USOORE41959E
(19) United States
a2 Relssued Patent (10) Patent Number: US RE41,959 E
Suzuki et al. 45) Date of Reissued Patent: *Nov. 23, 2010
(54) VARIABLE ADDRESS LENGTH COMPILER (56) References Cited
AND PROCESSOR IMPROVED IN ADDRESS
MANAGEMENT U.S. PATENT DOCUMENTS
4,296,469 A 10/1981 GGunter et al.
(75) Inventors: Masato Suzuki, Osaka (JIP); Hiroshi 4,301,514 A 11/1981 Eifuku et al.
Kamiyama, Kyoto (JP); Shinya Mivaji, Continued
Nara (JP) (Continued)
FOREIGN PATENT DOCUMENTS
(73) Assignee: Panasonic Corporation, Osaka (IP) mp 148478 A * 7/10%5
iy Not: EP 0180077 10/1985
(%) otice: This patent 1s subject to a terminal dis- (Continued)
claimer.
OTHER PUBLICATIONS

(21) Appl. No.: 09/662,484

(22) Filed: Sep. 14, 2000
Related U.S. Patent Documents
Reissue of:
(64) Patent No.: 5,809,306
Issued: Sep. 15, 1998
Appl. No.: 08/587.338
Filed: Jan. 16, 1996

U.S. Applications:

(63) Continuation of application No. 08/249,157, filed on May
26, 1994, now abandoned.

(30) Foreign Application Priority Data
May 31, 1993 (JP) woveeeeeeeeeeeeeeeeeeeee e, 5-129529
May 27, 1993 (JP) woeeeeeeeeeeeeeeeeeeeee e ere e, 5-126212
Oct. 1, 1993 (JP) oririiiiiii e e 5-247154

(51) Int.CL
GO6l 9/45 (2006.01)

(52) US.CL ..., 712/210; 717/143;°717/154;
717/140
(58) Field of Classification Search 712/210;

717/140, 143, 154
See application file for complete search history.

Panasonic; Microcomputer Family AM Series; Original
Microcomputer With C Language Oriented Architecture; pp.
1-21; 2000.*

European Search Report 1ssued in European Patent Applica-
tion No. EP 02 076 025.2-2224, dated Sep. 22, 2009.

(Continued)

Primary Examiner—Kenneth R Coulter
(74) Attorney, Agent, or Firm—McDermott Will & Emery
LLP

(57) ABSTRACT

The present mvention discloses a program converting unit
for generating a machine language instruction from a source
program for a processor that manages an N-bit address while
processing M-bit data, N being greater than M, and such a
processor that runs the converted program. The program
converting unit comprising: a parameter holding unit for
holding a data width and a pointer width designated by a
user; the data width representing the number of bits of data
used 1n the source program while the pointer width repre-
senting the number of bits of an address; and a generating
unit for generating an instruction to manage the data width
when a variable operated by the instruction represents the
data, and for generating an instruction to manage the pointer
width when a variable operated by the 1nstruction represents
the address.

9 Claims, 26 Drawing Sheets

TO REGISTER UNIT 137 _138
A EXECUTING
UNIT
24 24 F
141
FM
DECODING —— M
UNIT 140 TO DECODING
UNIT
b s
| BRANCH
o iy O E%CODING
8 24 UNIT
M ? :;tgl}lélggNDERl_"_) UNIT 140
DECODING{ 145
UNIT 140 ° | || .[SECOND Y24 .
| > EXTENDER
i
¥ Y

US RE41,959 E

Page 2
U.S. PATENT DOCUMENTS JP 3-74725 3/1991
P 3248240 11/1991
4,314,332 A 2/1982 Shiraogawa et al. TP 04-014144 1/1992
4,347,566 A 8/1982 Koda et al. TP 04-172533 6/1992
4,361,868 A 11/1982 Kaplinsky TP 05-046383 7/1993
4,447,879 A 5/1984 Fong WO W09215943 9/1992
4453212 A 6/1984 Gaither et al.
4,602,330 A 7/1986 lkeya OTHER PUBLICATIONS
4,679,140 A 7/1987 Gotou et al. _ o _
4739471 A 4/1988 Raum et al. Aho, AV. et al., “Compile Principles, Techniques and
4763255 A 8/1988 Hopkins et al. Tools”, Nikke1 Science Inc., Nov. 10, 1990, pp. 399-400,
5,072,418 A * 12/1991 Boutaud etal. 708/207 with English Translation.
5,077,659 A 12/1991 Nagata Hennessy et al., Computer Architecture . . . , 1990 pp.
5307492 A 4/1994 Benson 90-113 and 139161
5,420,992 A 5/1995 Killian et _al. Sebesta, Concepts of Programming Languages, 1989 pp.
5,440,701 A 8/1995 Matsuzaki et al. 16-23. 72-79 and 106—-115. 121-122
5488, 710 A * 1/1996 Satoetal. 711/125 ’ j '
5 e . Harman et al., The Motorola MC.68000 . . . , 1985 pp.
5,568,630 A 10/1996 Killian etal. 712/200
RE40498 E * 9/2008 Suzukietal. 717143 S0-31, 52-53, 8489, 134-137, 142-159, 174-177 &
2008/0320454 Al * 12/2008 Suzuki etal. 717/143 200-203.

— @ ™ ™
a=aviav

TR ST R T

FOREIGN PATENT DOCUMENTS

0170 284
0503514
0528 695 Bl
55-43680
55-72255
55-118153
57-161943
57-105038
61-084735
62-259140
01-169537
04-91236

5/1986
3/1992
2/1993
3/1980
5/1980
9/1980
5/1982
6/1982
4/1986
11/1987
7/1989
10/1989

“Address Size Independence 1n a 16—Bit Minicomputer”, by
Philip E. Stanley, the 5th Annual Symposium on Computer

Architecture, Apr. 1978.

“High—Performance Simgle—Chip Microcontroller H8/300
Series, by Nobuo Shibasaki et al., Hitach1 Review, vol. 40
(1991), No. 1.

XP-002114028, IBM Technical Disclosure Bulletin, vol. 16,
No. 3, Aug. 1973.

High—Performance Single—Chip Microcontroller HS8/300
Series Hitachi Review, vol. 40, pp. 23-28, (1991).
XP-002141401, Address Size Independence in a 16—bit
minicomputer, Phillip E. Stanley pp. 1352-1357, Apr. 1978.

* cited by examiner

U.S. Patent Nov. 23, 2010 Sheet 1 of 26 US RE41,959 E

FIG.1 PRIORART
12 16

7 11
INSTRUCTION
DECODING EEGISTER
UNIT AN
14
EXTERNAL-ACCESS
- EXECUTING UNIT

15 EXTERNAL
STORAGE
UNIT

13

FIG 2 PRIOR ART

OP SIZE |SRC |DEST
MOVE | 32bit Al | @A2

U.S. Patent Nov. 23, 2010 Sheet 2 of 26 US RE41,959 E

FIG.3 PRIOR ART

INSTRUCTION
34

INSTRUCTION
DECODING UNIT

IMMEDIATE DATA

31

DATA REGISTERS DO~ D7

32

=~ |ADDRESS REGISTERS A0~A7

- SIGN .
> EXTENDER

33

>\ CALCULATOR £

33

U.S. Patent Nov. 23, 2010 Sheet 3 of 26 US RE41,959 E

FIG.4A PRIOR ART

32-BIT

llllll

FIG. 4B PRIOR ART

32-BIT

16-BIT
i

llllll

US RE41,959 E

Sheet 4 of 26

Nov. 23, 2010

U.S. Patent

(8)—— 00000001 H®'0d

AOW

(L)— V 149V
(.9) OV‘00180000H# IdND<+—(9)—— OV'00I8H# 1714
(.$) OV‘01000000H# 1AAV~+—(S)—— OV‘OTO0H# IdND

() —— ~ 0d'1d 1aayv

() —— IA'0OY®@ aay

AOW

(,2) OV‘00080000H# IAOW~+—(27)—— 0V‘0008H# IAON
()— 0q‘og 49dns

LIAviIondd § DId

d 144V’]

V '1Td4dV’]

U.S. Patent Nov. 23, 2010 Sheet 5 of 26 US RE41,959 E

FIG. 6 PRIOR ART

DO—DO0 — DO (1)

IMMEDIATE DATA H8000 — A0 ™ (&)
LABEL A

" IDATA IN ADDRESS DESIGNATED BY A0 — Dl (3)
D1+D0 — Dl (4)

IMMEDIATE H0010 + A0 — AQ (3)

. | COMPARE A0 WITH IMMEDIATE DATA H8100 (6)

(7)

YES

LABEL B
STORE D0 AT ADDRESS H10000000 J~~(3)

A0 < HS8100

NO

U.S. Patent Nov. 23, 2010 Sheet 6 of 26 US RE41,959 E

FIG.7 PRIOR ART

HOO0000000
16-BIT

HO0008000- ADDRESS
HG0O0008100 SPAC]f-
HOOOOFFFFH4H— — - —-—-—- —-

32-BIT

ADDRESS

SPACE
HFFFF300C

HFFFFFFEFE

U.S. Patent

LABEL A

LABEL B

Nov. 23, 2010 Sheet 7 of 26 US RE41,959 E

FIG. 8 PRIOR ART

SUB DO,DO —(1)
MOVI #H8000,A0 —(2-1)
ANDI #HO000FFFF,A0 —(2-2)
MOV @AO0,DI —(3)
ADD D1,D0 —(4)
ADDI #H0010,A0 —(5)
MOVI #H8100,A0 —(6-1)
ANDI #HO000OFFFF,A1 —(6-2)
"CMP Al,A0 ——(6-3)
BLT LABEL A ——(7)

MOV DO0,@H 10000000 —(8)

U.S. Patent Nov. 23, 2010 Sheet 8 of 26 US RE41,959 E

FIG.9 PRIOR ART

INSTRUCTION

INSTRUCTION
DECODING UNIT

CALCULATION | CONDITIONAL BRANCH

DESIGNATION DESIGNATION
92

16-BIT CALCULATOR

91

16-BIT

95

BRANCH JUDGING UNIT

BRANCH TAKEN OR NOT TAKEN

U.S. Patent Nov. 23, 2010 Sheet 9 of 26 US RE41,959 E

FIG. 10 PRIOR ART

INSTRUCTION

INSTRUCTION

DECODING UNIT
CALCULATION 4—-L. | CONDITIONAL BRANCH
DESIGNATION & DESIGNATION

102 BIT-WIDTH DESIGNATION

16-BIT
CALCULATOR
16 BIT 8-BIT 4-BIT

103-4
103-3

BRANCH TAKEN OR NOT TAKEN

US RE41,959 E

Sheet 10 of 26

Nov. 23, 2010

U.S. Patent

(LIg-8)
NOILYNOISEA (LI9-8)

SSHYAAV HONVYL HAOO NOILVIHddO

NOILIANOD HONVd
NOILONJILSNI HONV Y4 TYNOILIANOD

LAvViIond dil OId

(LIg-8)

(LIg-91) NOLLYNDISAd
NOILLVYNDOISAd YALSIOTY ANV (L1g-8)
SSHIAAY AJONWIN HAOW ONISSTIAAY Hd0D zoﬁémmo

BAARARASRARRRRAN""""""0} AEAMRMM

NOLLVNOISHd HLAIM-LIg

SNOILONYLSNI dVdANQD/LOVILINS/aay
LIAVIONId VII OIH

U.S. Patent Nov. 23, 2010 Sheet 11 of 26 US RE41,959 E

FIG. 12ZA PRIOR ART

HOO H&88

HOO HF 3

e ——

FIG. 12B PRIOR ART

+)

HFF H&0

H38
HF3

U.S. Patent Nov. 23, 2010 Sheet 12 of 26 US RE41,959 E

FIG. 13 S
" HARDWARE
PROCESSOR 134 135

INSTRUCTION OPERATION

CONTROL UNIT EXECUTING UNIT
DECODING REGISTER 137
UNIT UNIT

140

FETCHING EXECUTING 138

136
BUS CONTROL UNIT

24
ABUS 131~ |, DBUS132 130
- | MEMORY

—————————————

I oyt A AR A i g P e W A WS) e SR sl S e al, e s Ak ples S e R s S e e T e TR e e e e R A A, ot S B e wkk Gk e e sl G A e

f UNIT UNIT
139

_COMPILER____________________________JJCODE______. |
i MEMORY - ;
[24 . MANAGING UNIT I |
| —REGISTER GENERATING 5
| - IMMEDIATE I INTERMIDIARY:
| MANAGING UNIT CODE :
126 0 !
. |PARAMETER|}| OPTION SYNTAX 5
. |SETTING DIRECTING || ANALYZING :
. |UNIT UNIT UNIT :
D A Y SQURCE
123 121 CODE

US RE41,959 E

Sheet 13 of 26

Nov. 23, 2010

U.S. Patent

Ov1 LIN(]

ONIAOVEd
AN

JAANALXH l
ANODHIS Ov1 LINN
Syl meZm IXal—— I ozaouma
.HmmE W4
LINN vl
ONIOAN(4
HONV 4
23 I
LINN r
ONIAOD3d OL Ot1 LINN
E DONIA0DId
AN
a
144 b
LINN
ONILNDAXA
3¢ 1 LET LINN ¥4LSIOFY OL
v "OIH

Ov1 LINM ONIJOOHd OL

US RE41,959 E

NIMV.LLON dO
ad! NIMVL HONV YL

LINQ ONIOAN(
LST HONV AL

LIN()Y DNIDAN] ZOH.EOZOU

ONIA0DAd HONV ¥
N L NOLLYNOISHAC l!’

A

A R R RN I N
EIGT 9151 PIST| ®BCST| QeST) A¢ST PCST

91ZINOT Al910]| |rezliyeNjireallyeo

Mdd

0¥ LINA * NOLLIGNOO|

Sheet 14 of 26

Nov. 23, 2010

crl
| S -
[PI1'TV N Y111V OL

¢l Dld

U.S. Patent

US RE41,959 E

Sheet 15 of 26

Nov. 23, 2010

U.S. Patent

(119-8)

(L1d-91) NOLLYNOIS3d
NOILLVNDISAd JILSIDTY ANV (Lid-8)
SSTIAAQY AMOWEN JAOW ONISSTYAAY FAO0D NOLLVYYAdO

SNOILDONYLSNI TIVANOD/LOVILINS/AAdY
d91 Old

(L1d-8)
NOILYNDISHd (L19-3)
SSTAAAY HONVYEE 9d0D NOILVYEdO

B o A

NOILIANOO HONYV dd
NOILLVYNOISdd d(10dD DV'1d

NOLLONILSNI HONV Y€ TVNOILIANOD
VOl DId

U.S. Patent Nov. 23, 2010 Sheet 16 of 26 US RE41,959 E

F1G. 17

137e

137d
137f

24
136

o
LI-—--'__I

THIRD EXTENDER

1362

SEQUENCER

BUS CONTROL UNIT

R/W DS1-0 AS D15-0 A23-0
MEMORY

U.S. Patent Nov. 23, 2010 Sheet 17 of 26 US RE41,959 E

FIG. 18A

FIG. 18B

U.S. Patent Nov. 23, 2010 Sheet 18 of 26 US RE41,959 E

F1G. 19

SYNTAX ANALYSIS |STEP 20

GENERATE INTERMEDIARY FILE AND | STEP 21
SYMBOL TABLE :

STEP 22

ANY
"UN-PROCESSED
INTERMEDIARY
INSTRUCTION ?

NO

END
YE STEP 23

READOUT ONE INTERMEDIARY INSTRUCTION
LANGUAGE INSTRUCTION

STEP 27

ARITHMETIC

OPERATION
INSTRUCTION ?

STEP 28

FOLLOWING YES

_INSTRUCTION

NO

U.S. Patent Nov. 23, 2010 Sheet 19 of 26 US RE41,959 E

FIG. 20A
SYMBOL TABLE
VARIABLE TYPE [No.of |HEAD
SYMBOL BYTE |ADD

SIGN | TYPE

R

1000
1004
1006

3

C
Z
o

i

C
Z

-
Z

~
[T
2
@,
]
[T]
A

UN-
UN-
12 |SiaNED|INTEGER|
' ED|INTEGER

‘H
'E
Z,
3

FIG. 20B
SYMBOL TABLE
VARIABLE TYPE {No.of {HEAD
SYMBOL | "' -\ 7ypE | BYTE | ADDRESS REGISTER

1000
1001
' 1002
1004

!
l

SIGNED |CHARACTER
CHARACTER
[NTEGER:

INTEGER

-
lzI

b

l

SIGNED
SIGNED

o

C

Gl
Z

SIGNED

U.S. Patent Nov. 23, 2010 Sheet 20 of 26 US RE41,959 E

FIG. 21

STEP 30

LOAD/STORE
INSTRUCTION 2

FIG. 4
@ YES 31
FIG. S . .
FIG. 6
FIGS. 4-6 GENERATE ONE INSTRUCTION
SIRECTION] IN ACCORDANCE WITH

DIRECTION

U.S. Patent Nov. 23, 2010 Sheet 21 of 26 US RE41,959 E

FIG. 22

REFER TO SYMBOL TABLE | STEP 40

STEP 41

LOAD/STORE
OPERAND _g

POINTER

INTEGER

STEP 42 STEP 43
LOAD/STORE INSTRUCTION LOAD/STORE INSTRUCTION
WITH 2-BYTE ACCESS WIDTH | | WITH 3-BYTE ACCESS WIDTH

U.S. Patent Nov. 23, 2010 Sheet 22 of 26 US RE41,959 E

FIG. 23

REFER TO SYMBOL TABLE |5 TEF 2Y

STEP 51

REGISTER'S POINTER
CONTENT

INTEGER

STEP 52 - STEP 53

DIRECT TO GENERATE DIRECT TO GENERATE

INSTRUCTION TO EFFECT INSTRUCTION TO EFFECT
LOWER 16 BITS IN REGISTER | |ALL 24 BITS IN REGISTER

U.S. Patent Nov. 23, 2010 Sheet 23 of 26 US RE41,959 E

FIG. 24

REFER TO SYMBOL TABLE |STEF 00

STEP 61
INTEGER POINTER

STEP 62 - STEP 63

GENERATE INSTRUCTION GENERATE INSTRUCTION
INCLUDING 2-BY'TE INCLUDING 3-BYTE
IMMEDIATE IMMEDIATE

US RE41,959 E
{
|

AXIXT:DINOWANN X LXTDINOWINWN

XLXH-OINOWANN [JN9 X LXT-DINOWANIN

SLig #¢ OL SLI 91 || sLigvzoLsLgor|}] siidvz.oLsLigs|| SLid vz OLSLIg 8
ANALXHE O¥EZ ANF.LXH NOIS ANALXT OYdZ ANZLXH NOIS
OL NOLLONYISNI|} OLNOLLONJLSNI|| OLNOLLONALSNI{| OLNOILLONYLSNI
HIONIT-G¥OM|] HIONIT-A¥OM HIONZT-Q¥OM || HIONZT-Q¥OM
< -1SVETHLVIANED || -LSVATaLVaaNaD|| -LSvaT1dLyyaNgo|] -Lsva1aLvIaNaD
A L AALS [L daLS CLAAIS __ bLdals
N
i ozémm; ozemm;
9L dALS - €L dALS
= MADAINT iV VA VLV Srsvavin
2 (L dALS -
o
: H18V.L 10HNAS
S L dHLS Ol dd4dd

SHA

(NOLLVSNAJINOO

MOTIIFAO
0L d4LS

ON

¢ DIA

U.S. Patent
<

U.S. Patent Nov. 23, 2010 Sheet 25 of 26 US RE41,959 E

FIG. 26

INSTRUCTION

DECODE INSTRUCTION | °1EP 81

STEP 82

ANY IMMEDIATE DATA
ESS THAN 24 BITS ?

NO

YES

DECIDE DESTINATION REGISTER | STEF 83
GENERATION CONTROL |STEP 84
SIGNAL

U.S. Patent Nov. 23, 2010 Sheet 26 of 26 US RE41,959 E

FIG. 27

SUB D0,DO —(1)

MOVI #H8000,A0 —(2)
LABEL A

MOV @A0,DI ——(3)

ADD D1,D0O ——(4)

ADDI #H0010,A0 —(5)

CMPI #H8100,A0 ——(6)

BLT LABEL A —(7)
LABEL B

MOV DO,@H10000000 ——(8&)

US RE41,959 E

1

VARIABLE ADDRESS LENGTH COMPILER
AND PROCESSOR IMPROVED IN ADDRESS
MANAGEMENT

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

[This is a continuation of application Ser. No. 08/249,
157, filed on May 26, 1994, now abandoned.]

CROSS REFERENCE 10 RELATED
APPLICATIONS

The present Application, filed Sep. 14, 2000 is a reissue of

Ser. No. 08/587,338, filed Jan. 16, 1996, now U.S. Pat. No.
5,809 306, which is a continuation of Ser. No. 058/249,157,
filed May 26, 1994, now abandoned. Application Ser. No.
10/991,367, filed on Nov. 19, 2004, now RE40498, is a divi-
sion of the present Application, Ser. No. 09/662,484. Appli-
cation 11/607,889, filed on Dec. 4, 2006 is a division of the
present Application, Ser. No. 09/662,484.

BACKGROUND OF THE INVENTION

(1) Field of the Invention

The present invention relates to a program converting unit
for converting a high level language program into a machine
language program and a processor for running the converted
program, and more particularly, to such a processor
improved in address management with various types of reg-
ister groups including address and data registers.

(2) Description of the Related Art

With the recent advancement 1n the field of electronic
technology, data processors such as a microprocessor and a
microcomputer have been used widely. Today’s typical data
processor can process data of various widths, and a data
processor furnished with a 16-bit or 32-bit CPU has been
developed to meet the needs for more elficient data process-
ing and advanced functions. Such a processor may be addi-
tionally furnished with various types of register groups
including an address register and a data register to further
upgrade the performance. Also, there 1s a need for a proces-
sor with a more efficient address management function as
the data and programs have increased 1n size 1n response to
the sophistication and enlargement of applications. In the
tollowing, five conventional processors will be explained
while considering both of their improvements and shortfalls
in address management.

FIRST CONVENTIONAL PROCESSOR

Firstly, a 16-bit segment-address processor will be
explained. This type of processor 1s described in, for
example, “Hardware for Microprocessor”, Iwao Morishita,
Iwanami-shoten, Nov. 9, 1984. The processor includes a seg-
ment register which stores a high order address including
bits beyond 16 bits to secure an address space over 64 (2"°)
Kbyte while processing 16-bit data. More precisely, the
address space over 64 Kbyte 1s divided 1nto a set of 64 Kbyte
segments to be serially numbered, and the addresses are
managed by the segment numbers thus stored in the segment
register and an oifset, 1.e., a distance from the head of each
16-bit segment.

Also, a 32-bit segment-address processor 1s disclosed 1n
the aforementioned “Hardware for Microprocessor”. This
processor can secure an address space of 4 Gbyte (2°°) by
managing 32-bit addresses while processing 32-bit data.

10

15

20

25

30

35

40

45

50

55

60

65

2

These segment-address processors run a machine lan-
guage program translated by a program converting unit such
as a compiler.

An address management of a compiler for a 16-bit proces-
sor includes two models: one 1s a large model and the other
1s a near-far model.

A large model compiler always sets a pointer variable
with a segment number and a 16-bit oifset 1n pairs. Thus, the
16-bit processor that runs an object code from the compiler
calculates the content of the segment register to update the
same each time an address 1s calculated. Consequently, the
performance efficiency is significantly degraded compared
with a 16-bit non-segment-address processor.

A near-far model compiler eliminates this problem by
designating one of two pointer variables: a near pointer vari-
able and a far pointer variable; the former 1s used to access
an address within one segment and the latter 1s used to
access an address across a segment boundary. The compiler
sets the 16-bit ofiset alone with the near pointer variable
while setting a pair of the segment number and 16-bit offset
with the far pointer variable. When the 16-bit near-far model
compiler uses the near pointer variable, the performance
elficiency 1s enhanced compared with the 16-bit large model
compiler. However, on the other hand, programming eifi-
ciency 1s degraded because it 1s a programmer that selects
one of the two pointer variables by checking the segment
boundary.

A compiler for a 32-bit processor 1s advantageous 1n that
it 1s Iree of the atorementioned problems. Because this com-
piler sets a 32-bit address to the pointer variable for a 32-bit
data varniable, and thus the programmer does not have to
check the segment boundary. Naturally, the 32-bit processor
runs the compiled program without degrading performance
while securing the address space of 4 Gbyte.

However, most of the applications for an embedded-type
microcomputer demand neither the 32-bit data nor address
space of 4 Gbyte, but demand the 16-bit data and address
space over 64 Kbyte. Thus, if the 32-bit processor and com-
piler are employed, the hardware 1s not fully utilized, wast-
ing the cost and runming electricity. In addition, the 32-bat
processor always designates a 32-bit address in a program,
and thus increases a program code size undesirably. Also,
the performance 1s degraded when a 16-bit data bus 1s used

to connect the 32-bit processor to a memory compared with
a 32-bit data bus.

Therefore, neither 16-bit and 32-bit segment-address pro-
cessors nor their corresponding compilers developed to date
have met the practical needs.

SECOND CONVENTIONAL PROCESSOR

A second conventional processor includes various types
of register groups including address registers and data

registers, which 1s described, for example, 1n “M68000 8/16/
3I2MICROPROCESSOR USER MANUAL”, Motorola Inc.

A structure of the second conventional processor 1s
depicted 1n FIG. 1. The processor comprises a register unit
11 including a plurality of 32-bit address registers and 32-bit
data registers, an instruction decoding unit 12 for decoding
an 1nstruction, an external storage-unit 13, and an external-
access executing unit 14 for inputting and outputting data of
a designated bit-width with the external storage memory unit
13. The mnstruction decoding unit 12 sends register informa-
tion 15 and bit-width information 16 to the external-access
executing unit 14; register information 15 and bit-width
information 16 indicate a register subject to data transier and
a bit-width of transmission data, respectively. Assume that a
16-Mbyte address space and 16-bit data are used 1n an appli-
cation herein.

US RE41,959 E

3

A format of an instruction to transier the data from one of
the registers 1n the register unit 11 to the external storage unit
13 1s shown 1n FI1G. 2: OP 1s an operation held designating a
kind of mstruction; SIZE 1s a size field designating the bit-
width of the transmission data; SRC 1s a source field 1denti-
tying a source register; and DEST 1s a destination field
specilying a destination address in the external storage unit

13.

The second conventional processor executes the above
data-transfer mstruction in the following way.

To begin with, the istruction decoding unit 12 decodes
the data-transier instruction as: OP designates MOVE; SIZE
designates 32-bit data; SRC identifies a register Al; and
DEST 1dentities an address stored in a register A2.
Accordingly, the decoding unit 12 outputs the register infor-
mation 15 and bit-width mnformation 16 to the access execut-
ing unit 14, which, in response, writes the content in the
register Al into the external storage unit 13 at the

address (@WA2 1n the designated 32-bit width.

However, the second conventional processor demands the
size field in each data-transter instruction, which further
demands a size-field decoding function and enlarges an
instruction code, or increases the code size.

In addition, since the size field designates one of 32-, 16-,
and 8-bit data, 32-bit data are always transferred to the
address register when the address for the application 1is
24-b1t or less wide. When 16-bit data are transferred, the
execution speed will not be decreased 11 the compiler desig-
nates a 16-bit width by the size filed. Some compilers,
however, may not judge the effective 16-bit width when the
program uses 16-bit data. In this case, the compiler desig-
nates a 32-bit width where 16-bit width should have been
designated instead. Thus, 11 the data are transferred to an
8-bit-width memory, the data are transierred four times per 8
bits and the last two 8-bit data transier are redundant.

THIRD CONVENTIONAL PROCESSOR

A third conventional processor can process data of a plu-
rality of data widths. For example, immediate data, which
directly specifies a value 1n a program instruction, are pro-
cessed after the immediate data are sign-extended. This type
ol processor 1s described, for example, “Microcomputer

Series 14 68000 Microcomputer”, Yuzo Kida, Maruzen,
March, 1983.

A structure of the third conventional processor 1s depicted
in FIG. 3. The processor comprises a group of data registers
31 for storing 32-bit data, a group of address registers 32 for
storing 32-bit addresses, a sign-extender 33 for sign-
extending the MSB of 16-bit data to output 32-bit data, an
instruction decoding unit 34 for decoding an mstruction, and
a calculator 35 for operating a calculation in accordance
with the decoding result.

The above-constructed processor operates 1n the follow-
ing way. To begin with, the instruction decoding unit 34
decodes an 1nput instruction from an external unit, and the

other components operate differently 1n two cases according
to the decoded 1nstruction.

(1) In case of an instruction to transier the data between
one of the data registers 31 and one of the address registers
32, or to execute an arithmetic operation using the data
therein, the calculator 35 receives 32-bit data from both the
registers and operates a calculation using the same to store
the result of the operation 1nto a designated register.

(2) In case of an instruction to transfer 16-bit immediate
data to one of the data registers 31 or address registers 32, or

10

15

20

25

30

35

40

45

50

55

60

65

4

to execute an arithmetic operation using the same, the imme-
diate data are extended to 32-bit data by the sign-extender 33
to be outputted to the calculator 35; the calculator 35 oper-
ates a calculation using the sign-extended data and stores the
result of the operation 1nto a designated register.

The operation of the sign-extender 33 will be described
more 1n detail by referring to FIGS. 4A, 4B. When the MSB
of 16-bit data exhibits “O” as shown 1n FIG. 4A, the 16-bit

data are extended to 32-bit data by filling the zero’s 1n the
32nd bit. On other hand, when the MSB exhibits “1” as

shown 1n FIG. 4B, the 16-bit data are extended to 32-bit data
by filling one’s 1n the 32nd bit.

Assume that the immediate data are shorter than the regis-
ter designated for calculation and data-storage. The opera-
tion of the third conventional processor when executing a
program with such immediate data will be explained with
referring to FIGS. 5, 6, and 7; FIG. 5 shows an example of a
program, FI1G. 6 details the tlow of the operation for runming
that program, and FIG. 7 shows an address space.

As understood from FIG. 6, the program in FIG. 5 reads:
add up the data at sixteen addresses from the addresses
H8000to H8100 (H represents hexadecimal and each
address 1s H10 addresses away) and write the result at the
address H10000000. However, executing Instructions 2, 3,
and 6 does not result as detailed by FIG. 6. Thus, to run the
program as detailed by FIG. 6, Instructions 2, 5, and 6 are, in
clfect, re-written to Instructions 2', 5', and 6', respectively.

For further understanding, the program 1n FIG. 5 will be

explained more in detal.
Instruction 1: Clear a data register DO

Instruction 2: Set 16-bit immediate data HR000 in an
address register AO.

Since Instruction 2 uses a notation of the 16-bit immediate
data H8000, the immediate data H8000 are sign-extended to

32-bit data HFFFF8000 by the sign-extender 33 to be stored
into the address register AO.

Instruction 3: Read out the content stored at an address
designated by the address register AO from the memory to
store the same 1nto a data register D1.

Instruction 4: Add the content in the data register D1 to
that of the data register DO to store the result in the data
register DO.

Instruction 5: Add immediate data HOO10 to the address
register AO to store the result into the address register AO.

The 16-bit immediate data HOO10 are extended to 32-bit
data HFFFF0010 by the sign-extender 33. Subsequently, the
calculator 35 adds the address data HFFFF8000 stored 1n the
address register AO to the extended data HFFFF0010 to out-
put the data HFFFF8010, which are stored into the address

register AQ.

Instruction 6: Compare the output data with immediate
data H8100.

The immediate data H8100 are also sign-extended to
32-bit data HFFFF8100 by the sign-extender 33 to be out-
putted to the calculator 35. Accordingly, the calculator 35
compares the same with the address data HFFFF8010 read
out from the address register AO.

Instruction 7: Return to Instruction 3 labeled A when the

former 1s greater than the latter; otherwise, proceed to
Instruction 8.

The loop of Instructions 3—7 1s repeated until the initial
value of the address register A0, 1.e., HFFFF8000. 1s incre-

mented up to HFFFF8100 by HO0000010. This means that
the processor proceeds to Instruction 8 when the result of the
sixteen addition operations has been stored into the data reg-

1ster DO.

US RE41,959 E

S

Instruction 8: Store the content 1n the data register DO 1nto
the memory at the address H10000000.

With the third conventional processor, the immediate data
used for an access to the address register may have a value
unexpected by the flowchart shown FIG. 6. This will be
explained more 1 detail. In FIG. 5, the immediate data
H8000, HO010, and H8100 are used for the access to the
address register by Instructions 2, 35, and 6, respectively. In
case of the immediate data H8000, they are sign-extended
not to HOO008000 but HFFFF8000. Thus 1s because the MSB
thereol exhibits “1” and the higher order is filled with all
one’s. Naturally, the immediate data HFFFF8000 1s stored
into the address register AO, and the data at the address
HFFFF8000 are read out by Instruction 3 where the data at
the address HOO008000 should have been read out instead as
shown 1n FIG. 7. Thus, the data unexpected from FIG. 6, are
read out as a result.

Similarly, the immediate data H8100 1s extended not to
HO0008100 but to HFFFF8100 by Instruction 6, causing the
processor to output an unexpected value as the operation
result.

As has been stated, with the third conventional processor,
the sign-extension causes the immediate data to exhibit a
value unexpected by a programmer from the flowchart in
FIG. 6 while running the program. This occurs only when
the immediate data’s MSB 1s addressed with a value “1” in
the address space. Therefore, to eliminate this problem, a
method using a 32-bit notation for the immediate data desig-
nation has been proposed. For example, the immediate data
are designated as HOO008000 instead of H8000 by Instruc-
tion 2. However, this method demands the 32-bit notation
even when 16-bit data are designated, and thus extending the
istruction size and object code unnecessarily.

Given these circumstances, a method for re-writing the
program using the 16-bit immediate data has been proposed
to eliminate the above problem, which i1s shown in FIG. 8.

In the re-written program, original Instruction 2 1s carried
out by two steps: Instructions 2-1, 2-2. The immediate data

H8000 given by Instruction 2-1 are sign-extended to
HEFFFR000 first, and then, the extended data HFFFF8000

and HOOOOFFFF are ANDed to clear the higher 16 bits to
zero’s by Instruction 2-2, outputting 32-bit data HO0O008000.

Similarly, original instruction 6 1s carried out three steps:
Instructions 6-1, 6-2, and 6-3. The immediate data H8100
given by Instruction 6-1 are sign-extended to HFFFF8100 to
be stored into the address register Al first, and then the
extended data HFFFF8100 and HOOOOFFFF are ANDed to
clear the higher 16 bits to zero’s by Instruction 6-2, output-

ting 32-bit data HOO008100. Finally, the address registers AO
and Al are compared by Instruction 6-3.

This enables the use of the 16-bit immediate data;
however, 1t increases the number of steps compared with the
program 1n FIG. 5.

Thus, a processor that can access to correct data in the
address space elliciently using the immediate data shorter
than the address register has not been realized yet.

FOURTH CONVENTIONAL PROCESSOR

A fourth conventional processor 1s either a CISC
(Complex Instruction Set Computer) or a RISC (Reduced
Instruction Set Computer) processor. The former, such as
TRON or MC68040, can execute a variety of kinds of
instructions while the latter, such as SPARC or MIPS, can
speed up the operation by limiting the kinds of available
instructions. Both the CISC and RISC processors generally
employ a plurality of 32-bit register and a 32-bit calculator.

10

15

20

25

30

35

40

45

50

55

60

65

6

In a 32-bit CISC processor, all the 32-bit registers can
handle any of 8-, 16-, and 32-bit data for any arithmetic
operation 1nstruction. In response, a compiler for the 32-bit
CISC processor generates an operation code in accordance
with the data width used at the 32-bit registers. For example,
to generate an instruction to store an 8-bit character data
variable, or 16-bit short-integer data variable into the 32-bit
register, a code such that stores these data variables into the
lower 8 and 16 bits 1n the 32-bit register respectively and to
leave the higher 24 and 8 bits intact respectively i1s gener-
ated.

However, the number of the instructions increases consid-
erably m the above way, which demands larger and more
sophisticated hardware for the nstruction decoding and
execution. This problem 1s eliminated by the RISC proces-
SOr

Unlike the CISC processor, the RISC processor limits the
kinds of the available mstructions and does not generate an
instruction such that updates only the lower 8 bits or lower
16 bits of the 32-bit register. Instead, 1t generates a code to
update all the 32 bits in the register, and subsequently gener-
ates a code to compensate the higher 24 and 16 bits respec-
tively to adjust the bit widths to adequate ranges set forth

below. This 1s done to compensate an overtlow possibly
caused by the arithmetic operation for the data variables.

ADEQUAITE RANGES

Type of data variable Range (decimal)

—128 to +127 (1nclusive)

0 to +255 (inclusive)

—32768 to 432767 (1nclusive)
0 to +65535 (inclusive)

singed character
unsigned character
signed short integer
unsigned short integer

With the 32-bit register, these data variables may exceed
the above ranges as the result of the operation. For example,
when a 32-bit register 1s assigned for a signed character data
variable exhibiting +127, adding a value “2” to that 32-bit
register yields +129, causing it to hold an incorrect value for
a signed character data variable.

To compensate this, the RISC compiler generates a code
with the following compensation instructions and the
machine language instructions unconditionally each time the
content of the register 1s updated by the operation:

Kind of data variable = Compensation Instruction

left-shift by 24 bits & arithmetic right-shift by 24
DiIts

left-shift by 24 bits & logical right-shift by 24 bits
left-shift by 16 bits & arithmetic right-shift by 16
bits

left-shift by 16 bits & logical right-shift by 16 bits

singed character

unsigned character
signed short integer

unsigned short integer

[eft-shift means a shift in the direction of the MSB: arith-
metic right-shiit means a shift in the direction of the LSB
while coping a value “1” 1n the MSB of the extended data;
and a logical right-shift means a shiit in the direction of the
LSB while copying value “0” in all the higher bits beyond
the lower 8 bits. Thus, the register 24 that stores +129
(1000000011n binary number) 1s shifted to the lett by 24 bits
to discard the higher 8 bits including the MSB of 1, and
shifted back to the right arithmetically to obtain the 32-bit
extended data which exhibit a value *“1”.

US RE41,959 E

7

However, the RISC compiler compiles the program using
the character or short-integer data variables with a consider-
able number of the compensation instructions, which
increases the code size of the resulting machine language
program, and hence prolonging the data processing time.

In addition, there 1s no advantage using the compensation
instructions when a program does not have the overtlow, or a
programmer avolds the overflow by checking the available

range for each data vanable.

Further, an integer data variable, besides the character and
short-integer data variables, causes the same problem 1n a
system where the bit-width of the register exceeds that of the
integer data variable. Since the integer data variables are
most frequently used, the problem becomes far more seri-
ous. Although the effects can be appreciated when the pro-
grammer can not avoid or 1s not aware of the overtlow, the
code size increases and the program execution time prolongs
considerably because the compensated codes includes the
left-shift and arithmetic or logical right shiit instructions.

FIFTH CONVENTIONAIL PROCESSOR
A fif

th conventional processor includes two flag groups
for an arnthmetic operation with different data operation
widths, which 1s disclosed, for example, Japanese Laid-open
Patent Application No. 34-117646, and a structure thereof 1s
depicted 1 FIG. 9. The processor comprises an instruction
decoding unit 91, a 16-bat calculator 92 for calculating 16-bit
data, a flag group 93 for a conditional branch judgment,
another flag group 94 for calculation, and a branch judging
unit 95 for judging whether a conditional branch 1s taken or
not.

The above-constructed processor operates 1n the follow-
ing way. To begin with, the mstruction decoding unit 91
decodes an 1nstruction. When the decoded instruction 1s an
arithmetic operation instruction, the 16-bit calculator per-
forms an arithmetic operation, and the flag groups 93, 94 are
changed 1n accordance with the operation result.

If the following decoded instruction 1s also an arithmetic
operation instruction, the 16-bit calculator 92 operates by
referring to the flag group 94. Whereas 11 the following
decoded 1instruction 1s a conditional branch instruction, the
branch judging unit 95 refers to the flag group 93 to judge
whether the conditional branch is taken or not.

Another example of the processor using two tlag groups 1s
disclosed 1n “16-bit Microprocessor 8086 Family” Shokodo,
March, 1982. A structure of the processor 1s depicted 1n FIG.
10. The processor comprises an instruction decoding unit
101 for decoding an instruction, a 16-bit calculator 102 for
calculating 16-bit data, a flag group 103 changed 1n accor-
dance with the result of the 8- or 16-bit data operation, a flag
selector 104 for selecting an mput of the flag group 103
which 1s changed 1n accordance with the result of 8- or
16-bit data operation, a tlag 105 determined 1n accordance
with the result of 4-bit data operation, and a branch judging,
unit 106 for judging whether a conditional branch 1s taken or
not by using the flag group 103.

A bit-structure of add, subtract, and compare 1nstructions
and that of a branch 1nstruction in the machine language 1s
shown 1 FIGS. 11A, 11B, respectively. With the add, sub-
tract and compare 1nstructions shown 1n FIG. 11A, the first
byte (operation code) designates a kind of an operation and
one bit (denoted as W) therein designates either the 8-bit
data operation or 16-bit data operation. The second byte des-
ignates registers and an addressing mode for memory oper-
ands. The third and fourth bytes designate memory address.
With the conditional branch instruction shown 1in FIG. 11B,
four bits within the first byte designates a branch condition.

10

15

20

25

30

35

40

45

50

55

60

65

8

The above-constructed processor operates 1n the follow-
ing way. To begin with, the instruction decoding unit 101
decodes an istruction. If the decoded instruction is an arith-
metic operation instruction, the 16-bit calculator calculates
using the data. Accordingly, the flags 1n the flag group 103
and flag 105 are changed 1n accordance with the operation
result. At the same time, the 1nstruction decoding umt 101
designates either the 8-bit or 16-bit data operation to the
16-bit calculator 102, and the selector 104 outputs tlag
changing data determined by the data operation width to the
flag group 103.

If the following decoded instruction 1s a conditional
branch instruction, the branch judging unit 106 refers to the

flag group 103 to judge whether the conditional branch 1is
taken or not.

Note that in case that an arithmetic operation 1s followed
by an arithmetic operation with decimal data, the calculator

102 refers to the flag 105.

However, 1n the first example, the tlag group 103 and flag
105 are used for the arithmetic operation instruction and
branch instruction respectively, and hence when the opera-

tion result 1s shorter than the data operation width the opera-
tion result must be extended in the direction of a high order 1T

the conditional branch 1s taken.

Following 1s an explanation for a case where 8-bit data are
processed 1n the 16-bit data operation. As shown in FIG.
12A, if the branch 1s judged based on an 8-bit un51gned data,
the data are extended to HOO88, HOOF 8 by copying zero’s 1n
the higher 8 bits. Whereas as shown in FIG. 12B, if the
branch 1s judged based on an 8-bit smged data, the data are
extended to HFF88, HFFEFR8 by copying a value “1” up to the
MSB from the eighth bit in the low order. This means that
the concerned 8-bit data must be extended up to the higher 8
bits, increasing the overhead and hence 1s not preferable.

With the second example, although the two flags based on
the operation results on different data operation widths (4
bits and 8 or 16 bits) are set contemporaneously, the use of
the 4-bit flag 1s limited to the decimal data operation and 1t
can not be used for a 4-bit data conditional branch.
Moreover, one flag 1s selected from the flag group 103 to
climinate the overhead caused 1n the first example; however,
this demands two kinds of arithmetic operation instructions,
which further demands a larger instruction decoding unat.

SUMMARY OF THE INVENTION

Accordingly, a first object of the present invention 1s to
provide a program converting unit which adequately selects
an operation code to generate an object program 1n accor-
dance with a data bit-width and an application program’s
address space, which does not depend on a data bit-width, so
as not to degrade operation efficiency caused by address
calculation, and to provide a processor that runs the resulting
object program.

A second object of the present invention 1s to provide a
program converting unit that reduces the code size of a
machine language program independently of a type of data
variable when the application program does not have an
arithmetic overflow or the application program 1s con-
structed to avoid the arithmetic overtlow or the one that gen-
erates a compensation instruction corresponding to each
type of data vanable otherwise, and to provide a processor
that runs the resulting compensation mstruction.

A third object of the present mvention 1s to provide a
processor that reduces the program size by simplifying the
operation code to execute a data-transier instruction at a
higher speed.

US RE41,959 E

9

A fourth object of the present invention 1s to provide a
processor that always extends the immediate data as a pro-
grammer expects and that does not need the compensation

instruction when its register stores the immediate data whose
MSB exhibits a value “17.

A fifth object of the present invention is to provide a com-
puter and a data processing method that minimizes the over-
head at the execution of a conditional branch when the bit-
width of the operation data and operating unit are different.

The first object can be fulfilled by a program converting,
unit for generating a machine language instruction from a
source program for a processor that manages an N-bit
address while processing M-bit data, N being greater than
M, the program converting unit comprising: a parameter
holding unit for holding a data width and a pointer width
designated by a user, the data width representing the number
of bits of data used 1n the source program while the pointer
width representing the number of bits of an address; and a
generating unit for generating an instruction to manage the
data width when a variable operated by the instruction repre-
sents the data, and for generating an instruction to manage
the pointer width when a variable operated by the 1nstruction
represents the address.

The M may be 16 and the N may be an integer in a range
of 17 to 31 inclusive.

The generating unit may include: a judging unit for judg-
ing a kind of the machine language mstruction, the machine
language struction including (1) an mstruction to access to
a memory, (2) an instruction to use a register, and (3) an
istruction to use an immediate; a memory managing unit
for outputting a direction, in case of the (1) istruction, to
manage the data width as an effective memory-access width
when a variable to be accessed represents the data, and to
manage the pointer width as an effective memory-access
width when the variable represents the address; a register
managing unit for outputting a direction, in case of the (2)
instruction, to manage s eiffective bit-width when a variable
to be read/written from/into the register represents the data,
and to manage the pointer width as the effective bit-width
when the vanable represents the address; an immediate man-
aging unit for outputting a direction, in case of the (3)
instruction, to manage the data width as the eflective bit-
width when the immediate represents the data, and to man-
age the pointer width as the effective bit-width when the
immediate represents the address; and a code generating unit
for generating the machine language instruction 1 accor-
dance with the directions from the memory managing unit,
the register managing unit, and the immediate managing,
unit.

The N may be 24 and the code generating unit may gener-
ate an 1nstruction for a 24-bit data operation when the
pointer width 1s greater than 16 bits and less than 24 bits, and
generates an instruction for a 16-bit data operation when the
pointer width 1s 16 bits or less.

The first object can be fulfilled by a program converting,
unit for generating a machine language 1nstruction based on
a source program for a processor that manages an N-bit
address while processing M-bit data, N being greater than
M, the program converting unit comprising: a syntax analyz-
ing unit for analyzing a syntax of the source program to
convert the same 1nto an mtermediary language comprising
intermediary instructions, and subsequently for judging
whether or not each variable contained in the intermediary
instructions represents data used in an address; a table gen-
erating umt for generating a table for each variable in the
intermediary instructions, the table holding a name together

10

15

20

25

30

35

40

45

50

55

60

65

10

with a type of each variable, the type representing one of the
data and the address; a parameter holding unit for holding a
data width and a pointer width designated by a user, the data
width representing the number of bits of the data while the
pointer width representing the number of bits of the address;
and a generating unit for generating an 1instruction to manage
the data width when the variable 1n the intermediary nstruc-
tion represents the data, and an instruction to manage the
pointer width when the variable represents the address.

The generating unit may include:, a judging unit for judg-
ing a kind of the machine language instruction, the machine
language 1nstruction including (1) an instruction to access to
an memory, (2) an instruction to use a register, and (3) an
istruction to use an 1mmediate; a memory managing unit
for outputting a direction, in case of the (1) instruction, to
manage a corresponding bit-width held in the parameter
holding unit as an effective memory-access width depending
on the type of a variable to be accessed shown 1n the table; a
register managing unit for outputting a direction, 1n case of
the (2) instruction, to manage a corresponding bit-width held
in the parameter holding unit as an effective bit-width
depending on the type of a variable to be read/written from/
in the register shown 1n the table; an immediate managing
unit for outputting a direction, 1n case of the (3) instruction,
to manage a corresponding bit-width held in the parameter
holding unit for the immediate as an elffective bit-width
depending on the type of the immediate shown 1n the table;
and a code generating unit for generating the machine lan-
guage mstruction 1 accordance with the directions from the
memory managing unit, the register managing unit, and the
immediate managing unit.

According to the above construction, any arbitrary data
width and pointer width can be set into the parameter setting
unit. Thus, a programmer does not have to check an irregu-
larity 1n the address space such as a segment boundary. Also,
an address space larger than the one secured by the program
application’s data-width can be secured without degrading
the operation efliciency caused by address calculation: the
s1ze of the address space does not depend on the data opera-
tion width.

Also, the above construction can be employed for most of
the applications for an embedded-type microprocessor that
demand neither the 32-bit data nor address space of 4 Gbyte,
but demand the 16-bit data and address space over 64 Kbyte.

The first object also can be fulfilled by a processor
improved in address management comprising: a memory
unit for storing a program including an N-bit data arithmetic
operation instruction and both N-bit and M-bit data load/
store instructions, N being greater than M; a program
counter for holding an N-bit instruction address to output the
same to the memory unit; a fetching unit for fetching an
instruction from the memory unit using the instruction
address from the program counter; and an executing unit for
executing all N-bit arithmetic operation 1nstructions and for
executing N-bit and M-bit instructions excluding the arith-
metic operation instructions, whereby an N-bit address 1s
calculated by the N-bit arithmetic operation independently
of a data bit-width, the data bit-width being M.

The processor may further comprise: an address register
group including a plurality of N-bit address registers; a data
register group including a plurality of N-bit data registers,
wherein the executing unit executes the N-bit and M-bit data
operation instructions using the address registers, while
executing the M-bit data operation instruction using the data
registers.

The N may be 24 and the M may be 16, and the processor
may be installed 1n a 1-chip microcomputer, whereby the

US RE41,959 E

11

1-chip microcomputer becomes suitable for running a pro-
gram that utilizes a memory over 64 Kbyte for an operation

with 16-bit data.

The processor may further comprise: an address register
group including a plurality of N-bit address registers; and a
data register group including a plurality of M-bit data
registers, wherein the executing unit executes one of an
N-bit data operation instruction and an M-bit data operation
istruction using the address registers, while executing the
M-bit data operation nstruction using the data registers.

The N may be 24 and the M may be 16, and the processor
may be installed 1n a 1-chip microcomputer, whereby the
1-chip microcomputer becomes suitable for running a pro-

gram that utilizes a memory over 64 Kbyte for an operation
with 16-bit data.

According to the above construction, the processor can
secure the address space that does not depend on the data
operation width. The processor can secure a 2”V-byte address
space which is larger than a 2*-byte address space, while
executing N-bit data operation, upgrading the operation eifi-
ciency 1n address calculation.

The above construction can be effectively employed for
most ol the applications for an embedded-type
microprocessor, such as household appliances and control-
ling devices, that demand neither the 32-bit data nor address
space of 4 Gbyte, but demand the 16-bit data and address
space over 64 Kbyte.

The second object can be fulfilled by a program convert-
ing umt for generating a machine language nstruction from
a source program for a processor that manages an N-bit
address while processing M-bit data, N being greater than
M, the program converting unit comprising: a parameter
holding unit for holding a data width and a pointer width
designated by a user, the data width representing the number
of bits of data used 1n the source program while the pointer
width representing the number of bits of an address; a gener-
ating unit for generating an instruction to manage the data
width when a variable operated by the instruction represents
the data, and for generating an instruction to manage the
pointer width when a variable operated by the instruction
represents the address; an option directing unit for holding a
user’s direction for an overtlow compensation, an overflow
being possibly caused by an arithmetic operation; and a
compensate instruction generating unit for generating a
compensation instruction to compensate an overtlow 1n
accordance with a type of a vaniable used in the arithmetic
operation, the type being judged when the option directing
unit holds the user’s direction for executing the overtlow
compensation, the compensation instruction being generated
when an effective bit-width of a variable designated by an
operand 1s shorter than a register of N-bit wide and the arith-
metic operation instruction will possibly cause an overtlow
exceeding the effective bit-width.

The compensate mstruction generating unit may include:
an 1nstruction judging unit for judging an arithmetic opera-
tion istruction that will possibly cause an overtlow for all
the machine language 1nstructions when the option istruct-
ing unit holds the user’s direction for executing the overtlow
compensation; a variable judging unit, with respect to a vari-
able 1n the anthmetic operation instruction judged by the
instruction judging unit, for judging an effective bit-width
and whether the variable 1s signed or unsigned by referring
to the table; a sign-extension instruction generating unit for
generating a compensation instruction in case of a signed
variable, a logical value of a sign bit being filled 1nto all bits
higher than the effective bit-width 1n a register that 1s to store

10

15

20

25

30

35

40

45

50

55

60

65

12

the signed variable by the sign-extension compensation
instruction; and a zero-extension instruction generating unit
for generating a zero-extension compensation struction n
case of an unsigned variable, a logical value “0” being filled
into all bits higher than the effective bit width 1n a register
that 1s to store the unsigned variable by the zero-extension
compensation instruction.

The generating unit may include: a judging unit for judg-
ing a kind of the machine language instruction, the machine
language instruction including (1) an instruction to access to
a memory, (2) an instruction to use a register, and (3) an
instruction to use an 1mmediate; a memory managing unit
for outputting a direction, in case of the (1) instruction, to
manage the data width as an effective memory-access width
when a variable to be accessed represents the data, and to
manage the pointer width as an effective memory-access
width when the vaniable represents the address; a register
managing unit for outputting a direction, in case of the (2)
instruction, to manage the data width as an effective bait-
width when a variable to be read/written from/into the regis-
ter represents the data, and to manage the pointer width as
the effective bit-width when the variable represents the
address; an immediate managing unit for outputting a
direction, 1n case of the (3) instruction, to manage the data
width as the effective bit-width when the immediate repre-
sents the data, and to manage the pointer width as the effec-
tive bit-width when the immediate represents the address;
and a code generating unit for generating the machine lan-
guage instruction in accordance with the directions from the
memory managing unit, the register managing unit, and the
immediate managing unit.

i

The M may be 16 and the N may be an integer in a range
of

17 to 31 inclusive.

—

The M may be 32, and the N may be an integer 1n a range
of 33 to 63 inclusive.

According to the above construction, the overflow
occurred in the RISC processor can be effectively compen-
sated 1n addition to the atorementioned effects. Since the
execution of an overflow compensation 1s optional, the com-
pensation instruction 1s not generated when no compensa-
tion 1s necessary, and the compensation mstruction 1s gener-
ated 1 a less code size when the compensation 1s necessary.

The processor may further comprise: a compensating unit
for extending an effective bit-width of the data 1n one of the
address register and the data register to 24 bits, wherein the
compensating unit operates 1 accordance with the compen-
sate 1nstruction entered immediately after a machine lan-
guage instruction designating an arithmetic operation that
will possibly cause an overtlow.

The compensating unit may include: a first extending unit
for filling a logical value of a sign bit 1n all bits higher than
the effective bit-width 1n a register; a second extending unit
for filling a logical value “0” 1n all bits higher than the effec-
tive bit-width 1n a register.

According to the above construction, in addition to the
alforementioned eflect, the execution speed can be increased
when the compiler does not generate the compensation
instructions. Also, when a programmer can not avoid the
overflow or 1s not aware of the overflow, the compensating
umt compensates the overtlow with one machine language
instruction of the least-word-length, minimizing the delay 1n
the operation speed.

The third object can be fulfilled by a processor for pro-
cessing data in accordance with instructions 1n a program
comprising: a register unit including a plurality of register
groups, each group being identical 1n bit-width while being

US RE41,959 E

13

different 1n types; an instruction decoding unit for decoding
an 1nstruction to output register information indicating a reg-
ister designated by an operand contained 1n a data-transfer
instruction; an external-access-width control unit for output-
ting the number of effective bits as bit-width information
indicating a bit-width of transmission data 1n accordance
with a kind of a register group to which the designated regis-
ter belongs; and an external-access executing unit for
executing data transier between the designated register and
an external memory 1n accordance with the register informa-
tion and the bit-width information.

The register unit may include: an address register group
including a plurality of address registers holding addresses;
and a data register group including a plurality of data regis-
ters holding data.

The address registers and data registers 1n the register unit
may be all 24-bit wide; the instruction decoding umt may
output information that represents one of the address register
and the data register as the register information; the external-
access-width control unit may output the bit-width informa-
tion exhibiting 24 bits when the register information repre-
senting the address register, and outputs the bit-width
information exhibiting 16 bits when the register information
representing the data register; and the external-access
executing unit may execute the data transfer three times and
twice for the 24- and 16-bit-width information respectively
for an 8-bit-width external memory, and for twice and once
for the 24- and 16-bit-width information respectively for a
16-bit width external memory.

The access executing unit may include: an address gener-
ating circuit for holding an address designated by the data-
transier instruction to output one of a byte address and a
word address to the external memory; an output data butler
for holding write data designated by the data-transier
instruction to output the same one of per byte and per word
to the external memory; an input data butler for holding data
from read out from the external memory; and a sequence
circuit for outputting a byte address to the address generat-
ing circuit for an 8-bit-width external memory while control-
ling the number of times for the data-transfer in accordance
with the bit-width information via the input/output data buil-
ers with respect to the read/write data, for outputting a word
address to the address generating circuit for a 16-bit-width
external memory while controlling the number of times for
the data-transfer in accordance with the bit-width informa-

tion via the input/output data buffers with respect to the
read/write data.

According to the above construction, the external-access-
width control unit selects a register subject to data transier
and determines the data transfer width simultaneously. Thus,
the size held can be eliminated from the instruction, which
decreases the code size as well as obviating the size field
decoding function.

Further, the data are not transierred redundantly by trans-
ferring the data independently of the register’s bit-width,
speeding up the operation.

The fourth object can be tulfilled by a processor for oper-
ating certain data i accordance with an instruction 1n a
program, comprising: a first register unit for holding N-bit
data; a second register unit for holding N-bit data, an extend-
ing unit for extending the M-bit data to N bits by copying an
MSB of the M-bit data 1n a direction of an upper order, M
being less than N; a zero-extending unit for extending the
M-bit data to N bits by copying a value “0” 1n a direction of
an upper order; an operating unit for operating an arithmetic
operation 1n accordance with an 1nstruction; an instruction

10

15

20

25

30

35

40

45

50

55

60

65

14

control unit for decoding an 1nstruction to zero-extend M-bit
immediate data when the M-bit immediate data are to be
stored 1n the first register unit by the decoded instruction and
to sign-extend the M-bit immediate data when the M-bit
immediate data are to be stored in the second register unit by
the decoded instruction, the zero-extended and sign-
extended N-bit immediate data being outputted in one of two
methods, one method being to send the extended N-bit
immediate data from their respective extending unit to their
respective register unit directly, the other being to send the
same via the operating unit to their respective register unit.

The first register unit may be a group of a plurality of
address registers for storing addresses, and the second regis-
ter unit may be a group of a plurality of register unit for
storing data.

The N may be 24 and the M may be 16.

i

T'he fourth object can be also fulfilled by a processor for
operating certain data 1n accordance with an struction in a
program, comprising: a first register unit for holding N-bit
data; a second register unit for holding N-bit data, a sign-
extending unit for extending the M-bit data to N bits by
copying an MSB of the M-bit data in a direction of an upper
order, M being less than N; a zero-extending unit for extend-
ing the M-bit data to N bits by copying a value “0” 1n a
direction of an upper order; an operating unit for operating
an arithmetic operation 1n accordance with an 1nstruction; an
instruction decoding unit for decoding an instruction in the
program to detect a first type instruction and a second type
instruction, the first type mnstruction including an instruction
to store M-bi1t immediate data into the first register unit, the
second type instruction mncluding an 1nstruction to store the
M-bi1t immediate data into the second register unit; and a
control unit for outputting the M-bit immediate data to the
zero-extending unit when the first type instruction 1s
detected, and for outputting the M-bit immediate data to the
sign-extending unit when the second type instruction 1s
detected, the zero-extended N-bit immediate data and sign-
extended N-bit immediate data being outputted 1n one of two
methods, one method being to send the extended N-bait
immediate data from their respective extending unit to their
respective register unit directly, the other being to send the
same via he operating unit to their respective register unit.

The first type instruction may include a data-transier
instruction to store the M-bit immediate data to the first reg-
ister unit, an add instruction to add a value 1n the first register
and the M-bit immediate data, and a subtract instruction to
subtract the M-bit immediate data from a value in the first
register, and the second type mstruction may include a data-
transier mstruction to store the M-bit immediate data to the
second register unit, an add mnstruction to add a value 1n the
second register and the M-bit immediate data, and a subtract
instruction to subtract the M-bit immediate data from a value
in the second register.

According to the above construction, the immediate data
are either sign or zero-extended depending on the kind of the
access register prior to the arithmetic operation. Thus, the
immediate data can be always extended as the programmer
expected. Further, the program size can be decreased as no
compensation instruction for the extension is necessary, and
the immediate data becomes easy to manage for the pro-
gramimetr.

The fifth object can be fulfilled by a processor for execut-
ing a program including an N-bit data arithmetic operation
instruction, M-bit and N-bit load/store 1nstruction, M being
less than N, a conditional branch instruction, a data-transfer
instruction with an external memory, and an mstruction hav-

US RE41,959 E

15

ing immediate data, the processor comprising: a first register
unit including a plurality of registers for holding N-bit data;

a second register unit including a plurality of registers for
holding N-bit data; a program counter for holding an N-bit
instruction address to output the same to the memory unit; a
fetching unit for fetching an instruction from an external
memory using the instruction address from the program
counter; an instruction decoding unit for decoding a fetched
instruction; an executing unit for executing all N-bit arith-
metic operation instructions and for executing N-bit and
M-bit 1nstructions excluding the arithmetic operation
instructions, a plurality of flag storing units, each for storing
a corresponding tlag group changed 1n response to different
bit-widths data in accordance with an execution result of the
executing unit; a flag selecting unit for selecting a certain
flag group from the plurality of flag storing units 1 accor-
dance with a conditional branch instruction decoded by the
instruction decoding unit; a branch judging unit for judging
whether a branching 1s taken or not with a reference to a flag
group selected by the flag selecting unit; a sign-extending
unit for extending M-bit data to N bits by copying an MSB
of the M-bit data 1n a higher order; a zero-extending unit for
extending M-bit data to N bits by filling a value “0” 1n a
higher order: a compensation instruction control unit for
compensating contents of the first register unit and the sec-
ond register unit using the sign-extending umt and the zero-
extending umit in accordance with a compensation instruc-
tion inserted immediately after a machine language
instruction for an arithmetic operation that will possibly
cause an overtlow, the machine language instruction being
decoded by the instruction decoding unit; an external-
access-width control unit for outputting bit-width 1nforma-
tion for transmission data in accordance with a type of the
register unit to which a register indicated by register infor-
mation belongs, the register information indicating one of
the first and second register unit; an external-access execut-
ing unit for executing a data transter between the register and
an external memory 1n accordance with the register informa-
tion and bit-width information; and an immediate control
unit for outputting M-bit immediate data to the zero-
extending unit when a decoded instruction includes an
instruction to store the M-bit immediate data in the first reg-
ister unit, and for outputting the M-bit immediate data to the
sign-extending unit when a decoded instruction includes an
instruction to store the M-bit in the second register unit, the
zero-extended and sign-extended immediate data being sent
to the first and second register unit respectively in two
methods, one being to send the same directly to their respec-
tive register unit and the other being to send the same via the
executing unit.

The N may be 24 and the M may be 16.

According to the above construction, the tlag groups are
turmished for different data operation widths, and the branch
judgment 1s done by selecting the tlag group corresponding,
to a certain data width. As a result, 1n addition to the afore-
mentioned effects, the overhead at the conditional branch
can be reduced while reducing the number of the instruc-
tions.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other objects, advantages and features of the
invention will become apparent from the following descrip-
tion thereof taken in conjunction with the accompanying
drawings which 1illustrate a specific embodiment of the
invention. In the drawings:

FIG. 1 1s a block diagram depicting a structure of the
second conventional processor;

10

15

20

25

30

35

40

45

50

55

60

65

16

FIG. 2 1s a view showing an instruction format for the
second conventional processor;

FIG. 3 1s a block diagram depicting a structure of the third
conventional processor;

FIGS. 4A and 4B are views explaining the operation of a
sign-extender FIG. 5 1s an example of a program run by the
processor 1 FIG. 3;

FIG. 6 1s a flowchart detailing the operation correspond-
ing to FIG. §;

FIG. 7 1s a view showing a memory space corresponding,
to FIG. 3;

FIG. 8 1s an example of a re-written program run by the
third conventional processor;

FIG. 9 1s a block diagram depicting a structure of the first
example of the fifth conventional processor;

FIG. 10 1s a block diagram depicting a structure of the
second example of the fifth conventional processor;

FIGS. 11A and 11B are views explaining the structures of
instruction formats used by the processor i FIG. 10;

FIGS. 12A and 12B are views explaining the data process-
ing by the processor i FI1G. 10;

FIG. 13 1s a block diagram depicting a processing system
of the present invention;

FIG. 14 1s a block diagram depicting an executing unit 1n
FIG. 13;

FIG. 15 15 a block diagram depicting structures of a PSW

and a branch judging unit in FIG. 14 FIGS. 16 A and 16B are
views showing structures of instruction formats used in the
present invention;

FIG. 17 1s a block diagram depicting structures of a regis-
ter unit, a bus control unit, a decoding unit and a memory in
FIG. 13;

FIGS. 18A and 18B are views showing a format for a
data-transfer instruction;

FIG. 19 1s a flowchart detailing the operation of a com-
piler;
FIGS. 20A and 20B are examples of a symbol table;

FIG. 21 1s a sub-chart of Step 26 in FIG. 19;

FIG. 22 15 a tlowchart detailing the operation of a memory
managing unit;

FIG. 23 1s a flowchart detailing the operation of a register
managing unit;

FIG. 24 1s a flowchart detailing the operation of an 1mme-
diate managing unit;

FIG. 235 15 a flowchart detailing an overtlow compensation
operation;

FIG. 26 1s a flowchart detailing the operation of a decod-
ing unit; and

FIG. 27 1s an example of a program including an immedi-
ate data transfer.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

A hardware structure of a data processing system includ-
ing a computer and a program converting unit (compiler) 1s
depicted 1n FIG. 13. The data processing system comprises a
storage unit 1 for storing a C language program, a compiler 2
for translating the C language program into a machine lan-
guage program, and a computer 3 for running an object
code; the computer 3 includes a processor and a memory.

More precisely, the computer 3 includes a memory 130,
an address bus 131, a data bus 132, an instruction control
unit 134, an operation executing unit 135, and a bus control

unit 136.

US RE41,959 E

17

The memory 130 stores an object code and data used 1n a
program.

The address bus 131 1s of 24-bit wide and sends an
address to the memory 130.

The data bus 132 1s of 16-bit wide and transiers data to
cach component within the computer 3.

The 1nstruction control unit 134 includes a fetching unit
139 and a decoding umt 140 to fetch an instruction via the
bus control unit 136 and decodes the same: the fetching unit
139 includes an unillustrated 24-bit program counter to des-
ignate an mstruction address; the decoding unit 140 decodes
an 1nstruction to output a corresponding control signal to
cach component within the computer 3.

The operation executing unit 135 includes a register unit
137 and an executing umt 138 to execute an instruction 1n
accordance with the control signal: the register unit 137
includes a plurality of 24-bit address registers and 24-bit
data registers; the executing unit 138 executes a 24- or 16-bit
arithmetic logical operation. Note that 24-bit executing unit
138 executes a 24-bit address calculation and 16-bit data
operation. This means that the computer 3 executes a 16-bit
data operation for the data processing, while executing a
24-bit data operation for the address calculation.

The bus control unit 136 controls the address and data
transier between the components within the computer 3
interconnected via the address bus 131 and data bus 132, and
the data transfer with the memory 130 1n a bit-width thereof.

A structure of the executing unit 138 1s depicted 1n FIG.

14, and the executing unit 138 comprises an ALU
(Arithmetic Logic Unit) 141, a PSW (Processor Status

Word) 142, a branch judging unit 143, a first extender 144,
and a second extender 145.

More precisely, the ALU 141 performs a 24-bit arithmetic

logical operation using the data stored in the register unit
137.

The PSW 142 1s a register holding a variety of flags each
indicating the processor’s status, and includes flag groups
which are changed 1n accordance with the operation result of
the ALU 141. The flag groups include a first flag group
exhibiting the result of 16-bit data operation and a second
flag group exhibiting the result of 24-bit data operation; note
that, however, both the first and second flag groups exhibit
cach data operation result.

The branch judging unit 143 judges whether a conditional
branch instruction 1s taken or not by referring to the flag
groups.

The first extender 144 sign or zero-extends the lower 8
bits of the data in the data register to 24 bits, or it sign or
zero-extends an 8-bit immediate data to 24 bits to be sent to
the data register.

The second extender 145 sign or zero-extends the lower
16 bits of the data 1n the data register to 24 bits, or 1t sign or
zero-extends a 16-bit immediate data to 24 bits to be sent to
the data register.

The data are sign-extended 1n the same way as explained
with referring to FIGS. 4A, 4B except for the bit length; N 1s
twenty-four and M 1s eight 1n the first extender 144, while N
being twenty-four and M sixteen in the second extender 145.
Also, the data are zero-extended in the same way as the
sign-extension except that zero’s are copied in the high order
bits. The two extenders selectively operate depending on an
instruction, and they only operate on two kinds of instruc-
tions: extension instructions to extend the data in the data
register, and transier instructions to transfer and extend
transmission data. Fach instruction 1s described below,

10

15

20

25

30

35

40

45

50

55

60

65

18

wherein Dn 1s a data register, An 1s an address register, n
being a register number, Mem 1s a memory data, and #1mms8
and Aimm16 are immediate data with numerals 8, 16 repre-
senting bit lengths.

TRANSFER INSTRUCTION WITH EXTENSION
DATA

EXTX Dn; sign-extend 16 bits to 24 bits
EXTXU Dn; zero-extend 16 bits to 24 bits
EXTXB Dn; sign-extend 8 bits to 24 bits
EXTXBU Dn; zero-extend 8 bits to 24 bits

EXTENSION INSTRUCTION FOR
TRANSMISSION DATA

MOVI #1imm1l6, Dn; sing extend 16-bit immediate data to 24 bits

(#1imm1l6—Dn)

MOVI #1imm&, Dn; sign-extend 8-bit immediate data to 24 bits
(#1mm&—Dn)

MOVI #1imml6, An; zero-extend 16-bit immediate data to 24 bits
(#1mml6—=An)

MOV Mem, Dn, sign-extend 16 bits to 24 bits (Mem—Dn)

MOVB Mem, Dn;
MOVBU Mem, Dn;

sign-extend 8 bits to 24 bits (Mem—Dn)
zero-extend & bits to 24 bits (Mem—Dn)

Structures of the PSW 142 and branch judging umt 143
are depicted 1n FIG. 15. The PSW 142 1s a 16-bit register
with each bit serving as an independent flag or a control flag
that sets the current status of the computer 3. Note that only
the lower 8 bits that serve as operation flags are shown in the
drawing; for the higher 8 bits, which are control flags, are
irrelevant to the present invention. The lower 8 bits consists
of a first tlag group 151 and a second flag group 1352; the
former includes flags 216, N16, V16, and C16 which are
changed 1n accordance with the result of 16-bit data
operation, and the latter includes flags 724, N24, V24, and
C24 which are changed in accordance with the result of
24-bit data operation.

The flags 716, 724 (denoted as 151a, 152a respectively)
are zero flags exhibiting a zero result.

The flags N16, N24 (denoted as 151b, 152b respectively)
are negative flags exhibiting a negative result.

The flags V16, V24 (denoted as 151c, 152c¢ respectively)
are overtlow flags exhibiting an overtlow 11 1t occurs during
the operation.

The flags C16, C24 (denoted as 151d, 152d respectively)
are carry tlags exhibiting a carry output.

The branch judging unit 143 includes selectors 153—-156
and a condition judging unit 157. The output from either the
first flag group 151 or second flag group 152 is selected by
the selectors 153—156 1n accordance with a designation from
the decoding unit 140 when 1t decodes a conditional branch
instruction.

A bit-structure of a conditional branch instruction, which
1s run by the computer 3, 1s shown in FIG. 16A. The condi-
tional branch 1nstruction consists of an 8-bit OP code exhib-
iting a conditional branch and an 8-bit branch destination
(relative) address. One bit denoted as W 1n the OP code
designates a flag group, and accordingly, the decoding unit
140 designates that flag group to the selectors 153-156
based on the W’s value.

A bit structure of add/subtract/compare instructions
between the register and memory 130 1s shown in FIG. 16B.

US RE41,959 E

19

These 1nstructions consist of an 8-bit OP code exhibiting an
operation kind, 8 bits designating registers, and 16 bits des-
ignating a memory address. Note that the OP code does not
include any bit exhibiting a data width. This 1s because both
the first and second tlag groups 151, 152 are changed at the
execution of the add/subtract/compare 1nstructions shown 1n
FIG. 16B, and an appropriate flag group 1s selected in accor-
dance with the conditional branch instruction shown 1n FIG.

16A.

Structures of the register unit 137 and bus control unit 136
with the decoding umt 140 and memory 130 are depicted in
FIG. 17; assume that the memory 130 1s of 16-bit wide.

The register unit 137 includes an address register group
137a, an 1input butter gate 137b, an output bufler gate 137c, a
data register group 137d, another input buifer gate 137e,
another output buffer gate 1371, two decoders 137g, 137h,
and a selector 1371.

The address register group 137a includes eight 24-bit
address registers A7-A0, and holds mput data from the bus
control unit 136 or from the executing unit 138 via the selec-
tor 1371 and input butfer gate 137b 1n one of the eight regis-
ters designated by the decoder 137¢g, while outputting the
data from one of the eight registers designated by the
decoder 137h via the output buifer gate 137c.

The data register group 137d includes eight 24-bit data
registers D7-D0, and holds the input data from the bus con-
trol unit 136 or from the executing umt 138 via the selector
1371 and nput builer gate 137¢ 1n one of the eight registers
designated by the decoder 137g, while outputting the data

from one of the eight registers designated by the decoder
13°7h via the output butfer gate 1371.

The decoder 137g receives a type of a destination register
(DT) and 1ts register number (DN) from the instruction
decoding unit 140, and accordingly selects a register for
data-writing, outputting a selection signal to the selector
1371 and a gate control signal from the buifer gates 137b,

137e.

The decoder 137h recetves a type of a source register (ST)
and 1ts register number (SN), or a destination register (DT)
and 1ts register number (DN) from the mnstruction decoding
unit 140, and accordingly selects a register for data-readout,
outputting a gate control signal for the bufler gates 137c,
1371. Note that the ST 1ndicates whether the source register
1s the address or data register, whereas the DT indicates
whether the destination register 1s the address or data regis-
ter. The register numbers (SN, DN) indicate the registers
designated as to be the source and destination registers,
respectively.

The decoding unit 140 decodes an nstruction to output an
appropriate control signal. In case of a data-transfer
instruction, the decoding unit 140 outputs the control signal

including the ST, SN, DT, and DN: the DT and DN are
entered into the decoder 137¢g, while erther the DT and DN,
or ST and SN are entered into the decoder 137h via a selector
140a. At the same time, the decoding unit 140 outputs the
types of the designated source and destination registers for
the transmission data (address), or register information 171,
to the bus control unit 136 via a selector 140b, and outputs
an activation signal to the bus control unit 136.

The bus control unit 136 includes an external-access-
width control unit 1365, a load butifer 136a, an mput builer
gate group 136b, a store buller 136¢, a selector 136d, and an
address buller 136¢, a selector 1361, an incrementer 136g, an
output buifer gate 136h, a sequencer 1361, and a third
extender 136k. The bus control unit 136 transiers the data
between the registers in the register unit 137 and the memory

130 in the bit-width thereof.

10

15

20

25

30

35

40

45

50

55

60

65

20

The external-access-width control unit 136; recetves the
register mnformation 171 and sends bit-width information
172, which contains bit-widths for each register group. More
precisely, the external-access-width control unit 136;
receives the register information 171 indicating a type of the
register subject to the data-transfer instruction. When the
address register 1s designated, the external-access-width
control unit 136j outputs the bit-width information 172 indi-
cating 24-bit data transier. Whereas when the data register 1s
designated, i1t outputs the bit-width information 172 indicat-
ing 16-bit data transfer. The register information 171
referred herein 1s a 1-bit signal exhibiting “1” for the address
register and “0” for the data register. Similarly, the bit-width
information 172 1s a 1-bit signal exhibiting “1” for the 24-bat
data transfer and “0” for the 16-bit data transier. The bus
control unit 136 controls the data transfer bit-widths: 24 bits
for the address register and 16 bits for the data register.

The load buffer 136a holds data entered for a plurality of
times from the memory 130 via the input bulfer gate group
136b and outputs the same to the register umt 137 via the
third extender 136k. To be more specific, the load builer
136a 1s a 24-bit register, and 16-bit data from the memory
130 are entered 1n the lower 16 bits (15-0), while 8-bit data
from the memory 130 are entered in the lower 8 bits (7-0); 1f
the 8-bit-width bus 1s used, the bus control unit 136 transiers
the 16-bit data twice per 8 bits (b1t 7—0 and bit 15-8), and
24-bit data three times per 8 bits (bit 7-0, bit 15-8, bat
23-16). The store buffer 136¢ holds the 24-bit data entered
from the register unit 137, and outputs the 24-bit data to the

memory 130 via the selector 136d by dividing the same into
the lower 16 bits (15-0) and upper 8 bits (23-16).

The address buffer 136¢ holds an access address entered
from the register unit 137 via the selector 1361, and outputs
the same to the memory 130 via the output buffer gate 136h.
The incrementer 136g increments the output address from
the output butler gate 136h, which 1s entered again into the
address buifer 136¢ via the selector 1361.

-

The sequencer 1361 controls the execution of the load/
store instruction with the memory 130 in accordance with
the bit-width information 172 from the external-access-
width control unit 136;: when the bit-width information 172
exhibits 24-bit data transier, the load/store instruction 1s
executed per 16 bits and 8 bits, whereas when the bit-width
information 172 exhibits 16-bit data transter, it 1s executed
per 16 baits.

The third extender 136k either zero or sign-extends the 8-
and 16-bit data from the load bufier 136a to 24-bit data
under the control of the decoding unit 140 1n accordance
with the operation code.

A format of the data-transfer instruction i1s shown in
FIGS. 18A, 18B. The format in FIG. 18A 1s, for example, an
instruction to transfer the data from the data register to the
memory 130 (MOVE D1, @A2), and the format 1n FIG. 18B
1s, for example, an 1nstruction to transfer the data from the
address register to the memory 130 (MOVE Al, @A2). In
the drawings, OP 1s an operation code field exhibiting a kind
of the operation, SRC 1s a source field designating a data-
sending register, and DEST 1s a destination field designating
a data-recerving memory. Also, MOVE means a transfer
instruction, D1 indicates the data register, Al, A2 indicate
the address registers, and (@A2 1s an address 1n the memory
130 that the address register A2 indicates. Both the SRC and
DEST used herein are 3-bit long, and the transfer istruction
includes a plurality of OP’s to determine whether the SRC
and DEST designate the address or data register. This 1s done
to further reduce the number of bits 1n the SRC and DEST
fields.

US RE41,959 E

21

A structure of the compiler 2 1s depicted i FIG. 13. The
compiler 2 comprises a syntax analyzing unit 120, an option
directing umit 121, a code generating unit 122, a parameter
setting unit 123, a memory managing unit 124, a register
managing unit 125, and an immediate managing unit 126.

The syntax analyzing unit 120 analyses a syntax mn a C
language program to generate an intermediary file composed

of intermediary statements or codes.

The option directing unit 121 1s used to mput a direction
for an overtlow compensation: 1t directs the code generating
unit 122 to msert a compensation code where a data variable
1s calculated, which will be described later more 1n detail.

The code generating unit 122 generates an object code in
accordance with the intermediary file.

The parameter setting unit 123 holds the bit-width of an
integer data variable and that of a pointer variable. The 1nte-
ger data variable and pointer variable referred herein are 16
bits and 24 bits, respectively.

The memory managing unit 124 designates a memory
data readout/write width depending on the type of the vari-
ables subject to the load/store instruction generated by the
code generating unit 122.

The register managing unit 125 designates an effective
bit-width depending on the variables to be read out or wrait-
ten with the register used by the instruction generated by the
code generating unit 122.

The immediate managing unit 126 designates immediate
data width 1n the operation code depending on the type of the
variable for an 1nstruction using the immediate generated by
the code generating unit 122.

The operation of the above-constructed compiler 2 1s
detailed by the tlowchart 1n FIG. 19.

In Step 20, a C language program 1s taken out from the
storage unit 1, and the syntax thereof 1s analyzed based on a
C language grammar to generate intermediary instructions
and an intermediary file comprising intermediary state-
ments.

In Step 21, the data variables are selected from the inter-
mediary file to generate a variable table (symbol table) con-
taining imnformation for each varniable. Examples of the sym-
bol table are shown 1 FIGS. 20A, 20B. In the drawings, the
data variable’s symbol 1s set forth 1n a symbol column, while
the data variable’s sign and type are set forth 1 a variable-
type column; the vanable includes a pointer and an integer
(including a character) variables. The number of data vari-
able’s bytes 1s set forth in a byte No. column, and a head
address 1s set forth 1n a head address column when 1t 1s
allocated to the memory 130.

In Step 22, whether or not all the instructions have been
translated from the itermediary nstructions i1s checked. IT
yes, the code generation 1s terminated; otherwise, the flow
proceeds to Step 23.

In Step 23, one mtermediary mstruction to be executed 1s
read out from the intermediary file.

In Step 24, one or more than one machine language
instruction 1s selected to realize the mntermediary instruction
read out i Step 23.

In Step 235, one of the selected machine language nstruc-
tions 1s designated to be executed.

In Step 26, an operation code for the designated machine
language 1nstruction (individual instruction) 1s generated;
the code generating process will be referred to as “individual
process’ .

In Step 27, a possibility for an overflow, or whether the
generated operation code designates an arithmetic operation

10

15

20

25

30

35

40

45

50

55

60

65

22

istruction 1s judged. If there 1s any possibility, the flow
proceeds to Step 30, otherwise to Step 28.

In Step 28, whether there 1s any of the machine language
instructions selected i Step 24 left unprocessed 1s judged. If
yes, the flow returns to Step 25, otherwise to Step 22.

The operation of the code generating unit 122 1n Step 26
will be detailed by the flowcharts in FIGS. 21-24.

In Step 30, whether or not the individual instruction 1s a
load/store instruction 1s judged. I1 so, the judgment 1s noti-
fied to the memory managing unit 124; otherwise the flow
proceeds to Step 31. Upon the judgment notice, the memory
managing unit 124 operates as 1s detailed by the tlowchart in

FIG. 22.

In Step 40, the type of the vanable to be loaded/stored
from/to the memory 130 by the individual instruction 1is

checked with the reference to the symbol table.

In Step 41, the vanable type 1s judged; 1n case of the
integer data variable, the flow proceeds to Step 42 and to
Step 43 1n case of the pointer data vanable.

In Step 42, a direction to generate a load/store 1nstruction
for 2 byte data 1s sent to the code generating unit 122 and the
flow proceeds to Step 31; the load/store mstruction herein
indicates an access data width of 2 bytes.

In Step 43, a direction to generate a load/store 1nstruction
for 3-byte data 1s sent to the code generating unit 122 to
turther proceed to Step 31; the load/store mstruction herein
indicates an access data width of 3 bytes.

In Step 31, whether or not the individual 1nstruction uses a
register 1s judged. It so, the judgment 1s notified to the regis-
ter managing unit 125; otherwise the tlow proceeds to Step
32. Upon the judgment notice, the register managing unit
125 operates as 1s detailed by the flowchart in FIG. 23.

In Step 50, the type of the vaniable to be stored in the
register by the individual instruction i1s checked with the
reference to the symbol table.

In Step 51, the vaniable type 1s judged; 1n case of the
integer data varniable, the flow proceeds to Step 52 and to
Step 53 1n case of the pointer data varnable.

In Step 52, a direction that the lower 16 bits of the register
to be used 1s effective 1s sent to the code generating unit 122
to Turther proceed to Step 32.

In Step 33, a direction that the lower 24 bits of the register
to be used 1s effective 1s sent to the code generating unit 122
to further proceed to Step 32.

In Step 32, whether or not the individual nstruction uses
immediate data 1s judged. It so, the judgment 1s notified to
the immediate managing umt 126; otherwise the flow pro-
ceeds to Step 33. Upon the judgment notice, the immediate

managing unit 126 operates as 1s detailed by the flowchart in
FIG. 24.

In Step 60, the type of the variable used with the 1mmedi-
ate data, which the individual instruction uses, 1s checked
with the reference to the symbol table.

In Step 61, the vanable type 1s judged; in case of the
integer data variable, the flow proceeds to Step 62 and to
Step 63 1n case of the pointer data varnable.

In Step 62, a direction to generate an instruction using

2-byte immediate data 1s sent to the code generating unit
122, and the flow proceeds to Step 33.

In Step 63, a direction to generate an instruction using,

3-byte immediate data 1s sent to the code generating unit
122, and the flow proceeds to Step 33.

In Step 33, an operation code for the individual instruction
1s generated in accordance with any direction from the

US RE41,959 E

23

memory managing unit 124, register managing unit 125, and
immediate managing unit 126.

Next, the overflow compensation proceeded from Step 27
will be detailed by the flowchart in FIG. 25.

In Step 70, whether there 1s any direction to realize the
overflow compensation from the option directing unit 121 1s
checked. If so, the flow proceeds to Step 71 and to Step 72

otherwise.

In Step 71, the type of the varniable for the individual
instruction 1s checked with the reference to the symbol table.

In Step 72, the variable type 1s judged: 1n case of the
character data variable, the tlow proceeds to Step 73 and to
Step 76 1n case of the integer data variable.

In Step 73, whether the character data variable 1s signed or
not 1s judged. If they are signed, the flow proceeds to Step 74
and to Step 75 otherwise.

In Step 74, the signed-character data variable 1s sign-
extended: a least-word-length instruction to sign-extend the
8 bits to 24 bits 1s generated.

In Step 75, the unsigned-character data variable 1s zero-
extended: a least-word-length instruction to zero-extend 8
bits to 24 bits 1s generated.

In Step 76, whether the integer data variable 1s signed or
not 1s judged. I they are signed, the flow proceeds to Step 77
and to Step 78 otherwise.

In Step 77, the signed-integer data variable 1s sign-
extended: a least-word-length 1nstruction to sign-extend 16
bits to 24 bits 1s generated.

In Step 78, the unsigned-integer data variable 1s zero-
extended: a least-word-length 1nstruction to zero-extend 16
bits to 24 bits 1s generated.

Next, the operation of the computer 3 and compiler 2 will
be explained 1n the five following cases to highlight the
improvement compared with the conventional processors
explained 1n the related art column.

(1) Parameter setting
(2) Overtlow compensation
(3) The data transier with the memory 130

(4) The data transfer and operation including the immedi-
ate data

(5) The conditional branch

(1) Parameter Setting

Assume that the option directing unit 121 instructs no
overflow compensation herein, and a C language program 1n
the storage unit 1 reads as follows:

main ()

L _
int *a, b, ¢, ;
c=Fa+b+1;

The syntax analyzing unit 120 takes out the C language
program {rom the storage unit 1 to generate an intermediary
file by analyzing the syntax with the C language grammar.
The intermediary file 1f written easier to understand 1s as
follows:

Intermediary Statement 1: (int *a, b, ¢)

Intermediary Instruction 1: t1:=*a
Intermediary Instruction 2: t2:=t1+b

10

15

20

25

30

35

40

45

50

55

60

65

24

Intermediary Instruction 3: t3:=t2+1

Intermediary Instruction 4: c:=t3

Intermediary Statement 1 corresponds to the declaration
statement int *a, b, ¢, while Intermediary Instructions 1-4
correspond to the operation expression c=*a+b+1.

These mtermediary statement and instructions are con-
verted 1nto object codes 1n the following way.

When the intermediary file 1s entered, the code generating
unit 122 extracts the data variables, both with and without
the declarations, to check their respective types. If necessary,
the code generating unit 122 allocates the data variables to
the memory 130 to generate the symbol table as shown 1n

FIG. 20A (Step 21 i FI1G. 19).
Herein, the variables *a, b, ¢ are declared explicitly and

thus extracted from Intermediary Statement 1. The variable
*a declared as to be a pointer variable 1s allocated to an area
in the memory 130; since the pointer variable 1s fixed to 24
bits by the parameter setting unit 123, a 24-bit (3-byte) area
1s secured. The vaniables b, ¢ declared to be the integer data
variables are also allocated to their respective areas in the
memory 130; since the integer data variable 1s fixed to 16
bits by the parameter setting unit 123, 16-bit (2-byte) areas
are secured, respectively. Assume that the variables *a, b, ¢
are allocated to the 3-byte area starting from the address
H1000, 2-byte area starting from the address H1004, and
2-byte area starting from the address H1006, respectively;
note that a 1-byte at the address H1003 1s not used.

Further, temporary variables t1, 12, t3 are selected from
Intermediary Instructions 1-4, which are managed as to be
the integer data variables 1n response to the variables subject
to operation.

Accordingly, information for these variables 1s written
into the symbol table, which 1s shown in FIG. 20A; the reg-
ister column and head address column for the temporary
variables are blank because any data have not been allocated
yet; the symbol table 1s updated dynamically each time the
register allocation changes.

Subsequently, the code generating unit 122 generates
machine language instructions for the above intermediary
instructions, which will be explained separately 1n the fol-
lowing.

Intermediary Instruction 1

The code generating unit 122 judges whether there 1s any
non-executed mntermediary instruction in the intermediary
file (Step 22 1n FIG. 19). Since Intermediary Instructions
1-4 have not been executed herein, the code generating unit
122 proceeds to Step 23.

Then, the code generating unit 122 reads out a leading
intermediary struction (Step 23) to select one or more than
one machine language instruction to realize that intermedi-

ary instruction (Step 24).
The one or more than one machine language instruction 1s
selected as follows.

Intermediary Instruction 1 reads

(1) Find the address H1000 to which the data variable *a
1s allocated:

(2) Read out 3 bytes starting from the address H1000;

(3) Read out 2 bytes starting {from the address obtained by
the 3-byte readout to store the same in the temporary vari-

able tl.

Correspondingly, the code generating unit 122 selects the
following three data-transfer instructions in machine lan-
guage:

(1) MOV 1nstruction using the address H1000 as the
immediate data and storing the same 1n the first address reg-
1ster;

US RE41,959 E

25

(2) MOV 1struction using the content of the pointer vari-
able *a as an address to read out the data therein to the
second address register using the first address register.

(3) MOV 1nstruction reading out the data designated by
the pointer to the data register using the second address reg-
1ster.

The first and second address registers are allocated with
the registers A0, Al, respectively, which are accordingly
written 1nto the symbol table.

The code generating unit 122 designates one instruction
(Individual Instruction 1) from the above three instructions
(Step 25) to generate a corresponding operation code (Step
26).

The process of this code generation will be explained with
referring to FIGS. 21-24.

The code generating unit 122 judges that Individual
Instruction 1 1s not a load/store instruction to access the
memory 130 (Step 30 1n FIG. 21), but an instruction using,
the register AO; the judgement 1s notified to the register man-
aging unit 125 (Step 31).

The register managing unit 1235 refers to the symbol table
(Step 50 1n FIG. 23), and judges that the variable to be stored
in the register AO 1s the pointer (Step 31). Thus, the register
managing unit 125 directs the code generating unit 122 to
generate an mstruction to effect all the 24 bits in the register
(Step 53).

Further, the code generating unit 122 notifies to the imme-
diate managing unit 126 that Individual Instruction 1 uses
the immediate data (Step 32). Thus, the immediate manag-
ing umt 126 refers to the symbol table (Step 60 in FIG. 24).
and judges that the immediate to be stored 1n the register AO
1s the pointer (Step 61). Thus, the immediate managing unit
126 directs the code generating unit 122 to generate an
instruction that includes 3-byte immediate data (Step 63).

In accordance with Steps 33, 63, the code generating unit
122 generates Instruction 1 corresponding to Individual
Instruction 1 as follows (Step 33):

Instruction 1: MOV #H001000,A0

Subsequently, the code generating unit 122 acknowledges
that two machine language instructions (Individual Instruc-
tions 2, 3) have not been executed yet (Step 28), and thus
proceeds to Step 25.

The code generating unit 122 designates Individual

Instruction 2 (Step 25) to generate a corresponding operation
code (Step 26).

The process of this operation code generation will be
explained with referring to FIGS. 21-24.

The code generating unit 122 judges that Individual
Instruction 2 1s a load/store instruction to access the memory

130, and notifies the judgment to the memory managing unit
124 (Step 30 in FIG. 21).

The memory managing unit 124 refers to the symbol table
(Step 40 1n FIG. 22), and judges that the variable to be stored
in the second register Al 1s the pointer (Step 41). Thus, the
memory managing unit 124 istructs the code generating
unit 122 to generate a load nstruction whose access width 1s
3 bytes (Step 43).

Further, the code generating unit 122 judges that Indi-

vidual Instruction 2 uses the registers A0, Al, and notifies
the judgment to the register managing unit 125 (Step 31).

The register managing unit 123 refers to the symbol table
(Step 50 1n FIG. 23), and judges that the variable to be stored
in the second register Al 1s the pointer (Step 31). Thus, the
register managing unit 1235 directs the code generating unit

10

15

20

25

30

35

40

45

50

55

60

65

26

122 to generate an instruction to effect all the 24 bits 1n the
register (Step 53).
Subsequently, since Individual Instruction 2 does not use

the immediate data (Step 32), the code generating unit 122
proceeds to Step 33.

In accordance with the mstructions from Step 43, 53, the
code generating unit 122 generates Instruction 2 below cor-
responding to Individual Instruction 2 (Step 33):

Instruction 2: MOV @AO, Al

The code generating unit 122 acknowledges that Indi-
vidual Instruction 3 has not been executed yet (Step 28), and
thus proceeds to Step 25.

The code generating unit 122 generates Instruction 3
below 1n the same way as above (Steps 25, 26); the tempo-
rary variable t1 1s allocated to the register DO at this time.

Instruction 3: MOV @A1, DO

Each intermediary instruction 1s processed in the loop of
Steps 22-28, and each individual instruction 1s executed 1n
Steps 24, 25, 26 1n the same way as above, and the explana-
tion 1s not repeated.

Intermediary Instruction 2

Intermediary Instruction 2 reads:

(4) Read out 2 bytes starting from the address H1004 to
which the variable b 1s allocated.

(5) Add the readout 2 bytes to the temporary variable tl to
store the result into the temporary variable t2.

The code generating unit 122 generates Instruction 4 to
load from the address, four bytes away from the address
H1000, stored 1n the register AO for Individual Instruction 4.
The memory managing unit 124 refers to the symbol table
(Step 40), and judges that Individual Instruction 4 loads the
integer data variable (Step 41). Thus, the memory managing
umt 124 directs the code generating unit 122 to generate a
load 1nstruction whose access width 1s 2 bytes (Step 42). The
register managing unit 125 refers to the symbol table (Step
50), and stores the integer data into the register (Step 51).
Thus, the register managing unit 125 directs the code gener-
ating unit 122 to generate an instruction to effect the lower
16 bits 1n the register (Step 52); the variable b 1s stored into
the register D1 at this time.

Instruction 4: MOV @/(04,A0), D1

Subsequently, the code generating unit 122 generates
Instruction 5 to add the vaniable b stored 1n the register D1 to
the temporary variable tl indicated by the register DO to
store the result 1n the register D1. Accordingly, the register
managing unit 125 refers to the symbol table (Step 50), and
stores the integer data variable 1n the register (Step 51).
Thus, the register managing unit 125 directs the code gener-
ating unit 122 to generate an instruction to etfect the lower
16 bits 1n the register (Step 52); the temporary variable t2 1s
allocated to the register D1 at thus time.

Instruction 5: ADD DO, D1

Intermediary Instruction 3

Intermediary Instruction 3 reads:

(6) Add a value “1” to the temporary variable t2 to store
the result into the temporary variable t3.

In accordance with the directions from the register man-
aging unit 125 and immediate managing unit 126, the code
generating unit 122 generates Instruction 6 below to add
2-byte immediate #HO001 to the register D1 and store the

US RE41,959 E

27

result 1n the register D1; the temporary variable t3 1s allo-
cated to the register D1 at this time.

Instruction 6: ADD #HO00001, D1

Intermediary Instruction 4

Intermediary Instruction 4 reads:

(7) Write the temporary variable {3 1n two bytes starting
from the addresses H1006 where the variable ¢ 1s allocated.

In accordance with the direction from the memory manag-
ing unit 124, the code generating unit 122 generates Instruc-
tion 7 to store the register D1’°s content at six bytes away
from the address specified by the register A0’s content.

Instruction 7: MOV D1.,@(06, AO)

The intermediary nstructions are processed 1n the above
sequence, and as a result, the code generating unit 122 out-

puts the object codes to the memory 130 as follows. Assume
that Instructions 1-7 are located on the addresses H100000,
H100005, H100007, H100008, H10000a, H10000b, and

H100001 1n the memory 130, respectively.

Instruction 1: H100000 MOV #HO0O01000,A0
Instruction 2: H100005 MOV A0, Al
Instruction 3: H100007 MOV wAl, DO
Instruction 4: H100008 MOV @ (04,A0),D1
Instruction 5: H10000a ADD DO, D1
Instruction 6: H10000b ADD #HO001, D1
Instruction 7: H10000f MOV D1,@(06,A0)

These 1nstructions are the object code expressed 1n the
mnemonic object codes (assembly language) for the expla-
nation’s convenience. They are hexadecimal numbers, but in

cifect they are stored in the binary numbers in the memory
130.

The computer 3 runs the object codes thus located in the
memory 130 in the following way.

Instruction 1

The bus control unit 136 and instruction control unit 134
outputs a value H100000 held 1n the program counter 1n the
fetching unit 139 to the address bus 131, and fetches Instruc-
tion 1 via the data bus 132 to decode the same. In accordance
with the decoding result, the operation executing unit 135
receives the immediate HOO1000 designated by Instruction
1’s operand from the instruction control unit 134 to store the
same 1nto the register A0 1n the register unit 137.

Instruction 2

Similarly, the bus control unit 136 and instruction control
unit 134 fetch and decode Instruction 2 in the same way. The
operation executing unit 135 reads out the register AO’s con-
tent to read out the memory 130 by outputting the same to
the address bus 131, storing the 16-bit data read out via the
data bus 132 in the lower 16 bits of the register Al.
Subsequently, the operation executing unit 135 adds a value
“2” to the register AO’s value HO01000 by the executing unit
138 to read out the memory 130 by outputting the HO01002
to the address bus 131 by the bus control umt 136. The
operation executing unit 135 stores the 8-bit data read out
via the data bus 132 into the higher 8 bits 1n the register Al.

Instruction 3

The bus control unit 136 and nstruction control unit 134
tetch and decode Instruction 3. The operation executing unit

10

15

20

25

30

35

40

45

50

55

60

65

28

135 reads out the register Al’s content to read out the
memory 130 by sending the same to the address bus 131.
Subsequently, the operation executing unit 135 stores the
16-bit value read out via the third extender 136k, which
sign-extends the lower 16 bits to 24 bits to store the same
into the register D1; the register DO thus holds the data des-
ignated by the pointer *a.

Instruction 4

The bus control unit 136 and instruction control unit 134
tetch and decode Instruction 4. The operation executing unit
135 receives a displacement “04” from the 1nstruction con-
trol unit 134 to add the same to the register AOQ’s value
HO01000 read out by the executing unit 138, and reads out
the memory 130 by sending the result to the address bus 131
by the bus control unit 136. Subsequently, the operation
executing unit 135 stores the 16-bit value read out via the
third extender 136k, which sign-extends the lower 16 bits to

24 bits to store the same 1nto the register D1 the register D1
thus holds the varniable b.

Instruction 5

The bus control unit 136 and instruction fetch and decode
Instruction 5. The operation executing unit 135 adds the reg-
ister D1’s value to the register DO’s value read out from the
register unit 137 to store the 24-bit result 1into the register
D1. Although the executing unit 138 operates the 24-bit data,
the lower 16 bits are effective in the register D1. The register
D1 thus holds the addition result of the data pointed by the
pointer variable *a and variable b.

Instruction 6

The bus control umit 136 and instruction control unit 134
fetch and decode Instruction 6. The operation executing unit
135 adds the register D1’s value read out from the register
unmit 137 by the executing unit 138 to the immediate HOO01
received from the instruction managing unit 134 to store the
result in the register D1; the register D1 thus holds the addi-
tion result of the data pointed by the pointer variable *a,
variable b, and immediate value HOOO]1.

Instruction 7

The bus control unit 136 and instruction control unit 134
fetch and decode Instruction 7. The operation executing unit
135 receives a displacement “06” from the 1nstruction con-
trol unit 134. Accordingly, the executing unit 138 adds the
register AO’s value HOO1000 read out from the register unit
137 by the executing unit 138 to the recerved displacement
“06”, and outputs the addition result HOO1006 to the data bus
132 via the bus control unit 136, while outputting the register
D1’s lower 16 bits to the data bus 132, writing the 16 bits 1n
the memory 130; the addition result of the data indicated by
the pointer variable *a, vaniable b, and immediate HOOO1 are
thus written into the memory 130 at the address HO01006.

In this way, the object code translated from the C language
program by the compiler 2 will be run by the computer 3.

As has been explained, the compiler 2 manages the loca-
tions of all the variables and the object codes in the memory
130 with 24-bit addresses. The computer 3 calculates these
24-b1t addresses using the 24-bit register unit 137 and
executing unit 138 to access the memory 130 via the 24-bat
address bus 131. Thus, the data processing system of the
present invention can secure an even 16-Mbyte address
space with no segment division. As a result, a C language
programmer does not have to check the space’s 1rregularity,

US RE41,959 E

29

or the segment boundaries. Moreover, the performance effi-
ciency 1s not degraded by the address computation as 1s with
the segment register. Thus, the program can be constructed
more etliciently.

The data processing system of the present mvention 1s
suitable for the application that operates 16-bit data while
demanding an address space of 16 Mbyte. This 1s because
the computer 3 includes the 24-bit register unit 137 and

executing unit 138, eliminating the problem of the cost for
the excess hardware and running electricity.

The computer 3 runs an instruction includes the 1mmedi-
ate data showing the address, the immediate includes 24 bits
at most. In contrast, with the conventional machine language
instruction of 16- or 32-bit wide, the word length exceeds 32
bits because the address’s immediate 1s 32 bits at 1ts maxi-
mum. Thus, the size of the object code can be reduced sig-
nificantly compared with the conventional 32-bit processor.
Also, the code size 1s hardly increased compared with the
16-bit processor managing the 64-Kbyte address space,
because the code size 1s increased by one byte only due to
the address’s immediate 1n the mstruction.

In the foregoing embodiment, 16-bit data bus 132 1s used
in the computer 3; a 24-bit data bus can be used as well.
Although the data readout/writing execution time from/in
the memory 130 1s prolonged compared with the 24-bit data
bus 132, this latency 1s negligible compared with a case
where the 16-bit data bus 132 1s utilized in the 32-bit proces-
sor because only the execution time prolongs by a read-out
time for a value for the 24-bit address stored 1n the register
unit 137 from the memory 130.

In the foregoing embodiment, the address bus 131 in the
computer 3, the program counter in the fetching unit 139, the
register unit 137 and the executing unit 138 are all 24 bits,
and the pointer variable in the parameter setting unit 123 1s
also 24 bits. However, they can be 17 to 31 bits depending on
the address space size; the hardware for the bits exceeding
the address bit-width 1s eliminated and the excess costs and
clectricity consumption can be saved appropriately.

The address bus 131 i1n the computer 3, the program
counter in the fetching unit 139, the register unit 137, execut-
ing unit 138, the pointer variable 1n the parameter setting
unit 123 in the compiler 2 are all 24 bats, and the data vari-
able 1n the parameter setting unit 123 1n the compiler 2 1s 16
bits in the foregoing embodiment. However, the bit widths of
these components are not limited to as above. Assume that
24 1s replaced with an address bit-width N and 16 1s replaced
with a data bit-width M, where N 1s greater than M, the data
processing system of the present mvention can secure a

2"-byte address space, which exceeds 2*-byte address
space.

The data variable whose bit-width 1s set by the parameter
setting unit 123 1s not limited to the integer data variable; 1t
can be of any data varniable available for the C language
program.

In the foregoing embodiment, the C language 1s compiled
to be run; however, any program language can be compiled
by adjusting the compiler 2 accordingly.

(2) Overtlow Compensation

The explanation of the overtlow compensation will be
described in the following. For simplification, the C lan-
guage program as follows 1s used as an example.

10

15

20

25

30

35

40

45

50

55

60

65

30

main ()

1

char a ;

unsigned char b ;
int ¢ ;

unsigned it d;
a=a+1;
b=b+a;
c=c+b;
d=d+c¢;

This C language program 1s read out from the storage unit
1 by the code generating unit 122, and the syntax 1s analyzed
with the C language grammar. Accordingly, the code gener-
ating unit 122 generates an intermediary file in an intermedi-
ary language (Steps 20, 21 in FIG. 19). The intermediary file
written 1n a source level 1s as follows:

Intermediary Statement 1: (char a)
Intermediary Statement 2: (unsigned char b)
Intermediary Statement 3: (int ¢)
Intermediary Statement 4: (unsigned 1nt d)
Intermediary Instruction 1: (a=a+1)
Intermediary Instruction 2: (b=b+a)
Intermediary Instruction 3: (c=c+b)

Intermediary Instruction 4: (d=d+c)

When the intermediary file 1s entered, the code generating,
unit 122 extracts the data variables, both with and without
the declarations, in the mntermediary file to check their
respective types. If necessary, the variables are allocated to
the memory 130 to generate the symbol table as shown 1n
FIG. 20B (Step 21).

The variables a, b, ¢, d, which are declared explicitly, are
extracted from Intermediary Statements 1-4. The type of
cach vanable 1s judged based on the declaration to be regis-
tered 1n the symbol table (FIG. 20B) while being allocated to
the memory 130. The vaniables a, b, ¢, d are allocated to
areas at one byte starting from the address 1000 address, one
byte starting from the address 1001, two byte starting from
the address 1002, two byte from the address 1004, respec-
tively as shown in FIG. 20B. The symbol table 1s updated
dynamically with every change 1n the content thereof.

Subsequently, the code generating unit 122 generates
machine language instructions for each Intermediary
Instruction. This process 1s explained 1n two cases: with and
without overflow compensation.

No Overtlow Compensation

The code generating unit 122 reads out a leading interme-
diary instruction among the unprocessed intermediary
istructions (Step 23), and selects one or more than one
machine language instruction to realize the extracted inter-
mediary mstruction (Step 24).

The one or more than one intermediary instruction 1s
selected 1n the following way.

Intermediary Instruction 1 (a=a+1) reads:

1) Read out one byte starting from the address 1000 where
the signed character variable a 1s allocated.

2) Add a value “1” to the readout data.

3) Store the addition result into the address 1000.

The code generating unit 122 selects the machine lan-
guage instructions corresponding to the above three mstruc-
tions. The machine language nstructions are

US RE41,959 E

31

1) MOVB 1nstruction for reading out one byte starting
from the address 1000 to store the same in the data register
(herein DO).

2) ADD 1instruction for adding a value “1” to the register’s
content.

3) MOVB 1nstruction for restoring the addition result into
the address 1000.

Further, the code generating unit 122 generates three Indi-
vidual Instructions 1, 2, 3, by repeating the loop of Steps

2428 three times.

address 100000
address 100004
address 100006

Instruction 1:
Instruction 2:
Instruction 3:

MOVB @ 1000, DO
ADD#1, DO
MOVB DO, @1000

Similarly, the code generating unit 122 generates Instruc-

tions 4-6 as follow from the Intermediary Instruction 2
(b=b+a).

address 100009
address 10000c¢
address 10000d

Instruction 4:
Instruction 5:
Instruction 6:

MOVBU @1001, D1
ADD DO, D1
MOVB D1, @1001

The code generating unit 122 generates Instructions 7-9
as follow from the Intermediary Instruction 3 (c=c+b).

Instruction 7: address 100010 MOV @1002, DO
Instruction &: address 100013 ADD D1, DO
Instruction 9: address 100014 MOV DO, @1002

The code generating unit 122 generates Instructions
10-12 as follow from the Intermediary Instruction 4 (d=d+

C).

Instruction 10: address 100017 MOV (@1004, D1
Instruction 11: address 10001b ADD D1, DO
Instruction 12: address 10001 MOV D1, @1004

Instructions 1-12 are the object code written 1n the mne-
monic object codes (assembly language) for the use of con-
venience. They are hexadecimal numbers, but 1n effect, they
are stored in the binary numbers mnto the memory 130.

Assume that Instructions 1-12 are allocated to 31 bytes,
from the addresses 100000 to 1000le. No overtlow-

compensation instruction i1s generated herein.

The object code stared 1n the memory 130 1s run by the
computer 3 1n the following way.

Instruction 1

The executing unit 138 reads out the varniable a, or an 8-bit
value, from the address 001000 1n the memory 130 via the
bus control unit 136 to sign-extend the same to 24 bits to be
stored 1n the register D1 1n the register unit 137.

Instruction 2

The executing unit 138 adds a value “1” to the register
DO0’s content 1n the register 137 by the ALU 141 to restore
the addition result in the register DO. The executing unit 138
executes 24-bit data operation.

5

10

15

20

25

30

35

40

45

50

55

60

65

32

Instruction 3

The executing unit 138 writes the register DO’s lower 8
bits at the address 001000 1n the memory 130.

Instruction 4

The executing unit 138 reads out the variable b, or an 8-bit
value, from the address 001001 1n the memory 130 via the
bus control unit 136 to zero-extend the same to 24 bits to
store the same 1n the register D1 in the register unit 137.

Instruction 5

The executing unit 138 adds the register D1’°s content to
the register’s DO’s content by the ALU 141, and restores the
addition result into the register D1. The register DO holds the
value of the variable a updated by Instruction 2 prior to the
addition, and the executing unit 138 executes 24-bit data
operation.

Instruction 6

The executing unit 138 writes the register D1’°s lower 8
bits at the address 001001 in the memory 130.

Instruction 7

The executing umt 138 reads out a 16-bit value, or the
variable ¢, from the address 001002 in the memory 130 via
the bus control unit 136 to sign-extend the same to 24 bits to
be stored in the register D1.

Instruction &

The executing unit 138 adds the register DO’s content to
the register D1°s content by the ALU 141 to restore the result
in the register DO. Note that the register D1 holds the value
of the variable b updated by Instruction 5 prior to the
addition, and the executing unit 138 executes a 24-bit data
operation.

Instruction 9

The executing unit 138 writes the register DO’s lower 16
bits at the address 001002 in the memory 130.

Instruction 10

The executing unit 138 reads but a 16-bit value, or the
variable d, from the address 001004 1n the memory 130 via
the bus control unit 136 to zero-extend the same to 24 bits to
be stored in the register D1.

Instruction 11

The execution unit 138 adds the register D1’s content to
the register DO’ s register by the AL U 141 to restore the result
in the register D1. Note that the register DO holds the value
of the variable ¢ updated by Instruction 8 prior to the
addition, and the executing unit 138 executes a 24-bit data
operation.

Instruction 12

The executing unit 138 writes the register D1’s lower 16
bits at the address 001004 in the memory 130.

In this way, the C language program 1s compiled by the
compiler 2, and the resulting object code 1s run by the com-
puter 3. Since no overtlow 1s compensated 1n this case, the
code size 1s not increased nor the operation speed 1s reduced.

Overtlow Compensation

The operation 1s substantially the same as the above case
except that the code generating unit 122 compensates an

US RE41,959 E

33

overflow 1n Step 70 in FIG. 25. Thus, only the difference will
be explained for simplification. Since the overtlow 1s com-
pensated only when an arithmetic operation instruction 1s
generated 1n Step 27 i FIG. 19, the operation after the fol-
lowing four nstructions 1n Step 70 are different, which will
be detailed 1n the following;:

Instruction 2: ADD #1, DO
Instruction 5: ADD DO, D1
Instruction &: ADD D1, DO

Instruction 11: ADD DO, D1

Overtlow Compensation for Instruction 2

After Instruction 2 1s generated (Step 26), the code gener-
ating unit 122 refers to the symbol table; for Instruction 2 1s
an arithmetic operation direction (Step 27 in FIG. 19) and an
optional instruction for the overtflow compensation has been
entered (Step 70 1n FIG. 25). At this point, the symbol table
shown 1n FIG. 20B shows that the register DO 1s allocated to
the variable a 1n the register column, and that the register DO
subject to operation has the signed character variable a (Step
71). Accordingly, the code generating unit 122 judges that
the variable a 1s the character vaniable (Step 72) and that the
variable a 1s the signed variable (Step 73). Thus, the code
generating unit 122 generates Instruction 2' of the least word
length to sign-extend the 8-bit data in the register DO to 24
bits (Step 74).

Instruction 2" EXTXB DO

Overtlow Compensation for Instruction 5

After the generation of Instruction 5 (Step 26), the code
generating unit 122 refers to the symbol table; for Instruc-
tion 5 1s an arithmetic operation mstruction (Step 27 1n FIG.
19) and an optional direction for the overflow compensation
has been entered (Step 70 in FIG. 25). At this point, the
symbol table shown 1n FIG. 20B shows that the register D1
1s allocated for the variable b 1n the register column, and that
the register D1 subject to operation 1s the unsigned character
variable b (Step 71). Accordingly, the code generating unit
122 judges that the variable b 1s a character variable (Step
72), and that 1t 1s an unsigned varnable (Step 73). Thus, the
code generating unit 122 generates Instruction 5' of the least

word length to zero-extend the 8-bit data 1n the register D1 to
24 bits (Step 73).

Instruction 5" EXTXBU D1

Overtlow compensation for Instruction 8

After the generation of Instruction 8 (Step 26), the code
generating unit 122 refers to the symbol table; for Instruc-
tion 8 1s an arithmetic operation direction (Step 27 i FIG.
19) and an optional nstruction to compensate the overtlow
has been entered (Step 70 in FIG. 25). At this point, the
symbol table shown 1n FIG. 20 shows that the register DO 1s
allocated for the variable ¢ in the register column, and that
the register DO subject to operation i1s the signed integer
variable ¢ (Step 71). Accordingly, the code generating unit

10

15

20

25

30

35

40

45

50

55

60

65

34

122 judges that the variable c 1s an integer variable (Step 72),
and that it 1s a signed variable (Step 76). Thus, the code
generating unit 122 generates Instruction 8' of the least word
length to sign-extend the 16-bit data in the register DO to 24
bits (Step 77).

Instruction &: EXTX DO

Overtlow Compensation for Instruction 11

After the generation of Instruction 11 (Step 26), the code
generating unit 122 refers to the symbol table; for Instruc-
tion 11 1s an arithmetic operation instruction (Step 27 in
FIG. 19) and an optional 1nstruction for the overflow com-
pensation has been entered (Step 70 i FIG. 25). At this
point, the symbol table shown 1n FIG. 20 shows that the
register D1 1s allocated to the variable d in the register
column, and that the register D1 subject to operation 1s the
unsigned integer variable d (Step 71). Accordingly, the code
generating unit 122 judges that the vaniable d 1s an integer
variable (Step 72) and that 1t 1s an unsigned variable (Step
76). Thus, the code generating unit 122 generates Instruction
11" of the least word length to sign-extend the 16-bit data 1n
the register D1 to 24 bits (Step 78).

Instruction 11" EXTXU D1

In this way, the code generating unit 122 generates an
object code as follows:

Instruction 1: address 100000 MOVB 1000, DO
Instruction 2: address 100004 ADD #1, DO
Instruction 2" address 100006 EXTXB DO
Instruction 3: address 100007 MOVB DO, @1000
Instruction 4: address 10000a MOVBU @1001, D1
Instruction 3: address 10000d ADD DO, D1
Instruction 5" address 10000e EXTXBU D1
Instruction 6: address 100001 MOVB D1, @1001
Instruction 7: address 100012 MOV @1002, DO
Instruction &: address 100015 ADD D1, DO
Instruction &' address 100016 EXTX DO
Instruction 9: address 100017 MOV DO, @1002
Instruction 10: address 10001a MOVU 1004, D1
Instruction 11: address 10001e ADD DO, D1
Instruction 11°; address 100011 EXTXU D1
Instruction 12: address 100020 MOV D1, @1004

Assume that Instructions 1-12 are allocated to 35 bytes,
from the addresses 100000 to 100022, in the memory 130.
Instructions 2', 5', 8', and 11" are the compensation instruc-
tions for the signed character variable a, unsigned character
variable b, signed integer variable ¢, and unsigned integer
variable d, respectively; they compensate overtlows caused
by Instructions 2, 5, 8, and 11 (add mstruction), respectively.

The object code thus stored 1n the memory 130 1s run by
the computer 3 substantially in the same way as the overtlow
compensation case, and only the difference will be explained
in the following.

US RE41,959 E

35

Instruction 2

The executing unit 138 sing extends the lower 8 bits 1n the
register DO by the first extender 144 to restore the result in
the register DO.

Instruction 5

The executing unit 138 zero-extends the lower 8 bits 1n the
register D1 by the first extender 144 to restore the result in
the register D1.

Instruction &'

The executing unit 138 sign-extends the lower 16 bits in
the register DO by the second extender 145 to restore the
result 1n the register DO.

Instruction 11°

The executing unit 138 zero-extends the lower 16 bits 1n
the register D1 by the second extender 145 to restore the
result 1n the register D1.

Thus, the overtlows possibly caused by Instructions 2, 5,
8, and 11 will be compensated duly by the above operation
under Instructions 2', 3', 8', and 11', respectively.

In this way, the C language program 1s compiled by the
compiler 2, and the resulting object code 1s run by the com-
puter 3. In this case, Instructions &', 11' for the overtlow
compensation for the integer variables are generated.
However, each instruction that includes Instructions 2', 3
respectively for the overtlow compensation 1s of 1-byte word
long, thus mimimizing the code size increase and operation
speed decrease.

As has been stated, when a user compiles an program
which will not have the overflow, or when he avoids the
overflow by checking a range of values for each variable, he
only has to enter an optional direction for no overtlow com-
pensation to the compiler 2 to prevent the object code size
from being increased and the operation speed from being
slowed down independently of the variable type.

When the user can not avoid the overtlow because the
bit-width of the register umt 137 (24-bit) exceeds the integer
bit width (16-bit), or when he 1s not aware of the overtlow,
1.e., when he enters an optional direction for the overtlow
compensation 1n the compiler 2, the object code size
increases less and operation speed decreases less compared
with the conventional compilers.

The ALU 141 may also serve as the first extender 144 and
second extender 145 instead of installing these two compo-
nents separately.

The address bus 131, the register unit 137, ALU 141, the
first and second extenders 144, 145 1n the computer 3, and
the pointer variable used 1n the code generating unit 122 in
the compiler 2 are all 24-bit wide 1n the foregoing embodi-
ment. However, they can be of 17-bit to 31-bit wide depend-
ing on the size of the address space; the hardware exceeding
the bit-width of the address will be utilized as well, saving
the cost and running electricity.

The outputs from the address bus 131, register unit 137,
ALU 141, first and second extenders 144, 145 1n the com-
puter 3, and the pointer variable used 1n the code generating,
unit 122 1n the compiler 2 are not limited to 24-bit wide;
likewise, the integer data variable used 1n the code generat-
ing unit 122 1n the compiler 2 1s not limited to 16-bit wide.

Assume that 24 1s replaced with M and 16 1s replaced N,
where N 1s greater than M, the data processing system of the
present invention can secure a 2”-byte address space, which
exceeds 2*-byte address space.

10

15

20

25

30

35

40

45

50

55

60

65

36

The data vaniable whose bit-width 1s set by the parameter
setting unit 123 1s not limited to the integer data variable; it
can be of any data variable available for the C language
program.

(3) Data Transter to Memory 130

The data-transier operation by the data processing system
constructed as above will be explained by referring to the
transfer instruction shown in FIGS. 18A, 18B.

The transfer instruction shown in FIG. 18A 1nstructs to
transier the 16-bit data in the register D1 to the memory 130
at an address designated by the address register A2.

1) The decoding unit 140 decodes the nstruction 1n FIG.
18A as follows:

The operation field (OP) means a transier instruction
MOVE to the memory 130 from the data register, the source
field (SRC) indicates the sending register 1s the register D1
and the destination field DEST indicates the receiving
memory 1s designated by the register A2. As the result of the
decoding, the decoding unit 140 outputs an activation signal
to the bus control unit 136 by changing the source type ST to
“07, source register number ST to “001”, destination type to
“1”, and destination register number “010”. At the same
time, the selector 140b outputs the register information 171
by changing 1t to “0”.

(2) In the register umt 137, the 16-bit data are read out
from the data register D1 designated by ST=*“0" and
SN=*001" to be outputted through the output buffer gate
1371. The output data are held 1n the store builer 136c¢ at the
bus control unit 136. Subsequently, the 24-bit data from the
address register A2 designated by D'T="1" and DN=*010"to
be outputted to the output butler 137c. The output data are
sent to the address buifer 136¢ via the selector 1361.

(3) The external access-width control unit 1367 receives
the register information 171 and judges the register to be
transierred 1s one of the data registers based on the ST="0".
Accordingly, the external access-width control unit 1367 out-
puts the bit-width imnformation 172 by setting 1t to “0” that
specifies 16-bit data transier to the sequencer 136.

(4) The sequencer 1361 recerves the activation signal, and
since the bit-width information exhibits “07, 1t then transfers
the 16-bit data to the memory 130 1n the following way.

The sequencer 1361 directs to output an address held 1n the
address builer 136¢ to the address bus 131 via the bullfer gate
136h, while selectively outputting the first byte (bit 7-0) of
the data held 1n the store buifer 136c¢ to the lower byte (bit
7-0) of the data bus 132 via the selector 136d, and the sec-

ond byte (bit 15-8) to the higher byte (bit 15-8) of the data
bus 132 to the memory 130. At the same time, the sequencer
1361 outputs a control signal to the memory 130 to write the
16-bit data from the store butier 136c¢ therein.

In this way, the transfer instruction shown in FIG. 18A 1s
executed.

A transfer instruction shown in FIG. 18B instructs to
transfer the 24-bit data in the address register Al to the
memory 130 at the address designated by the address regis-

ter A2.

(1) The decoding unit 140 decodes the nstruction shown
in FIG. 18B as follows:

The operation field (OP) means a transier instruction
MOVE to the memory 130 from the data register. SRC 1ndi-

cates that the sending register 1s the register Al, and DEST
indicates the recerving memory 1s designated by the register
A2. As the result of the decoding, the decoding unit 140
outputs an activation signal to the bus control unit 136 by

US RE41,959 E

37

changing the source type ST to “1”, source register number
SN to “001”, destination type to “1”, and the destination
register number to “010”. At the same time, the selector
140b outputs the register information 171 by changing 1t to
“17.

(2) In the register unit 137, the 24-bit data are read out
from the address register Al designated by ST=*1" and
SN=*001" to be outputted through the output buffer gate
1377c. The output data are held 1n the store butler 136c¢ at the
bus control unit 136. Subsequently, the 24-bit data from the
address register A2 designated by D'T="1" and DN=*010"to
be outputted to the output butier 137c. The output data are
sent to the address butler 136¢ via the selector 1361.

(3) The external access-width control unit 136; receives
the register information 171 and judges the register subject
to transfer 1s one of the address registers based on the
ST="1". Accordingly, the external access-width control unit
1367 outputs the bit-width information 172 by setting it to
“1” that specifies 24 bits to the sequencer 1361.

(4) The sequencer 1361 receives the activation signal, and
since the bit-width information exhibits “17°, 1t transfers the
24-bit data by 16 bits and 8 bits to the memory 130 1n the
following way.

The sequencer 1361 directs to output an address held 1n the
address buller 136¢ to the address bus 131 via the buffer gate
136h, while selectively outputting the first byte (bit 70) of
the data held 1n the store bulfer 136¢ to the lower byte (bit
7—0) of the data bus 132 to the memory 130 via the selector
136d, and the second byte (bit 15-8) to the higher byte (bit
15-8) of the data bus 132 to the memory 130. At the same
time, the sequence 1361 outputs a control signal to the
memory 130 to write the 16-bit (bit 15-0) data from the store
butler 136c¢ therein.

Once the 16-bit data are written into the memory 130, the
sequencer 1361 selects the output from the incrementer 136¢g
to be held in the address buffer 136¢ by means of the selector
1361. Accordingly, the address buifer 136¢ holds an address

incremented by two.

Subsequently, the sequencer 1361 directs to output an
address held 1n the address buffer 136¢ via the output butfer
gate 136h, while selectively outputting the third byte (most
significant byte; bit 23—-16) of the data held in the store
butiler 136c¢ to the lower 8 bits (bit 7—0) 1n the data bus 132 to
the memory 130 via the selector 136d. Although the higher
byte (bit 15-8) 1n the data bus 132 is ineffective, there will
be no trouble since the data are written per byte. The
sequencer 1361 then outputs a control signal to the memory
130 to write the third byte from the selector 136d into the
memory 130.

In this way, the transfer instruction shown in FIG. 18B 1s
executed.

As has been stated, the address register transiers 24-bit
data while the data register transferring the 16-bit data. By so
doing, the mstruction obviates the size field, shortening the
instruction length. Thus, the code size can be reduced and
the decoding function for the size field can be eliminated.

The address and data registers are not limited to 24 bits;
the external-access width may determine the bit widths of
the address and data registers other than 24-bit and 16-bait,
respectively; they can be of any arbitrary width. As well the
destination can be designated by methods other than the
address-register-indirect (@WA2). Also, the data may be
transierred between the register and the memory 130 1n both

ways; 1n case of 8- or 16-bit data transfer from the memory
130 to one of the registers, note that the 16-bit data are
extended to 24-bit data by the third extender 136k.

10

15

20

25

30

35

40

45

50

55

60

65

38

The ST indicating the register type and the bit width infor-
mation 172 are 1-bit signals; however, they may be 2- or
more bit signals.

The bus control unit 136 transiers the 24-bit data 1n the
order of the lower 2 bytes and the most significant 1 byte,
However, the 24-bit data may be transierred in a reversed
order. In this case, the sequencer 1361 controls the selector

136d to select the data in the higher-to-lower order and
incrementer 136g to decrement by two.

Further, an 8-bit data bus may be used 1nstead of the 16-bit
data bus 132. In this case, the memory 130 1s accessed for
two times and three times in case of the 16-bit and 24-bit
data transier, respectively.

(4) Data Transier and Operation Including
Immediate Data

Instructions including the immediate data are, for
example, “MOVI #H0010, DO, or “ADDI #H0010, DO,

The fetching unit 139 activates the bus control unit 136 to
sequentially read out the program instructions stored in the
memory 130. The readout instructions are outputted to the

decoding unit 140 via the fetching unit 139.

The decoding unit 140, which comprises a microprogram
and a wired logic, processes the immediate data in a way
detailed by a flowchart in FIG. 26. More precisely, the
decoding unit 140 decodes the readout instruction (Step 81).
As a result, the operation code designating an arithmetic
operation, logic operation, inter-register-transier, register-
memory-transier, or branch instruction, as well as the data,
immediate data, register number, and an operand for the
memory address are decoded. In accordance with the decod-
ing result, the decoding unit 140 judges whether or not the
instruction designates the less than 24-bit immediate data
(Step 82). If so, the program proceeds to Step 83; otherwise
to Step 84.

When the less than 24-bit immediate data are detected,
whether the access register (destination register) for the
instruction 1s one of the registers 1n the data register group

137d or address register group 137a 1s checked (Step 83).

Further, the decoding unit 140 outputs the control signals
to the ALU 141, the first extender 144, and the second
extender 145 depending on the type of destination register
(Step 84).

The processor operates as follows for each instruction.

(1) Transier the data between the registers in the data
register group 137d and address register group 137a, or oper-
ate an 1nstruction using the data stored in these registers.

(For example, “MOVE D0, D1” or “ADD A0, A1”)

In the former case, the 24-bit data read out from the source
register are stored 1n the designated register.

In the latter case, 24-bit data readout from the two desig-
nated registers are entered 1n the AL U 141 and stored 1n the
designated register after the designated operation.

(2) Store 16-bit immediate data in the data register group

137d or operate 16-bit immediate data with the data register
group 137d (For example, “MOVI #H0010, DO or “ADDI

#H0010, DO)

In the former case, the decoding unit 140 decodes that the
instruction designates the 16-bit immediate data, and that the
destination register 1s one of the registers 1n the data register
group 137d. Thus, the 16-bit immediate data are sign-
extended to 24 bits by the second extender 145 to be stored
in the designated data register.

Similarly, 1n the latter case, the 16-bit immediate data are
sign-extended to 24 bits by the second extender 1435 to be

US RE41,959 E

39

inputted one of the mput terminals of the ALU to be calcu-
lated and stored 1n the designated data register.

(3) Store the 16-bit immediate data 1n the address register

group 137a or operate the 16-bit immediate data with the
address register group 137a (For example, “MOVI #H0010,

A0”, “ADDI #H0010, A0”)

In the former case, the decoding unit 140 decodes that the
instruction designates the 16-bit immediate data, and that the
destination register 1s one of the registers in the address reg-
ister group 137a. Thus, the 16-bit immediate data are zero-
extended to 24 bits by the second extender 145 to be output-
ted to the designated address register.

Similarly, 1n the latter case, the 16-bit immediate data are
zero-extended to 24 bits to be mputted into one of the input
terminals of the ALU 141 further to be outputted to the des-
ignated address register group 137a after the designated
operation.

Further, the operation involving the 16-bit immediate data
will be explained. The same program used 1n the related art
will be used.

A corresponding program to the programs shown 1n FIGS.
5, 8 1s shown 1n FIG. 27; only the address length 1s 24 bits
herein. The program 1s to add up the sixteen data stored from
the addresses H8000 to the H8100 (H represents hexadeci-
mal and each address 1s H10 addresses away), and store the
addition result at the address H100000.

Instruction 1: Clear a data register DO

Instruction 2: Set 16-bit immediate data HR000 to an
address register AQ

As the decoding unit 140 decodes this instruction by refer-
ring to FI1G. 26 (Step 81), and judges that the instructions use
16-bit immediate data H8000 (Step 82). Further it judges
that the 1nstruction is the mstruction to transfer the immedi-
ate data into one of the registers 1n the address register group
137a (Step 83). Thus, the decoding umt 140 outputs the
control signal to the second extender 145 by means of the
decoding unit 140 (Step 84). Accordingly, the second
extender 145 zero-extends the 16-bit immediate data HI000
to 24-bit data HOO8000 to be held 1n the address register AO.

Instruction 3: Read out the content in an address desig-
nated by the address register A0 to store the same 1nto a data
register D1.

Instruction 4: Add the content 1n the data register D1 to
that of the register DO.

Instruction 5: Add the address register AO and immediate
HOO10 to store the result into the address register AO.

This 1nstruction uses the 16-bit immediate data HOO010
and 1instruct to transfer the immediate data in the address
resigner AQO. Thus, the decoding unit 140 outputs the control
signal to the second extender 145 by means of the decoding
unit 140. Accordingly, the second extender 145 zero-extends

the 16-bit immediate data HOO10 to 24-bit data HO00010 to
be outputted to one of the mput terminals of the ALU 141.

Also, upon the receipt of the control signal from the
decoding unit 140, data HOO8000 stored 1n the address regis-
ter AO 1s read out to be outputted to the other mnput terminal

of the ALU 141.

Thus, the AL U 141 adds the HOO8000 and HO00010, both
being 24-bit data, to store the result 1n the address register
AOQ.

Instruction 6: Compare the output data with immediate
data H8100.

This instruction uses 16-bit immediate data H8100 and
instructs the comparison with the data in the address register

10

15

20

25

30

35

40

45

50

55

60

65

40

AOQ. Thus, the decoding unit 140 outputs the control signal to
the second extender 145 first. Accordingly, the second
extender 145 zero-extends the 16-bit immediate data H8100
to 24-bit data HOO8100 1n accordance with the control signal
to be outputted to one of the mput terminals of the other
ALU 141.

Further, the address register 105b, upon the receipt of the
control signal from the control signal generating unit 103a,
reads out the 24-bit data HOO8010 from the address register
A0 to output the same to the other input terminal of the ALU
141.

The ALU 141 compares the two mput 24-bit data.

Instruction 7: When the former 1s smaller than the latter,
return to Instruction 3 labeled A; otherwise, proceed to
Instruction (8).

The loop of Instructions 3—7 1s repeated until the initial
value of the address register A0, HOO8000 1s incremented up
to HOO8100 by HOO00010. Thus, the sequence proceeds to
Instruction 8 when the result of the sixteen addition opera-
tions has been stored 1nto the data register DO.

Instruction 8: Store the content of the data register DO 1nto
the address H100000 1n the memory 130.

As has been stated, Instructions 2, 6 use the 16-bit imme-

diate data while designating 24-bit addresses without caus-
ing any unexpected extension. For example, if 16-bit imme-

diate data H8000-HFFFF are designated to designate the
24-bit addresses HOO8000-HFFFE, they are not extended to
24-bit HFF8000-HFFFFFF as are in the conventional pro-

cessor. As a result, the program size can be reduced com-
pared with the conventional program.

Further, 1n the system where the instruction and data are
accessed by the same bus, the operation speed can be
increased because the contlict 1n the bus access 1s reduced.

Note that, unlike the foregoing embodiment, an address
register of N(16, 32 etc) bits can be used for M(4, 8, 16 etc)
bits immediate data, as long as the former 1s greater than the
latter.

(5) Conditional Branch

In FIG. 13, the fetching unit 139 activates the bus control
unmit 136 to obtain the 1nstruction from the memory 130.

Then, the decoding unmit 140 decodes the obtained instruc-
tion; the one shown 1n FIG. 16B 1s used herein.

The decoding umit 140 decodes the instruction and outputs
the control signal to the ALU 141, register unit 137 and bus
control unit 136 based on the kind of operation and the des-
tination register for the operation data.

In case of the data operation instruction, the ALU 141
refers to one of the first flag group 151 and second tlag group
152 whichever predetermined to operate the readout data
from the register unit 137. The operation result 1s stored 1n
the register unit 137, and the predetermined flags are
changed 1n both the first and second flag groups 151, 152.

In case of conditional branch instruction, the decoding
unit 140 outputs either the 16-bit or 24-bit data-width desig-
nating information (flag group designation) to the selector
153156 1n the branch judging unit 143 shown 1n FIG. 15.
The selectors 153—-156 selects either the first or second flag
groups 151, 152 in accordance with the flag group designat-
ing information. The condition judging unit 157 refers to the
flag groups from the selector 153—156 to judge whether the
branch condition 1s taken or not.

In this way, the data processing system can selectively
designate the flag group with the consideration of the data
operation width under the conditional branch and not under

US RE41,959 E

41

the data operation instruction. By so doing, the number of
allocations for the operation code can be increased. For
example, the add/subtract/compare 1nstructions shown 1n
FIG. 16B designate the type of operation with the first 8 bits,
and thus enabling 2° (=256) allocations. With the conditional
branch instruction, one bit 1s added to designate the bit width
besides the 4-bit branch condition, enabling 2° (=8) alloca-
tions. Thus, 264 (256+8) allocations are available 1n total.

On the other hand, 1n the second conventional processor
shown in FIG. 2, 27 (=128) allocations and 2% (=16) alloca-
tions are available for the add etc. and conditional branch
istructions respectively, making a total of 144 allocations.
This means that 120 allocations are increased. In other
words, when the same 1nstruction set 1s allocated, the num-
ber of mstructions can be reduced to a half while simplifying
the structure of the decoding unit 140 that decodes the bit-
width designation, because bit-width designation can be
climinated 1n the operation code 1n the add/subtract/compare
instructions.

Further, when the ALU 141°s bit-width (N-bit) 1s not the
two’s power (27) and the flags are changed in accordance
with the result of the two’s-power-bit (less than N) data
operation, a user can utilize one of the tlag groups for a data
operation whose bit-width 1s two’s power and greater than
N. For example, the user can use the 24-bit calculator using,
the flag group changed 1n accordance with the results of the
16-bit data operations to realize the 32-bit data operation;
the data widths of the ALU 141 can be determined 1indepen-
dently of the data bit-width.

Also, since the two groups of flag are changed
simultaneously, using the flag group of the concerned bit
width eliminates the overhead, which 1s described 1n the fifth
convectional processor, at the execution of the conditional
branch.

Note that the flag group can be made to the data of any
bit-width.

A new operation code may be generated to designate the
flag group prior to the conditional branch 1nstruction instead

ol designating the bit-width by the conditional branch
instruction.

Further, the calculator can be of 24-bit wide or any other
arbitrary bit-width.

Although the present invention has been fully described
by way of example with reference to the accompanying
drawings, 1t 1s to be noted that various changes and modifi-
cation will be apparent to those skilled 1n the art. Therefore,
unless otherwise such changes and modifications depart
from the scope of the present invention, they should be con-
strued as being included therein.

What 1s claimed 1s:

[1. A program converting unit for generating a machine
language 1nstruction from a source program for a micropro-
cessor having an address width N and a data width M, N
being greater than M, N and M being 1nputs to the program
converting unit as specified by a user, the value of N depend-
ing on a program size ol the source program, said program
converting unit comprising:

parameter holding means for holding a data width M and a

pomnter width N, said data width M representing the
number of bits of data used in the source program, said
pointer width N representing the number of bits of an
address, said N and M being 1mnput by a user during an
execution of the program converting unit, the value of
N depending on the program size; and

generating means for generating an 1nstruction to manage
said data width M when a variable operated by said

10

15

20

25

30

35

40

45

50

55

60

65

42

instruction represents the data, and for generating an
instruction to manage said pointer width N when a vari-
able operated by said instruction represents the address,

wherein the program converting unit generates a unique
set of machine language instructions from the source
program for each N specified by the user.]

[2. The program converting unit of claim 1, wherein said

M 1s 16 and said N 1s 1n a range of integers from 17 to 31

inclusive, said N being determined depending on the pro-
gram size as follows:

N=17, when the program size=128 Kbytes
N=18, when the program s1ze=256 Kbytes

N=19, when the program size=3512 Kbytes
N=20, when the program size=1 Mbyte
N=21, when the program size=2 Mbytes
N=22, when the program size=4 Mbytes

N=23, when the program size=8 Mbytes
N=24, when the program size=16 Mbytes
N=235, when the program size=32 Mbytes
N=26, when the program size=64 Mbytes
N=27, when the program size=128 Mbytes

N=28, when the program size=256 Mbytes

N=29, when the program size=3512 Mbytes
N=30, when the program size=1 Gbyte

N=31, when the program size=2 Gbytes.]
[3. The program converting unit of claim 1, wherein said
generating means 1ncludes:

determining means for determining a kind of the machine
language 1nstruction, the machine language instruction
including (1) an istruction to access to a memory, (2)
an 1nstruction to use a register, and (3) an mstruction to
use an immediate;

memory managing means for outputting a direction, 1n
case of the (1) instruction, to manage said data width as
an elfective memory-access width when a variable to
be accessed represents the data, and to manage said
pointer width as an elffective memory-access width
when said variable represents the address;

register managing means for outputting a direction, 1n
case of the (2) instruction, to manage said data width as
an elfective bit-width when a variable to be read/
written from/into the register represents the data, and to
manage said pointer width as the effective bit-width
when said variable represents the address;

immediate managing means for outputting a direction, 1n
case of the (3) mstruction, to manage said data width as
the effective bit-width when said immediate represents
the data, and to manage said pointer width as the effec-
tive bit-width when said immediate represents the
address: and

code generating means for generating the machine lan-
guage instruction in accordance with the directions
from said memory managing means, said register man-
aging means, and said immediate managing means.J
[4. The program converting unit of claim 3, wherein said
M 1s 16 and said N 1s an mnteger 1mn a range of 17 to 31
inclusive.]
[5. The program converting unit of claim 4, wherein:

said N 1s 24; and

said code generating means generates an nstruction for a
24-b1t data operation when said pointer width 1s greater
than 16 bits and less than 24 bits, and generates an
istruction for a 16-bit data operation when said pointer
width is 16 bits or less.]

US RE41,959 E

43

[6. A program converting unit for generating a machine
language mstruction based on a source program for a proces-
sor that manages an N-bit address while processing M-bit
data, N being greater than M, said program converting unit
comprising;

syntax analyzing means for analyzing a syntax of the

source program to convert the same into an intermedi-
ary language comprising intermediary instructions, and
subsequently for judging whether or not each variable
contained 1n said intermediary instructions represents
data used 1n an address;

table generating means for generating a table for each
variable in said intermediary instructions, said table
holding a name together with a type of each vanable,
said type representing one of the data and the address;

parameter holding means for holding a data width and a
pointer width, said pointer width designated by a user
as an input during an execution of the program convert-
ing unit, said data width representing the number of bits

of the data while said pointer width represents the num-
ber of bits of the address; and

generating means for generating an instruction to manage
said data width when the variable 1n said intermediary
istruction represents the data, and an instruction to
manage said pointer width when said variable repre-
sents the address.}

[7. The program converting unit of claim 6, wherein said
M 1s 16 and said N 1s an mteger 1mn a range of 17 to 31
inclusive.]

[8. The program converting unit of claim 6, wherein said
generating means 1cludes:

judging means for judging a kind of the machine language
instruction, the machine language instruction including
(1) an 1nstruction to access to an memory, (2) an
instruction to use a register, and (3) an instruction to use
an immediate;

memory managing means for outputting a direction, 1n
case of the (1) instruction, to manage a corresponding
bit-width held 1n said parameter holding means as an
clfective memory-access width depending on the type
of a variable to be accessed shown 1n said table:

register managing means for outputting a direction, 1n
case of the (2) instruction, to manage a corresponding
bit-width held 1n said parameter holding means as an
cifective bit-width depending on the type of a variable
to be read/written from/in the register shown in said
table;

immediate managing means for outputting a direction, in
case of the (3) instruction, to manage a corresponding
bit-width held 1n said parameter holding means for the
immediate as an effective bit-width depending on the
type of the immediate shown in said table; and

code generating means for generating the machine lan-
guage instruction in accordance with the directions
from said memory managing means, said register man-
aging means, and said immediate managing means.}
[9. The program converting unit of claim 8, said M is 16
and said N is an integer in a range of 17 to 31 inclusive.}
[10. The program converting unit of claim 9, wherein:

said N 1s 24; and

said code generating means generates an instruction for a
24-bit data operation when said pointer width 1s greater
than 16 bits and less than 24 bits, and generates an

instruction for a 16-bit data operation when said pointer
width is 16 bits or less.]

5

10

15

20

25

30

35

40

45

50

55

60

65

44

[11. A program converting unit for generating a machine
language instruction based on a source program for a proces-
sor that manages an N-bit address while processing M-bit
data, N being greater than M, said program converting unit
comprising;

syntax analyzing means for analyzing a syntax of the

source program to convert the same into an itermedi-
ary language comprising intermediary instructions, and
subsequently for judging whether or not each variable
contained 1n said intermediary instructions represents
data used 1n an address;

table generating means for generating a table for each
variable in said itermediary instructions, said table
holding a name together with a type of each vanable,
said type representing one of the data and the address;

parameter holding means for holding a data width and a
pointer width designated by a user, said data width rep-
resenting the number of bits of the data while said
pointer width representing the number of bits of the
address;

judging means for judging a kind of the machine language
instruction, the machine language instruction including
(1) an 1instruction to access to an memory, (2) an
instruction to use a register, and (3) an istruction to use
an 1immediate;

memory managing means for outputting a direction, 1n
case of the (1) instruction, to manage a corresponding
bit-width held 1n said parameter holding means as an

clfective memory-access width depending on the type
of a variable to be accessed shown 1n said table:

register managing means for outputting a direction, 1n
case of the (2) instruction, to manage a corresponding,
bit-width held 1n said parameter holding means as an
cifective bit-width depending on the type of a variable
to be read/written from/in the register shown 1n said
table;

immediate managing means for outputting a direction, 1n
case of the (3) instruction, to manage a corresponding,
bit-width held 1n said parameter holding means for the
immediate as an effective bit-width depending on the
type of the immediate shown 1n said table; and

code generating means for generating the machine lan-
guage instruction in accordance with the directions
from said memory managing means, said register man-
aging means, and said immediate managing means.J

[12. The program converting unit of claim 11, wherein
said code generating means generates an instruction for a
24-bit data operation when said pointer width 1s greater than
16 bits and less than 24 bits, and generates an instruction for
a 16-bit data operation when said pointer width 1s 16 bits or
less.]

[13. A program converting unit for generating a machine
language instruction from a source program for an embed-
ded microprocessor series that manages an N-bit address
while processing M-bit data, N being greater than M, N
being an 1input to the program converting unit depending on a
program size, said program converting unit comprising:

parameter holding means for holding a data width M and a

pointer width N, said data width M representing the
number of bits of data used in the source program, said
pointer width N representing the number of bits of an
address, said N being input by a user during an execu-
tion of the program converting umt, the value of N
depending on the program size;

generating means for generating an instruction to manage

said data width M when a variable operated by said

US RE41,959 E

45

instruction represents the data, and for generating an
instruction to manage said pointer width N when a vari-
able operated by said instruction represents the address;

option directing means for holding a user’s direction for
an overtlow compensation, an overtlow being possibly
caused by an arithmetic operation; and

compensate mstruction generating means for generating a
compensation mstruction to compensate an overtlow 1n
accordance with a type of a variable used 1n the arith-
metic operation, said compensation instruction being
generated when an effective bit-width of a variable des-
ignated by an operand 1s shorter than a register of N-bit
wide and the arithmetic operation instruction will pos-
sibly cause an overflow exceeding said eflective bit-
width; and

prohibition means for prohibiting a generation of a com-
pensation 1nstruction by the compensate instruction
generating means when the option directing means 1s
storing an indication denoting not to compensate,
wherein the program converting unit converts the
source program mnto one ol a plurality of different
machine language programs depending on the values of
N and M.]

[14. The program converting unit of claim 13, wherein
said M 1s 16 and said N 1s an integer 1n a range of 17 to 31
inclusive.]

[15. The program converting unit of claim 13, wherein
said M 1s 32, and said N 1s an integer 1n a range of 33 to 63
inclusive.]

[16. The program converting unit of claim 13, wherein
said compensate instruction generating means includes:

instruction judging means for judging an arithmetic
operation 1nstruction that will possibly cause an over-
flow for all the machine language instructions when
said option instructing means holds the user’s direction
for executing the overflow compensation;

variable judging means, with respect to a variable in the
arithmetic operation instruction judged by said nstruc-
tion judging means, for judging an eifective bit-width
and whether said varniable i1s signed or unsigned by
referring to said table;

sign-extension instruction generating means for generat-
ing a compensation istruction in case of a signed
variable, a logical value of a s1gn bit being filled into all
bits higher than the effective bit-width 1n a register that
1s to store said signed variable by said sign-extension
compensation instruction; and

zZero-extension instruction generating means for generat-
Ing a zero-extension compensation instruction in case
ol an unsigned variable, a logical value “0” being filled
into all bits higher than the etfective bit width in a reg-
1ster that 1s to store said unsigned variable by said zero-
extension compensation instruction. }

[17. The program converting unit of claim 16, wherein

said generating means ncludes:

determining means for determining a kind of the machine
language 1nstruction, the machine language instruction
including (1) an instruction to access to a memory, (2)
an 1nstruction to use a register, and (3) an 1nstruction to
use an immediate;

memory managing means for outputting a direction, 1n
case of the (1) mstruction, to manage said data width as
an elfective memory-access width when a variable to
be accessed represents the data, and to manage said
pointer width as an effective memory-access width
when said variable represents the address;

10

15

20

25

30

35

40

45

50

55

60

65

46

register managing means for outputting a direction, 1n
case of the (2) instruction, to manage said data width as
an effective bit-width when a variable to be read/
written from/into the register represents the data, and to
manage said pointer width as the effective bit-width
when said variable represents the address;

immediate managing means for outputting a direction, 1n
case of the (3) mstruction, to manage said data width as
the effective bit-width when said immediate represents
the data, and to manage said pointer width as the effec-
tive bit-width when said immediate represents the
address: and

code generating means for generating the machine lan-
guage 1instruction 1 accordance with the directions
from said memory managing means, said register man-
aging means, and said immediate managing means.J

[18. The program converting unit of claim 17, wherein
said M 1s 16 and said N 1s an integer 1n a range of 17 to 31
inclusive.]

[19. The program converting unit of claim 17, wherein
said M 1s 32, and said N 1s an integer 1n a range of 33 to 63
inclusive.]

[20. A program converting unit for generating a machine
language nstruction based on a source program for a proces-
sor that manages an N-bit address while processing M-bit
data, N being greater than M, said program converting unit
comprising:

syntax analyzing means for analyzing a syntax of the

source program to convert the same nto an intermedi-
ary language comprising intermediate mstructions, and
subsequently for judging whether or not each varniable
contained in said intermediary instructions represents
data used 1n an address:

table generating means for generating a table for each
variable 1n said intermediary instructions, said table
holding a name together with a type of each vanable,
said type representing one of the data and the address,
and one of signed and unsigned data;

parameter holding means for holding a data width and a
pointer width designated by a user during an execution
of the program converting unit, said data width repre-
senting the number of bits of the data, said pointer
width representing the number of bits of the address;

option directing means for holding a user’s direction for
an overtlow compensation, an overtlow being possibly
caused by an arithmetic operation;

generating means for generating an instruction to manage
said data width when the variable 1n said mtermediary
istruction represents the data, and an instruction to
manage said pointer width when said variable repre-
sents the address; and

compensate mstruction generating means for generating a
compensation mstruction to compensate an overtlow 1n

accordance with a type of a variable used 1n the arith-
metic operation, said type being judged when said
option directing means holds the user’s direction for
executing the overflow compensation, said compensa-
tion instruction being generated when an effective bait-
width of a variable designated by an operand 1s shorter
than a register of N-bit wide and the arithmetic opera-
tion 1nstruction will possibly cause an overtlow exceed-
ing said effective bit-width; and

prohibition means for prohibiting a generation of a com-
pensation 1nstruction by the compensate instruction
generating means when the option directing means 1s
storing an indication denoting not to compensate.]

US RE41,959 E

47

[21. The program converting unit of claim 20, wherein
said M 1s 16 and said N 1s an integer 1n a range of 17 to 31
inclusive.]

[22. The program converting unit of claim 21, wherein
said M 1s 16 and said N 1s an integer 1n a range of 17 to 31
inclusive.]

[23. The program converting unit of claim 21, wherein
said M 1s 32, and said N 1s an 1teger in a range of 33 to 63
inclusive.]

[24. The program converting unit of claim 20, wherein
said M 1s 32, and said N 1s an integer 1n a range of 33 to 63
inclusive.]

[25. The program converting unit of claim 20, wherein
said compensate instruction generating means includes:

instruction judging means for judging an arithmetic

operation istruction that will possibly cause an over-
flow for all the machine language instructions when
said option mnstructing means holds the user’s direction
for executing the overtlow compensation;

variable judging means, with respect to a variable in the

arithmetic operation instruction judged by said nstruc-
tion judging means, for judging an eifective bit-width
and whether said variable 1s signed or unsigned by
referring to said table;

sign-extension instruction generating means for generat-

ing a compensation instruction i case of a signed
variable, a logical value of a sign bit being filled into all
bits higher than the effective bit-width 1n a register that
1s to store said signed variable by said sign-extension
compensation instruction; and

zZero-extension instruction generating means for generat-

Ing a zero-extension compensation istruction in case
of an unsigned variable, a logical value “0” being filled
into all bits higher than the etfective bit width in a reg-
ister that 1s to store said unsigned variable by said zero-
extension compensation instruction.}

[26. The program converting unit of claim 25, wherein
said generating means ncludes:

determining means for determining a kind of the machine

language 1nstruction, the machine language instruction
including (1) an instruction to access to an memory, (2)
an 1struction to use a register, and (3) an mstruction to

use an immediate;

memory managing means for outputting a direction, 1n
case of the (1) instruction, to manage a corresponding
bit-width held 1n said parameter holding means as an
clfective memory-access width depending on the type
of a variable to be accessed shown 1n said table;

register managing means for outputting a direction, 1n
case of the (2) instruction, to manage a corresponding
bit-width held 1n said parameter holding means as an
cifective bit-width depending on the type of a variable
to be read/written from/in the register shown in said
table;

immediate managing means for outputting a direction, in
case of the (3) instruction, to manage a corresponding
bit-width held 1n said parameter holding means for the
immediate as an effective bit-width depending on the
type of the immediate shown in said table; and

code generating means for generating the machine lan-
guage instruction in accordance with the directions
from said memory managing means, said register man-
aging means, and said immediate managing means.}
[27. A program converting unit for generating a machine
language nstruction based on a source program for a proces-
sor that manages an N-bit address while processing M-bit
data, N being greater than M, said program converting unit
comprising;

10

15

20

25

30

35

40

45

50

55

60

65

48

syntax analyzing means for analyzing a syntax of the
source program to convert the same into an mntermedi-
ary language comprising intermediary instructions, and
subsequently for judging whether or not each variable
contained in said intermediary instructions represents
data used 1n an address:

table generating means for generating a table for each

variable 1n said intermediary instructions, said table hold-
ing a name together with a type of each variable, said
type representing one of the data and the address, and
one of signed and unsigned data;

parameter holding means for holding a data width and a
pointer width designated by a user during an execution
of the program converting unit, said data width repre-
senting the number of bits of the data, said pointer
width representing the number of bits of the address;

option directing means for holding a user’s direction for
an overtlow compensation, an overtlow being possibly
caused by an arithmetic operation;

generating means for generating an instruction to manage
said data width when the variable in said imtermediary
istruction represents the data, and an instruction to
manage said pointer width when said variable repre-
sents the address:

compensate mstruction generating means for generating a
compensation mstruction to compensate an overtlow 1n
accordance with a type of a variable used 1n the arith-
metic operation, said type being judged when said
option directing means holds the user’s direction for
executing the overflow compensation, said compensa-
tion instruction being generated when an effective bait-
width of a variable designated by an operand 1s shorter
than a register of N-bit wide and the arithmetic opera-
tion 1nstruction will possibly cause an overtlow exceed-
ing said effective bit-width; and
prohibition means for prohibiting a generation of a com-
pensation instruction by the compensate instruction
generating means when the option directing means 1s
storing an indication denoting not to compensate,
wherein said generating means includes:
determining means for determining a kind of the
machine language instruction, the machine language
instruction including (1) an instruction to access to a
memory, (2) an instruction to use a register, and (3)
an 1nstruction to use an immediate;

memory managing means for outputting a direction, in
case of the (1) wstruction, to manage a correspond-
ing bit-width held 1n said parameter holding means
as an elfective memory-access width depending on
the type of a variable to be accessed shown 1n said
table:

register managing means for outputting a direction, in
case of the (2) instruction, to manage a correspond-
ing bit-width held 1n said parameter holding means
as an effective bit-width depending on the type of a
variable to be read/written from 1n the register shown
in said table;

immediate managing means for outputting a direction,
in case ol the (3) instruction, to manage a corre-
sponding bit-width held 1n said parameter holding
means for the immediate as an effective bit-width
depending on the type of the immediate shown 1n
said table; and

code generating means for generating the machine lan-
guage istruction in accordance with the directions
from said memory managing means, said register

US RE41,959 E

49

managing means, and said immediate managing
means, and wherein
said compensate mnstruction generating means includes:
instruction judging means for judging an arithmetic
operation instruction that will possibly cause an
overflow for all the machine language instructions
when said option instructing means holds the
user’s direction for executing the overflow com-
pensation;
determining means, with respect to a variable 1n the
arithmetic operation instructions determined by
said instruction determining means, for determin-
ing an eifective bit-width and whether said vari-
able 1s signed or unsigned by referring to said
table;
sign-extension instruction generating means for gen-
crating a compensation istruction in case of a
signed variable, a logical value of a sign bit being
filled into all bits higher than the effective bait-
width 1n a register that 1s to store said signed vari-
able by said sign-extension compensation nstruc-
tion; and
Zero-extension mstruction generating means for gen-
erating a zero-extension compensation instruction
in case of an unsigned variable, a logical value “0”
being filled nto all bits higher than the effective
b1t width 1n a register that 1s to store said unsigned
variable by said zero-extension compensation
instruction.]
[28. A processor for processing data in accordance with
istructions 1n a program comprising:
register means including a plurality of register groups,
cach group being i1dentical in bit-width while being dii-
ferent 1n types;
instruction decoding means for decoding an 1nstruction to
output register information indicating a register desig-
nated by an operand contained in a data-transfer
instruction;

external-access-width control means for outputting the
number of eflective bits as bit-width information 1ndi-
cating a bit-width of transmission data in accordance
with a kind of a register group to which said designated
register belongs; and

external-access executing means for executing data trans-
fer between said designated register and an external
memory 1n accordance with said register information
and said bit-width information.]
[29. The processor of claim 28, wherein said register
means includes:

an address register group including a plurality of address
registers holding addresses; and

a data register group including a plurality of data registers
holding data.}

[30. The processor of claim 29, wherein

said external-access-width control means, as the bit-width

information, outputs a bit-width determined 1n accor-

dance with the effective bit-width of the data used 1n the

program when said register information represents the
data registers, and outputs a bit-width determined 1n
accordance with a sufficiently large address space for a
program size and data area size of the program when
said register information represents the address regis-
ters.]

[31. The processor of claim 29, wherein:

the address registers and data registers in said register
means are all 24-bit wide:

10

15

20

25

30

35

40

45

50

55

60

65

50

said 1nstruction decoding means outputs mformation that
represents one of the address register and the data reg-
ister as the register information;

said external-access-width control means outputs the bit-
width information exhibiting 24 bits when the register
information representing the address register, and out-
puts the bit-width information exhibiting 16 bits when

the register information representing the data register;
and

the external-access executing means executes the data
transfer three times and twice for the 24- and 16-bit-
width information respectively for an 8-bit-width exter-
nal memory, and for twice and once for the 24- and
16-bit-width 1nformation respectively for a 16-bit-
width external memory.]

[32. The processor of claim 31, wherein said access

executing means includes:

an address generating circuit for holding an address desig-
nated by the data-transfer instruction to output one of a
byte address and a word address to the external
memory;

an output data buifer for holding write data designated by

the data-transier instruction to output the same one of
per byte and per word to the external memory;

an input data buffer for holding data from read out from
the external memory; and

a sequence circuit for outputting a byte address to said
address generating circuit for an 8-bit-width external
memory while controlling the number of times for the
data-transier in accordance with the bit-width informa-
tion via the iput/output data buftfers with respect to the
read/write data, for outputting a word address to said
address generating circuit for a 16-bit-width external
memory while controlling the number of times for the
data-transier 1n accordance with the bit-width informa-
tion via the input/output data butfers with respect to the

read/write data.}
33. The processor of claim 29, wherein:
p

the address registers and data registers 1in said register
means are all 32-bit wide;

said instruction decoding means outputs register informa-
tion indicating whether the instruction uses the address

register or data register;

said external-access-width control means outputs the bit-
width information exhibiting 24 bits when the register
information representing the address register, and out-
puts the bit-width information exhibiting 16 bits when
the register information representing the data register;
and

the external-access executing means executes the data
transier three times and twice for the 24- and 16-bit-
width information respectively for an 8-bit-width exter-
nal memory, and for twice and once for the 24- and
16-bit-width information respectively for a 16-bit-
width external memory.]

[34. The processor of claim 33, wherein said access

executing means includes:

an address generating circuit for holding an address desig-
nated by the data-transfer instruction to output one of a
byte address and a word address to the external
memory;

an output data bufler for holding write data designated by

the data-transfer instruction to output the data one of
per byte and per word to the external memory;

an mmput data bufier for holding data read out from the
external memory; and

US RE41,959 E

51

a sequence circuit for controlling said address generating,
circuit to output the byte address for an 8-bit-width
external memory while controlling the mput and output
data butlers to input and output the byte data to transter
the read, write data to the external memory 1n a match-
ing number of times to the bit-width of the external
memory, and for controlling said address generating
circuit to output the word address for a 16-bit-width
external memory while controlling the mput and output
data buffers to input and output the word data to trans-
fer the read/write data to the external memory 1n a
matching number of times for the bit-width of the exter-
nal memory.]

[35. A processor for operating certain data in accordance

with an nstruction 1n a program, comprising;

a first register means for holding N-bit data;
a second register means for holding N-bit data;

sign-extending means for extending said M-bit data to N
bits by copying an MSB of said M-bit data 1n a direc-
tion of an upper order, M being less than N;

zero-extending means for extending said M-bit data to N
bits by copying a value “0” 1n a direction of an upper
order;

operating means for operating an arithmetic operation in
accordance with an instruction;

instruction control means for decoding an instruction to
zero-extend M-bit immediate data when said M-bait
immediate data are to be stored in said first register
means by the decoded instruction and to sign-extend
said M-bit immediate data when said M-bit immediate
data are to be stored in said second register means by
the decoded 1instruction, said zero-extended and sign-
extended N-bit immediate data being outputted in one
of two methods, one method being to send the extended
N-bit immediate data from their respective extending
means to their respective register means directly, the
other being to send the same via the operating means to
their respective register means, with said instruction
including an indication for storing 1n the first register
means and said instruction including an indication for
storing in the second register means being of two differ-
ent kinds of instructions, both kinds of instructions hav-
ing a same operation code but having different destina-
tion operands.}

[36. The processor of claim 35, wherein

said first register means 1s a group of a plurality of address
registers for storing addresses, and

said second register means 1s a group of a plurality of
register means for storing data.]

[37. The processor of claim 36, wherein said N is 24 and

said M is 16.}

[38. A processor for operating certain data in accordance

with an 1nstruction in a program, comprising;

a first register means for holding N-bit data;
a second register means for holding N-bit data;

sign-extending means for extending said M-bit data to N
bits by copying an MSB of said M-bit data 1n a direc-
tion of an upper order, M being less than N;

zero-extending means for extending said M-bit data to N
bits by copying a value “0” 1n a direction of an upper
order;

operating means for operating an arithmetic operation in
accordance with an instruction;

instruction decoding means for decoding an 1nstruction in
the program to detect a first type mnstruction and a sec-

10

15

20

25

30

35

40

45

50

55

60

65

52

ond type instruction, said first type instruction includ-
ing an instruction to store M-bit immediate data into
said first register means, said second type nstruction
including an struction to store said M-bit immediate
data 1nto said second register means; and

control means for outputting said M-bit immediate data to
said zero-extending means when the first type nstruc-
tion 1s detected, and for outputting said M-bit immedi-
ate data to said sign-extending means when the second
type 1nstruction 1s detected, said zero-extended N-bit
immediate data and sign-extended N-bit immediate
data being outputted i one of two methods, one
method being to send the extended N-bit immediate
data from their respective extending means to their
respective register means directly, the other being to
send the same via the operating means to their respec-
tive register means, with said first-type instruction and
said second-type instruction both having a same opera-
tion code but having different destination operands.]

[39. The processor of claim 38, wherein

said first register means 1s a group of a plurality of address
registers for storing addresses, and

said second register means 1s a group of a plurality of
register means for storing data.]
[40. The processor of claim 39, wherein

said first type mstruction includes a data-transfer mnstruc-
tion to store the M-bit immediate data to said first reg-
1ster means, an add instruction to add a value 1n said
first register and the M-bit immediate data, and a sub-
tract instruction to subtract the M-bit immediate data
from a value 1n said first register, and

said second type instruction includes a data-transfer
instruction to store the M-bit immediate data to said
second register means, an add instruction to add a value
in said second register and the M-bit immediate data,
and a subtract instruction to subtract the M-bit immedi-
ate data from a value in said second register.}

[41. The processor of claim 40, wherein said N is 24 and
said M is 16.]

[42. A data processing method for executing an instruc-
tion that includes an operation code to store M-bit immedi-
ate data 1n an N-bat first register and an N-bit second register,
both M and N being integers, with M being less than N, said
method comprising the steps of:

decoding the instruction for selecting one of the first reg-
ister and second register 1n accordance with an operand
of the decoded 1nstruction;

zero-extending said M-bit immediate data to N bits when
said decoded nstruction designates the first register,
and sign-extending said M-bit immediate data to N bits
when said decoded instruction designates the second
register; and

storing extended N-bit immediate data to the designated

register.]
[43. The method of claim 42, wherein

said first register means 1s a group of a plurality of address
registers for storing addresses, and

said second register means 1s a group of a plurality of

register means for storing data.]

[44. The method of claim 43, wherein said N is 24 and
said M is 16.}

[45. A processor being one out of an embedded processor
series of processors with different address bit widths, having
an address bit width which can be iput by a user in accor-
dance with program size, comprising:

US RE41,959 E

53

memory means for storing a program including an N-bit
data arithmetic operation 1nstruction and other nstruc-
tions operating both N-bit and M-bit data, N being
greater than M, as well as for storing a program 1nclud-
ing conditional branch instructions, transfer instruc-

tions for external memory and 1nstructions using imme-
diate data;

a first register means including a plurality of registers for
holding N-bit data;

a second register means including a plurality of registers
for holding N-bit data;

a program counter for holding an N-bit instruction address
to output the same to said memory means;

fetching means for fetching an instruction from an exter-
nal memory using the instruction address from said

program counter;

instruction decoding means for decoding a fetched
mnstruction;

executing means for executing all arithmetic operation
instructions at N-bit length and for executing instruc-
tions operating both N-bit and M-bit data excluding the
arithmetic operation instructions;

a plurality of flag storing means, each for storing a corre-
sponding flag group changed in response to different
bit-widths data 1n accordance with an execution result
of said executing means;

flag selecting means for selecting a certain flag group
from said plurality of flag storing means 1n accordance
with a conditional branch instruction decoded by said
instruction decoding means;

branch judging means for judging whether a branching 1s
taken or not with a reference to a flag group selected by
said tlag selecting means;

sign-extending means for extending M-bit data to N bits
by copying an MSB of said M-bit data in a higher
order;

zero-extending means for extending M-bit data to N bits
by filling a value “0”” 1n a higher order;

compensation 1struction control means for compensating,
contents of said first register means and said second
register means using said sign-extending means and
said zero-extending means 1n accordance with a com-
pensation instruction nserted after a machine language
istruction for an arithmetic operation that will possi-
bly cause an overtlow, said machine language nstruc-
tion being decoded by said instruction decoding means;

external-access-width control means for outputting bit-
width mformation for transmission data 1n accordance
with a type of said register means to which a register
indicated by register information belongs, said register
information indicating one of said first and second reg-
1ster means;

external-access executing means for executing a data
transier between the register and an external memory in
accordance with said register information and bit-width

information; and

immediate control means for outputting M-bit immediate
data to said zero-extending means when a decoded
instruction includes an 1nstruction to store said M-bit
immediate data 1n said first register means, and for out-
putting said M-bit immediate data to said sign-
extending means when a decoded instruction includes
an 1nstruction to store said M-bit 1n said second register
means, said zero-extended and sign-extended immedi-

10

15

20

25

30

35

40

45

50

55

60

65

54

ate data being sent to said first and second register

means respectively i two methods, one being to send

the same directly to their respective register means and

the other being to send the same via said executing

means,

wherein said memory means stores a program of a size
which is up to 2% bytes.]

[46. The processor of claim 45, wherein said N is 24 and
said M is 16.}

[47. A program converting unit for generating a machine
language instruction from a source program, the machine
language program being generated for a selected micropro-
cessor 1n an embedded microprocessor series comprising a
plurality of microprocessors, each of the plurality of micro-
processors being able to process M-bit data and having a
different address bit width N, said program converting unit
comprising;

parameter holding means for holding a data width M and a

selected pointer width N, N and M being integers
greater than zero and N being greater than M,

said data width M representing a bit-width of data used in
the source program to be converted,

said pointer width N representing an address bit-width to
be used with the converted machine language program
and being set by a user, depending on an estimated size
of the object program after conversion, 1n order to 1den-
tify the selected microprocessor 1n the embedded
microprocessor series; and

generating means for generating an instruction to manage
said data width M when a variable operated by said
istruction represents the data, and for generating an
instruction to manage said pointer width N when a vari-
able operated by said instruction represents the
address.]

[48. A program converting unit for generating a machine
language 1nstruction from a source program, the machine
language program being generated for a selected micropro-
cessor 1 an embedded microprocessor series comprising a
plurality of microprocessors, each of the plurality of micro-
processors being able to process M-bit data and having a
different address bit width N, said program converting unit
comprising;

parameter holding means for holding a data width M and a

selected pointer width N, N and M being integers
greater than zero and N being greater than M,

said data width M representing a bit-width of data used in
the source program to be converted,

said pointer width N representing an address bit-width to
be used with the converted machine language program
and being set by a user, depending on an estimated size
of the object program after conversion, 1n order to 1den-
tify the selected microprocessor 1n the embedded
MICroprocessor series;

generating means for generating an instruction to manage
said data width M when a variable operated by said
instruction represents the data, and for generating an
instruction to manage said pointer width N when a vari-
able operated by said instruction represents the address;

option directing means for holding a user’s direction for
an overtlow compensation, an overtlow being possibly
caused by an arithmetic operation;

compensate mstruction generating means for generating a
compensation mstruction to compensate an overtlow 1n
accordance with a type of a variable used 1n the arith-
metic operation, said compensation instruction being

US RE41,959 E

3

generated when an effective bit width of a variable des-
ignated by an operand 1s shorter than a register of N-bit
wide and the arithmetic operation instruction will pos-
sibly cause an overflow exceeding said effective bit-

width; and

prohibition means for prohibiting a generation of a com-
pensation instruction by the compensate instruction
generating means when the option directing means 1s
storing an indication denoting not to compensate.]

[49. A computer system comprising a processor and a

program converting unit, wherein

said processor 1s one out of a series of embedded-type
processors, each processor 1n the series having a differ-
ent address bit width N, N being longer than a data
width M, the address bit width N of said processor

being selected 1n accordance with a program size,

said program converting unit generates a machine lan-
guage struction from a source program for a proces-
sor out of an embedded-type custom processor series
which has an address width N 1n accordance with a
necessary program size, and

said processor comprises:
memory means for storing a program, the memory

means having a minimum storage capacity of 2

bytes to store the program and having N address

lines, the program including an N-bit data arithmetic
operation 1mstruction and other imstructions operating
on both N-bit and M-bit data, N being greater than

M and

a processor core having an address bus of N bits which
1s equal 1n size to the number of address lines of the
memory means, the processor core being selected
from a plurality of processor cores,

wherein the processor core includes:

a program counter for holding an N-bit 1nstruction
address to output an instruction at the N-bit
address to the memory means, the program
counter having an N-bit address length which 1s
equal 1n size to the number of address lines of the
memory means;

fetching means for fetching an instruction from the
memory means using an N-bit instruction address
from said program counter; and

executing means for executing all N-bit arithmetic
operation instructions and for executing other
instructions except for arithmetic operation
instructions at one of N-bit length and M-bit
length, the executing means having N-bit length,

whereby an N-bit address 1s calculated by the N-bit
arithmetic operation independently of a data bait-
width, said data bit-width being M, and

said program converting unit comprises:

parameter holding means for holding a data width
M and a pointer width N, said data width M
representing the number of bits of data used in
the source program, said pointer width N rep-
resenting the number of bits of an address, said
N and M being input by a user in accordance
with program size; and

generating means for generating an instruction
based on the source program to set the data
width M as valid when a variable used m a
machine language instruction to be generated
1s a variable showing data, and for generating
an 1nstruction to set the address width N as
valid when a variable used 1n a machine lan-
guage instruction to be generated 1s a variable
representing an address,

[l

10

15

20

25

30

35

40

45

50

55

60

65

56

wherein the program converting unit generates a
unique set ol machine language instructions
from the source program for each N specified
by the user.]

[50. The computer system of claim 49, wherein the pro-
cessor further comprises:

an address register group including a plurality of N-bit
address registers;

a data register group including a plurality of N-bit data
registers,

wherein said executing means executes the N-bit and
M-bi1t data operation instructions using the address
registers, while executing the M-bit data operation
instruction using data registers.}

[51. The computer system of claim 50, wherein:

said N 1s 24 and said M 1s 16; and

said processor 1s installed 1n a 1-chip microcomputer,
whereby said 1-chip microcomputer becomes suitable
for running a program that utilizes a memory over 64
Kbytes for an operation with 16-bit data.]
[52. The computer system of claim 51, wherein the pro-
cessor further comprises:

compensating means for extending an effective bit-width
of the data 1n one of the address registers and the data
register to 24 baits,

wherein said compensating means operates 1n accordance
with a compensate 1nstruction entered after a machine
language instruction designating an arithmetic opera-
tion that will possibly cause an overflow.]
[53. The computer system of claim 52, wherein said com-
pensating means includes:

a first extending umit for filling a logical value of a sign bit
in all bits higher than the effective bit-width 1n a regis-
ter; and

a second extending unit for filling a logical value “0” 1n all
bits higher than the effective bit-width in a register.}
[54. The computer system of claim 50, wherein the pro-
cessor further comprises:

compensating means for extending an effective bit-width
of the data 1n one of the address registers and the data
register to N bits,

wherein said compensating means operates 1n accordance
with a compensate 1nstruction entered after a machine
language 1nstruction designating an arithmetic opera-
tion that will possibly cause an overflow.}
[55. The computer system of claim 54, wherein said com-
pensating means mncludes:

a first extending unit for filling a logical value of a sign bit
in all bits higher than the effective bit-width 1n a regis-
ter; and

a second extending unit for filling a logical value “0” 1n all
bits higher than the effective bit-width in a register.}

[56. The computer system of claim 49, wherein the pro-
cessor further comprises:

an address register group including a plurality of N-bit
address registers; and

a data register group including a plurality of M-bit data
registers,

US RE41,959 E

S7

wherein said executing means executes one of an N-bit
data operation mstruction and an M-bit data operation
instruction using the address registers, while executing
the M-bit data operation 1nstruction using the data reg-
isters.]

[57. The computer system of claim 56, wherein:

said N 1s 24 and said M 1s 16; and

said processor 1s installed in a 1-chip microcomputer,
whereby said 1-chip microcomputer becomes suitable
for running a program that utilizes a memory over 64
Kbytes for an operation with 16-bit data.}
[58. The computer system of claim 57, wherein the pro-
cessor further comprises:

compensating means for extending an effective bit-width
of the data in one of the address registers and the data
register to 24 bits,

wherein said compensating means operates 1n accordance
with a compensate instruction entered after a machine
language instruction designating an arithmetic opera-
tion that will possibly cause an overflow.]
[59. The computer system of claim 58, wherein said com-
pensating means icludes:

a irst extending unit for filling a logical value of a sign bit
in all bits higher than the effective bit-width 1n a regis-
ter;

a second extending unit for filling a logical value “0” 1n all
bits higher than the effective bit-width in a register.}

[60. The computer system of claim 49 wherein the pointer

width N and the data width M are mput by a user during an
execution of the program converting unit.}

[61. A computer system comprising a central processing

unit and a software program compiler, wherein

the central processing unit 1s one of a series of processing
units, each processing unit having a different address
length N, N being longer than a data width M, the
address length of the processing unit selected based on
a size of a source program, the processing unit compris-
ng:
memory means for storing a program, the memory

means having a minimum storage capacity of 2"

bytes to store the program and having N address

lines, the program including an N-bit data arithmetic
operation instruction and other mstructions operating,
on both N-bit and M-bit data, N being greater than

M: and

a processor core having an address bus of N bits which
1s equal 1n size to the number of address lines of the
memory means, the processor core being selected
from a plurality of processor cores,

wherein the processor core includes:

a program counter for holding an N-bit 1nstruction
address to output an instruction at the N-bit
address to the memory means, the program
counter having an N-bit address length which 1s
equal 1n size to the number of address lines of the
memory means;

fetching means for fetching an instruction from the
memory means using an N-bit instruction address
from said program counter; and

executing means for executing all N-bit arithmetic
operation 1nstructions and for executing other
instructions except for arithmetic operation
instructions at one of N-bit length and M-bit
length, the executing means having N-bit length,

compensating means for extending an effective bit-
width of the data 1n one of the address registers

10

15

20

25

30

35

40

45

50

55

60

65

58

and the data register to N bits, wherein the com-

pensating means compensates as directed by a

compensate instruction which 1s entered after a

machine language arithmetic instruction which

may cause an overflow;

whereby an N-bit address 1s calculated by the N-bit

arithmetic operation independently of a data bat-

width, said data bit-width being M, and the soft-

ware compiler comprises:

parameter holding means for holding a data width
M and a pointer width N, the data width M
representing the number of bits of data used 1n
the source program, the pointer width N repre-
senting the number of bits of an address, N and
M being nputs to the compiler input by a user
during an execution of the compiler, N and M
selected by the user based on the size of the
source program; and

generating means for generating an instruction
based on the source program to set the data
width M as valid when a vanable used 1n a
machine language instruction to be generated
1s a variable showing data, and for generating
an instruction to set the address width N as
valid when a variable used 1n a machine lan-
guage mstruction to be generated 1s a variable
representing an address,

wherein the program converting unit generates a
unique set ol machine language instructions
from the source program for each N specified
by the user.]

62. A processor for operating on certain data in accor-
dance with an instruction in a program, said instruction des-
ignates a first rvegister or a second register, said processor
COmprising.

a first unit configured to perform sign-extending of the

certain data if the instruction designates the second
register, and

a second unit configured to perform zevo-extending of the
certain data if the instruction designates the first regis-
ler.

63. The processor of claim 62, wherein the instruction
includes a destination opevand which designates said first
register or said second rvegister.

64. The processor of claim 63, wherein said data is an
immediate data included in the instruction.

65. A processor-implemented data processing method for
executing an instruction in a program, said instruction des-
ignates a first register or a second register, said method com-
prising:

decoding the instruction;

performing zevo-extending of data if the instruction desig-
nates the first vegister; and

performing sign-extending of data if the instruction desig-

nates the second register.

66. The processor-implemented data processing method
of claim 65, wherein said data is an immediate data included
in the instruction.

67. The processor-implemented data processing method
of claim 65, wherein the instruction includes a destination
operand which designates said first register or said second
register.

68. A processor for operating on certain data in accor-
dance with an instruction in a program, said instruction des-

US RE41,959 E
59 60

ignating a first rvegister ov a second register, said processor 69. The processor of claim 68, wherein the instruction
COmprising: includes a destination opervand which designates either the
a first vegister unit, fivst vegister or the second register.
a second register unit; and
aproceggfng unit co}gﬁgured to pe;form Zero-extendf}zg Of . 70. The processor Of claim 69 wherein the data is an
the certain data if the instruction designates the first immediate data.

register, and to perform sign-extending of the certain
data if the instruction designates the second register. %k % k%

	Front Page
	Drawings
	Specification
	Claims

