(19) United States

a2 Reissued Patent
Tompkins et al.

USOORE42092E

10) Patent Number: US RE42.092 E
45) Date of Reissued Patent: Feb. 1, 2011

(54)

(76)

(21)
(22)

INTEGRATED CIRCUIT THAT PROCESSES
COMMUNICATION PACKETS WITH A
BUFFER MANAGEMENT ENGINE HAVING A
POINTER CACHE

Inventors: Joseph B. Tompkins, 12 Longmeadow
Rd., Westborough, MA (US) 01581;
Daniel J. Lussier, 10 Hamess La.,
Holliston, MA (US) 01746; Wilson P.
Snyder, 11, 127 White Pond Rd.,
Hudson, MA (US) 01749

Appl. No.: 12/122,625
Filed: May 16, 2008

Related U.S. Patent Documents

Reissue of:

(64)

Patent No.: 7,046,686
Issued: May 16, 2006
Appl. No.: 09/640,260
Filed: Aug. 16, 2000

U.S. Applications:

(60)

(1)

(52)
(58)

(56)

Provisional application No. 60/149,376, filed on Aug. 17,
1999,

Int. Cl.

HO41 12728 (2006.01)

Go6l 13/00 (2006.01)

US.CL i, 370/412; 710/22; 711/100
Field of Classification Search None

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

5,151,895 A 9/1992 Vacon et al.

5,493,652 A * 2/1996 Koufopavlou etal. 711/170
5,606,559 A 2/1997 Badger et al.

5,689,707 A 11/1997 Donnelly

5,748,630 A 5/1998 Bergantino et al.

5,818,830 A * 10/1998 Daaneetal. 370/347

5,822,618 A ™ 10/1998 FEcclesineocvuvueen..n. 710/57

5,920,561 A 7/1999 Daniel et al.

5,978,898 A 11/1999 Hathaway et al.

6,046,983 A 4/2000 Hasegawa et al.

6,061,351 A 5/2000 Ermmlietal. 370/390

6,088,777 A * 7/2000 Sorberc...coviviiinnnnn. 711/171

6,175,902 Bl 1/2001 Runaldue et al.

6,246,682 Bl * 6/2001 Royetal. 370/390

6,324,623 Bl * 11/2001 Careycccovvvvvevninnnnn. 711/148

6,341,325 B2 1/2002 Franaszek et al.

6,401,147 B1 * 6/2002 Sangetal. 710/56

6,457,112 B2 9/2002 Hostetter

6,487,212 Bl * 11/2002 Erimlietal. 370/413

6,504,846 Bl * 1/2003 Yuetal. ...coovvvvninnnnn. 370/412

6,523,060 Bl 2/2003 Kao

6,526,499 B2 2/2003 Palanca et al.

6,539,024 Bl * 3/2003 Janoskaetal. 370/412

6,601,089 Bl 7/2003 Sistare et al.

6,621,792 B1 * 9/2003 Petty ..ccovvvinininininnn. 370/230.1
2002/0004894 Al 1/2002 Hostetter 711/170
2003/0037096 Al * 2/2003 Kao .ovovviviiiiiiiniinninnnnn. 709/202

FOREIGN PATENT DOCUMENTS
EP 0710046 A2 1/1996
EP 0710046 5/1996

* cited by examiner

Primary Examiner—Gregory B Sefcheck
(74) Attorney, Agent, or Firm—Perkins Coie LLP

(57) ABSTRACT

An mtegrated circuit processes communication packets and
comprises a pointer cache and control logic. The pointer
cache store pointers that correspond to external buffers that
are external to the integrated circuit and configured to store
the communication packets. The control logic allocates the
external butilers as the corresponding pointers are read from
the pointer cache and de-allocates the external butfers as the
corresponding pointers are written back to the pointer cache.

06 Claims, 9 Drawing Sheets

TQ CORE PROCESSOR 104

e

]

NEXT ENTRY |

-

l'

ARBITER 31

e————

} PRIORITY !

[——, ‘
e

R R T

QUEUES | ENTRIES| ENTRIES| ENTRIES | ENTAIES | ENTRIES

| 83

—] |

-]
CONTEXT
RESOLUTION '
t | "~ DATA ' ' '

1 BUFFERS | PACKET | PACKET | PACKET ! PACKET | PACKET

117

|
; 'I"_|

; Eg%ﬁfsr 'rcomrexr‘comexr‘ ! | | |
TO RECEIVE | CONTEXT'CONTEXT'CONTEXT' | |
INTERFAGE 106, CONTROL s | f L |
SCHEDULER 105, 4— -t I ! TO TRANSMIT
AND CORE) P | K -
PROCESSOR104 | 311 ——{— =] INTERFACE 108
DATA DMA Iccmmm
CO-PROCESSOR o T
CIRCUITRY 21 J 318 |
wz T

TO MEMORY INTERFACE 108

US RE42,092 E

Sheet 1 0of 9

Feb. 1, 2011

U.S. Patent

00!
LINOHIO
03 IVHDILN;

ONISSIO0Hd
13M0Yd

801
JOVHI NI
LINSNWYL

SOl

£0l

AHOWIN

501
JOVAHILN!
AJOWA

et

01

d31NA3HOS

00

90}

- AYLINDHID
HOSS300Hd S

————

¥01

d0SS3004d
3400

T

£ O

US RE42,092 E

|
|
|
|
| o
HSMA
1 1X3INOD
B
2 | :
-
| _ ¢
2 | .
— .
7 |
|
| SN
- LX3INOS
~
gl
~
=
P
.4

13

U.S. Patent

¢ Ol

HOL13d

T AINN

JLIY A “

ALHO/Md

N3N0
A0

HOL34

* 1X3LINOD

HO134
1X31INOD
¢ JOVIS

IX3LNOD

_ ONIHS -
LX3LNCD
G4 JOYLS

NOILYINddY
JHYML30S
p# JOVLS

=13N0
d0dd
t# 3OVIS

NOILNIOS3Y

1 DaNoy | 14S3nD3d

R

| . |

P |

— &

_ .

| >4 .
NOILMOSIY (e —
IX2UINOD 153N03Y

|
|
|
|
|

I#

NOILNTOS3Y
LX31NGO

NOILNI0S3Y
IX3INOD
H# 3DVIS

S il AN deeeeesr Sy,

€3
A\
S £ Ol 801 IOVALILNI AHOWIN OL
m A
s |
— Gl1€ Z1E
ﬁé_o LX3INOD s,a ke w
801 IDVHHILIN
FINSNYHL 01 q

&N I w | _ [| _ .n...-l—...w
= LX3INOD LXIINCO, LX3INCD, IX3INOD, IXAINOD, $H3d3Nn8
en - ; 1XIINOD
= . 4
E !
7

; | i i \ \ .m.lmnm.“

) LIHOVd | L3KOV | 1IN0V | 13¥OWd | LINOV] |, SH3H4N8
- vYiIvQ
—
&
P
=
9 ——
= eLe

.
 STHINZ, SIHIND, SHHINT , STHING | SIING | sanano
ALIHOMd

e

gie HliEHY

T

AYINT IX3N

pOL HOSS30CE4 3400 QL

U.S. Patent

ABLINDHID
80853004400

| @..Mlm.“. |

NOILNIOS3Y |

_ 1X3INCD ‘

r0} BOSS3004d
3500 OGNV

G0} I INGIHIS
90} JOV-YIINI
JAI303H OL

U.S. Patent Feb. 1, 2011 Sheet 4 of 9 US RE42,092 E

FIG. 4

STORE PACKET IN DATA
BUFFER AND CORRELATE TO

CHANNEL DESCRIPTOR.

4

YALID
YES ~CHANNEL DESCRIPTOR ™SO
IN A CONTEXT

BUFFER
?

ASSOCIATE DATA BUFFER WITH RETRIEVE CHANNEL DESCRIPTOR
CONTEXT BUFFER. INCREMENT AND STORE IN CONTEXT BUFFER.

IN-USE COUNT ASSOCIATE DATA BUFFER WITH
CONTEXT BUFFER. SET IN-USE
COUNT TO ONE. SET VALIDITY BIT.

—

TRANSFER PACKET FROM DATA
BUFFER DECREMENT
IN-USE COUNT.

ey il

IN-USE COUNT
=0
[

YES

TRANSFER CHANNEL
DESCRIPTOR TO MEMORY.
CLEAR VALIDITY BIT.

END

US RE42,092 E

Sheet S of 9

Feb. 1, 2011

U.S. Patent

925 WVHAS
82G

SH344M8
TYNH3LX3

bl

0cS
INION INWIOVNYI H34dn8
¢es CE £2S

30V4LIINI 1907 JHOVD

HYHQS TOHINGD | H3LNIOd
I
. I
_

801

JOVIHIIN]
LINSNYHL

AHONIA

.0t
AdLINQHIO

80SS3004Hd
00

-

les

V443N
WVHS

——

POl

H0S5300Hd
350D

601

SOV4H3IN

AHONIN

g OIS

U.S. Patent Feb. 1, 2011 Sheet 6 of 9 US RE42,092 E

; A EXCL. 3
3 A | SHARED
1501-2000| A | EXCL 5
2001-2500 | A EXCL. 5
_ A SHARED
A STATIC --
_ A STATIC -
10 3 EXCL
11 3 SHARED -
2 . EXCL.
B | EXcL 14
8 | sHameD | -

US RE42,092 E

L

GE/
|
|

r

WY IX3LNOD

]

Tl

Sheet 7 0of 9

10071
TO8INOD

Feb. 1, 2011

U.S. Patent

IIEEIIEEHE |

c€L quvogd

e i

Z Ol

GvL
Yol BbL-EvL

wmm.

%74

AT

US RE42,092 E

Sheet 8 0f 9

Feb. 1, 2011

U.S. Patent

098

| b# ALIHOIHd 12574
0 E# ALIHOIHd €6/
¢# ALIHOIHJ A

L# ALIHOIHd 1GL

Q0Id3d INIL

18/ Quvod
She. vv. 9. evi v/

US RE42,092 E

Sheet 9 of 9

Feb. 1, 2011

U.S. Patent

e e F o aaaaan
R TR TEE R]

6 Ol

v# ALIHOIHd
e# ALIHOIEa

c# ALIHOIdd

L# ALIHOIHd

Q0Id3d JNILL

1SZ QHYO8

US RE42,092 E

1

INTEGRATED CIRCUIT THAT PROCESSES
COMMUNICATION PACKETS WITH A
BUFFER MANAGEMENT ENGINE HAVING A
POINTER CACHE

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

[RELATED CASES]

[This application is related to U.S. provisional patent
application 60/149,3776, entitled “HIGH SPEED COMMUI-

NICATIONS PROCESSING DEVICE FOR INTERNET
PROTOCOL, ASYNCHRONOUS TRANSFER MODE,
FRAME RELAY, AND SONET COMMUNICATIONS”,
filed on Aug. 17, 1999, and which 1s hereby incorporated by
reference.]

CROSS-REFERENCE 10 RELATED
APPLICATIONS

This patent application is a reissue application for U.S.
Pat. No. 7,046,656, issued from U.S. patent application Ser.
No. 09/640,260, filed on Aug. 16, 2000, which is related to
U.S. Provisional Patent Application 60/149,376 entitled
“HIGH SPEED COMMUNICATIONS PROCESSING
DEVICE FOR INTERNET PROTOCOL, ASYNCHRONQOUS
TRANSFER MODE, FRAME RELAY AND SONET
COMMUNICATIONS”, filed Aug. 17, 1999, and which is

incorporated by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The 1nvention 1s related to the field of communications,
and 1n particular, to integrated circuits that process commu-
nication packets.

2. Statement of the Problem

Communications systems transier information in packet
streams. The packets 1n the streams each contain a header
and a payload. The header contains control information,
such as addressing or channel information, that indicate how
the packet should be handled. The payload contains the
information that 1s being transferred. Some packets are bro-
ken into segments for processing. The term “packet” 1s
intended to include packet segments. Some examples of
packets include, Asynchronous Transfer Mode (ATM) cells,
Internet Protocol (IP) packets, frame relay packets, Ethernet
packets, or some other packet-like information block.

An itegrated circuit known as a stream processor has
been developed recently to address the special needs of
packet communication networking. Traffic stream proces-
sors are designed to apply robust functionality to extremely
high-speed packet streams. This dual design requirement 1s
often in conflict because the high-speeds limit the level of

functionality that can be applied to the packet stream.

Robust functionality 1s critical with today’s diverse but
converging communication systems. Stream processors
must handle multiple protocols and interwork between
streams of different protocols. Stream processors must also
ensure that quality-of-service constraints are met with
respect to bandwidth and priority. Each stream should
receive the bandwidth allocation and priority that 1s defined
in corresponding service level agreements. This functional-

ity must be applied differently to different streams—
possibly thousands of different streams.

10

15

20

25

30

35

40

45

50

55

60

65

2

To provide such functionality, a RISC-based core proces-
sor was developed with 1ts own network-orented 1nstruction
set. The instruction set 1s designed to accomplish common
networking tasks in the fewest cycles. The core processor
executes software applications built from the nstruction set
to apply the robust functionality to high-speed packet
streams.

The buffers that store the communication packets exter-
nally to the stream processor integrated circuit are segre-
gated mto multiple classes. To avoid fragmentation where
packets undesirably cross external buffer boundaries, each
external builer 1s sized to hold a single packet. In high-speed
systems, this requires thousands of external buflers that are
separated into several different classes.

To store a packet 1n an external memory, the core proces-
sor must first allocate a external buffer 1n the memory. In
addition to allocation, the core processor must manage
butfer conditions, such as butt

er exhaustion. This builer
allocation and management consumes bandwidth between
the stream processor and the external memory. These tasks
are dramatically increased when they are applied differently
across multiple butier classes. Given the high-speeds of the
packet streams, these tasks place a heavy burden on the core
processor and expend critical processing capacity. They also
consume significant bandwidth that may require additional
pins or silicon.

SUMMARY OF THE SOLUTION

The mvention helps solve the above problems with an
integrated circuit that performs as a traflic stream processor.
The mtegrated circuit has a buffer management engine that
relieves the core processor of significant external buifer
management. The buflfer management engine also reduces
the bandwidth between the integrated circuit and external
memory that 1s required for bulfer management.
Advantageously, the buifer management engine allows the
use of relatively small packet-sized external buffers if
desired.

The integrated circuit processes communication packets
and comprises a pointer cache and control logic. The pointer
cache store pointers that correspond to external builers that
are external to the integrated circuit and configured to store
the communication packets. The control logic allocates the
external bullers as the corresponding pointers are read from
the pointer cache and de-allocates the external buffers as the
corresponding pointers are written back to the pointer cache.

In some examples of the invention, the control logic tracks
the number of the pointers to the de-allocated external budil-
ers. The control logic may transfer additional pointers to the
pointer cache 1f the number of the pointers to the
de-allocated builers reaches a minimum threshold. The con-
trol logic may transfer an exhaustion signal 1f the number of
the pointers to the de-allocated butlers reaches a minimum
threshold. The control logic may transfer an excess portion
of the pointers from the pointer cache 1f the number of the
pointers to the de-allocated buffers reaches a maximum

threshold.

In some examples of the mvention, the external buffers
and the pointers to the external buil

ers are distributed among
a plurality of classes or pools. The control logic may track
the number of the pointers to the de-allocated external budil-
ers for at least one of the classes. The control logic may track
the number of the pointers to the allocated external builers
for at least one of the classes. The control logic may borrow
at least some of the pointers from a first one of the classes for
use by a second one of the classes. The control logic may

US RE42,092 E

3

re-distribute at least some of the pointers from a {first one of
the classes to a second one of the classes. The control logic
may transier an exhaustion signal 11 the number of the point-
ers to the de-allocated buifers 1n one of the classes reaches a
mimmum threshold. The control logic may track the number
of pointers distributed to one of the classes. A class may be
associated with only constant bit rate packets, available bit
rate packets, variable bit rate packets, or unspecified bit rate
packets.

DESCRIPTION OF THE DRAWINGS

The same reference number represents the same element
on all drawings.

FIG. 1 1s a block diagram that illustrates a packet process-
ing integrated circuit 1n an example of the mvention.

FIG. 2 1s a block diagram that 1llustrates packet process-
ing stages and pipe-lining 1n an example of the invention.

FIG. 3 1s a block diagram that illustrates co-processor
circuitry 1n an example of the mvention.

FIG. 4 1s a tlow diagram that 1llustrates buifer correlation
and 1n-use counts 1n an example of the mvention.

[

CI' INANdZC-

FIG. § 1s a block diagram that 1llustrates bu
ment circuitry 1n an example of the mvention.

FIG. 6 1s a table that illustrates buffter classes in an
example of the invention.

FIG. 7 1s a block diagram that illustrates scheduler cir-
cuitry 1 an example of the invention.

FIG. 8 1s block diagram that 1llustrates a scheduling board
in an example of the invention.

FI1G. 9 1s block diagram that 1llustrates a scheduling board
in an example of the invention.

DETAILED DESCRIPTION OF THE INVENTION

Packet Processing Integrated Circuit—FIG. 1

FIG. 1 depicts a specific example of an integrated circuit
in accord with the present invention. Those skilled in the art
will appreciate numerous variations from this example that
do not depart from the scope of the invention. Those skilled
in the art will also appreciate that various features could be
combined to form multiple variations of the invention. Those
skilled 1n the art will appreciate that some conventional
aspects of FIG. 1 have been simplified or omitted for clarity.
Various aspects ol packet processing integrated circuits are
discussed in U.S. Pat. No. 5,748,630, entitled “ASYN-
CHRONOUS TRANSFER MOD* CJLL PROCESSING
WITH LOAD MULTIPLE INSTRUCTION AND
MEMORY WRITE-BACK?”, filed May 9, 1996, and which
1s hereby incorporated by reference 1nto this application.

FIG. 1 1s a block diagram that 1llustrates packet process-
ing integrated circuit 100 1 an example of the vention.
Integrated circuit 100 comprises core processor 104, sched-
uler 105, receive interface 106, co-processor circuitry 107,
transmit interface 108, and memory interface 109. These
components may be interconnected through a memory
crossbar or some other type of internal interface. Receive
interface 106 1s coupled to communication system 101.
Transmit mterface 108 1s coupled to communication system
102. Memory interface 1s coupled to memory 103.

Communication system 101 could be any device that sup-
plies communication packets with one example being the
switching fabric in an Asynchronous Transier Mode (ATM)
switch. Communication system 101 could be any device that
receives communication packets with one example being the
physical line interface i the ATM switch. Memory 103
could be any memory device with one example being Ran-

10

15

20

25

30

35

40

45

50

55

60

65

4

dom Access Memory (RAM) mtegrated circuits. Recerve
interface 106 could be any circuitry configured to recerve
packets with some examples imcluding UTOPIA interfaces
or Peripheral Component Interconnect (PCI) interfaces.
Transmit interface 108 could be any circuitry configured to
transier packets with some examples including UTOPIA
interfaces or PCI interfaces.

Core processor 104 1s a micro-processor that executes net-
working application software. Core-processor 104 supports
an 1nstruction set that has been tuned for networking
operations—especially context switching. In some examples
ol the 1invention, core processor 104 has the following char-
acteristics: 132 MHz, pipelined single-cycle operation,
RISC-based design, 32-bit mnstruction and register set, 4K
instruction cache, 8 KB zero-latency scratchpad memory,
interrupt/trap/halt support, and C compiler readiness.

Scheduler 105 comprises circuitry configured to schedule
and 1nitiate packet processing that typically results 1n packet
transmissions from integrated circuit 100, although sched-
uler 105 may also schedule and initiate other activities.
Scheduler 105 schedules upcoming events, and as time
passes, selects scheduled events for processing and
re-schedules unprocessed events. Scheduler 105 transiers
processing requests for selected events to co-processor cir-
cuitry 107. Scheduler 105 can handle multiple independent
schedules to provide prioritized scheduling across multiple
traffic streams. To provide scheduling, scheduler 105 may
execute a guaranteed cell rate algorithm to implement a
leaky bucket or a token bucket scheduling system. The guar-
anteed cell rate algorithm 1s implemented through a cache
that holds algorithm parameters. Scheduler 105 1s described
in detail with respect to FIGS. 7-9.

Co-processor circuitry 107 recerves communication pack-
ets from receive interface 106 and memory interface 109 and
stores the packets 1n internal data butlers. Co-processor cir-
cuitry 107 correlates each packet to context information
describing how the packet should be handled. Co- -processor
circuitry 107 stores the correlated context imnformation in
internal context buffers and associates individual data buil-
ers with individual context buifers to maintain the correla-
tion between individual packets and context information.
Importantly, co-processor circuitry 107 ensures that only
one copy of the correlated context information 1s present the
context buffers to maintain coherency. Multiple data buffers
are associated with a single context buifer to maintain the
correlation between the multiple packets and the single copy
the context information.

Co-processor circuitry 107 also determines a prioritized
processing order for core processor 104. The prioritized pro-
cessing order controls the sequence 1n which core processor
104 handles the communication packets. The prioritized pro-
cessing order 1s typically based on the availability of all of
the resources and information that are required by core pro-
cessor 104 to process a given communication packet.
Resource state bits are set when resources become available,
s0 co-processor circuitry 107 may determine when all of
these resources are available by processing the resource state
bits. I desired, the prioritized processing order may be
based on information 1n packet handling requests.
Co-processor circuitry 107 selects scheduling algorithms
based on an internal scheduling state bits and uses the
selected scheduling algorithms to determine the prioritized
processing order. The algorithms could be round robin,
service-to-completion, weighted fair queuing, simple
fairness, first-come first-serve, allocation through priority
promotion, software override, or some other arbitration
scheme. Thus, the prioritization technique used by

US RE42,092 E

S

co-processor circuitry 107 1s externally controllable.
Co-processor circuitry 107 1s described 1n more detail with
respect to FIGS. 2-4.

Memory interface 109 comprises circuitry configured to
exchange packets with external buifers in memory 103.
Memory interface 109 maintains a pointer cache that holds
pointers to the external butlers. Memory interface 109 allo-
cates the external buflers when entities, such as core proces-
sor 104 or co-processor circuitry 107, read pointers from the
pointer cache. Memory interface 109 de-allocates the exter-
nal buifers when the entities write the pointers to the pointer
cache. Advantageously, external buffer allocation and
de-allocation 1s available through an on-chip cache read/
write. Memory imterface 109 also manages various external
bufter classes, and handles conditions such as external buftfer
exhaustion. Memory interface 109 is described 1n detail with
respect to FIGS. 5-6.

In operation, receive interface 106 receives new packets
from communication system 101, and scheduler 105 1m-
tiates transmissions of previously receirved packets that are

typically stored in memory 103. To initiate packet handling,
receive interface 106 and scheduler 103 transfer requests to
co-processor circuitry 107. Under software control, core
processor 104 may also request packet handling from
co-processor circuitry 107. Co-processor circuitry 107 fields
the requests, correlates the packets with their respective con-
text information, and creates a prioritized work queue for
core processor 104. Core processor 104 processes the pack-
ets and context information i order from the prioritized
work queue. Advantageously, co-processor circuitry 107
operates 1n parallel with core processor 104 to offload the
context correlation and prioritization tasks to conserve
important core processing capacity.

In response to packet handling, core processor 104 typi-

cally initiates packet transiers to either memory 103 or com-
munication system 102. If the packet 1s transferred to
memory 103, then core processor nstructs scheduler 103 to
schedule and 1nitiate future packet transmission or process-
ing. Advantageously, scheduler 105 operates 1n parallel with
core processor 104 to offload scheduling tasks and conserve
important core processing capacity.

Various data paths are used in response to core processor
104 packet transier mstructions. Co-processor circuitry 107
transfers packets directly to communication system 102
through transmit interface 108. Co-processor circuitry 107
transiers packets to memory 103 through memory interface
109 with an on-chip pointer cache. Memory interface 109
transiers packets from memory 103 to communication sys-
tem 102 through transmit interface 108. Co-processor cir-
cuitry 107 transiers context information from a context
butifer through memory interface 109 to memory 103 1f there
are no packets in the data buifers that are correlated with the
context mnformation 1n the context bufller. Advantageously,
memory terface 109 operates 1n parallel with core proces-
sor 104 to offload external memory management tasks and
conserve important core processing capacity.

Co-processor Circuitry—FIGS. 24

FIGS. 2—4 depict a specific example of co-processor cir-
cuitry 1n accord with the present invention. Those skilled 1n
the art will appreciate numerous variations from this
example that do not depart from the scope of the mvention.
Those skilled 1n the art will also appreciate that various fea-
tures could be combined to form multiple vanations of the
invention. Those skilled in the art will appreciate that some
conventional aspects of FIGS. 2-4 have been simplified or
omitted for clarity.

FIG. 2 demonstrates how co-processor circuitry 107 pro-
vides pipe-lined operation. FIG. 2 1s vertically separated by

10

15

20

25

30

35

40

45

50

55

60

65

6

dashed lines that indicate five packet processing stages: 1)
context resolution, 2) context fetching, 3) priority queuing,
4) software application, and 5) context flushing.
Co-processor circuitry 107 handles stages 1-3 to provide
hardware acceleration. Core processor 104 handles stage 4
to provide soltware control with optimized elliciency due to
stages 1-3. Co-processor circuitry 107 also handles stage 3.
Co-processor circuitry 107 has eight pipelines through

stages 1-3 and 5 to concurrently process multiple packet
streams.

In stage 1, requests to handle packets are resolved to a
context for each packet in the internal data builers. The
requests are generated by recetve iterface 106, scheduler
105, and core processor 104 1n response to mcoming
packets, scheduled transmissions, and application software
instructions. The context information includes a channel
descriptor that has information regarding how packets in one
of 64,000 different channels are to be handled. For example,
a channel descriptor may indicate service address
information, tratfic management parameters, channel status,
stream queue information, and thread status. Thus, 64,000
channels with different characteristics are available to sup-
port a wide array of service diflerentiation. Channel descrip-
tors are 1dentified by channel 1dentifiers. Channel identifiers
may be indicated by the request. A map may be used to
translate selected bits from the packet header to a channel
identifier. A hardware engine may also perform a sophisti-
cated search for the channel i1dentifier based on various
information. Different algorithms that calculate the channel
identifier from the various information may be selected by
setting correlation state bits in co-processor circuitry 107.
Thus, the techmque used for context resolution 1s externally
controllable.

In stage 2, context information 1s fetched, 11 necessary, by
using the channel 1dentifiers to transier the channel descrip-
tors to internal context butters. Prior to the transfer, the con-
text bulfers are first checked for a matching channel 1denti-
fier and validity bit. If a match 1s found, then the context
builer with the existing channel descriptor 1s associated with
the corresponding internal data buffer holding the packet.

In stage 3, requests with available context are prioritized
and arbitrated for core processor 104 handling. The priority
may be indicated by the request—and i1t may be the source of
the request. The priority queues 1-8 are 16 entries deep.
Priority queues 1-8 are also ranked in a priority order by
queue number. The priority for each request 1s determined,
and when the context and data bullers for the request are
valid, an entry for the request 1s placed 1n one of the priority
queues that corresponds to the determined priority. The
entries 1n the priority queues point to a pending request state
RAM that contains state information for each data builer.
The state information includes a data buffer pointer, a con-
text pointer, context validity bit, requester indicator, port
status, a channel descriptor loaded indicator.

The work queue indicates the selected priority queue
entry that core processor 104 should handle next. To get to
the work queue, the requests 1n priority queues are arbitrated
using one of various algorithms such as round robin, service-
to-completion, weighted fair queuing, simple fairness, first-
come first-serve, allocation through priority promotion, and
soltware override. The algorithms may be selected through
scheduling state bits 1n co-processor circuitry 107. Thus, the
technique used for prioritization 1s externally controllable.
Co-processor circuitry 107 loads core processor 104 regis-
ters with the channel descriptor information for the next
entry 1n the work queue.

In stage 4, core processor 104 executes the software appli-
cation to process the next entry in the work queue which

US RE42,092 E

7

points to a portion of the pending state request RAM that
identifies the data bufler and context bufller. The context
bufler indicates one or more service addresses that direct the
core processor to the proper functions within the software
apphcatlon One such function of the software application 1s
traffic shaping to conform to service level agreements. Other
tfunctions include header manipulation and translation, queu-
ing algorithms, statistical accounting, buifer management,
interworking, header encapsulation or stripping, cyclic
redundancy checking, segmentation and reassembly, frame
relay formatting, multicasting, and routing. Any context
information changes made by the core processor are linked
back to the context bufier in real time.

In stage 5, context 1s flushed. Typically, core processor
104 1nstructs co-processor circuitry 107 to transfer packets
to off-chlp memory 103 or transmit interface 108. If no other
data builers are currently associated with the pertinent con-
text information, then co-processor circuitry 107 transiers
the context information to off-chip memory 103.

FIG. 3 1s a block diagram that illustrates co-processor
circuitry 107 1n an example of the mvention. Co-processor
circuitry 107 comprises a hardware engine that 1s firmware-
programmable 1n that it operates in response to state bits and
register content. In contrast, core processor 104 1s a micro-
processor that executes application software. Co-processor
circuitry 107 operates 1n parallel with core processor 104 to
conserve core processor capacity by off-loading numerous
tasks from the core processor.

Co-processor circuitry 107 comprises context resolution

it

310, control 311, arbiter 312, priority queues 313, data buil-
ers 314, context builers 315, context DMA 316, and data
DMA 317. Data builers 314 hold packets and context buifers
315 hold context information, such as a channel descriptor.
Data butfers 314 are relatively small and of a fixed size, such
as 64 bytes, so 11 the packets are ATM cells, each data buifer
holds only a single ATM cell and ATM cells do not cross
data buitfer boundaries.

Individual data buffers 314 are associated with individual
context buffers 315 as indicated by the downward arrows.
Priority queues 313 hold entries that represent individual
data buffers 314 as indicated by the upward arrows. Thus, a
packet 1n one of the data buflers 1s associated with 1ts context
information 1n an associated one of the context butfers 3135
and with an entry in priority queues 313. Arbiter 312 pre-
sents a next entry from priority queues 313 to core processor
104 which handles the associated packet in the order deter-
mined by arbiter 312.

Context DMA 316 exchanges context information
between memory 103 and context buifers 315 through
memory interface 109. Context DMA automatically updates
queue pointers 1n the context information. Data DMA 317
exchanges packets between data buifers 314 and memory
103 through memory interface 109. Data DMA 317 also
transters packets from memory 103 to transmit interface 108
through memory interface 109. Data DMA 317 signals con-
text DMA 316 when transferring packets off-chip, and con-
text DMA 316 determines 11 the associated context should be
transterred to off-chip memory 103. Both DMAs 316-317
may be configured to perform CRC calculations.

For a new packet from communication system 101, con-
trol 311 receives the new packet and a request to handle the
new packet from receive interface 106. Control 311 recerves
and places the packet 1n one of the data buifers 314 and
transiers the packet header to context resolution 310. Based
on gap state bits, a gap 1n the packet may be created between
the header and the payload 1n the data butfer, so core proces-
sor 104 can subsequently write encapsulation information to

5

10

15

20

25

30

35

40

45

50

55

60

65

8

the gap without having to create the gap. Context resolution
310 processes the packet header to correlate the packet with
a channel descriptoralthough 1n some cases, receive inter-
face 106 may have already performed this context resolu-
tion. The channel descriptor comprises information regard-
ing packet transier over a channel.

Control 311 determines 11 the channel descriptor that has

been correlated with the packet 1s already 1n one of the con-
text buffers 315 and 1s valid. If so, control 311 does not
request the channel descriptor from off-chip memory 103.
Instead, control 311 associates the particular data butier 314
holding the new packet with the particular context buifer 315
that already holds the correlated channel descriptor. This
prevents multiple copies of the channel descriptor from
existing 1n context bufifers 314. Control 311 then increments
an 1n-use count for the channel descriptor to track the num-
ber of data buffers 314 that are associated with the same
channel descriptor.
If the correlated channel descriptor 1s not 1n context buifers
315, then control 311 requests the channel descriptor from
context DMA 316. Context DMA 316 transiers the
requested channel descriptor from off-chip memory 103 to
one of the context buifers 315 using the channel descriptor
identifier, which may be an address, that was determined
during context resolution. Control 311 associates the context
buifer 315 holding the transferred channel descriptor with
the data builer 314 holding the new packet to maintain the
correlation between the new packet and the channel descrip-
tor. Control 311 also sets the 1n-use count for the transferred
channel descriptor to one and sets the validity bit to indicate
context information validity.

Control 311 also determines a priority for the new packet.
The priority may be determined by the source of the new
packet, header information, or channel descriptor. Control
311 places an entry 1n one of priority queues 313 based on
the priority. The entry indicates the data buffer 314 that has
the new packet. Arbiter 312 implements an arbitration
scheme to select the next entry for core processor 104. Core
processor 104 reads the next entry and processes the associ-
ated packet and channel descriptor in the particular data
builfer 314 and context buffer 315 indicated 1n the next entry.

Each priority queue has a service-to-completion bit and a
sleep bit. When the service-to-completion bit 1s set, the pri-
ority queue has a higher priority that any priority queues
without the service-to-completion bit set. When the sleep bit
1s set, the priority queues 1s not processed until the sleep bit
1s cleared. The ranking of the priority queue number breaks
priority ties. Each priority queue has a weight from 0-15 to
ensure a certain percentage of core processor handling. After
an entry from a priority queue 1s handled, 1ts weight 1s dec-
remented by one if the service-to-completion bit 1s not set.
The weights are re-mitialized to a default value after 128
requests have been handled or if all weights are zero. Each
priority queue has a high and low watermark. When out-
standing requests that are entered 1n a priority queue exceed
its high watermark, the service-to-completion bit 1s set.
When the outstanding requests fall to the low watermark, the
service-to-completion bit 1s cleared. The high watermark 1s
typically set at the number of data bufifers allocated to the
priority queue.

Core processor 104 may instruct control 311 to transfer

the packet to off-chip memory 103 through data DMA 317.
Control 311 decrements the context butfer in-use count, and

if the 1n-use count 1s zero (no data butiers 314 are associated

with the context buifer 315 holding the channel descriptor),
then control 311 instructs context DMA 316 to transter the

channel descriptor to off-chip memory 103. Control 311 also

US RE42,092 E

9

clears the validity bit. This same general procedure 1s fol-
lowed when scheduler 105 requests packet transmission,
except that i response to the request from scheduler 105,
control 311 instructs data DMA 317 to transier the packet
from memory 103 to one of data buffers 314.

FIG. 4 1s a flow diagram that illustrates the operation of
co-processor circuitry 107 when correlating buifers 1n an
example of the invention. Co-processor circuitry 107 has
eight pipelines to concurrently process multiple packet
streams 1n accord with FIG. 3. First, a packet 1s stored in a
data buifer, and the packet 1s correlated to a channel descrip-
tor as 1dentified by a channel 1dentifier. The channel descrip-
tor comprises the context information regarding how packets
in one of 64,000 different channels are to be handled.

Next, context buffers 314 are checked for a valid version
of the correlated channel descriptor. This entails matching
the correlated channel 1dentifier with a channel 1dentifier in a
context bulfer that 1s valid. If the correlated channel descrip-
tor 1s not 1n a context buffer that 1s valid, then the channel
descriptor 1s retrieved from memory 103 and stored 1n a
context buffer using the channel identifier. The data buifer
holding the packet 1s associated with the context butier hold-
ing the transferred channel descriptor. An 1n-use count for
the context buffer holding the channel descriptor 1s set to
one. A validity bit for the context butler 1s set to indicate that
the channel descriptor in the context buffer 1s valid. It the
correlated channel descriptor 1s already 1n a context buifer
that 1s valid, then the data buffer holding the packet 1s asso-
ciated with the context buffer already holding the channel
descriptor. The 1n-use count for the context buffer holding
the channel descriptor 1s incremented.

Typically, core processor 104 1nstructs co-processor Cir-
cuitry 107 to transfer packets to off-chip memory 103 or
transmit interface 108. Data DMA 317 transfers the packet
and signals context DMA 316 when finished. Context DMA

316 decrements the in-use count for the context butfer hold-
ing the channel descriptor, and 1f the decremented in-use
count equals zero, then context DMA 316 transiers the chan-
nel descriptor to memory 103 and clears the validity bit for
the context butfer.

Memory Interface 109—FIGS. 5-6

FIGS. 5-6 depict a specific example of memory interface
circuitry in accord with the present invention. Those skilled
in the art will appreciate numerous variations from this
example that do not depart from the scope of the mvention.
Those skilled 1n the art will also appreciate that various fea-
tures could be combined to form multiple vanations of the
invention. Those skilled in the art will appreciate that some
conventional aspects of FIGS. 5-6 have been simplified or
omitted for clarity.

FI1G. 5 15 a block diagram that illustrates memory interface
109 1n an example of the invention. Memory interface 109
comprises a hardware circuitry engine that 1s firmware-
programmable 1n that 1t operates in response to state bits and
register content. In contrast, core processor 104 1s a micro-
processor that executes application software. Memory inter-
tace 109 operates 1n parallel with core processor 104 to con-
serve core processor capacity by off-loading numerous tasks
from the core processor.

From FIG. 1, FIG. 5 shows memory 103, core processor
104, co-processor circuitry 107, transmit interface 108, and
memory interface 109. Memory 103 comprises Static RAM
(SRAM) 525 and Synchronous Dynamic RAM (SDRAM)
526, although other memory systems could be used 1n other
examples of the mvention. SDRAM 526 comprises pointer
stack 527 and external buflers 528. Memory interface 109
comprises buffer management engine 520, SRAM interface

5

10

15

20

25

30

35

40

45

50

55

60

65

10

521, and SDRAM interface 522. Builer management engine
520 comprises pointer cache 323 and control logic 524.

Conventional components could be used for SRAM 1nter-
face 521, SDRAM interface 522, SRAM 525, and SDRAM
526. SRAM interface 521 exchanges context information
between SRAM 5235 and co-processor circuitry 107. Exter-
nal builers 528 use a linked list mechanism to store commu-
nication packets externally to integrated circuit 100. Pointer
stack 527 1s a cache of pointers to free external butlers 528
that 1s 1nitially built by core processor 104. Pointer cache
523 stores pointers that were transferred from pointer stack
527 and correspond to external buffers 528. Sets of pointers
may be periodically exchanged between pointer stack 527
and pointer cache 523. Typically, the exchange from stack
527 to cache 3523 operates on a first-1n/first-out basis.

In operation, core processor 104 writes pointers to free
external buifers 528 to pointer stack 3527 1n SDRAM 526.
Through SDRAM i1nterface 522, control logic 524 transiers
a subset of these pointers to pointer cache 523. When an
entity, such as core processor 104, co-processor circuitry
107, or an external system, needs to store a packet in
memory 103, the entity reads a pointer from pointer cache
523 and uses the pointer to transier the packet to external
butters 528 through SDRAM interface 522. Control logic
524 allocates the external bufler as the corresponding
pointer 1s read from pointer cache 523. SDRAM stores the
packet 1n the external buffer indicated by the pointer. Alloca-
tion means to reserve the bufler, so other entities do not
improperly write to 1t while 1t 1s allocated.

When the entity no longer needs the external buffer—ior
example, the packet 1s transierred from memory 103 through
SDRAM interface 522 to co-processor circuitry 107 or
transmit interface 108—then the entity writes the pointer to
pointer cache 523. Control logic 524 de-allocates the exter-
nal buffer as the corresponding pointer 1s written to pointer
cache 523. De-allocation means to release the butfer, so
other entities may reserve 1t. The allocation and
de-allocation process 1s repeated for other external buifers
528.

Control logic 524 tracks the number of the pointers in
pointer cache 523 that point to de-allocated external butlers
528. I the number reaches a minimum threshold, then con-
trol logic 524 transiers additional pointers from pointer stack
527 to pointer cache 3523. Control logic 524 may also trans-
fer an exhaustion signal to core processor 104 1n this situa-
tion. If the number reaches a maximum threshold, then con-
trol logic 524 transiers an excess portion of the pointers from
pointer cache 523 to pointer stack 527.

FIG. [5] 6 is a table that illustrates buffer classes in an
example of the invention. In the example of FI1G. [3] 6, there
are 16 classes with 500 external buffers each for a total of
8,000 external buffers. Each class has a type: static,
exclusive, or shared. Static classes use their own external
buifers without sharing. Exclusive classes use their own
external bulters first, and then borrow external bufiers from
the fail-over classes. De-allocated external buflers from a
given exclusive class are credited to the associated fail-over
class until the number of borrowed external butfers 1s zero.
Shared classes use their own external buflfers and comprise
the fail-over external butlers for the exclusive classes.

Buifer classes are used to differentiate services among
traffic streams by assigning different streams to different
classes of external buifers. Trallic streams offering a higher
quality-of-service are typically provided with greater access
to external buifers. Bursty traffic may need an elastic
exclusive/shared class arrangement. A class may be associ-
ated with only one type of traffic, such as Constant Bit Rate

US RE42,092 E

11

(CBR), Available Bit Rate (ABR), Variable Bit Rate (VBR),
or Unspecified Bit Rate (UBR). CBR traific without bursts
typically uses static classes. ABR traflic uses exclusive and
shared external buffer classes to respectively handle mini-
mum cell rates and bursts. VBR and UBR traffic typically
use shared buffer classes.

The external buffers are separated into two separately
managed pools A and B. Pools can be used for service difier-
entiation. Pools are also helpful when the external builers
are located 1n separate memory devices, so each device may
have 1ts own 1ndependently managed pool.

For each class, control logic 524 tracks the number of
pointers 1n pointer cache 523 that point to the de-allocated
external buifers and the number of pointers in pointer cache
523 that point to the allocated external buffers. If the number
ol pointers to the de-allocated external builers in one of the
classes reaches a minimum threshold for that class, control
logic 524 transfers an exhaustion signal for that class to core
processor 104. If the class 1s exclusive, control logic 524
may also borrow pointers from the corresponding fail-over
class for use by the exclusive class, although conditions and
thresholds may be used to limit the amount of borrowing.
Control logic 524 tracks the number of pointers distributed
to each class and may re-distribute pointers from one class to
another based on certain conditions, such as tratfic loads. In
addition, more ABR ftraific may require more exclusive buil-
ers at the expense of shared buflers where more UBR traific
has the opposite ettect.

Scheduler Circuitry—FIGS. 7-9

FIGS. 7-9 depict a specific example of scheduler circuitry
in accord with the present invention. Those skilled in the art
will appreciate numerous variations from this example that
do not depart from the scope of the invention. Those skilled
in the art will also appreciate that various features could be
combined to form multiple variations of the invention. Those
skilled in the art will appreciate that some conventional
aspects of FIGS. 7-9 have been simplified or omitted for
clarty.

FI1G. 7 1s a block diagram that 1llustrates scheduler 105 in
an example of the imvention. Scheduler 105 comprises a
hardware circuitry engine that 1s firmware-programmable 1n
that 1t operates in response to state bits and register content.
In contrast, core processor 104 1s a micro-processor that
executes application software. Scheduler 105 operates 1n
parallel with core processor 104 to conserve core processor
capacity by oif-loading numerous tasks from the core pro-
CESSOT.

Scheduler 105 comprises control logic 730, scheduling
boards 731-732, and context RAM 735. Board 731 is verti-
cally separated into time periods 741-7435 where a “1” indi-
cates a reservation at that time period and a “0” indicates no
reservation at that time period. Board 731 is horizontally
separated 1nto priority levels 751-754 that are ranked from
high at priority level #1 to low at priority level #4. Board 732
1s similar to board 731, but has two priority levels and ten
time periods. Control logic 730 process boards 731-732
independently of one another.

Context RAM 735 has entries 736 that each hold one of
thousands of possible channel descriptor identifiers. The
channel descriptors that correspond to these identifiers
describe how packet transmission should be handled for a
channel. For example, a channel descriptor indicates where
packets for the channel are stored and how frequently they
should be transmitted. Boards 731-732 are each associated
with a different portion of context RAM 7335. As indicated
by the arrows, each time period at each priority level on each
board 1s associated with 1ts own one of the context RAM

10

15

20

25

30

35

40

45

50

55

60

65

12

entries 736, and thus, with a possibly unique channel
descriptor. To serve a reservation, control logic 730 sends a
request that identifies the corresponding channel descriptor
to co-processor circuitry 107.

In some examples of the invention, there are 64,000 chan-
nel descriptors, and thus, 64,000 corresponding board time
periods. The 64,000 time periods can be distributed among

boards 1n various combinations of 2,000, 4,000, 8,000,
16,000, 32,000, or 64,000 time periods per board. Boards
can be separated 1nto 1, 2, or, 4 priority levels that run con-
currently in time. Each prionty level uses up time periods, so
an 8,000 time period board with four prionty levels has
2,000 time periods per priority level that run concurrently.
The minimum number of reservations 1 a given priority
level 1s 512.

FIGS. 89 are block diagrams that illustrate scheduling
board 731 i1n an example of the invention. Board 731
includes five time periods 741-745 and four priority levels
751-754. Fence 860 indicates the time period that control
logic 730 1s currently processing 1n each priority level. Con-
trol logic 730 processes board 731 to serve reservations and
initiate packet transmissions at regular time intervals. At
cach time interval, referred to as a “GET”, control logic 730
gets one reservation and advances fence 860. At a GET,
fence 860 may advance in some priority levels but not oth-
ers. As a result, fence 860 may be at diflerent time periods 1n
different priority levels.

At a GET, control logic 730 serves the highest priority
reservation at fence 860. Control logic 860 then advances
tence 860 to the next time period 1n the prionty level that 1s
served. Control logic 860 also advances fence 860 to the
next time period 1n other priority levels that did not have a
reservation at fence 860. Control logic 860 does not advance
fence 860 at priority levels that had an un-served reservation
at fence 860.

On FIG. 8, fence 860 1s at time period 3 for all priority
levels, and priority level 1 1s served, priority level 2 1is
un-served, and priority levels 3 and 4 are not reserved. As a
result and as shown on FIG. 9, fence 860 1s advanced to time
period 4 at priority levels 1, 3, and 4, but not at priority level
2. Priority level 2 will have the highest priority reservation at
the next GET, because fence 860 remains at time period 3 1n
priority level 2, and priority level 1 has no reservation at time
period 4.

The various scheduling boards and priority levels provide
a robust mechanism for differentiating services between
traflic streams based on service level agreements. For
example, the highest priority level of board 732 could be
traffic with a guaranteed bandwidth rate, and the lower prior-
ity level could be traflic without any bandwidth guarantee.
Board 731 has four priority levels and may have Constant
Bit Rate (CBR) traific at the highest priority, real time Vari-
able Bit Rate (VBR) traffic at the second-highest priority,
non-real-time VBR ftraffic at the third-highest priority level,
and Available Bit Rate (ABR) traffic at the fourth and lowest
priority level. Tratlic can also be allocated among boards to
provide expensive high-quality service from one board, and
cheap moderate-quality service from another board. Prioriti-
zation circuitry within co-processor circuitry 107 can assign
channels on the high-quality board to the highest priority
queue to core processor 104 and assign channels on the
moderate-quality board to the highest priority queue to core
processor 104.

A board stall occurs when a higher priority level starves a
lower priority level, and a reservation at the lower priority
level will never get served. In a board stall, control logic 730
does not advance fence 860 until the stall 1s cured. If a force

US RE42,092 E

13

option 1s selected, the mdicated priority level 1s serviced at
the next GET. I a scan option 1s selected, the above-
described board processing 1s modified. All reservations 1n
the highest priority level are serviced before any lower prior-
ity levels are serviced. In lower priority levels during this
time, fence 860 1s advanced at a GET 1f the time period 1s not
reserved. The scan process repeats for the next highest prior-
ity level down through the lowest priority level.

Control logic 730 schedules a reservation in response to a
“PUT” generated by core processor 104 or scheduler 105.
Control logic 730 schedules the reservation by determining a
start position. The start position 1s a number of time periods
from the current fence location where the search starts for an
available time period for the reservation. The start position
may be specified 1n the PUT, or 1t may be calculated by
control logic 730.

To calculate the start position, control logic 730 first
retrieves scheduling parameters from the proper context
buffer in co-processor circuitry 107 using a pointer in the
PUT. Control logic 730 also increments the imn-use count for
the context buffer. Control logic 730 then executes dual
Guaranteed Cell Rate (GCR) scheduling algorithms based
on the scheduling parameters to determine the start position.

The scheduling parameters include a scheduling board
indicator, first choice priority level, and second choice prior-
ity level that 1s a higher priority than the first choice. If the
first priority level does not work for some reason, then the
second priority level 1s attempted 1n a priority promotion. In
a priority promotion, the control logic 730 tries to find a
reservation based on the Minimum Cell Rate (MCR), and 11
nothing 1s available, then control logic 730 tries to find a

reservation based on the Peak Cell Rate (PCR).

The scheduling parameters also include usage values that
determine how the dual algorithms are used. Based on the
usage values, algorithm 1 and algorithm 2 are respectively
be used for:

PCR/nothing,
MCR/PCR, or

Sustained Cell Rate (SCR)/PCR.

For algorithm 1 and algorithm 2, the scheduling parameters
respectively include:

Theoretical Arrival Times (TAT1/TAT2),
Inter-Cell Intervals (ICI1/1CI2), and
limaits (L1/L2).
The TATs are the expected arrival times, and the ICIs are the

transmit frequencies. TAT's are re-initialized if a reservation
has been 1nactive for a long time (about one second).

The two scheduling algorithms are specified by the fol-
lowing psuedocode where PT, 1s the present time, TAT1 ,,
TAT2,, are old times read from the context buffer, and
TAT1, TAT2, are new times written to the context buffer.

if (PUT w/ no update instruction) {
ICI1 =0
ICI2 =0
PIPELAT =0
} // else PUT with update; use the ICIs as provided
TAT2, = max (TAT2, , + ICI2, PT, + ICI2)
if (ALG==MCR/PCR)
TAT1_,,.=max (PT, - L1, min (TAT1, , + ICI1, PT, + L1))
else TAT1,,, . =max (TAT1, ; + ICI1, PT, + ICI1)
if (ALG==PCR/none) {
start position = max (0, TAT1, - L1 - PT),)
}else if (ALG==SCR/PCR) {
start position = max (0, TAT2, - L2 - PT,, TAT1, - L1 - PT})

10

15

20

25

30

35

40

45

50

55

60

65

14

-continued

}else if (ALG==MCR/PCR) {
start position = max (0, TAT2, - L.2 - PT))
h

TAT2, = max (TAT2,, .. landing position + PT,)
if (ALG==MCR/PCR) TAT1, =TAT1_ .
clse TAT1, = max (TAT1,,, ., landing position + PT})
if (PUT with write instruction) {
write TAT1,, TAT?2,, back to context buffer
h

decrement in-use count.

In addition to determining the starting position, control
logic 730 determines the board configuration, fence location,
and the oldest reservation at the fence 1n each priority level.
Control logic 730 locates the start position from the fence at
the selected prionity level and on the selected scheduling
board. Control logic 730 then searches for an available res-
ervation time period. If the time period at the start time 1s
already reserved, then the next available time period 1is
reserved.

The number of time periods between the fence and the
reserved time period 1s referred to as the landing position.
The landing position must be smaller than the board to avoid
wrapping around the board and reserving a time period that
1s improperly close to the fence. It may be the case that the
priority level 1s full and reservations only open up as the
tence 1s advanced. In this situation, any PUT will be reserved
just behind the advancing fence.

Once the reservation 1s made, the applicable channel
descriptor 1dentifier 1s placed 1n the corresponding entry 1n
context RAM 735. The scheduling parameters may also be
updated and written back to the context buffer. The m-use
count for the context buifer 1s decremented.

Those skilled in the art will appreciate variations of the
above-described embodiments that fall within the scope of
the invention. As a result, the invention 1s not limited to the
specific examples and illustrations discussed above, but only
by the following claims and their equivalents.

What 1s claimed 1s:

1. An integrated circuit that processes communication
packets, the mtegrated circuit comprising;

a core processor configured to create a plurality of exter-
nal butifers that are external to the integrated circuit and
configured to store the communication packets where
cach external buflers i1s associated with a pointer that
corresponds to the external buifer;

a pointer cache configured to store the pointers that corre-
spond to the external builers;

control logic configured to allocate the external butfers as
the corresponding pointers are read from the pointer
cache and de-allocate the external buifers as the corre-
sponding pointers are written back to the pointer cache
wherein the control logic 1s configured to transfer an
exhaustion signal 1f a number of the pointers to the
de-allocated bufters reaches a minimum threshold; and

the core processor configured to create additional external
buffers and their corresponding pointers 1n response to
the exhaustion signal.

2. The mtegrated circuit of claim 1 wherein the control
logic 1s configured to track a number of the pointers to the
de-allocated external buffers.

3. The mtegrated circuit of claim 1 wherein the control
logic 1s configured to transfer additional pointers to the
pointer cache 1f a number of the pointers to the de-allocated
butilers reaches a mimimum threshold.

US RE42,092 E

15

4. The mtegrated circuit of claim 1 wherein the control
logic 1s configured to transier an excess portion of the point-
ers from the pointer cache 11 the number of the pointers to the
de-allocated buflfers reaches a maximum threshold.

5. The integrated circuit of claim 1 wherein the external
butlers are distributed among at least two pools.

6. The integrated circuit of claim 1 wherein the external
butlers and the pointers to the external buifers are distributed
among a plurality of classes.

7. The integrated circuit of claim 6 wherein the control
logic 1s configured to track a number of the pointers to the
de-allocated external butlers for at least one of the classes.

8. The mtegrated circuit of claim 6 wherein the control
logic 1s configured to track a number of the pointers to the
allocated external butlers for at least one of the classes.

9. The mtegrated circuit of claim 6 wherein the control
logic 1s configured to borrow at least some of the pointers
from a first one of the classes for use by a second one of the
classes.

10. The integrated circuit of claim 6 wherein the control
logic 1s configured to redistribute at least some of the point-
ers from a first one of the classes to a second one of the
classes.

11. The integrated circuit of claim 6 wherein the control
logic 1s configured to transier an exhaustion signal if a num-
ber of the pointers to the de-allocated buffers 1n one of the
classes reaches a minimum threshold.

12. The integrated circuit of claim 6 wherein the control
logic 1s configured to track a number of the pointer distrib-
uted to one of the classes.

13. The integrated circuit of claim 6 wherein at least one
of the classes 1s associated only with constant bit rate pack-
ets.

14. The integrated circuit of claim 6 wherein at least one
of the classes 1s associated only with available bit rate pack-
ets.

15. The integrated circuit of claim 6 wherein at least one
of the classes 1s associated only with variable bit rate pack-
ets.

16. The integrated circuit of claim 6 wherein at least one
of the classes 1s associated only with unspecified bit rate
packets.

17. A method of operating an integrated circuit that pro-
cesses communication packets, the method comprising:

creating a plurality of external buflers that are external to
the integrated circuit and that are configured to store the
communication packets|,];

creating a plurality of pointers where each pointer corre-
sponds to one of the plurality of external buifers;

storing a subset of the plurality of pointers 1 a pointer
cache 1n the integrated circuit;

allocating the external buffers as the corresponding point-
ers are read from the pointer cache;

de-allocating the external buifers as the corresponding
pointers are written back to the pointer cache;

transferring an exhaustion signal 1f a number of the point-
ers to the de-allocated buifers reaches a minimum

threshold; and

in response to the exhaustion signal, creating additional

external buflers and their corresponding pointers where

the additional external buffers are external to the inte-

grated circuit and are configured to store the communi-
cation packets.

18. The method of claim 17 further comprising tracking

[a] te number of the pointers to the de-allocated external

butters.

10

15

20

25

30

35

40

45

50

55

60

65

16

19. The method of claim 17 further comprising transier-
ring additional pointers to the pointer cache 1f a number of
the pointers to the de-allocated bulifers reaches a minimum
threshold.

20. The method of claim 17 further comprising transier-
ring an excess portion of the pointers from the pointer cache
if the number of the pointers to the de-allocated buifers
reaches a maximum threshold.

21. The method of claim 17 wherein the external buffers
are distributed among at least two pools.

22. The method of claim 17 wherein the external buffers
and the pointers to the external butfers are distributed among
a plurality of classes.

23. The method of claim 22 further comprising tracking a
number of the pointers to the de-allocated external builers
for at least one of the classes.

24. The method of claim 22 further comprising tracking a
number of the pointers to the allocated external buffers for at
least one of the classes.

25. The method of claim 22 further comprising borrowing
at least some of the pointers from a first one of the classes for
use by a second one of the classes.

26. The method of claim 22 further comprising
re-distributing at least some of the pointers from a first one
of the classes to a second one of the classes.

277. The method of claim 22 further comprising tracking a
number of pointers distributed to one of the classes.

28. The method of claim 22 wherein at least one of the
classes 1s associated only with constant bit rate packets.

29. The method of claim 22 wherein at least one of the
classes 1s associated only with available bit rate packets.

30. The method of claim 22 wherein at least one of the
classes 1s associated only with variable bit rate packets.

31. The method of claim 22 wherein at least one of the
classes 1s associated only with unspecified bit rate packets.

32. The integrated circuit of claim 6 wherein at least one
of the classes is associated with a set of one or more types of
network traffic.

33. An integrated circuit that processes communication

packets, the integrated civcuit comprising:

processing facilities configured to create a plurality of
external buffers that ave external to the integrated cir-
cuit and configured to store the communication packets
where each external buffer is associated with a pointer
that corresponds to the external buffer; and

a pointer cache configured to stove the pointers that cor-
respond to the external buffers,
wherein the processing facilities arve further configured to:

allocate the external buffers as the corresponding pointers
are read from the pointer cache and de-allocate the
external buffers as the corvresponding pointers are writ-
ten back to the pointer cache,

transfer an exhaustion signal if a number of the pointers
to the de-allocated buffers reaches a minimum

threshold, and

create additional external buffers and their corresponding
pointers in vesponse to the exhaustion signal.
34. An integrated circuit that processes communication

packets, the integrated civcuit comprising:

processing facilities configured to create a plurality of
external buffers that arve external to the integrated cir-
cuit and configured to store the communication packets
where each external buffer is associated with a pointer
that corresponds to the external buffer; and

a pointer cache configured to stove the pointers that cor-
respond to the external buffers,

US RE42,092 E

17

wherein the processing facilities are further configured to:

allocate the external buffers by modifying the pointer
cache to indicate that pointers in the pointer cache cor-
responding to the external buffers arve in use and
de-allocate the external buffers by modifving the
pointer cache to indicate that pointers in the pointer
cache corresponding to the external buffers arve unused,
transfer an exhaustion signal if a number of the pointers
in the pointer cache corresponding to the external buff-
ers indicated to be unused rveaches a minimum

threshold, and

create additional external buffers and their corresponding

pointers in vesponse to the exhaustion signal.

35. The integrated circuit of claim 34 wherein the process-
ing facilities are configured to track the number of the point-
ers to the de-allocated external buffers.

36. The integrated circuit of claim 34 wherein the process-
ing facilities are configured to transfer additional pointers to
the pointer cache if the number of the pointers to the
de-allocated buffers reaches a minimum threshold.

37. The integrated circuit of claim 34 wherein the process-
ing facilities are configured to transfer an excess portion of
the pointers from the pointer cache if the number of the
pointers to the de-allocated buffers veaches a maximum

threshold.

38. The integrated civcuit of claim 34 wherein the external
buffers arve distributed among at least two pools.

39. The integrated circuit of claim 34 wherein the external
buffers and the pointers to the external buffers are distributed
among a plurality of classes.

40. The integrated circuit of claim 39 wherein the process-
ing facilities arve configured to track the number of the point-
ers to the de-allocated external buffers for at least one of the
classes.

41. The integrated circuit of claim 39 wherein the process-
ing facilities ave configured to track the number of the point-
ers to the allocated external buffers for at least one of the
classes.

42. The integrated circuit of claim 39 wherein the process-
ing facilities are configured to borrow at least some of the
pointers from a first one of the classes for use by a second
one of the classes.

43. The integrated circuit of claim 39 wherein the process-
ing facilities are configured to redistribute at least some of
the pointers from a first one of the classes to a second one of
the classes.

44. The integrated circuit of claim 39 wherein the process-
ing facilities are configured to transfer an exhaustion signal
if the number of the pointers to the de-allocated buffers in
one of the classes reaches a minimum threshold.

45. The integrated circuit of claim 39 wherein the process-
ing facilities ave configured to track the number of the point-
ers distributed to one of the classes.

46. The integrated circuit of claim 39 wherein at least one
of the classes is associated only with constant bit rate pack-
ets.

47. The integrated circuit of claim 39 wherein at least one
of the classes is associated only with available bit rate pack-
ets.

48. The integrated circuit of claim 39 wherein at least one
of the classes is associated only with variable bit vate pack-
ets.

49. The integrated circuit of claim 39 wherein at least one
of the classes is associated with a set of one or more types of
network traffic.

50. The integrated circuit of claim 39 wherein at least one
of the classes is associated only with unspecified bit rate
packets.

5

10

15

20

25

30

35

40

45

50

55

60

65

18

51. A method of operating an integrated circuit that pro-
cesses communication packets, the method comprising:

creating a plurality of external buffers that arve external to
the integrated circuit and that are configured to store
the communication packets;

creating a plurality of pointers where each pointer corre-
sponds to one of the plurality of external buffers;,

storing a subset of the plurality of pointers in a pointer
cache in the integrated circuit;

allocating the external buffers by modifving the pointer
cache to indicate that pointers in the pointer cache cor-
responding to the external buffers are in use;

de-allocating the external buffers by modifying the pointer
cache to indicate that pointers in the pointer cache cor-
responding to the external buffers are unused,;

transferving an exhaustion signal if a number of the point-
ers indicated to be unused reaches a minimum thresh-

old; and

in rvesponse to the exhaustion signal, creating additional
external buffers and theiv corresponding pointers where
the additional external buffers are external to the inte-
grated cirvcuit and ave configured to store the communi-
cation packets.

52. The method of claim 51 further comprising tracking
the number of the pointers to the de-allocated external buff-
ers.
53. The method of claim 51 further comprising transfer-
ring additional pointers to the pointer cache if the number of
the pointers to the de-allocated buffers veaches a minimum
threshold.

54. The method of claim 51 further comprising transfer-
ring an excess portion of the pointers from the pointer cache
if the number of the pointers to the de-allocated buffers
reaches a maximum threshold.

55. The method of claim 51 wherein the external buffers
are distributed among at least two pools.

56. The method of claim 51 wherein the external buffers
and the pointers to the external buffers are distributed
among a plurality of classes.

57. The method of claim 56 further comprising tracking
the number of the pointers to the de-allocated external buff-
ers for at least one of the classes.

58. The method of claim 56 further comprising tracking
the number of the pointers to the allocated external buffers
for at least one of the classes.

59. The method of claim 56 further comprising borrowing
at least some of the pointers from a first one of the classes for
use by a second one of the classes.

60. The method of claim 56 further comprising
re-distributing at least some of the pointers from a first one
of the classes to a second one of the classes.

61. The method of claim 56 further comprising tracking
the number of pointers distributed to one of the classes.

62. The method of claim 56 wherein at least one of the
classes is associated only with constant bit rate packets.

63. The method of claim 56 wherein at least one of the
classes is associated only with available bit rate packets.

64. The method of claim 56 wherein at least one of the
classes is associated only with variable bit vate packets.

65. The method of claim 56 wherein at least one of the
classes is associated only with unspecified bit rate packets.

66. The method of claim 56 wherein at least one of the
classes is associated with a set of one or more types of net-
work traffic.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : RE42,092 E Page 1 of 1
APPLICATION NO. : 12/122625

DATED . February 1, 2011

INVENTOR(S) : Tompkins et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Title page, item (76), under “Inventors”, in Column 1, Line 3, delete “Hamess™ and insert
-- Harness --.

Signed and Sealed this
Thiarty-first Day of May, 2011

.......

- - .
% = 4 .
1 - PR . . - - -
- - - = = B - ... a
- . a - . . -
- - " a - . L] Y . -
. - oe ok - . B - =
PR [254
. . . -
e

David J. Kappos
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

