USOORE41786E
(19) United States
a2) Reissued Patent (10) Patent Number: US RE41,786 E
Major et al. 45) Date of Reissued Patent: Sep. 28, 2010
(54) WEB BROWSER OF WIRELESS DEVICE (56) References Cited

HAVING SERIALIZATION MANAGER FOR

MAINTAINING REGISTRY OF CONVERTERS U.S. PAIENT DOCUMENTS

THAT CONVERT DATA INTO FORMAT 4,837,798 A 6/1989 Cohen et al.
COMPATIBLE WITH USER INTERFKACE OF 5,675,507 A 10/1997 Bobo, 11
THE DEVICE 5,820,022 A * 10/1998 Watanabe et al. 711/118
6,029,175 A 2/2000 Chow et al.
(75) Inventors: Harry R. Major, Waterloo (CA); gaégiﬂ%g g) Egggg Eglllvm et al. 200/710
. ,, : |
Michael knowles, Waterloo (CA) 7.050.079 Bl * 5/2006 Estrada etal. 715/760
. | . . o 2002/0015042 Al * 2/2002 Robothametal. 345/581
(73) Assignee: gese‘?r"hcli Motion Limited, Waterloo, 2002/0049833 Al * 4/2002 KIKINES ovoroeeoeeoen. 709/2 19
ntario (CA) 2002/0109706 Al * 82002 Linckeetal. ..ooovoev..... 345/700
(21) Appl. No.: 12/361,161 FOREIGN PATENT DOCUMENTS
(22) PCT Filed: Dec. 21, 2001 EP 0911728 4/1999
EP 0987868 3/2000
(86) PCT No.: PCT/CA01/01857 GB 2332126 6/1999
GB 2340001 2/2000
§ 371 (¢)(1),
(2), (4) Date: Jun. 20, 2003 OTHER PUBLICATIONS
“Multi—-Modal Data Access”, Research Disclosure, Kenneth
(87) PCL Pub.No.: WO02/05278S Mason Publications, Hampshire, GB, No. 426, Oct. 1999,
PCT Pub. Date: Jul. 4, 2002 pp. 1393-1396.
(Continued)

Related U.S. Patent Documents Primary Examiner—Le Luu

JEZ:; Su?’;[int No - 7389 361 (74) Attorney, Agent, or Firm—Bereskin & Parr LLP/
Tssued: Jun. 17, 2008 S EN.CR.L.,srl
Appl. No.: 10/451,715 (57) ABSTRACT
Filed: Jun. 20, 2003 _ _ _
An mformation browser system and method enables sending
U.S. Applications: of information requests to remote information sources and
(60) Provisional application No. 60/257,428, filed on Dec. 22, receiving of requested information from the remote sources
2000. on a wireless communication device. Information 1n any of a
(51) Int.Cl plurality of. formats, ipcluding WML, .HTML. and
G 0£$F 1 $16 (2006.01) WMLScript, 1s converted into a format 1n which the infor-
' mation can be displayed or otherwise further processed by
the device. Information browsing functions may also be inte-
(52) US.CL ..., 709/246; 709/216 orated with other communication functions on a mobile
(58) Field of Classification Search 709/246, communication device.
709/216, 219; 345/381, 700; 711/118; 715/760
See application file for complete search history. 10 Claims, 15 Drawing Sheets

Page
Cachs
114 .
WML WMLScript FormatX
Page Page Page
1242 124b i24¢ 124d
WML HTML WMLScript Format X
Renderer Renderer Renderer Rendserer Renderer
| Control T3 - I
208a 208h 208c 208d
202
WML WML Script Format X
Converter Converier Converler
206a 206b
| Serialization
Manager

204

200 —

US RE41,786 E
Page 2

OTHER PUBLICATTONS

Freytag, et al.: “Resource Adaptive WWW Access {for
Mobile Applications™, Computers and Graphics, Pergamon

Press Ltd., Oxiord, GB, vol. 23, No. 6, Dec. 1999, pp.
841-848.

Schilit, et al.; “TeleWeb: Loosely Connected Access to the
World Wide Web”, Computer Networks and ISDN Systems,
North Holland Publishing, Amsterdam, NL, vol. 28, No. 11,
May 1996, pp. 1431-1444.

“Archiving Agent for the World Wide Web”, IBM Technical
Disclosure Bulletin, IBM Corp., New York, United States,
vol. 40, No. 6, Jun. 1997, pp. 33-34.

Hoif L.: “Netscape Plug—Ins”, On—line Publication, Sep. 1,
1999 URL.: http://www .linusjournal.com/article/3088.
Bjork S. et al.: “West: A Web Browser for Small Terminals”,
Proceedings of the Symposium on User Interface Software
and Technology UIST, Nov. 1999, Asheville, USA.

Ball, Steve, “SurfIT! A WWW Browser” Proceedings of the
Usernix Fourth Annual TCL/TK Workshop, Jul. 1996
(1996-07), Monterey , USA, Retrieved from the Internet:
http/www.usenix.org/publications/library/proceedings/
tcl96/tull__papers/ball/> [retrieved on Apr. 4, 2008].
Koppen, Eckhart et al., “Cineast—An Extensible Web
Browser” Proceedings of the Webnet World Conference on
WWW, Internet and Intranet, Nov. 1997 (1997-11), Toronto,
Canada, Retrieved from the Internet: http://nm.wu—wien.
ac.at/nm/pages/en/re search> [retrieved on Apr. 4, 2008].
European Patent Communication re: European Patent Appli-
cation No. 01995527.7, dated Jan. 19, 2006.

European Briel Communication. European Patent Applica-
tion No. 01995527.7, Dated: Dec. 6, 2005.

European Summons to Attend Oral Proceedings. Applica-
tion No. 019953527.7. Dated: Sep. 15, 2003.

FEuropean Examination Report. Application No.
01995527.7. Dated: Dec. 22, 2004.

European Examination Report. Application No.
01995527.7. Dated: Jul. 2, 2004.

European Examination Report. Application No.

05077802.6. Dated: Apr. 28, 2006.

European Search Report. Application No. 05077802.6.
Dated: Apr. 11, 2006.

FEuropean Partial Search Report. Application No.
05077802.6. Dated: Feb. 3, 2006.
European Examination Report.
05077803 .4. Dated: Apr. 8, 2008.
European Search Report. Application No. 05077803.4.
Dated: Dec. 27, 2006.

European Partial Search Report. Application No.

05077803 .4. Dated: Feb. 135, 2006.

Application No.

European Decision to Refuse a FEuropean Patent Application
(Under Appeal) and Minutes of the Oral Proceedings. Appli-
cation No. 01995527.7. Dated: Jan. 19, 2006.

Co—pending U.S. Appl. No. 12/060,621, “Information
Browser System and Method for a Wireless Communication
Device”, filed Apr. 1, 2008. (Retrieved from PAIR).
European Summons to Oral Proceedings Pursuant to Rule
115(1) EPC. Application No. 01993527.7. Dated: Nov. 2,
2009.

T. W. Bickmore, B. N. Schilit: “Digestor: device—1ndepen-
dent access to the World Wide Web”, Selected Papers from
the 6th International Conference on the World Wide Web,
pp. 1075-1082, Sep. 1997, US, Elsevier Science Publishers
Ltd., ISSN: 0169-7552.

Nokia 90001 Communicator User’s Manual, Chapters 1 and
7, Nokia Mobile Phones Ltd., 1998.

I. F. Bartlett: “Experience with a Wireless World Wide Web
Client”, Technical Note TN—46, Mar. 1995, Digital Western
Research Laboratory.

B. J. Thomas: ““The World Wide Web for Scientists & Engi-
neers”, Glossary p. 337, SPIE Press, 1998, ISBN
0-8194-2775-6.

C. Szyperski: “Component Software”, p. 3—13 and 84-87,
ACM Press, 1998, ISBN: 0-201-17888-3.

Notice of Allowance. Co—pending U.S. Appl. No. 12/060,
621. Dated: May 28, 20009.

Amendment. Co-pending U.S. Appl. No. 12/060,621.
Dated: Mar. 11, 2009.

United States Oflice Action. Co—pending U.S. Appl. No.
12/060,621. Dated: Dec. 16, 2008.

Canadian First Office Action. Application No. 2,432,590.
Dated: Mar. 24, 2005.

Canadian Office Action. Application No. 2,432,590. Dated:
Nov. 2, 2005.

Canadian Office Action. Application No. 2,432,590. Dated:
Oct. 14, 2008.

European Decision of the Technical Board of Appeal 3.5.05
of Feb. 2, 2010. Application No. 019935527.7. Dated: Apr.
21, 2010.

Canadian Notice of Allowance. Application No. 2,432,590.
Dated: Jan. 5, 2010.

European Minutes of the Public Oral Proceedings before the
Technical Board of Appeal 3.5.05. Application No.
019935527.7. Dated: Feb. 2, 2010.

United States Notice of Allowance. Co—pending U.S. Appl.
No. 12/545,304. Dated: Mar. 23, 2010.

European Patent Office Commumnication re: European Patent
Application No. 05 077 803.4 Date: Apr. 8, 2008.*

* cited by examiner

U.S. Patent Sep. 28, 2010 Sheet 1 of 15 US RE41,786 E

Dispatch

Thread |102
Browser
Application | 104

P e

100
v

Secondary 110
Browser
Fetcn Daemon
Thread 112 (Fig. 2)

128 | Browser

Receiver
Thread | 118

Thread 120
Page Page
Cache (Fig. 4)

108

106

114 124
Raw Data Renderer
1286 Fig. 9) 122

FIG. 1

U.S. Patent Sep. 28, 2010 Sheet 2 of 15 US RE41,786 E

176

Request
Queue

Process

Converter
Thread

174

Browser

Browser
Daemon

(Fig. 1)

Primary
Fetch
Thread

108 172

Raw Data Cache
126
Cookie
Stack Manager

160
170

WAP HTTP
166 Stack Stack
Adapter| |Adapter

WAP HTTP/
162 | Stack| | IPPP | 164

Stack

168

150 FIG. 2

US RE41,786 EE

Sheet 3 of 15

Sep. 28, 2010

U.S. Patent

P8OC

JIBUAAUOYD
Y 1BWIO

Jalapuay

¥ Jewio

PYel

abed
X Jewlo

00¢
e 'Ol 2

UONeZi|euag
3902 490¢ €902
JOUBALOY I8UBAUOD JOUBALOD)
1dUIOSTAM TALH TAM
c02
2807 4802 eR07

19]lapuay
1dIOSTIAIM

|O1}UOY)
l2lapuay Jalapuoy lalopusyy
TNLH TAM

IvCi ayzi Al

abed obed abed
JALOSTANM TNLH TAM .

ayoeH
obed

U.S. Patent Sep. 28, 2010 Sheet 4 of 15 US RE41,786 E

240 \'

124
/ \
WML HTML WMLScript Format X
Page Page Page Page
124a 124b 124¢ 1244
A 208
WML HTML WMLScript Format X
Renderer Renderer Renderer Renderer
208a 208b 208cC 208d
A 206
WML HTML WMLScript Format X
Converter Converter Converter Converter
206a 206b 206c¢C 206d

FIG. 4

US RE41,786 EE

Sheet 5 of 15

Sep. 28, 2010

U.S. Patent

U R B
I._I._I_-IIII,III.
I, $TEEEEEEN $"WTAAAAEE $2"TEEEEEES 2 2SI R S il

Jabeuew

. J 80BI8)U|
T uoiezieLas

dddl/dil1lH

dVM

0ZE 9lL€

jesspusy/| | JNONUON 1zydepy ldepy | o _
JBHBAUOD 1019 90BHalU| 41 1H o0eudlU| dYM
. puay
WiH | |
_ " vOE |
Ja18pUDY " JoBeuey ¥orlS _
[SUSAUOT) e
1duog TAM m 80€ |
———d _
Jjalepuay/ SUoBD mcuﬂw J8SMOIE |
JOUBAUQY) SI4C0D) an_ d
X 1Btiod POLL ayoen _
SHIELUNOO
il
.'.'I _
-.-.- o0e
sop 188 D induyj I_

FIG. 5

U.S. Patent Sep. 28, 2010 Sheet 6 of 15 US RE41,786 E

_— 380

HTML
Filter

F1G. 6

U.S. Patent Sep. 28, 2010 Sheet 7 of 15 US RE41,786 E

getwork Request START
eques
412 Q home page 404

402

N
Network
Retu Page in
414 cache? — 400
406 v
Request J
successiul?
418 Y Get page
416 from cache | 408

434 Convert and

Request

N render page
Network (Fig. 9)
Reques
= - 420
410 for infarmation
N ay ar content?
Display
Network 430

436 446
2° fetch "Local
operations
Request Y femain'? browser
ccessful? Y ; function?
438 Create 422 N N
Background Y
Y Retneve 20 Fetch N
g"g‘ Thread Perform
N Convert and 344: 431 fulggtai:l:m
deliver to
424
Browser 448
440 —2 (to step 422)
426
Indicate 428

Close
browser?

failure to Close
Browser
w 447 Browser

FIG. 7

U.S. Patent

Sep. 28, 2010 Sheet 8 of 15

Network

502 \Request

Display
"Iin progress”
indication

|dentify type
of request

506

004

WAP

Send WAP request
over wireless link to

WAP gateway 203
Receive network
response from
510

WAP gateway

Add requested
URL/identifier to

history list

Network] _ 518
Return

FIG. 8

516

HTTP

Send HTTP request
512 | Over wireless link to

IP pr

US RE41,786 EE

500

OXy server

Receive network

o014 |response from IP

proxy server

U.S. Patent Sep. 28, 2010 Sheet 9 of 15 US RE41,786 E

Store received | Jetermine 600
START content to raw content
606
data cache Qe

602 604

608

Suitable
converter/renderer
on device?

Suitable

non-resident 618

022

Request invoke
converter/renderer renderer
from network

610

612

Render
content to
generate page

Network Register and
Request) 624 install converter/

Add page o

Retumn J 526 614 | page cache

N
b2t RETURN
Request
successiul? 610
620
N indicate
converter/renderer
unavailable

FIG. 9

US RE41,786 EE

Sheet 10 of 15

Sep. 28, 2010

U.S. Patent

0lL.

Soyoed pue
Aojsiy 1es|D

80/

suonounyj
ssa4b04d ui

e pu3

cll

oonl\

Ol Ol

0.

Jsuoielado
JasMo.q pu3

Jasmoug
9s0|D

c0L

punoibyoeq
0} pus§

904

U.S. Patent Sep. 28, 2010 Sheet 11 of 15 US RE41,786 E

Email Voicemal oMS
Application Application Application
816 818 820
Message
Store

810

Request
Queue

Browser 176
Folder Process
Browser 812 Converter
Thread
Page

Primary

Fetch
Thread

172

108

Raw Data
126 Cache
Cookie
160 Stack Manager

106

170

WAP
Stack
Adapter

166 168

800

WAP

162 | Stack 164

FIG. 11

IIIIII!IIIII_IIIIIIII!‘

Jalapuay/

5 IETHelg cct 8Lt

US RE41,786 EE

I EI)
dddl/d11H

0ZE mrm

lalspusy/ 13[j04lUsH

JOUOAUOD

"----ﬂ L

ydepy
aseuU| 4YM

Jjoydepy
S0BLAUl 4 L 1 H

-

Te 2 Jolaplioy 0t
- m
I |
= AR
— “
E jeuspusy | ¢
e ’
7 [IOBAUOY) e
iduog INM | | 80€
= ; 0L}
o
~ 18lapuay/
: s
: o0 | [oyeuros]

S S | AasiH |] elas
obesso -

momtmE_
‘ AR hm_m_J clb

lIlIIII[IIIIIIII_IlIII

U.S. Patent

FIG. 12

U.S. Patent Sep. 28, 2010 Sheet 13 of 15 US RE41,786 E

Messages

Tue, Oct 17, 2000

954 ** 2:43p John Doe Re: Meeti...
-- 12:44p Web Page Title Number 2
-- 10:15a Web Page Title Number |

** 0:44a Mark Samuel Meeting T...

952

FIG. 13

U.S. Patent Sep. 28, 2010 Sheet 14 of 15 US RE41,786 E

"

Tue, Oct 17 O
- * pen Page
2:43p John Doe Reload Page

-~ 1244p Web Pa Mark U d
~10:15a Web Pag | e o oo

** 9:44a Mark Sar

Save Page
Delete Page

952

Compose
Mes...

Search Mess..

Opt{ons

Close

FIG. 14

U.S. Patent Sep. 28, 2010 Sheet 15 of 15 US RE41,786 E

1000
r

Content here: System Actions

1 News 02
nter URL 10

2 Sports

. . Back

3 Financial
Forward

4 Weather

: Reload
5 Cool Links Bookmarks
6 Go To Web

Add Bookmark
Save to MsglList

Save to Folder

FIG. 15

US RE41,786 E

1

WEB BROWSER OF WIRELESS DEVICE
HAVING SERIALIZATION MANAGER FOR
MAINTAINING REGISTRY OF CONVERTERS
THAT CONVERT DATA INTO FORMAT
COMPATIBLE WITH USER INTERFACE OF
THE DEVICE

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

CROSS REFERENCE 10 RELATED APPLICATION

This application is a reissue application of U.S. Pat. No.
7,389,361 which issued on Jun. 17, 2008, which issued from
an application that is the National Stage of International
Application No. PCT/CA01/01857, filed Dec. 21, 2001,

which claims the benefit of provisional application Ser. No.
60/257,428, filed Dec. 22, 2000.

FIELD OF THE INVENTION

The present invention relates to browsing information
content 1n World Wide Web (WWW) pages accessed using a
wireless device.

BACKGROUND OF THE INVENTION

Accessing browsable information such as Web content on
the Internet 1s a part of everyday life for many people today.
Most users currently access such information content by
using computer systems that are physically connected to the
Internet via a modem and physical wires of some sort, typi-
cally a telephone line or coaxial cable. At the same time,
wireless devices and the wireless networks they work on are
becoming more widely available. Many modermn wireless
networks are connected or at least connectable to the Inter-
net. As such, the demand for browsers on wireless devices
that can access the World Wide Web 1s increasing rapidly.

Wireless devices and the associated wireless networks
within which they operate present several design challenges
not normally encountered in standard wired networks. First,
unlike personal computers (PCs) and servers that are wired
to the network, mobile and other wireless devices are con-
nected to the network using radio links. As such, they are
only connected when the device 1s “in range”, or within
coverage ol one of the wireless network’s radio transmutters.
Because the wireless networks do not completely cover all
arcas where users will be using the devices, connectivity to
the networks can be frequently gained and lost. No connec-
tivity guarantees can be made at any given point 1n time.

Furthermore, even when a device 1s connected to a wire-
less network, the bandwidth of such networks can be quite
low. Current networks, such as Mobitex™ and Datatac™,
operate 1 the 9.6 kilo-bit per second (kbps) to 14.4 kbps
range. Newer networks, such as General Packet Radio Ser-
vice (GPRS) and the Global System for Mobile Communi-
cations (GSM), will operate 1n the 20 kbps to 110 kbps
range. As will be apparent to those skilled in the art, this
range relates to raw speed. Real speed 1s lower when retrans-
missions of corrupted packets and network congestion are
accounted for. So-called third generation networks, such as
Universal Mobile Telecommunications System (UMTS), are
expected to operate 1n the 384 kbps range or higher, but are
not expected to be deployed for at least several years.

Most mobile devices also currently have much lower
screen resolution and processing power than typical PCs or

10

15

20

25

30

35

40

45

50

55

60

65

2

laptops. For example, known mobile devices tend to have
screen resolution on the order of 160x160x1 bit
(monochrome) or smaller, as compared to low-end desktop
PC or laptop monitor resolution of 1024x768x24 bits.

For a user, these factors make the browsing experience on
mobile devices considerably different from that on comput-
ers with wired network connections. From the perspective of
service providers and device manufacturers, such character-
1stics of wireless devices and wireless networks hinders the
provision ol browsing capabilities 1n wireless systems. In

particular, much of the information content on wired net-
works assumes that a computer or device will be connected
to the network for the duration of the browsing session. In
addition, content 1s increasingly being geared towards band-
widths of 128 kbps or higher and to high-resolution screens
and computers with extensive processing power to support
anmimations, large graphics, and the like.

The Wireless Application Protocol (WAP) Forum was cre-
ated to address incompatibilities between the capabilities of
current mobile devices and wireless networks and the vari-
ous processing, memory and display requirements for view-
ing different types ol Web content. The result was the WAP
specification, a de-facto worldwide standard, which includes
both a protocol to deliver Web content to wireless devices,
and a new form of markup, called Wireless Markup Lan-
guage (WML). WML 1s geared towards providing the
essence of high-value web pages for extremely small devices
such as cellular telephones.

The WAP protocol addresses the 1ssue of delivering con-
tent to wireless devices on slow, unreliable networks.
However, although WML allows content to be developed for
cell phones, it 1s not clear that it 1s as appropriate for per-
sonal digital assistant (PDA) style mobile devices, which
have larger screens and tend to have more processing power
than most cell phones.

The continuing movement towards web-based user inter-
faces for wireless communication devices, coupled with a
general sentiment that Hypertext Markup Language
(HTML) and WML provide inadequate user interface
controls, 1s expected to result in an increasing demand for
mechanisms to extend basic browsing capabilities. Browser
extensibility will therefore likely become an important part
of mobile device application platforms.

Theretfore, there 1s a need for a Web content browser for
wireless devices, which provides browsing functionality
similar to that of conventional Web browsers designed for
hard-wired network connected devices. Such a browser
should overcome the above problems associated with brows-
ing mformation on a wireless device and should be compat-
ible with multiple information content types. There 15 a fur-
ther need for such a browser to be integrated with other
functions of wireless communication devices.

SUMMARY OF THE INVENTION

According to an embodiment of the invention, a web
browser comprises a page cache containing a plurality of
pages 1n a plurality of formats, and a converter and renderer
operatively connected to the page cache for rendering the
plurality of pages for display by the browser.

In accordance with a further aspect of the invention, a
wireless web browser comprises a radio configured for com-
munications with both a Wireless Application Protocol
(WAP) gateway and an Internet Protocol (IP) proxy server.

A web browser according to another aspect of the mven-
tion has a background processing object, the background
processing object permitting the browser to access informa-
tion after the browser has been closed.

US RE41,786 E

3

According to a further aspect of the invention, a web
browser comprises a message store, the message store con-
nected to at least one application selected from the set of:
email application, voicemail application and SMS
application, and the message store containing objects
retrieved by the browser and the least one application.

In another embodiment of the invention, a computer read-
able medium comprises instructions for implementing a
page cache, a renderer controller operatively connected to
the page cache and a serialization manager operatively con-
nected to the renderer controller.

A method for mstalling a converter on a wireless device
according to a still further aspect of the mnvention comprises
the steps of determining 1f the converter 1s registered on the
wireless device, 11 the converter 1s registered, then requesting,
the converter via a wireless network, and when the converter
1s recerved 1n response to the request, installing the converter
on the wireless device.

A method for rendering a page on a wireless communica-
tion device, 1n another aspect of the invention, comprises the
steps of receiving the page over a wireless network, selecting
a converter for the page, rendering the page to created a
rendered page for display by a browser, and storing the ren-
dered page 1n a page cache.

In another embodiment of the invention, a browser for a
wireless device comprises a browser object operatively con-
nected to a browser daemon, a stack manager operatively
connected to the browser object and the browser daemon, the
stack manager further connected to a wireless radio via a
plurality of interface adapters, and the radio connected to a
plurality of communication links, the communication links
providing information to and sending information from the
browser object and the browser daemon.

A computer readable medium comprising istructions for
implementing a browser for a wireless device according to a
turther embodiment of the invention comprises istructions
for implementing a browser object and a browser daemon,
the browser object and the browser daemon communicating,
with each other, instructions for implementing a stack
manager, the stack manager 1n communication with the
browser object and the browser daemon, instructions for
implementing a plurality of interface adapters, the interface
adapters 1in communication with the stack manager and a
wireless radio, and instructions for connecting the radio to a
plurality of communication links, the communication links
providing information to and sending information from the
browser object and the browser daemon.

BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the present invention, and to
show more clearly how 1t can be carried into effect, reference
will now be made, by way of example only, to the accompa-
nying drawings 1n which:

FIG. 1 1s a block diagram of objects and components 1n an
embodiment of the present invention;

FIG. 2 1s a block diagram of objects and components asso-
ciated with a browser daemon;

FIG. 3 1s a block diagram of objects and components asso-
ciated with a renderer system;

FIG. 4 a block diagram of converter, renderer and page
objects;

FIG. 5 1s a block diagram of an information browsing
system utilizing the present invention;

FIG. 6 1s a block diagram 1llustrating communication con-
nections:

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 7 1s a logical flow chart of the process performed by
the present invention;

FIG. 8 1s a logical tlow chart of the process performed by
a network request;

FIG. 9 1s a logical flow chart of the process performed by
a renderer system;

FIG. 10 1s a logical tlow chart of the process for closing a
browser session;

FIG. 11 1s a block diagram of the objects and components
ol the present invention integrated with a messaging system;

FIG. 12 1s a block diagram of an information browsing,
system utilizing the present invention integrated with a mes-
saging system;

FIG. 13 1s a screen capture of a message list;

FIG. 14 1s a screen capture of a message list browser
menu; and

FIG. 15 1s a screen capture of a generic browser menu.

DETAILED DESCRIPTION OF THE INVENTION

A browser according to an aspect of the present invention
1s generic 1n the sense that 1t preferably displays content
from WML, HITML and new formats as they become avail-
able. Subsequent references 1n this description to WML and
HTML type content are intended to include not only WML
and HI'ML, but also other content types or formats which
are or may become available. Many browser functions are
common across all content types, whereas other functions
are specific to the content type, as will become clear from the
following description. The browser will preferably be able to
switch between different content types as determined by the
type of content returned to the browser in response to an
information or content request.

Referring now to FIG. 1, a block diagram of objects and 1
components 1 an embodiment of the present invention, 1s
shown generally as 100. FIG. 1 1llustrates a software imple-
mentation of browser 100, with the arrows representing ret-
erences between the objects and components. The invention
1s preferably implemented primarily 1n software, but may
also be implemented at least partially in hardware.

As described above, generic and content-specific func-
tionality and related software objects are separate. Dispatch
thread 102 1s the main event thread of system 100 and noti-
fies browser application object 104 of all user mnputs and
communication events. In order to ensure a responsive user
interface (UI), processing times for such events should be
limited. Browser application object 104 1s the parent appli-
cation object, which basically functions as a container for
the object shown as browser object 106. Browser object 106
1s a transient process while browser daecmon 108 1s a persis-
tent process. Browser daemon 108 always runs in the back-
ground and supports all the fetching operations. It also auto-
matically loads previously fetched Uniform Resource
Locators (URLs) mto the message list, as will become
apparent from the description below.

Browser object 106 and browser daecmon 108 perform
“generic” browser functions that apply to WML, HTML,
WMLScript and any other content types that may be
received or otherwise encountered. This includes such func-
tions as history management, control of page retrieval and
display, control of 1mage retrieval and display, creation and
handling of menus, detection and execution of scripts and

the like.

History object 110 1s the navigation history, essentially a
memory stack of pages or more particularly the URLSs asso-
ciated with the pages that have been most recently accessed.

US RE41,786 E

S

History object 110 can be queried to determine whether or
not 1t 1s empty. Based on this determination, browser 100
enables or disables “Forward” and “Back™ functions for
example.

Bookmarks object 112 1s a store of all the bookmarks
currently known to browser 100. The contents of the book-
marks object are controlled by a user, through add, delete,
arrange and such bookmark operations.

Browser object 106, as discussed brietly above, 1s a tran-
sient object which 1s opened and closed by a user. When the
user asks to see a new URL, the browser object 106 first asks
the page cache 114 1f the page object corresponding to the
URL 1s available. If it 1s, the browser object 106 displays it,
via a display or screen user interface object (not shown).
Otherwise, browser object 106 creates a fetch request object
and sends that fetch request object to the browser daemon
108. Browser daemon 108, in turn, processes the fetch
request object (as discussed further below) and sends a result
back to browser object 106. When browser daemon 108
receives a response to a fetch request object, 1t places data
from the response into the fetch request and changes a state
of the fetch request object to “received”. Browser object 106
has an associated recerver thread 118 for each request that
waits for a request to change to “received” state. When a
response 1s received, recerver thread 118 creates a render
thread 120 to process that result. This scheme eliminates the
need for a received results queue or the like and thereby
conserves memory resources on a device 1 which a browser
such as shown 1n FIG. 1 1s implemented. However, 1t should
be appreciated that other aspects of the ivention are also
applicable to systems which utilize a results queue.

Render thread 120 provides the result to page cache 114
and asks for a corresponding page object 124 in return. Page
cache 114, 1n turn, delegates to renderer system 122 to pro-
duce page object 124 from the result. When renderer system
122 returns page object 124, page cache 114 will store 1t.

If an information request 1s outstanding or i1n process
when browser object 106 1s closed, when browser daemon
108 1s ready to forward that result to browser object 106,
browser daemon 108 will detect that browser object 106 no
longer exists. In such a case, browser daemon 108 will
optionally store the result as a browser message 1n a message
store (not shown). Such functionality 1s described in more
detail below.

Page cache 114, as 1ts name 1mplies, 1s a cache of page
objects 124. It the page object corresponding to a requested
Uniform Resource Locator (URL) 1s 1n page cache 114, 1t
can be displayed by the browser object 106 very quickly. As
1s common 1n the art, page cache 114 employs a least
recently used (LRU) replacement policy.

Raw data cache 126 1s a cache that stores the raw bytes for
all requested content, including HIML pages, WMLC
decks, 1mages, compiled WMLScript scripts and any other
requested content formats. Like the page cache 114, it also
employs a LRU replacement policy.

Secondary fetch threads 128 are used to process second-
ary fetch operations, such as loading 1mages and are 1nitiated
by browser object 106. Primary fetch operations, such as
tetching pages, are preferably performed as background
operations by browser daemon 108 (FIG. 2).

Referring now to FIG. 2 a block diagram of objects and
components associated with a browser daemon 1s shown
generally as 150. Stack manager 160 manages all requests
for content, directing them to the appropriate stack. Stack
manager 160, 1n conjunction with renderer system 122 (FIG.
3), provides for the multiple content format functionality of

10

15

20

25

30

35

40

45

50

55

60

65

6

browser 100 and the device 1n which 1t 1s installed. Stack
manager 160 1s associated with both a WAP stack 162 and an
HTTP stack 164 through WAP stack adapter object 166 and
HTTP stack adapter object 168 respectively. In a preferred
embodiment, HI'TP stack 164 is a proprletary HTTP-over-
IPPP (IP Proxy Protocol) stack, discussed in turther detail
below. Thus, a wireless device equipped with a browser 100
can access mformation using not only WAP, as 1n prior art
wireless devices, but also HTTP,

For each URL that 1s not 1n page cache 114 or raw data
cache 126 an instance of a primary fetch thread 172 is cre-
ated to fetch the requested data. Cookie cache 170 stores
cookies associated with previously accessed or downloaded
information content. Some information sources may for
example require a user to login using a user name and
password, either or both of which may be stored as a cookie
in cookie cache 170. Process converter thread 174 1s a
worker thread that retrieves fetch requests from the request
queue 176 and creates instances of primary fetch thread 172
to process the request. Request queue 176 1s a queue that
contains requests for information from browser daemon 108.
As resources permit, an item on request queue 176 will be
initiated as a primary fetch thread 172. Data received 1n
response to requests from the browser daecmon 108 will pret-
erably be added to fetch requests 1n the request queue 176
and the status of such requests changed to “received”, as
described above.

Referring now to FIG. 3 a block diagram of objects and
components associated with a renderer system 1s shown gen-
erally as 200. In response to a page object request, renderer
control object 202 will examine the resultant content type to
determine which converter and renderer objects are required
to generate a page object. Serialization manager 204 deter-
mines if the required converter object 1s resident on the

device and if so, calls the appropriate converter object (206a,
206b, 206¢, 206d. Converter object 206 converts the raw

input data into an object that can be rendered. Converter
object 206 creates an appropriate renderer object (208a,

208b, 208c, 208d) to render the data and produce a page
object (124a, 124b, 124¢, 124d) and return the new page

object to the page cache 114. The new page object, which
contains screen user interface (UI) components, will also be
displayed to a user by the browser object 106. All pages
generated by the converters and renderers are compatible

with the particular display Ul implemented in the wireless
device.

Serialization manager 204 maintains a registry of format
converters for different information formats. In a preferred
embodiment of the mvention, a third party communicates

with serialization manager 204 to register new format
converter/renderer combinations such as the Format X con-
verter object 206d. Information formats other than those cor-
responding to converter objects provided on the device by a
manufacturer can thereby be rendered and displayed by the
device by simply installing the appropriate converter
objects, which creates associated renderer objects as
required.

When content 1s returned to the wireless device 1n
response to an information request, the renderer controller
202, in conjunction with the serialization manager 204,
determines the type of content, the converter and renderer
objects required to convert the content into a page object,
and whether or not the required converter and renderer
objects are available on the device. It the required converter
1s registered with the serialization manager 204, then the
converter 1s called to convert the byte array into a page.
Serialization manager 204 returns a null value to renderer
controller 202 when a required converter object 1s not regis-
tered.

US RE41,786 E

7

Where recerved information 1s 1n a format other than those
for which a converter object 1s registered with the serializa-
tion manager 204, the device may not be capable of display-
ing the information. According to a further aspect of the
invention, a remote system or server in the network within
which the wireless device 1s operating may register non-
resident converter and renderer objects as being available to
the device. In such systems, when information receirved in
response to an mformation request 1s 1 a format requiring,
converter and renderer objects not resident on the device but
registered with the serialization manager 204 as non-resident
converter objects, serialization manager 204 requests and
downloads the required converter object. Serialization man-
ager 204 thereby significantly expands the browsing capa-
bilities of the wireless device in comparison with prior art

devices.

Referring now to FIG. 4 a block diagram of converter,
renderer and page objects 1s shown generally as 240. Con-
verter object 206 1s a superclass object representing all con-
verter objects 206a to 206d. Similarly, renderer object 208 1s
a superclass object representing all rendering functions
208a, 208b, 208c, and 208d. WML converter object 206a
and WML renderer object 208a convert a byte array that
contains WMLC (Compiled WML) into a WML page object
124a. HTML converter object 206b and HTML renderer
object 208b convert a byte array that contains filtered HTML
content into an HIML page object 124b. Similarly, the
WMLScript converter object 206c and WMLScript renderer
object 208c comprise a rendering engine for WMLScript
scripts, which creates WMLScript page objects 124¢. For-
mat X converter object 206d and Format X renderer object
208d 1llustrate the extensibility aspect of the present mven-
tion which 1s described i further below.

Referring now to FIG. § a block diagram of an informa-
tion browsing system utilizing the present invention 1s
shown as wireless device 300. User mput 1s provided to the
main browser control component 304 through input inter-
face 306. It should be noted that the functionality of both
browser object 106 and browser daemon 108 1s included in
component 304. Background operations performed by com-
ponent 304 involve daemon 108 functionality, whereas fore-

ground operations would be associated with the browser
106.

Depending upon the nature of the user input, component
304 may interact with one or more of the memory lists or
caches 110,112, 114,126 and 170, in memory 308. Memory
308 may for example be a random access memory (RAM) 1n
which the various caches occupy predetermined storage
space or alternatively, dynamically allocated storage space.
Memory 308 may also possibly comprise multiple distinct
memory elements, each incorporating one or more of the
caches.

Wireless device 300 further includes a stack manager 310.
Stack manager 310 manages all requests for content, direct-
ing them to the appropriate interface adapter 312 or 316.
Stack manager 310 further communicates with renderer con-
troller 320 and converter/renderers 330a, 330b, 330c and
330d to ensure incoming data 1s properly converted and ren-
dered for display to a user. WAP interface 314 and HTTP
interface 318 interact with radio 334 to request and obtain
data over a wireless network. Renderer controller 320 and
serialization manager 322 perform the functions described
previously with regard to FIG. 3. User interface 332 may be
visual display or any other device that 1s capable of commu-
nicating the results of a browser request to a user. Although
shown as single functional blocks 330a, 330b, 330c and

330d, 1t 1s to be understood that the converter/renderers per-

10

15

20

25

30

35

40

45

50

55

60

65

8

form both the converter and renderer object functions
described above to generate pages for display on the device
from information received in response to requests. As
described above, the renderers are preferably transient
objects created by the converters as required and thus are not
shown separately 1n the block diagram.

Radio 334 1s a wireless communication module, which
operates 1n a wireless communication network. In a pre-
terred embodiment of the invention radio 334 1s a device
adapted for communication on the Mobitex network,
although communication modules for the DataTAC network,
GSM/GPRS networks and other wireless communication
systems are also possible. The multiple content type infor-
mation browsers and associated methods 1n accordance with
the instant ivention are independent of the particular wire-
less network on which the device operates.

Referring now to FIG. 6, a block diagram illustrating
communication connections 1s shown generally as 380.
Radio 334 of wireless device 300 communicates over wire-
less links to a plurality of devices. Communication link 336
connects radio 334 with a WAP gateway 338 or with an IP
proxy server 340 via links 360, 362 or 364. Thus, radio 334
1s able to utilize either a WAP or HTTP protocol. In a pre-
ferred embodiment of the invention, HT'TP interface 318 1s a
proprietary HI'TP-over-IPPP stack, such that when HTTP 1s
used for information browsing, radio 334 communicates
with an IP proxy server 340 using IPPP. In the embodiment
shown 1n FIG. 6, IP proxy server 340 includes a WML filter
342, an HTML filter 344 and an HTTP connector 346. Fil-
ters 342 and 344 respectively convert raw WML and raw
HTML content into proprietary filtered formats and return
the filtered content to radio 334 via communication links
360 and 362 respectively. A third alternative 1s unfiltered
data and this 1s performed via communications link 364.

Both WAP gateway 338 and IP proxy server 340 request
information or content from information sources such as
servers 352a and 352b through a network 350. Network 350
1s typically the Internet, but may also be an 1ntranet or other
relatively smaller-scale network. WAP gateway 338 and IP
proxy server 340 may possibly be connected to different
networks. Servers 352a and 352b may be connected to net-
work 350 through one or more further networks. Other 1nfor-
mation source arrangements will be apparent to those skilled
in the art and are intended by the inventors to be within the
scope of the 1nvention.

Referring now to FIG. 7, a logical tlow chart of the pro-
cess performed 1n an illustrative embodiment of the present
invention 1s shown generally as 400. The browser imple-
menting process 400 1s preferably pre-programmed with a
“home page” URL that 1t will attempt to load when started at
step 402. The browser will first create a request to load the
preprogrammed “home page” URL at step 404. It will then
enter the normal page-request cycle, which begins with the
browser determining 1f a valid previously rendered copy of
the home page 1s stored in the page cache at step 406. If the
home page 1s stored in the page cache, then the browser can
quickly load it from cache at step 408 and display the page at
step 410.

If no valid copy of the page 1s stored in the cache, when
the cache copy has expired or has been replaced by a new
page entry under a page cache LRU replacement policy for
example, the browser attempts to download the home page
from the information source through a network request, indi-
cated at step 412. In response to the network request, the
network returns information to the browser at step 414,
which may be the requested information but may instead be

US RE41,786 E

9

an error message 1i the requested information cannot be
accessed or 1s otherwise unavailable. A test 1s made at step
416 to determine 11 the network request was successiul. If 1t
was, 1.¢. the requested information 1s returned, the returned
content 1s converted and rendered at step 418. Provided that
the home page 1s either stored i1n the page cache when the
browser 1s started or downloaded from the network, the
home page 1s displayed by the browser on the device at step
410. If the home page cannot be loaded, control moves from
step 416 to step 420 where the browser may generate an
error page or selected a predetermined stored page. The error
page or predetermined stored page 1s then displayed at step
410. The error page or predetermined stored page 1s prefer-
ably stored 1n a memory location not subject to the normal
LRU cache replacement scheme. Although browser startup
would be simplified by mitially displaying a predetermined
stored page and thereby avoiding some processing and pos-
sibly network access operations, this would preclude a user

selecting a personal home page.

As discussed brietly above, converted and rendered pages
processed by the browser include not only WML and HI'ML
pages for display, but also WMLScript and other script pages
with run elements which are executed by the browser.
Therefore, 1n this description, references to page display
should be interpreted to include execution of such run ele-
ments for script pages.

After a page has been displayed at step 410, the browser
checks at step 422 to see 1f any secondary (2) fetches are
needed to complete the loading of the current page (e.g., to
load 1images associated with the page). If no secondary fetch
operations remain, when either no secondary fetch opera-
tions are required or all secondary fetch operations have
been performed as described below, control moves to step
424 where the browser awaits mput from a user. If a user
input request 1s recerved, a test 1s made at step 426 to deter-
mine 1f 1t 1s a request to close the browser. If the user has
decided to close the browser then closing operations are per-
formed at step 428. If the user did not decide to close the
browser, a test 1s made at step 430 to determine 11 the user
made a request for mnformation or content. An information
request may be made by a user by entering a URL or select-
ing a link on a displayed page, for example. I1 the user input
1s a request, then a background operation to load and display
a new page 1s mitiated as described above starting at step
406. While this background operation i1s in progress, the
current page that i1s being displayed will preferably remain
on the screen of the browsing device. A static or preferably
ammated 1icon will also be displayed on the screen, 1n a title
bar for the currently displayed page for example, to indicate
to the user that another page 1s in the process of being
requested and downloaded.

Returming to step 430 if 1t 1s determined that the user input
1s not an information request, a test 1s made at step 446 to
determine i1f the user input relates to a local browser
function, such as storing a URL as a bookmark. I a local
function 1s mvoked, then the function i1s performed at step
448, and control moves to step 424.

If the test at step 422 indicates that secondary fetches are
required, each secondary fetch operation preferably pro-
ceeds as follows. A background secondary fetch thread is
first created at step 431. The method then proceeds at step
424 to detect and process any user mputs. The secondary
fetch operation continues 1n the background, concurrently
with any user input-related processing, and begins by first
checking the cache for the required content at step 432. If the
cache does not contain the required content, then a network
tetch sequence 1s 1nitiated at step 434. In response to the

10

15

20

25

30

35

40

45

50

55

60

65

10

network request, the network returns information to the
browser at step 436. A test 1s made at step 438 to determine 1
the network operation was successtul. If the operation was
successiul, the content 1s converted (i necessary) and deliv-
ered to the browser at step 440 for icorporation into the
currently displayed page. If the network operation was not
successiul, the browser 1s notified of the failure at step 442.
Control then passes back to step 422. It should be noted that
if a primary fetch operation results in a network error, then
no secondary fetch operations would be executed. Returning
to step 432, 1f the object 1s 1n the cache, 1t 1s retrieved from
the cache at step 444 and passed on to step 440.

It will be apparent that user input may be recerved at any
time, for example during secondary fetch operations or local
function execution. A “stop” user input, intended to interrupt
a fetch operation, must be processed immediately, without
waiting for a previous fetch operation to complete.
Therefore, mput user interfaces are preferably continuously
monitored, even during execution of other browser opera-
tions. Creation of a background secondary fetch thread as
shown at 431 allows user 1inputs to be made and processed
while secondary fetch operations proceed 1n the background.

Referring now to FIG. 8 a logical flow chart of the process
performed by a network request 1s shown generally as 500. A
network request begins at step 502. At step 504 some type of
message or indication 1s preferably displayed to indicate to a
user that an information request 1s 1 progress. Such a mes-
sage might also or mstead be displayed at other points in the
information browsing process, although local operations or
page displays from the page cache or other local memory
store such as the raw data cache tend to take substantially
less time than network information requests. Such user
information messages can preferably be configured in accor-
dance with user, network or device preferences or character-
1st1Cs.

At step 506 the type of request 1s 1dentified. Only two
types of requests, WAP and HTTP, are shown. However, 1t 1s
not the intent of the mventors to limit the mvention 1n such a
manner. Other types of requests may also be accommodated

by the mvention through further interfaces in the IP proxy
server 340 (FIG. 6).

When referring to the remaining steps 1t will aid the reader
to refer to FIGS. 5 and 6 1n conjunction with FIG. 8.

A WAP request would be sent at step 508 through WAP
interface adapter 312 and WAP Interface 314 over communi-
cation link 336 to WAP gateway 338. The requested infor-
mation would then be downloaded from an information
source such as server 352a, through network 350 and WAP
gateway 338 and recerved by radio 334 of device 300 via
communications link 336. The information 1s received at
step 310. The information recerved would normally include
the requested information, in raw WML format, but could
also be indicative of an error. Based on the response to the
network information request, the success or failure of the
request can be determined.

HTTP requests are similarly sent through the HT'TP inter-
face adapter 316 and HT'TP interface 318 to IP proxy server
340 at step 512. HT'TP 1s used by HI'TP connector 346 to
access mformation sources through network 350. The format
of the returned information content 1s then determined by
HTTP connector 346. The returned information 1s expected
to be raw HTML, but may also be in other formats, such as
WML. IT a corresponding filter 1s implemented in IP proxy
server 340, then the information 1s converted into com-
pressed format for transmission over the appropriate wire-
less communication link, either 360 or 362. If no corre-

US RE41,786 E

11

sponding filter exists the raw HI' ML 1s returned via link 364.
Filters 342 and 344 respectively convert raw WML and raw
HTML content into proprietary filtered formats, and return
the filtered content to the browser. Those skilled in the art
will appreciate that filters may be implemented in the IP
Proxy system 340 to convert content into other formats that
can be processed at the device. The ivention 1s 1n no way

restricted to delivering content 1n proprietary formats.

At step 516 the URL of the request 1s added to history list
110. At step 518 the network request 1s complete and the
results are returned to the requestor.

When a device 1s out of wireless communication network
coverage, a network request 1s preferably queued or cached
in a device data store and 1s transmitted when the device
re-enters network coverage.

Referring now to FIG. 9 a logical tlow chart of the process
performed by a renderer system 1s shown generally as 600.
Process 600 begins at step 602 and information or content
received 1n response to a network request 1s first stored to the
raw data cache at step 604. At step 606 the type or format of
the content 1s determined. Once the type of content has been
determined, a test 1s performed at step 608 to determine if a
suitable converter and renderer are on the device. As previ-
ously described, resident converters are registered with seri-
alization manager 204/322. If the required converter and
renderer are already on the device, processing moves to step
610 where the appropriate renderer 1s mvoked. At step 612
the content 1s rendered to create a page and at step 614 the
page 1s added to the page cache. Process 600 then returns at
step 616.

If at step 608 1t 1s determined that a suitable converter/
renderer 1s not available, control moves to step 618. As pre-
viously described, non-resident but available converter/
renderers may also be registered with serialization manager
204/322. Serialization manager 204/322 preferably stores
both content types for which such non-resident converter/
renderers are available and an indication, suchas a URL, ofa
location of the applications. For example, a suitable
converter/renderer may be available from a server or an
information source accessible through a network in the com-
munication system. At step 618 1t 1s determined whether or
not such a non-resident converter/renderer 1s available for
the particular recerved content type or format. If not, then the
browser indicates that the converter/renderer 1s unavailable
at step 620 and the process returns at step 616. In the event
that a required converter/renderer 1s unavailable, the device
in which the browser i1s running preferably displays a most
recently downloaded page, along with an indication that the
converter/renderer for the requested content 1s unavailable,
in a display title line for example.

Where 1t 1s determined at step 618 that a non-resident
converter/renderer 1s available, the converter/renderer 1s
requested from the network at steps 622, 624 and 626. A test
1s made at step 628 to determine 1f the network request 1s
successiul, 1f the request was successtiul then the converter/
renderer 1s registered with the serialization manager and
installed in the device at step 630. The new 1nstalled
converter/renderer 1s then mmvoked at step 610 to render the
content and generate a page at step 612. At page 614 the
generated page 1s added to the page cache. Control then
returns at step 616.

Referring back to FIG. 6, raw WML content from an

information source 1s converted by WAP gateway 338 1nto a

compressed format known as tokenized WML or WMLC.
Similarly, WML content and HI'ML content are converted
into compressed formats by filters 342 and 344 1n IP proxy

10

15

20

25

30

35

40

45

50

55

60

65

12

server 340. For such content, the example converter objects
206a, 206b, 206¢ and 206d and renderer objects 208a, 208b,

208c and 208d (see FIG. 3) are sullicient for information
browsing functionality. As such, WML, HI'ML and WML-

Script converters and renderers are preferably provided 1n a
communication device by a device manufacturer. However,
other types of content may also be simply passed to the
device through WAP gateway 338 or IP proxy server 340,

requiring further converter/renderers such as the “Format X™
converters and renderers 206d and 208d (see FIG. 3). As

described above, these further converter/renderers can be
either registered with serialization manager 204/322 and
installed 1n the device by a thurd party or registered with the
serialization manager 204/322 for later download and instal-
lation to the device at a later time 1n response to receipt of
corresponding content type. In other contemplated
embodiments, a user may choose to download, register and
install selected converters and renderers to the device.

Referring to FIG. 10 a logical flowchart of the process for
closing a browser session 1s shown generally as 700. In the
present invention a browser session may be ended or closed
temporarily. Beginning at step 702 a user has indicated that
the browser session 1s to be closed. A test 1s made at step 704
to determine 11 the mput indicates that the browser opera-
tions are not to be ended. It the browser operations are not to
be ended control moves to step 706. At step 706 the browser
1s removed from the display of the device on which the
browser 1s running, but operations continue 1n the back-
ground. Upon completion of operations which were 1n
progress when the browser was closed, the history list and
caches are cleared at step 708 and browser processing ends
at step 710. The next time the browser 1s opened, it will
either retlect 1ts most recent state before the close operation
was mvoked, or will load a pre-programmed “home page”.
Any fetch operations 1n progress at step 706 will preferably
have been completed. It the user has selected to end browser
operations however, all 1n progress operation will terminate
at step 712. The history list and transient caches may option-
ally be cleared at step 708 and the browser processing ends
at step 710. The next time the browser 1s started, the home
page or alternate stored page 1s reloaded and displayed. The
state of the browser belore the close operation 1s lost.

The present invention may be 1ntegrated with other func-
tionality 1n a commumnication device. In one such integration,
the browser 1s integrated with a messaging system. The mes-
saging system 1s preferably an electronic mail (email) based
system, which may itself be part of an integrated messaging,
system including email, voicemail, short messaging service

(SMS) and the like.

Referring now to FIG. 11 a block diagram of the objects
and components of the present mvention integrated with a
messaging system 1s shown generally as 800. As will be
apparent, the objects and components 1n FIG. 11 are sub-
stantially similar to the objects of FIG. 2, but include a mes-
sage store 810, a browser folder 812 within the message
store 810 and a page model 814 within browser folder 812.

As shown 1n FIG. 11, a central object 1n the integrated
system 1s the message store 810, which interfaces with the
browser object 106, browser daemon 108 and other systems
within the device, such as an email application 816, a voice-
mail application 818 and a SMS application 820. Any of
these applications can save items to message store 810 and
process corresponding items from message store 810, typi-
cally 1in a folder dedicated to that application. Browser folder
812 1s an example of such a folder. Browser folder 812 will
contain messages specific to browser requests. Page model
814 1s an instance of browser folder 812 that contains the
data necessary to display a page.

US RE41,786 E

13

Information browser 800 also includes the objects shown
in FIGS. 1, 3 and 4, and browsing operations are substan-
tially as described above. A primary difference between the
browser of FIG. 2 and the browser of FIG. 11 1s that browser
800 may be launched directly, as previously described, but
may also be launched from a different application such as
email application 816, voicemail application 818 or SMS
application 820.

Referring now to FIG. 12, a block diagram of an informa-
tion browsing system utilizing the present mvention inte-
grated with a messaging system 1s shown as wireless device
900. As can be readily seen device 900 and device 300 of
FIG. 5 have many common components, with some minor
differences. Wireless device 900 ditfers from wireless device
300 1n that 1t includes a message store 810, which may for
example be allocated a portion of a memory 308. Message
store 810 1s accessible to other applications such as email
application 912, voicemail application 914 and SMS appli-
cation 916. Although shown in FIG. 12 as being within a
shared memory 308, message store 810 may instead be
implemented 1 a dedicated memory component shared
among the different messaging functions on device 900.

Browser 304 may be initiated through user input or com-
bination of user inputs from a keyboard or keypad,
trackwheel, mouse, thumbwheel or the like, through user
interface 306. Browser 304 may also be invoked through
message store 810. A list of contents of the message store,
hereinafter called the message list, 1s normally displayed on
a screen or other output user interface 332 of wireless device
900. The message list preferably displays a plurality of types
of messages. For example, email messages, voicemail mes-
sages and SMS messages are preferably displayed in the
message list with at least one of sender information, title
information and time of receipt, 1n addition to unique 1cons.
Browser entries in the message list are similarly displayed
with one or more particular icons and a content 1dentifier,
such as a filename or the URL of a network location associ-
ated with the browser entry. Icons for browser entries could
represent: pending page, sending page, recerved page and
read page. A pending page 1s a page that 1s scheduled to be
sent once network conditions will allow 1t. A sending page 1s
a page that 1s being sent or a response that 1s being received.
A recerwved page 1s a page that has been received but not
opened. A Read page 1s a page that has been opened. Further,
pages that contain WMLScript “do” elements may have a
separate 1con to 1dentily them.

Referring now to FIG. 13, a screen capture of an example
message list 1s shown generally as 950. A message from
email application 816 1s indicated by feature 954 and a
browser entry 1s indicated by feature 952. A browser entry
952 may be highlighted to indicate that the page requested
resides 1n the page cache 114 or raw data cache 126.

Referring now to FIG. 14, a screen capture of a message
list browser menu 1s shown generally as 980. When a cursor
or other selection 1ndicator 1s placed over a browser entry
952 on the message list and suitable selection put is
received, a browser menu such as 980 1s displayed. Suitable
selection mput may for example be the depression of a par-
ticular key on a keypad or keyboard, operation of an auxil-
1ary mput device or placement of a stylus on the display or
screen on which the message list 1s displayed. Browser menu
980 15 specific to the message list and provides options that
are consistent with viewing a particular type ol message.
When a browser item 1s selected, a message list browser
menu 1s displayed. When an email message in the message
list 1s highlighted or otherwise selected however, a menu
including email message options would be displayed.

10

15

20

25

30

35

40

45

50

55

60

65

14

As an example, wireless device 900 may be a hand held
clectronic device such as those disclosed 1n co-pending U.S.
Pat. No. 6,278,442, titled “Hand-Held Electronic Device
With a Keyboard Optimized for Use With the Thumbs”,
1ssued on Aug. 21, 2001, and assigned to the assignee of the
instant mvention. In such devices, a cursor 1s positioned 1n
the message list by rotation of a thumbwheel. A message list
selection 1s made by depressing the thumbwheel. A browser
menu may also be displayed by simply providing the selec-
tion input while the cursor or selection indicator i1s posi-
tioned 1n a particular display area outside the message list
entries. Whenever suitable selection input 1s provided, a
browser menu applicable to the context of the position of the
selection 1ndicator 1s displayed.

The particular operations included in the browser menus
will be dependent upon such criteria as the location of the
cursor or selection indicator on the device display, the device
in which the browser 1s implemented, the required or desired
browser functionality and/or the communication system in
which the device 1s operating.

Referring now to FIG. 15, a screen capture of a generic
browser menu 1s shown generally as 1000. A browser menu
may include certain generic browser actions or functions
that apply to all browser content types. Generic actions
include such actions as enter URL 1002, back, forward,
reload, bookmarks, add bookmark, stop, save current page to
message list and save current request to message list. Not all
of these features are shown in FIG. 15. Browser menu
options are preferably selected 1n the same way as message
list entries, by first positioning a cursor or selection indicator
and then providing a selection input. It should be noted that a
message list browser menu such as shown 1 FIG. 14 and a
browser menu displayed when the browser application 1s
running (FIG. 15) may be different, since not all browser-
related functions are applicable when a single browser 1tem
1s selected from the message list. For example, a “back”
browser function would not be applicable 1n the context of a
single browser item 1n a message list.

As will be apparent to those skilled 1n the art, enter URL
1002 allows a user to key 1n or otherwise specilty a URL to
be loaded and displayed. The browser then operates as
described above to load the requested content from either the
page cache or a network. The “back™ and “forward™ options
will be displayed only where appropnate, as determined by
the browser by accessing the history list 110. Those skilled
in the art will be familiar with “reload”, “bookmarks™ and
“add bookmark™ and “stop” browser operations.

Selection of the “save page to message list” option adds
the currently displayed page to message store 810 (FIG. 11)
and thus to the message list. Where an information request 1s
in progress, the “save request to message list” option will
also be made available to the user. Selecting this option will
cause the requested page or an identifier thereof such as 1ts
URL, to be saved to the message list. Such a save operation
may also imnvolve a particular folder, such as a browser folder
812 (FIG. 11), instead of the message list. Similarly, entries
saved to a particular folder can preferably be moved to dif-
terent folders by displaying a menu when the selection 1ndi-
cator 1s positioned over the entry to be moved. All of the
above menu actions, except the fetch operations associated
with an “enter URL” action, would be local browser func-
tions performed at step 448 of the flow chart of FIG. 7.

In addition to the generic browser actions, a browser menu
preferably includes page specific actions when the selection
input 1s provided while the cursor or selection indicator 1s
positioned over a particular entry 1n the message list or when

US RE41,786 E

15

a page 1s being displayed. For example, when a WML page
1s being displayed, page actions pretferably enable a user to
execute “do” verbs associated with the page. For an HITML
page, the page actions may include an action to follow a link
on the displayed page.

Browser menus preferably also include a close action,
which would invoke the operations described with regard to
FIG. 10. Requests 1n progress when the browser 1s closed
may be either terminated or executed as background
operations, as discussed above. If an information request 1s
completed after the browser has been closed, then the
returned content 1s preferably stored directly to message
store 810. I desired, and the browser 1s suitably configured,
a user could then be notified of completion of the request.

Integration of the browser and browsing method with
messaging functions provides for further enhanced informa-
tion browsing on wireless communication devices. One of
the problems associated with known information browsers 1s
that connection of the browser to a network 1s assumed and
often required for the duration of a browsing session. In the
present invention, a request generated while the device 1s out
of coverage may also be stored to the message store 810 for
submission automatically when the device re-enters a cover-
age area ol a wireless network. The browser daemon 108 can
detect pending requests by checking the message store 810
list and perform the necessary fetch operations as described
above.

It will be appreciated that the above description relates to
preferred embodiments by way of example only. Many
variations on the mvention will be obvious to those knowl-
edgeable 1n the field, and such obvious vanations are within
the scope of the invention as described and claimed, whether
or not expressly described.

For example, other actions may be provided 1n the brows-
ing menus. Such other actions may be eirther in addition to
the actions described above or alternatives thereto. The
present invention may also be integrated with different
functions, applications or systems on a wireless communica-
tion device. The mvention 1s 1n no way restricted to integra-
tion with messaging functions.

Similarly, the invention 1s not limited to implementation
in any particular type of hand-held electronic device. The
invention may be implemented 1 virtually any wireless
communication device, including cellular telephones,
mobile commumication devices, personal digital assistants
(PDAs), two-way pagers and the like.

Although the 1mventors have described the present inven-
tion as being used 1n a wireless communication device, one
can appreciate that certain features, for example the
renderer/controller structure may be implemented 1n non-
wireless systems as well. Similarly, any non-wireless system
may make use of the background processing feature of the
present invention to continue to attempt to access data once
the browser has been shut down.

We claim:

1. A web browser for a wireless communication device,
the web browser comprising:

a page cache resident on the wireless communication
device, the page cache containing a plurality of pages
comprising content rendered 1n a plurality of formats;

a plurality of first converters resident on the wireless com-
munication device, the plurality of first converters con-
figured to create a plurality of first renderes, the plural-
ity of first renderers operatively connected to the page
cache to add the pages comprising rendered content to
the page cache, the plurality of first renderers for ren-

10

15

20

25

30

35

40

45

50

55

60

65

16

dering the plurality of pages from information received
in response to a plurality of requests for the content for
display by the web browser 1n a format compatible with
a user interface implemented 1n the wireless communi-
cation device;

a renderer controller resident on the wireless communica-
tion device, the renderer controller configured to
examine, 1 response to each of the plurality of
requests, a resultant content type and to determine at

least one second converter configured to create at least
one second renderer required to render one of the plu-
rality of pages for display by the web browser 1n the
format compatible with the user interface implemented
in the wireless communication device; and

a serialization manager resident on the wireless communi-
cation device, the senalization manager configured to
maintain a registry of converters registered with the
serialization manager, to register the plurality of first
converters resident on the wireless communication
device 1n the registry of converters, and to determine
whether each of the at least one second converter 1s a
first converter registered in the registry of converters
and 1s resident on the wireless communication device.

2. The web browser of claim 1, wherein the serialization
manager 1s further configured to determine whether the at
least one second converter 1s a {irst converter registered 1n
the registry of converters and 1s non-resident on the wireless
communication device, and to requests the at least one sec-
ond converter over a wireless network and to download and
install the at least one second converter on the wireless com-
munication device if 1t 1s determined that the at least one
second converter 1s a first converter registered 1n the registry
of converters and 1s non-resident on the wireless communi-
cation device.

3. The web browser of claim 2, wherein the serialization
manager 1s further configured to register at least one third
converter as a first converter in the registry of converters, the
at least one third converter being non-resident on the wire-
less communication device and requestable for download
and 1installation to the wireless communication device 1n
response to a receipt of information of a content type associ-
ated with the at least one third converter at the wireless com-
munication device.

4. The web browser of claim 1, the web browser having a
plurality of communications interfaces configured for com-
munications via a plurality of communication protocols, the
communication protocols including Wireless Application
Protocol (WAP) and Hypertext Transier Protocol (HTTP).

5. The web browser of claim 4, wherein pages obtained
via HT'TP are 1 a filtered format generated by a WML {ilter.

6. The web browser of claim 4, wherein pages obtained
via HT'TP are in a filtered format generated by an HIML
f1lter.

7. A computer readable storage medium comprising
instructions for implementing a web browser for a wireless
communication device, the web browser comprising:

a page cache resident on the wireless communication
device, the page cache containing a plurality of pages
comprising content rendered 1n a plurality of formats;

a plurality of first converters resident on the wireless com-
munication device, the plurality of first converters con-
figured to create a plurality of first renderers, the plural-
ity of first renderers operatively connected to the page
cache to add the pages comprising rendered content to
the page cache, the plurality of first renderers for ren-
dering the plurality of pages from information recerved
in response to a plurality of requests for the content for

US RE41,786 E

17 18
display by the web browser 1n a format compatible with figured to create at least one second renderer required
a user 1ntertace implemented 1in the wireless communi- to render the page for display by the web browser in the
cation device; format compatible with the user interface implemented
a renderer controller resident on the wireless communica- in the wireless communication device:

tion device, the renderer controller configured to 3
examine, 1n response to each of the plurality of
requests, a resultant content type and to determine at

determining whether the second converter 1s a {irst con-
verter registered 1n the registry of converters and 1s resi-

least one second converter configured to create at least dent on the wireless communication device:

one second renderer required to render one of the plu- 1f the at least one second converter i1s determined to be
rality of pages for display by the web browser 1n the 10 registered in the registry of converters and 1s resident on
format compatible with the user interface implemented the wireless communication device, then rendering the

in the wireless communication device; and

a serialization manager resident on the wireless communi-
cation device, the serialization manager configured to
maintain a registry of converters registered with the

serialization manager, to register the plurality of first 1> storing the rendered page in a page cache.

page for display by the web browser 1n the format com-
patible with the user interface implemented 1n the wire-
less communication device; and

converters resident on the wireless communication 9. The method of claim 8 wherein the step of selecting a
device 1n the registry of converters, and to determine further comprising;

whether each of the at least one second converter 1s a determining whether the at least one second converter 1s a
first converter registered 1n the registry of converters first converter registered in the registry of converters

and 1s resident on the wireless communication device. 2V

S‘ A élle’.[h()d ffjr rendegpg d pdC Oll 4 WIE ele?’s Commu?- device; and 1f 1t 1s determined that the at least one sec-
cation device using a web browser comprising the sieps ol ond converter 1s a first converter registered in the regis-

maintaining a registry ot converters registered with a seri- try of converters and 1s non-resident on the wireless

alization manager; communication device, then requesting the at least one

and 1s non-resident on the wireless communication

registering a plurality of first converters resident on the <° second converter over a wireless network, and down-
wireless communication device in the registry of loading and 1installing the at least one second converter
converters, the plurality of first converters configured to on the wireless communication device.
create a plurality ot first renderers for rendering the 10. The method of claim 9, further comprising registering
plurality of pages from intormation received 1in at least one third converter as a first converter in the registry
response to a plurality of requests for the content for Y of converters, the at least one third converter being non-
display by the web browser 1n a format compatible with resident on the wireless communication device; and down-
a user interface implemented 1n the wireless communi- loading and installing the at least one third converter to the
cation device; wireless communication device 1n response to a receipt of

recelving information in response to a requests for content . information of a content type associated with the at least one

over a wireless network; third converter at the wireless communication device.

in response to the requests, examining a resultant content
type and determining at least one second converter con- 0% % % %

	Front Page
	Drawings
	Specification
	Claims

