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PARALLEL MULTI-THREADED
PROCESSING

Matter enclosed in heavy brackets [ ] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

This application 1s a continuation of U.S. application Ser.

No. 09/470,541 filed on Dec. 22, 1999, now U.S. Pat. No.
6,532,509.

BACKGROUND OF THE INVENTION

This mvention relates to a protocol for providing parallel,
multi-threaded processors with high bandwidth access to
shared resources.

Parallel processing 1s an eflicient form of computer infor-
mation processing ol concurrent events. Certain problems
may be solved by applying parallel computer processing,
which demands concurrent execution of many programs to
do more than one thing at the same time. Unlike a serial
paradigm where all tasks are performed sequentially at a
single station, or a pipelined machine where tasks are per-
formed at specialized stations, parallel processing requires
that a plurality of stations have the capability to perform all
tasks. In general, all or a plurality of the stations work simul-
taneously and independently on the same or common e¢le-
ments ol a problem.

Types of computer processing include single instruction
stream, single data stream, which 1s the conventional serial
von Neumann computer that includes a single stream of
instructions. A second processing type 1s the single mstruc-
tion stream, multiple data streams process (SIMD). This pro-
cessing scheme may include multiple arithmetic-logic pro-
cessors and a single control processor. Each of the
arithmetic-logic processors performs operations on the data
in lock step and are synchronized by the control processor. A
third type 1s multiple mstruction streams, single data stream
(MISD) processing which involves processing the same data
stream flows through a linear array of processors executing
different instruction streams. A fourth processing type 1s
multiple 1nstruction streams, multiple data streams (MIMD)
processing which uses multiple processors, each executing
its own 1nstruction stream to process a data stream fed to
cach of the processors. MIMD processors may have several
instruction processing units and therefore several data
streams.

SUMMARY OF THE INVENTION

According to an aspect of the present invention, a parallel,
hardware-based, multi-threaded processor includes a global
command arbiter for determining the allocation of access to
system resources. The multi-threaded processor system
includes a plurality of microengines, a plurality of shared
system resources and a global command arbiter. The global
command arbiter uses a command request protocol based on
the shared system resources and command type to grant or
deny a microengine command request for a shared resource.
The processor system may be advantageously realized on an
integrated circuit chip with minimal wiring and bufler stor-
age elements.

The technique according to the mvention provides each
microengine with fair access to the shared system resources
based on command priority and resource utilization.
Consequently, the microengines have high bandwidth access
to the shared system resources.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of a communication system
employing a hardware-based multithreaded processor.
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FIG. 2 1s a simplified block diagram of a global arbitration
system for a multithreaded process according to the mven-
tion.

FIGS. 3A and 3B illustrate a flow chart of an implementa-
tion of a global command arbitration process according to
the mvention.

DESCRIPTION

FIG. 1 illustrates a communication system 10 that
includes a parallel, hardware-based multithreaded processor
12. The system 10 1s especially usetul for tasks that can be
broken into parallel subtasks or functions, and the hardware-
based multithreaded processor 12 1s particularly usetul for
tasks that are bandwidth oriented rather than latency ori-
ented.

The hardware-based multithreaded processor 12 may be
an itegrated circuit, and may be coupled to a bus such as a
PCI bus 14, a memory system 16 and a second bus 18. In the
illustrated 1mplementation, the hardware-based multi-
threaded processor 12 has multiple microengines 22a to 221
that each mcludes multiple hardware-controlled threads that
can be simultaneously active and that may independently
work on a task. The multithreaded processor 12 also
includes a central or core controller 20 that assists 1n loading
microcode control for other resources and performs other
general purpose computer-type functions such as handling
protocols, handling exceptions, and providing extra support
for packet processing, which may occur 1f the microengines
pass the packets off for more detailed processing. In one
embodiment, the core controller 20 1s a Strong Arm® (Arm
1s a trademark of ARM Limited, United Kingdom) based
architecture embedded general-purpose microprocessor,
which includes an operating system. The operating system
enables the core processor 20 to call functions to operate on
the microengines 22a—221. The core processor 20 can use
any supported operating system but preferably utilizes a real
time operating system. Suitable operating systems for a core
processor implemented as a Strong Arm architecture micro-
processor may include Microsoit NT real-time, VX Works
and uCUS, which 1s a freeware operating system available
over the Internet.

The plurality of functional microengines 22a—221 each
maintain a plurality of program counters in hardware, and
maintain states associated with the program counters. Each
of the six microengines 22a-221 1s capable of processing
four independent hardware threads. Such processing allows
one thread to start executing just after another thread 1ssues a
memory reference and then waits until that reference com-
pletes before doing more work. This behavior 1s critical to
maintaining eificient hardware execution of the microegines
because memory latency may be significant. Stated
differently, 1f only a single thread execution was supported,
the microengines would sit idle for a significant number of
cycles waiting for references to return and thereby reduce
overall computational throughput. Multi-threaded execution
allows the microengines to mask memory latency by per-
forming useful independent work across several threads.
Effectively, a corresponding plurality of sets of threads can
be simultaneously active on each of the microengines
22a-221 while only one 1s actually operating at any one time.

The six microengines 22a—221 operate with shared system
resources including the memory system 16, the PCI bus 14
and the FBUS 18. The memory system 16 may be accessed

via a Synchronous Dynamic Random Access Memory
(SDRAM) controller 26a and a Static Random Access

Memory (SRAM) controller 26b. SDRAM memory 16a and
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SDRAM controller 26a may be typically used for processing
large volumes of data or high bandwidth data, such as pro-
cessing network payloads from network packets. The SRAM
controller 26b and SRAM memory 16b may be used 1n a
networking implementation for low latency, fast access tasks
or low bandwidth data, such as accessing look-up tables,
memory for the core processor 20, and so forth.

The s1x microengines 22a—221 access either the SDRAM
16a or SRAM 16b based on characteristics of the data. Low
latency, low bandwidth data 1s stored 1n and fetched from
SRAM 16b, whereas higher bandwidth data for which
latency 1s not as important 1s stored in and fetched from
SDRAM 16a. The microengines 22a—221 can execute

memory reference instructions to either the SDRAM con-
troller 26a or SRAM controller 26b.

Advantages of hardware multithreading can be explained
in the context of SRAM or SDRAM memory accesses. For
example, an SRAM access requested by a Thread_ 0 from a
microengine will cause the SRAM controller 26b to imitiate
an access to the SRAM memory 16b. The SRAM controller
26b controls arbitration for the SRAM bus 15, accesses the
SRAM 16b, fetches the data from the SRAM 16b, and
returns data to a requesting microengine 22a—22b. During a
SRAM access, 1f the microengine 22a had only a single
thread that could operate, that microengine would be dor-
mant until data was returned from the SRAM. By employing
hardware context swapping within each of the microengines
22a-221, another thread such as Thread 1 can function
while the first thread, Thread_ 0, 1s awaiting the read data to
return. Hardware context swapping enables other contexts
with unique program counters to execute in that same
microengine. Continuing the example, during execution
Thread_ 1 may access the SDRAM memory 16a. While
Thread_ 1 operates on the SDRAM unit, and Thread_ 0 1s
operating on the SRAM unit, a new thread such as Thread_ 2
can now operate i the microengine 22a. Thread_ 2 can
operate for a certain amount of time until 1t needs to access
memory or perform some other long latency operation, such
as making an access to a bus interface. Therefore, the proces-
sor 12 can simultaneously perform a bus operation, SRAM
operation and SDRAM operation with all being completed
or operated upon by one microengine 22a, which
microengine 22a has one more thread available to process
more work 1n the data path.

The hardware context swapping also synchronizes
completion of tasks. For example, 1t 1s possible that two
threads could hit the same-shared resource such as the
SRAM 16b. Each one of the separate functional units, such
as the interface 28, the SRAM controller 26a, and the
SDRAM controller 26b, reports back a flag signaling
completion of an operation when a requested task from one
of the microengine thread contexts 1s completed. When the
flag 1s recetved by the microengine, the microengine can
determine which thread to turn on.

The processor 12 includes a bus interface 28 that couples
the processor to a second bus 18. In an implementation, an
FBUS tertace 28 couples the processor 12 to the so-called

FBUS 18 (FIFO bus). The FBUS 1s a 64-bit wide FIFO bus,
used to interface to Media Access Controller (MAC)
devices. The FBUS interface 28 1s responsible for control-
ling and interfacing the processor 12 to the FBUS 18.

The processor 12 also includes a PCI bus interface 24 that
couples other system components that reside on the PCI bus

14 to the processor 12. The PCI bus interface 24 also pro-
vides a high-speed data path 24a to the SDRAM memory
16a. The data path 24a permits data to be moved quickly
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from the SDRAM 16a to the PCI bus 14, via direct memory
access (DMA) transters. The hardware based multithreaded
processor 12 can employ a plurality of DMA channels so 1
one target of a DMA transfer 1s busy, another one of the
DMA channels can take over the PCI bus 14 to deliver infor-
mation to another target to maintain high processor 12 effi-
ciency. The PCI bus interface 24 supports image transiers,
target operations and master operations. Target operations
are operations where slave devices on bus 14 access the
SDRAM through reads and writes that are serviced as a
slave to target operation. In master operations, the processor
core 20 sends data directly to or receives data directly from

the PCI interftace 24.

Each of the functional units of the processor 12 are
coupled to one or more internal buses. In an implementation,
the 1nternal buses are dual 32-bit buses (i.e., one bus for read
and one for write). The multithreaded processor 12 also 1s
constructed such that the sum of the bandwidths of the inter-
nal buses exceeds the bandwidth of external buses coupled to
the processor 12. The internal core processor bus 32 may be
an Advanced System Bus (ASB bus) that couples the proces-
sor core 20 to the memory controllers 26a and 26b and to an
ASB translator 30. The ASB bus 1s a subset of an “AMBA”
bus that 1s used with the Strong Arm processor core. The
processor 12 also includes a private bus 34 that couples the
microengine units to SRAM controller 26b, ASB translator
30 and FBUS interface 28. A memory bus 38 couples the
SDRAM controller 26a, the PCI bus interface 24, the FBUS
interface 28 and memory system 16 together, including
Flash ROM 16¢ which 1s used for boot operations and the
like.

The hardware-based multithreaded processor 12 may be
utilized as a network processor. As a network processor, the
hardware-based multithreaded processor 12 interfaces to
network devices such as a media access controller (MAC)
device such as a 10/100BaseT Octal MAC 13a or a Gigabat
Ethernet device 13b. In general, the hardware-based multi-
threaded processor 12 can interface to any type of communi-
cation device or interface that recerves/sends large amount of
data. The communication system 10 functioning 1n a net-
working application could receive a plurality of network
packets from the devices 13a, 13b and process each of those
packets independently 1n a parallel manner.

The processor 12 may also be utilized as a print engine for
a postscript processor, as a processor for a storage subsystem
such as RAID disk storage, or as a matching engine. In the
securities mndustry for example, the advent of electronic trad-
ing requires the use of electronic matching engines to match
orders between buyers and sellers. These and other parallel
types of tasks can be accomplished on the system 10.

FIG. 2 shows a global arbitration system 40 for use with
the multithreaded processor 12 of FIG. 1. A global command
arbiter 42 1s connected to each of the microengines 22a—221,
to the SDRAM controller 26a, to the SRAM controller 26b,
to the 1nterface 28 and to the PCI interface 24. The global
command arbiter 42 functions to provide high bandwidth
access to the shared system resources utilizing a minimal
amount of bulfer storage elements and minimal wiring. The
global command arbiter provides each microengine 22a-221
with fair access to the common system resources oi the
SDRAM, SRAM, PCI iterface registers and FBUS inter-
face registers based on command priority and resource
utilization, which 1s explained below.

In an implementation, each microengine 22a—221 has a
two-command deep first-in, first-out (FIFO) register for

1ssuing command requests for SDRAM 16a and SRAM 16b
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memory access, and for i1ssuing command requests for
access to registers 1n the PCI interface 24 and FBUS 1nter-
face 28. The SDRAM controller 26a queues commands from
the microengines in one of four FIFO command queue struc-
tures: an eight-entry high-priority queue 44, a sixteen-entry
odd bank queue 46, a sixteen-entry even bank queue 48, and
a twenty-four entry maintain order queue 50. A single physi-
cal random access memory (RAM) structure with four input
pointers and four output pointers may be used to implement

the SDRAM queues 44, 46, 48, 50. A reference request from
a microengine may include a bit set called the “optimized
MEM bit” which will be sorted into either the odd bank
queue 46 or the even bank queue 48. If the memory refer-
ence request does not have a memory optimization bit set,
the default will be to go into the order queue 50. The order
queue 50 maintains the order of reference requests from the
microengines 22a—221. With a series of odd and even banks
references 1t may be required that a signal 1s returned to both
the odd and even banks. If the microengine 221 sorts the
memory references into odd bank and even bank references
and one of the banks, for example the even bank, 1s drained
of memory references before the odd bank but the signal 1s
asserted on the last even reference, the SDRAM controller
26a could concervably signal back to a microengine that the
memory request had completed, even though the odd bank
reference had not been serviced. This occurrence could
cause a coherency problem. The situation 1s avoided by pro-
viding the order queue 50 which permits a microengine to
have multiple memory references outstanding, of which only
its last memory reference needs to signal a completion.

The SDRAM controller 26a also included a high priority
queue 44. IT an incoming memory reference from one of the
microengines goes directly to the high priority queue then 1t
1s operated upon at a higher priority than other memory ret-
erences 1n the other queues.

A feature of the SDRAM controller 26a 1s that when a
memory reference 1s stored in the queues, 1n addition to the
optimized MEM bit that may be set, a “chaining bit” may be
set to require special handling of contiguous memory refer-
ences. A microengine context may 1ssue chained memory
references when the second and/or third reference of the
chain must be scheduled by the SDRAM controller 26a
immediately after the initial chained memory request. The
global command arbiter 42 must ensure that chained refer-

ences are delivered to consecutive locations of the same
SDRAM controller queue.

The SRAM controller 26b also has four command queues:
an eight-entry high priority queue 62, a sixteen-entry read
queue 64, a sixteen-entry write order queue 66 and a twenty-
four entry read-lock fail queue 68. A single physical RAM
structure may be used to implement the four queues. The
SRAM controller 26b 1s optimized based on the type of
memory operation; 1.€., a read or a write operation, and the
predominant function that the SRAM performs 1s read
operations.

The read lock fail queue 68 1s used to hold read memory
reference requests that fail because of a lock existing on a
portion of memory. That 1s, one of the microengines 1ssues a
memory request that has a read lock request that 1s processed
in an address and control queue. The memory request will
operate on eirther the write order queue 66 or the read queue
64 and will recognize 1t as a read lock request. The SRAM
controller 26b will access a lock lookup device to determine
whether this memory location 1s already locked. If this
memory location 1s locked from any prior read lock request,
then this memory lock request will fail and will be stored in
the read lock fail queue 68. If 1t 1s unlocked or if the lock
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lookup device shows no lock on that address, then the
address of that memory reference will be used by the SRAM
interface 26b to perform a traditional SRAM address read/
write request to SRAM memory 16b. A command controller
and address generator will also enter the lock into the lock
look up device so that subsequent read lock requests will
find the memory location locked. A memory location 1is
unlocked by clearing a valid bit 1n a content addressable

memory (CAM) of the SRAM controller. After an unlock,
the read lock fail queue 68 becomes the highest priority
queue giving all queued read lock misses a chance to 1ssue a
memory lock request. The read-lock miss queue 1s loaded by
the SRAM controller itself and not directly from a
microengine output butler. The global arbiter 42 ensures that
a command from a microengine to a SRAM queue 1s not
selected on the same cycle that the SRAM controller must

write a read-lock miss entry.

The FBUS terface 28 includes three command queues:
an eight-entry push queue 72, an eight-entry pull queue 74
and an eight-entry hash queue 76. The pull queue 1s used
when data 1s moved from a microengine to an FBUS inter-
face resource, the push queue 1s used for reading data from
the FBUS interface to a microengine, and the hash queue 1s
used for sending from one to three hash arguments to a poly-
nomial hash unit within the FBUS 1interface and for getting
the hash result returned. The FBUS interface 28 1n a network
application can perform header processing ol mcoming
packets from the FBUS 18. A key function performed by the
FBUS interface 28 1s extraction of packet headers, and a
hashed lookup of microprogrammable source/destination/
protocol i SRAM memory 16b. If the hash does not suc-
cessiully resolve, then the packet header 1s subjected to more
sophisticated processing.

The PCI bus mterface 24 includes a single, two-entry
direct memory access (DMA) command register 78. The
DMA register provides a completion signal to the mitiating
microengine thread.

The global command arbiter 42 operates to select com-
mands from the two-deep output command queues of each
microengine for transmission to a destination queue in one
of the functional units. The functional units include the core
controller 20, the PCI interface 24, the SDRAM controller
26a, the SRAM controller 26b, the FBUS interface 28 and
the microengines 22a to 221. Each microengine request to
the global command arbiter 42 1s a three-bit encoded field
that specifies the command type and destination. Each
microengine global command arbiter request 1s serviced
with the following priority:

1. SDRAM chained commands
2. SRAM

3. SDRAM

4. FBUS

5. PCI bus

The global arbiter maintains a pointer that indicates the
last microengine request granted. If more than one request 1s
present at the same priority, the global command arbiter
selects the next higher numbered microengine (with a wrap-
around feature). For example, the microengines 22a to 221
may be numbered from 1 to 6 in an implementation so that it
a request from microengine 6 was the last one granted, then
when priority 1s not an 1ssue a request from microengine 1 1s
next up for consideration.

The three SRAM controller command queues 62, 64 and
66 arc loaded directly from microengine commands. Since
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an SRAM command could be granted every cycle, 1t 1s pos-
sible that up to 6 additional SRAM commands will be
granted and are in the pipeline, all of which could be des-
tined for the same SRAM queue before a signal indicating
that the queue 1s full 1s received by the global command
arbiter. Thus, the SRAM controller asserts an SRAM__
queue full mgnal to the global command arbiter 42 11 there
1s less than seven (7) empty entries 1n any SRAM command
queue loaded from the microengines. For example, 11 the
high priority queue has two entries filled then the SRAM__
queue__full signal 1s asserted (because eight entries minus
two entries 1s six). Sumilarly, 1f the read queue or the order
queue contains ten entries then the SRAM__queue_ full sig-
nal 1s asserted. This protocol 1s followed because a six cycle
mimmum latency exists from the assertion of a command
request from a microengine and the command actually being
stored 1n a destination queue.

The following diagram 1llustrates the timing of a request
for a command destined for a queue 1n a system resource:

1 2 3 4 5 6 7 8 9

Req arb oat bus cmd rcVv full arb NOGNT

req  arb gnt  bus cmd rcv full  arb

req  arb ont  bus cmd rcv full

req  arb gat bus cmd  rcv

req  arb ont bus c¢md

req arb gnt  bus

req arb NOGNT

Where: req=bus request {from the microengine;
arb=arbitrate requests;
ont=drive grant to appropriate microengine;
bus=enable tri-state bus driver;
cmd=drive command onto 1x c¢md_bus;
rcv=recelving box queues command;
full=tull__status__que signal driven 1f necessary;

nognt=a grant 1s not sent to queues that sent “full” by
cycle 7.

Referring to the above timing diagram, 1n the first cycle, a
request 1s sent to the global command arbiter. In cycle two,
arbitration 1s performed and in cycle three the request is
granted to the requesting microengine. In cycle four, a bus 1s
enabled and 1n cycle five the command 1s driven onto the
bus. In cycle six the receiving unit (SDRAM controller,
SRAM controller, PCI bus interface or FBUS interface)
queues the command. In cycle seven a full_status_ que
command 1s driven 1f necessary (e.g. that queue contains less
than a minimum number of available entry spaces). In cycle
eight, the global command arbiter 1s deciding whether
another request should be granted to that system resource,
but sees that the full _status_ queue signal was generated.
The arbiter then acts to deny requests (nognt) to the queue
which sent a full signal by the seventh cycle.

The FBUS interface 28 has 3 command queues (pull,
hash, push) which all contain eight (8) entries. Commands to
the FBUS 1nterface are not granted in consecutive cycles.
Thus, when any of the 3 FBUS interface queues reaches four
(4) entries (instead of the two discussed above for an eight
entry queue) a FBUS__queue_ full signal 1s sent to the glo-
bal command arbiter since only a maximum of 3 commands
can be 1n transit to the FBUS interface queues prior to the
global arbiter detecting FBUS__queue__{ull.

The SDRAM controller 26a has 4 command queues
(high=8, even=16, odd=16, order=24). The threshold for
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asserting SDRAM__queue_ full 1s the same as for the
SRAM, 1.e. less than 7 entries available in any queue.
However, commands to the SDRAM controller are not
granted on consecutive cycles. This msures queue entry
space for any SDRAM chained commands from a particular
microengine, which must be granted, even after SDRAM__
queue__full asserts. It 1s necessary to always transfer
SDRAM chained commands to avoid a live-lock condition,
in which the SDRAM controller 1s waiting for the chained
command 1n one queue while the command 1s “stuck™ 1n a

microengine because the global arbiter 1s no longer granting
SDRAM commands since a different SDRAM queue 1s

“tull”. A limit 1s placed on the chain length of SDRAM
commands to three as a coding restriction. In addition, when
a chained SDRAM command 1s granted to a microengine,
the next SDRAM command to be granted must also come
from the same microengine so that the paired commands
arrive 1n the selected SDRAM queue contiguously.

The restrictions of not sending commands to the FBUS on
consecutive cycles, and not sending commands to the
SDRAM on consecutive cycles do not degrade system per-
formance since each command requires many cycles to actu-
ally execute. The restriction 1s not placed on SRAM com-
mands since the SRAM queue sizing 1s more than adequate,
and more SRAM references requiring fewer cycles with
lower latency are 1ssued 1n most applications.

FIGS. 3A and 3B illustrate an implementation of a global
command arbiter protocol process 100. The global com-
mand arbiter reviews 102 the command requests in the FIFO
registers of the microengines 22a—221. It all of the requests
have the same priority 104, a pointer 1s checked 106 to deter-
mine the identity of the last microengine that had a request
granted, and then the request of the next higher microengine
1s considered. Before granting the command request, the
arbiter checks 108 to see 1f a queue__full__signal has been
asserted. If so, the command request 1s denied 110 and the
pointer 1s incremented 111 so that the next microengine’s
request will be considered. However, 11 no queue_ full
signal has been asserted, then the command request 1s
granted 112 and the flow returns to 102.

Referring again to step 104 of FIG. 3A, 11 the command
requests 1n the microengines 22a to 221 have different
priorities, then the global command arbiter checks 114 to see
i a SDRAM request with a chained bit set has been granted
previously If so, then the SDRAM request from the same
microengine that sent the previous SDRAM request with a
chained bit 1s granted 116. Next, the SDRAM queues are
checked 118 to determine 1f any contain less than “N”” empty
entries, where N 1s equal to the number of microengines plus
one. In the implementation described above, the SDRAM__
queue__full signal will be asserted 120 1 any SDRAM queue
contains less than seven (7) empty entries and then the flow
returns to 102. If checking the queues 118 determines that
the SDRAM queues have space for seven or more entries,
then the tlow returns to 102.

If there was no history of an SDRAM command request
with a chained bit set 114, the global command arbiter deter-
mines 122 1f there 1s a SRAM command request. If there 1s a
SRAM request, the SRAM queues are checked 124 to see 1f
any SRAM queue contains less than N empty entries. If so,
then a SRAM__queue_full signal 1s asserted 126, the com-
mand request 1s denied and the flow moves to 134 where the
arbiter determines 1f a SDRAM request has been made.
However, 1f the answer 124 1s no, then the arbiter checks 128
to see 1f the SRAM controller 26b needs to write a read__
lock__miss entry. If so, then the command request 1s denied
in step 130 and the flow moves to 134; 11 not, then the com-
mand request 1s granted 132 and the flow returns to 102.
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If the answer was no at 122, then the arbiter checks 134
(see FIG. 3B) to see 1f a SDRAM request 1s being made. If

s0, the arbiter determines 136 11 the last granted request was
also a SDRAM command request. If it was, then the request
1s denied 138 and the flow goes to 146 where the arbiter
determines if an FBUS command request has been made.
Commands are not granted to the SDRAM controller in con-
secutive cycles to ensure that there 1s adequate queue entry
space for a SDRAM chained command which 1s always
granted when 1t occurs (even after a SDRAM__queue  {tull
signal has been asserted). If the last granted command
request was not an SDRAM command the SDRAM queues
are checked 140 to see if any contains less than N entries. If
so, then an SDRAM_ queue full signal i1s asserted 142,
access 1s denied 138 and the flow moves to 146. If the
SDRAM queues have adequate entry space, then the com-

mand request 1s granted 144 and the flow returns to 102.

If a SDRAM request 1s not being made 134, then the
arbiter checks 146 to see if an FBUS command request has
been made. If so, the arbiter checks 148 to see if the last
granted request was a FBUS request. It so, then the request
1s denied 150 and the flow moves to 160 where the arbiter
determines 1f a PCI command request has been made. Com-
mand requests to the FBUS are not granted in consecutive
cycles to improve processing eificiency of the system. It the
last granted request was not an FBUS command request 148,
then the FBUS queues are checked 152 to see 1f any contain
less than “F” empty entries. For the example discussed
above where there are six microengines and each of the
FBUS command queues (pull, hash, push) contains eight
entries, F equals five (5) since only a maximum of three (3)
commands can be 1n transit to the FBI queues. Thus, 1f four
or fewer entries are available 1n any FBUS queue, then the
FBUS_ _queue_ full signal 1s asserted 154, the command 1s
denied 150 and the flow moves to 160. However, if the
FBUS queues have adequate space, the request i1s granted
156 and the tlow returns to 102.

If an FBUS request 1s not made 146, a PCI command
request has been asserted 160. Direct memory access 1s
granted and a completion signal 1s sent, then the flow returns
to 102.

It 1s to be understood that while implementations of the
invention have been described, the foregoing description 1s
intended to 1illustrate and not limit the invention, which 1s
defined by the scope of the appended claims. For example,
the flow chart depicted 1n FIGS. 3A and 3B could be modi-
fied to accommodate more, less or different system
resources. Other aspects, advantages, and modifications are
within the scope of the following claims.

What 1s claimed 1s:

1. A method for using a parallel, multi-threaded processor
system comprising:

processing threads with a plurality of microengines, at

least one microengine capable of processing at least
two independent threads;

processing commands 1ssued by the microengines using a
plurality of system resource interface units that each
include at least one commands queue; and

utilizing a global command arbiter including a pointer to
store the identity of [the] @ last agent that had a request
granted to determine whether a particular microengine
command request should be granted.
2. The method of claim 1 wherein each microengine uti-
lizes a FIFO commands register.
3. The method of claim 1 wherein the system resource
units include at least one of a core controller, a SDRAM
controller, a SRAM controller, a PCI bus interface and an

FBUS intertace.
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4. The method of claim 3 wherein 1n at least one of the
SDRAM controller, the SRAM controller and the FBUS
interface utilize three command queues.

5. The method of claim 3 wherein 1n at least one of the
SDRAM controller and the SRAM controller utilize a high
priority queue.

6. The method of claim 3 wherein the SRAM controller
utilizes a read lock fail queue.

7. The method of claim 3 wherein the PCI bus interface
utilizes a single command register.

8. The method of claim 1, wherein the agent comprises at
least one of the following: a microengine and a microengine
thread.

9. The method of claim 1, wherein the threads comprise at
least one thread that operates on a packet.

10. A communications system comprising:

at least one Ethernet medium access controller (IMAC);

a multithreaded processor, the processor including;
a plurality of microengines for processing a plurality of
hardware threads;
at least one of an ASB translator, a PCI bus interface, a
SDRAM controller, a SRAM controller, and an bus
interface to the Ethernet MAC; and

a global command arbiter including a pointer to store the
identity of [the] a last agent that had a request granted
to determine whether a particular command request
should be granted.

11. The system of claim 10 further comprising a FIFO

commands register for each microengine.

12. The system of claim 10 wherein at least one of the
SDRAM controller, the SRAM controller and the FBUS
interface includes three command queues.

13. The system of claim 10 wherein at least one of the
SDRAM controller and the SRAM controller includes a high
priority queue.

14. The system of claim 10 wherein the SRAM controller
includes a read lock fail queue.

15. The system of claim 10 wherein the PCI bus interface
includes a single command register.

16. The [method] system of claim 10, wherein the agent
comprises at least one of the following: a microengine and a
microengine thread.

17. The [method] system of claim 10, wherein the threads
comprise at least one thread that operates on a packet
received via the at least one Ethernet MAC.

18. A method comprising:

identifying a last programmable unit of a plurality of mul-
tiple multi-threaded programmable units within an
integrated circuit to have a request granted; and

based, at least in part, on the identifying of the last pro-
grammable unit of the plurality of multiple multi-
threaded programmable units within the integrated cir-
cuit to have a request granted, selecting a diffevent one
of the multiple multi-threaded programmable units
within the integrated circuit to have a next request
granted.

19. The method of claim 18, wherein the plurality of mul-
tiple multi-threaded programmable units within the inte-
grated circuit are associated with a sequence of the multiple
multi-threaded programmable units within the integrated
circuit; and wherein selecting the one of the multiple multi-
threaded programmable units within the integrated circuit to
have a next request granted comprises selecting a next one
of the multiple multi-threaded programmable units within
the integrated circuit in the sequence.
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20. The method of claim 18, further comprising:

selecting a memory access operation issued by the
selected one of the multiple multi-threaded program-
mable units within the integrated circuit.

21. An integrated civcuit, comprising:

multiple multi-threaded programmable units in the inte-
grated circuit; and

logic, communicatively coupled to the multiple multi-
threaded programmable units, to:

12

27. The method of claim 25, wherein the system vesource
units include at least one of a corve controller, a SDRAM
controller, a SRAM controller, a PCI bus interface and an
FBUS interface.

28. The method of claim 27, whervein at least one of the
SDRAM controller, the SRAM controller and the FBUS
interface utilize three command gueues.

29. The method of claim 27, wherein in at least one of the
SDRAM controller and the SRAM controller utilize a high

identify a last programmable unit of the plurality of 10 priority queue.

multiple multi-threaded programmable units within
the integrated circuit to have a request granted,; and
based, at least in part, on the identified last program-
mable unit of the plurality of multiple multi-threaded
programmable units within the integrated circuit to

have a request granted, select a one of the multiple

multi-threaded programmable units within the inte-
grated civcuit to have a next request granted.

22. The integrated circuit of claim 21, wherein the plural-

ity of multiple multi-threaded programmable units within the

integrated circuit ave associated with a sequence of the mul-

tiple multi-threaded programmable units; and whevein the
logic to select the one of the multiple multi-threaded pro-
grammable units within the integrated circuit to have a next
request granted comprises logic to select a next one of the
multiple multi-threaded programmable units in the
sequence.

23. The integrated civcuit of claim 21, wherein the logic
comprises an arbiter coupled to the multiple multi-threaded
programmable units and to a memory controller to a
memory sharved by the multiple multi-threaded program-
mable units.

24. The integrated circuit of claim 21, wherein the logic
further comprises logic to:

select a memory access operation issued by the selected
one of the multiple multi-threaded programmable units
within the integrated circuit.

25. A method for using a parallel, multi-threaded proces-

Sor system comprising.

processing threads with a plurality of microengines, at
least one microengine capable of processing at least
two independent threads;

processing commands issued by the microengines using a
plurality of system resource interface units that each
include at least one commands gqueue; and

storing an identity of a last agent that had a request
granted to determine whether a particular microengine
command request should be granted, wherein a pointer
is included to storve the identity.
26. The method of claim 25, wherein each microengine
utilizes a FIFO commands register.
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30. The method of claim 27, wherein the SRAM controller
utilizes a read lock fail queue.

31. The method of claim 27, wherein the PCI bus interface
utilizes a single command register.

32. The method of claim 25, wherein the agent comprises
at least one of the following: a microengine and a
microengine thread.

33. The method of claim 25, wherein the threads comprise
at least one thread that operates on a packet.

34. A communications system comprising.

at least one Ethernet medium access controller (MAC);

a multithreaded processor, the processor including:
a plurality of microengines for processing a plurality of
hardware threads;
at least one of an ASB translator, a PCI bus interface, a
SDRAM controller a SRAM controller and an bus
interface to the Ethernet MAC; and
a pointer to stove an identity of a last agent that had a
request granted, the system configured to determine
whether a particular command request should be
granted.
35. The system of claim 34 further comprising a FIFO
commands register for each microengine.
36. The system of claim 34 whervein at least one of the
SDRAM controller, the SRAM controller and the FBUS
interface includes three command gueues.

37. The system of claim 34 whervein at least one of the
SDRAM controller and the SRAM controller includes a high

priority quete.

38. The system of claim 34 wherein the SRAM controller
includes a read lock fail queue.

39. The system of claim 34 wherein the PCI bus interface
includes a single command register.

40. The system of claim 34, wherein the agent comprises
at least one of the following: a microengine and a
microengine thread.

41. The system of claim 34, wherein the threads comprise
at least one thread that operates on a packet veceived via the
at least one Ethernet MAC.
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