USOORE42051E
(19) United States
a2 Relssued Patent (10) Patent Number: US RE42,051 E
Tripp et al. 45) Date of Reissued Patent: Jan. 18, 2011
(54) PEER-TO-PEER AUTOMATED ANONYMOUS 5,748,954 A 5/1998 Mauldin
ASYNCHRONOUS FILE SHARING 5,781,896 A 7/1998 Dalal
5,819,086 A 10/1998 Kroenke
(76) Inventors: Gary W. Tripp, 9605 Olympus Beach 5,838,916 A [1/1998 Domenikos et al.
_ . : 5,864,863 A 1/1999 Burrows
Rd. NE., Bainbridge Island, WA (US)
. 5,897,639 A 4/1999 Greef et al.
98110; Michael D. Meadway, 600 B 5018970 A 6/1999 Davi
oo . 918, avis et al.
Misti Ln., Driftwood, TX (US) 78619 5083216 A 11/1999 Kirsch et al.
5,987,506 A 11/1999 Carter et al.
(21) Appl. No.: 12/105,028 5,991,762 A 11/1999 Nagarajayya et al.
6,067,551 A 5/2000 Brown et al.
(22) Filed: Apr. 17, 2008 6,154,738 A 11/2000 Call
6,202,070 Bl 3/2001 Nguyen et al.
Related U.S. Patent Documents 0,243,676 Bl 6/2001 Witteman
Reissue of 6,253,198 Bl 6/2001 Perkins
(64) Patent No.° 750325000 6,256,622 Bih 7/200f HOW&I‘d, Jr. et al.
Tesued: Apr. 18, 2006 6,308,173 B1 10/2001 Glasser et al.
Anpl N _ 10/6-88 361 6,336,117 Bl 1/2002 Massarani
pPpi. NO-. , 6,470,332 B1 10/2002 Weschler
Filed: Oct. 17,2003 6,516,337 Bl 2/2003 Tripp et al.
o 6,601,087 Bl 7/2003 Zhu et al.
U.S. Applications: 6,839,769 B2 * 1/2005 Needham et al. 709/243
7,310,629 Bl * 12/2007 Mendelson et al. 1/1
(63) Continuation of application No. 09/910,460, filed on Jul. 20, 7,627,897 B2 * 12/2009 Peledetal. 726/22
2001, now Pat. No. 6,675,205, which 1s a continuation-in-
part of application No. 09/419,405, filed on Oct. 14, 1999, OTHER PUBLICATIONS

now Pat. No. 6,516,337, and a continuation-in-part of appli- _ _ _ ‘
cation No. 09/575,971, filed on May 23, 2000, now Pat. No. AltaVista Discovery—altavista.yellowpages.com.au/av/dis-

6,976,055. covery/index.html; Oct. 1, 1999.
(60) Provisional application No. 60/219,983, filed on Jul. 21,
2000. (Continued)
(51) 21(;;51(;1}3/00 (2006.01) Primary Examiner—Viet Vu
| (57) ABSTRACT
(52) US.CL oo 709/202: 7091203: 709219: 4 saryice on a computer network that performs centralized

_ _ _ searches based on index information transmitted by peer
(58) Field of Classification Search 709/212, systems to a central site using an agent program running on
709/213, 216, 217, 219, 227, 230, 250, 202, each peer. Peer systems are directed to each other for the

709/203; 707/10 purpose of retrieving files. If none of the peers systems

See application file for complete search history. known to contain the files is online (and the file is therefore
not available), the request 1s placed 1n a queue of file
(56) References Cited requests maintained by the central site. When a system con-
taining the requested file connects to the service, the
U.S. PATENT DOCUMENTS requested file 1s retrieved from that system and then distrib-
5.003.911 A 31997 Parks ef al. uted to the other systems which had requested the file.
5,519,855 A 5/1996 Neeman et al.
5,694,593 A 12/1997 Baclawski 40 Claims, 34 Drawing Sheets
emEe |] mean
H;!:ThEH
2 214 [:u 214 214 z1j 3:Ez ’ z’!"i H 228
IEE_RE SERVER EEHEEE. SERYER| (SERVER E"-’ER IHEEEEFH! I-;::'EEEE EEE:HE:‘E.;
PEY] L-_;E HQTE, SERVERS
proccsscs reocesson | sgven [| ("senven e
i a]]
hﬁ { o | [smﬁﬂl -
UPDATE |

e [PRDCESSING
| L_servEr |
L
LOCATION 219 ROUTER
128
MASTER
X0 5 T INDEX

MASTER =M poncessinGg ™1 QUEVE RAID

INOEX
SERYER AAID SERVER MANAGER

US RE42,051 E
Page 2

OTHER PUBLICATTONS

EWS Factsheet—Help visitors to your web site find what
they’re looking for fast—with Excite for Web Servers (EWS);
www.exclte.com/navigate/Tfactshee html; Oct. 1, 1999.

Smarter Searches: Why Search Engines are Again the Webs
Next Big Thing;http://chkpt.zdnet.com/chkpt/adem2ipt/
www.ancordesk.com/story/ story_ 2913 .html, Dec. 1998.

Filters untangling the Web we Weave; Sep. 13, 1999; http://
www.wired.com/news/news/politics/story/21719.html.

Filtering the Internet; Information Society Project at Yale

Law School; Balkin, Noveck, Roosevelt; Jul. 15, 1999.
Introduction to Harvest; Duane Wessels; http://www.tara-
dis.ed.ac.uk/harvest/docs/old—manual/node8.html; Jan. 31,
1996.

Viruses; Mike Meadway; Unpublished, undated.
Distributed Indexing/Searching Workshop; Agenda List, and
Position Papers; Sponsored by the World Wide Web Consor-
tium; May 28, 1996; http://www.w3.org/pub/ WW W/Search/
960528/cip.html.

* cited by examiner

U.S. Patent Jan. 18, 2011 Sheet 1 of 34 US RE42,051 E

10

/

12
ROUTER
WEB CRAWLER INDEX W??EiER%nER
SETVER SERVER SOFTWARE
14 16

FIG.1

(PRICR ART)

16

U.S. Patent Jan. 18, 2011 Sheet 2 of 34 US RE42,051 E

208
REMOTE SERVER

208
PEMOTE SERVER

(WEB HOST) (WEB HOST)

204 AGENT | 206 BROCHURE 204 AGENT | 206 BROCHURE
S e

~<p— INTERNET ———0~

ROUTER
212 LOAD
ALLOCATOR

214 214 214 214 222 228
WEB WEB WEB WEB AGENT { |BROCHURE
SERVER] {SERVER] [SERVER] |SERVER UPDATE | CHECK

SERVER] | SERVER
(SET) {| (SET

FIG.2

214 214
WEB WED
SERVER] (SERVER

234
QUERY
PROCESSOR

NOTE, SERVERS
INDICATE PROCESS THAT
MAY BE LOCATED ON
SEPARATE COMPUTERS
OR COLOCATED ON A

SINGLE

233
NAME

SPACE
SERVER

(SET)

226
BROCHURE

DATABASE
SERVER

RAID

234
QUERY
PROCESSOR

216 216 FIREWALL
27 | [217
INDEX INDEX
SERVER SERVER

(SET} SET)

306
UPDATE
PROCESSING
SERVER

|
REMO
LOCATION 219 ROUTER

220

128
MASTER
INDEX

308 304

E«Eahg?gg UPDATE | __ | UPDATE SERVER
INDEX — | PROCESSING QUEUE RAID

MANAGER

SERVER

SERVER RAID

US RE42,051 E

¢ Dld

.4

o

I~

-

e,

2

i

7).

y—

—

—

N (I¥201)
= MIAYIS XION)
= 43LSYN 812
S

U.S. Patent

H3AH3S

HAOYNYA 31vadn
3N3NO IN3OV 2i8
J10W3Y POE

J3Adds
ONIS$S300dd
31¥adN 90t

HIOVNVN

3N3N0 20t

¢ 14S
H3AM3S

X30N!I 21¢

SHIAYIS LERLER
q3M $17 4SvYy8vivQ

JHNHIOYE
9¢ce

| L3S

Y3AE3S
X3aNI 912 -

H3IOVNYN
N300 20¢

HAAYHAS
JENHIO0HUE

244

US RE42,051 E

FUNHOOHUE
Q31VOI'TvYA WO X
S31vadN DOVIYD Lly JFHNHOOHE
a31vQadn
HO M3N 907

.4
3 MIANIS - m
= N¥IIHD " 3UNHOONE— 35Y8Y1V0
- IUNKIONE 0oy IHNHOOYD V2P
= 1A 4
e
i
& 314
IHNHIONE

902 1530034 WA3IHL3Y
- 374 IHNHOOUE 1P
—
gl
) ¥3AN3S
m ISOH
< d3M 80¢ INNHIOHE

90¢.

IHNHI0YE

0 — T 3I5vH015 39vd
g3M LSOH 01»

U.S. Patent

153N03Y
NOILVYYINID
JHNHOOUE +Or

JHNHIOHA
J3.1vQdn
HO M3N S0¢

JYNKO0YE
Q3LVYHINIO 902

43SMONE
43S0 00

P OId

M3AYHIS
83M 3LIS
001Y.LVD
¥1¢

1S3N0D 3 g
NOILYHANIO

FANHI0UE 20F

JHNHI0HE 03A1303Y
80¢ FUNHO0UE 902
39VY01S I0vd

83M S.H3SN BOP

US RE42,051 E

JENLYNDIS

w1910 mnw_p%m_.“_ ; WY HOOYd
X3ANI M3IN 1131dW0OD 0L N9v8 1104 IR ER)
JIVIND VD X3ANI MIN 4O X3ANI M3N 31vadn
ONV 31VQdN 3LYHINTO 91 906

gN3S ¢S

NYHOONd
4 LN3OV
vYddn
M 31314N0D 1SvY8vY1VQ GNY — \\ \ 031vadn §0s
% (30N 031vadn S314 IVDOTELS _ A \\
T 31v¥0dN
2 * /
m HIOYNVYIL _ / T
3IN3ND 20¢ owwm%s :oc_qzm_s_ %ﬂwﬁ%%« 31vadn
IN3OV 222
_ e] e
= | \ N W90 NOISHIA \
S OV HIAYIS §0S
o | \ N INIOV y JHNLYNODIS
— N WLI910 NYHS0Nd
= "0 N INIDV Y201 208
- HOLVYI ;
IYNLYNOIS /

NYHO0dd

INJOV QL
JONYHD HOS
AI3HD 005

TV LIOIQ JLONN

1SNIVOY HOLVYIA
X3ANI] ONLLSIX3

Jd04 XO4HO 01§

~ 39NVHD
ON

$Old

U.S. Patent

US RE42,051 E

d30VNVN @ | —UH ,m HIAY3S HOFHD

3IN3INO JUNHIOYUE SZ¥
310W3Y $0E
S3UNHOONE
N 33WHISNOD WO
< S3I¥INI 3A3ND S314AN3 3LVYadNn 209
\&
g SHOYMIN mm_wx%
= 01 SIIMLINT 3n
2 Rpuipie ONIAIZ23Y INOGC IAE03N
ON3S 809 OO
=
“ SIN39VY W04
% SJININI 3LvQdn 009
=
g s3141N3 N3N0 S3 N3 3N3ND
/ 3SVaYLv0 \

HIOVNVYWN
3N3N0 20t

3N3N0 909

U.S. Patent

L D14 HIOYNYH

3N3N0D (0t

US RE42,051 E

1S3N03¥ 313130 B0.

=
S
e~
Z
Y3AY3S
3N3N0 WOYA HALSYNN
- S31diN3 ONIANd4dY 3NOJ NO 3SYBYLYQ
< 313130 90/ Ol Alddv v0.
x
=
=

S3IHINT 3N3N0D 204

H3IAUIS
X30NI BiZ

U.S. Patent

S3IYIN3 IN3IN0D ¢0L

ONILIFN0D INOd

4NOH <N>
1SY1HO4
S3AIHIN3

IN3IND
149 00!

US RE42,051 E

Sheet 8 of 34

Jan. 18, 2011

U.S. Patent

ONISSITI0Ud

3ISYEVLvO 31VQdN INIOY
NYNO0ud
S153N03N LN3OV

...\.\ 31YQdn HOYVY3S 31vadn INIDVY +02

m&mwwm INIOV 222 153b3N

ASVYaVY1LVQ SHIANIS SH3IANIS AOIHI

ININD3S _vivo XJONI g3M 311S 31 vdd

X30N “yqyvw3s HOYY3S S01VLYD
HIMVY3S 208 117912 L2
$153ND3A H¥3IAHIS
HOYV3S MIIHD vivQ 3SVAV1VQ
SAIMLINT IYNHI0YS FHIH3048 JHNHIOYHS
SHY INT 31vadn GZ¥
J1vadhn
/ HIAHIS S31vYQdN
3SVAv1V(a XIQN SIIHINI mommwm%n_ﬂmu S1S3N03H 3MNHOO0YE SNOILITI3Q ANV
X3ONI HILSYW HILSVYIN 31vadn 50¢ 313130 O31VONVA SNOILIQQY—~—u
” S3UH IN3 aie muwmum HOLYE 30300
31vadn 31yQan 208
HOLVYE M
31vQdi HIOYNYWN mwﬂmwum
3IN3ND Z0E
w OHHH mwwﬁmwz SIKILYE S3HILYS
31vQdN 31vadn
310N3Y IN39OV $0¢

POE

ONISS300¥d 31vQd

US RE42,051 E

Sheet 9 of 34

Jan. 18, 2011

U.S. Patent

ONISS300¥8d

FUNLYNIIS
VL9210 G16

H301d4S 216

INIONI HOUYAS 206

6 DId

06

IN3DV 806

LN3OV 906

1SOH B06

US RE42,051 E

Sheet 10 of 34

Jan. 18, 2011

U.S. Patent

0104

N T

T I TN |

P0O0L

IEEH _
01D 9004 304N0S| ve [SON
00030800 1 | YON |
2000 304n0s| 8¢ | CON
=~ Y001 308N0S| 21 | ZON
=1 001304008 ¢ I vom

_ FONFYI43Y | ALIINYND | 38NN LYV ~

L

LG8 800}
[B]
| [vootaownosi vs | rON | [oo 30unos] vs | ron _
| [roosomnos| w1 won I T T
W0i304N0S| 50 | SON | o v0 308008 2y | SN
| (orsmned + R = o gomod 1 von] |
| Ii%i.!ugla |
ICTTEET RN BT o e SN oo 3ownos| o | vow
| Crooaomncd s T von | Dowrgomnod s on] |
| [sonzuzaay] usiwvno [wsamow 5] | | Gonaasms| auiowvno | waenow vava) |
L e]

4

3001 2001

0001

US RE42,051 E

Sheet 11 of 34

Jan. 18, 2011

U.S. Patent

SH31YYNDAV3H ¢ 301340 310N3Y

1440 310W3Y

ALIINVND zmmEDz 1HVd

9001 304NOS

| |
ooy w 5o || [worzmned T e | | et —vo—
oni308n0s| + | von | | | [zaorzownos] v | | [owaownos] 7 | yon
NGS5 | co] | s I EECTS A T
o somos 5| ron] | | Dwvawosl a1 zon] | | [roorsomos 5T sow—
vooi3ounos] s | vov | | | [oor3ouncs von | || [eorsownos] s | von
| 30N3M343| ALINYND | ¥3IEWON 1xvd | _30N3343u | ALLINVNO | 3NN 18vd] | ¢ | 30Naw3s3u] aiunvino | u3snn 1avd

r-—-—-_—-—ﬂ_—--—-_“__“_m“

_
|
|
|
|
| oo s0un0s
b
|
|
|
|
[

0001

U.S. Patent Jan. 18, 2011 Sheet 12 of 34 US RE42,051 E

CHANGE
PASSWORD

FORGOT
FASSWORD

AUTHENTICATED
USER

FAILED LOGIN
NOTIFICATION

FIG.12

LIST EXISTING
BROCHURES

DOWNLOAD
8ROCHURE

CREATE
EROCHURE

INSTALL
BROCHURE

EDI
BROCHURE

WEB SITE
CWNER

CONFIGURE
NOTIFICATION

DUPLICATE
BROCHURE

DELETE
BROCHURE

FIG.13

U.S. Patent Jan. 18, 2011 Sheet 13 of 34 US RE42,051 E

CONFIGURE
CONTENT FILTER
DEFAULTS

WEB HOST
ADMINISTRATOR

CONFIGURE
NOTIFICATION

FIG.14

SELECT

RANKING
ALGORITHM

SELECT
CATEGORIES

DISPLAY
RESULTS

WEB
SEARCHER

REQUEST SITE
RECLASSIFICATION

U.S. Patent Jan. 18, 2011 Sheet 14 of 34 US RE42,051 E

MONITOR
PERFORMANCE

SEARCH
ADMINISTRATOR

FI1G.16

LOOKUP
PRICING

INFORMATION

LOCKUP USER
ACCCUNT

MANAGE
FAQ-TYPE
INFORMATION

EDIT USER
ACCOUNT

CUSTOMER
RECLASSIFY & TECHNICAL ANSWER E-MAIL
WEB SITE SUPPORT REQUESTS

FIG.17

U.S. Patent Jan. 18, 2011 Sheet 15 of 34 US RE42,051 E

SCHEDULE
IMPRESSION

REMOVE
IMPRESSION

IMPRESSION

SALESPERSON GENERATE

REPORT

FI1G.18

EDIT PARTNER
ACCOUNT

MONITOR
ACCOUNT

PARTNERSHIP
MANAGER RUN BILLING

FI1G.19

U.S. Patent Jan. 18, 2011 Sheet 16 of 34 US RE42,051 E

ACTIVE INDEXING HIGH-LEVEL SOFTWARE ARCHITECTURE
CONFIDENTIAL

LOAD BALANCER

USER ACCEGSS SERVICE

USER
DATABASE

I AGENT LISTENER '

PERMISSIO
DATABASE

1
WEB SERVER

WEB SERVER

L

BROCHURE SERVICE

BROCHURE
DATABASE

MESSAGE QUEVE
SERVICE

UPDATE MANAGER
SERVICE

BROCHURE
VALIDATOR

VALICATION
LiS T

MASTER INDEX
SERVICE

SERVICE

INDEX SEGMENT

DATABASE IN
RAM

QUERY DISPATCH ‘

SERVICE

FORWARD MESSAGES
TO REMOTE SYTE

FIG.20

U.S. Patent

ENTRY TABLE

ENTRY 1D
PAGE 1D
FIELD 1D
HIT COUNT
CONTEXT ID

USER TABLE

USER {D
USER NAME

PASSWORD
PERMISSION 1D

PERMISSION TABLE

PERMISSION 1D
USER ACCESS

PORTAL ACCESS
AGENT ACCESS

Jan. 18, 2011

PAGE TABLE

PAGE 1D

URL

SIGNATURE KEY
MIME TYPE (D
MOD DATE

HTML TITLE
BROCHURE TITLE
DESCRIPTION

INDEX FILE NAME

CONTEXT TABLE

CONTEXT 1D
CONTEXT NAME

FIELD TABLE

FIELD ID
FIELD NAME

Sheet 17 of 34

US RE42,051 E

POPULARITY TABLE

POPULARITY 1D
PAGE ID

CLICK COUNT

MIME TYPE TABLE

MIME TYPE 1D
MIME TYPE

ADDRESS TABLE

ADDRESS (D
ADDRESS 1

ADDRESS 2

CITY

STATE
COUNTRY
ZIF

GEOGRAPHY TABLE DROCHURE TABLE CONTACT TABLE

GEOGRAPHY 1D

PLANET
COUNTRY

STATE
COUNTY

CITY
COMMUNITY

STREET

DEMOGRAPHIC TABLE

DEMOGRAPHIC 1D
AGE FROM

AGE TQ
REVENUE FROM
REVENUE TO

BROCHURE 10

SITE NAME

ROOT URL

EXCLUDE URL L1ST
OWNER CONTACT ID
BUSINESS CONTACT ID
TECHNICAL CONTACT ILC
DBA CONTACT 1D
CATAGORIES 1D
RATING 1D
DEMOGRAPHIC 1D
GEOGRAPHY 1D
CUSTOM FIELD LIST
DATABASE 1D

DATABASE TABLE

DATABASE 1D
LOGON NAME
LOGON PASSWORD

TABLE NAME
FIELD NAME LIST

CONTACT 10

FIRST NAME
MIDDLE NAME

MIDDLE INITIAL
LAST NAME
EMAIL
ADDRESS 1D
HOME PHONE
WORK PHONE

]

RATING TABLE

RATING 1D
RATING NAME

DIMENSION COUNT
VALUE LIST LIST

FI1G.21

U.S. Patent Jan. 18, 2011 Sheet 18 of 34 US RE42,051 E

COM

ACTIVE INDEXING
AGENT
DOC
HTML
XML
REPORT

ACCESS

DATABASE
QUERY
SERVLET
UPDATE

BROCHURE
CATALOG

INDEX

MESSAGE
RATING

SCHEDULE
SIGNATURE

VALIDATE

APP
WEB

CONFIG

FI1G.22 I

LOG
NET

SNMP

U.S. Patent Jan. 18, 2011 Sheet 19 of 34 US RE42,051 E

USER INTERFACE

COMPONENTS

SHARED
BROCHURE RATING

APPLICATIONS AND SERVICES

AGENT

SERVER CATALOG SCHEDULE
ACCESS SIGNATURE
DATABASE MESSAGE VALIDATE

R]

0C

SERVLET HTMLU REPORT

UPDATE

UTILITIES

UTIL
CONFIG

FI1G.23

U.S. Patent Jan. 18, 2011 Sheet 20 of 34 US RE42,051 E

COM.ACTIVEINDEXING.AGENT

ACTIVE AGENT

AGENT LOGIC SMAINVOIR AGENT CONFIG
IS SR

+READ CONFIG:VOID
«*WRITE CONFIG.VCID

+RUNVCID

AGENT EXCEPTION

+GET TRACE.EXEPTICN

FI1G.24

COM.ACTIVEINDEXING.SERVER.ACCESS

<<|[NTERFACE>> USER ACCESS LEVE <<|NTERFACE>>

USER ACCESS SERVICE ACCESS LEVEL

+ACCESS_ADMIN
+REMOVE USER:VOID +ACCESS_USER

¢GET ACCESS LEVEL . USER ACCESS LEVEL —
+SET ACCESS LEVEL:YOID
+SET PASSWORD:VOID !

+ADOD USER:VOID

FI1G.25

[l 04OD3Y 35VBVYL YO SAYOITY ONIHD LYW+
QIOA-QBOD3N 0OV

QI0A'ONOO3Y 3137130
CIOAQ¥OD 3 AYS

[SaNODIY 38SvaYLYA'SAHOD 3N DONIHD LYW+
CIOACHOI3N QQY:

QI0A:'QHOI3Y 313130+

QIOA G¥0D3Y IAYS+

08034 3SYSVY.IVO QNOD3N 139+

US RE42,051 E

0HOO3YH ISYEevVLIVQ-QHOI3Y L3O+

HIFTANYH 3SVYavIivO INNHIOONE HIWANYH 3SvaYLYQ X3ANI

3 0au0o3y 35VBY1 YA SONOIIY INIHD LYW (1 0x023u 2Svav1va'SOH0I3Y ONIHD LY
g 010A-04023Y QQv+ QI10A-G¥QI3N Qav
= QIOA-GYMOI3M 3113130+ QICA-O¥0OI3H 313130
ﬂ QIOA'QHO D3 3AYSe OIOA:QHOOIIH IAVYSe
- 0"0234 3SvY8YIVva-GHOI3IY 139D Q4033 ISYAVLIVO OHOO3Y 13D+
S

= ¥31ANVH 3SVEY1YQ H¥3ISN ¥ITANVH ISYAY1va NOISSINY3d
Yo

m gaNOD Y ISYRYIVYO-SOE0IIY ONINDLIVA

~ MIOA ' QHOJ3Y QQv+

o GI0A-QY0D3Y 213130+

— QIOA:Q1314 L3S+ QIOA-0B0D3Y 3AVYS+

= 193r80:g1314 1359+ Q30338 I5vaYLIvO-QB023Y 13D

o~

—

gyu033y 3Svavy.lvo HITONVH 3SY8YLV(
<<4IVYIHILNI>> <<JIVIHIIND>>

FSVAYIVA HIAHIS ONDCAANISALLIY WOD

9C

U.S. Patent

U.S. Patent Jan. 18, 2011 Sheet 22 of 34 US RE42,051 E

F1G.27

COM.ACTIVEINDEXING .SERVER.QUERY

<<INTERFACE>> <<INTERFACE>>
QUERY DISPATCH SERVICE QUERY RANK ALGORITHM
]
+GET INDEX ENTRIES:INDEX ENTRY [J
|

QUERY HIT RANGE

B DEFAULT RANK ALGORITHM
+GET FROMIINT -
X EE'{ I;?::-‘r +GET RANK:INT

FI1G.23

COMACTIVEINDEXING.SERVER.UPDATE

CCINTEREA >

UPDATE SERVICE
e

+NEEDS FULL UPDATE.BOOLEAN
+«NEEDS INCREMENTAL UPDATE:BOOLEAN

t{NEEDS NO UPDATE:BOOLEAN

US RE42,051 E

Sheet 23 of 34

Jan. 18, 2011

U.S. Patent

INFAND0J FHAHICHE
<<30VY 453 1NI>>

6C DI

QIOA:3IHNHDOYE 130+
QIOA: UNHIONA JIAQNIY+
QIOA:ZHANO0NE QQV+

[} T4N: LS5 JUNHOOHS §3O+

IOMANE3S FHNKI0ME
<<JIYAHI LN

FHNHOOHE Q3HVYHS DONIXIONIZAILLDY WOD

US RE42,051 E

Sheet 24 of 34

Jan. 18, 2011

U.S. Patent

NV3H1S 1Nd1IN0 DOTVIVD

QIOA-AMING JLIHM+ AYING DOTIVIVDI AHLING QVay+

QIOA-FHALYNDIS 135+
A3X JUNLVNOIS IBNLIYNDIS 13D+
CIOA31v(g 3Q0ON 13S+
A1vY0:31v0 QON 139+

QIOA 34 L3S+
ONIHLIS - 34 14D+
JIOAHLYd 1L3S¢
ONIELS-HIVd 139+

AHLINT OOTViVD
<<3IVJHILINI>>

0t DId

WYA¥1S 1NdNI D01VLIVD

RYIILS LNGIN0 SOWIVIAYIULS LNAIN0 139+
WY3ULS 1NdNE DOTVAVINVIRLS LNdNL 13De

34 OD01VLIVO

GIOALSIT IDNYHO 33VHINID»
QIOADQTYLIV] IVHINID+

H4OVYNYIK O0TYiVD
<<JIV4HIINI>>

00V1IVI QIYVYHS ONIXIANISAILLIV NOO

US RE42,051 E

dN437d4 A30MN 13D+

ONIHLS-NOHLdIHIS A 1354
ONIYLIS 31 13D+

J1vC'31vQ QO 139¢
ONIY1IS IdALl ININ 13D+
33 IHALYNOIS'THNLYNOIS 13D+

AHINI F1iIHM?

NY3d1S 1Na1N0 XIANI

AdiN3 OV3Ye

WVY3HLS 1NANI X3ON!

M IHNHN 139
— IN)I'Q1 13D+
> -
s OYd XIANI
,H] FONYYH LNINSD3S XAANI- IONVYH LININOIS 139
m QIOA'AHONIN IN3SNO IS HSIHA3Me
7 P,
z..m:oomdw«m <M_w“ w_,. JDIAY3S INIWOIS X3IAN
N¥Y3T008-A i+ e >
NV3IN008°¥3QV3H Si+ 3IVIHIINI
- LREQ) 139+
~ L
o0 LX3LINQI XN LX3LNOD YAONITLXIINOD 139+
o JNECAINNROD 1IH 139¢
= 073 X30NI:0Y3d 139+
.nJa 49Yd XIAONEIOVYd 13D+

ONIYLS-INYN 13D+ INI‘GI 13D+

INI'Q} L3O+

e
01314 X3dNI

AYINI X3ONI
<<3JV3HILNI>>

[e DId

U.S. Patent

ONIMLS-OL 13D+
ONINLIS ' OU] 13D¢

FONYY IN3WOIS X3ONI

X3ANI G3YVYHS ONIX3UANIIAILOY KOO

U.S. Patent Jan. 18, 2011

COM ACTIVEINBEXING.SHARED .MESSAGE
<<INTERFACE>>
MESSAGE QUEUE SERVICE
e

+ADD MESSAGE:VOIO

+GET NEXT MESSAGE MESSAGE QUEUE MESSAGE
+REMOVE ME SSAGE

MESSAGE QUTPUT STREAM
-

+WRITE DATA

Sheet 26 of 34 US RE42,051 E

<<|NTERFACE>>

MESSAGE QUEUE MESSAGE
e

¢GET ID:INT
+GEY INPUT STREAMMESSAGE INPUT STREAM

+GET OUTPUT STREAM:MESSAGE QUTPUT STREAM

MESSAGE INPUT STREAM
T

+*READ DATA

FI1G.32

COM.ACTIVEINDEXING.SHARED.RATING

<<|INTERFACE>>
RATING

L

+GET NAME:STRING
+GET DIMENSION COUNT:INT
+GET OPTION LIST.STRING [}

MOVIE RATING
- _

+GET NAME:STRING
+GET DIMENSION COUNT:INT
+GEY OPT!ON LIST:STRINGD

FIG.33

ABSTRACT RATING

+GET NAME:STRING
+GET DIMENSION COUNT:INT
+GET OPTION LIST:STRING(]

INTERNET RATING
e

+GET NAME:STRING
+GET DIMENSION COUNT:INT
+GET OPTION LIST:STRING

US RE42,051 E

Sheet 27 of 34

Jan. 18, 2011

U.S. Patent

QIOA-ITNAAHRDS ILHM+

WYIHIS 1N&1N0 FINAIHIS

Pe ODId

AHENT 3IN0IHIS INCIHOS OV g
o

NY3ALS 1NANI 3TNA3HIS

NOW3vYQa 31NA3HOS

GICA'SIINAIHIS 3AYS+
3 NO3HOS 31v0dNe OI0A:S3TMQ3HOS OY3y+

QIOAIVAYSLNG L3S AHINI FTINCIAHIS-AHMING FINA3IKIS 13D
QIOANNY LX3N 135S+ INEINNOD 3IN03IRIS 135
ONCTIYANALNI 139 ONO Y+ QIOA AMING 3TNOQ3HIS FADONIY+
ONOVNNY IX3IN 13D QIOA-AHLIN3 3WN0IHDS Oave

ANIN3 31NA3HIS
<<3OVY4441INI>>

HAOYNYWN 31NA3IHIS
<<3JV4AHIIND>

AMNG3IHOS QIHYVHS INIXIGNIZIALLDOVY'ROD

US RE42,051 E

ONIF15 3DVSSIN 13D+ ONIHLIS IIVESIN 13D+ ONIN1IS 3OYSSIN 139D+ M18: .
NV3I1008:Q1 VA Sts NYI1008:Q1¥A Si+ NYI1008:01VA i+ N ﬂﬁmu.m__wmmmomﬁ«w.m@.
e
dOlivaiivA 3Nt HO1VAIVYA 31VY(Q
-
e e e e e eraioen o
-
L y
& :
2
_—
7 ONRILS IDVYSSIAN 139+
N¥31008-GHIVA Sie
—
~ SOLVAITVA Q1313
3 <<gIVAHIINI>>
o
=
>
-

JIVYQIVYA'C3UVHS DNEXIANISAILOV NOD

¢ DIA

U.S. Patent

US RE42,051 E

Sheet 29 of 34

Jan. 18, 2011

U.S. Patent

] WiH-
GIOA 3NYA 13S+
ONRLIS INTIVA 13D+
v31008-ON3 3NTYA SYH+
QIOA-3NYN 135S+
ONIHLS INYN 139+«
NY3T008-INVYN SYH+

1X31 INLH IS Y+

1X31 N1H

1SIT31NBIYLLIV TNLH

QIOA-IWRYUN10X3 Sk

OVl INL1H:3SHYd+

1S 31 AGIHLILY IWIHIISIT 3INBIH11Y 13D
NY31008-ON3 Sie

(MOA-JdNVYN L3S+

ONINLIS - INYN 13D

“
*
|
|
_ NYIM009-INVYN SYH+

1511 30M10X3 IN1H

NINOL TALH LY NIXOL+

A
NINOL TWIH

-
OVL TN

ONIHIS'NIXOL 130D+
1N13dA), 139+

INJINOD TALH

1SITNIXQL INIH
<<3OVIHIINI>>

1S INILINOD TNLH

LS NINOL IRLH ISITNINOL TRIK L1394
NIXQL TNIH-NIXNOL TWLiH LX3N+

IS INIINOD INLHLSIT INIINOQD 13D+
IN2INOD TNLIK-WALl LX 3N+

H3ASHYd TWIH 43ZINIXOL TRiH

@ m . O H m TA LR D00 ONIXAANI3AILOV ROD

U.S. Patent Jan. 18, 2011 Sheet 30 of 34 US RE42,051 E

COM.ACTIVEINDEXING.DOC. REPORT

REFORT TEMPLATE REPORT MANAGER
S

REFPORT DOCUMENT

+READ REPORT TEMPLATE:VOID
+ADD FIELD:'VOID +WRITE REPORT TEMPLATE:VOID
+GET FIELD COUNT:STRING +PROCESS REPCRT:YOID

+GEY FILE NAME:STRING
+GET FIELD VALUE . STRING

FI1G.37

COM.ACTIVEINDEXING.DOC. XML

XML MANAGER

I
+READ DOCUMENT:VOID
+WRITE DOCUMENT:VOID

XML UTILITIES

XML DOCUMENT LIST
R

+GET DOCUMENT COUNT:INT
+GET DOCUMENT:VOID
+ADD OOCUMENT:VOID
+REMOVE DOCUMENT:VOID

+FIND NODE:NODE
+ADD NODE:VOID
+ADD TEXT:VOID

FI1G.33

U.S. Patent Jan. 18, 2011 Sheet 31 of 34

COMACTIVEINDEXING UTIL.CONFIG
<<INTERFACE>>
CONFIGC MANAGER

READ CONWFIG FILE.:CONFIG FILE
WRITE CONFIG FILEIVOID

CONFIG FILE

+SET VALUE.VOID
+GET VALUE:OBJECT

FI1G.39

F1G.40

COM.ACTIVEINDEXING . UTIL.IO

STREAM COURLER APPEND QUTPUT STREAM
e N

BLOCK INPUT STREAM BLOCK QUTPUT STREAM
-

+READ BLOCK:BYTE(+WRITE BLOCK.VOID

US RE42,051 E

U.S. Patent Jan. 18, 2011 Sheet 32 of 34 US RE42,051 E

COM.ACTIVEINDEXING UTIL .JINI

JNTUTILITIES

FI1G.41

FI1G.42

COM.ACTIVEINDEXING.UTIL.LOG

<<|NTERFACE>>
LOG MANAGER

<<INTERFACE>>
LOG FILE

+GET LOG FILEILOG FILE

|

LOG INPUT STREAM ABSTRACT LOG LOG QUTPUT STREAM

- R -
+READ ENTRY:STRING +L0G:VOID +WRITE ENTRY:VOID

ACTIVITY LOG ERROR LOG DEBUG LOG

+{ OG.vOID +LOG:VOID +L0G:YOID

U.S. Patent

Jan. 18, 2011

Sheet 33 of 34

COM.ACTIVEINDEXING.UTIL.NET

<<INTERFACE>>
SOCKET CLIENT

tCONNECT TQ HOST:VOID

<<INTERFACE>>
SSL SOCKET CLIENT

II |

+CONNECT TO HOST.VOID

<<INTERFACE>>
SOCKET SERVER

<<| REFACE>>
SOCKET PROXY

SOCKET COUPLER
R

+RUN:VOID

+RUN:VOID

<<INTERFACE>>
oSL SOCKET SERVER

II |

+RUN:-VYOID

<<|{NTERFACE>>
SOCKET AUTHENTICATOR

+GETUSER NAME.STRING

+SET USER NAME:VOID

+GET PASSWORD HASH:STRING
+SET PASSWORD:VOID

SOCKET CONNECTION

+RUN:VOID

F1G.43

F1G.44

COMACTIVEINDEXING.UTIL.SNMP

SNMP UTILITIES

US RE42,051 E

U.S. Patent Jan. 18, 2011 Sheet 34 of 34 US RE42,051 E
\ GENT UPD{TE
A
SEARCH REQUESTS 20 EcTe / -
\\ { AGENT
PROGRAMS
SEARCH RESULTS 3 | AGENT PROGRAM
R . STORAGE
SERVER
_ SIGNATURE 4715
\ N VALUES f
INDEX DIGITAL
UPDATE BATCHES FROM 4700 SEARCH RESULTS SIGNATURES

AGENT PROGRAMS
SEARCH

4707 REQUESTS

UPDATE
BATCH
PROCESSOR

PERICDIC UPDATE
TRANSACTIONS

4712
4710

INDEX SEGMENT

Soulies.

SIGNATURE UPDATES

4706

INDEX SEGMENT

UPDATE BATCH STORAGE STORAGE
STORAGE I I
INDEX SEGMENT INDEX SEGMENT
STORAGE ALTERNATE STORAGE ALTERNATE
- areé AL NDEX SEGMENT
/ Y STORAGE
/ REMOTE
| UPDATE
. BATCH | INDEX SEGMENT
PROCESSOR, STORAGE ALTERNATE
e

FIG.45

US RE42,051 E

1

PEER-TO-PEER AUTOMATED ANONYMOUS
ASYNCHRONOUS FILE SHARING

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a continuation of U.S. application Ser.
No. 09/910,460 filed on Jul. 20, 2001 now U.S. Pat. No.
6,675,205, which 1s a continuation-in-part of U.S. applica-
tion Ser. No. 60/219,983 filed on Jul. 21, 2000, U.S. applica-
tion Ser. No. 09/419,405 filed on Oct. 14, 1999 now U.S. Pat.
No. 6,516,337 and U.S. application Ser. No. 09/575,971
filed on May 23, 2000.

BACKGROUND OF THE INVENTION

A number of file discovery and sharing programs have
become very popular for use across networks, especially
those programs which permit the sharing of multimedia con-
tent. Users connect to a central directory service and upload
a list of files that they currently have on their local system
which may be requested by other participants 1n the direc-
tory service. To retrieve files, users send a request for a file to
the central directory service which then connects the
requesting user to another user’s computer containing that
file which computer 1s also currently online. The most popu-
lar program of this type 1s Napster, a utility for sharing audio
files by manually registering them with a central directory
service. Another popular program 1s Gnutella which shares
more general-purpose files. The general term for both pro-
grams 1s a “peer-to-peer file sharing service”.

An additional application which has been developed
based on this model 1s a distributed search engine. Operators
of host computer sites wishing to permit searches register
with the central directory service and then answer queries
directed to them by that service. When a user performs a
search, the central service receives the request, compares the
request to mformation about the content of each host, and
then transmits a copy of that request to all hosts which are
able to satisty the type of the request. The search results
subsequently received from these hosts are then processed
and sent to the requesting user. This 1s very similar to the
functioning of existing search engines except that the
searches are distributed to and performed by the individual
hosts registered to a directory service rather than by the cen-
tral site. This approach 1s commonly called a meta search
engine.

SUMMARY OF THE INVENTION

Expanding on the above concepts, the invented system 1s a
service which performs centralized searches based on 1ndex
information transmitted by peer systems to the central site
using an agent program running on each peer, and then
directs the peer systems to each other for the purpose of
retrieving files.

If none of the peer systems known to contain the file 1s
online (and the file 1s therefore not available), the request 1s
placed 1n a queue of {ile requests maintained by the central
site. When a system containing the requested file connects to
the service, the requested file 1s retrieved from that system
and then distributed to the other systems which had
requested the file. Files retrieved for systems not currently

10

15

20

25

30

35

40

45

50

55

60

65

2

online are held 1n a queue until the user connects or are
emailed to the user, usually as an email attachment. Or, when
a computer system containing the file connects to the central
site, the file 1s sent by the system containing the file either to
the central site or directly to the user who requested the file
via email attachment.

The indexing and content reporting functions necessary
for the service are performed by an individual copy of an
agent program downloaded and installed by each peer sys-
tem user. This agent program 1s described 1n detail in pend-
ing U.S. patent application Ser. Nos. 09/419,405 and 09/35735,
9’71 by the same inventors which are hereby incorporated by
reference. The indexing process on each system may be 1ni-
tiated manually or on a scheduled basis, with updates trans-
mitted whenever the user connects to the central service.

The agent 1s also responsible for transmitting copies of the
requested {ile to the systems whose requests are waiting in
the queue and picking up copies of files from the queue 1t
had previously requested.

Unlike competing prior art systems, this agent-enabled
system 1s able to maintain a central searchable index of the
contents of the files, which 1s always available to users
whether or not the site reporting the information found in the
index 1s on-line.

This mvention has great application not only in the gen-
eral Internet market, but also 1n intranet markets where many
users maintain local copies of files. It 1s also extremely use-
tul for communities of users who wish to exchange similar
information, or for mobile users who are not always able to
be online at opportune times. This invention allows users to
share files without having a web page.

This mvention also allows the 1dentity of each contributor
of a copy of a file to remain anonymous. Only the central

server knows the internet address and other i1dentifying
information about each contributor, and this information 1s

stripped from each file before the file 1s forwarded.

This system also allows the sharing of files by systems
which are protected by a secure firewall. The firewall pre-
vents computers on the inside from serving files 1n response
to conventional requests from the outside, but 1t allows the
sending of an email with an attachment. To allow operation
of the mvented file sharing system without compromising
the firewall, the agent program 1s configured to behave as
tollows. The agent reports to the central server the 1dentities
of files on the computer that will be provided i1 requested by
others. When an email request for a file 1s received by the
agent from the central server, the agent generates an email 1n
response, attaching the requested file 11 that file 1s still on a
list of files that may be provided by the agent.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a functional block diagram of a conventional
search engine for the world wide web.

FIG. 2 1s block diagram showing the architecture of a
search engine for actively indexing the world wide web
according to one embodiment of the present invention.

FIG. 3 1s functional block diagram of the central server of
FIG. 2.

FIG. 4 1s a bubble chart illustrating the generation and

processing of a brochure file 1n the indexing system of FIG.
2.

FIG. 5 1s a bubble chart illustrating the process of the
agent program 1n updating itself along with the local index
generated by the agent program.

FIG. 6 1s a bubble chart illustrating the process executed
by the queue manager of FIG. 3 1n queuing update entries
and transferring these entries to the remote queue manager

of FIG. 3.

US RE42,051 E

3

FIG. 7 1s a bubble chart illustrating the process executed
by the update process server of FIG. 3.

FIG. 8 1s a bubble chart 1llustrating the overall data flow 1n
the search engine of FIG. 3.

FIG. 9 1s a functional block diagram of a distributed
search engine according to another embodiment of the
present invention.

FIGS. 10 and 11 are diagrams 1llustrating operation of a
distributed accounting and inventory system on an intranet
according to one embodiment of the present invention.

FIGS. 12-45 are figures illustrating components of the
indexing system of FIG. 2 for a Java-based implementation
of the indexing system according to one embodiment of the
present invention.

DETAILED DESCRIPTION

This invention 1s preferably implemented as described in
detail in pending U.S. patent application Ser. Nos. 09/419,
405 and 09/575,971 by the same 1mventors which are incor-
porated by reference.

A domain name service (DNS) maps names (domain
names) to addresses (Internet Protocol(IP) addresses).
Domain names are scarce and expensive to obtain and main-
tain. A secondary DNS system could be built for the peer-to-
peer network using peer-to-peer agents and the central
index. Content providers could choose names (agent names)
and those name would be associated with an agent indexing
their site. Then, these names could be made known to others
without providing the IP addresses, and the IP address can
change and the content could still be found provided the
agent name 1s not changed.

FIG. 2 1s a block diagram of an indexing system 200 for
actively indexing the Internet according to one embodiment
of the present invention. The system 200 includes a central
server 202 that stores a central index and processes search
queries received over the Internet and also includes agent
programs or agents 204 that reside on respective remote
servers 208 and operate to provide periodic index updates to
the central server 202, as will be described in more detail
below. The system 200 also includes brochure files or bro-
chures 206 residing on respective remote servers 208, each
brochure file containing non-HTML or conceptual informa-
tion about the Web site for use in generating the central
index on the server 202, as will also be explained 1n more
detail below. For the sake of brevity, only two remote servers
208 and the corresponding agents 204 and brochures 206 are
shown 1n FIG. 2. The system 200, however, includes numer-
ous such remote servers 208, agents 204, and brochures 208,
as will be understood by those skilled in the art.

Each of the components 1n the central server 202 will now
be described generally, with these respective components
being described individually 1n more detail below. The cen-
tral server 202 includes a router 210 that directs packets
comprising search requests and update transactions through
a load balancing switch 212 to an appropriate set of servers
214, 230 and 222. The switch 212 balances tratfic to all web
servers 214 to prevent overloading respective web servers
and improve overall performance of the central server 202.
The router 210 also functions to allow offline updates of
index server sets 216 and as a dispatch point to prevent
searches from being applied to an index server currently
receiving updates, as will be explained 1n more detail below.
The web servers 214 recerve and preprocess index queries
and recerve and process brochure 206 generation or modifi-
cation requests. In addition, the web servers 214 generate the
parallel queries necessary to perform a search using the

10

15

20

25

30

35

40

45

50

55

60

65

4

index servers 216. In one embodiment of the central server
202, there are twenty web servers 214.

The central server 202 further includes a master index
server 218 containing a master copy of the entire central
search mdex or catalog. In the embodiment of FIG. 2, the
master index server 218 has a redundant array of indepen-
dent disks or RAID 5 to provide protection against disk fail-
ures and loss of the central search index. In addition, the
central index stored on the master index server 218 1s also
stored on a remote master index server 220 at a different
physical location to provide backup of the central search
index.

A number of update servers 222 each receive updates
from the agent programs and store the current version of the
agent program for download and update of the local agent
programs, as will be described in more detail below. In
addition, the update servers store the digital signature of the
agent program and also store the remote web hosts’ last local
index, which are utilized during the updating of the remote
agent program and during updating the local index, as will
also be discussed 1n more detail below. Each of the update
servers 222 applies all index change transactions through a
firewall/router 224 to the master index server 218 which, 1n
turn, updates the central search index and then distributes
those changes to the various index servers sets 216. The
master index server 218 also sends instructions to the Name
Space/Directory Server 233 to dynamically determine which
set of index servers 216 1s to remain on-line to service search
requests, and which set 1s to receive the updates.

The central search engine 202 further includes a brochure
database server 226 and brochure check server 228. The
brochure database server 226 stores a brochure database as a
list of brochures and their associated data fields for each web
site. The web servers 214 may request records from or add
records to this brochure database depending on the actions
taken by web site administrators while maintaining their
brochure entries. The brochure check server 228 periodically
checks for valid new brochures as defined within the bro-
chure database server for web sites that are not being pro-
cessed by a local agent program, as will be described 1n more
detail below. If the defined brochure 1n the brochure data-
base server 226 1s not found by the brochure check server
228, a notification 1s sent to the administrator of the site
where the brochure was supposed to be found.

When a brochure file 1s requested for a site which 1s not
served by an agent 204, a message 1s sent to the Internet
Service Provider (“ISP”) or system administrator for the site
hosting the web site, indicating that users of the system are
requesting brochures. This server also periodically checks
the validity of existing brochures on all sites and notifies the
web site administrator 1f a brochure file 1s missing. I a bro-
chure 1s missing and remains missing for a given number of
check cycles, the brochure check server 228 sends a request
to the brochure database server 226 to delete the entry for the
brochure. The brochure check server 228 detects any
changes 1n brochures, such as additions or removals, and
converts these changes to transaction batches that are for-
warded to a queue manager which, in turn, applies these
changes to update the central index on the master index
server 218, as will be described 1n more detail below. The
brochure check server 328 periodically verifies the status of
all brochures at sites that are not being indexed by an agent

204.

The components of the central server 202 and their gen-
eral operation have been described, and now the operation of
the agent 204 and brochure 206 will be described in more

US RE42,051 E

S

detail. The agent 204 and brochure 206 may both be present
at a remote server 208. A brochure 206 and agent can func-
tion independently of each other, as will be discussed in
more detail below. The agent 204 1s a small local program
which executes at the remote server 208 and generates an
incremental search engine update for all of the participating
web sites on the web host 208. These index updates are
transmitted by the agent 204 to the central server 202, where

they are queued for addition to the central index.

The agent 204 runs on a system, such as a web host server,
at the site of an organization, and processes content (objects)
tor all web sites available via mass storage from that system.
The agent 204 processes all web sites located within the
mass storage area to which 1t has access, unless configured
to exclude some portion of a site or sites. The agent 204 uses
the local web server configuration (object catalog or file sys-
tem i1nformation) data to determine the root directory path
(or other location 1information for the particular file system)
tor all web site file structures available. The agent 204 reads
files directly from local mass storage, and indexes the key-
words from the files and meta data about the files. In
contrast, a spider program, as previously discussed, 1s
located on a server remote from the local site and renders
cach web page file before tokenizing and parsing each page
for indexing. The agent 204 follows the structure of the local
mass storage directory tree 1n indexing the files, and does not
tollow uniform resource locators (“URLs”) stored within the
HTML files forming the web pages. Since the agent 204 1s
present at the remote server 208 and has access to files stored
on the server’s mass storage, the agent 1s potentially capable
of retrieving non-html data for indexing from these locally
stored files, such as database files and other non web-page
source material. For example, a product catalog stored 1n a
database file on the remote mass storage may be accessed
and indexed by the agent 204.

While indexing the web sites at the remote server 208, the
agent 204 recognizes brochures 206 stored at web sites on
the server and provides index updates based on the contents
of the brochures found. Once the agent 204 has indexed the
web sites at the remote server 208, the agent transmits a
transaction list to the central server 202, and this transaction
list 1s stored on one of the update servers 222. The transac-
tion list 1s referred to as a batch, and each batch contains a
series of deletion and addition transactions formatted as
commands. More specifically, each batch represents an
incremental change record for the sites at the remote server
208 serviced by the agent 204. The update server 222 there-
alter transfers each batch to the master index server 218
which, 1n turn, updates the master index to retlect the index
changes 1n the batch. It should be noted that the agent 204
transmits only “incremental” changes to the central server
202. Conversely, a conventional spider program requests the
entire rendered HI' ML page from the remote web site via the
remote server 208, and then parses the recerved page for

keyword information.

The brochure 206 1s a small file that may contain concep-
tual and other non-HTML information which would be use-
tul to improve the indexing of sites or parts of a single site on
the remote server 208. A brochure 206 may contain any
information pertinent to the web site, including but not lim-
ited to keywords, phrases, categorizations of content, pur-
pose of the site, and other information not generally stored in
a web page. The brochure 206 1s generated manually by
individual web site administrators. The administrator fills
out a form at the central server 202, and receives an email
containing the brochure 206 or downloads the brochure after
submitting the form contents. Upon receiving the brochure

10

15

20

25

30

35

40

45

50

55

60

65

6

206, the administrator stores 1t within the file structure of the
web site on the remote server 208. There may be multiple
brochures 206 at the same web site, each describing specific
portions of the site. Each brochure 206 may refer to a single
web page or a group of web pages stored within a specific
subdirectory at the web site. All information stored 1n each
brochure 206 1s applied to the pages referenced in the bro-
chure.

The overall operation of the central server 202 will now be
described 1n more detail with reference to the functional
block diagram of FIG. 3. In FIG. 3, many components previ-
ously discussed with reference to FIG. 2 are shown, and for
the sake of brevity the detailed operation of each such com-

ponent will not again be described 1n detail.

In operation, the central server 202 performs three pri-
mary functions: 1) processing search queries from remote
users; 2) brochure generation and verification; and 3) imndex
update processing. In processing search queries from remote
users, the Web servers 214 receive search queries from
remote user browsers. A router, which corresponds to the
routers 210 and 212 in FIG. 2, directs the search query to the
appropriate web server 214. The web server send the query
to a Query Processor 234 which parses the query and sends 1t
to the available 1ndex server set 216 or 217 as listed 1n the
Name Space Server 233 for appropriate segment of the
index. The selected 1index server sets 216 or 217 thereafter
return search results to the query processor 1n response to the
applied search query, and these search results are sent to the

Web server 214, which, 1n turn, returns the search results to
the remote user browser.

The central server 202 also allows remote users to gener-
ate and download brochures 206 to their remote site, and
also verifies the validity of brochures 206 on Web sites not
serviced by an agent 204, as will now be explained in more
detail. The Web servers 214 recerve and process brochure
204 generation or modification requests from user browsers.
Once the brochure 204 has been generated or modified, the
brochure i1s transferred to the brochure database server 226,
which stores all existing brochures. The brochure check
server 228 periodically checks for new brochures 206 stored
on the brochure database server 226 for Web sites that are
not served by an agent 204. When a brochure 206 is
requested for a Web site which 1s not served by an agent 204,
the brochure check server 228 sends a message to the system
administrator or Internet service provider for the server host-
ing a Web site telling them that site administrators on their
server are requesting brochures 206. The brochure check
server 228 also periodically verifies the validity of existing
brochures 206 on all sites not serviced by an agent 204. If a
brochure 206 1s missing for a predetermined number of veri-
fication cycles, the brochure check server 228 instructs the
brochure database server 226 to delete the entry for that
brochure. The brochure check server 228 also converts any
modifications, additions, or deletions to brochures 206 to
transaction batches, and forwards these transaction batches
to a queue manager 302. The queue manager 302 receives
brochure update transaction batches ifrom the brochure
check server 228 and also recerves agent update transaction
batches from the agent update server 222, as will be
described in more detail below.

The central server 202 also performs index update pro-
cessing to update the central index stored on the master stor-
age server 218 and the segmented central index stored on the
index servers 216, 217, as will now be described in more
detail. As described above, the queue manager recerves
update transaction batches from the brochure check server
228 and the agent update server 222. The agent update server

US RE42,051 E

7

222 receives queries from the agent as to the current state of
the agent’s version and the status of the last index updates of
the site. If the agent 1s not of a current version, a current
version 1s automatically transmitted and installed. If the state
of the site mndexing 1s not consistent as indicated by a match
of the digital signatures representing state of the site and the
state of the central index the last time an update was received
and successiully processed and added to the central index,
then the agent will roll back to previous state and create the
necessary additions and deletions to the state of the site and
the central index into agreement. The agent 204 will then
sent the additions and deletions along with a current digital
signature to the queue manager 302 The queue manager 302
recerves incremental mndex updates from the agents 204
present on the remote servers 208 and converts these updates
into update transaction batches which, 1 turn, are trans-
terred to the update processing server 306. The queue man-
ager 302 stores the recerved update transaction batches, and
periodically transmits a copy of the stored transaction
batches to a remote queue manager 304 for processing by
update processing server 306 and being applied to the
remote master storage server 220. The queue manager 302
also periodically transmits a copy of the stored transaction
batches to and update processing server 306. The queue
manager 302 stores update transaction batches recerved
from the agent 204 during a predetermined interval, and
upon expiration of this interval the update batches are trans-
terred to the update processing server 306. Upon receiving
the update transaction batches the update processing server
306, applies all the batches to update the central index stored
on the master storage server 218. Once the central index
stored on the master storage server 218 has been updated, the
master storage server 218 applies the update transaction
batches through the router to update the segmented central
index stored on the index server sets 216, 217.

During updating of the segmented central index stored on
the mndex server sets 216, 217, the update transaction batches
are directed to only one set of index servers 216, 217 while
the other set remains online to handle search queries, and
thereafter places the updated set of index servers 216, 217
online and updates the set previously online. For example,
assume the index servers 216 are the primary set of index
servers and the servers 217 are the secondary set. Each index
server set 216, 217 can contain all or a portion of the central
index 218. As seen from the above example, the primary and
secondary index server sets 216 and 217 eliminate the need
for record locking of the segmented central index to which
search queries are applied. Thus, all records of the seg-
mented central index are always available for search queries.
Moreover, 1f one server of the primary index server set 216
or 217 fails, the remaining servers of that set will continue to
serve queries. If the entire server set fails, the corresponding
secondary index server set 1s made the primary so that the
entire segmented central index 1s available for applied search
queries. It should be noted that 1n the unlikely event that both
the primary and secondary index server sets 216, 217 for a
particular segment of the central index simultaneously fail,
the remaining segments of the central index remain available
tor applied search queries, and only the segment of the cen-
tral 1ndex stored on the failed index servers becomes
unavailable. In other words, search queries are still applied
to the vast majority of the central index so that reasonable
search results may are still obtained. In a case were both
server sets fail, quernies for the segment that had failed could
be sent to central index.

The 1ndex server set or sets are used to provide query
results for searches submitted by the Web Servers. Each set

10

15

20

25

30

35

40

45

50

55

60

65

8

of servers 1s 1dentical, and each set of servers contains a
portion of the overall index. Imtially, the division will be
alphabetical and numerical, for a set of 36 servers. Server
“A” would contain the index for all words beginming with
“A”. Only one set of servers 1s updated at a given time, while
the other set remains on-line to service search requests. This
permits the system to be run without file-locking constraints
and allows for fail over should a server become 1noperative.

FIG. 4 1s a bubble chart illustrating the generation and
processing ol a brochure 206 in the indexing system 200 of

FIG. 2. As previously mentioned, the purpose of the bro-
chure 206 1s to allow the web host 208 and the web site to

provide specific non-HTML information, which will help
the central server 202 1n indexing the site and 1n order to
provide more relevance to query results. The brochure 206
can be created in two ways. First, as part of the installation
program for the agent 204, the administrator of the remote
server 208 completes a form that 1s converted to an encoded
brochure file 206, and then copied into the web directory on
the remote server 208. This method of generating the bro-
chure 206 will be discussed in more detail below. The sec-
ond method of generating the brochure 206 utilizes a bro-
chure creator interface on the web servers 214 at the central
server 202. This method will now be described 1n more
detail with reference to FIG. 4.

To create a brochure 206 using the brochure creator
interface, a user’s browser 400 applies a brochure generation
request 402 to the associated central site web server 214. In
response to the request 404, the brochure creator interface
generates a form which the user completes, and then sends a
brochure request 406 to the brochure server 226, which gen-

erates an encoded brochure file that 1s then sent to the central
site web server 214. The central site web server 214 then
sends the encoded brochure file to the user’s browser 400.
The encoded brochure file 206 1s then stored 1n local storage
408. Subsequent to recerving the encoded brochure file 206,
the user sends the encoded brochure file 206 via the user’s
web browser 400 to the web host site storage 410 (e.g., the
web site host computer).

i

I'he brochure server 226 stores the brochure data 407 1n a
brochure database 424 on the central server 202 once 1t has
been generated as a result of a brochure generation request
404. To venly proper storage of encoded brochure files 206,
the brochure check server 4235 retrieves brochure data 420
from the brochure database 424 and sends a request 416 to
the web host server 404 to retrieve the encoded brochure file
206 from the web host site storage 410. Upon successiul
retrieval of the brochure file 206, the brochure check server
generates and transmits object references 422 created as a
function of the brochure data 420 to the queue manager 302.
The queue manager 302 thereafter updates the central index
to include the generated object references.

The directory structure of the host and web site are used to
determine the relevance of the information 1n the brochure.
Information in a brochure located the root directory will
apply to all sub-directories unless superceded by another
brochure. Information in a directory brochure will apply to
all subdirectories unless superceded by information 1n a sub-
directory brochure. Where a brochure 1s placed determines
for which content the information applies. A web site owner
can have as many brochures as there are pages or directories
in his site. A site owner can request that their site be
excluded from the Index by checking the EXCLUDE box
next to the URL and copying the brochures 1nto the directory
to be excluded.

The host uses the configuration section of the agent pro-
gram to create site brochures, and can create site brochures
for an entire IP address or for any subsection of the site.

US RE42,051 E

9

In addition to the host brochure, a web site owner may
also place a site brochure on his web site. The purpose of the
site brochure 1s to allow the web site owner to provide spe-
cific conceptual or non-html information, which will help 1n
indexing their site.

The web site owner can create a different site brochure for
cach page or directory on the site. For example, 1f the web
site includes pages 1n different languages, the web site owner
should create a site brochure for each language with key-
words and categories that match the language. Once the web
site owner has filled 1 the brochure form, they will click a
button on a web page from the web server at the central
server, and a web server creates an encoded html file that 1s
then sent or downloaded to the site owners computer. Each
encoded brochure file could be given a particular name, such
as brochure—domainname-com-directory-directory-
directory.html, and the site owner 1s 1nstructed to copy the
encoded file 1nto the specified web directory on the site.

At anytime, the web site owner can visit the central server
site, update their brochure, and download a new encoded
brochure. When updating an existing brochure, the current
brochure information for the URL entered will be displayed
to reduce mput time. Any site brochure will supercede the
host brochure information, and information contained in the
site brochure will be assumed to be more current and accu-
rate and will be used by the agent for indexing purposes. A
site brochure that 1s farther down 1n the directory tree from
the root directory will supercede a site brochure that 1s above
it 1n the directory tree. A site owner can request that their
web site be excluded from the index by checking the

EXCLUDE box next to the URL and copying the brochures
into the directory to be excluded.

If the host or web site URL 1s not currently being indexed,
the web server performs the following operations. First, an
automatic email 1s sent to contacts at the host to encourage
the host to install the agent. An automatic email 1s also sent
to a contact person for the web site with a “Thank You™ and a
request that they ask their host to install the agent. In
addition, a retrieval order 1s generated for the central server
to retrieve the brochure file from the web site 1n one hour. I
the retrieval order 1s unsuccesstul, 1t will be repeated 2, 4, 8,
24 and 48 hours later, until successful. If still unsuccesstul
after 48 hours, the retrieval order 1s canceled. By veritying
the presence of the site brochure 1n the specified location,
unauthorized information about a site may not be created by
a third party 1n an attempt to have their site indexed along
with a more popular site. This 1s a common problem with
existing search engines where a third party copies the key-
words from a meta tag 1n a popular site. The bogus site with
copied keywords 1s then submitted to a search engine for
indexing, and when search queries are applied to the search
engine that produce the popular site the bogus site 1s also
produced. This may not be done with the site brochure
because the brochure 1s not an html page available to outside
persons and because 1t 1s encrypted so even 1f the file 1s
obtained the mnformation contained therein 1s not accessible.

Soltware to create brochures and agent programs will be
distributed free to soitware publishers for inclusion in their
web authoring software and to web server manufactures,
publishers and OEMSs for pre-loading on or inclusion with
their products.

FIG. 5 1s a bubble chart of the process executed by the
agent 204 according to one embodiment of the present
invention. As previously mentioned, the agent 204 periodi-
cally executes the 1illustrated process to update itself and to
update the corresponding local index, as will now be

10

15

20

25

30

35

40

45

50

55

60

65

10

described 1in more detail. The process begins i step 500 1n
which the agent verifies that it 1s the most current version of
the agent program. More specifically, 1n step 500 the agent
sends a request 302 to one of the update servers 222 for the
digital signature of the current version of the agent program.
The update servers 222 returns the digital signature 504 for
the most current version of the agent. In step 500, the digital
signature hash of the local agent 1s compared to the returned
digital signature hash to determine whether the local agent 1s
the most current version. In other words, 1f the two digital
signatures are equal, the local agent 1s the most recent
version, while 1f the two are not equal the local agent 1s an
outdated version of the agent program and must be updated.
When the two digital signatures are unequal, the program
goes to step 506 1n which the most current version of the
agent program 508 1s received from the update server 222.
Once the local agent program has been updated, the program
proceeds to step 510. Note that 11 the digital signature of a
local agent program 1s equal to the digital signature 504 of
the most recent version of the agent, the program proceeds
directly from step 500 to step 510.

In step 510, the agent program compares the digital signa-
ture hash for the existing local index previously generated by
the agent program to the digital signature hash stored on the
central server 202 for the existing local index. The agent
program performs this step to synchronize the local index
and the remote local index stored on the central server 202
by ensuring the digital signature of the existing version of
the local index matches the digital signature for the existing
version of the remote local index. If the two digital signa-
tures are equal, the agent program goes to step 312 and
generates and updated local index by evaluating, such as by
tokenizing and parsing, local files 513 on the web host ser-
viced by the agent. Once the updated local index has been
generated, the agent program proceeds to step 514 where the
updates along with the digital signature of the new local
index are transferred to the agent update server 222 on the
central server 202.

If step 510 determines the two digital signatures are not
equal, the agent program goes to step 516 to roll back to a
previous state that matches the local files 513 or to generate a
completely new local index for the web host serviced by the
agent. After the complete new local index 1s generated, the
agent program once again proceeds to step 514 and the
updates are transferred to the agent queue manager 302. As
previously mentioned, comparing the digital signatures in
step 510 synchronizes the local index and remote local
index. Furthermore, this step enables the agent program to
rebuild a completely new local index for the site serviced by
the agent program 1n the event the index 1s lost at the central
server 202. Thus, should the central server 202 crash such
that the central index 1s corrupted and non-recoverable, the
agent programs at the each remote web host will rebuild
their respective local indices, and each of these local indices
will be transferred to central server 202 so that the entire
central index may be reconstructed.

As mentioned above, the agent 204 1s a software program
that a web host downloads from the web servers 214 and
installs on the host’s server. To install the agent 204, the host
runs an agent 1nstallation program, which collects informa-
tion about the web site host and about the site 1tself, and also
creates the web site host’s brochure 206 of non-HTML
information. As part of the installation, the site host sched-
ules a preferred time of day for the agent 204 to automati-
cally index the web site and transfer index updates to the
central server 202. The agent and the queue manager can
work independently or together to reschedule when to per-

US RE42,051 E

11

form and transmit the site update. Resource availability 1s
the primary and any other factor, which may etlect the qual-
ity or efliciency of the operation may be used by the agent
and the queue manager 1n rescheduling updates.

In the preferred embodiment the agent 204 1nmitiates all
communications with the central server over a secure socket
authorized and setup by the site host. But the central server
202 could also mitiate communications or trigger actions of
the agent or retrieve data process by the agent. All data and
program updates sent between the site host and the central
server are sent 1 compressed and encrypted form. During
the normal mdex updating process, the agent 204 1s auto-
matically updated, as will be explained in more detail below.
The site host may recerve a daily email saying the site had
been properly updated or that no update was received and no
action 1s required. The agent 204 also maintains a log of
indexing activity and errors encountered, and this activity
log can be viewed by the site host by opening the agent 204
and accessing the log. Although the agent 204 automatically
indexes the sites on the host at scheduled times, the host can
at anytime 1nitiate an indexing update by opening the agent
204 and manually initiating an index update.

In operation, the agent 204 verifies that the agent program
1s current and that the site index matches the last update
received and successiully added to the central index on the
central server 202. After venfication and updating of the
agent 204 1f required, the agent checks the site for new,
modified or deleted files. The new or modified files are
indexed and the information added to or deleted from the site
index or a list of additions and deletions transactions are
created. The incremental changes to the site index along
with a digital signature of the entire site index are sent to the
central server 202 and the results logged 1n a site activity log
maintained by the agent 204. The agent 204 1s run by either
being manually started by the site host or automatically
started by a scheduler component of the agent.

It 1s not necessary that a local index be maintained at the
site but only that a list of digital signatures representing the
site at the time of the last update be maintained. The digital
signature could be used to determine whether the local site
and the central index are properly synchronized and which
portion of the site had changed since the last successiul
update. Then instructions to delete all references from the
central index 218 to files located at the web host that have
changed or which no longer exist would be sent by the agent
to the queue manager. New references would then be created
for all new or modified files and would be sent by the agent
to the queue manager as additions to the central index 218.

The process executed by the agent 204 will now be
described in more detail. The agent 204 first checks with the
central server 202 for the current version of the agent pro-
gram. More specifically, the agent 204 calculates a digital
signature of the agent program {iles and contacts the central
server 202 over a secure socket. The agent 204 then requests
a digital signature of the current version of the agent pro-
gram files located at the central server 202, and compares the
two digital signatures. If the two signatures match, the ver-
sion of the agent 204 1s current and no update 1s required.
When the two signatures do not match, the current version of
the agent 204 1s downloaded from the central server 202.
Once the current agent 204 1s successiully downloaded, the
new agent program liles are installed and the agent restarted.

At this point, the agent 204 begins the process of updating
the index of the local site. First, the agent 204 determines
whether the last index update was completed and transmitted
successtully. If not, the agent 204 renames the Old—=Site-

10

15

20

25

30

35

40

45

50

55

60

65

12

Index file to Site-Index and the Old-Site-File-List to Site-
File-List. The agent 204 then calculates a digital signature
for the Site-Index file and a signature for the Site-File-List
file and compares each to the digital signatures created at the
end of the last successtul update for Site-Index and Site-File-
List files. If the digital signatures match, the agent 204 sends
them to the central server 202 for comparison and waits for
confirmation.

If the central server 202 does not confirm the match of the
digital signatures (1.¢., the signatures for the Site-Index and
Site-File-List files on the central server 202 do not match
those on the remote site), the agent 204 deletes the Site-
Index and Site-File-List files, and notifies the central server
202 to delete all site records. Next, if the agent 204 was
updated and Fields were added or deleted from the Site
Index file, then the agent updates the Site-Index file to
include the updates. The agent 204 then determines 1f the
Site-File-Lists file exists, and renames the Site-File-List file
to Old-File-List and create a text file named Site-File-List. IT
no Site-File-List exists but Old-File list exists, the agent 204
copies the Old-File-List file to Site-File List. If no Site-File-
List and no Old-File-List files exist, the agent 204 creates a
text file named Site-File-List. The agent 204 then calculates
a digital signature hash for each file on the site and the host
brochure and records the file name including full path and
digital signature hash of all files.

If the central server 202 verifies that the digital signature
hash of the Site-Index file and the digital signature hash for
the Site-File-List file match, the agent 204 verifies the bro-
chure files. More specifically, the agent 204 determines 1 the
file brochure.html file name does not match the directory 1n
which it 1s located. If the file brochure.html 1s not 1n the
expected directory, the agent 204 sends a warning email to
the site contact listed in the brochure, and then renames
brochure.html to WrongDirectorybrochure.html.

If the agent 204 determines that all brochure.html files
match the directory 1n which they are located, the agent 204
deletes a file named Exclude-File-List, creates a text file
named Exclude-File-List, checks brochures for EXCLUDE
sites flags, and adds file names of files to be excluded from
the index to the Exclude-File-List file. The agent 204 then
creates a Deleted-File-List file containing a list of files that
no longer exist on the site in their original location. More
specifically the agent 204 deletes the old Deleted-File-List
file, creates a text file called Deleted-File-List, compares the
Site-File-List file to Old-File-List file and records in the
Deleted-File-List any files 1n the Old-File-List that are not 1n
Site-File-List.

The agent 204 then creates a New-File-List file containing,
a list of files that where created or modified since the last
update. To create the New-File-List file, the agent 204
deletes the current New-File-List file, creates a new text file
called New-File-List, compares the file Site-File-List to the
file Old-File-List and the file Exclude-File-List, and records
in the New-File-List file any files in Site-File-List that are
not 1n the Old-Site-File-List or in Exclude-File-List files.

Next, the agent 204 indexes the corresponding site and
creates a new Site-Index file. More specifically, the agent
204 determines 1f the Site-index file exists, and, 1f yes, cop-
1ies the Site-Index file to an Old-Index file. If the Site-Index
file does not exist, the agent determines 11 the file Old-Site-
Index exists, and if yes copies the Old-Site-Index file to
Site-Index file. If Old-Site-Index file does not exist, the

agent 204 copies a Sample-Site-Index file to the Site-index
file.

The agent 204 then creates a New-Records-Index file and
a Deleted-Records-List file. The agent 204 next removes

US RE42,051 E

13

records of deleted or modified files from the Site index.
More specifically, the agent 204 deletes all records from
Site-Index for files 1n New-File-List, deletes all records from
Site Index for files 1n Deleted-File-List, and records the Host
IP, URL, and record ID Numbers for each record deleted into
Deleted-Records-List.

The agent 204 then runs an indexing program against all
files 1n the New-File-List file and creates a record for each

new key word, phrase, MP3, Video, Movie, Link and bro-
chure information and adds these to the Site-index file. The
agent 204 then copies each new record created to the New-
Records-Index file. If new fields were added to the Site
Index, the agent 204 runs the indexing program against all
files for new field information and creates records in Field-
Update-Index for all information found. The agent 204 then
updates the Site-Index file from the Field-Update-Index file.

At this point, the Site-Index file has been updated, and the
agent 204 calculates a digital signature for the Site-Index
file. More specifically, the agent determines if the Update-
Status file exists, and 1f so opens this file. If the Update-
Status file does not exist, the agent 204 creates a text file
called Update-Status and opens this file. The agent 204 then
calculates the digital signature of the Site Index file, and
records the Site-index digital signature along with the date
and time 1n the Update-Status file. Next, the agent 204 calcu-
lates the digital signature of the Site-File-List file, and
records the Site-File-List digital signature along with the
date and time 1n Update-Status {ile.

Finally, the agent 204 creates a Site-Map file for the sites
serviced by the agent. More specifically, the agent 204 deter-
mines whether the Deleted-File-List or New-File-List con-
tain files, and, 11 ves, the agent deletes the Site-Map file. The
agent 204 then generates a site map for the Site-Map file
from the Site-File-List. Once the Site-Map file has been
generated, the agent 204 sends New-Records-Index and
Deleted-Records-List files to the central server 202. More
specifically, the agent 204 opens a secure connection and
contacts the central server 202. The agent 204 then com-
presses the files to be sent, encrypts these files, and sends the
compressed and encrypted files 1n the New-Records-Index,
Field-Update-Index, Deleted-Records-List, digital signature
for the Site-Index, Site-Map, and the Site-File-List to the
central server 202, which the uses these files to update the
central index. Once the agent 204 has successiully sent this
information to the client server 202, the agent 204 records
the digital signature of the Site-Index file, the time of the
successiul transfer, the date and size of the files transterred
in the Update-Status file, and thereafter deletes the sent files.
The agent 204 then closes the secure connection to terminate
the update process.

FIG. 6 1s a bubble chart 1llustrating the process executed
by the queue manager 302 of FIG. 3 in queuing update
entries and transierring these entries to the remote queue
manager 304. The queue manager 302 receives update
entries 600 from the agent update server 222 and update
entries 602 from the brochure server 228, and places these
update entries in an update queue 604. The entries 1n the
queue 604 are transierred to a queue database 606. Once the
queue 604 1s done receiving update entries 600, 602, which
may be when the queue 1s full or at predetermined intervals,
the queue manager 302 goes to step 608 and retrieves the
queue entries from the queue database 606 and sends them to
the remote queue manager 304. As previously described, the
update entries stored in the queue database 606 are thereafter
processed by the update processing server 306 (see FIG. 3)
to update the local master index on master index sever 218
(see FIG. 3). The queue manager 302 also recerves a deletion

10

15

20

25

30

35

40

45

50

55

60

65

14

request (not shown) from the update processing server 306
and deletes update entries stored 1n queue database 606 1n
response to this deletion request, as will be explained in
more detail below with reference to FIG. 7. The queue func-

tions are preferable implemented using a customized version
of the standard UNIX email handlers, where each inbound
email represents a request for a file or for the content of a

file.

FIG. 7 1s a bubble chart showing the process executed by
the update processing server 306. The process begins in step
700 with the update processing server 306 retrieving queue
entries 700 from the queue manager 304. In the embodiment
of FIG. 7, the queue entries 702 are retrieved periodically so
that 1n step 700 the queue entries for the last N hours are
retrieved. From step 700, the process proceeds to step 704
and the update processing server 306 applies the queue
entries to the master index server 218 which, 1n turn, utilizes
the queue entries 1n updating the master index, as previously
described. Once the queue entries 702 have been applied to
the server 218, the process proceeds to step 706 and the
update processing server 306 applies a deletion request 708
to the queue manager 302 (see FIGS. 3 and 6). In response
the deletion request 708, the queue manager 302 deletes the
update entries stored in the queue database 606 that have
now been applied to the master index server 218. The central
index on the master index server 218 has now been updated
to include entries 1n the queue database 606, so these entries
are deleted since they are now reflected 1n the central index
and thus no longer needed.

FIG. 8 1s a bubble chart illustrating the overall data tlow
between the search engine 202, agent, and brochure compo-
nents of the active indexing system 200. Each aspect of the
overall data flow has already been described 1n a correspond-
ing section above, and thus FIG. 8 will now be described
merely to provide a brief description of the overall data flow
of the indexing system 200 according to one embodiment of
the present invention. The components of the process i FIG.
8 may logically broken into two functional groups, an index-
ing group and a searching group. In the searching group, a
user 800 applies a search request to one of the web servers
214, which processes the search request and applies 1t to
selected ones of the index servers 216, 217. In response to
the applied search request, each of the search imndex servers
216, 217 queries its corresponding local index segment 802
and generates search data. The index servers 216, 217 then
return the search results to the web server 214, which, 1n
turn, provides the user 800 with the search results corre-
sponding to his applied search request.

The web servers 214 also handle version queries from
agents 204 on source sites. Each agent 204 sends a version
check 804 that 1s processed by one of the web servers 214. In
response to the version check 804, the web server 214
returns the digital signature of the most recent version of the
agent 204, and also supplies the updated version 806 of the
agent 204 to the source site 1f an update 1s required.

The remaining components 1n the FIG. 8 are in the index-
ing group. The queue manager 302 recerves updates from
cach of the agents 204 and from the brochure check server
228, which services sites without an agent 204 as previously
described. The queue manager makes update and deletions
to the queue database 602 corresponding to the recerved
updates, and also provides a mirror copy of these updates to
the remote queue manager 304. The update processing
server 306 retrieves the update entries from the queue man-
ager 302, and applies the updates to the master index servers
218. The server 218 updates the master index to include the
applied updates, and the update processing server 306 then

US RE42,051 E

15

sends a deletion request to the queue manager 302 to delete
the corresponding entries from the queue database 602.

Once the master index server 218 has updated the master
index, the server updates the segmented 1index stored on the
search index servers 216, 217 as previously described. Each
of the search index servers 216, 217 updates 1ts correspond-
ing portion of the segmented index 1n response to the
updates from the master index server 218. As previously
mentioned, the entire segmented 1ndex stored on the mdex
servers 216 1s continuously available for processing search
requests even during updating of the segmented index. The
entire segmented 1ndex 1s available due to the redundant
architecture of the servers 216, 217, as previously described.

FIG. 9 1s a functional block diagram of a distributed
search engine 900 according to another embodiment of the
present invention. The search engine 900 includes a central
search engine 902 connected over a network 904, such as the
internet, to a plurality of agents 906, each agent being resi-
dent on a respective server 908. Each agent 906 generates a
list of digital signatures related to retrievable information on
the corresponding server 908 and provides these signature to
the search engine 902 which determines which files to
access for updating 1ts imdex, as will now be explained 1n
more detail. In the following description, the server 908 1s a
standard web server, but one skilled 1n the art will appreciate
that the distributed search engine 900 can be implemented
for a number of other services available on the internet,
including but not limited to email servers, ftp servers,
“archie”, “gopher” and “wais” servers. Furthermore,
although the agent 906 1s shown and will be described as
being on the web server 908, the agent 906 need not be part
of the program which processes requests for the given ser-
vice.

In operation, the agent 906 periodically generates a list of
signatures and accessible web pages, which are then stored
on the local web server 908. The digital signature generated
by the agent 906 could be, for example, an digital signature
of each file on the server 908. The list of digital signatures 1s
then transmitted by the agent 906 to the search engine 902,
or the search engine 902 may retrieve the list from the serv-
ers 908. A digital signature processing component 910 1n the
search engine 902 then compares the retrieved digital signa-
tures against a historic list of digital signatures for files on
the server 908 to determine which files have changed. Once
the component 910 has determined which files have
changed, a spider 912 retrieves only these for indexing.

The digital signatures may be stored 1n an easily acces-
sible file format like SGML. Alternatively, the digital signa-
tures could be generated dynamically when requested on a
page by a page or group basis. This would msure that the
signature matches the current state of the file. In addition,
several new commands would be added to the standard http
protocol. The new commands perform specified functions
and have been given sample acronyms for the purposes of
the following description. First a command GETHSH
retrieves the digital signatures for a given URL and sends the
signatures to the search engine 902. A command CHKHSH
checks the retrieved digital signature for a given URL
against a prior digital signature and returns TRUE 1if the

digital signatures are the same, FALSE 11 not the same, or
MISSING if the URL no longer exists. A command
GETHLS retrieves a list of the valid URLs available and

th_eir associated digital signatures, and a command GETLSH
retrieves the digital signature of the URL list.

Using the above command set, the search engine 902 need
not request the entire contents of a page if that page has

10

15

20

25

30

35

40

45

50

55

60

65

16

already been processed. Furthermore, there 1s no need to
“spider” a site. Instead, the web server 908 provides the valid
list of URLs which can then be directly retrieved. As an
example, consider the following programmatical steps from

the point of view of a search engine. First, given a web host
908, fetch the digital signature of the URL list. If the digital
signature does not match a prior digital signature for the list,
fetch the list of URLs from the web server. Thereafter, com-
pare the list of URLs at the client web server 908 just
retrieved to those stored locally at the search engine 902.
From this comparison, a list of changed URLs 1s determined.
The URLs that have changed are then retrieved and parsed
for keyword and other indexing information. Once the
indexing information 1s obtained, all URL’s which do not
appear 1n the retrieved list and the prior list are deleted from
the search index on the search engine 902.

From the above description, one skilled 1in the art waill
appreciate that 1t 1s not necessary to retrieve all pages on the
web site for every indexing process. Full retrieval of all web
pages 15 necessary only once or if the entire site changes.
This has several effects, the most important being that the
amount of information transmitted 1s drastically reduced.
The above method 1s but one possible implementation or
embodiment. In another embodiment, a list of URLSs on the
search engine could be used and the imndividual checking of
web pages done using the commands given. For example,
the search engine 902 could tell if a page was current by
simply retrieving its signature. If current, no other activity 1s
required. Otherwise, the page might be deleted 1f no longer
present or re-indexed 11 1t has changed.

All content from a single agent/site could be searched for
by a peer system user using the agent name. The search
results could then be displayed to the user 1n a dynamically
created “home page” for the content provider identified by
that agent name. The dynamic home page would include a
listing of every item indexed by the agent with that agent
name and the 1item titles would be displayed along with their
descriptions.

In a conventional search engine, the search engine nor-
mally requests that a web server deliver HIML documents
to the search engine, regardless of whether the contents of
the page have changed since the last recursive search. This 1s
wasteful not only of CPU resources, but very wasteful of
bandwidth which 1s frequently the most valuable resource
associated with a web site. Thus, current search engines and
content directories require regular retrieval and parsing of
internet-based documents such as web pages. Most search
engines use a recursive retrieval technique to retrieve and
index the web pages, indexing first the web page retrieved
and then all or some of the pages referenced by that web
page. At present, these methods are very inefficient because
no attempt 1s made to determine 1f the information has
changed since the last time the information was retrieved,
and no map of the information storage i1s available. For
example, a web server does not provide a list of the available
URLs for a given web site or series of sites stored on the
server. Secondly and most importantly, the web server does
not provide a digital signature of the pages available which
could be used to determine 1f the actual page contents have
changed since the last retrieval.

Another alternative embodiment of the process just
described 1s the automated distribution of a single web site
across multiple servers. For example, a web site would be
published to a single server. Periodically, a number of other
servers would check the original server to see if any pages
have been added, removed or changed. If so, those pages
would be fetched and stored on the requesting server.

US RE42,051 E

17

Another alternative embodiment 1s the construction of meta
indexes generated as lists of URLs from many different web
servers. Such a meta index would be useful as a means of
providing central directory services for web servers or the
ability to associate sets of descriptive information with sets
of URLs. The method could also be used to create directory
structure maps for web sites, as will be appreciated by one
skilled 1n the art.

The indexing system 200 may be used not only on the
global communications network but on corporate Intranets
as well. A typical corporate intranet includes a central
location, such as a corporate headquarters, at which a central
searchable database 1s maintained, and a number of remote
locations, such as regional offices or stores, coupled to the
central location through a network of intranet. Each remote
location transiers data to the central location for storage 1n
the central database. The remote locations may also search
the central database for desired information.

In transierring data from each remote location, data 1s
typically stored at the remote location and then transierred to
and replicated at the central location. One of four methods 1s
generally used to update the central database, as previously
discussed above under the Background section. First, all
remotely stored data 1s copied over the intranet to the central
location. Second, only those files or objects that have
changed since the last transier are copied to the central loca-
tion. Third, a transaction log 1s kept at the remote location
and transmitted to the central location, and the transaction
log this then applied at the central location to update the
central database. Finally, at each remote location a prior
copy ol the local data 1s compared to the current copy of the
local data to generate a differential record indicating
changes between the prior and current copies, and this differ-
ential record 1s then transierred to the central location and
incorporated 1nto the central database.

Each of these methods relies on duplicating the remote
data, which can present difficulties. For example, redundant
hardware at the remote and central locations must be pur-
chased and maintained for the storage and transier of the
data over the intranet. Data concurrency problems may also
arise should transmission of differential data from the
remote locations to the central location be unsuccesstul or
improperly applied to the central database. Furthermore, 1f
the intranet fails, all operations at remote locations may be
forced to cease until communications are reestablished. A
turther difficulty 1s the author’s loss of authority over his
document and the responsibility for retention and data man-
agement decisions. In a centralized intranet, unregulated
retrieval of objects from the central database to local storage
can creates version control problems. Difficulty in handling
revisions to an object may also arise 1n such a centralized
system, with simultaneous revision attempts possibly caus-
ing data corruption or loss. Finally, in centralized system the
size ol the central database can grow to the point where
management of the data becomes problematic.

With the architecture of the indexing system 200,
everything, including each field 1n a local database, 1s treated
as an object. Instead of copying each object to a central
location, an object reference 1s created at each local site and
sent to a cataloging location or locations. The objects are not
duplicated in a monolithic central database. One advantage
to this architecture 1s that the decision of whether to expose
the existence and classification of local objects becomes the
responsibility and choice of the author, rather than a generic
decision. In the system 200, the implementation of retention
rules and the physical location of the objects remain with the
author. The searchable central catalog merely references the

10

15

20

25

30

35

40

45

50

55

60

65

18

distributed objects, eliminating the need to make full copies
and therefore manage a large storage system. Each local site
generates and transiers information to the central server 202,
or to a plurality of central servers for use in a searchable
catalog.

FIGS. 10 and 11 are diagrams illustrating operation of a
distributed accounting and inventory system on an intranet
1000 according to one embodiment of the present invention.
In FIG. 10, the intranet 1000 1ncludes three different physi-

cal locations 1002, 1004, and 1006 including catalogs 1008,
1010, and 1012, respectively. Each location 1002-1006 also
includes a source of objects (not shown in FIG. 10) that
corresponds to an inventory of items at that location. The
sources objects or sources for the locations 1002, 1004, 1006
are designated sources 1002, 1004, and 1006, respectively,
in records of the respective catalogs 1008-1012. In the
example of FIG. 10, the source 1006 1s empty (i.e., no mven-
tory items at location 1006). Each of the catalogs 1008—-1012
1s a catalog of object references to objects 1n the source at the
corresponding location and to objects at the other locations.
For example, the catalog 1010 at location 1004 includes a
record for part no. 1, which is part of the imnventory or source
1004 at this location. The catalog 1010 further includes an
object reference, as indicated by the arrow 1014, for part no.
3, which 1s part of the inventory or source 1008 at location
1002. The catalog 1010 does not store a duplicate copy of
the information in the record for part no. 3, but instead
merely stores a reference to that object.

FIG. 11 1s another diagram of the intranet 1000 expressly
illustrating the sources 1002-1006 on the locations
1002-1006, respectively. The source 1006 1s shown as con-
taining no objects, such as may be the situation where the
location 1006 1s at a headquarters of a corporation. The
sources 1002 and 1004 each include objects or mmventory
items, such as where these locations are remote offices of the
corporation. This example 1llustrates that records for objects
are not duplicated on each location 1002-1006, but instead
object references 1n each of the catalogs 1008-1012 point to
objects stored 1n remote sources.

The mtranet 1000 provides several advantages 1n account-
ing or mventory control applications, and others. A conven-
tional intranet requires the centralization of the catalog for
purposes of control. The intranet 1000 separates the control
of the physical inventory (objects in the sources 1002—-1006)
from accounting control. Since the whole mtranet includes
only objects and object references, then central reporting
and planning can occur to the location 1006, but such report-
ing merely corresponds to data being read from the remote
locations 1002, 1004, and no data 1s modified. In the intranet
1000, each location 1002-1006 functions as both a server
and a client, and minor latency between the locations 1s not
critical because within each location accounting and physi-
cal control remain linked. Latency need be considered only
where authority to sell or transier imventory (objects 1n the
sources 1002—-1006) 1s separate from the physical control of
the iventory.

With the intranet 1000, the author of an object has physi-
cal control over that object and thus may decide what objects
are to be exposed for searching by other locations. As a
result, the itranet 1000 1s well suited for high-security man-
agement systems that typically require elaborate security
procedures to prevent unauthorized duplication of data. For
example, assume there are 200 remote information genera-
tors (offices, salespeople, etc.). With the intranet 100, data
access to mnformation in the objects 1s maintained through
the use of the references available to both the central location
and the remote.

US RE42,051 E

19

The intranet 1000 also provides a more effective means to
organize and describe organizational data, creating a much
more flexible environment for data retention handling. A
data retention handling system has two primary goals: 1)
climinate obsolete data to prevent confusion with current
data and reduce storage requirements; and 2) reduce liability.
Typically, hierarchical storage management (“HSM”) sys-
tems have been used for these purposes. A HSM system
stores frequently-used or relatively new files on high-speed,
immediately available, and most expensive storage media.
Older files or files that are not as frequently used are stored
on “near-line” storage media that may consist of automati-
cally mounted tape drives or CD-ROMSs. OIld files or files
that are almost never used are stored off-line on tape or other
inexpensive high-capacity media. Some files may eventually
be deleted if they fall within certain parameters of usage,
type, or age. The intranet 1000 overcomes these potential
difficulties of a HMS system. For example, in the itranet
1000 duplicate copies of records are not maintained at each
location, thereby eliminating the need for hierarchical stor-
age media to provide the required access to stored records.

The agent 204 may also generate ratings for objects stored
on the associated sites so that users may filter their searches
based upon the generated ratings. For example, in one
embodiment, an owner of a web site provides a rating of his
site, such as a “G,” “R,” or “X” rating. In addition, the web
host, on which the agent 204 runs, also provides a rating that
the host believes applies to the site. The agent 204 then
parses the pages on the site and looks for adult content “trig-
ger” words, such as “XXX” or “XXX-Rated.” If the agent
204 finds enough occurrences of such trigger words, the
agent “flags” the web site for review to determine the correct
rating for the site. To rate the site, the agent 204 compares
the words 1n the web pages to words 1n a list of ratings
values. The list of ratings values may be, for example, words
that are generally found on adult web sites, such as profane
and sexually explicit words. The list of ratings values may be
generated by a human or may be automatically generated by
the agent 204. To automatically generate the list, the agent
204 could, for example, parse known adult web sites. Such
known adult web sites could be identified by determiming,
those sites 1n the catalog that include the phrases “adult con-
tent” or “X-rated.” Once these sites are 1dentified, the agent
parses the pages and determines frequently used words on
such pages, and may also determine the frequency with
which such words occur on these pages. The frequently used
words and associated frequencies are then compiled to form
the list of ratings values. After flagging web sites for review,
the review may be either through human review of the web
site or through automated review performed by the agent
204. In automated review of flagged web sites, the agent 204
could, for example, determine the frequency of occurrence
of words 1n the list of ratings values, and then set the rating
of the web site as a function of the frequency. For example, 1f
the frequency 1s greater than some threshold T1, the web site
1s rated “R.” and 11 greater than a second threshold T2, where

12>T1, the site 1s rated “X.”

One proposed system for rating web pages on the Internet
1s described 1mn A Best Practices Model by Members of the
Information Society Project at Yale Law School, J. M.
Balkin, Beth Simone Noveck, Kermit Roosevelt (Jul. 15,
1999), which may be found at http://webserver.law.vale.edu/
infosociety/. In this proposed system, three layers are imple-
mented to provide for rating web pages. The first layer
includes a basic vocabulary of, for example, thirty to sixty
terms that are used in rating a web page by a first party,
typically the site owner containing the web page. The second

10

15

20

25

30

35

40

45

50

55

60

65

20

layer includes rating templates developed to retlect a particu-
lar 1deology. Third parties, such as the NAACP or Christian
Coalition, would develop such templates to reflect a particu-
lar value system. The templates would include terms 1n the
basic vocabulary being categorized and scalar values
assigned to each item to reflect the value system. Finally, 1n
layer three individuals could customize or modily a template
to suit their individual values. For example, a template
developed by the Christian Coalition could be further modi-
fied to 1include scalar values for web sites designated as racist

by the NAACP.

The mdexing system 200 could utilize such a rating sys-
tem to perform filtering of search results at the central server
202. For example, user’s browsers could be registered with
the central server 202, and part of this registration would
include selection of a template and any desired modifica-
tions to the selected template. Thereafter, whenever the
user’s browser applies a search query to the central server
202 the browser registration 1s 1dentified and the search
results generated in response to the query are “filtered”
according to the template and any template modifications
associated with the registered browser.

The indexing system 200 also may perform adult-content
locking. In conventional search engines, adult-content web
sites are automatically provided in response to applied
search queries. The only way for a user to filter adult-content
1s through a filter on his browser. Thus, current search
engines are “opt-in” only 1n that the search engine does not
preclude adult-content pages from being returned 1in
response to applied search queries. Conversely, in one
embodiment of the indexing system 200, the user 1s auto-
matically opted out of recerving adult-content web pages in
response to applied search queries. The user must reverse
this default “opt-out” status and elect receive adult-content
web pages 1 the system 200. This could be done, for
example, by registering a browser with the system 200 so
that when the registered browser 1s 1dentified adult-content
web sites will be returned 1n response to applied search que-
ries. Alternatively, a machine level lock using the computer
or machine i1dentification, such as the CPU or Windows
identification number, could be utilized. In this approach,
regardless of the browser being utilized on the computer,
adult-content 1s either returned or not returned in response to
applied search queries. This approach may be particularly
desirable for parents who want to preclude their children
from accessing adult-content since a child cannot merely use
a new browser on the same machine and thereby circumvent
the filter the parent has on his or her browser.

The indexing system 200 may also perform ranking of
web pages having references 1n the central index. First, the
agent 204 may perform positional and contextual rankings
for particular words 1n the web pages on a site. The posi-
tional rankings assign a ranking value to a word based upon,
for example, the location of the word 1n the web page and the
position of the word relative to other words 1n the page. The
contextual ranking 1s determined using contextual informa-
tion about the site contained in the brochure 206. For
example, if a word 1n a web page corresponds to a category
as listed 1n the brochure 206, the word will be assigned a
higher ranking. In addition to rankings generated by the
agent 204, the central server 202 also generates rankings for
the central index. For example, the central server 202 may
generate rankings based upon whether a page 1s a source or
reference to the desired data. Rankings may also be deter-
mined based upon user input such as the usage or popularity
of a site as measured by how often the site 1s linked as the
source site 1 other sites, or through positive comments

US RE42,051 E

21

entered by users about the context or ranking of a site. All
the methods of ranking just described are know as static
rankings, meaning that the ranking 1s determined before a
particular search query 1s applied.

In addition to static rankings at the central server 202, the
central server may also perform dynamic ranking of search
results. Dynamic rankings are a function of the applied
search query, and are not predetermined and independent of
the query. For example, 11 the applied search query 1s “red

barn,” the word “barn” 1s probably more important than
“red” so search results including the word “barn™ will have
their ranking increased relative to those containing only the
word “red.” Furthermore, ratings could be applied to search
queries to create another type of dynamic ranking at the
central server 202. Finally, a user may select which ones of
the previous methods of rankings should be applied 1n rank-
ing search results generated 1n response to his applied query.
For example, a user could specity that his search results are
to be ranked only on the basis of popularity, or only on the
basis of positional and contextual rankings and the applied
search query. Another example for the use of dynamic rank-
ing 1s using the information in the brochure 206, the search
results can be ranked dynamically based on the geographic
distance from the searcher.

The server architecture of the system 200 will now be
described. The server architecture provides a number of ser-
vices which support the management and use of index infor-
mation. The system 1s divided into several components
which can be run on different machines, as needed, 1n a truly
distributed architecture. The design must scale well and be
seli-healing wherever possible. To make this possible, Jini
technology plays an important role 1n the architecture and
services are exposed using that infrastructure. As compo-
nents are brought online, they advertise that their existence
to the local Jin1 lookup service. This information 1s auto-
matically propagated to services who need access to other
services and handshaking brings elements mto the Jini1 com-
munity as they are announced. If non-critical parts of the
system become unavailable, the system 1s able to compen-
sate by distributing load to other machines hosting the nec-
€ssary Services.

A load balancer allows round-robin distribution of incom-
ing tratfic to web servers and the agent listener. The web
servers provide user services like account registration, agent
downloads, brochure management, and search capabilities.
The AgentlListener 1s a secure socket listener that manages
agent connections. One of the components 1s a
UserAccessService, which controls access to the Brochure-
Service. Users can make queries on the search index. These
are handled by the QueryDispatchManager, which delegates
subqueries to appropriate IndexSegmentServices. Incoming
information from agents 1s added to the Message(QueueSer-
vice and popped oil by the UpdateManagerService, which
coordinates information in the BrochureService to ensure we
have the latest updates. Agent-collected changes are added
and/or removed 1n the MasterIndexService.

FIG. 20 shows request/response tlow with the direction of
arrows. The intent 1s to make clear who 1s asking for the
execution of respective services. The web server, serving up
static and dynamic content through Servlets and Java Server
Pages, can commumnicate with the UserAccessService, Bro-
chureService and the QueryDispatchService, but nothing
clse. The AgentListener can talk to the UpdateManagerSer-
vice and the Message(QueueService only. An IndexSegment-
Service 1s able to mitialize 1tself by asking from imnformation
from the MasterIndexService. Finally, the UpdateMan-
agersService can talk to the BrochureService, MessageQueue

5

10

15

20

25

30

35

40

45

50

55

60

65

22

service and the MasterIndexService. Its job 1s to keep the
MasterIndexService up to date by processing mcoming
agent messages.

Because we are using Jini, the order 1n which services are
brought up can determine which other services can operate,
but does not restrict that order 1n any way. If an UpdateMan-
agerService 1s unavailable, for example, the system will not
process updates from the message queue, but processing will
resume as soon as the UpdateManagerService 1s brought up
again. As long as more than one instance of a given service 1s
available, the system can discover those services
automatically, as they are brought online. An IndexSegment-
Service 1s associated with a given IndexSegmentRange,
which determines the prefix character range for the index
content.

When an IndexSegmentService 1s brought online, i1t auto-
matically becomes available to the QueryDispatchService. IT
one of these services are reinitialized periodically, the update
will be completely transparent, so long as other IndexSeg-
mentService cover the same IndexSegmentRange. This
might be a single server or may be distributed arbitrarily
across a number of IndexSegmentService mstances. So long
as a QueryDispatchService instance 1s available to the web
servers, and suilicient IndexSegmentService instances are
available to cover the full range of possible tokens, the sys-
tem 1s capable of executing queries.

The data structures are critical to the correct operation of a
complex system. The following description outlines the
more important structures that represent the means by which
subsystems may interact or store their information persis-
tently in the system 200.

Persistent information 1s stored 1n a database or in tempo-
rary files on the system 200. The database tables relate to
cach other as shown 1n FIG. 21.

The packages presented in FI1G. 22 are directly associated
with services, components, or conceptual groupings in the
system 200. Major services are represented by their own
package, with supporting classes included. Components are
given separate packages where applicable. Some services

and components accomplish the same tasks and are,
naturally, in the same package. Supporting classes, such as
database, networking and servlets are grouped into concep-
tual packages for clarty.

Note that the packages are currently presented in alpha-
betical order, but may be reorganized 1n a later revision to
reflect the three tiered nature of the architecture of the sys-
tem 200. Low level utility packages should be listed first,
followed by component/manager packages, Jini service
packages, and finally independent applications.

In FIG. 23, packages are categorized 1n three ways. They
are either low-level utility packages, components, applica-
tions and services or user interface elements. Support
packages, like the database, catalog, html and xml packages,
provide a foundation for other program functionality. A few
of the services, the message and index services, for example,
are grouped as shared because several of their classes pro-
vide functional capabilities between both the agent and
server elements. The brochure package i1s also shared. The
application and service level packages construct the agent
and the server-side Jin1 services. Taken together, the classes
in these packages function together as a complete,
integrated, distributable system.

Referring to FIG. 23, user interface elements are grouped
into the following packages. The com.activeindexing.ui.app
package contains classes related to console-based interfaces.

The com.activeindexing.ui.app package contains classes
related to web-based user interfaces and contains classes

related to application user interfaces.

US RE42,051 E

23

The agent 204 has its own package as shown 1n FIG. 24.
The agent 204 has 1ts own package primarily for distribution
reasons.

The agent package, com.activeindexing.agent contains
classes related to the host agent.

Referring to FIG. 23, the collection of server of packages
provides high level server-side Jini services to the system.

FIG. 25 illustrates the com.activeindexing.server.access
package contains, which classes related to the UserAc-
cessService.

The com.activeindexing.server.database package of FIG.
23 contains classes related to database access and record
handling and 1s shown in more detail 1n FIG. 26.

Referring to FIG. 23, the com.activeindexing.server.query
package contains classes related to the Query-
DispatchService, as shown in more detail in FIG. 27.

The com.activeindexing.server.servlet package contains

classes related to Servlets and web servers, as shown 1n more
detail in FI1G. 27.

The com.activeindexing.server.update package of FIG. 23

contains classes related to the update manager, as shown 1n
more detail 1n FIG. 28.

Referring to FIG. 23, the shared package contains ele-
ments which can act as components within the system, used
by one or more services or applications.

The com.activeindexing.shared.brochure package 1is
shown 1n more detail in FIG. 29 and contains classes related
to Brochure handling.

The com.activeindexing.shared.index package of FIG. 23
contains classes related to mdexing and includes the Index-
SegmentService as shown 1in more detail in FIG. 31.

The com.activeindexing.shared.message package of FIG.
23 contains classes related to the MessageQueueService as
shown 1n more detail 1n FIG. 32.

The com.activeindexing.shared.rating package of FIG. 23

contains classes related to rating systems, as shown 1n more
detail 1n FIG. 33.

The com.activeindexing.shared.schedule package of FIG.
23 contains classes related to the ScheduleManager, as
shown 1n FIG. 34 in more detail.

The com.activeindexing.shared.signature package of FIG.
23 contains classes related to the file signatures and hash
calculations, as shown 1n more detail in FIG. 34.

The com.activeindexing.shared.validate package of FIG.

23 contains classes related to field validation, as shown in
more detail in FIG. 35.

Retferring to FIG. 23, the document-related packages,
com.activeindexing.doc.html, contains classes related to
HTML tokenizing and parsing, as shown in more detail 1n

FIG. 36.

The com.activeindexing.doc.report package of FIG. 23
contains classes related to reporting, as shown 1n more detail

in FIG. 37.

The XML package of FIG. 23, com.
activeindexing.doc.xml, contains classes related to XML file
management as shown in more detail 1n FIG. 38.

The utility package of FIG. 23 contain low-level utility
packages which can be used by any other package.

The config package, com.activeindexing.util.config, con-
tains classes related to configuration file handling, as shown
in more detail 1n FIG. 39.

The I/O package of FIG. 23, com.activeindexing.util.io,
contains utility classes related to mput/output operations as
shown 1n more detail 1n FIG. 40.

10

15

20

25

30

35

40

45

50

55

60

65

24

The j1m1 package of FIG. 23, com.activeindexing.util.jini,
contains classes related to Jini1 services as shown in more

detail in FIG. 41.

The log package of FIG. 23, com.activeindexing.util.log,
contains classes related to the log files, as shown 1n more
detail 1n FIG. 42.

The network package of FIG. 23, com.
activeindexing.util.net, contains utility classes related to

networking, as shown in more detail 1n FIG. 43.

The snmp package of FIG. 23, com.
activeindexing.util.snmp, contains classes related to the

Simple Network management Protocol, as shown in more
detail 1n FIG. 44.

The above description does not include user interface, the
XML subsystem, transactions for change requests, or a mes-
sage format, but one skilled in the art will understand suit-
able implementations for each of these components.

FIG. 45 1s a functional data flow diagram illustrating an
alternative embodiment of the central cataloging site of FIG.
2. In FIG. 45, a web server 4700 1s the main gateway for all
agent 204 program update requests, agent program
downloads, and search requests. An update batch processor
4702 receives, stores, and applies update batches created by
remote agents 204, and also transmits copies of the batches
to redundant remote catalog sites. A remote update batch
processor 4704 receives, and applies batches recerved from a
master catalog site to a local index server for the purposes of
redundancy. An index server 4706 stores all search index
information 1n a series of database segments, and creates
result sets from queries applied to 1t as a result of search
requests received by the web server 4700.

The system of FIG. 45 includes an agent program storage
arca 4708 containing copies of agent 204 programs and the
digital signatures of those programs for the various host
operating systems which use agents to generate web site
updates. An update batch storage arca 4710 contains the
received update batches transmitted by agent programs 204
on remote hosts, and these batches are deleted after process-
ing. An index segment storage area 4712 contains a subset of
the total index database for the index server 4706. For
example, a single segment might contain the keyword fields
for all of the keywords beginning with the letter “A”.
Typically, these storage areas will be placed on high-speed
RAID storage systems. An index segment storage twin area
4’714 1s 1dentical to the storage area 4712. The purpose of the
twin area 4714 1s to provide access to existing mdex infor-
mation while the corresponding index segment storage area
1s being updated. This permits updates to be applied to a
segment without requiring record locking. The index server
4706 1s simply notified as to which segment areas are avail-
able for search processing. Once updated, the areca 4712 or
4714 becomes available again. An index signature storage
arca 4716 that stores the current digital signature of the
index for a particular site serviced by an agent 204 on a
remote host.

In operation of the system of FIG. 45, the agent program,
upon starting on a remote host, will query the web server
4700 to determine 1f the local agent program digital signa-
ture matches that of the agent program digital signature
stored at the catalog site. If the local agent 204 program
determines that the digital signatures of the agent programs
do not match, the agent program will retrieve a new copy of
itsell from the web servers 4700 and restart itself after per-
forming the appropriate local operations. Before commenc-
ing local processing, the agent program 204 checks the digi-
tal signature of the existing site index on the catalog site with

US RE42,051 E

25

the digital signature of the site stored locally. I the two
signatures match, a differential transmission of catalog
information will occur. Otherwise, the entire catalog will be
regenerated and transmitted, and the catalog site will be
mstructed to delete any existing catalog entries for the site.
Once a differential or full catalog update has been generated,
the agent program 204 contacts the update batch processor
4702 at the catalog site and transmits the contents of the
update. Upon recerving confirmation of receipt, the agent
program 204 performs clean up and post-processing
operations, then suspends itsell until the next processing
cycle.

The update processor 4702 periodically updates the index
segments on the index server 4706. All updates recetved are
applied as batches to retain data integrity on the index server
4706. The update processor 4702 separates update informa-
tion as required to match the segments on the index server
4’706, then updates each segment storage area 4712 and each
segment storage twin area 4714. While a segment storage
arca 4712, 4714 1s being updated, 1ts counterpart 1s available
for search request processing. Once all updates have been
applied, the digital signature of the index for the site is
updated in the index signature storage arca 4716 and the
batch 1s deleted from the update batch storage area 4710.

In processing search requests, the web servers 4700
receive and interpret the search requests from remote portals
or web browsers. Each search request 1s preprocessed to
divide the request into sub-requests as required for each
index segment, then the index server 4706 1s requested to
perform search queries on each relevant segment. More than
one index segment may be queried simultaneously. The
index server 4706 determines which index segment storage
arcas 4712, 4714 arc available for use, applies the search
request, and transmits the results to the web server 4700
which, 1n turn, collects and collates all search results and
transmits these results back to the requesting system 1n a
formatted manner.

According to another embodiment of the agent 204, the
agent calculates a value representing the distance and text
between objects and thereby determines which objects at a
site are most likely to relate to each other. At the catalog site,
these relationship values are combined with the relationship
values from other sites to create a relationship value table.
This relationship value table represents the likelithood of an
object occurring together with another object. This table
may be used to refine searches and create relevance ranking.

It 1s to be understood that even though various embodi-
ments and advantages of the present invention have been set
forth 1n the foregoing description, the above disclosure is
illustrative only, and changes may be made 1n detail, and yet
remain within the broad principles of the mnvention.

Therelore, the present invention 1s to be limited only by
the appended claims.
The mvention claimed 1s:

1. A computer system for peer-to-peer file sharing com-

prising;:

a server computer having an index of information about
files that reside on a plurality of peer computers, the
server computer selectively coupled to the plurality of
peer computers by a network;

a plurality of agent programs running on at least two of
the plurality of peer computers and operable to transmit
index information to the server computer and operable
to transmit a requested file; and

a file sharing program running on the server computer and
operable to perform centralized searches based on the

10

15

20

25

30

35

40

45

50

55

60

65

26

index information transmitted to 1t across the network
by the agent programs, to store peer computer file
requests 1dentifying a requested file transmitted across
the network by a requesting peer computer of the plu-
rality of peer computers, the requested file being refer-
enced 1n the index information, and to direct a peer-to-
peer computer connection for the purpose of
exchanging files between the requesting peer computer
and a storing peer computer storing the requested file
upon detection of connection of the storing peer com-
puter to the server.

2. The computer system of claim 1, wherein the server
computer 1s also a peer computer.

3. The computer system of claim 1, wherein the contents
of at least some of the files stored on a peer computer com-
prise nontextual data having meta data that comprises one or
more vectors extracted from the files.

4. The computer system of claim 1, wherein each agent
program creates the index information for selected files on
cach corresponding peer computer, the selected files selected
by user 1mput.

5. The computer system of claim 1, wherein each agent
program creates the index information for selected files on
cach corresponding peer computer, the selected files selected
by a computer algorithm.

6. The computer system of claim 1, wherein the agent
program comprises a utility program that 1s resident 1n an
operating system on the corresponding peer computer.

7. The computer system of claim 1, wherein the file shar-
ing program comprises a utility program that 1s resident 1n an
operating system on the corresponding server computer.

8. The computer system of claim 1, wherein the file shar-
ing program 1s further operable to direct transfer of the
requested file from the storing peer computer to the server
upon detection of connection of the storing computer to the
server when the requesting peer computer 1s not connected
to the server, the file sharing program operable to transmit
the requested file from the server to the requesting peer com-
puter upon detection of connection of the requesting peer
computer to the server.

9. A computer system for peer-to-peer file sharving com-
prising:

a server computer stoving an index of information about

files that reside on a plurality of peer computers, the
server compuiter selectively coupled to the plurality of

peer compiiters by a network;

wherein the server computer stores a file shaving program

that is operable to:

perform centralized seavches based on index informa-
tion transmitted to it across the network by agent
programs running on two or move of the plurality of
peer computers, each agent program opervable to
transmit index information regarding one ov more
files to the server computer and further operable to
transmit one of the one ov move files to a peer com-
puter in vesponse to a vequest from that peer com-
puler,

store file requests that identifv a requested file and that
are transmitted across the network by a requesting
peer computer of the plurality of peer computers, the
requested file being referenced in the index of infor-
mation; and

divect a peer-to-peer computer connection for the pur-
pose of exchanging files between the requesting peer
computer and a stoving peer computer stoving the
requested file, wherein said peer-to-peer computer
connection is dirvected upon detection of connection
of the storing peer computer to the server.

US RE42,051 E

27

10. A system, comprising:

a server system stoving a central index of information for
files that reside on a plurality of peer computers and
that are available for peer-to-peer file sharing, wherein
the server system is selectively coupled to the plurality
of peer computers by one or more networks, wherein at
least two of the plurality of peer computers have an
agent program running on them that is operable to:
transmit index information to the server system to

update the central index; and
transmit a requested file to a peer computer system to
Jacilitate peer-to-peer file sharing;

wherein the server system is configured to execute a file
sharving program that is operable to:

in response to queries, perform searches for files based 13

on the central index;

store file vequests from requesting peer computers of

the plurality of peer computers, wherein the
requested files arve rveferenced in the central index,
and wherein the storved file vequests include a first
request from a first of the plurality of peer computers

for a first file stored by a second of the plurality of

peer computers; and

upon detecting that the second peer computer is con-
nected to the server computer, divect a peer-to-peer
connection between the first and second peer com-
puters to exchange the first file.

11. The system of claim 10, further comprising the plural-
ity of peer compuiters.

12. The system of claim 10, wherein the server system is
one of the plurality of peer computers.

13. The system of claim 10, wherein the second peer com-
puter is located behind a firewall, and wherein the peer-to-
peer connection includes the second peev computer sending
a message to the first peev computer with the vequested first
file as an attachment to the message.

14. The system of claim 10, wherein the first file is
exchanged anonymously between the first and second peer
compuliers.

13. The system of claim 10, wherein the one or more net-
works include the Internet.

16. The system of claim 10, wherein the one or more net-
works include an intranet.

17. The system of claim 10, wherein the server system
includes one or more computer systems.

18. The system of 10, including a secondary DNS system
configured to map names of the plurality of peer computers
to IP addresses of the plurality of peer computers.

19. The system of claim 10, wherein the plurality of peer
computers includes mobile devices.

20. The system of claim 10, wherein the file sharing pro-
gram is operable to:

receive the first file at the server system from the second
peer computer when, upon the second peev computer
being detected as connected to the server system, the
fivst peer computer is detected as not being connected
to the server system; and

upon the first peer computer subsequently rve-connecting
to the server system, transmit the first file from the
server system to the first peer computer.

21. A server system selectively coupled to a plurality of

peer compiuters via one or more networks, wherein the
server system stores program instructions executable to:

maintain a central index of files stoved on various ones of 65

the plurality of peer computers and that ave available
for peer-to-peer file sharing;

28

receive, from peer computers within the plurality of peer
computers, vequests for files referenced in the central
index and stoved on various ones of the plurality of peer
compuiers;

5 store one ov more of the veceived requests that are for files
stored on peer computers that ave not currently con-
nected to the server system;

detect that a first peer computer has connected to the
server system, the first peev computer stoving a first file
that is the subject of a stored file request from a second
peer compiiler;

10

in response to said detecting, divect an anonymous peer-
to-peer connection between the first and second peer
computers to shave the first file.
22. The server system of claim 21, wherein the server
system stoves program instructions exectutable to:

after detecting that the first peer computer has connected
to the server system, determine that the second peer
computer is not curvently connected to the server sys-

20 len;

in vesponse to determining that the second peer computer
is not currently connected to the server system, store
the first file at the server system until detecting that the
second peer computer has rve-connected to the server

25
system,; and

transfer the first file to the second peer computer upon
said detecting that the second peer computer has
re-connected to the server system.

23. The server system of claim 21, wherein the first peer
computer is located behind a firewall, and wherein the peer-
to-peer connection includes the first peer computer sending
an email message to the second peer computer, wherein the
email message includes the first file as an attachment.

24. The server system of claim 21, wherein the server
system is coupled to a system of computers configured to
map names of the plurality of peer computers to addresses of
the plurality of peer computers.

25. The server system of claim 21, wherein the server
svstem is a distributed system.

26. The server system of claim 21, wherein the server
system stores a plurality of files available for peer-to-peer
file shaving with the plurality of peer computers.

27. A method, comprising:

30

35

40

maintaining, at a server system, a centrval index of files
stored on a plurality of peer computers coupled to the
server system via one or more networks;

45

the server system receiving, from a first of the plurality of
peer compuiters, a request for a first file veferenced by
the central index, wherein the first file is stored by a
second of the plurality of peer computers that is cur-
rently not connected to the server system;

50

upon detecting that the second peer computer has con-
nected to the server system, the server system divecting
a peer-to-peer connection between the first and second
peer computers to share the first file.
28. The method of claim 27, wherein the peer-to-peer con-
nection is anonymous and made via the Internet.
29. The method of claim 27, further comprising accessing
60 a secondary domain system configurved to map names of the
plurality of peer computers to their corresponding

addresses.
30. The method of claim 27, further comprising:

upon determining that the first peer computer is not cur-
rently connected to the server system:
divecting the second peer computer to transmit the first
file to the server system,; and

55

US RE42,051 E
29 30

transmitting the first file from the server system to the upon the first peer computer comnnecting to the server
first peer computer when the first peer computer system, the first peer computer receiving a request for
re-connects to the server system. the first file from the server system;
31. A computer-readable memory medium stoving pro- responsive to the vequest from the sevver system, the first
gram instructions executable by a sevver system to: 5 peer computer sharing the requested first file with the
maintain a central index of files stored on a plurality of second peer computer over apufblfc _HEIWO?’_;C |
Dpeer computers: 35. The method of claim 34, wherein said sharing includes

the server system transmitting the request first file to the
second peer computer if the second peer computer is not
connected to the server system when the first peev computer
connects to the server system.

36. The method of claim 34, wherein said sharing is

receive, from a first of the plurality of peer computers, a
request for a first file veferenced by the central index,
wherein the first file is stored by a second of the plural- 1°

ity of peer computers that is curvently not connected to
the server system;

anonymous.
upon detecting that the second peer computer has con- 37%} The method of claim 34, wherein the first and/or sec-
nected to the server system, direct a peer-to-peer con- ond peer computers are mobile devices.
nection between the first and second peer computers to > 38. A method, comprising:
share the first file. a first of a plurality of peer computer systems requesting a
32. The computer-readable memory medium of claim 31, first file from a server system, wherein the server system
further storing program instructions executable by the com- stores a central index of files residing on various ones
puter system lo: of the plurality of peer computer system, wherein the
upon detecting that the second peer computer has con- 20 first file vesides on a second of the plurality of peer
nected to the server system and detecting that the first computer systems that is not curvently connected to the
peer computer is not connected to the server system: server system, and wherein the vequest for the first file
divect the second peer computer to transmit the first file is stored by the server system in response to the second
to the server system, peer compiiter system not currently being connected;
when the first peer computer re-connects to the server = upon the second peer computer system connecting to the
system, transmit the first file from the server system server system and receiving divection from the server
to the first peer computer. system to share the first file, the first peer computer
33. The computer-readable memory medium of claim 32, system receiving the first file.
wherein the peer-to-peer connection is anonymous and 39. The method of claim 38, wherein when the first peer
made via a public network. > computer system is not connected to the server system when
34. A method, comprising: the second peer computer system connects, said receiving
a first of a plurality of peer computers connecting to a occurs upon the first peer compiuiter system ve-connecting.
server system, the fivst peer computer storving a first file 40. The method of claim 38, wherein the first and second
that has been requested by a second of the plurality of L5 Deer computers are each connected to the server system via
peer computers while the first peer computer was not a respective communication path that includes a public net-
connected to the server system, wherein the first file is WorK.

referenced by a central index stoved by the server sys-
lem; % % % % %

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : RE42,051 E Page 1 of 1
APPLICATION NO. . 12/105028

DATED : January 18, 2011

INVENTOR(S) . Tripp et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 1, lines 14-15, delete “which 1s a continuation-in-part of U.S. application Ser. No. 60/219,983
filed on Jul. 21, 2000,” and insert -- which claims priority to Provisional Application Ser. No.
60/219,983 filed on Jul. 21, 2000, and 1s a continuation-in-part of --.

Column 27, line 46, 1n Claim 18, delete ““10,” and msert -- claim 10, --.

Signed and Sealed this
Thirteenth Day of September, 2011

David J. Kappos
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

