and the on-hold client systems
form an on-hold pool of client systems that are capable of
being added to active participation.

31. The distributed computing platform of claim 18, fur-
ther comprising an attributes database coupled to the server
system, the database configured to store attributes of the
client systems.

32. The distributed computing platform of claim 31, the
server system further configured to allow selection of the
client systems for project participation based upon 1dentifi-
cation of desired client system attributes.

33. The distributed computing platform of claim 32,
wherein the attributes comprise device capabilities for the
client systems.

34. In a server system communicatively coupled to a net-
work via a communication interface, a method of providing
dyvramic coordination of distributed client systems, the

method comprising:

distributing via the communication interface workloads
for at least one project, and initial project and poll
parameters, to each of a plurality of client systems that

is communicatively connected to the network, each of

the plurality of client systems running a client agent
program to provide workload processing for the at least
one project;

receiving via the communication interface poll communi-
cations from the plurality of client systems during pro-
cessing of project workloads by the plurality of client
systems, the poll communications providing at least
part of a dynamic snapshot information of current
project status,

analyzing the poll communications to determine whether
oF not to make one or more modifications to the initial
project and poll parvameters, wherein the modifications
to the initial project and poll pavameters utilize the
dynamic snapshot information to determine whether to
change how many client systems are active in the at
least one project, and if a fewer number is desired,
including within a polling vesponse communications a
reduction in the number of actively participating
clients, and if a greater number is desived, adding client
systems to active participation in the at least one
project;

10

15

20

25

30

35

40

45

50

55

60

65

32

transmitting via the communication interface the poll
response communications to the plurality of client sys-
tems to modify the initial project and poll parameters
depending upon one or more decisions veached in the
analyzing step; and

repeating the receiving, analyzing and transmitting steps

to dynamically coovdinate project activities of the plu-
rality of client systems during project operations.

35. The method of claim 34, wherein the initial project
and poll parameters comprise a poll period setting for each
client system that determines when the client system of the
plurality of client systems will poll the server system.

36. The method of claim 35, wherein the poll period set-
ting for the plurality of the client systems are the same.

37. The method of claim 34, where in the poll communica-
tions from the plurality of client systems comprise curvent
project status information.

38. The method of claim 34, wherein the client systems
participating in at least one project are assigned as active
client systems and on-hold client systems, such that the
active client systems actively process the project workioads
and the on-hold client systems form an on-hold pool of client
svstems that are capable of being added to active participa-
tion.

39. The method of claim 38, wherein the client systems
added to active participation in the at least one project are
selected from the on-hold pool, and wherein client systems
removed from active participation in the at least one project
are added to the on-hold pool.

40. The method of claim 34, wherein the network com-
prises the Internet.

41. The method of claim 34, wherein the at least one
project comprises network site testing and the dynamic
snapshot information comprises current load on a network
site under test (SUT).

42. The method of claim 34, wherein receiving via the
communication interface poll communications from the plu-
rality of client systems comprises veceiving poll communica-
tions at a poll server system of the server system,

and whevrein transmitting via the communication interface
the poll response communications to the plurality of
client systems comprises sending the poll response
communications from the poll server system of the
server system.

43. The method of claim 34, wherein the at least one
project comprises network site testing,.

44. The method of claim 43, wherein the site testing is one
of quality of service testing, load testing, and denial of ser-
vice testing, and wherein the site testing is applied to testing
content delivery from a network site.

45. The method of claim 43, wherein the initial test and
poll parameters comprise a test start time, test stop time and
poll period information.

46. The method of claim 34, further comprising identify-
ing attrvibutes for the plurality of client systems, storing the
attributes in a database, and utilizing the attributes to select
the client systems for participation in the at least one
project.

47. The method of claim 46, wherein the attributes com-
prise device capabilities for the plurality of client systems.

48. The method of claim 46, wherein the network com-
prises the Internet, whervein the at least one project com-
prises network site testing, and wherein the attrvibutes
include at least one of: geographic locations of the plurality
of client systems, type of device for each of the plurality of
client systems, and operating system used by each of the
plurality of client systems.

US RE42,153 E

33

49. The method claim 46, wherein the network comprises
the Internet, whevein the at least one project comprises net-
work site testing, and wherein the attributes include at least
one of ISP information (Internet Service Provider) for the
plurality client systems, and routing information to a site
under test for the plurality client systems.

50. The method of claim 34, wherein one of the at least
one project comprises network site testing, and wherein the
method further comprises transferring a cove agent module
and a site testing project module to the plurality of client

systems, the site testing project module being capable of o

operating on the corve agent module to process site testing
workloads.
51. A server system comprising a network interface, the
server configured to:
distribute to each of a plurality of client systems via the
network interface workloads for a project that is con-
figured to be carried out by a client agent program
executing on each of the plurality of client systems;

transmit to each of the plurality of client systems via the
network interface initial project and poll parvameters
applicable to workload processing of the project by the
client agent program;

receive via the network interface poll communications

indicative of ongoing workload processing of the
project by the client agent program executing the each
of the plurality client systems, wherein the poll commu-
nications provides at least a partial basis for a dynamic
snapshot information of current project status;

analyze the poll communications utilizing the dynamic

snapshot information to make a determination of
whether to change a curvent number of client systems
that ave active in the project,

transmit via the network interface a poll response

communications, wherein the poll response communi-
cations include a veduction in the curvent number if the
determination is to rveduce the curvent number of client
systems that arve active in the project, and the poll
response communications include an increase in the
currvent number if the determination is to increase the
curvent number of client systems that are active in the
project;

repeatedly utilize the poll communications and the poll

response communications to coovdinate project activi-
ties of the client systems during project operations.

52. The server system of claim 51, wherein the initial
project and poll parameters comprise a poll period setting
that determines when the plurality of client systems will poll
the server system.

53. The server system of claim 52, wherein the poll period
settings for the plurality of the client systems ave the same.

54. The server system of claim 51, wherein the poll com-
munications comprise identification, project status informa-
tion and current poll period setting information.

55. The server system of claim 51, further comprising a
poll database configured to stove poll related information
about each of the plurality of client systems.

56. The server system of claim 55, further comprising at
least one control server and at least one poll server system,
the poll server system being coupled to the poll database and
being configured to handle poll operations rvelating to the
plurality of client systems.

57. The server system of claim 56, wherein the project
comprises a network site testing project.

58. The server system of claim 57, wherein the initial
project and poll parameters comprises a test start time, a test
stop time and poll period information.

15

20

25

30

35

40

45

50

55

60

34

59. The server system of claim 56, further comprising a
control interface configured for coordination of a client sys-
tem participating in the network site testing project.

60. The server system of claim 59, wherein the poll server
is configured to provide dynamic snapshot information
through the control interface and to receive modifications to
the initial project and poll parameters for ongoing project
operations.

61. The server system of claim 60, wherein the modifica-
tions are configured to include modifications to how many
client systems are active in the network site testing project.

62. The server system of claim 61, wherein the plurality of
client systems participating in the project are assigned as
active client systems and on-hold client systems, such that
the active client systems actively process the project work-
load and the on-hold client systems form an on-hold pool of
client systems that are capable of being added to active par-
ticipation.

63. The server system of claim 51, further comprising an
attributes database, the database configured to store
attributes of the plurality of client systems.

64. The server system of claim 63, further configured to
allow selection of the plurality of client systems for project
participation based upon identification of desived client sys-
tem attributes.

65. The server system of claim 64, wherein the attributes
comprise device capabilities for the plurality of client sys-
fems.

66. A tangible computer-readable medium having stoved
thereon computer-executable instructions that, if executed

by a server system, cause the server system to perform a
method comprising:

distributing workloads for at least one project, and initial
project and poll parameters, to each of a plurality of
client systems, each of the plurality of client systems
running a client agent program to provide workioad
processing for the at least one project;

receiving poll communications from the plurality of client
systems during processing of project workloads by the
plurality of client systems, the poll communications
providing at least part of a dvnamic snapshot informa-
tion of current project status;

analyzing the poll communications to determine whether
or not to make one or more modifications to the initial
project and poll parameters, wherein the modifications
to the initial project and poll parameters utilize the
dynamic snapshot information to determine whether to
change how many client systems are active in the at
least one project, and if a fewer number is desired,
including within a polling response communications a
reduction in the number of actively participating
clients, and if a greater number is desived, adding client
systems to active participation in the at least one
project;

transmitting the poll response communications to the plu-
rality of client systems to modify the initial project and
poll parameters depending upon one or more decisions
reached in the analyzing step; and

repeating the receiving, analyzing and transmitting steps
to dynamically coovdinate project activities of the plu-
rality of client systems during project operations.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : RE42,153 E Page 1 of 2
APPLICATION NO. . 12/462600

DATED . February 15, 2011

INVENTOR(S) : Hubbard et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

el le

Title page, item (56), under “Other Publications™, in Column 2, Line 1, delete “Wisdon,”™ and

Insert -- Wisdom,” --.

Page 3, item (56), under “Other Publications”, in Column 2, Line 33, delete “Projet™ and
insert -- Project --.

Page 4, item (56), under “Other Publications”, in Column 1, Line 27, delete “.asp>on” and
msert -- .aspx> on --.

Page 4, item (56), under “Other Publications”, in Column 2, Line 11, delete “world™ and
msert -- World --.

Page 4, item (56), under “Other Publications”, in Column 2, Line 22, delete “10/68,210,” and
nsert -- 10/687.210, --.

Page 4, item (56), under “Other Publications”, in Column 2, Line 24, delete “09/834785 and
nsert -- 09/834.785 --.

Page 4, item (56), under “Other Publications”, in Column 2, Line 28, delete “final” and
Insert -- Final --.

Column 1, line 14, delete “abandoned’ and insert -- abandoned and --.

Column 29, line 20, in Claim 4, before “the poll” delete “in™.

Column 29, line 49, in Claim 11, delete “testing [to],” and insert -- testing, [to] --.

Column 29, line 52, in Claim 12, delete “slop™ and 1nsert -- stop --.

Signed and Sealed this

Thartieth Day of August, 2011

David J. Kappos
Director of the United States Patent and Trademark Office

CERTIFICATE OF CORRECTION (continued) Page 2 of 2
U.S. Pat. No. RE42,153 E

Column 29, line 66, 1n Claim 16, delete “method™ and insert -- method of --.

Column 30, lines 2-3, in Claim 16, delete “systems [or],”” and insert -- systems, [or] --.

Column 32, line 15, in Claim 36, delete “where in” and insert -- wherein --.
Column 33, line 1, 1n Claim 49, delete “method” and insert -- method of --.

Column 34, line 30, in Claim 66, delete “tangible” and insert -- non-transitory --.

USOORE42153C1

12 EX PARTE REEXAMINATION CERTIFICATE (12132nd)

United States Patent

US RE42,153 C1

(10) Number:

Hubbard et al. 45) Certificate Issued: Sep. 6, 2022
(54) DYNAMIC COORDINATION AND CONTROL (51) Imt. Cl.
OF NETWORK CONNECTED DEVICES FOR HO4L 43/50 (2022.01)
LARGE-SCALE NETWORK SITE TESTING GO6F 11/36 (2006.01)
AND ASSOCTIATED ARCHITECTURES (52) U.S. CL.
CPC HO4L 43/50 (2013.01); GO6F 11/3672
(71) Applicants: Edward A. Hubbard, Round Rock, TX (2013.01)

(US); Krishnamurthy Venkatramani,
Austin, TX (US); David P. Anderson,

Berkeley, CA (US); Ashok K. Adiga,
Austin, TX (US); Greg D. Hewgill,
Christchurh (NZ); Jeff A. Lawson,
Austin, TX (US)

(72) Inventors: Edward A. Hubbard, Round Rock, TX

(US); Krishnamurthy Venkatramani,
Austin, TX (US); David P. Anderson,

Berkeley, CA (US); Ashok K. Adiga,
Austin, TX (US); Greg D. Hewgill,
Christchurh (NZ); Jeff A. Lawson,
Austin, TX (US)

(73) Assignee: INTELLECTUAL VENTURES II
LLC, Wilmington, DE (US)

Reexamination Request:
No. 90/019,052, Dec. 29, 2021

Reexamination Certificate for:

Patent No.: Re. 42,153
Issued: Feb. 15, 2011
Appl. No.: 12/462.600
Filed: Aug. 6, 2009

Certificate of Correction 1ssued Aug. 30, 2011
Related U.S. Patent Documents

Reissue of:

(64) Patent No.: 7,254,607
Issued: Aug. 7, 2007
Appl. No.: 10/186,266
Filed: Jun. 27, 2002

Related U.S. Application Data

(63) Continuation-in-part of application No. 09/834,783,
filed on Apr. 13, 2001, now Pat. No. 8,275,827, and

(38) Field of Classification Search
None
See application file for complete search history.

(56) References Cited

To view the complete listing of prior art documents cited
during the proceeding for Reexamination Control Number

90/019,052, please refer to the USPTO’s Patent Electronic
System.

Primary Examiner — Eric B. Kiss

(57) ABSTRACT

Dynamic coordination and control of network connected
devices within a distributed processing platiorm 1s disclosed
for large-scale network site testing, or for other distributed
projects. For network site testing, the distributed processing
system utilizes a plurality of client devices which are
running a client agent program associated with the distrib-
uted computing platform and which are runming potentially
distinct project modules for the testing of network sites or
other projects. The participating client devices can be

selected based upon their attributes and can receive test
workloads from the distributed processing server systems. In
addition, the client devices can send and receive poll com-
munications that may be used during processing of the
project to control, manage and coordinate the project activi-
ties of the distributed devices. If desired, a separate poll
server system can be dedicated to handling the poll com-
munication and coordination and control operations with the
participating distributed devices during test operations,
thereby allowing other server tasks to be handled by other
distributed processing server systems. Once the tests are
complete, the results can be communicated from the client
devices to the server systems and can be reported, as desired.
Additionally, the distributed processing system can i1dentify
the attributes, including device capabilities, of distributed

(Continued) (Continued)
100
op | CUSTOMER —152)~ 104
CIEnT SYSTEMS | SERVER
SYSTEM | 118 1S 02 SYSTEMS
“ CLIENT SYSTEM
120 CAPABILITIES 124
gf;'SET'éL) NET WORK P
INCENTIVES (26
Sz 1e¢ . -
| CLIENT ' HE SN
-. 106
SYSTEM SYSTEMS

US RE42,153 C1
Page 2

devices connected together through a wide variety of com-
munication systems and networks and utilize those attributes
to organize, manage and distribute project workloads to the
distributed devices.

Related U.S. Application Data

a continuation-in-part of application No. 09/794,969,
filed on Feb. 27, 2001, now abandoned, and a con-
tinuation-in-part of application No. 09/648,832, filed
on Aug. 25, 2000, now Pat. No. 6,847,995, and a
continuation-in-part of application No. 09/603,740,
filed on Jun. 23, 2000, now abandoned, and a con-
tinuation-in-part of application No. 09/602,983, filed
on Jun. 23, 2000, now Pat. No. 6,963,897, and a
continuation-in-part ol application No. 09/539,106,
filed on Mar. 30, 2000, now Pat. No. 6,891,802, and
a continuation-in-part of application No. 09/539,448,
filed on Mar. 30, 2000, now abandoned, and a con-
tinuation-n-part of application No. 09/539,428, filed
on Mar. 30, 2000, now abandoned.

(60) Provisional application No. 60/368,871, filed on Mar.
29, 2002.

US RE42,153 C1
1

EX PARTE
REEXAMINATION CERTIFICATE

NO AMENDMENTS HAVE BEEN MADE TO 5

TH.

5, PATENT

AS A RESULT OF REEXAMINATION, I'T HAS BEEN

DETERMINED THATI:

The patentability of claims 1-4, 7, 18-20 and 51 1s

confirmed.

10

Claims 5-6, 8-17, 21-50 and 52-66 were not reexamined.

¥ H H ¥ ¥

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages
	Reexam Certificate

