USOORE41904E
(19) United States
a2 Relssued Patent (10) Patent Number: US RE41,904 E
Barry 45) Date of Reissued Patent: Oct. 26, 2010
(54) METHODS AND APPARATUS FOR 5,165,023 A 11/1992 Gifford
PROVIDING DIRECT MEMORY ACCESS 5,301,287 A 4/1994 Herrell et al.
CONTROIL. 5,418,970 A 5/1995 Giftord
5,579493 A * 11/1996 Kiuchietal. 712/207
_ : : - 5,655,151 A 8/1997 Bowes et al.
(75) Inventor: Edwin Franklin Barry, Vilas, NC (US) 5.659.798 A /1097 Blumrich et al
: . 5,698,913 A 12/1997 Yagi et al.
(73) Assignee: Altera Corporation, San Jose, CA (US) 5758182 A 5/100% Roienthal ot a]
5,784,706 A 7/1998 Oberlin et al.
(21) Appl. No.: 11/526,296 5,802,554 A 9/1998 Caceres et al.
_ 5,802,604 A 9/1998 Stewart et al.
(22) Filed: Sep. 22, 2006 5,828,856 A 10/1998 Bowes et al.
5,828,903 A 10/1998 Sethuram et al.
Related U.S. Patent Documents 5,860,025 A 1/1999 Roberts et al.
Reissue of: 5,864,876 A 1/1999 Rossum et al.
(64) Patent No.: 6,453,367 5,890,201 A 3/1999 Mcl.ellan et al.
Issued: Sep. 17,2002 5,958,048 A * 9/1999 Babaianetal. 712/241
Appl. No.: 09/854.789 6,047,307 A 4/2000 Radko
2. ’ 6,058,437 A 5/2000 Park et al.
iled: May 14, 2001 6,081,854 A 6/2000 Priem et al.
. _ 6,145,076 A * 11/2000 Gabzdyl etal. 712/241
U.S. Applications: 6,256,683 Bl 7/2001 Barry
(6,260,082 Bl 7/2001 Barry et al.
(62) Division of application No. 09/472,372, filed on Dec. 23, * cited by examiner

1999, now Pat. No. 6,256,683 . . ' '
(60) Provisional application No. 60/113,637, filed on Dec. 23, Primary Examiner—Christopher B Shin

1998. (74) Attorney, Agent, or Firm—Priest & Goldstein, PLLC
(51) Int. Cl. (57) ABSTRACT
GOG6F 13/28 (2006.01)
GO6F 9/26 Techniques are described for providing mechanisms of data
(52) USeCLl oo, 710/26; 711/203 distribution to and collection of data from multiple memo-
(58) Field of Classification Search 710/26, ~ resinadata processing system. The system may suitably be

710/22-25. 27-35: 711/16, 203, 200-207: a manifold array (ManArray) processing system employing
712/22.200. 24. 245 209 an array of processing elements. Virtual to physical process-

ing element (PE) i1dentifier translation 1s employed in con-
junction with a ManArray PE interconnection topology to

See application file for complete search history.

(56) References Cited support a variety of communication models, such as hyper-
cube and such. Also, PE addressing nodes are based upon
U.S. PATENT DOCUMENTS logically nested parameterized loops. Mechanisms for
3,593306 A % T/1971 TOY wooeveeeeosesoeereenn. 712241 Ypdating loop parameters, as well as exemplary instruction
4538241 A 8/1985 Levinetal formats are also described.
4,783,736 A * 11/1988 Ziegleretal. 711/130
4,794,521 A * 12/1988 Ziegleretal. 711/130 13 Claims, 19 Drawing Sheets
429
L 0
40
NN i_j‘ -
INSTRUCTION 470
A SYSTEN
DATA BUS
RN B 1508)
DATA o
A
130
I o
A ' TRANSFER CONTROLLER 0)
DATA | | CoRe 100 SYSTEN
RAM el TRANSFER [405 TRANSFER
o o UNET - NI
N PR i |
RAN = H -.
|| INSTRUCTION EVENT
30~ pr3 { | CONTROL CONTROL
DATA ! BNIT
A ' U ey Vv

I

435 < -
STONAL 0 ~
437 —(ERROR INTERRPT G 465

CONTROL BUS
(SCB SIGNAL
SEM
INPUTS

U.S. Patent Oct. 26, 2010 Sheet 1 of 19 US RE41,904 E

FIG. 1
/ 100

HOST PROCESSOR |~ 120
LOCAL
orilssn [E
DMA 160
CONTROLLER
IS] | stsTem (BuLk) EMoRY

U.S. Patent Oct. 26, 2010 Sheet 2 of 19 US RE41,904 E

FIG. 2
2022
” " DHA BUS
- ¢ 11
LOCAL LOCAL
NEMORY L”I MEMORY
202,
08 HanArray 2021 10
¢13 PE
LocCAL | LDCAL
MEMORY L“I - MEMORY
214 . 205
LOCAL - 02
MEMORY
SPIHIU 201
|
SCB
CNTRL
MASTER/
AEGS g SLAVE INSTRUCTION
MEMORY
...-J -~
20 ¢
235
SOB
240

- C§NOTSHTOL SYSTEM
Rocessir | |10 BLOKK HEMORY

200

U.S. Patent Oct. 26, 2010 Sheet 3 of 19 US RE41,904 E

FIG. 3
oniigus uniogus 300
LANE 0 LANE 1 ’<

320
INSTRUCTION

o S
321 |I] DMA CONTROLLEH—: 350

303 |

U“A - TRANSFER -

CONTROLLER 1 =

HAM
322

=T

DATA

Al -
323

PE1

OATH -II

RAM

ol = » e - s SEEEEERE . PRSI R T A T T R A

|
|
|
|
|
|
302 :

32!
N & TRANSFER

oAl CONTROLLER 0

S SR, SR _
e PE3

DATA |
v

RAM

n aligpbiles =» &

- o

330
SYSTEN
CONTROL BUS

U.S. Patent Oct. 26, 2010 Sheet 4 of 19 US RE41,904 E

FIG. 4

423
DMA BUS
(LANE 0}

430

400
5P J'(#’-

INSTRUCTION 4]0
RAM SYSTEM
DATA BUS
430 Sp (S08)

430

430

SYSTEM
TRANSFER

430

=

|| INSTRUCTION EVENT |
430 - | CONTROL CONTROL '
= INIT UNIT

]
L
Li"-' ii il y - mpl,

430
SYSTEM
CONTROL BUS 463
(5CB) SIGNAL
SEM
INPUTS

43] EAROR INTERRUPT

U.S. Patent Oct. 26, 2010 Sheet 5 of 19 US RE41,904 E

FIG. 5

201 910 520 530 540

BASE DATA | ADDRESS
OPCODE MODE n TRANSFER COUNT
570
ADDRESS PARAMETER
o0 ADDITIONAL PARAMETER WORDS (IF ANY)

\“*-500

U.S. Patent Oct. 26, 2010 Sheet 6 of 19 US RE41,904 E

FIG. 7
700 \ 705
CTU TRANSFER INSTRUCTION
108
710 13
PE VID-to-PID TABLE
. 770

n.n.
oyt
7113 720

/30 OFFSET = BASE + INDEX

7130

cemmmmnnna
;

PID
740

U.S. Patent Oct. 26, 2010 Sheet 7 of 19 US RE41,904 E

FIG. 8 "
/-

3131212]2]°2 2 4B BIRAB IR B! 1{1 01010 0

1101918} 7(6 3 013(8|7]6]5}4 1110 71619 ¢

“ (USED FOR 2x4 TRANSLATE TABLE! ¢x2 TABLE
01

(USED FOR 4x4 TRANSLATE TABLE)

’x2 TABLE

CONTAINS A TABLE OF TW0 BIT PE I0s. A SEQUENCE OF TWO BIT VALUES (STARTING WITH 0)
WHICH SPECTFY THE PE VID, ARE APPLIED AS AN INDICES INTO THIS TABLE WHEN ONE OF

THE PE ADDRESSING MODES IS USED IN A TRANSFER INSTRUCTION. THE TRANSLATED VALUE
I3 THEN USED TO PERFORN THE MEMORY ACCESS. WITH THIS APPROACH, PEs MAY BF
ACCESSED IN ANY ORDER FOR THESE MODES.

MA TYPE ?zﬂnﬁray (TPt SPECIFIES THE CONFIGURATION TARGETED AND THEREFORE THE SIZE OF THE

00 - ixZ2 (P 10 2 PEs)
01 - 2x¢ (P TO & PEs)
10 - 2x4 (UP TO 8 PEs)
11 - 4x4 (UP TO 16 PEs)

J 16. S

HHHHHEHHHHERBRERBRE BN RERAREREEHR

USED FOR PE ID TRANSLATION TABLES LARGER THAN 4 ELEMENTS PID3 | P102 | PID1 W

U.S. Patent Oct. 26, 2010 Sheet 8 of 19 US RE41,904 E

FIG. 10
INITTALIZE (PE) 1002 1000
INITTAL IZE (BASE) r
INITTAL LZE (INDEX) -
hile {TAUE 100:

s
N
o .
e '

1050
%f(lcuntinunusl
Decrement (TC) .
110 ss Q) INNER
EndTransfer, L 0P
} HIODLE "QUTER’

LOP Loop

UpdataAddress(PE) .
UEdataLooptontrul{PEI;
PELoopComplete - CheckloopStatus (PE) .

Endwhile 1060

Reinitialize(PE) 1055

UpdateAddress(Index) ;
UpdateLoogCnntrollIndex);
IndexLooptomplete = CheckloopStatus(Index) .

1070

Endwhile

Reinmitialize(Index) 1075

UpdateAddress (Base) ;
UpdateloopControl (Base) ;
baseLooplomplete = CheckloopStatus{Base)

Endwhile

RetnitializelBase) 108
Endwhile

1077

U.S. Patent Oct. 26, 2010 Sheet 9 of 19 US RE41,904 E

FIG. 11
INITIALIZE (PE) - 1107 1100
INITTALIZE {BASE) - s
INITIALIZE (INDEX) -
«hile (TRUE) s

while (|Baselaoplomplete) 110
while {!PtLoopComplete) 11c0

while (!IndexLoopCompletel 130
MEMACCESS (PE. Base. Index] 1140
1150

1fllcontinuous)
{

Decrement (TC) .

LFITC == 0 INNER

) tEndlransfer. LGP

MIDOLE | qurere
i

UpdateAddress (Index) ;
UpdateLoopControl {Index) ;
IndexLoopComplete = ChecklLoopStatus(Index)

Endwhile 1160

Heinitialize{Index) 1163

UpdateAddress [PE) . 1170

Updatel oopControl (PE) .
PtLoopComplete = CheckloopStatus(PE) .

Endwhile

Reinitialize (PE) 1

UpdateAddress (Base) . 1180
UpdateLoopControl (Base) .
baseloopComplete = CheckLoopStatus(Base) .

Reinitialize{Base) 118,

Endwhile

U.S. Patent Oct. 26, 2010 Sheet 10 of 19

FIG. 12

| INITIALIZE (PE)

INITIALIZE (BASE) -
INITIALLZE [INDEX) :

while (TRUE) 1203

while (IPELoopComplete) cl)
while (!BaseloopComplete) 1ced
while {!IndextoopComplete) 1c30

MEMACCESS (PE, Base, Index) 1c40

%f(!cuntinuous) -

Decrement (TC) ;
1 TC == ()
} EndTransfer,

UpdateAddress{Index)
UpdatelooEControlllndex};
IndexLoopComplete = CheckLoopStatus(Index) .

1260
Reinitialize{Index) 1263

UpdateAddress (Base) . 1e/0
UpdateLoopControl (Base) ,
BaseloopComplete = CheckLoopStatus(Base) .

Heinitialize(Base) 1273

UpdateAddress (PE) . 1280
UpdateloopConirol (PE) .

PELoopComplete = CheckLoopStatus(PE)

Endwhile
Reinitialize (PE] 128

Endwhile

US RE41,904 E

1202 ,/— 1200

150

INNER
L00P

HIODLE | 15
0P [o

U.S. Patent Oct. 26, 2010 Sheet 11 of 19 US RE41,904 E

FIG. 13
,/' 1300

J1312j21212f2{e 22221ttt apefeytjt (010{0
HHHHEHHHHHRHBANRBREARARRHRERHBRE

| CTU TRANSFER }p TYPE BLDCKCYCLIL‘ RSV CORE TRANSFER COUNT (CTC)
N 0

RESERVED STARTING TRANSFER ADDRESS (WITHIN PE MEMORY)

- LOOP CTRL | PE COUNT | BASE UPDATE COUNT BASE UPDATE (STRIDE)
RANGE: 1 T0 256 RANGE
INDEX COUNT (HOLD! INDEX UPDATE
RANGE HESERVED AANGE: 1-256

LOOF CTRL LOOP CTRL SPECIFIES A PARTICULAR ORDER IN WHICH PE. BASE AND INDEX VALUES
| ARE UPDATED. THRFE POSSIBLE ORDERS ARE SELECTABLE WHICH CORRESPOND T0

THREE ASSIGNMENIS OF PE, BASE AND INDEX UPDATE TO THREE NESTED CONTAOL
LOOPS (QUTER, MIDDLE AND INNER) .

00 - BASE (OUTER), INDEX (MIDOLE), PE (INNER) - BIP
01 - BASE (QUTER), PE (MICOLE), [NDEX (INNER) - BPI
10 - Pt (QUTER), BASE (MICDLE), INDEX {INVER) - PBI

SPECIFIES THE NUMBER OF PEs TO BE ACCESSED FOR EACH YIME THE PE COUNTER
IS SIGNALED T0 RELOAD. VALID VALUES ARE:

gggll : lilA](NUMGER OF PEs AS SPECIFIED IN THE PE CONFIGURATION REGISTER

0010 - ¢
0011 - J EIC.. EIC.

BASc UPDAE (STRIDE) | DISTANCE BETWEEN SUCCESSIVE BLOCKS. UNITS ARE OF °DATA TYPE® SIZE.

BASE UPDATE COUNT |USED FOR PBI LOOP CONTROL. SPECIFIES THE NUMBER OF TIMES THE BASE IS
UPDATED BEFORE EXITING TO THE OUTER LOOP (PE UPDATE) . RANGE IS 1 10 256.

PE COUNT

INDEX COUNT (HOLD)
INDEX UPDATE

'

UMBER OF CONTIGUOUS DATA TTEMS IN A BLOCK
[STANCE BETWEEN SUCCESSIVE ITEMS WITHIN A BLOCK. UNITS ARE OF 'TYPE® SIZE.

-

U.S. Patent Oct. 26, 2010 Sheet 12 of 19 US RE41,904 E

FIG. 14 S 1400
LOOP CONTROL: BIP (PE ID VARIES FIRST. THEN INDEX. THEN BASE)

ADDRESS | PE0 Y PRt T e [m3
0x0000 T e
0x0001 N e
0x0007 R b
0x0003 - -
0x0004 N e
0x0005 R e
0x0006 R R D

 0x0007 I R Y
0x0008 8 T
0x0003 _=——

030003 N T T

« AN INBOUND SEQUENCE OF 16 DATA ELEMENTS WITH VALUES 0,1.2.3,...15

 PETABLE SETTING OF 0:000000E4 (NO TRANSLATION CF PE Ifs)

» TSI.block INSTRUCTION IN THE STU (READING THE 16 VALUES FRON SYSTEM MEMORY

* 1C1 blockeyclic INSTRUCTION IN THE CTU WITH PE COUNT = 4. LOOP CONTROL - BIP, BASE UPDATE - 8, BASE
COUNT -, INDEX UPDATE = 2. INDEX COUNT - 2

FIG. 135

LOOP_CONTROL : BPI (INDEX VARIES FIRST, THEN PE ID, THEN BASF)
ADDRESS PEL

{ 0x0000
x0001
x0002
x0003
0x0004
- Ox 0005
x0006
X000/
x0008
x0009
x000a

1500
“r,m-'

N

e

I I

* AN INBOUND SEQUENCE OF 16 DATA ELEMENTS WITH VALUES 0.1,
* PETABLE SETTING OF 0x000000E4 (NO TRANSLATION OF PE m;,z.a. o
* IS].block INSTRUCTION IN THE STU (READING THE 15 VALUES FRON SYSTEM MEMGRY)

* 101 blockeyclic INSTRUCTION IN THE CTU WITH PE COUNT - = |
(T G Paa e CTIIN I TH LI W {, LOOP CONTROL = BPI, BASE UPDATE - B, BASE

U.S. Patent Oct. 26, 2010 Sheet 13 of 19 US RE41,904 E

0x0000

0x0002

om0 ko
I 8
0x0001 I -
-t S Y
0x0003 - T

%000/ -
x0008 o
-

x0003

I
10002 3 7 o s

o AN INBOUND SEQUENCE OF 16 DATA ELEMENTS WITH VALUES 0.1.2.3,.. .15
* PETABLE SETTING OF 0x0O0000OE4 INO TRANSLATION OF PE IDs)

e IS[block INSTRUCTION IN THE STU (READING THE 16 VALUES FROM SYSTEM MEMORY)

« IC1 blockcyclic INSTRUCTION IN THE CTU WITH PE COUNT - 4. LOOP CONTROL = 8P, ,
(OWT = TADEX PORTE = 2. THDEX. COMNT 3 [BASE UPDATE - 8, BASE

0x0003 I
X003 N
i e E— S—

-
— ——

I::-, iI:: '::

NOTE THAT A FOR PBL MODE, THE BASE COUNT MUST BE 2 IN ORDER TO GET 2 *BLOCKS® OF DATA. INDEX COUNT
(ORAESPONDES TO THE NUMBER OF ELEMENTS WRITTEM BEFORE UPDATING THE NEXT ADDRESS VARIABLE. THE GAP
BETWEEN ELENENTS WITHIN A PE IS DUE TO THE INDEX UPDATE VALUE OF 2 (RATHER THAN 1)

U.S. Patent Oct. 26, 2010 Sheet 14 of 19 US RE41,904 E

FIG. 17
/f' 1700

iHHHHBHHHHHHEN HEBHEERBBHEREHEHHR
CTY TRANSFEH. } X1 RSVD CORE TRANSFER COUNT (CTC)
| 0

| INDEX COUNT RESERVED STARTING TRANSFER ADDRESS (WITHIN PE MEMORY]
L00P CTRL | INDEX COUNT | BASE UPDATE COUNT BASE UPDATE (STRIDE)

LO0P CTRL LOOP CTRL SPECIFIES A PARTICULAR ORDER IN WHICH PE, BASE AND INDEX VALUES

ARE_UPDATED. THREE POSSIBLE ORDERS ARE SELECTABLE WHICH CORRESPOND 10
THAEE. ASSIGNNENTS OF PE, BASE AND INDEX UPDATE TO THREE NESTED CONIROL
LOOPS (OUTER, HIDOLE AND INNER).

00 - BASE (QUTER), INDEX (MIDDLE), PE (INNER) - BIP
01 - BASE (QUTER), Pt (MIDDLE), INDEX (INNER) - BPI
10 - PE (QUTER), BASE (MIDDLE), INDEX (INNER) - PRI

SPECIFIES THE NUMBER OF PEs TO Bt ACCESSED FOR EACH TIME THE PE COUNTER
I3 SIGNALED TO RELOAD. VALIO VALUES ARE:

ggg({ - ?AX NUMBER OF Pts AS SPECIFIED IN THE PE CONFIGURATION REGISTER

0010 - 2
0011 - 3 £T1C., EIC.

BASE UPOATE {SIRIDE) [DISTANCE BETWEEN SUCCESSIVE BLOCKS. UNITS ARE OF °DATA TYPE* SIZE.

BASE UPDATE COUNT {USED FOR PBI LOOP CONTROL. SPECIFIES THE NUMBER OF TIMES THE BASE IS
UPDATED BEFORE EXTTING TO THE OUTER LOOP (PE UPDATE) . RANGE IS 1 70 256.

Pt COUNT

l

I [Ux 10 - [U FORM AN INOEX UPDATE TABLE WITH EACH ENTRY BEING A 4-BIT UPDATE
VALUE. UPDATE VALUES ARE INTEGERS IN THE RANGE OF -8 10 +7

[NDEX COUNT NUMBER OF TINES TQ EXECUTE THE INDEX UPDATE LOOP. THIS VARIABLE PROVIDES
THE LOOP EXTT CONTROL FOR THE INDEX LOCP.

U.S. Patent Oct. 26, 2010 Sheet 15 of 19 US RE41,904 E

FIG. 18

el
| o)
|
-

B

LOOP CONTROL: BIP (INDEX VARIES FIRST, THEN BASE, THEN PE ID)

ADDRESS [e | et P2 1 Ry
o000 o0 1y by
om0t] a1 s % 1 a
00002 | 4 4 s 1 & | 73
“—““
0x0004 =—
0x0005 w8
0x0006 “ T
[0x0007 R
00008 | A N
Ox0008 [N
0x0002 R R

PAITERN ABOVE RESULTS FROM AFTER A TRANSFER WITH THE FOLLOWING ASSUMPTIONS:

* BS{ glcck {NSTHUCTIUN READS SUCCESSIVE ADDRESSES FROM SYSTEM MEMORY, DATA ELEMENT VALUES ARE
eic

'+ 0L select INDEX INSTAUCTION PLACES VALUES IN PE HEMORIES USING THE FOLLOWING PARANETERS
[+ ASSUKE NO PE VIO-Lo-PID TRANSLATION

» TRANSFER COUNT - 36

» P ADDRESS - 0

[+ PE COUNT - 4

» LOOP CONTROL « BIP

o BASE UPDATE COUNT - (

o BASE UPDATE - §

o INDEX UPDATE TABLE VALUE IS OxO0EEF222 WHICH GIVES UPDATES 2.2,2.-1,-2,-2
o [NDEX COUNT = 7

S——

U.S. Patent Oct. 26, 2010 Sheet 16 of 19 US RE41,904 E

FIG. 18
/— 1300
BHHERHERHEERHERRBREREEBERE

RESERVED STARTING TRANSFER ADDRESS (WITHIN PE MEMORY)
LOOP CTRL | PE COUNT { BASE UPOATE COUNT BASE UPDATE (STRIDE)

INDEX COUNT (HOLD! RESERVED INDEX UPDATE
RANGE: 1 TQ 63336 RANGE: 1-256
PEMSK/ PEMSKS | PEMSK4 | PEMSK3 | PEMSK2 PEMSK 1

LOOP CTRL LO0P CTAL SPECIFIES A PARTICULAR ORDER IN WHICH PE, BASE AND INDEX VALUES
ARE UPDATED. THREE POSSIBLE QRDERS ARE SELECTABLE WHICH CORRESPOND T0

THREE ASSIGNMENTS OF PE, BASE AND INDEX UPDATE 70 THREE NESTED CONTROL
LOOPS (QUTER, MIDDLE AND INNER) .

00 - BASE (OUTER), INDEX (NIODLE), Pt (INNER) - BIP
01 - BASE (OUTER), PE (MIDOLE), INDEX (INNER} - BPI
10 - Pt (OUTER), BASE (MIOOLE), INDEX {INNER) - PBI

PE COUNT (NOT USED FOR THIS ADDRESS MODE}
BASE UPDATE (STRIOE) {DISTANCE BETWEEN SUCCESSIVE BLOCKS. UNITS ARE OF °DATA TYPE' SIZE.

BASE UPDATE COUNT {USED FOR PBI LOOP CONTROL. SPECIFIES THE NUMBER OF TIMES THE BASE 1S
UPDAIED BEFORE EXTTING TO THE OUTER LOOP {PE UPDATE) . RANGE IS 1 T0 256.

INDEX COUNT (HOLD? | NUMBER OF CONTIGUOUS DATA ITEMS IN A BLOCK

INDEX UPDATE gEITEANCE BETWEEN SUCCESSIVE ITEMS WITHIN A BLOCK. UNITS ARE OF °DATA TYPE'

PEVEC THESE VALUES FORM A TABLE OF 4-BIT FIELDS THAT ARE USED 10 SPECIFY PE
SELECTIONS FOR UP TO B PASSES THROUGH THE PEs. FOR EACH FOUR BIT FIELD, A '{°
BIT SELECTS THE PE VIO CORRESPONDING 1O ITS BIT POSITION. PEMSKO NUST HAVE

AT LEAST ONE 1" BIT, AND THE FIRST ALL-ZERO FIELD DETECTED CAUSES SELECTION 10
BEGIN AGAIN WITH THE PEMSXD FIELOD.

IN BIP AND BPT LOOP MODES, WHEN THE BASE IS UPDATED, THE PEVEC TABLE

RESETS 10 THE FIRST 4-BIT ENTRY REGARDLESS OF WHICH ENTRY WAS LAST IN USE.

[N PB] LOOP MODE THE PEVEC ENTRIES ARE CYCLED THROUGH CONTINUOUSLY.

=
“[cw
o
=
T
T =—d D

oo~
l

U.S. Patent Oct. 26, 2010 Sheet 17 of 19 US RE41,904 E

FIG. 20 -
/-

L00P CONTROL: B8IP (INDEX VARIES FIRST, THEN BASE, THEN PE ID)

I L I
[WORDS)

—-_=
oot V1 3 0y
o2] 8 | 8] v 1 8
ooy} 0 0 w1 ®
IR A R D R
[T A AR S P
o006 0 000l
o097 00000 1
KT A SR AR N N R
o003 | %] 0w 1 #®
X000 e] 0®8 F w] A
LU N N (Y : MU T R

PATTERN ABOVE RESULTS FROM AFTER A TRANSFER WITH THE FOLLOWING ASSUMPTIONS:

gS{.glock {NSTRUCTION READS SUCCESSIVE ADDRESSES FROM SYSTEM MEMORY, DATA ELEMENT VALUES ARE
1.2, elc.

ASSUNE PE TRANSLATE TABLE MAPS 0—e=={, |—=2, 2—=3, J—=9)
ICI.selectpe INSTRUCTION PLACES YALUES IN PE NEMORIES USING THE FOLLOWING PARAMETERS
TRANSFER COUNT = 26

INITIAL Pt ADORESS OFFSET = 0
Pt COUNT - NOT USED

1007 CONTROL - BIP
BASE UPUATE COUNT - 0
BASE UPDATE - 8

INDEX UPDAIE = 1
INDEX COUNT - 4

Pt TABLE IS 0x00000F77

* FIRST PASS SELECT VIDs: 0. 1, 2 (TRANSLATION CONVERTS THESE 10 PIDs: 1.2.3
 NEXT PASS SELECT YIDs 0,1.2 (TRANSLATION CONVERTS THESE TO PIDs: 1,2,3)

* NEXT PASS SELECT ¥IDs 0.1,2,3 (TRANSLATION CONVERTS THESE T0 PIDs: 1,2.3.01

U.S. Patent Oct. 26, 2010 Sheet 18 of 19 US RE41,904 E

FIG. 21
/.-2100

HHHHHHHHHERAHREREHEERHHHEHEHHBRE
CIU TRANSFER II“ CORE TRANSFER COUNT (CIC)

[U COUNT RESERVED STARTING TRANSFER ADDRESS (WITHIN PE HMEMORY)
LOOP CTRL | PE COUNT | BASE UPDATE COUNT BASE UPDATE (STRIDE)

= TR R
PEMSKY PEMSKE PEMSK3 PEMSK¢ PEMSK3 PEMSKZ PEMSK

'LO0P CTAL LOOP CTRL SPECIFIES A PARTICULAR ORDER IN WHICH PE, BASE AND INDEX VALUES
ARE UPDATED. THREE POSSIBLE ORDERS ARE SELECTABLE WHICH CORRESPOND 10

THREE ASSIGNMENIS OF PE, BASE AND INDEX UPDATE TO THREE NESTED CONTROL
LOOPS {QUTER, MIDDLE AND INNER) .

00 - BASE (OUTER), INDEX (MIODLE), PE (INNER) - BIP
| 01 - BASE (OUTER), PE (MIDDLE), INDEX (INNER) - BPI
! 10 - PE (OUTER}, BASE INIODLE), INDEX {INNER) - PBI

PE COUNT (NOT USED FOR THES ADDRESS MODE)
BASE UPCATE (STRIDE)) DISTANCE BETWEEN SUCCESSIVE BLOCKS. WNITS ARE OF °0ATA TYPE™ SIZE.

BASE UPDATE COUNT USED FOR PBI LOOP CONTROL. SPECIFIES THE NUMBER OF TIMES THE BASE IS
UPDATED BEFORE EXITING T0 THE QUTER LOOP (PE UPDATE) . RANGE IS 1 T0 256.
1U COUNT INDEX UPDATE COUNT. THIS IS THE NUMBER OF ENTRIES IN THE INDEX UPDAIE TABLE.
WHEN " IU Count’ INDEX UPDATES HAVE QCCURRED (WITH ASSOCIATED ACCESSES
AFTER UPDATE) . THE NEXT QUTER LOOP VARTABLE (B OR Pl IS UPDATED. SUBSEQUENT

INDEX UPDATES STAAT AT THE FIRST ENTRY AGAIN (IUOI. IF 'IU Count' IS GREATER THAN
B, THE TABLE ENTRIES ARE USED AGAIN, STARTING AT THE BEGINNING OF THE TABLE.

TUx IU0 - [U7 FOAM AN INDEX UPDATE TABLE WITH EACH ENTRY BEING A 4-8IT UPDATE
YALUE. UPDATE VALUES ARE INTEGERS IN THE RANGE OF -3 10 +7.
PENSKx

THESE VALUES FORM A TABLE OF 4-BIT FIELDS THAT ARE USED TO SPECIFY PE
StLECTIONS FOR UP TO 8 PASSES THROUGH THE PEs. FOR EACH FOUR BIT FIELD, A °

BIT SELECTS THE PE CORRESPONDING TO 115 BIT POSITION. PEMSKO HUST HAVE AT

LEAST ONE "1" BIT, AND THE FIRST ALL-ZERO FIELD DETECTED CAUSES SELECTION T0
BEGIN AGAIN WITH THE PENSKO FIELD.

U.S. Patent Oct. 26, 2010 Sheet 19 of 19 US RE41,904 E

FIG. 22

™D
)
>
D

LOOP CONTAOL: BIP (INDEX YARIES FIRST, THEN BASE, THEN PE ID)

ADDRESS Pt PE2
(NDRDS)
(0x0000
x0001
x0002
x(003
x0004
x0005
x0006
X000/
x0008
x0009
x0003
x000a

Fo—.
o

<>

=

H
(&N
[——
- - N
-
|

-
o

——
&

PATTERN ABOVE RESULTS FROM AFTER A TRANSFER WITH THE FOLLOWING ASSUHPTIONS:

55{.glock {NSTHUCTIDN READS SUCCESSIVE ADDRESSES FROM SYSTEM MEMORY, DATA ELEMENT VALUES ARE
4.¢, .. BLL,

ASJUME PE TRANSLATE TABLE MAPS 0—=-1, |2, 2—=], 3—=0

IC1.selectpe INSTRUCTION PLACES YALUES IN PE MEMORIES USING THE FOLLOWING PARAMETERS
TRANSFER COUNT = 20

INITIAL PE ADDRESS OFFSET = 0

Pt COUNT = NOT USED

LOOP CONTROL = BIP

BASE UPDATE COUNT = 0

BASE UPDATE = b

INDEX COUNT - 3

INDEX TABLE - 0x00000032 {+2, THEN +3)
PE HELPE IS Ox00000F77

° FIRST PASS SELECT VIDs 0,1,2 (TRANSLATION CONVERTS THESE T0 PIDs: 1,2.3)

o NEXT PASS SELECT VIDs 0,1,2 (TRANSLATION CONVERTS THESE 10 PIDs: 1,2,3)
* NEXT PASS SELECT VIDs 0,1,2,3 (TRANSLATION CONVERTS THESE T0 PIOs: {,2.3,0)

US RE41,904 E

1

METHODS AND APPARATUS FOR
PROVIDING DIRECT MEMORY ACCESS
CONTROL

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

RELATED APPLICATIONS

Morve than one reissue application has been filed for the

reissue of U.S. Pat. No. 6,453,367. The reissue applications
are application Ser. No. 10/819,885 and which is the present
divisional reissue application.

The present application 1s a division of U.S. application

Ser. No. 09/472.,372 filed Dec. 23, 1999, now U.S. Pat. No.
6,256,683, which 1n turn claimed the benefit of U.S. Provi-
sional Application Ser. No. 60/113,637 entitled “Methods
and Apparatus for Providing Direct Memory Access (DMA)
Engine” and filed Dec. 23, 1998 which i1s incorporated by
reference 1n its entirety herein.

FIELD OF THE INVENTION

The present ivention relates generally to improvements
in array processing, and more particularly to advantageous
techniques for providing improved mechanisms of data dis-
tribution to, and collection from multiple memories often
associated with and local to processing elements within an
array processor.

BACKGROUND OF THE INVENTION

Various prior art techniques exist for the transier of data
between system memories or between system memories and
I/O devices. FIG. 1 shows a conventional data processing
system 100 comprising a host uniprocessor 110, processor
local memory 120, direct memory access (DMA) controller
160, system memory 150 which 1s usually a larger memory

store than the processor local memory, having longer access
latency, and input/output (I/0) devices 130 and 140.

The DMA controller 160 provides a mechanism for trans-
ferring data between processor local memory and system
memory or I/O devices concurrent with uniprocessor execu-
tion. DMA controllers are sometimes referred to as 1/0 pro-
cessors or transier processors in the literature. System per-
formance 1s 1improved since the host uniprocessor can
perform computations while the DMA controller 1s transier-
ring new input data to the processor local memory and trans-
terring result data to output devices or the system memory. A
data transier 1s typically specified with the following mini-
mum set of parameters: source address, destination address,
and number of data elements to transfer. Addresses are 1nter-
preted by the system hardware and umquely specity /O
devices or memory locations from which data must be read
or to which data must be written. Sometimes additional
parameters are provided such as element size. One of the
limitations of conventional DMA controllers 1s that address
generation capabilities for the data source and data destina-
tion are oiten constrained to be the same. For example, when
only a source address, destination address and a transfer
count are specified, the implied data access pattern 1s block-
oriented, that 1s, a sequence of data words from contiguous
addresses starting with the source address 1s copied to a
sequence of contiguous addresses starting at the destination
address. Array processing presents challenges for data col-
lection and distribution both in terms of addressing

10

15

20

25

30

35

40

45

50

55

60

65

2

flexibility, control and performance. The patterns 1n which
data elements are distributed and collected from processing
clement local memories can significantly affect the overall
performance of the processing system. With the advent of
the ManArray architecture 1t has been recognized that 1t waill
be advantageous to have improved techniques for data trans-
ter which provide these capabilities and which are tailored to
this new architecture.

SUMMARY OF THE INVENTION

As described in detail below, the present mvention
addresses a variety of advantageous methods and apparatus
for improved data transier control within a data processing
system. In particular we provide improved techmiques for:
distributing data to, and collecting data from an array of
processing elements (PEs) 1n a flexible and efficient manner;
and PE address translation which allows data distribution
and collection based on PE virtual IDs.

Further aspects of the present invention are related to a
virtual-to-physical PE ID translation which works together
with a ManArray PE interconnection topology to support a
variety ol communication models (such as hypercube and
mesh) through data placement based upon a PE virtual ID.
This result can be accomplished 1n a DMA controller by
translation, through a VID-to-PID lookup table or through
combinational logic, where the resulting PID becomes an
addressing component on the DMA bus to PE local memo-
ries. This result can also be achieved at the PE local memo-
ries within the interface logic, where a VID available to the
interface logic 1s compared to a VID presented on the DMA
bus. A match at a particular memory interface allows that
memory to accept the access. The present mvention also
addresses the provision of PE addressing modes based on
generating data access patterns from logically nested param-
cterized loops. Varying assignments ol loop parameters to
nesting level allows flexible data access patterns to be gener-
ated. Providing varying mechanisms for updating loop
parameters provides greater flexibility for generating
complex-periodic access [patters] patterns, such as select-
index modes which provide a table of index-update values
which are used when the index loop parameter 1s updated;
select-PE modes which provide a table of bit-vector control
values, each of which specifies the PEs to be accessed for an
iteration through the “PE update loop™ (1.e., the loop which
PE update 1s assigned); and select-index-PE modes which
provide both select-index and select-PE update capability
and combine to form the most flexible mode for generating
complex-periodic data access patterns. Further, the invention
addresses the design of a looping mechanism to be reentrant
thereby allowing any addressing mode to be restarted after
completing a specific number of element transfers, by just
loading or reloading a new transier count and continuing the
transier. This result 1s accomplished by mitializing address-
ing parameters at instruction load time, and only updating
them after a loop exits.

These and other advantages of the present mnvention will

be apparent from the drawings and the Detailed Description
which follow.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 shows a conventional data processing system with
a DMA controller to support data transiers concurrent with
host processor computation;

FIG. 2 1llustrates a ManArray DSP with a DMA controller
in a representative system 1n accordance with the present
invention;

US RE41,904 E

3

FIG. 3 illustrates a DMA controller implemented as a
multiprocessor, with two transier controllers, bus connec-
tions to a system memory, PE memories and a control bus;

FIG. 4 shows a single transfer controller comprising 4
primary execution units, bus connections and FIFO butlfers;

FIG. 5 shows an exemplary format of a transfer type
instruction 1n accordance with the present invention;

FIG. 6 shows an exemplary virtual PE i1dentification to
physical PE 1dentification (VID-to-PID) translation;

FIG. 7 shows an exemplary logical implementation of
VID-to-PID translation;

FIG. 8 shows an exemplary PEXLAT instruction (*load
VID-to-PID table”);

FI1G. 9 illustrates a VID-to-PID translation table register,
called the PETABLE register in a presently preferred
embodiment;

FI1G. 10 illustrates a nested logical loop model showing a
“BIP” assignment of address components to loops: base
(outer), index (middle) and PE VID (inner);

FIG. 11 shows a nested logical loop model with “BPI”

assignment of address components to loops: base (outer), P.
(middle) and index (1nner);

L1

FIG. 12 1s a nested logical loop model showing a “PBI”
assignment of address components to loops: PE (outer),
Base (middle) and Index (inner);

FIG. 13 illustrates an exemplary format for a PE Block-
cyclic instruction 1n accordance with the present invention;

[T

FIG. 14 shows an exemplary transfer result using P.
Blockcyclic address mode with BIP loop assignment;

[T]

FIG. 15 shows an exemplary transfer result using P.
Blockcyclic address mode with BPI loop assignment;

L1l

FIG. 16 shows an exemplary transfer result using P.

Blockcyclic address mode with PBI loop assignment;

FIG. 17 illustrates an exemplary format for a PE Select-
Index transfer instruction in accordance with the present
invention;

FIG. 18 shows an exemplary transier result using a PE
Select-Index address mode with BIP loop assignment;

FI1G. 19 1illustrates an exemplary format for a PE Select-
PE transfer instruction in accordance with the present mven-
tion;

[T]

FIG. 20 shows an exemplary transier result using a P

Select-PE address mode with BIP loop assignment;

FIG. 21 1illustrates an exemplary format for a PE Select-
Index-PE transfer instruction 1n accordance with the present
invention; and

[T]

FIG. 22 shows an exemplary transier result using a P.
Select-Index -PE address mode with BIP loop assignment.

DETAILED DESCRIPTION

Further details of a presently preferred ManArray core,
architecture, and 1nstructions for use 1n conjunction with the
present imvention are found in U.S. patent application Ser.
No. 08/885,310 filed Jun. 30, 1997, now U.S. Pat. No. 6,023,
753, U.S. patent application Ser. No. 08/949,122 filed Oct.
10, 1997, now U.S. Pat. No. 6,167,502, U.S. patent applica-
tion Ser. No. 09/169,255 filed Oct. 9, 1998, U.S. patent
application Ser. No. 09/169,256 filed Oct. 9, 1998, now U.S.
Pat. No. 6,167,501, U.S. patent application Ser. No. 09/169,
072 filed Oct. 9, 1998, now U.S. Pat. No. 6,219,776, U.S.
patent application Ser. No. 09/187,539 filed Nov. 6, 1998,
now U.S. Pat. No. 6,151,668, U.S. patent application Ser.
No. 09/2035,558 filed Dec. 4, 1998, now U.S. Pat. No. 6,173,

10

15

20

25

30

35

40

45

50

55

60

65

4

389, U.S. patent application Ser. No. 09/215,081 filed Dec.
18, 1998, now U.S. Pat. No. 6,101,592, U.S. patent applica-
tion Ser. No. 09/228,374 filed Jan. 12, 1999, now U.S. Pat.
No. 6,216,223, U.S. patent application Ser. No. 09/238,446
filed Jan. 28, 1999, U.S. patent application Ser. No. 09/267,
570 filed Mar. 12, 1999, U.S. patent application Ser. No.
09/3377,839 filed Jun. 22, 1999, U.S. patent application Ser.
No. 09/350,191 filed Jul. 9, 1999, U.S. patent application
Ser. No. 09/422,015 filed Oct. 21, 1999, U.S. patent applica-
tion Ser. No. 09/432,705 filed Nov. 2, 1999, U.S. patent
application Ser. No. 09/471,217 filed Dec. 23, 1999, now
U.S. Pat. No. 6,260,082, as well as, Provisional Application
Ser. No. 60/139,946 entitled “Methods and Apparatus for
Data Dependent Address Operations and Efficient Varable
Length Code Decoding 1n a VLIW Processor” filed Jun. 18,
1999, Provisional Application Ser. No. 60/140,245 entitled
“Methods and Apparatus for Generalized Event Detection
and Action Specification 1n a Processor” filed Jun. 21, 1999,
Provisional Application Ser. No. 60/140,163 entitled “Meth-

ods and Apparatus for Improved Efficiency in Pipeline
Simulation and Emulation” filed Jun. 21, 1999, Provisional

Application Ser. No. 60/140,162 entitled “Methods and
Apparatus for Imtiating and Re-Synchronizing Multi-Cycle
SIMD Instructions™ filed Jun. 21, 1999, Provisional Applica-
tion Ser. No. 60/140,244 entitled “Methods and Apparatus
for Providing One-By-One Manifold Array (1x1 ManArray)
Program Context Control” filed Jun. 21, 1999, Provisional
Application Ser. No. 60/140,325 entitled “Methods and
Apparatus for Establishing Port Priority Function in a VLIW
Processor” filed Jun. 21, 1999, Provisional Application Ser.
No. 60/140,425 entitled “Methods and Apparatus for Paral-
lel Processing Utilizing a Manifold Array (ManArray)
Architecture and Instruction Syntax™ filed Jun. 22, 1999,
Provisional Application Ser. No. 60/165,3377 entitled * ::ﬁ-
cient Cosine Transform Implementatlons on the ManArray
Architecture” filed Nov. 12, 1999, and Provisional Applica-
tion Ser. No. 60/171,911 entitled “Methods and Apparatus
for Loading of Very Long Instruction Word Memory” filed
Dec. 23, 1999, respectively, all of which are assigned to the
assignee of the present invention and incorporated by refer-
ence herein 1n their entirety.

The following definitions of terms are provided as back-
ground for the discussion of the invention which follows:

A “transfer” refers to the movement of one or more units

of data from a source device (either I/O or memory) to a
destination device (I/O or memory).

A data “source” or “destination” refers to a device from
which data may be read or to which data may be written
which 1s characterized by a contiguous sequence of one or
more addresses, each of which 1s associated with a data stor-
age element of some unit size. For some data sources and
destinations there 1s a many-to-one mapping of addresses to
data element storage locations. For example, an I/O device
may be accessed using one of many addresses in a range of
addresses, yet 1t will perform the same operation, such as
returning the next data element of a FIFO, for any of them.

A “data access pattern”™ 1s a sequence of data source or
destination addresses whose relationship to each other is
periodic. For example, the sequence of addresses 0, 1, 2, 4,
5,6,8,9,10, ... etc. 1s a data access pattern. If we look at the
differences between successive addresses, we find: 1,1.2,
1,1.2,1,1.2, ... etc. Every three elements the pattern repeats.

An “address mode™ or “addressing mode” refers to a rule
that describes a sequence of addresses, usually 1n terms of
one or more parameters. For example, a “block™ address
mode 1s described by the rule: address|i]=base__address+i

US RE41,904 E

S

where 1=0, 1, 2, . . . etc. and where base__address 1s a param-
cter and refers to the starting address of the sequence.

Another example 1s a “stride” address mode which may be
described by the rule:

address|i|=base__address+(1 mod (stride—hold))+(i/hold)*stride

for 1=0, 1, 2, . . . etc., and where base address, stride and
hold are parameters, and where division 1s integer division in
which any remainder 1s discarded.

An “address generation unit (AGU)” 1s a hardware mod-
ule that generates a sequence of addresses (a data access

pattern) according to a programmed address mode.

“BEOT” means “‘end-of-transier” and refers to the state
when a transfer execution unit (described in the following
text) has completed 1ts most recent transier istruction by
transierring the number of elements specified by the mnstruc-
tion’s transfer count field.

The term “host processor” as used in the following
description 1s any processor or device which can write con-
trol commands and read status from the DMA controller
and/or which can respond to DMA controller messages and
signals. In general, a host processor interacts with a DMA
controller to control and synchronize the tflow of data
between devices and memories 1 the system 1n such a way
as to avoid overrun and underrun conditions at the sources
and destinations of data transfers.

The present invention provides a set of flexible addressing,
modes for supporting efficient data transfers to and from
multiple memories, together with methods and apparatus for
allowing data accesses to be directed to PEs according to
virtual as opposed to physical IDs. This section describes an
exemplary DMA controller and a system environment 1n
which the present inventions may be effectively used. The
tollowing sections describe PE memory addressing, virtual-
to-physical PE ID translation and 1ts purpose, and a set of PE
memory addressing modes or “PE addressing modes™ which
support numerous parallel algorithms with highly efficient
data transfer.

FIG. 2 shows an exemplary system 200 1llustrating the
context in which a ManArray DMA controller 201, 1n accor-
dance with the present invention, resides. The DMA control-
ler 201 accesses processor local memories 210, 211, 212,

213, 214 and 215 via a DMA Bus 202, 202,, 202,, 202,
202,, 202, and memory interface units 2035, 206, 207, 208
and 209 to which 1t 1s connected. A ManArray DSP 203 also
connects to 1ts local memories 210-215 via memory inter-
face units 205-209. Further details of a presently preferred
DSP 203 are found 1n the above incorporated by reference
applications.

In this representative system, the DMA controller also
connects to two system busses, a system control bus (SCB)
235 and a system data bus (SDB) 240. The DMA controller
1s designed to transter data between devices on the SDB 240,
such as a system memory 250 and the DSP 203 local memo-
ries 210-215. The SCB 235 i1s used by an SCB master such
as the DSP 203 or a host control processor (HCP) 245 to
program the DMA controller 201 with read and write
addresses and registers to 1nitiate control operations and read
status. The SCB 235 i1s also used by the DMA controller 201
to send synchronization messages to other SCB bus slaves
such as the DSP control registers 225 and a host I/O block
255. Some registers 1n these slaves can be polled by the DSP
and HCP to recerve status from the DMA. Alternatively,
DMA writes to some of these slave addresses can be pro-
grammed to cause interrupts to the DSP and/or HCP allow-
ing DMA controller messages to be handled by interrupt
service routines.

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 3 shows a system 300 which illustrates operation of a
DMA Controller 301 which may suitably be a multiproces-
sor specialized to carry out data transfers utilizing one or
more transier controllers 302 and 303. Each transier control-
ler can operate as an independent processor or work together
with other transter controllers to carry out data transfers. The
DMA busses 3035 and 310 provide, 1n the presently preferred
embodiment, independent data paths to local memories 320,
321, 322, 323, 324, 325, one for each transter controller 302
and 303. In addition, each transfer controller 1s connected to

SDB 350 and to SCB 330. Each transfer controller operates
as a bus master and a bus slave on both the SCB and SDB. As

a bus slave on the SCB, a transier controller may be accessed
by other SCB bus masters 1n order to read 1ts internal state or
to 1ssue control commands. As a bus master on the SCB, a
transier controller can send synchronization messages to
other SCB bus slaves. As a bus master on the SDB, a transfer
controller performs data reads and writes from or to system
memory or I/0 devices which are bus slaves on the SDB. As
a bus slave on the SDB, a transfer controller can cooperate
with another SDB bus master 1n a “slave mode™ allowing the
bus master to read or write data directly from or to 1ts data
FIFOs (as discussed further below). It may be noted that the
DMA busses 305 and 310, the SDB 350 and the SCB 330
may be implemented 1n different ways. For example, they
may be implemented with varying bus widths, protocols, or
the like consistent with the teachings of the present inven-
tion.

FIG. 4 shows a system 400 having single transfer control-
ler 401 comprising a set ol execution units including an
istruction control unit (ICU) 440, a system transier unit

(STU) 402, a core transier unit (CTU) 408 and an event
control unit (ECU) 460. An inbound data queue (1DQ) 405 1s
a data FIFO buffer which 1s written with data from an SDB
4’70 under control of the STU 402. Data 1s read from the ID(Q
405 under control of the CTU 408 to be sent to core memo-
ries 430, or sent to the ICU 440 1n the case of instruction
tetches. An outbound data queue (ODQ)) 406 1s a data FIFO
which 1s written with data from DMA busses 425 under
control of the CTU 408, to be sent to an SDB 470 device or
memory under the control of the STU 402. The CTU 408
may also read DMA 1instructions from a memory attached to
the DMA bus, which are forwarded to the ICU 440 for initial
decoding. The ECU 460 receives signal inputs from external
devices 465, commands from the SCB 450 and instruction
data from the ICU 440. It generates output signals 435, 436
and 437 which may be used to generate interrupts on host
control processors within the system, and can act as a bus
master on the SCB 450 to send synchronization messages to
SCB bus slaves.

Each transfer controller within a ManArray DMA control-
ler 1s designed to fetch 1ts own stream of DMA instructions.
DMA 1structions are of five basic types: transter; branch;
load; synchronization; and state control. The branch, load,
synchronization, and state control types of istructions are
collectively referred to as “control mstructions”, and distin-
guished from the transfer instructions which actually per-
form data transiers. DMA 1nstructions are typically of multi-
word length and require a varniable number of cycles to
execute although several control 1nstructions require only a
single word to specily. Although the presently preferred
embodiment supports multiple DMA instruction types as
described 1n further detail in U.S. patent application Ser. No.
09/471,217 filed Dec. 23, 1999, now U.S. Pat. No. 6,260,
082, and incorporated by reference 1n 1ts entirety herein, the
present mvention focuses on instructions and mechanisms
which provide for flexible and eflicient data transfers to and
from multiple memories.

US RE41,904 E

7

Referring further to system 400 of FIG. 4, transfer-type
instructions are dispatched by the ICU for further decoding
and execution by the STU 402 and the CTU 408. Transfer
instructions have the property that they are fetched and
decoded sequentially, mn order to load transier parameters
into the appropriate execution unit, but are executed concur-
rently. The control means for initiating execution of transier
istructions 1s a flag bit contained 1n the instruction itself,
and 1s described below.

A “transfer-system-inbound” (TSI) instruction moves
data from the SDB 470 to the IDQ 405 and 1s executed by
the STU. A “transter-core-inbound” (TCI) instruction moves
data from the IDQ 405 to the DMA Bus 423 and 1s executed
by the CTU. A “transfer-core-outbound” (TCQO) instruction
moves data from the DMA Bus 425 to the ODQ 406 and 1s
executed by the CTU. A “transier-system-outbound” (TSO)
istruction moves data from the ODQ 406 to the SDB 470
and 1s executed by the STU. Two transier mstructions are
required to move data between an SDB system memory and
one or more SP or PE local memories on the DMA bus, and
both instructions are executed concurrently: a TSI, TCI pair
or a TSO, TCO patr.

The address parameter of STU transfer mnstructions TSI
and TSO refers to addresses on the SDB while the address

parameter of CTU transfer instructions refers to addresses
on the DMA bus to PE and SP local memories.

FIG. 5 shows an exemplary instruction format 500 for
transier instructions. A base opcode field 501 indicates that
the instruction 1s of transfer type. A C/S field 510 indicates
the transier unit (C'TU or STU) and 1/O field 520 indicates
whether the transfer direction 1s inbound or outbound. The
execute (“X”) field 550 1s a field which, when set to “17,
indicates a ““start transtfer” event, that 1s, that the transfer
should start immediately after loading the transier instruc-
tion. When the “X” field 1s “0”, then the parameters are
loaded 1nto the specified unit but the transfer 1s not initiated.
Instruction fetch/decode continues normally until a “start
transier” event occurs. A data type field 530 indicates the
s1ze ol each element transferred and an address mode 540
refers to the data access pattern which must be generated by
the transfer unit. A transfer count 560 1ndicates the number
of data elements of size “data type” which are to be trans-
ferred to or from the target memory/device before EOT
occurs for that unit. An address parameter 570 specifies the
starting address for the transter. Other parameters 580 may
follow the address word of the mstruction, depending on the
addressing mode used.

While there are six memories 210, 211, 212, 213, 214, and
215 shown 1n FI1G. 2, the PE address modes access only the
set of PE memornies 210, 211, 212, and 213 1n this exemplary
ManArray DSP configuration. The address of a data element
within PE local memory space 1s specified with three
variables, a PE 1D, a base value and an index value. The base
and the index values are summed to form an ofiset into a PE
memory relative to an address 0, the first address of that PE’s
memory. The address of a PE data element 1s therefore given
by a pair: PE data address=(PE ID, Base+Index).

The ManArray architecture supports a unique intercon-
nection network between processing elements (PEs) which
uses PE virtual IDs (VIDs) to support usetul single-cycle
communication paths, for example, torus or hypercube
paths. In some array organizations, the PE’s physical and
virtual IDs are equal. The VIDs are used 1n the architecture
to specily the pattern for data distribution and collection.
When data 1s distributed according to the pattern established
by VID assignment, then efficient inter-PE communication

required by the programmer becomes available. As an

10

15

20

25

30

35

40

45

50

55

60

65

8

example, 1f a programmer needs to establish a hypercube
connectivity for a 16 PE ManArray processor, the data will
be distributed according to a VID assignment 1n such a man-
ner that the physical switch connections allow data to be
transierred between PEs as though the switch topology were
a hypercube even 11 the switch connections between physical
PEs do not support the fill hyper-cube interconnect. The
present mvention describes two approaches whereby the
DMA controller can access PE memories according to their
VIDs, effectively mapping PE virtual IDs to PE physical 1Ds
(PIDs). The first uses VID-to-PID translation within the
CTU of a transfer controller. This translation can be per-
formed either through table-lookup, or through logic permu-
tations on the VID. The second approach associates a VID

with a PE by providing a programmable register within the
PE or the PE local memory interface unmit (LMIU), FIG. 2

205, 206, 207 and 208 which 1s used by the LMIU logic to
“capture” a data access when its VID matches a VID pro-
vided on the DMA Bus for each DMA memory access.
VID to PID Translation within the DMA Controller
With this approach, a PE VID-to-PID table 1s maintained
in the DMA controller so that data may be distributed to the
ManArray according to a programmer’s view of the array. In
the preferred embodiment, this table 1s maintained in the
CTU of each transfer controller. FIG. 6 shows an exemplary
mapping table 600 of VID into PID for a four PE system,
such as a ManArray 2x2 system. The VIDs are 1n column
602 on the left and their corresponding PIDs are shown 1n
column 604 on the right. An example of a table lookup
implementation of the mapping of FIG. 6 1s 1llustrated logi-
cally as system 700 of FIG. 7. In the presently preferred
embodiment, a translation table 710 1s stored in the CTU of a
transier controller. A CTU transier istruction 705 (TCI or
TCO) specifies a starting address 775 which 1s used by AGU
770 to generate an mitial VID 720. The VID 720 controls the
selection of one of the elements of the VID-to-PID lookup
table 710 through multiplexer 715 which 1s then sent to a
DMA Bus 740 as the PE ID component of the PE address.
The numbers on the multiplexer 715 indicate the VID value
which must be applied to select the corresponding input.
Successive VIDs are generated by the AGU 770, possibly 1n
a recursive fashion as shown by feedback 708. At the same
time, the AGU 770 generates a sequence of PE memory
olfsets 730, also possibly using recursive feedback 7355. The
PE memory offset 750 1s also sent to the DMA bus as a
second component of a PE address. Logic in the local

memory interface units (LMIUs) 1s used to compare the PE
ID sent on the DMAbus to a stored PID (hard-coded) for any
DMA bus access. 11 this matches, then the LMIU accepts the
access and accepts write data or returns read data.

The approach of FIG. 7 has the advantage that all map-
pings ol PE VIDs to PIDs are supported. With larger num-
bers of PE local memories, the register or memory space
required to store this table grows. For example, a 16 PE
memory system requires 64 bits of register or memory space
to store the PIDs. An alternative approach to table lookup-
based translation 1s to provide logic which performs a subset
of all VID-to-PID mappings. This translation logic would
also be parameterized, but would require significantly fewer
bits to configure. As a simple example, let the PID be formed
by complementing any bit of the VID. If the PID and VID
require 4 bits to represent the needed 1Ds, say for a 16 PE
system, then a four bit “translation vector” (XVEC) must be

stored to configure the translation rather than the 64 bits for
table lookup. The PID 1s obtained from the VID by the fol-
lowing: PID=VID xor XVEC. That 1s, each bit of VID 1s

exclusive-or’d with the corresponding bit of XVEC. The set

US RE41,904 E

9

of PIDs resulting from applying this operation to each VID
constitutes the mapping. Obviously, the number of mappings
available 1s far fewer than with a table lookup approach, but
for systems with a large number of PE memories, only a few
mappings may be required to support the desired communi-
cation patterns.

In the presently preferred embodiment, a lookup table 1s
used to perform the VID-to-PID translation. Two approaches
are provided for mmtializing the translation table. The first 1s

through a DMA 1nstruction 800, shown in FIG. 8. When
executed, DMA mstruction 800 loads a PETABLE register
900 which 1s illustrated 1n FIG. 9. The second approach 1s
through a direct write of the PETABLE register 900 via the
SCB.

PE Virtual IDs Stored 1n Local Memory Interface Units

The second approach to directing data access according to
PE VID relies on distributing the PE VIDs to each PE local
memory interface unit (LMIU). The VID for each PE might
reside 1n a register either in the PE itself or in 1ts LMIU. In
this case, there 1s no translation table or logic 1n the DMA
lane controllers. In common with the preceding approach,
there 1s a PE ID component of the DMA bus which 1s driven
by the transfer controllers and used by the LMIUs to com-
pare for a match with the locally visible PE VID. When a
match 1s detected 1n a PE, then 1t accepts the access which
may be either a write or a read request. Means for updating,
the VIDs stored locally in the LMIUs may be provided
through the use of registers visible in the PE register address
space, or through a PE 1nstruction which broadcasts the table
to all PEs, who then select their VID using their hard-coded
PID stored locally. This approach has advantages when
VIDs are used for other purposes than just data distribution
and collection by a DMA controller.

CTU Addressing Modes

A CTU 408 shown 1 FIG. 4 supports a basic set of
address modes which may be used to target memories asso-
ciated with each PE or SP individually. These address modes
include single-address, block, stride and circular modes.
These addressing modes will not be described 1n detail
herein, but are a common set of addressing modes used for
many uniprocessor applications. In addition to these address
modes, the CTU 408 provides a set of “PE address modes™
which allow data to be distributed across or collected from
multiple PE memories 1n a variety of patterns. These address
modes are based on a software model of address generation
based on parameterizable loops, which 1s then implemented
in hardware.

Flexible PE Addressing Modes through Parameterizable
Logical Loops

Many algorithms which are distributed across multiple
PEs require complex data access patterns to achieve peak
eificiency. The basis for our loop-based PE addressing
modes 1s a logical view of data access consisting of a set of
nested loops 1n which one component of the PE memory
address 1s assigned to be updated at the end of each loop. As
stated above, a PE memory address consists of three compo-
nents called “address components™, a PE virtual ID (VID), a
base value (Base) and an index value (Index). This model
requires the following: a mechanism for assigning address
components to logical loops; a mechanism for inmitializing
address components; and a mechanism for updating address
components; and a mechanism for indicating a loop’s exit
condition.

Assignment of an address component to a loop specifies
the order in which the three address components are
updated. In an embodiment which uses a three-loop model,
there are six possible orders for updating address compo-

10

15

20

25

30

35

40

45

50

55

60

65

10

nents (1.e. s1Xx ways to re-order VID, Base and Index). The
base and index components are defined to be ordered 1n this
embodiment so that the index 1s always updated prior to the
base, which reduces the number of possible orderings to
three, since base and index are summed to form an offset
into PE memory, allowing loop assignments that update the
base before the index 1s redundant. An exemplary loop
assignment 1s: update VID on iner loop; update index on
middle loop; and update base on outer loop.

Thus, as PE addresses are generated, the VID component
updates first (inner loop). When all VIDs have been used
(VID loop exit condition has been reached), then the VID 1s
remitialized, the index 1s updated, and the VID loop 1s reen-
tered. This looping continues until the number of index
updates 1s exhausted (Index loop exit condition has been
reached) at which point the index 1s reinitialized, the base 1s
updated, the index loop i1s reentered, then the VID loop 1s
reentered. This further looping continues until the transier
count 1s exhausted.

Updating an address component 1s performed by selecting
a new value for the component either based on the old value
(e.g. new=0ld+1) or by some other means, such as by table
lookup. A loop exit condition specifies what causes the loop
to exit to the next-most outer loop 1n the model.

In summary, three different aspects of loop control are
used to vary the sequence in which PE memories may be
accessed. These are:

(1) Rearranging the order of assignment of address com-
ponents to logical loops,

(2) Varying the method for updating the address
components, and

(3) Varying the loop termination conditions.

FIGS. 10, 11 and 12 show logical representations or pro-
cesses 1000, 1100 and 1200, respectively, of preferred
assignments ol address parameters (PE VID, Base and
Index) to logical loops. In the nomenclature used 1n FIGS.
10, 11 and 12, the term “PE” refers to the PE VID compo-
nent of a PE address. In FIG. 10, the address components are
assigned 1n “Base, Index, PE” (BIP) ordering. This means
that the PE 1s updated in the innermost loop, the index
parameter 1s updated 1in the “middle” loop and the base
parameter 1s updated in the “outer” loop. In FIG. 11, the loop
assignments are 1n a “Base, PE, Index” (BPI) ordering, and
in FIG. 12, the loop assignments are 1n a “PE, Base, Index”
(PBI) ordering.

FIG. 10 shows a logical representation 1000 of the nested
loop model 1n which the PE VID 1s updated 1n an inner loop
1030, the index 1s updated 1n a middle loop 1020, and the
base 1s updated in an outer loop 1010. A fourth loop 1005
which encompasses the other three loops indicates that the
other loops are continued until the number of data elements
specified 1n the transfer instruction have been accessed.
Associated with each loop 1s a condition for loop exit 1010,
1020 or 1030, respectively, where the “!” character repre-
sents a logical NOT. Also associated with each loop 1s a
mechanism 1060, 1070 or 1077, respectively, for updating
the loop address parameter and for testing the updated value
to indicate whether the exit condition for that loop has
become TRUE. Prior to starting any loop 1s an address 1ni-
tialization block 1002 which sets the starting values of each
address component (PE, Base and Index). The data transfer

implemented by FIG. 10 will cause PEs to be accessed {first
until an “exit PE loop” condition has become true
(PELoopComplete 1s TRUE), at which point the PE loop
exits and the PE parameter 1s reimitialized 1n step 1065. The
index parameter 1s then updated and tested for its terminal
condition 1n step 1070. If the index parameter’s terminal

US RE41,904 E

11

condition has not become TRUE, then the PE loop 1s reen-
tered. When the index parameter’s terminal condition
becomes TRUE, the mdex loop 1s exited, the index param-
cter 1s reimitialized 1n step 10735 and the base parameter 1s
updated and tested for a terminal condition 1n step 1080. IT
the base parameter terminal condition has not been reached,
then the index and PE loops are reentered and executed until
cither all data items have been accessed (transfer count
specified 1n the transfer instruction becomes zero) or the
index loop 1s terminated again. When BaseLoopComplete
becomes TRUE, the base value i1s remnitialized 1n step 1085
and the loops are reentered again.

FIGS. 11 and 12 show nested logical loops or processes
1100 and 1200 corresponding to “BPI” access (index 1s
updated first, followed by PE, followed by base) and “PBI”
access (Index 1s updated first, followed by Base, then lastly
PE) respectively.

The following aspects of the loop formulation are noted.
When the requested number of accesses are made (TC 1n
FIGS. 10-12) then all loops are exited immediately, leaving
all address and loop control variables 1n their current states.
By using logical “while” loops and reinitializing a loop only
at 1ts exit, 1t 1s possible to reenter the loops and continue a
transfer after “terminal count” (1TC) addresses have been
accessed. This capability 1s used 1n this mvention to allow
transiers to be restarted so that the addressing continues as
though 1t would 1f the transter count had not been exhausted.
For further details of such transfers see U.S. application Ser.
No. 09/471,217 filed Dec. 23, 1999, now U.S. Pat. No.
6,260,082, which 1s incorporated by reference in its entirety
herein.

The functions used to update an address (see
UpdateAddress() in FIG. 10 steps 1060, 1070 and 1077; in

FIG. 11 steps 1160, 1170 and 1177; and 1n FIG. 12 steps
1260, 1270 and 1277) may update the address using a con-

stant increment value, or a value extracted from a table, or
use a selection mechanism based on a bit vector. While other
UpdateAddress() functions might be supported, those listed
are supported 1n the presently preferred embodiment.

The function used to update the loop control variable,
UpdateLoopControl(), may be performed as part of the
address update or as a separate operation as shown in FIGS.
10—-12. This operation 1s used to update variables which con-
trol loop termination. In the preferred embodiment, the con-
trol vanables are counters or special logical functions con-
s1sting of priority encoders and counter blocks.

The function used to check for loop termination simply
tests the loop termination variable for an end of loop condi-
tion. This condition may be a particular count value or the
state of a mask register.

The 1mitialization of address parameters (see Initialize()
tunction: FIG. 10 1002, FIG. 11 1102, and FIG. 12 1202)
does not necessarily occur each time a transfer 1s started. In
the preferred embodiment, this initialization occurs only
when a transier instruction 1s decoded and parameters are
loaded 1nto CTU registers 1n the case of PE addressing
modes or STU registers.

The following discussion addresses instruction formats
and describes PE addressing modes for one embodiment of
the invention. It will be recognized other instruction encod-
ings may be used consistent with the teachings of the present
invention. In the preferred embodiment, a transier controller
reads transier instructions from a local memory and decodes
them. Transfer istructions come in two types, those for the
STU and those for the CTU. The STU transfer instructions
specily the addressing mode and transier count for accesses
to the system data bus while CTU transfer instructions

5

10

15

20

25

30

35

40

45

50

55

60

65

12

specily the addressing mode and transier count for accesses
to the DMA bus and all SP and PE memories. The instruc-
tion formats addressed below are only those instructions
which control special PE memory addressing for the CTU.
Instruction mnemonics are used to indicate the mnstruction
type and addressing mode. “TCI” stands for “transier, core-
inbound”, while “TCQO” stands for “transfer, core-
outbound”. “TCx” stands for either TCI or TCO. The follow-
ing PE addressing modes are described as illustrative of the
present invention: PE Block-Cyclic, PE Select-Index, PE
Select-PE, and PE Select-Index-PE.
PE Block- Cychc Addressing
PE blockcyclic addressing provides the basic framework
for all of the PE addressing modes. A Loop parameter speci-
fies the assignment of address components to loops: BIP,
BPI, or PBI. FIG. 13 shows an exemplary format 1300
which defines the parameters for a PE Blockcyclic transter
istruction executed by the CTU. As an example, 11 we are
gIVen:

An inbound sequence of 16 data elements with values

0,1,2,3,...15;
PETABLE setting of 0x000000E4 (no translation of PE
IDs);

TSI.block mstruction 1n the STU (reading the 16 values
from system memory); and

TCl.blockcyclic mstruction 1n the CTU with PE count=4,
Base Update=8, Base Count=2 (used for PBI mode

only) Index Update=2, Index Count=2, then the result-
ing data in the PE memories 1400 after the transfer are

shown 1 FIG. 14 for BIP loop assignment. FIG. 15

shows resulting data 1500 for BPI loop asmgnment
FIG. 16 shows resulting data 1600 for PBI loop assign-
ment.

PE Select-Index Addressing

The operation of the PE select-index address mode 1s
similar to the PE blockcyclic address mode except that rather
than updating the index component of the address by adding
a constant to 1t, the instruction specifies a table of index
update values which are used sequentially to update the
index. FIG. 17 shows an exemplary instruction format 1700
for the PE select-index instruction.

An 1index select parameter allows finer-grained control
over a sequence of index values to be accessed. In the
example, this 1s done using a table of eight 4-bit index-
update (IU) values. Each time the index loop 1s updated, an
IU value 1s added to the effective address. These update
values are accessed from the table sequentially starting from
IUO for IUCount updates. After IUCount updates, the index
update loop 1s complete and the next outer loop (B or P) 1s
activated. On the next entry of the index loop, IU values are
accessed starting at the beginning of the table. FIG. 18
shows an exemplary data access table 1800 1llustrating data
access using the PE select-index mstruction.

PE Select-PE Addressing

The operation of the PE Select-PE address mode 1s similar
to the PE blockcyclic address mode except that rather than
updating the PE VID component of the address by adding 1
to 1t, the mstruction specifies a table of bit vectors, where
cach bit vector specifies the PE’s to select for access. A bit
set to “17 1n a bit vector indicates, by 1ts bit position, the VID
ol the PE to access. Bits i each bit vector are scanned from
right to left (least to most significant when viewed 1n a first
instruction format such as instruction format 1900 of FIG.
19). When there are no more “1” bits 1n a vector, the PE loop
exits. The next iteration of the loop uses the next bit vector 1n
the table. FIG. 19 shows an exemplary instruction formal
1900, and FIG. 20 shows an exemplary transfer data access

table 2000 for a transfer using this nstruction.

US RE41,904 E

13

The PE select fields together with the use of the PE trans-
late table allow out of order access to PEs across multiple

passes through them.
PE Select-Index-PE Addressing

This addressing mode combines both select-index and
select-PE addressing. An exemplary instruction format 2100
1s shown 1n FIG. 21. This form of addressing provides for
complex-periodic data access patterns. An exemplary access

pattern table 2200 for the PE-select-index-PE address mode
1s shown 1n FI1G. 22.

I claim:

[1. An apparatus for performing virtual identification
(VID) to physical identification (PID) translation for data
clements to be accessed within local memory of a processing
clement (PE) whereby a direct memory access (DMA) con-
troller can access PE local memories according to their
VIDs, the apparatus comprising:

an array ol multiple PEs each having local PE memory;
a DMA controller; and

a memory maintained in the DMA controller for storing a
processing element VID-to-PID table mapping process-
ing element VIDs to processing element PIDs utilized
by the DMA controller to access local memories
according to their VIDs.]

[2. The apparatus of claim 1 wherein said memory is

maintained in a core transfer unit of the DMA controller.]

[3. The apparatus of claim 2 wherein the core transfer unit
(CTU) further comprises an address generation unit (AGU)
which receives a C'TU transfer instruction which specifies a
starting address which 1s used by the AGU to generate an
initial VID.]

[4. The apparatus of claim 3 wherein the initial VID con-
trols the selection of one of the elements of the VID-to-PID
lookup table through a multiplexer.}

[S. The apparatus of claim 4 further comprising a DMA
bus for providing the selected PID as a first component of a
PE address.]

[6. The apparatus of claim 5 wherein the AGU further
operates to generate a PE memory offset which 1s sent as a
second component of a PE address on the DMA bus.}

[7. The apparatus of claim 6 further comprising a local
memory 1terface unit (LMIU) which 1s used to compare the
PID sent on the DMA bus to a stored PID for any DMA
access, 11 a match 1s detected then the LMIU accepts the
access.}

[8. The apparatus of claim 3 wherein successive VIDs are
generated in recursive fashion by the AGU

[9. The apparatus of claim 3 wherein successive VIDs are
generated 1n recursive fashion by the AGU, and fturther com-
prising;:

a local memory interface unit for each processing element

(PE) storing a VID for each PE.}

[10. The apparatus of claim 9 wherein a VID available to a
particular LMIU or a DMA bus 1s compared with the stored
VID in the LMIU and where a match occurs the LMIU
accepts the access.}

[11. The apparatus of claim 1 wherein the VID-to-PID
table 1s stored 1n a programmable register and the program-
mable register is loaded utilizing a DMA instruction.]

[12. The apparatus of claim 1 wherein the VID-to-PID
table 1s stored 1n a programmable register and the program-
mable register loaded utilizing a direct write to the program-
mable register.}

[13. A processing apparatus comprising:

a plurality of processing elements (PEs) communicatively

connected by a bus, each PE comprising a register stor-

ing a virtual identification number (VID) 1dentifying
the PE; and

10

15

20

25

30

35

40

45

50

55

60

65

14

a direct memory access (DMA) controller connected to
the bus for accessing local data memory of the PEs,
cach data access at least partially identified by a VID;

wherein during a common data to access multiple PEs, a
PE responds to the data access 11 the VID stored 1n the
register matches the VID of the data access.]

[14. The processing apparatus of claim 13 wherein each
PE comprises a local memory ntertace umt (LMIU) which
includes the register storing the VID }

[15. The processing apparatus of claim 13 wherein the
data access is a read access.]

[16. The processing apparatus of claim 13 wherein the
data access is a write access.]

[17. The processing apparatus of claim 13 further com-
prising: means for updating the register.}

18. An apparatus for accessing local memory of a plural-
ity of processing elements (PFEs), the apparatus comprising:

a transfer controller running a process containing a set of
nested loops, the set of nested loops having a plurality
of parameters to be specified by a transfer instruction,
the plurality of parameters, when assigned, control PE
selection and address generation for accessing a
memory location in local memory of each selected PE;
and

a means for receiving the transfer instruction for transfer-
ring data between system memory and local memory of
the plurality of PEs, the transfer instruction having
fields which specify values for the plurality of
parameters, the transfer instruction indicating an
addressing mode, the addvessing mode specifving a
particular pattern of accessing local memory of the
plurality of PLEs, whervein the transfer controller
decodes the transfer instruction to assign values to the
plurality of parameters, the process generating
addresses for accessing a memory location in local
memory of each selected PL in a particular pattern,
wherein the particular pattern is based on the assigned
paramelters.

19. The apparatus of claim 18 whervein the means for

receiving a transfer instruction is an instruction control unit.

20. The apparatus of claim 18 wherein the means for
receiving a transfer instruction is a corve transfer unit vead-
ing instructions from a memory attached to a divect memory
access (DMA) bus.

21. The apparatus of claim 18 whervein the means for
receiving a transfer instruction is a system data bus con-
nected to the transfer controller and system memory.

22. The apparatus of claim 18 wherein the transfer
instruction specifies a block cyclic addressing mode.

23. The apparatus of claim 18 wherein the transfer
instruction specifies a PE select index addressing mode.

24. The apparatus of claim 18 wherein the transfer
instruction specifies a select PE addressing mode.

23. The apparatus of claim 18 wherein the transfer
instruction specifies a select index PE mode.

26. A method of accessing local memory of a plurality of

processing elements (PEs), the method comprising:

receiving a transfer instruction for transferring data
between system memory and the local memory of a plu-
rality of processing elements (PLs);

running a process containing a set of nested loops, the set
of nested loops having a plurality of parameters to be
assigned values of fields carvied in the transfer instric-
tion;

decoding the transfer instruction to assign field values to
the plurality of parameters;

US RE41,904 E
15 16

assigning the field values to the plurality of parameters in 28. The method of claim 26 wherein the transfer instruc-
order to control PE selection and address generation tion specifies a PE select index addressing mode.
for accessing a memory location in local memory of 29. The method of claim 26 wherein the transfer instruc-
each selected PE; and tion specifies a select PE addressing mode.

generating addresses to access local memory of each PE > 30. The method of claim 26 wherein the transfer instruc-
in a defined pattern. tion specifies a select index PE mode.

27. The method of claim 26 wherein the transfer instruc-
tion specifies a block cyclic addressing mode. ¥ ok k% %

	Front Page
	Drawings
	Specification
	Claims

